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Abstract. As a neurodegenerative disorder, the Alzheimer’s disease
(AD) status can be characterized by the progressive impairment of mem-
ory and other cognitive functions. Thus, it is an important topic to use
neuroimaging measures to predict cognitive performance and track the
progression of AD. Many existing cognitive performance prediction meth-
ods employ the regression models to associate cognitive scores to neu-
roimaging measures, but these methods do not take into account the
interconnected structures within imaging data and those among cog-
nitive scores. To address this problem, we propose a novel multi-task
learning model for minimizing the k smallest singular values to uncover
the underlying low-rank common subspace and jointly analyze all the
imaging and clinical data. The effectiveness of our method is demon-
strated by the clearly improved prediction performances in all empirical
AD cognitive scores prediction cases.

1 Introduction

Accruing scientific evidences have demonstrated that the neuroimaging tech-
niques, such as magnetic resonance imaging (MRI), are important for the detec-
tion of early Alzheimer’s Disease (AD) [2,4,7,13]. Current American Academy
of Neurology (AAN) guidelines [3] for dementia diagnosis recommend imaging to
identify structural brain diseases that can cause cognitive impairment. Because
AD is a neurodegenerative disorder characterized by progressive impairment of
cognitive functions, it is important to diagnose the degree of brain impairment,
and how much it can influence the performance of cognitive tests. As a result,
many studies have focused on using regression models to predict cognitive scores
and track AD progression [10,11]. In [10], the voxel-based morphometry (VBM)
features extracted from the entire brain were jointly analyzed by the relevance
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vector regression method to predict different clinical scores individually. How-
ever, different neuroimaging features or different cognitive scores are often inter-
related. To tackle this problem, several recent studies, such as [11,12], tried to
employ the multi-task learning models to uncover the inherent structures among
neuroimaging features and cognitive scores. The low-rank regularization is an
effective method to extract the common subspace for multiple tasks. Although
trace norm is a widely used convex relaxation of low-rank regularization [1], its
performance is easily influenced by the large singular values. For example, when
the largest singular values of matrix M increase, the rank of M doesn’t change
but the trace norm of M increases correspondingly.

To address the above problems, in this paper, we propose a novel multi-
task learning model to learn the associations between neuroimaging features
and cognitive scores and uncover the low-rank common subspace among dif-
ferent tasks by minimizing the k smallest singular values. Our new k minimal
singular values minimization regularization is a tighter relaxation than trace
norm for rank minimization, such that our new multi-task learning model can
have better prediction performance. We derive a new optimization algorithm to
solve the proposed objective function and demonstrate the proof of its conver-
gence. The proposed new model is applied to analyze the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort [16] data. In all empirical results, our
new multi-task learning method consistently outperforms the widely used multi-
variate regression method, as well as different state-of-the-art multi-task learning
approaches.

2 New Multi-task Learning Model

2.1 New Objective Function

In our new model, we focus on minimizing the k-smallest singular values of
W and ignoring the largest singular values, such that our new regularization
function is a better relaxation than trace norm. Thus, we propose to solve the
following problem for multi-task learning:

Jopt = min
W=[W1,...,WT ]

T∑

t=1

f(WT
t Xt, Yt) + γ

k∑

i=1

σi(W ) (1)

Suppose there are T learning tasks, the t-th task has nt training data points
Xt = [xt

1, x
t
2, ..., x

t
nt

] ∈ R
d×nt . For each data xt

i, the label yt
i is given with the

label matrix Yt = [yt
1, y

t
2, ..., y

t
nt

] ∈ R
ct×nt for each task t. Wt ∈ R

d×ct is the

projection matrix to be learned, W ∈ Rd×c and c =
T∑

t=1
ct.

It is interesting to see that when γ is large enough, then the k-smallest
singular values of the optimal solution W to problem (1) will be zero as all the
singular values of a matrix is non-negative. That is, when γ is large enough, it
is equal to constrain the rank of W to be r = m − k in the problem (1).
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2.2 Optimization Algorithm

As per the definition of ||W ||∗ and singular value decomposition of W , it is
known that:

k∑

i=1

σi(W ) = ‖W‖∗ − max
F∈Rd×r,FT F=I,

G∈Rc×r,GT G=I

Tr(FTWG) , (2)

where ‖W‖∗ is the sum of all the singular values of W , and the optimal solution
of right term is sum of r largest singular values, F is the r left singular vectors
of W and G is the r right singular vectors of W .

According to Eq. (2), the objective J
opt

in Eq. (1) is equivalent to:

min
W=[W1,...,WT ],

F∈Rd×r,FT F=I,

G∈RT×r,GT G=I

T∑

t=1

f(WT
t Xt, Yt) + γ‖W‖∗ − γTr(FTWG) . (3)

When W is fixed, the problem (3) becomes:

max
F∈Rd×r,FT F=I,

G∈Rc×r,GT G=I

Tr(FTWG) (4)

The optimal solution F to the problem (4) is formed by r left singular vectors of
W corresponding to the r largest singular values, and the optimal solution G is
formed by r right singular vectors of W corresponding to the r largest singular
values.

When F and G are fixed, we define:

g(Wt) = f(WT
t Xt, Yt) − γTr(WT

t FGT
t ), (5)

the problem (3) becomes:

min
W=[W1,...,WT ]

T∑

t=1

g(Wt) + γ‖W‖∗. (6)

Using the reweighted method [6], we can solve problem (6) by iteratively solving
the following problem:

min
W=[W1,...,WT ]

T∑

t=1

g(Wt) + γ

T∑

t=1

Tr(WtW
T
t D), (7)

where D is computed according to the solution W ∗ in the last iteration and is
defined as:

D =
1
2
(W ∗W ∗T )− 1

2 . (8)
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We can see that each subproblem of task t is independent of each other in
problem (7). Thus, if we use the least square loss function, for each task Wt, the
objective function could be written as:

min
Wt

∥∥WT
t Xt + bt1T

t − Yt

∥∥2

F
− γTr(WT

t FGT
t ) + γTr(WtW

T
t D). (9)

We take derivatives of Eq. (9) with respect to bt and Wt, and set them to zero.
The optimal solution to problem (9) is as follows:

Wt = (XtHXT
t + γD)−1(XtHY T

t +
1
2
γFGT

t ) H = I − 1
nt

1t1T
t , (10)

bt =
1
nt

Yt1t − 1
nt

WT
t Xt1t. (11)

We summarize the detailed algorithm to solve the objective J
opt

in Algorithm 1.

Algorithm 1. Algorithm to solve the objective J
opt

in Eq. (1)

Input: The training data matrix Xt = [xt
1, x

t
2, ..., x

t
nt

] ∈ R
d×nt and the label matrix

Yt = [yt
1, y

t
2, ..., y

t
nt

] ∈ R
ct×nt for each task t.

Output: W ∈ R
d×c.

Initialize W ∈ R
d×c.

repeat
1. Update F and G by the optimal solution to the problem (4).

2. Compute D = 1
2
(WWT )− 1

2 .
3. For each t, update Wt by the optimal solution to the problem (7).

until Converges

2.3 Algorithm Analysis

The Algorithm 1 will monotonically decrease the objective of the problem in
Eq. (1) in each iteration. To prove it, we need the following lemma:

Lemma 1. For any positive definite matrices A,At ∈ Rm×m, the following
inequality holds when 0 < p ≤ 2:

Tr(A
p
2 ) − p

2
Tr(AA

p−2
2

t ) ≤ Tr(A
p
2
t ) − p

2
Tr(AtA

p−2
2

t ). (12)

It is proved in [6] that Lemma 1 holds. Based on the Lemma, we have the
following theorem:

Theorem 1. The Algorithm1 will monotonically decrease the objective of the
problem in Eq. (3) in each iteration till convergence.
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Proof. In each iteration, at first, we fix W and compute F̃ and G̃. According to
the solution of Eq. (4), we know:

− γTr(F̃TWG̃) ≤ −γTr(FTWG). (13)

When F̃ and G̃ are fixed, the problem becomes Eq. (7), by assuming that W̃ is
the solution in each iteration, we have:

T∑

t=1

g(W̃t) +
γ

2
Tr(W̃W̃T (WWT )− 1

2 ) ≤
T∑

t=1

g(Wt) +
γ

2
Tr(WWT (WWT )− 1

2 ).

(14)
On the other hand, according to Lemma1, when p = 1, we have:

Tr((W̃W̃T )
1
2 )−1

2
Tr(W̃W̃T (WWT )− 1

2 ) ≤ Tr((WWT )
1
2 )−1

2
Tr((WWT )(WWT )− 1

2 ).

(15)
Combining (13), (14), and (15), we arrive at:

T∑

t=1

f(W̃T
t Xt, Yt)+γ||W̃ ||∗−γTr(F̃TWG̃) ≤

T∑

t=1

f(WT
t Xt, Yt)+γ‖W‖∗−γTr(FTWG).

(16)
Thus the Algorithm 1 will not increase the objective function in (3) at each
iteration. Note that the equalities in above questions hold only when the algo-
rithm converges. Therefore, the Algorithm 1 monotonically decreases the objec-
tive value in each iteration till the convergence.

Because we alternatively solve F , G, and W , the Algorithm 1 will converge
to the local optimum of the problem (3), which is equivalent to the proposed
objective function.

3 Experimental Results and Discussions

3.1 Data Set Description

Data used in this paper were obtained from the ADNI database
(adni.loni.usc.edu). One goal of ADNI has been to test whether serial MRI,
PET, other biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and early AD. For up-to-
date information, we refer interested readers to visit www.adni-info.org.

The data processing steps are as follows. Each MRI T1-weighted image was
first anterior commissure (AC)’s posterior commissure (PC) corrected using
MIPAV2, intensity inhomogeneity corrected using the N3 algorithm [9], skull
stripped [15] with manual editing, and cerebellum-removed [14]. We then used
FAST [17] in the FSL package3 to segment the image into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF), and further used HAMMER
[8] to register the images to a common space. GM volumes obtained from 93
ROIs defined in [5], normalized by the total intracranial volume, were extracted
as features. Nine cognitive scores from five independent cognitive assessments

http://adni.loni.usc.edu/
http://www.adni-info.org
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were downloaded, including three scores from RAVLT cognitive assessment; two
scores from Fluency cognitive assessment (FLU); two scores from Trail making
test (TRAIL). A total of 525 subjects are involved in our study, including 78
AD, 260 MCI, and 187 HC participants.

3.2 Improved Cognitive Status Prediction for Individual
Assessment Tests

First, we apply the proposed method to the ADNI cohort, and separately pre-
dict each of the following three sets of cognitive scores: RAVLT, TRAILS and
FLUENCY. The morphometric variables {xi}ni=1 ∈ R

d, and d = 93 in this
experiment.

We compare the proposed multi-task learning method to three most related
methods: multivariate regression (MRV), multi-task learning model with �2,1-
norm regularization (�2,1) [11], and multi-task learning model with trace norm
(LS TRACE) [1], in cognitive performance prediction. For each test case, we use
5-fold cross validation and the prediction performance is assessed by the root
mean square error (RMSE). All experimental results are reported in Table 1.
The proposed method consistently outperforms other methods in nearly all the
test cases for all the cognitive tasks.

The heat maps of parameter weights are shown in Fig. 1. Visualizing the
parameter weights can help us locate the features which play important roles in
the corresponding cognitive prediction tasks. In this way, there is much potential
to identify the relevant imaging predictors and explain the effects of morpho-
metric changes in relation to cognitive performance. As we can see, different
coefficient values are represented in different colors in heat map. The blue polar

Table 1. Prediction performance measured by RMSE (mean ± std)

Test cases Algorithm Score1 Score2 Score3

FLUENCY MVR 6.2292 ± 0.4191 4.1210 ± 0.4733 -

LS TRACE 5.9792 ± 0.6339 4.0492 ± 0.4294 -

�2,1 5.7431 ± 0.2796 3.9567 ± 0.2143 -

Our method 5.4377 ± 0.3125 3.9498 ± 0.3505 -

RAVLT MVR 10.8194 ± 0.9530 4.0606 ± 0.3071 4.0616 ± 0.3928

LS TRACE 10.6359 ± 1.1303 4.0252 ± 0.2896 4.0399 ± 0.2250

�2,1 10.4451 ± 0.8905 3.9618 ± 0.2484 3.7906 ± 0.1444

Our method 9.7834 ± 0.4867 3.7261 ± 0.1368 3.6984 ± 0.1603

TRAILS MVR 22.3629 ± 1.0656 78.1796 ± 7.3501 70.9399 ± 7.2238

LS TRACE 20.7686 ± 1.1213 75.0121 ± 6.4147 65.3007 ± 6.0726

�2,1 19.5400 ± 2.8240 72.7200 ± 8.6480 63.4796 ± 7.3528

Our method 18.1809 ± 2.0390 66.9982 ± 5.1144 58.0915 ± 4.0492
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Fig. 1. Heat map of corresponding features for cognitive score prediction.

and red polar mean a significant effect of corresponding features on cognitive
score performance.

3.3 Improved Cognitive Performance Prediction for Joint
Assessment Tests

To further evaluate the multi-task joint analysis power, we apply the proposed
method to predict all five types of cognitive scores (RAVLT, TRAILS, FLU-
ENCY) jointly. Such experiments will demonstrate how the interrelations among
cognitive assessment tests are utilized to enhance the prediction performance.

Table 2. Prediction performance measured by RMSE (mean ± std) for joint assessment
tests.

Algorithm Score name Score1 Score2 Score3

MVR FLUENCY 6.0282 ± 0.2255 4.1852 ± 0.4346 -

RAVLT 11.0376 ± 0.4489 4.0608 ± 0.2554 4.0561 ± 0.1547

TRAILS 21.7435 ± 1.3936 77.0161 ± 5.2578 68.1576 ± 4.837

LS TRACE FLUENCY 5.7778 ± 0.1130 3.9681 ± 0.2965 -

RAVLT 10.8519 ± 0.8808 3.8674 ± 0.4112 3.8772 ± 0.1943

TRAILS 20.5224 ± 1.1906 74.4795 ± 4.5967 64.3386 ± 4.2974

�2,1 FLUENCY 5.8100 ± 0.9274 3.9139 ± 0.3538 -

RAVLT 10.4500 ± 0.3846 3.9806 ± 0.2158 3.8797 ± 0.2050

TRAILS 19.7753 ± 1.5802 70.9585 ± 5.5396 62.3717 ± 4.9592

Our method FLUENCY 5.4644 ± 0.3515 3.8724 ± 0.1908 -

RAVLT 10.4492 ± 0.8235 3.6522 ± 0.2542 3.7086 ± 0.1814

TRAILS 17.8778 ± 1.8126 66.3821 ± 5.6292 57.7588 ± 5.3360
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Similar to the previous experiment, we also compare our method to three
other related models. For each test case, we use 5-fold cross validation to evalu-
ate the average performance of each algorithm. The prediction results are eval-
uated by RMSE and reported in Table 2. In all prediction cases, our method
outperforms other methods.

4 Conclusion

In this paper, we proposed a new multi-task learning model for minimizing k
smallest singular values to predict the cognitive scores for complex brain dis-
orders. This proposed new low-rank regularization is a better approximation of
rank minimization regularization problem than the standard trace norm regular-
ization, thus our new multi-task learning method can uncover the shared com-
mon subspace efficiently and sufficiently. As a result, cognitive score prediction
results are enhanced by the learned hidden structures among tasks and features.
We also introduced an efficient optimization algorithm to solve our proposed
objective function with rigorous theoretical analysis. Our experiments were con-
ducted on the MRI and multiple cognitive scores data of the ADNI cohort and
yield promising results: (1) Prediction performance of the proposed multi-task
learning model is better than all related methods in all cases; (2) Our method
can predict multiple cognitive scores at the same time and has a potential to
play an important role in determining cognitive functions and characterizing AD
progression.
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