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Abstract. While tractography is widely used in brain imaging research,
its quantitative validation is highly difficult. Many fiber systems, how-
ever, have well-known topographic organization which can even be quan-
titatively mapped such as the retinotopy of visual pathway. Motivated
by this previously untapped anatomical knowledge, we develop a novel
tractography method that preserves both topographic and geometric reg-
ularity of fiber systems. For topographic preservation, we propose a novel
likelihood function that tests the match between parallel curves and fiber
orientation distributions. For geometric regularity, we use Gaussian dis-
tributions of Frenet-Serret frames. Taken together, we develop a Bayesian
framework for generating highly organized tracks that accurately fol-
low neuroanatomy. Using multi-shell diffusion images of 56 subjects
from Human Connectome Project, we compare our method with algo-
rithms from MRtrix. By applying regression analysis between retinotopic
eccentricity and tracks, we quantitatively demonstrate that our method
achieves superior performance in preserving the retinotopic organization
of optic radiation.

Keywords: Probabilistic tractography · Bayesian inference · Visual
pathway

1 Introduction

Tractography is a widely used technique for studying brain connectomes with
diffusion MRI (dMRI) and has provided many exciting results in brain imaging
research [1]. The lack of rigorous validation for in vivo human brain studies,
however, has long been a critical challenge to push tractography toward a quan-
titative tool [2,3]. On the other hand, the regular topographic organization of
many fiber systems in human brains provide a surprisingly untapped anatomical
knowledge for the improvement and validation of tractography techniques. Some
of the well-known examples include the retinotopic organization of the visual
pathway [4], the somatotopic organization of the somatosensory pathway [5],
and the tonotopic organization of the auditory pathway [6]. In this paper, we
incorporate this insight on anatomical regularity to develop a novel probabilistic
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tractography algorithm for studying the connectome of these topographically
organized systems.

Conventional streamline methods rely on step size and curvature parameters
to control the regularity of fiber tracks [7]. This type of local mechanism is dif-
ficult to account for the topographic organization of fiber pathways. It becomes
particularly challenging when we want to reconstruct fiber tracks that are topo-
graphically arranged but with highly bended segments such as the Meyer’s loop
of the optic radiation. More recently, global tractography techniques were devel-
oped to improve the robustness of streamline techniques [8,9], but their focus is
on balancing the fitting of dMRI signals and the regularity of local stick models.
These developments are followed by microstructure based optimization tech-
niques that start with a large set of tracks and assign weights or prune them so
that resultant set of tracks best fit the dMRI signal [10,11].

In this work we propose a novel probabilistic tractography method that incor-
porates both topographic and geometric regularity. Each fiber track is repre-
sented with the Frenet-Serret frame in our method. Fiber orientation distribu-
tions (FODs) [7,12] are used in our work to represent the connectivity informa-
tion at each voxel. For topographic regularity, the key idea in our method is the
development of a novel likelihood function that tests the match of parallel curves
to the FODs in the neighborhood of each point. The geometric prior is modeled
as a Gaussian distribution of the Frenet-Serret frame. Taken together, we use
a Bayesian approach with rejection sampling to propagate the fiber tracks and
reconstruct highly organized fiber bundles.

In our experimental results, we validate the proposed technique on the recon-
struction of the optic radiation using the multi-shell diffusion imaging data of
the Human Connectome Project (HCP) [13]. The retinotopy of the visual sys-
tem means there is a corresponding point on the cortex for each point of the
retinal space [4]. This correspondence between the topography of the retina and
axonal projections provides a great opportunity for localized mapping of retina
disease to visual pathway integrity. Another distinct aspect of this fiber system
is the Meyer’s loop that bends sharply toward the anterior aspect before mov-
ing toward the visual cortex [14]. Given these anatomical knowledge about the
topography and geometric organization of the optic radiation, we believe it is
an ideal testbed for tractography algorithms. On multi-shell imaging data from
56 HCP subjects, we compare our method with three tractography algorithms
of the MRtrix package [7]. We demonstrate that our method is able to gener-
ate highly organized tracks while capturing the challenging Meyer’s loop. Using
regression analysis, we quantitatively demonstrate that our method performs
better in preserving the retinotopy of the optic radiation.

2 Methods

Frenet-Serret Apparatus: We use the Frenet-Serret frame and formulas
to represent fiber tracks as differentiable curves. Let γ(s) represent a non-
degenerate curve parameterized by its arc length s. The Frenet-Serret frame
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can then be defined with three orthonormal vectors: tangent (T ), normal (N)
and binormal (B) that are given as T = dγ/ds, N = (dT/ds)/ | dT/ds | and
B = T × N . The Frenet-Serret formulas express the derivatives of T , N and
B in terms of themselves with a system of first order ODEs: dT/ds = κN ,
dN/ds = −κT + τB and dB/ds = −τN . Here κ and τ are the curvature and
torsion of the curve, respectively. Given the initial conditions, this system can
be uniquely solved.

Curve Spaces: Curve parameters can be put in a vector form to represent the
space of differentiable curves that pass through p ∈ R

3 with cp = [F , κ, τ ] ∈ C.
Here F denotes the Frenet-Serret frame and C is a short notation for the space
of curves, S2 × S2 × R

+ × R, where S2 is the unit sphere. We will use the
notation γcp

(s) ∈ R
3 to denote where cp traces in space and denote Fcp

(s) =
{Tcp

(s), Ncp
(s), Bcp

(s)}, κcp
(s) and τcp

(s) as the parameters of the curve at s.

Parallel Curves: Let cp and cp′ be two curves. If p′ lies on the normal plane
of cp and cp = cp′ then we call cp and cp′ parallel curves and denote them
as cp ‖ cp′ . These are also known as offset curves in computer graphics and
computer aided design.

Fiber Model: We model a fiber track as a finite length, arc length parameter-
ized curve that starts from a seed point pt=0 ∈ R

3 at time step zero (t = 0). In a
nutshell, our algorithm initializes by estimating ct=0

pt=0 for s = 0 and γc0
p0

(0) = p0.
It solves the Frenet-Serret ODE system and moves to t = 1 by taking a step of
Δs which gives s = Δs, γc0

p0
(Δs) = p1 and c1p1 = [Fc0

p0
(Δs), κc0

p0
(Δs), τc0

p0
(Δs)].

We then compute the priors, likelihood and posterior using Bayesian inference.
Lastly we pick the next curve, c2p1 , randomly by rejection sampling and iter-
ate until a stopping condition is met. Our track is a train of points traced by
the curve {p0, p1, p2, · · · }. Figure 1 explains our notation and the propagation
technique.

Fig. 1. (a) At t = 0, without prior information, we select a random curve among the red
candidate curves based on their likelihood. The thicker the curve, the higher posterior
probability it has. (b) By solving the Frenet-Serret ODE, we propagate by Δs. (c) At
t = 1, we calculate the prior probability for candidate curves for a smooth transition
from the previous curve c1p1 shown in green. (d) Propagate to p2.

Bayesian Inference: Given a curve at time t, ct
pt , and data D, we estimate the

posterior probability for the next curve ct+1
pt using Bayesian inference as follows:
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p(ct+1
pt | D, ct

pt)
︸ ︷︷ ︸

posterior

=
p(D | ct+1

pt )p(ct+1
pt | ct

pt)

p(D | ct
pt)

∝ p(D | ct+1
pt )

︸ ︷︷ ︸

likelihood

p(ct+1
pt | ct

pt)
︸ ︷︷ ︸

prior

(1)

Prior Estimation: In order to preserve smoothness between the transition of
curves that involves the changes in κ, τ and 3D rotation of F , we use Gaussian
distributions to define the geometric prior. The variances for curvature and tor-
sion are denoted with σ2

κ and σ2
τ . 3D rotation is realized by rotating F around T ,

N and B axes in order, with variances σT , σN and σB respectively. The overall
prior probability is expressed in Eq. 2:

p(ct+1
pt | ct

pt) = p(F t+1 | F t, σ2
T , σ2

N , σ2
B)

︸ ︷︷ ︸

p(T t+1|T t,σ2
N ,σ2

B)p(Nt+1|Nt,σ2
T ,σ2

B)p(Bt+1|Bt,σ2
T ,σ2

N )

p(κt+1 | κt, σ2
κ)p(τ t+1 | τ t, σ2

τ ) (2)

The functions used for computing the prior probability are given in Eq. 3.

p(T t+1 | T t, σ2
N , σ2

B) = (2πσNσB)−1e−acos2(〈T ′,T t〉)/2σ2
N −acos2(〈T t+1,T ′〉)/2σ2

B

p(N t+1 | N t, σ2
T , σ2

B) = (2πσT σB)−1e−acos2(〈N ′,Nt〉)/2σ2
T −acos2(〈Nt+1,N ′〉)/2σ2

B

p(Bt+1 | Bt, σ2
T , σ2

N ) = (2πσT σN )−1e−acos2(〈B′,Bt〉)/2σ2
T −acos2(〈Bt+1,B′〉)/2σ2

N

p(κt+1 | κt, σ2
κ) = (

√
2πσκ)−1e−(Ψ(κt+1)−Ψ(κt))2/(2Ψ(σ2

κ))

p(τ t+1 | τ t, σ2
τ ) = (

√
2πστ )−1e−(τt+1−τt)2/(2σ2

τ )

(3)
In Eq. 3, 〈 , 〉 is the dot product, T ′, N ′ and B′ are the intermediary rotations,
and Ψ(κ) = asin(κ) is used to linearize change in curvature.

Likelihood Estimation: We estimate the data support for the next curve
using the parallel curve definition and fiber orientation distribution (FOD). The
field of FODs over an image volume can be expressed as a spherical function
D(p, T ) : R3 × S2 → R, where p ∈ R

3 is the position of a point in the dMRI
image and T ∈ S2. We define our likelihood expression as follows:

p(D | ct+1
pt ) =

1
4/3πr3

∫

∀cp′ ‖ct+1
pt

∫

|pt−γc
p′ (s)|≤r

D(γcp′ (s), Tcp′ (s))dsdcp′ (4)

In Eq. 4, r is the radius of a sphere centered at p, which is the integra-
tion domain. Constant terms in front of Eq. 4 are used for normalization. The
likelihood expression computes the data support for a candidate curve ct+1

p by
integrating contributions of FODs belonging to parallel curves.

Implementation Details: The double integral in Eq. 4 is intractable. In order
to estimate the likelihood numerically, we discretize the integral domain and
add the contributions of FODs for a set of points as illustrated in Fig. 2. In this
case, we used an actual human dMRI and picked a point in corpus callosum. For
better visualization, we show here 7 random points as black dots within a radius
of a few voxels, but in practice we use 27 points. The likelihood of a curve is
computed by estimating the parallel curves that pass through these points. We
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Fig. 2. (a) To estimate the likelihood of a curve, we randomly pick a number of points
within the integration radius, r. (b) Parallel curves passing through the random points.
(c) We compute the tangents of parallel curves for each point and obtain the average
FOD. (d)(e) Estimated likelihoods are shown in proportion to the thickness of curves.

then compute the tangents and interpolate the FODs at the points. The final
likelihood is obtained by adding and averaging the data support contributed by
these points. In Fig. 2(d) and (e), the estimated likelihoods of two different sets
of parallel curves are visualized, where the thickness of fibers are in proportion
to their likelihood.

3 Test Subjects and Experimental Setup

In our experiments we used multi-shell images from Q1 release of HCP that
includes 74 subjects, 56 of which completed both T1 and dMRI scans. For all 56
subjects, we computed FODs following the algorithm in [12] for multi-shell data.
The FODs from this method are represented by spherical harmonics (SPHARM)
and fully compatible with MRtrix that we compare with. We focused on the
reconstruction of optic radiation that connects the lateral geniculate nucleus
(LGN) and primary visual cortex (V1). One salient feature of this bundle is the
retinotopic organization. Following the method in [16], we automatically gen-
erate V1 ROI and its retinotopic map that assigns each vertex in V1 cortex
two coordinates: angle and eccentricity. ROI for LGN was generated using the
method proposed in [14]. Inferior bundle of the optic radiation has an unconven-
tional trajectory which first courses anteriorly before it runs posteriorly towards
the visual cortex forming the elusive Meyer’s loop. Because of the quantitative
coordinates provided by the retinotopic map and the challenges in reconstruct-
ing the Meyer’s loop, we picked the optical radiation in our tests. We conducted
qualitative and quantitative comparisons of our technique with algorithms in
MRtrix3 [7], which includes two probabilistic tractography algorithms: iFOD2
[15], iFOD1 and a deterministic, SD STREAM, approach. Table 1 shows the
parameters used for each technique. For our technique, we typically use a very
small step size together with small σ2

N and σ2
B values since we walk along curves.

In order to capture the Meyer’s loop, for MRtrix3 algorithms we used a higher
angular threshold than the default parameters. Cut-off values were adjusted so
that all the techniques can capture the Meyer’s loop. A lower cut-off threshold
and a much higher angle threshold are used for SD STREAM to achieve this.
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Table 1. Tractography parameters used for each technique. vs is voxel size, ◦ is degree.

Step(vs) Angle Cutoff σ2
T σ2

N σ2
B σ2

κ(vs) σ2
τ (vs) r(vs)

Our method 0.001 0.04 60◦ 1.25◦ 1.25◦ 0.2 0.2 2

MRtrix3 iFOD2 0.2 22◦ 0.04

MRtrix3 iFOD1 0.1 11◦ 0.04

MRtrix3 SD STREAM 0.1 60◦ 0.02

4 Results

Qualitative Evaluation: Reconstruction results of the left optic radiation of
an HCP subject by our method and MRtrix algorithms are shown in Fig. 3. We
can clearly see that our results are more desirable as they are able to successfully
capture the Meyer’s loop while exhibiting highly organized trajectories. As the
tracks approach the V1 cortex, we can see the probabilistic tractography results
from iFOD2 and iFOD1 start to become topographically less organized.

Fig. 3. Qualitative comparison of our method with MRTrix algorithms on the recon-
struction of a left optic radiation of an HCP subject.

Quantitative Evaluation: In Fig. 4 we illustrate our approach for quantita-
tive evaluation. Using the eccentricity of the V1 cortex, we can divide it into
three parts: fovea (red), superior-peripheral (green) and inferior-peripheral (blue)
regions as shown in Fig. 4(a), which also allow us to split the fiber bundle into
three sub-bundles. By cutting the bundle with a coronal plane (black dashed
lines in Fig. 4(a)), we can visualize the topographic organization of the fiber
tracks from different methods as shown in Fig. 4(b)–(e). Because of the topo-
graphic organization of the fovea and peripheral bundles, the eccentricity of the
fiber tracks and their coordinates on the cross-section should follow a U-shape
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Fig. 4. Quantitative comparison of the bundles show in Fig. 3. Top row shows the labels
for three sub-bundles of the optic radiation. Bottom row shows the eccentricity values
and the quality of quadratic fit using MSE and R2. The low MSE and high R2 values
obtained by the proposed technique corroborate the qualitative observation.

relation as plotted in Fig. 4(f), where the black dots are the raw data and the
colored points are the fitted value with quadratic regression. In Fig. 4(g)–(j),
the eccentricity values of each bundle on the cross-section are visualized, where
the color bar for eccentricity is shown on the right most image. To quantita-
tively assess this relation, we applied quadratic regression to model the relation
between eccentricity and the cross-sectional coordinates of fiber bundles. We
report both the mean square error (MSE) and coefficient of determination (R2)
to measure how well the fiber tracks preserve the retinotopy of the fiber bundle.
For each technique, the mean value of these two measures from 56 HCP sub-
jects are listed in Table 2, where we can see that our method achieves the best
performance in both measures.

Table 2. Quantitative evaluation of the retinotopic organization of the optic radiation
bundle. Best results are in bold.

Our method iFOD2 iFOD1 SD STREAM

Mean R2 0.53 0.27 0.4 0.46

Mean MSE 7.44 14.83 9.03 12.5

5 Discussions and Conclusion

Our current implementation is non-optimal and written in MATLAB and C++.
Typically it takes several hours to generate tracks on the orders of thousands
which we are working to improve. Our technique uses more parameters as com-
pared to the conventional algorithms, but they are geometrically intuitive and
their effects are not very difficult to understand. For quantitative comparison,
we took a different approach than in [2] which suggests counting valid, invalid
and no connections. This is because we focus on the reconstruction of individual
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bundles. We also did not use synthetic phantoms or simulated tracks because of
the availability of retinotopic maps for in vivo validation.

In summary, we developed a novel probabilistic tractography technique that
aims to capture the topographic organization of fiber bundles. A key idea in our
method is the use of parallel curves to examine the local fitting of fiber tracks
to the underlying field of FODs. Using the retinotopic mapping on V1 cortex,
we have conducted quantitative evaluations and demonstrated that our method
is able to generate more organized fiber tracks that follows known anatomy of
the visual system. For future work, we will conduct more extensive validations
on the visual pathway, its connectivity maps and other bundles that also follow
topographic organizations such as the auditory and somatosensory pathways.

Acknowledgements. This work was in part supported by the National Insti-
tute of Health (NIH) under Grant K01EB013633, P41EB015922, P50AG005142,
U01EY025864, U01AG051218.

References

1. Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeurissen, B., Malcolm, J.,
Ramirez-Manzanares, A., Reisert, M., Sakaie, K., Tensaouti, F., Yo, T., Mangin,
J.F., Poupon, C.: Quantitative evaluation of 10 tractography algorithms on a real-
istic diffusion MR phantom. NeuroImage 56(1), 220–234 (2011)
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