
Learning from Few Samples
with Memory Network

Shufei Zhang and Kaizhu Huang(B)

Department of EEE, Xi’an Jiaotong-Liverpool University, SIP, Suzhou 215123, China
zsftesila@gmail.com, Kaizhu.Huang@xjtlu.edu.cn

Abstract. Neural Networks (NN) have achieved great success in pattern
recognition and machine learning. However, the success of NNs usually
relies on a sufficiently large number of samples. When fed with limited
data, NN’s performance may be degraded significantly. In this paper,
we introduce a novel neural network called Memory Network, which
can learn better from limited data. Taking advantages of the memory
from previous samples, the new model could achieve remarkable per-
formance improvement on limited data. We demonstrate the memory
network in Multi-Layer Perceptron (MLP). However, it keeps straight-
forward to extend our idea to other neural networks, e.g., Convolutional
Neural Networks (CNN). We detail the network structure, present the
training algorithm, and conduct a series of experiments to validate the
proposed framework. Experimental results show that our model outper-
forms the traditional MLP and other competitive algorithms in two real
data sets.

Keywords: Memory · Multi-layer perceptron

1 Introduction

Conventional Neural Networks (NN), e.g., Multi-Layer Perceptrons (MLP), are
widely used in pattern recognition, computer vision, and machine learning. To
succeed, NN usually requires to be trained with a sufficiently large number of
samples [4]. When only few data are available, NN’s performance may however
be significantly limited. Moreover, to facilitate the training of NN, input samples
are usually assumed identically and independently distributed (i.i.d.). With the
i.i.d. assumption, samples can be fed to NN sequentially; this hence enables a
stochastic gradient descent algorithm for training a NN conveniently and effi-
ciently. However, an i.i.d assumption may often be violated in practice; on the
other hand, the learning procedure of human is not independent, but rather relies
on previous knowledge. For example, if a child would like to learn running, his
previous experience of walking can provide him some relevant knowledge which
can help him learn running easier. Another example is that, if a British tries to
learn French, previous memory about English study would benefit greatly the
learning. Both examples above indicate that the memory and previous knowledge
are very important and might be used to improve the present learning.
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 606–614, 2016.
DOI: 10.1007/978-3-319-46687-3 67

Memory Network 607

Motived from these examples, we propose a novel neural network framework
called Memory Network (MN). Enjoying the similar structure with traditional
neural networks (including input, hidden, and output layers), MN introduces
additional memory structures that can appropriately take advantages of previous
knowledge learned from previous samples for the present learning. When only
limited data are available, previous learned knowledge (stored in the memory
network) could significantly benefit the training for the present learning. More
specifically, we keep a memory of the network structures for previous N training
samples. Depending on if the present training sample share or not the same
category (class label), we enforce different constraints on two activations in each
layer of the present network and previous network. For example, if the previous
sample shares the same label with present sample, we then force similar the
two activations of the same layers between the present network and previous
network; otherwise, we try to enlarge their activations of the same layers between
the present and previous network. One appealing feature of our proposed MN is
that, despite a seemingly complicated network, an efficient stochastic gradient
descent algorithm can be readily applied to make the network easily optimized.

2 Notation and Background

In this section, we present the notation used throughout the paper and also
review the basic principles of conventional NN and Back Propagation (BP) algo-
rithm. Essentially, NN is a stack of parametric non-linear and linear transfor-
mations [7]. Suppose an NN (with L − 1 hidden layers) is trained to perform
predication in the scenario of classification. NN will map the M -dimension vector
to the D-dimension label space. The matrix X0 denotes the input data matrix
where each row of X0 represents a sample vector (X0,i is the ith sample vector
with M dimensions). Xl indicates the activation of the lth layer of NN (where
l = 1, 2, . . . , L−1) and XL denotes the output of the NN. Y represents the labels
each row of which is the label for corresponding sample with D dimensions. The
problem of NN can be formulated as the following optimization problem:

min
W1:L,b1:L

1
2
‖XL − Y ‖2 s. t.

Xl = σ(Xl−1Wl + bl), l = 1, ..., L − 1 (1)
XL = XL−1WL + bL

where σ(.) is the element-wise sigmoid function for a matrix. For each element
x of matrix, the sigmoid function is defined as σ(x) = 1

1+exp(−x) .
In NN, the sigmoid function is used to perform the non-linear transformation

and it can be also replaced by other functions such as max(0, x) and tanh(x).
We plot an illustrative example of a typical L-layer NN in Fig. 1, where Xl

(l = 1, 2, . . . , L − 1) represent the hidden layers. X0 denotes the input for the
NN, and XL indicates the output of the NN. The aim is to learn the optimum
parameters W1:L and b1:L. The common approach is BP and stochastic gradient
decent (SGD).

608 S. Zhang and K. Huang

Fig. 1. The structure of conventional Neural Network

Back Propagation is an abbreviation for “backward propagation of errors”
which is a common approach for training NNs with an optimization method
such as gradient descent. The method calculates the gradient of a loss function
with respect to all the parameters of the network. The gradient is used in the
optimization method which in turn uses it to update the parameters in order to
minimize the loss function.

BP requires the inputs with corresponding labels in order to calculate the loss
function gradient. Therefore, it is considered as a supervised learning method,
although it is also used in some unsupervised models such as auto encoders.
It is a generalization of the delta rule to multi-layered feed-forward networks,
made possible by using the chain rule to iteratively calculate the gradients for
each layer. Assuming that the activation function be differentiable, the whole
procedure is shown as below:

dE

dXL
= 2(XL − Y) (2)

dE

dXl
= (

dE

dXl+1
◦ Xl+1 ◦ (1 − Xl+1))Wl+1 (3)

dE

dWl
= XT

l−1(
dE

dXl
◦ Xl ◦ (1 − Xl)) (4)

dE

dbl
= mean(

dE

dXl
◦ Xl ◦ (1 − Xl), 1) (5)

where E is the value of the loss function and we can compute the gradients using
the chain rule above. ◦ represents the element-wise product and l = 1, 2, ...L.
mean(., 1) denotes the average operation on matrices.

3 Memory Network

This section will introduce our proposed novel Memory Network (MN) in details.
We will first present the structure of MN and then introduce the corresponding
optimization algorithm.

Memory Network 609

3.1 Network Structure

The structure of MN is plotted in Fig. 2. As can be seen, the structure of MN
consists of two parts, i.e., the present network and the memory part. We will
detail these two parts one by one.

Fig. 2. Structure of Memory Network

Present Network. The structure of present network is the same as the tradi-
tional NN (consisting of the input layer, hidden layers and the output layer).

Memory Part. The memory part contains N copies of present network. They
have totally the same parameters with present network. The difference is that
the past N samples are fed into the memory part. There are also additional
connections between each layer of memory part and present network. These con-
nections indicate the minus operations which are used to calculate the difference
of activations between memory and present part.

The purpose of using the memory part is to exploit past knowledge (obtained
from past samples) to help the present learning (present sample). There are two
different cases: (1) if the present sample has the same class label as the past
sample, we then try to make the activations of the same layers for present sample
and past sample more similar; (2) if the present sample shares a different class
from the past one, we should try to make the activations of top two layers for
present sample and past sample more different. Motivated from these two cases,
we then formulate the training of MN as follows.

3.2 Model Formulation

In order to exploit past knowledge (obtained from previous examples) for present
learning, we design the model of our proposed MN as follows:

610 S. Zhang and K. Huang

min
W1:L,b1:L

1
2
‖Xt

L − Y t‖2 +
1
2

p∑

j=1

N∑

i=1

ki
j‖Xt

L−j+1 − Xt−i
L−j+1‖2 s. t. (6)

Xt
l = σ(Xt

l−1Wl + bl), l = 1, ..., L − 1,

Xt
L = Xt

L−1WL + bL

where Xt
l represents the activation of layer l for the present sample at time t,

and Y t is its corresponding class label; Xt−i
l represents activation of the previous

ith sample in layer l at time t − i, while Y t−i describes the corresponding label
for this specific sample. The matrix k (of the size p × N) is a coefficient matrix.
Its element ki

j is defined as a positive value, if Y t = Y t−i (i.e., the previous ith

sample Xt−i
0 shares the same class label as the present sample Xt

0); otherwise
it is a negative value. In more details, a positive ki

j encourages more similarity
between activations (in the L−j+1 layer) of the present learning (at t time) and
the previous learning (at t− i time); this is reasonable, since the present sample,
Xt

0 shares the same label as the previous sample Xt−i
0 . Similarly, a negative ki

j

would enlarge the difference between the activations of the current learning and
the previous learning, since the present sample and the previous sample have a
different class label. We could also adapt the value of ki

j , depending on if how
deep the layer L − j + 1 is. Usually, a deeper or topper layer (i.e., smaller j) is
more important, leading that ki

j should be set to a bigger value.
In a short summary, on one hand, the optimization problem (6) would try

to minimize the loss at the current time t (when a sample Xt
0 is fed), i.e., the

first term in (6); on the other hand, the proposed MN would also try to reduce
(or enlarge) the difference of the activations up to the last p layers between the
present network and the previous networks, i.e., the memory loss in the second
term of (6), depending if the present sample shares the same class label as the
previous sample. By this process, knowledge trained from previous samples can
be transferred to the present learning, making the network possible to achieve
remarkable performance even if the training samples are limited.

3.3 Optimization

For solving the modified optimization problem above, we can still rely on the
BP algorithm, since the gradients with respect to the parameters can be easily
computed from Eq. (6). For example, when p is set to 2, we could calculate the
gradients for the output layer L as:

dE

dXL
= (Xt

L − Y t) +
N∑

i=1

ki
1(X

t
L − Xt−i

L)

dE

dXL−1
= (

dE

dXL
◦ XL ◦ (1 − XL))WL +

N∑

i=1

ki
2(X

t
L−1 − Xt−i

L−1)

dE

dXl
= (

dE

dXl+1
◦ Xl+1 ◦ (1 − Xl+1))Wl+1

Memory Network 611

dE

dWl
= XT

l−1(
dE

dXl
◦ Xl ◦ (1 − Xl))

dE

dbl
= mean(

dE

dXl
◦ Xl ◦ (1 − Xl), 1)

It is straightforward to extend the above cases to bigger p’s. With the above
gradients, a BP can be easily conducted so that a local minimum can eventually
obtained for the memory network.

4 Experiments

In this section, we conduct a series of experiments on two small-size data sets
including face and handwriting data.

4.1 Experimental Setup

The face data set just contains 120 training samples [1] and the handwriting
data set is a small portion of MNIST data set [3]. In the face data, a training
and test set is respectively provided by following [8]. We hence train the different
models on the training set and then report their performance on the test set.
In the handwriting data, we randomly sampled 50, 100, and 500 digits from
MNIST training set. We then report the performance on the test set. For fairness,
we do the sampling five times and report the average classification accuracy.
In order to compare the performance of the proposed Memory Network, we
have implemented the conventional MLP, Linear and nonlinear Support Vector
Machine with the rbf kernel function (in short, linear-SVM, and rbf-SVM) on
these two data sets.

For these two data sets, the structure and parameters of the proposed network
are set up differently. For different data sets, the network share the same depth
with totally 5 layers, i.e., 1 input layer, 3 hidden layers, and 1 output layer. We
exploit the deep structure, since deep networks are more flexible. For face data
set, the input-hidden-output units are respectively set to 100−300−100−40−15,
and for handwriting data set, the input-hidden-output units are 100−200−300−
100−10. Both the structures are tuned in experiments. Again, p is set to 2, since
the top layers are usually more stable. The memory weights ki

j are tuned from
the set {0.0001, 0.001, 0.01, 0.1}. For SVM, the trade-off parameter C and the
width γ is tuned via cross validation.

4.2 Face Recognition with Different Pose

The face data set contains totally 195 images for 15 persons [1]. Each person has
13 horizontal poses from −90 to 90◦ with interval 15◦. We have done a series
of preprocessing including resizing the images to 48 × 36 and then reducing
the dimension to 100 with Principal Component Analysis (PCA). We divide
this data set into two parts, number 1–8 poses are used as the training set and
number 9–13 poses are used as the test set.

612 S. Zhang and K. Huang

Table 1. Recognition rates of different models on face data. The proposed Memory
Network and RBF-SVM significantly outperforms the other models. The other results
(except Memory Network and conventional Neural Network) were copied from the
associated papers due to the same setting.

Classifier Accuracy (%)

Bilinear (Field) [6] 60.00

Style mixture (Singlet) [5] 70.00

Style mixture (Field) [5] 73.33

Nearest class mean [8] 60.00

FDA [8] 69.33

FBM [8] 74.67

linear-SVM 84.00

rbf-SVM 85.33

MLP 81.33

Memory Network 85.33

Table 1 reports the performance (recognition rate) of different models. It can
be noted that the test set shares very different pose from the training set which
makes the problem very challenging. As observed, our novel Memory Network
and rbf-SVM achieves the best performance with 85.33%. More specifically, the
proposed MN significantly improves the performance of MLP from 81.33 to 85.33!
On the other hand, Fisher Discriminant Analysis (FDA) is the state-of-the-art
algorithm for face recognition, which only achieved the error rate of 69.33% [8].
Moreover, other approaches such as the bilinear model, the style mixture model,
the Field Bayesian Model and conventional Neural Network are obviously worse
than our proposed Memory Network.

4.3 Handwriting Classification

We also test our proposed model on very famous handwriting digits data set,
MNIST. MNIST is a large handwriting data set which has 60, 000 training sam-
ples and 10, 000 test samples. It is a portion of a larger data set NIST [2] and the
samples have been size-normalized and centered in a fixed-size image (28 × 28).
In this experiment, we focus on the small sample set. Therefore, we sample the
small portions from MNIST. In particular, 50, 100 and 500 samples are chosen
from 60000 samples of MNIST database randomly. Before training, for increas-
ing training speed, we reduce the dimension of samples from 28 × 28 to 10 × 10.
For testing, we use all test samples of MNIST database, totally 10, 000 samples.
We perform the experiments five times and then report the average accuracy.

We compare the performance of our proposed MN model with the conven-
tional MLP, linear-SVM, and rbf-SVM. Table 2 shows the performance (recogni-
tion rate). Our proposed MN demonstrates a distinct performance improvement

Memory Network 613

Table 2. Recognition rates (%) of different models on hand-writing data.

Training Samples 50 100 500

MLP 56.04 ± 1.60 67.76 ± 2.76 88.79 ± 0.87

Linear-SVM 63.10 ± 0.45 71.41 ± 2.96 86.69 ± 0.54

rbf-SVM 64.56 ± 2.30 73.78 ± 1.78 89.20 ± 0.84

Memory Network 75.65 ± 1.02 81.60 ± 1.92 91.35 ± 0.78

when the training samples are fewer. In particular, it can be noted that our pro-
posed model achieves much better performance over MLP on 50-sample set (from
56.04% to 75.65%) and 100-sample set (from 67.76% to 81.60%). There is just
a slight improvement on 500-sample set (from 88.79% to 91.35%). Our proposed
MN also outperform both linear-SVM and rbf-SVM significantly. This experi-
ment further validates the advantages of our proposed MN, especially when the
training samples are limited.

5 Conclusion

In this paper, we proposed a novel Memory Network which can appropriately
take advantages of past knowledge. Specifically, we built a novel network with two
parts: memory part and present part both of which share the same structures.
We proposed to connect the top p layers of memory part and present part,
which are exploited to deliver the past knowledge. We developed a modified
stochastic optimization algorithm, which can efficiently optimize the proposed
MN model. We conducted experiments on two small-size databases including face
and handwriting data. Experimental results showed that our proposed model
achieves the best performance on both the data sets compared with the other
competitive models.

Acknowledgement. The paper was supported by the National Basic Research
Program of China (2012CB316301), National Science Foundation of China
(NSFC 61473236), and Jiangsu University Natural Science Research Programme
(14KJB520037).

References

1. Gourier, N., Hall, D., Crowley, J.: Estimating face orientation from robust detec-
tion of salient facial features. In: International Conference on Pattern Recognition
(ICPR) (2004)

2. Grother, P.J.: NIST special database 19 handprinted forms, characters database.
National Institute of Standards and Technology (1995)

3. Lecun, Y., et al.: Gradient-based learning applied to document recognition. In: Pro-
ceedings of the IEEE 86.11, pp. 2278–2324, November 1998. ISSN 0018-9219, doi:10.
1109/5.726791

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791

614 S. Zhang and K. Huang

4. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. In: Cognitive Modeling 5.3, p. 1 (1988)

5. Sarkar, P., Nagy, G.: Style consistent classification of isogenous patterns. IEEE
Trans. Pattern Anal. Mach. Intell. 27(1), 88–98 (2005)

6. Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear mod-
els. Neural Comput. 12(6), 1247–1283 (2000)

7. Wang, H., Yeung, D.-Y.: Towards Bayesian deep learning: a survey. arXiv preprint
arXiv:1604.01662 (2016)

8. Zhang, X.-Y., Huang, K., Liu, C.-L.: Pattern field classification with style nor-
malized transformation. In: International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1621–1626 (2011)

http://arxiv.org/abs/1604.01662

	Learning from Few Samples with Memory Network
	1 Introduction
	2 Notation and Background
	3 Memory Network
	3.1 Network Structure
	3.2 Model Formulation
	3.3 Optimization

	4 Experiments
	4.1 Experimental Setup
	4.2 Face Recognition with Different Pose
	4.3 Handwriting Classification

	5 Conclusion
	References

