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1  Introduction

Fungal diseases cause life-threatening illnesses such as men-
ingitis and pneumonias, chronic asthma, other respiratory 
diseases, and recurrent diseases like oral and vaginal thrush. 
Invasive fungal infections are a consequence of underlying 
health problems often associated with immunosuppression 
[1]. Fungal infections often carry high mortality and success-
ful patient management requires antifungal therapy. Yet, 
treatment options remain extremely limited due to restricted 
classes of antifungal agents and by the emergence of promi-
nent antifungal drug resistance. Currently registered antifun-
gal drugs represented by polyenes and azoles, flucytosine, 
and echinocandins target the cell membrane, nucleic acid 
biosynthesis, and cell wall, respectively [2]. The latter and 
most recently approved class, the echinocandins, are now 
recommended as primary therapy for non-neutropenic 
patients with invasive candidiasis [3]. It is estimated that 
60 % of candidemia patients now receive an echinocandin 
for treatment or prophylaxis [4]. As worldwide use of echi-
nocandins broadens, clinical failures due to resistant organ-
isms are a concern, especially among certain Candida 
species. The development of echinocandin resistance among 
most susceptible organisms like Candida albicans is an 
uncommon event. Yet, there is a disturbing trend of increased 
resistance among strains of Candida glabrata, which are fre-
quently cross-resistant to azole drugs. Echinocandin resis-
tance is acquired during therapy and its mechanism is firmly 
established to involve amino acid changes in “hot-spot” 
regions of the Fks subunits of the target glucan synthase. 
These changes significantly decrease the sensitivity of the 
enzyme to drug resulting in higher MIC values and reduced 

pharmacodynamic responses. Biological factors that pro-
mote selection of Fks-resistant strains involve complex cel-
lular stress response pathways. The use of broth microdilution 
assays to assess susceptibility can be problematic with some 
drug- and species-related variability among clinical microbi-
ology laboratories. Clinical factors promoting resistance 
include expanding use of echinocandins for therapy and pro-
phylaxis, and localized reservoirs such as those in the gastro-
intestinal tract or intra-abdominal infections, which can seed 
emergence of resistant organisms. A basic understanding of 
the resistance mechanism, along with cellular and clinical 
factors promoting resistance, will promote better strategies 
to overcome and prevent echinocandin resistance.

2  Fungal Cell Walls and 1,3-β-d-Glucan

The cell wall of human fungal pathogens is essential for 
maintaining cell shape and rigidity. It consists primarily of 
an interwoven mesh of glucans, mannoproteins, and chitin. 
In yeasts like Candida albicans, branched fibrils of 1,3-β-d 
glucan form a network that acts as a scaffold for other mac-
romolecules [5, 6]. Short 1-6-β-d-glucan chains establish 
bridges between linear 1,3-β-d glucan and cell wall proteins 
that coat the external surface of the cell wall. The majority of 
these proteins are heavily mannosylated through both O- and 
N-glycosidic linkages. Most cell wall proteins are covalently 
linked to the growing wall structure via 1-6-β-d-glucan. 
Chitin is found both below the network of 1,3-β-d glucan 
and as a linker between glucans. In other pathogenic fungi, 
including Aspergillus fumigatus and Cryptococcus neofor-
mans, many of the same polysaccharides and mannoproteins 
are found in the cell wall, but the organization is somewhat 
different [7, 8] as polymers occur with other linkages 
between glucose units or sugars (e.g., galactomannan) [9]. 
When synthesis of a functional cell wall is reduced or elimi-
nated, either by gene disruption or by inhibition with an anti-
fungal inhibitor, cell growth is often adversely impacted 
leading to lysis and death.
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3  Glucan Synthase

The fungal-specific enzyme 1,3-β-d glucan synthase (GS) is 
responsible for the biosynthesis of the central cell wall build-
ing block 1,3-β-d glucan. The enzyme is a membrane- 
associated complex that uses UDP-glucose to synthesize a 
1,3-β-d glucan polysaccharide product 60 to 80 glucose resi-
dues in length. The enzyme has been extensively studied in S. 
cerevisiae [10], although it has also been studied in other 
yeasts and molds including Neurospora crassa, Aspergillus 
nidulans, and Aspergillus fumigatus; Schizosaccharomyces 
pombe; various Candida species; and Cryptococcus neofor-
mans. GS is minimally a heterodimer involving a large inte-
gral membrane protein, encoded by FKS genes, that catalyzes 
the biosynthesis of 1,3-β-d-glucan and Rho, a regulatory 
GTP-binding protein. The FKS and RHO1 genes are con-
served across numerous fungal genera. A high degree of 
homology among members of the FKS gene family aided 
cloning of paralogs from C. albicans [11, 12], C. neoformans 
[13], A. fumigatus [14], Neurospora crassa [15], P. carinii 
[16], and other fungi [10]. Conservation of FKS extends to 
the plant kingdom as well, where an FKS homolog is associ-
ated with synthesis of plant 1,3-β-d glucan (callose) in cotton 
and barley [17, 18]. Likewise, RHO1 genes have been identi-
fied and characterized in C. albicans [19], C. neoformans 
[20], and A. fumigatus [14]. Most yeast have three FKS 
genes, FKS1, FKS2, and FKS3. The FKS1 gene is essential in 
C. albicans [12, 13] and other Candida spp., while in C. gla-
brata, FKS1 and FKS2 are functionally redundant [21]. The 
FKS3 gene is expressed at a very low level relative to the 
other genes and its role is uncertain [22]. The GS enzyme 
complex has not been crystallized but it can be studied in an 
enriched form by a product entrapment technique [23, 24], 
which has allowed an evaluation of its kinetic properties [25].

4  Glucan Synthase Inhibitors 
and Echinocandins

There are three structural classes that define natural product 
inhibitors of 1,3-β-d glucan synthesis [10]. The first class are 
the lipopeptides including echinocandins, aerothricin lipopep-
tidolactones, and arborcandins. A second class comprises the 
glycolipid papulacandins, and a third class, the terpenoids, are 
represented by enfumafungin, ascosteroside, arundifungin, 
and ergokonin A. All GS inhibitor classes are noncompetitive 
with the biosynthetic substrate UDP-glucose. Cells exposed 
to GS inhibitors distort and lyse due to changes in cell wall 
glucans [26–28]. Of the three GS inhibitor classes, the echino-
candins are best studied. The echinocandins are cyclic hexa-
peptides with an amide-linked fatty acyl side chain [29]. An 
early striking feature of this class was the potent activity of 
echinocandins in animal infection models due to C. albicans 

[30] and Pneumocystis jiroveci [31]. This led to medicinal 
chemistry efforts at Merck, Eli Lilly, and Fujisawa (Astellas) 
and the development of current semisynthetic echinocandins 
caspofungin, anidulafungin, and micafungin, respectively 
[32]. The US Food and Drug Administration has approved 
echinocandin drugs for the treatment of esophageal and inva-
sive candidiasis, including candidemia, empirical therapy in 
febrile neutropenic patients, and prophylaxis in patients 
undergoing hematopoietic stem cell transplantation (HSCT) 
[33, 34]. The first in-class drug caspofungin was also approved 
for salvage therapy for patients with invasive aspergillosis 
refractory to conventional therapy [35]. Echinocandin drugs 
show in vitro fungicidal activity against susceptible Candida 
spp. [36, 37], although they are fungistatic against molds 
where they alter morphology, cell wall composition, and orga-
nization [38, 39]. The echinocandins are largely inactive 
against invasive Zygomycetes, Cryptococcus spp., or Fusarium 
spp. As echinocandin drugs have a distinct mechanism of 
action specific for glucan synthase, they are highly effective 
against yeasts with reduced susceptibility to azoles, such as C. 
glabrata and C. krusei [40–42]; they are also active against 
some Candida biofilms [43–46]. The echinocandins have an 
excellent therapeutic index with a low potential for renal or 
hepatic toxicity or serious drug-drug interactions [47, 48].

5  Antifungal Spectrum and Breakpoints

The CLSI and EUCAST have established standardized micro-
broth dilution susceptibility tests for Candida and echinocan-
dins, which show uniformly potent activity against most 
Candida species including C. albicans, C. glabrata, Candida 
tropicalis, and Candida krusei [49, 50]. The C. parapsilosis 
complex (Candida parapsilosis sensu stricto, C. orthopsilosis, 
and C. metapsilosis) and C. guilliermondii are notable excep-
tions displaying higher echinocandin antifungal MIC values 
relative to other highly susceptible Candida species [51–56]. 
Intrinsic reduced susceptibility has an unclear clinical signifi-
cance, as patients infected with these strains are successfully 
treated with echinocandin drugs [57], although clinical 
response may vary with patient population [58–60]. The effect 
of echinocandins on filamentous fungi in vitro is less promi-
nent with molds like A. fumigatus and other Aspergillus spp., 
showing reduced growth and altered hyphae morphology [39]. 
The multidrug-resistant pathogen Aspergillus lentulus is 
largely unresponsive to echinocandin action [61]. For A. 
fumigatus, the echinocandin-induced change in cell wall mor-
phology correlates with exposure of masked epitopes (e.g., 
1,3-β-d glucan), which promote a robust immune response 
contributing to in vivo efficacy [62]. Echinocandins show sim-
ilar in vitro behavior with black molds such as Alternaria spp., 
and hyalohyphomycetes such as Scedosporium apiospermum 
[63]. In contrast, Rhizopus oryzae and other zygomycetes are 
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largely unaffected by caspofungin [64]. Micafungin is active 
against mycelial forms of Histoplasma capsulatum, 
Blastomyces dermatitidis, and Coccidioides immitis but it is 
less active against yeast-like forms [65]. Like Aspergillus spe-
cies, dermatophytes Trichophyton rubrum and Microsporum 
canis show diminished growth and malformed hyphae in 
response to echinocandins [66]. Finally, the neurotropic patho-
gen Cryptococcus neoformans is unresponsive to echinocan-
dins [67, 68]. However, in vitro susceptibility can be overcome 
by addition of the calcineurin inhibitor FK506 [69]. 
Epidemiologic cutoff values (ECVs) have been determined for 
echinocandins against the most clinically important yeasts and 
molds from numerous global surveillance studies verifying 
the potent behavior of these drugs [70, 71]. The CLSI and 
EUCAST have also established species- and drug- specific 
clinical breakpoints (CBP) for echinocandin drugs based on 
extensive pharmacokinetic, microbiological, enzyme kinetic, 
and clinical response data [72, 73] (Table 29.1). See section on 
“Standardized Testing for Resistance.”

6  Epidemiology of Echinocandin 
Resistance

Candida species isolates resistant to echinocandin drugs 
were first reported in 2005 [74]. Their frequency remains 
relatively low at less than 2–3 % with C. albicans and most 
other Candida species [75–78]. Yet, consistent with the 
broader application of echinocandin therapy, high MIC clini-
cal isolates associated with clinical failures are more com-
monly reported [22, 25, 79–89]. Despite these reports, 
echinocandin resistance among most Candida species has 
been largely unchanged in the past decade [90]. However, 
this is not the case for C. glabrata, where echinocandin resis-
tance is rising and there is serious cause for concern since 
many isolates also display azole resistance [91–93], which 

greatly limits therapy. The SENTRY Antimicrobial 
Surveillance Program reported echinocandin resistance of 
8.0–9.3 % among bloodstream isolates (BSI) of C. glabrata 
from 2006 to 2010 [92]. In a study of C. glabrata blood-
stream isolates from Duke hospital spanning 10 years, echi-
nocandin resistance of C. glabrata rose from 2 to 3 % in 
2001–2006 to more than 13 % in 2009–2010 [91]. Resistance 
is not uniform, as a study involving 1380 isolates of C. gla-
brata collected between 2008 and 2013 from four US cities 
showed that 3.1–3.6 % of the isolates were resistant to the 
echinocandin drugs [93]. This is consistent with rates of 3.6 
and 5.7 % from anidulafungin and caspofungin, respectively, 
obtained from regional data of Candida non-albicans strains 
at US medical centers over a 6-year period (2006–2011) [90]. 
Yet, echinocandin resistance among C. glabrata has also 
coincided with a nearly parallel rise in azole resistance result-
ing in multidrug-resistant strains (Fig. 29.1). In a recent study 
covering 1032 isolates, nearly all isolates containing an FKS 
mutation were resistant to at least one echinocandin and 36 % 
were also resistant to fluconazole [93]. The expanding use of 
echinocandin and azole prophylaxis in many healthcare cen-
ters has prompted an epidemiologic shift with C. glabrata 
emerging as the most dominant fungal bloodstream pathogen 
[94, 95]. The development of echinocandin resistance typi-
cally occurs after prolonged therapy (3–4 weeks or longer) 
[87]. Yet, it has been observed to emerge shortly after the 
start of therapy [88, 96]. Echinocandin resistance in molds is 
rarely encountered but it has been reported for A. fumigatus 
[97] and the inherently multidrug-resistant A. lentulus [61].

7  Mechanism of Acquired Resistance

Echinocandin resistance resulting in clinical failures due to 
high MIC isolates involves modification of the catalytic sub-
unit of glucan synthase, which is encoded by genes FKS1 

Table 29.1 EUCAST and CLSI antifungal breakpoints for major Candida speciesa

Antifungal agent MIC breakpoint (mg/L)

Candida albicans Candida glabrata Candida krusei Candida parapsilosis Candida tropicalis

S R S R S R S R S R

Anidulafungin

EUCAST 0.03 0.03 0.06 0.06 0.06 0.06 0.002 4 0.06 0.06

CLSI 0.25 0.5 0.12 0.25 0.25 0.5 2 4 0.25 0.5

Caspofungin

EUCAST NDb ND ND ND ND ND ND ND ND ND

CLSI 0.25 0.5 0.12 0.25 0.25 0.5 2 4 0.25 0.5

Micafungin

EUCAST 0.016 0.016 0.03 0.03 IEc IE 0.002 2 IE IE

CLSI 0.25 0.5 0.06 0.125 0.25 0.5 2 4 0.25 0.5
aAdapted from Arendrup et al. [72]
bND: Not determined due to significant inter-laboratory variation in MIC ranges
cIE: Insufficient evidence (IE) due to small number of cases
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and/or FKS2. Echinocandin drugs are not substrates for mul-
tidrug transporters like azole drugs [42], and other cellular 
mechanisms conferring azole resistance do not affect echino-
candin susceptibility. This has led to the recommendation of 
echinocandins as preferred therapy for infections involving 
azole-resistant strains of Candida. Echinocandin resistance 
is well characterized and known to be conferred by restricted 

mutations in two highly conserved “hot-spot” regions of the 
FKS genes [34] (Table 29.2). These fks mutations result in 
amino acid substitutions that induce elevated MIC values 
from 20- to 100-fold and reduced sensitivity of glucan syn-
thase (IC50) to drug by 50- to 3000-fold [22, 25, 99]. These 
less susceptible fks mutant strains respond poorly to echino-
candin drugs in pharmacodynamic models of infection 

Fig. 29.1 Rise in antifungal 
resistance of Candida 
glabrata to azole 
(fluconazole) and 
echinocandin (anidulafungin, 
caspofungin, and micafungin) 
drugs from 2001 to 2010. 
Adapted from Alexander  
et al. [91]

FKS1p FKS2p
Hot spot 1 Hot spot 2 Hot spot 1 Hot spot 2

AA
Pos

C. albicans 641 FLTLSLRDP 1357 DWIRRYTL
C. dubliniensis 641 FLTLSLRDP 1357 DWIRRYTL
C. glabrata 625 FLILSLRDP 1340 DWVRRYTL 659 FLILSLRDP 1374 DWIRRYTL
C. kefyr 54* F

LTLSLRDP 769* DWVRRYTL
C. krusei 655 FLILSIRDP 1364 DWIRRYTL
C. lusitaniae 634* FLTLSLRDP ** DWIRRYTL
C. tropicalis 76* FLTLSLRDP 792* DWIRRYTL
C. parapsilosis 652 FLTLSLRDA 1369 DWIRRYTL
C. metapsilosis 104* FLTLSLRDA 821* DWIRRYTL
C. orthopsilosis 39* FLTLSLRDA 756* DWVRRYTL
C. guilliermondii 632 FMALSLRDP 1347 DWIRRYTL
C. lipolytica 662 FLILSLRDP 1387 DWIRRCVL
S. cerevisiae 639 FLVLSLRDP 1353 DWVRRYTL 658 FLILSLRDP 1372 DWVRRYTL

Table 29.2 Amino acid substitutions in hot-spot regions of Fks subunits of glucan synthase associated with reduced 
echinocandin susceptibilitya,b

aAdapted from Arendrup and Perlin [98]
bRed: Strong resistance, difficult to treat; yellow: weak resistance, can be overcome with dosing; blue: natural poly-
morphism, elevated MIC but treatable; green: no effect on susceptibility

D.S. Perlin



419

[100–103], and the manifestation of characteristic fks muta-
tions is associated with reduced clinical response [104–106]. 
The presence of an FKS mutation was found to be the only 
independent risk factor associated with echinocandin failure 
among C. glabrata isolates in a study of patients with inva-
sive candidiasis [105]. The FKS resistance mechanism has 
been observed in many Candida species including C. albi-
cans, C. glabrata, C. tropicalis, C. krusei, C. kefyr, and C. 
lusitaniae [96, 107, 108]. In all Candida species, except C. 
glabrata, mutations occur within two “hot-spot” regions of 
FKS1, encoding residues Phe641-Pro649 and Arg1361 
(Table 29.2). In C. albicans, amino acid substitutions at 
Ser645 and Phe641 are the most abundant (Table 29.2). In C. 
glabrata, mutations occur in the homologous hot-spot 
regions of FKS1 and FKS2 [22, 99], although mutations are 
observed within FKS2 at twice the frequency of FKS1 [22, 
34, 109]. Amino acid substitutions at Fks1 positions F625 
and S629 and Fks2 positions F659 and S663 are most promi-
nent inducing elevated MIC values (Table 29.2) [98]. In some 
cases, nonsense mutations and deletions are observed in 
FKS1 or FKS2 in C. glabrata [22, 98, 112]. Mutations in 
FKS1 or FKS2 can significantly alter the relative expression 
of their genes [21, 22], which can influence susceptibility. In 
C. glabrata, FKS2 expression is calcineurin dependent and 
downregulated by FK506 [111], and echinocandin resistance 
conferred by mutations in FKS2 are mitigated with FK506 
[21]. A third hot-spot modification W695 (S. cerevisiae) was 
recently identified by in vitro selection [112], but it is not 
associated with clinical failures.

8  Biofilms

Biofilms also play a factor in resistance. They are one of the 
most important microbial communities encountered in 
nature, and they are well established to contribute to antifun-
gal drug resistance [113]. It has been shown for echinocan-
din drugs that the extensive production of β-glucan within 
the extracellular glucan matrix helps sequester drugs by 
decreasing their concentration at the cell membrane surface 
[114]. Decreasing glucan productions, either by genetic or 
chemical means, increases the susceptibility to antifungal 
agents [115]. Genetic factors that regulate glucan formation 
promoting drug-sequestering biofilms include Rlm, Smi1, 
and glucan synthase Fks1 [115].

9  Acquired Resistance and Microbial 
Fitness

It is a well-established microbial paradigm that drug resis-
tance often carries a fitness cost for microorganisms. 
The most prominent amino acid substitutions (e.g., Ser645 in 

C. albicans) in hot-spot regions of Fks subunits have been 
shown to decrease the catalytic efficiency for glucan biosyn-
thesis [22, 25]. This reduced capacity for glucan production 
results in compensatory changes that alter cell wall morphol-
ogy [116], which can reduce the fitness of such mutants. In 
C. albicans, reduced fitness has been observed for fks 
mutants in animal models [21, 22, 116]. The fks mutant 
strains compete weakly with their wild-type equivalents 
[116]. This reduced competition may account for the obser-
vation that resistance is with acquired during therapy and 
patient-patient transmission is not observed.

10  Cellular Stress and Drug Tolerance

The inhibition of glucan synthase following exposure of 
cells to an echinocandin drug induces significant cellular 
stress. In response, fungi activate a wide range of adaptive 
mechanisms that promote survival by helping protect against 
cell stress [117, 118]. These stress adaptation responses 
often result in drug-tolerant cells with elevated in vitro MIC 
values to echinocandins. Yet, they are not typically associ-
ated with clinical failures [119–121], as drug- exposed cells 
are less robust because glucan synthase is inhibited. Cell 
wall stress is sensed by receptors such Mtl2 and Wsc1, which 
induce stress tolerance involving cell wall integrity, protein 
kinace C (PKC), calcineurin-Crz1, and HOG [122, 123] 
interacting pathways. Hsp90 is an important protein that 
helps induce tolerance through its major client proteins cal-
cineurin, along with its effector Crz1 [124–126]. Genetic or 
chemical impairment of Hsp90 function diminishes the abil-
ity of C. albicans and C. glabrata to develop tolerance in the 
presence of caspofungin [126, 127].

Chitin and glucans comprise the major structural compo-
nents of the fungal cell wall and there is a prominent biosyn-
thetic interdependence for both constituents [128]. Therefore, 
it is not surprising that echinocandin exposure results in 
compensatory increases in chitin synthesis to strengthen the 
cell wall and resistant drug action. Cell wall mutants with 
higher basal chitin contents are less susceptible to caspofun-
gin [122, 123, 129, 130] and they confer reduced pharmaco-
dynamics responses in animal model [131]. Paradoxical 
growth at very high drug levels has also been linked to prom-
inent compensatory responses in chitin biosynthesis [132, 
133]. Finally, defects in sphingolipid biosynthesis can dif-
ferentially alter in drug-dependent fashion responses to echi-
nocandin drugs. This mixed susceptibility phenotype is 
linked to interactions of the aliphatic tail of echinocandins 
and membrane sphingolipids [134, 135].

In general, tolerance pathways are insufficient to result in 
clinical drug failure. Yet, they are important for stabilizing 
cells in the presence of drug, and may account for stasis 
behavior of cells exposed to echinocandin drugs in animal 
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model systems [102]. Even though these cells are not suffi-
ciently resistant to induce therapeutic failures, they are 
poised to develop higher level resistance, as the drug-tolerant 
state allows cells sufficient time to overcome drug action by 
forming stable FKS mutations. It is not entirely clear how 
this ultimately occurs, although it may involve defects in 
DNA repair. Genome plasticity, observed widely in C. albi-
cans and C. glabrata in response to azole drugs [136, 137], 
may also emerge as a factor for echinocandin drugs [138].

11  Mechanisms of Inherent Reduced 
Susceptibility

Candida parapsilosis complex (C. parapsilosis sensu stricto, 
Candida orthopsilosis, and Candida metapsilosis) and C. 
guilliermondii are intrinsically less susceptible in vitro to 
echinocandin drugs (MIC 0.5–8 μg/mL) relative to other 
highly susceptible Candida species [70, 95, 139], which 
prompted the CLSI to adopt higher breakpoints [73]. The 
clinical significance of this reduced susceptibility is unclear 
since patients can be successfully treated with echinocandins 
at standard dosages [54–56]; however, clinical efficacy may 
vary with patient population [58–60]. The underlying molec-
ular mechanism appears to be naturally occurring polymor-
phisms in FKS hot-spot regions, which confer reduced 
sensitivity of glucan synthase to drug [140]. In C. parapsilo-
sis complex, a highly conserved Pro660 is converted to ala-
nine at the distal edge of hot-spot 1. Enzyme kinetic inhibition 
studies demonstrated that glucan synthase from the C. 
parapsilosis group were 10- to 50-fold less to echinocandin 
drugs than from enzymes obtained from highly susceptible 
species like C. albicans [140]. Furthermore, an engineered 
lab strain and clinical isolates of C. albicans and C. glabrata 
strains containing amino acid substitutions at this position 
display comparable decreases in target enzyme sensitivity 
and increased MIC values [140]. An additional I1359V poly-
morphism is observed in hot-spot 2 of C. orthopsilosis and S. 
cerevisiae, which confers higher MIC values. C. guillier-
mondii shows several additional amino acid polymorphisms 
in HS1 [140], although their relative contribution to overall 
insensitivity is unclear.

Cryptococcus neoformans is inherently resistant to echi-
nocandin drugs even though 1,3 glucan synthase is essential 
and appears fully inhibited by echinocandin drugs in vitro 
[141]. It has been suggested that capsular melanin may help 
protect but capsule-deficient strains are also unresponsive to 
drug [142]. Finally, Aspergillus lentulus, a sibling species of 
A. fumigatus, is inherently resistant to a wide range of anti-
fungal drugs including the echinocandins. The mechanism of 
this resistant is unclear but appears to be independent of FKS 
mutations [143].

12  Serum Effects on Drug Action

The echinocandin drugs are highly serum protein bound 
(>98 %), which reduces their relative in vitro efficacy caus-
ing a shift in MIC [144–146]. The magnitude of the shift 
depends on the specific drugs with anidulafungin and mica-
fungin showing a larger relative shift than caspofungin. A 
consequence of this shift in efficacy is that serum alters the 
relative fungicidal properties of the drugs, often resulting in 
fungistatic behavior against certain Candida species [147, 
148]. The serum effects are more pronounced with mutant 
strains carrying FKS mutations [149].

13  Standardized Testing for Resistance

The Clinical and Laboratory Standards Institute (CLSI) and 
the European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) have established comparable standards 
for broth microdilution (BMD) antifungal susceptibility test-
ing of echinocandins against Candida species [53, 150, 151]. 
The objective for susceptibility testing is to establish an 
in vitro assessment that differentiates infecting strains as 
either susceptible or likely to respond to therapy or as resis-
tant with an enhanced probability to fail therapy. In the case 
of echinocandin drugs, it is essential to capture high MIC 
strains containing FKS mutations. Initially, the CLSI used 
clinical and microbiological data to establish a preliminary 
common clinical breakpoint (CBP) for all three echinocan-
dins against Candida spp. [120]. However, resistant strains 
with FKS mutations were often misclassified by this CBP 
[25, 152]. In response, the CLSI revised the CBP based on 
pharmacokinetic, microbiological, enzyme kinetic, and clin-
ical data and established new species- and drug-specific 
breakpoints that better accounted for strains containing FKS 
mutations [73] (Table 29.3). However, the lower CBPs pre-
sented a clinical microbiology testing challenge, as BMD 
testing using either CLSI and EUCAST failed to promote 
consistent inter-laboratory test results without major errors 
(misclassifying wild-type strains as resistant or fks- 
containing mutants as susceptible) between laboratory 
groups [153–154]. Disturbingly, there were wide modal 
ranges encountered with C. glabrata and caspofungin [153–
155]. Consistent MIC results were obtained for micafungin 
and anidulafungin, and it was suggested that they could serve 
as testing surrogates for the class to assess resistance [98, 
156, 157]. EUCAST has now established species-specific 
clinical breakpoints for micafungin against C. albicans, C. 
glabrata, and C. parapsilosis [72], and they have established 
breakpoints for anidulafungin to accommodate use of these 
compounds in some clinical situations [72, 158]. EUCAST 
has not set caspofungin breakpoints and does not currently 
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recommend caspofungin MIC testing for clinical decision 
making involving echinocandin drugs [72]. Epidemiological 
cutoff values (ECV or ECOFF), which define the upper limit 
of the wild-type MIC population in the absence of a known 
resistance mechanism [49, 159], have been defined for anid-
ulafungin and micafungin against common Candida species 
(Table 29.3). The ECV does not replace the BP, but it pro-
vides additional information for clinical decision making 
when a BP is not available. Although the designation of 
NWT does not allow a clinician to determine whether a par-
ticular isolate will respond to a particular antifungal agent, it 
does allow for a more informed decision based on how wild- 
type organisms would likely respond to therapy.

Rather than seeking testing surrogates or special condi-
tions for BMD to distinguish wild-type strains from resistant 
isolates containing an FKS hot-spot mutation, it has been 
suggested that direct molecular testing for resistance muta-
tions may provide a reliable alternative [160]. Direct DNA 
sequencing or real-time probing with allele-specific 
 molecular probes provides an easy and unequivocal assess-
ment of the resistance potential. The presence of an FKS 
mutation is the most important independent risk factor in 
predicting echinocandin therapeutic responses among 
patients with invasive candidiasis [104, 105, 110], which is 
well supported by extensive pharmacodynamics, MIC, and 
biochemical data [161, 162]. One criticism of this approach 
is that molecular testing requires specific knowledge of 
known resistance mechanisms and an unknown mechanism 
would not be detected. Yet, this probability is sufficiently 
remote given the large body of current data. Molecular test-
ing to directly identify mutant strains containing FKS muta-

tions would eliminate the current controversy surrounding 
some susceptibility testing, which prevents an accurate 
determination of resistance.

14  Paradoxical Growth Effects

The “paradoxical effect” refers to the unusual behavior of 
echinocandin drugs in susceptibility testing assays to show 
strong growth inhibition at low and moderate levels of drugs 
and then loss of inhibition at supra high drug concentrations, 
well in excess of the MIC. First described by Stevens and 
colleagues, it is a commonly observed property of echino-
candin drugs [163]. This behavior is largely conditional as 
paradoxical strains show normal susceptibility properties fol-
lowing culture. The mechanism responsible for paradoxical 
growth is unclear, but is unrelated to mutations in FKS [124, 
164]. It is not due to antifungal degradation or instability. The 
drug-induced growth behavior is more consistent with adap-
tive stress responses, which can lead to reduced susceptibil-
ity. In one instance, a paradoxical C. albicans strain showed 
a 900 % increase in chitin content [133]. Consistent with 
changes in cell wall composition, remodeling is observed 
[165, 166]. The paradoxical effect is eliminated by serum, 
chitin synthase inhibitor nikkomycin Z, and calcineurin path-
way inhibitors [167], and in C. albicans mutants that lack 
phosphatidylinositol-(4,5)-bisphosphate 5′-phosphatase 
[167]. Paradoxical behavior has been observed in a murine 
model of pulmonary aspergillosis [168] and in a patient with 
pulmonary aspergillosis [169]. Paradoxical growth in 
response to caspofungin in Candida species does not confer 

Table 29.3 Anidulafungin and micafungin ECVs for eight species of Candida*

Antifungal agent tested Species No. of isolates

MIC (μg/mL) ECV (μg/mL)a

Range Mode ≥95 % ≥97.5 % ≥99 %

Anidulafungin C. albicans 8210 0.008–2 0.03 0.06 0.12 0.12

C. glabrata 2680 0.008–4 0.06 0.12 0.12 0.25

C. parapsilosis 3976 0.008–8 2 4 8 8

C. tropicalis 2042 0.008–2 0.03 0.12 0.12 0.12

C. krusei 322 0.008–2 0.06 0.12 0.25 0.25

C. lusitaniae 234 0.008–1 0.25 1 1 1

C. guilliermondii 222 0.03–4 1 4 8 8

C. dubliniensis 131 0.015–4 0.03 0.12 0.12 0.12

Micafungin C. albicans 7874 0.008–4 0.015 0.03 0.03 0.03

C. glabrata 3102 0.008–4 0.015 0.03 0.03 0.03

C. parapsilosis 3484 0.015–4 1 2 4 4

C. tropicalis 1605 0.008–8 0.015 0.06 0.06 0.12

C. kruse 617 0.015–1 0.06 0.25 0.25 0.25

C. lusitaniae 258 0.008–≥16 0.25 0.5 0.5 1

C. guilliermondii 234 0.015–8 0.5 2 2 4

C. dubliniensis 117 0.008–8 0.06 0.12 0.12 0.12
aAdapted from Pfaller et al. [49]
Calculated ECVs comprising ≥95 %, ≥97.5 %, or ≥99 % of the statistically modeled MIC population
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survival advantage in a Drosophila or moth model of candi-
diasis [165, 170]. The clinical significance of the paradoxical 
growth remains unclear, as the drug levels necessary to 
induce it exceed normal human dosing levels.

15  Risk Factors for Resistance Emergence

The gastrointestinal (GI) tract is colonized with Candida spe-
cies, often at very high burdens [171–178], which are in the 
form of a complex microbial biofilm [179]. Typically, drug 
penetration varies across the biofilm and drug concentrations 
in the glucan matrix are irregular [114]. This creates a drug 
exposure environment that can select for resistant variants, 
which may desorb from the biofilm and cause systemic infec-
tions. As biofilms are difficult to eradicate, they can form a 
resistance reservoir that seeds resistant infections. Similarly, 
intra-abdominal candidiasis occurs in 40 % or more of 
patients following repeated gastrointestinal surgery, GI per-
foration, or necrotizing pancreatitis [180]. The high burden 
of Candida in this protected space with poor drug penetration 
creates a strong selection for resistant variants. Prophylaxis is 
another potential source for resistance. Prior and repeated 
exposure to echinocandin drugs is a risk factor development 
of resistance. As the FKS resistance mechanism is a promi-
nent risk factor for therapeutic failure [105], resistance emer-
gence is directly linked prior to exposure [106, 181, 182]. 
Antifungal prophylaxis with an azole or echinocandin class 
drug is standard prevention in many clinical settings with 
immunosuppressed patients at high risk for development of 
invasive fungal infections. Echinocandin drugs have been 
used because they have favorable pharmacokinetics and 
safety profile, and they are active against azole-resistant 
yeasts and molds. Both micafungin and caspofungin have 
been successfully applied for this purpose in adults [183–
186] and children [187]. Meta-analyses have confirmed that 
echinocandin prophylaxis reduces the incidence of invasive 
fungal infections greater than fluconazole or itraconazole 
[188, 189]. Micafungin is FDA approved for prophylaxis of 
Candida infections in patients undergoing hematopoietic 
SCT or expected to be neutropenic for at least 10 days [190] 
and the European Society of Clinical Microbiology and 
Infectious Diseases guidelines also recommend micafungin 
for prophylaxis against Candida infections in allogeneic 
HSCT adult and pediatric patients, as well as in pediatric 
patients with acute myeloid and recurrent leukemia [191]. A 
consequence of the expanding use of echinocandins for pro-
phylaxis is that patient drug exposure is on the rise, which 
has implication for inducing higher rates of echinocandin 
drug resistance, especially among resistance- prone organ-
isms like C. glabrata. Even more concerning is the high 
 prevalence of multidrug-resistant C. glabrata isolates cross-
resistant to both azole- and echinocandin-class drugs [91, 
192–196]. The coevolution of azole and echinocandin multi-

drug resistance among C. glabrata is an alarming trend [91]. 
Breakthrough infections involving C. albicans are also 
reported in patients following transplantation who received 
micafungin prophylaxis [197]. It is not surprising that broad-
ening patient exposure to echinocandin drugs would promote 
development of resistance. Echinocandin prophylaxis may 
continue to fuel an increase in the frequency of isolates that 
are resistant to multiple classes of antifungal drugs. 
Furthermore, prior antifungal exposure, especially with flu-
conazole, leads to genomic instability, which increases azole 
resistance [138] and may potentially predispose for enhanced 
mutations leading to FKS-mediated drug resistance.

16  Conclusions

Echinocandin resistance among Candida species is low but 
significant, especially among C. glabrata where high-fre-
quency resistance is often associated with azole resistance 
resulting in multidrug-resistant strains. Characteristic muta-
tions in hot-spot regions of FKS genes encoding glucan syn-
thase remain the most significant factor responsible for 
resistant isolates that are refractory to therapy. However, in 
response to echinocandin action, cellular stress response path-
ways induce drug-adapted persister states, which can ulti-
mately facilitate development of stable FKS-resistant 
genotypes. Host factors that promote resistance include bio-
film formation within the gastrointestinal tract and intra-
abdominal candidiasis. The widespread use of echinocandin 
prophylaxis needs to be monitored for its effects on promoting 
enhanced drug exposure and resistance emergence. Effective 
antibiotic stewardship is required, especially in certain settings 
where resistance is prominent. Finally, new drug- and species-
specific breakpoints have resulted in testing challenges, which 
may require drug surrogates for the class, but it may be more 
prudent to transition to sequence-based evaluation of FKS 
genotypes as the new gold standard for resistance assessment 
for all echinocandin drugs.
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