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Abstract. In this paper, we present a novel method for obtaining a low
dimensional representation of a complex brain network that: (1) can be inter-
preted in a neurobiologically meaningful way, (2) emphasizes group differences
by accounting for label information, and (3) captures the variation in disease
subtypes/severity by respecting the intrinsic manifold structure underlying the
data. Our method is a supervised variant of non-negative matrix factorization
(NMF), and achieves dimensionality reduction by extracting an orthogonal set
of subnetworks that are interpretable, reconstructive of the original data, and
also discriminative at the group level. In addition, the method includes a
manifold regularizer that encourages the low dimensional representations to be
smooth with respect to the intrinsic geometry of the data, allowing subjects with
similar disease-severity to share similar network representations. While the
method is generalizable to other types of non-negative network data, in this
work we have used structural connectomes (SCs) derived from diffusion data to
identify the cortical/subcortical connections that have been disrupted in abnor-
mal neurological state. Experiments on a traumatic brain injury (TBI) dataset
demonstrate that our method can identify subnetworks that can reliably classify
TBI from controls and also reveal insightful connectivity patterns that may be
indicative of a biomarker.

1 Introduction

Substantial evidence suggests that many major psychiatric and neurological disorders
are associated with aberrations in the network structure of the brain [5, 7]. With the
availability of modern neuroimaging modalities such as diffusion tensor (DTI) and
functional (fMRI) imaging, there is currently an exciting potential for researchers to
identify connectivity-based biomarkers of disease states. Since brain networks are
known to exhibit complex interactions, multivariate pattern analysis (MVPA) methods
are particularly suitable here, as they aim to identify the site of the pathology by
examining the data as a whole, accounting for the correlations among the network
features.
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In this work, we are interested in applying MVPA methods on diffusion-based
structural connectomes (SCs) to identify the patterns of structural dysconnectivity
induced by a brain disorder. However, due to the high dimensionality of SCs, standard
MVPA methods such as the support vector machine (SVM) become prone to over-
fitting and thus tend to generalize poorly to test data. Even when generalizability is
achieved, SVM lacks clinical interpretability since it returns a dense, high dimensional
weight vector. One way to address this is by adding an L1-regularizer to the SVM
objective for feature selection [6], but this approach is known to perform poorly when
the features are highly correlated. Thus dimensionality reduction becomes critical for
improving classification performance and interpretability. Some well-established
dimensionality reduction methods in neuroimaging include the principal and inde-
pendent component analysis (PCA and ICA). However, these approaches do not pre-
serve the non-negativity of the SCs, thus return global representations of brain network
that are highly overlapping and lack interpretability since negative structural connec-
tion is biologically ill-defined.

Non-negative matrix factorization (NMF) [9] is a relatively recent method that
addresses this problem by incorporating non-negativity as a constraint. This constraint
leads to a more localized “parts-based” representation where the data is decomposed
into purely additive combinations of non-negative basis components. For our work, the
bases can be interpreted as data-driven subnetworks, and the corresponding coefficients
provide a low-dimensional representation of the SC that can be used in a classifier.

However, despite its success, NMF possesses several limitations. First, NMF does
not guarantee the basis components to be local and parts-based, i.e., the subnetworks
may be global representations that are overlapping and redundant. Moreover, standard
NMF and many of its variants are unsupervised, thus they ignore discriminative
structures that may signify important group differences. Finally, NMF assumes that the
data are sampled from a Euclidean space, thus does not account for the intrinsic
manifold structure underlying the data. While this last issue was addressed in a recent
work by Ghanbari et al. [7] under a graph-embedding framework, their method is also
unsupervised and thus ignores label information. On the other hand, although super-
vised subnetwork detection frameworks have been introduced in some recent works [2,
8], these methods do not account for the manifold structure underlying the data.

To overcome these limitations, in this paper we introduce a novel supervised NMF
framework for identifying an orthogonal set of subnetworks that is interpretable and
emphasizes group differences in structural connectivity. The method also respects the
intrinsic geometric structure in the data through manifold regularization [7, 10], which
encourages subnetwork representations to be smooth with respect to the data manifold.
To solve the proposed objective function, we introduce an optimization algorithm
based on the alternating direction method (ADM), which has recently been demon-
strated to solve NMF with superior performance over other state-of-the-art algorithms
[12]. The proposed framework was evaluated on a TBI dataset, and the results
demonstrate the interpretability and the discriminative capacity of the subnetworks.
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2 Method

Projective NMF. Let X ¼ x1; � � � ; xn½ � and y ¼ y1; � � � ; yn½ �T denote a set of training
samples consisting of SCs xi 2 R

p
þ ; i ¼ 1; � � � ; n; and yi 2 �1f g indicates the label of

subject i. An SC is a vector representation of the brain network obtained via tractog-
raphy, where each vector elements represents the strength of structural connection
between distinct pair of brain regions (see Sect. 3 for details). Given a target dimension
r � p, NMF learns a decomposition of the form X � WH by minimizing the Frobe-
nius norm error X �WHk k2F , where W ¼ ½w1; � � � ;wr� 2 R

p�r
þ is the basis matrix and

H ¼ ½h1; � � � ; hn� 2 R
r�n
þ is the coefficient matrix. In the context of our work, the

columns of W are connectivity bases that represent subnetworks.
Following [10], we assume that H is obtained from a linear projection of X, i.e.,

H ¼ PX, where P 2 R
r�p
þ is a nonnegative projection matrix that embeds the data onto

the intrinsic subspace. Under this assumption, the objective function for NMF becomes

min
W;P	 0

1
2

X �WðPXÞk k2F : ð1Þ

A key advantage of this projective NMF is that once an optimal projection P
 is learned
from solving (1), the trained model can be readily generalized to unseen data. That is,
given a new test data x
, we can immediately obtain its low dimensional representation
by h
 ¼ P
x
: This is extremely important for running cross-validation (CV).

Orthogonal NMF with Manifold Regularization and Label Information. Despite
the merits of the projective NMF, it has three key deficiencies. Firstly, it is often
reported that NMF does not necessarily return meaningful parts-based decompositions
for some datasets. Secondly, although many real-world data are found to lie in a low
dimensional manifold, NMF assumes that the data are sampled from a Euclidean space,
neglecting the intrinsic geometric structure in the data. Thirdly, traditional NMF
models are unsupervised and thus ignore the discriminative information from the
different label groups.

In light of these limitations, we propose to include the following terms in our
model:

1. Orthogonality constraint: F1 Wð Þ ¼ IXðWÞ, where X :¼ W 2 R
p� rjWTW ¼ Ir

� �
and ICð�Þ is the indicator function of a set C : IC Wð Þ ¼ 0 if W 2 C and IC Wð Þ ¼ 1
elsewise.

2. Manifold regularization: F2 Pð Þ¼Pn
i¼1

Pn
j¼1

Pxi � Pxj
�� ��Sij:

3. Classification error: F3 P; b; bð Þ ¼ y� PXð ÞTb� b1n
�� ��2

2, where b 2 R
r and b 2 R

defines a hyperplane in the intrinsic subspace, and 1n 2 R
n is a vector of all ones.

The F1 term constrains the basis matrix to reside within the set X, which is the set
of orthogonal matrices known as the Stiefel manifold [11]. Since W is non-negative,
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orthogonality implies that the bases representing the subnetworks are non-overlapping,
which enhances interpretability and eliminates redundancy.

The F2 term ensures smoothness of the low dimensional representation with respect
to the manifold structure encoded in affinity matrix S 2 R

n�n. Intuitively, this regu-
larizer preserves the intrinsic geometric structure in the data by encouraging repre-
sentations Pxi and Pxj to be close if Si;j is large, i.e., subjects i and j are similar under
some notion. This regularizer can also be expressed in terms of the trace operator:

F2 Pð Þ ¼ Tr ðPXÞLðPXÞT
� �

, where L 2 R
n�n is the graph Laplacian defined by L ¼

D� S; and D is a diagonal matrix with Di;i ¼
Pn
j¼1

Si;j8i. While the type of inter-subject

relationship that can be encoded via the affinity matrix S is general, in this work, we
will take advantage of the clinical scores that are used to evaluate patients, and create a
“disease-severity graph” to capture the disease-induced variation in the SCs. Specifi-
cally, we will assign higher value to Si;j if subjects i and j share similar severity scores.

Finally, the classification error term F3 enhances the discriminatory power of NMF
by encouraging the label groups in the low dimensional embedding PX to be separated
by a hyperplane b (for clarity, the intercept term b is dropped from our presentation
hereon after). Thus, our proposed NMF model seeks to identify subnetwork bases that
are not only reconstructive of data but also discriminative of label groups (note that the
squared error is used here to allow the ADM algorithm to admit a closed form
solution).

Integrating the above constraint terms into the projective NMF Eq. (1) gives us our
final objective function (k1; k2	 0 below are regularization parameters):

min
W;P	 0;b

X �W PXð Þk k2F þ k1Tr ðPXÞLðPXÞT
� �

þ k2 y� PXð ÞTb�� ��2
2þ IX Wð Þ: ð2Þ

ADM Algorithm. We now introduce an optimization algorithm based on the ADM
algorithm [12] for solving the proposed cost function. Before applying ADM, we first
convert objective function (2) into the following equivalent constrained form by
introducing auxiliary variables fH; ~H; ~W1; ~W2; ~Pg (a technique called variable
splitting):

min
W ;P;H; b;
~P; ~H; ~W1; ~W2

X �WHk k2F þ k1Tr ~HL ~H
T

� �
þ k2 y�HTb

�� ��2
2þ Iþ ~W1

� �þ IX ~W2
� �þ Iþ ~P

� �

such that H ¼ PX;W ¼ ~W1;W ¼ ~W2;P ¼ ~P;H ¼ ~H;

where Iþ ð�Þ denotes the indicator function of the non-negative orthant. Although the
auxiliary variables introduced from variable splitting may appear redundant, this
strategy is commonly used in ADM frameworks (see [12] for example), as it allows the
ADM subproblems to be solved in closed form. In the context of our work, the
augmented Lagrangian (AL) function for the above constrained problem is given by:
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LAL W;P; b; ~P;H; ~H; ~W1; ~W2;K ~W1
;K ~W2

;K~P;KH;K~H

� �
¼ X �WHk k2F

þ k1Tr ~HL ~H
T

� �
þ k2 y�HTb

�� ��2
2þ Iþ ~W1

� �þ IX ~W2
� �þ Iþ ~P

� �
þ K ~W1

;W � ~W1

D E
þ K ~W2

;W � ~W2

D E
þ KP;P� ~P
	 
þ KH;H � PXh iþ K ~H;H � ~H

	 

þ q

2
W � ~W1

�� ��2
F þ W � ~W2

�� ��2
F þ P� ~P

�� ��2
F þ H � PXk k2F þ H � ~H

�� ��2
F

n o
;

where W;P; b; ~W1; ~W2; ~P;H; ~H
� �

and K ~W1
;K ~W2

;K~P;KH;K~H

� �
are primal and dual

variables, q[ 0 is the AL penalty parameter, and �; � denotes the trace inner product.
The ADM algorhm is derived by alternately minimizing LAL with respect to each
primal variable while holding others fixed, followed by a gradient ascent step on dual
variables. The overall ADM algorithm can be summarized as follows:

Repeat until convergence after variable initialization:

Primal updates (1) Primal updates (2) Dual updates
P arg minPLAL ~P arg min~PLAL K~P  K~Pþ qðP� ~PÞ
W  arg minWLAL ~W1  arg min ~W1

LAL K ~W1
 K ~W1

þ qðW � ~W1Þ
H  arg minHLAL ~W2  arg min ~W2

LAL K ~W2
 K ~W2

þ qðW � ~W2Þ
b arg minbLAL ~H  arg min ~HLAL KH  KH þ q H � PXð Þ

K ~H  K ~H þ qðH � ~HÞ

The primal updates above can all be carried out efficiently in closed form:

P HXT þ ~Pþ KHXT � KP
� �

=q
� �

XXT þ Ip
� ��1 ~P max 0;PþK~P=q

� �
W  XHT þ q ~W1þ ~W2

� �� K ~W1
� K ~W2

� �
HHT þ 2qIr
� ��1 ~W1  max 0;W1 þK ~W1

=q
� �

H  WTWþ 2qIrþ k2bb
T

� ��1
WTXþ qPX � KH þ k2byT
� � ~H  qHþK ~H

� �
k1LþqInð Þ�1

b HHT
� ��1y ~W2  ProjX WþK ~W2

=q
� �

Note ProjX �ð Þ for the ~W2 update denotes the Euclidean projection of a matrix onto
the Stiefel manifold. Letting A 2 R

p�r ðr� pÞ denote a rank-r matrix, this is given by:

ProjX Að Þ ¼ argmin
Q2X

jjA� Qjj2F ¼ U
Ir
0


 �
VH ð3Þ

Here URVH represents the SVD of A and 0 2 R
ðp�rÞ�r is a matrix of all zeros;

solution (3) is unique as long as A is full column rank (see Proposition 7 in [11]).
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3 Experiments and Conclusions

Dataset. We apply our method to a TBI dataset consisting of 34 TBI patients and 32
age-matched controls. While the control subjects were scanned only once, the TBI
patients were scanned and evaluated at three different time points: 3, 6, and 12 months
post-injury. Of the 34 TBI patients, 18 had all 3 time points, 9 had 2 and 7 had only one
timepoint. The functional outcome of patients was evaluated using the Glasgow Out-
come Scale Extended (GOSE) and Disability Rating Scale (DRS), which are com-
monly used in TBI. GOSE ranges from 1 = dead to 8 = good recovery, whereas DRS
ranges from 0 = normal to 29 = extremely vegetated. In total, the dataset comprises
111 total scans, with 32 labeled control and 79 labeled TBI. All scans are accompanied
with 11 clinical scores that are intended to assess the cognitive functioning of the
subject.

Creating the SCs. DTI data was acquired for each subject (Siemens 3T TrioTim, 8
channel head coil, single shot spin echo sequence, TR/TE = 6500/84 ms, b = 1000
s/mm2, 30 gradient directions). 86 ROIs from the Desikan atlas were extracted to
represent the nodes of the structural network. Probabilistic tractography [3] was per-
formed from each of these regions with 100 streamline fibers sampled per voxel,
resulting in an 86 � 86 matrix of weighted connectivity values, where each element
represents the conditional probability of a pathway between regions, normalized by the
active surface area of the seed ROI. Finally, the 86 � 86 connectivity matrix of each
subject was vectorized to its p = 3655 lower triangular elements, resulting in x 2 R

p
þ

representing the SC.

Implementation Details. We applied our method to SCs computed from the TBI
dataset to compute the subnetwork bases and their corresponding NMF coefficients;
here we let y = + 1 indicate TBI and y = - 1 indicate control. The disease-severity
graph was created using the functional outcome indices of GOSE/DRS as follows.
First, we constructed a symmetrized k-nearest-neighbor (k-NN) graph with k = 5,
where the distance between scans i and j was measured as di;j ¼ ðGOSEi-

GOSEjÞ2þ ðDRSi - DRSjÞ2. Then a binary affinity graph was created by setting Si;j to
1 if and only if scans i and j were connected by the k-NN graph and did not represent
the same subject (to avoid connecting same TBI patients who underwent multiple
scans); controls were left un-connected.

We identified r = 5 subnetwork bases using this affinity graph, and the regulariza-
tion parameters were set at k1 ¼ k2 ¼ 0:25, as the model became stable around this
value (degradation in classification performance was observed when parameters were
set at k1 ¼ k2 ¼ 0, i.e., a setup equivalent to traditional NMF). To initialize the ADM
variables, we use the strategy introduced in [4] to deterministically initialize W and H
and set all other variables to zero for replicability. The AL parameter value was set to
q = 1000 based on empirical test runs, and the ADM algorithm was terminated when
the relative change in the objective function value (Eq. 2) at successive iterations fell
below 10�4 and the following primal residual condition was met:
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max
W � ~W1

�� ��
F

Wk kF
;
W � ~W2

�� ��
F

Wk kF
;
H � PXk kF

Hk kF
;
H � ~H
�� ��

F

Hk kF
;
P� ~P
�� ��

F

Pk kF

 !
\10�4:

To remove features that are likely non-biological, we applied feature selection
using the aforementioned 11 clinical scores. Precisely, we first correlated individual SC
features with each clinical score to obtain 11 separate p-value rankings (rank = 1 the
smallest), and summed these rankings to obtain a rank-sum value for each feature. We
then selected 1000 features having the smallest rank-sum that were then standardized
via linear scaling to the range [0,1]. This feature selection and standardization proce-
dures were conducted within the CV-folds to avoid biasing the classification
performance.

We compared the performance for the following classifiers (implemented using
Liblinear [6]). The first three methods are applied to the 1000 features selected using
the above procedure: (1) L1-loss L2-regularized SVM (SVM), (2) L2-loss, L1 regu-
larized SVM (SVM + L1), (3) L1-regularized Logistic regression (LogReg + L1), and
(4) L1-loss L2-regularized SVM applied to the projected NMF coefficients with our
method. A weighted loss function was used for all classifiers, where the weights
assigned to each label class is inversely proportional to the class frequency. Since
subjects have multiple timepoints, the classification accuracy was assessed using a
Leave-One-Subject-Out CV (LOSO-CV) procedure, where all scans from a test subject
are iteratively left out during training. Finally, the hyperparameter C, which is common
to all classifiers, were tuned via an internal LOSO-CV over the range
C 2 f2�10; 2�9; � � � ; 210g.

3.1 Experimental Results and Conclusions

Classification Results. Table 1 reports the classification results from LOSO-CV for
different methods, showing overall accuracy, specificity (type I error), sensitivity (type II
error), and balanced score rate (BSR), which is the mean of specificity and sensitivity.
The results show that the classification performance obtained using the proposed sub-
network features demonstrates a noticeable improvement over using the SC features in
its original form, achieving accuracy of 82.0 % and a BSR of 81.8 %. The SVM
achieves the next best performance, but the model is hard to interpret since all 1000 edge
features contribute to the classifier. Finally, despite using a weighted loss function, we
see the sparsity-promoting L1-regularized classifiers suffer from low sensitivity, which

Table 1. Classification results from “leave-one-subject-out” cross-validation.

Classifier Accuracy Sensitivity Specificity BSR

SVM 76.6 % 77.2 % 75.0 % 76.1 %
SVM + L1 69.4 % 73.4 % 59.4 % 66.4 %
LogReg + L1 67.6 % 70.9 % 59.4 % 65.1 %
Proposed NMF + SVM 82.0 % 82.3 % 81.3 % 81.8 %
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is likely caused by data label imbalance, as well as the correlated structures among the
features (a case where L1-regularizations tend to suffer).

Effect of Manifold Regularization. We next assessed whether the manifold regu-
larizer with the disease-severity graph has successfully preserved the inter-patient
relationship in terms of GOSE/DRS functional outcome indices. To do this, we
computed Spearman’s rank correlation between the subnetwork bases coefficients and
GOSE/DRS indices from the 79 TBI scans. The results reported in Table 2 reveal that
for all basis coefficients, consistently positive and negative correlations (statistically
significant) are obtained for GOSE and DRS, respectively. This result indicates that
subjects with similar level of disease-severity share similar representations in the
embedding space, demonstrating the impact of manifold regularization.

Subnetwork Visualization. Given the high predictive capacity of subnetwork coef-
ficients, we next examine their corresponding subnetwork bases W ¼ w1; � � � ;w5½ � to
assess the pathological impact TBI may have induced on structural connectivity. For
visualization and interpretation, we retrained the proposed NMF model using the entire
dataset, and learned an SVM hyperplane b 2 R

5 in the corresponding embedding
space. The resulting subnetworks are rendered in 3-D brain space in Fig. 1 (figures
generated using Python module Nilearn [1]); the color of the edges represent the sign of
the hyperplane coefficients in b, with red indicating contribution towards TBI (positive)
and blue indicating contribution towards control (negative). From the figure, we can see

Table 2. Spearman’s correlation coefficients and corresponding p values between the r = 5
subnetwork basis coefficients and DRS/GOSE severity scores among TBI patients.

Basis label Basis coefs’ correlation with DRS Basis coefs’ correlation with GOSE

1 −0.538 (p = 3.24e-7) 0.596 (p = 6.75e-9)
2 −0.464 (p = 1.65e-5) 0.584 (p = 1.63e-8)
3 −0.387 (p = 4.19e-4) 0.408 (p = 1.88e-4)
4 −0.516 (p = 1.12e-6) 0.607 (p = 3.00e-9)
5 −0.517 (p = 1.08e-6) 0.605 (p = 3.54e-9)

Fig. 1. The subnetwork bases obtained with r ¼ 5. The edge color represents the sign of the
corresponding hyperplane coefficient b 2 R

r (blue = negative/control, red = positive/TBI).
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that the network structure of the first basis exhibits strong bilateral symmetry with
notable inter-hemispheric connections between the cerebellar, precuneus, and cingulate
regions. Moreover, the second subnetwork basis resembles dense inter-hemispheric
connections among the subcortical regions, with the sign indicating that these edges
tend to be the weaker among TBI patients. On the other hand, subnetwork bases 3–5
represents connection towards TBI. Overall, the subnetworks exhibit a diffuse con-
nectivity pattern that spans across the cortex, suggesting that damages from TBI results
in a widespread disturbance in brain network. Interestingly, the connectivity patterns in
the first two bases exhibit rich connectivity pattern within the subcortical and medial
posterior regions, which are frequently reported to be vulnerable in TBI.

Conclusions. We have presented a supervised NMF framework for extracting a dis-
joint set of subnetworks that are interpretable and highlight group differences in
structural connectivity. The method is also capable of preserving the manifold structure
in the data encoded by an affinity graph, thereby respecting the intrinsic geometry of
the data. Experiment on a TBI dataset shows that the subnetworks identified from our
method can not only be used to reliably discriminate TBI from controls, but also exhibit
tight correlation with TBI-outcome indices, indicating that subjects with similar level of
TBI-severity share similar subnetwork representations due to manifold regularization.
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