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Abstract. Diffusion magnetic resonance imaging (dMRI) enables in
vivo investigation of white matter tracts, where the estimation of fiber
orientations (FOs) is a crucial step. Dictionary-based methods have been
developed to compute FOs with a lower number of dMRI acquisitions.
To reduce the effect of noise that is inherent in dMRI acquisitions, spa-
tial consistency of FOs between neighbor voxels has been incorporated
into dictionary-based methods. Because many fiber tracts are tube- or
sheet-shaped, voxels belonging to the same tract could share similar FO
configurations even when they are not adjacent to each other. Therefore,
it is possible to use nonlocal information to improve the performance of
FO estimation. In this work, we propose an FO estimation algorithm,
Fiber Orientation Reconstruction using Nonlocal and Local Information
(FORNLI), which adds nonlocal information to guide FO computation.
The diffusion signals are represented by a set of fixed prolate tensors.
For each voxel, we compare its patch-based diffusion profile with those
of the voxels in a search range, and its nonlocal reference voxels are deter-
mined as the k nearest neighbors in terms of diffusion profiles. Then, FOs
are estimated by iteratively solving weighted �1-norm regularized least
squares problems, where the weights are determined using local neigh-
bor voxels and nonlocal reference voxels. These weights encourage FOs
that are consistent with the local and nonlocal information. FORNLI
was performed on simulated and real brain dMRI, which demonstrates
the benefit of incorporating nonlocal information for FO estimation.
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1 Introduction

By capturing the anisotropy of water diffusion in tissue, diffusion magnetic reso-
nance imaging (dMRI) enables in vivo investigation of white matter tracts. The
fiber orientation (FO) is a crucial feature computed from dMRI, which plays an
important role in fiber tracking [5].

Voxelwise FO estimation methods have been proposed and widely applied,
such as constrained spherical deconvolution [16], multi-tensor models [9,13,17],
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and ensemble average propagator methods [10]. In particular, to reduce the num-
ber of dMRI acquisitions required for resolving crossing fibers, sparsity assump-
tion has been incorporated in the estimation problem. For example, it has been
used in the multi-tensor framework [1,9,13], leading to dictionary-based FO esti-
mation algorithms that have been shown to reconstruct FOs of good quality yet
using a lower number of dMRI acquisitions [1].

Because of image noise that adversely affects FO estimation, the regular-
ization of spatial consistency has been used in FO estimation problems. For
example, smoothness of diffusion tensors and FOs has been used as regulariza-
tion terms in the estimation in [12,15], respectively, but no sparsity regulariza-
tion is introduced. Other methods incorporate both sparsity and smoothness
assumption. For example, in [11,14] sparsity regularization is used together with
the smoothness of diffusion images in a spherical ridgelets framework, where FO
smoothness is enforced indirectly. More recently, [4,18] manage to directly encode
spatial consistency of FOs between neighbor voxels with sparsity regularization
in the multi-tensor models by using weighted �1-norm regularization, where FOs
that are consistent with neighbors are encouraged. These methods have focused
on the use of local information for robust FO estimation. However, because fiber
tracts are usually tube-like or sheet-like [19], voxels that are not adjacent to
each other can also share similar FO configurations. Thus, nonlocal information
could further contribute to improved FO reconstruction by providing additional
information.

In this work, we propose an FO estimation algorithm that improves esti-
mation quality by incorporating both nonlocal and local information, which
is named Fiber Orientation Reconstruction using Nonlocal and Local Informa-
tion (FORNLI). We use a dictionary-based FO estimation framework, where
the diffusion signals are represented by a tensor basis so that sparsity regular-
ization can be readily incorporated. We design an objective function that consists
of data fidelity terms and weighted �1-norm regularization. The weights in the
weighted �1-norm encourage spatial consistency of FOs and are here encoded
by both local neighbors and nonlocal reference voxels. To determine the nonlo-
cal reference voxels for each voxel, we compare its patch-based diffusion profile
with those of the voxels in a search range, and select the k nearest neighbors in
terms of diffusion profiles. FOs are estimated by minimizing the objective func-
tion, where weighted �1-norm regularized least squares problems are iteratively
solved.

2 Methods

2.1 Background: A Signal Model with Sparsity and Smoothness
Regularization

Sparsity regularization has been shown to improve FO estimation and reduce
the number of gradient directions required for resolving crossing fibers [1]. A
commonly used strategy to incorporate sparsity is to model the diffusion signals
using a fixed basis. The prolate tensors have been a popular choice because of
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their explicit relationship with FOs [1,9,13]. Specifically, let {Di}N
i=1 be a set of

N fixed prolate tensors. The primary eigenvector (PEV) vi of each Di represents
a possible FO and these PEVs are evenly distributed on the unit sphere. The
eigenvalues of the basis tensors can be determined by examining the diffusion
tensors in noncrossing tracts [9]. Then, the diffusion weighted signal Sm(gk) at
voxel m associated with the gradient direction gk (k = 1, 2, . . . , K) and b-value
bk can be represented as

Sm(gk) = Sm(0)
N∑

i=1

fm,ie
−bkg

T
k Digk + nm(gk), (1)

where Sm(0) is the baseline signal without diffusion weighting, fm,i is Di’s
unknown nonnegative mixture fraction (

∑N
i=1 fm,i = 1), and nm(gk) is noise.

We define ym(gk) = Sm(gk)/Sm(0) and ηm(gk) = nm(gk)/Sm(0), and let
ym = (ym(g1), ym(g2), . . . , ym(gK))T and ηm = (ηm(g1), ηm(g2), . . . , ηm(gK))T .
Then, Eq. (1) can be written as

ym = Gfm + ηm, (2)

where G is a K × N dictionary matrix with Gki = e−bkq
T
k Diqk , and fm =

(fm,1, fm,2, . . . , fm,N )T . Based on the assumption that at each voxel the number
of FOs is small with respect to the number of gradient directions, the mixture
fractions can be estimated using a voxelwise sparse reconstruction formulation

f̂m = arg min
fm≥0,||fm||1=1

||Gfm − ym||22 + β||fm||0. (3)

In practice, the constraint of ||fm||1 = 1 is usually relaxed, and the sparse recon-
struction can be either solved directly [8] or by approximating the �0-norm with
�1-norm [1,9,13]. Basis directions corresponding to nonzero mixture fractions
are determined as FOs.

To further incorporate spatial coherence of FOs, weighted �1-norm regulariza-
tion has been introduced into dictionary-based FO estimation [4,18]. For exam-
ple, in [18] FOs in all voxels are jointly estimated by solving

{f̂m}M
m=1 = arg min

f1,f2,...,fM≥0

M∑

m=1

||Gfm − ym||22 + β||Cmfm||1, (4)

where M is the number of voxels and Cm is a diagonal matrix that encodes
neighbor interaction. It places smaller penalties on mixtures fractions associ-
ated with basis directions that are more consistent with neighbor FOs so that
these mixture fractions are more likely to be positive and their associated basis
directions are thus encouraged.

2.2 FO Estimation Incorporating Nonlocal Information

In image denoising or segmentation problems, nonlocal information has been
used to improve the performance [3,6]. In FO estimation, because fiber tracts
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are usually tube-shaped (e.g., the cingulum bundle) or sheet-shaped (e.g., the
corpus callosum) [19], voxels that are not adjacent to each other can still have
similar FO patterns, and it is possible to use nonlocal information to improve
the estimation. We choose to use a weighted �1-norm regularized FO estimation
framework similar to Eq. (4), and encode the weighting matrix Cm using both
nonlocal and local information.

Finding Nonlocal Reference Voxels. For each voxel m, the nonlocal infor-
mation is extracted from a set Rm of voxels, which are called nonlocal reference
voxels and should have diffusion profiles similar to that of m. To identify the
nonlocal reference voxels for m, we compute patch-based dissimilarities between
the voxel m and the voxels in a search range Sm, like the common practice
in nonlocal image processing [3,6]. Specifically, we choose a search range of a
11 × 11 × 11 cube [3] whose center is m. The patch at each voxel n ∈ Sm is
formed by the diffusion tensors of its 6-connected neighbors and the diffusion
tensor at n, which is represented as Δn = (Δn,1, . . . ,Δn,7).

We define the following patch-based diffusion dissimilarity between two voxels
m and n

dΔ(Δm,Δn) =
1
7

7∑

j=1

d(Δm,j ,Δn,j), (5)

where d(·, ·) is the log-Euclidean tensor distance [2]

d(Δm,j ,Δn,j) =
√

Trace({log(Δm,j) − log(Δn,j)}2). (6)

For each m we find its k nearest neighbors in terms of the diffusion dissimilarity
in Eq. (5), and define them as the nonlocal reference voxels. k is a parameter to
be specified by users. Note that although we call these reference voxels nonlocal,
it is possible that Rm contains the neighbors of m as well, if they have very
similar diffusion profiles to that of m. We used the implementation of k nearest
neighbors in the scikit-learn toolkit1 based on a ball tree search algorithm.

Guided FO Estimation. We seek to guide FO estimation using the local neigh-
bors and nonlocal reference voxels. Like [18], we use a 26-connected neighborhood
Nm of m. Then, the set of voxels guiding FO estimation at m is Gm = Nm ∪Rm.

Using Gm, we extract a set of likely FOs for m to determine the weighting
of basis directions and guide FO estimation. First, a voxel similarity between m
and each voxel n ∈ Gm is defined

w(m,n) =
{

exp{−μd2(Dm,Dn)}, if n ∈ Nm

exp{−μd2Δ(Δm,Δn)}, otherwise , (7)

where μ = 3.0 is a constant [18], and Dm and Dn are the diffusion tensors at m
and n, respectively. When n is a neighbor of m, the voxel similarity is exactly
1 http://scikit-learn.org/stable/modules/neighbors.html.

http://scikit-learn.org/stable/modules/neighbors.html
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the one defined in [18]; when n is not adjacent to m, the voxel similarity is
defined using the patches Δm and Δn. Second, suppose the FOs at a voxel n
are {wn,j}Wn

j=1, where Wn is the number of FOs at n. For each m we can compute
the similarity between the basis direction vi and the FO configurations of the
voxels in the guiding set Gm

Rm(i) =
∑

n∈Gm

w(m,n) max
j=1,2,...,Wn

|vi · wn,j |, i = 1, 2, . . . , N. (8)

When vi is aligned with the FOs in many voxels in the guiding set Gm and
these voxels are similar to m, large Rm(i) is observed, indicating that vi is
likely to be an FO. Note that Rm(i) is similar to the aggregate basis-neighbor
similarity defined in [18]. Here we have replaced the neighborhood Nm in [18]
with the guiding set Gm containing both local and nonlocal information. These
Rm(i) can then be plotted on the unit sphere according to their associated basis
directions, and the basis directions with local maximal Rm(i) are determined as
likely FOs Um = {um,p}Um

p=1 (Um is the cardinality of Um) at m [18].
With the likely FOs Um, the diagonal entries of Cm are specified as [18]

Cm,i =
1−α max

p=1,2,...,Um
|vi·um,p|

min
q=1,2,...,N

(
1−α max

p=1,2,...,Um
|vq·um,p|

) , i = 1, 2, . . . , N , (9)

where α is a constant controlling the influence of guiding voxels. Smaller weights
are associated with basis directions closer to likely FOs, and these directions are
encouraged. In this work, we set α = 0.8 as suggested by [18].

We estimate FOs in all voxels by minimizing the following objective function
with weighted �1-norm regularization,

E(f1,f2, . . . ,fM ) =
M∑

m=1

||Gfm − ym||22 +
β

Wm
||Cmfm||1, (10)

where fm ≥ 0 and β is a constant. Note that we assign smaller weights to the
weighted �1-norm when the number of FOs is larger, which in practice increases
accuracy. In this work, we set β = 0.3, which is smaller than the one used in [18]
because the number of gradient directions in the dMRI data is smaller than
that in [18]. Because Cm is a function of the unknown FOs, to solve Eq. (10) we
iteratively solve fm sequentially. At iteration t, for each fm we have

f̂ t
m = arg min

fm≥0
E(f̂ t

1, . . . , f̂
t
m−1,fm, f̂ t−1

m+1, . . . , f̂
t−1
M )

= arg min
fm≥0

||Gfm − ym||22 +
β

W t−1
m

||Ct
mfm||1, (11)

which is a weighted Lasso problem that can be solved using the strategy in [17].
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Fig. 1. 3D rendering of the digital phantom.

3 Results

3.1 3D Digital Crossing Phantom

A 3D digital phantom (see Fig. 1) with the same tract geometries and diffu-
sion properties used in [18] was created to simulate five tracts. Thirty gradient
directions (b = 1000 s/mm2) were used to simulate the diffusion weighted images
(DWIs). Rician noise was added to the DWIs. The signal-to-noise ratio (SNR)
is 20 on the b0 image.

FORNLI with k = 4 was applied on the phantom and compared with
CSD [16], CFARI [9], and FORNI [18] using the FO error proposed in [18].
CSD and CFARI are voxelwise FO estimation methods, and FORNI incorpo-
rates neighbor information for FO estimation. We used the CSD implementation
in the Dipy software2, and implemented CFARI and FORNI using the parame-
ters reported in [9,18], respectively. The errors over the entire phantom and in
the regions with noncrossing or crossing tracts are plotted in Fig. 2(a), where
FORNLI achieves the most accurate result. In addition, we compared the two
best algorithms here, FORNI and FORNLI, using a paired Student’s t-test. In

Fig. 2. FO estimation errors. (a) Means and standard deviations of the FO errors
of CSD, CFARI, FORNI, and FORNLI; (b) mean FORNLI FO errors with different
numbers of nonlocal reference voxels in regions with noncrossing or crossing tracts.

2 http://nipy.org/dipy/examples built/reconst csd.html.

http://nipy.org/dipy/examples_built/reconst_csd.html
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all four cases, errors of FORNLI are significantly smaller than those of FORNI
(p < 0.05), and the effect sizes (Cohen’s d) are between 0.5 and 0.6.

Next, we studied the impact of the number of nonlocal reference voxels. Using
different k, the errors in regions with noncrossing or crossing tracts are shown in
Fig. 2(b). Note that k = 0 represent cases where only the local information from
neighbors is used. Incorporation of nonlocal information improves the estimation
quality, especially in the more complex regions with three crossing tracts. When
k reaches four, the estimation accuracy becomes stable, so we will use k = 4 for
the brain dMRI dataset.

3.2 Brain dMRI

We selected a random subject in the publicly available dataset of COBRE [7].
The DWIs and b0 images were acquired on a 3T Siemens Trio scanner, where 30
gradient directions (b = 800 s/mm2) were used. The resolution is 2 mm isotropic.
The SNR is about 20 on the b0 image.

To evaluate FORNLI (with k = 4) and compare it with CSD, CFARI, and
FORNI, we demonstrate the results in a region containing the crossing of the
corpus callosum (CC) and the superior longitudinal fasciculus (SLF) in Fig. 3.
We have also shown the results of FORNLI with k = 0, where no nonlocal infor-
mation is used. By enforcing spatial consistency of FOs, FORNI and FORNLI
improve the estimation of crossing FOs. In addition, in the orange box FORNLI
(k = 4) achieves more consistent FO configurations than FORNI; and in the
blue box, compared with FORNI and FORNLI (k = 0), FORNLI (k = 4) avoids
the FO configurations in the upper-right voxels that seem to contradict with the
adjacent voxels by having sharp turning angles.

Fig. 3. FO estimation in the crossing regions of SLF and CC overlaid on the fractional
anisotropy map. Note the highlighted region for comparison.

4 Conclusion

We have presented an FO estimation algorithm FORNLI which is guided by
both local and nonlocal information. Results on simulated and real brain dMRI
data demonstrate the benefit of the incorporation of nonlocal information for
FO estimation.
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4. Auŕıa, A., Daducci, A., Thiran, J.P., Wiaux, Y.: Structured sparsity for spatially
coherent fibre orientation estimation in diffusion MRI. NeuroImage 115, 245–255
(2015)

5. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber trac-
tography using DT-MRI data. Magn. Reson. Med. 44(4), 625–632 (2000)

6. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 2, pp. 60–65. IEEE (2005)

7. Cetin, M.S., Christensen, F., Abbott, C.C., Stephen, J.M., Mayer, A.R.,
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