
Exploiting Heterogeneous Units for Reservoir
Computing with Simple Architecture

Gouhei Tanaka1(B), Ryosho Nakane1, Toshiyuki Yamane2, Daiju Nakano2,
Seiji Takeda2, Shigeru Nakagawa2, and Akira Hirose1

1 Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
gouhei@sat.t.u-tokyo.ac.jp, nakane@cryst.t.u-tokyo.ac.jp,

ahirose@ee.t.u-toyo.ac.jp
2 IBM Research - Tokyo, Kawasaki, Kanagawa 212-0032, Japan

{tyamane,dnakano,seijitkd,snakagw}@jp.ibm.com

Abstract. Reservoir computing is a computational framework suited
for sequential data processing, consisting of a reservoir part and a read-
out part. Not only theoretical and numerical studies on reservoir com-
puting but also its implementation with physical devices have attracted
much attention. In most studies, the reservoir part is constructed with
identical units. However, a variability of physical units is inevitable, par-
ticularly when implemented with nano/micro devices. Here we numeri-
cally examine the effect of variability of reservoir units on computational
performance. We show that the heterogeneity in reservoir units can be
beneficial in reducing the prediction error in the reservoir computing
system with a simple cycle reservoir.

Keywords: Reservoir computing · Sequential data processing · Simple
cycle reservoir · Heterogeneous neurons · Energy efficiency

1 Introduction

Recurrent neural networks are capable of producing high-dimensional complex
dynamics due to feedback connections, which has often been utilized for informa-
tion processing of sequential data [1]. The training methods for recurrent neural
networks have been proposed, including the backpropagation through time algo-
rithm, the real-time recurrent learning, and the extended Kalman filter method
[2]. These algorithms try to adapt all the connection weights by minimizing
the total error between the network output sequence and the desired output
sequence. Since they have relatively high time complexity, their practical appli-
cations with large-scale networks are still not realized. Reservoir computing is
one of the potent frameworks that can overcome the problem of the training cost
in recurrent neural networks for energy efficient computing [3,4]. The reservoir
computing framework was established by combining the concepts from the echo
state network (ESN) [5–7] and the liquid state machine [8].

c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 187–194, 2016.
DOI: 10.1007/978-3-319-46687-3 20

188 G. Tanaka et al.

The reservoir computing system consists of the reservoir part and the read-
out part. The reservoir part is used for mapping the input sequence to a high-
dimensional spatiotemporal pattern. The readout part is used for adjusting the
output connection weights so that the spatiotemporal pattern generated by the
reservoir is appropriately mapped to the desired output sequence. Since not all
the weights but only the output weights are adapted, the reservoir comput-
ing can save the learning time compared with the conventional recurrent neural
networks. Moreover, the fixed reservoir can be implemented with nonlinear phys-
ical systems and devices, including optoelectronics [9], memristors [10], and wave
phenomena [11,12].

In the standard ESN [5], the reservoir is given as a randomly connected
recurrent neural network. The performance of reservoir computing relies on the
number of neurons and the weight matrix in the reservoir, which govern the
length of the history of input sequence that can be embedded into its spatiotem-
poral dynamics. For constructing a good mapping from an input sequential data
to an output one, the reservoir is required to satisfy the echo state property [5]
which indicates the property that the influence of the input stream is gradually
attenuated with time. This means that the mapping represented by the reservoir
should be neither expanding nor highly contracting. Hence, the spectral radius of
the weight matrix is often set to be less than and close to unity, corresponding to
the edge of chaos [2]. However, the random reservoir topology is not mandatory.
A deterministically designed reservoir with simple ring architecture is compara-
ble to the standard random reservoir in their computational performance [13].
The simple cycle reservoir enables theoretical analyses of reservoir computing
properties such as memory capacity. In addition, it is favorable for hardware
implementation because only local connections and uniform weights are needed.

In this study, we incorporate variability into the neuron units in the simple
cycle reservoir, motivated by two aspects. One is that the simple cycle reservoir
with identical units seems to be too uniform to produce rich nonlinear dynamics.
The unit variability is expected to diversify the dynamics of individual units.
The other is that the variability of the reservoir units are inevitable when they
are implemented with physical devices, particularly with nano/micro devices.
We examine how heterogeneity of the reservoir units impacts on the reservoir
dynamics and its computational capability. We show that the variability in the
reservoir units can improve the performance of the simple cycle reservoir.

2 Methods

2.1 Model

The reservoir in the standard ESN consists of neuron units which interact with
each other through weighted random connections as illustrated in Fig. 1(a).
The numbers of input units, internal units, and output units are denoted by
L, N , M , respectively. Then, the states of the input, internal, and output
units are represented by the column vectors u(t) = (u1(t), u2(t), . . . , uL(t))T ,

Exploiting Heterogeneous Units for Reservoir Computing 189

x(t) = (x1(t), x2(t), . . . , xN (t))T , and y(t) = (y1(t), y2(t), . . . , yM (t))T , respec-
tively. The input connectivity, the reservoir connectivity, the feedback connectiv-
ity, and the output connectivity are represented by W in ∈ R

L×N , W ∈ R
N×N ,

an W fb ∈ R
M×N , and W out ∈ R

N×M , respectively.
The states of the ith internal unit (i = 1, . . . , N) is updated as follows:

xi(t + 1) = fi
(
(W in

i)T · u(t + 1) + (Wi)T · x(t) + (W fb
i)T · y(t)

)
, (1)

where fi stands for the activation function of the ith neuron in the reservoir
and W in

i , Wi, and W fb
i are the ith row of the input, reservoir, and feedback

weight matrices, respectively. The states of the jth output unit (j = 1, . . . , M)
is given by

yj(t) = fout
(
(W out

j)Tx(t)
)
, (2)

where fout represents the activation function of the output neurons and W out
j is

the jth row of the output weight matrix. Here we use fout(x) = tanh(x).

Reservoir tuptuOtupnI

Win Wout

W

u(t) x(t) y(t)

Wfb

Reservoir tuptuOtupnI

Win Wout

W

u(t) x(t) y(t)

Wfb

Fig. 1. Structure of the reservoir. (a) Random topology. The standard architecture in
the ESN [5]. (b) Ring topology called the simple cycle reservoir [13].

When an input sequential data u(t) is given, the output sequence is generated
by Eqs. (1)–(2). The characteristic of the reservoir computing is that the weights
in the input and reservoir connections are not adapted but only the output
connection weights W out are determined by a learning rule. The output matrix
W out is obtained to minimize the error between the network output sequence
y(t) and a desired output sequence d(t), given by

E = 〈||y(t) − d(t)||2〉, (3)

where 〈·〉 denotes an average over a time period. The minimization of E can be
achieved using regression methods. Here we employ the pseudoinverse computa-
tion [2].

190 G. Tanaka et al.

2.2 Reservoir Structure

We use the simple cycle reservoir as shown in Fig. 1(b), where the connectivity of
the reservoir nodes has ring topology and the connection weights are uniform [13].
It is represented as the weight matrix W = (wi,j) where wi+1,i = r, w1,N = r,
and all the other entries are zero. For the standard reservoir, the necessary
condition for the echo state property is given by ρ(W) < 1 where ρ(W) is the
spectral radius of W and the sufficient condition is given by σ̄(W) < 1 where
σ̄(W) is the largest singular value of W [5]. For the simple cycle reservoir [13],
ρ(W) = σ̄(W) = r. The simple cycle reservoir is comparable to the standard
reservoir in the performance of time series predictions and its memory capacity
can be theoretically derived [13].

2.3 Heterogeneous Units

In most studies on reservoir computing, the units of the reservoir have been
assumed to be identical. The hyperbolic tangent function is normally used as
the nonlinear activation function of the units in ESNs. In the standard reservoir,
the diversity of the dynamics of the reservoir units are brought about by the
random weight matrix. However, in the simple cycle reservoir with identical
units, the dynamics generated by the individual units become uniform. The
total system can be essentially reduced to a lower-dimensional system. This is
unbenefited for producing high-dimensional spatiotemporal dynamics. Thus, we
introduce the variability in the activation function of the reservoir units, which
are represented as follows:

fi(x) = tanh(βix), (4)

where the parameter βi, corresponding to the slope of the function at the origin,
controls the nonlinearity of the function. Although there are many ways to intro-
duce variability in βi, for simplicity we assume that βi is randomly generated
from the uniform distribution in the range [1 − v, 1], where v (0 ≤ v ≤ 1) is the
control parameter representing the degree of variability.

2.4 Simulation Setting

Initially, we give the internal state x(0) and the output weight matrix W out ran-
domly. The weights of input connections have the same absolute value p but the
signs are randomly assigned. After a washout period with length Tinit, the sam-
ple sequential data with length Ttrn are used for training the output weights and
subsequently the sequential data with length Ttest are used for testing the gen-
eralization ability of the reservoir. The computational performance is evaluated
using the normalized mean squared error (NMSE) defined as follows:

NMSE =
〈||y(t) − d(t)||2〉

〈d(t)2〉 . (5)

We use the following benchmark tasks on sequential data processing, which
have been widely used to test the performance of reservoir computing.

Exploiting Heterogeneous Units for Reservoir Computing 191

(1) Mackey-Glass equation [14]:

dy(t)
dt

=
ay(t − τ)

1 + y(t − τ)10
− by(t), (6)

where a = 0.2, b = 0.1, and τ = 30. The dataset was generated by numeri-
cally solving this equation with time step Δt = 1 [15]. The task is to predict
the value of y(t + 1) from the past values up to time t.

(2) Laser dataset: The Santa Fe Laser dataset is a crosscut through periodic to
chaotic intensity pulsations of a real laser [16]. The task is the same as that
in the previous one. The simple cycle reservoir has been applied to this task
[13].

(3) NARMA 10th-order system: The nonlinear auto-regressive moving average
(NARMA) system of order 10 is described as follows:

y(t + 1) = 0.3y(t) + 0.05y(t)
9∑

i=0

y(t − i) + 1.5u(t − 9)u(t) + 0.1, (7)

where u(t) is the input sequence which is randomly sampled from the uniform
distribution in the range [0, 0.5]. This task is widely used in the literature of
recurrent neural networks and reservoir computing [7,13].

(4) NARMA 20th-order system: The NARMA system of order 20 is described
as follows [13]:

y(t+ 1) = tanh

(
0.3y(t) + 0.05y(t)

19∑
i=0

y(t− i) + 1.5u(t− 19)u(t) + 0.01

)
, (8)

where u(t) is generated as in the previous task. This task is more difficult
compared with the NARMA 10th-order system due to the dependence of the
current state on the longer history of inputs.

3 Results

In the following numerical experiments, the input and output data were scaled
and shifted appropriately for each dataset. For the dataset generated by the
Mackey-Glass equation, we set N = 2, Tinit = 500, Ttrn = 1000, Ttest = 1000,
p = 0.87, and r = 1. The result of the test performance is shown in Fig. 2(a).
The plot for the variability parameter v = 0 corresponds to the result for the
simple cycle reservoir with the identical units [13]. As the variability parameter
v is increased, the NMSE is gradually decreased. Namely, the variability of the
units can improve the computational performance.

For the Laser dataset, we set N = 100, Tinit = 500, Ttrn = 2000, Ttest = 3000,
p = 0.87, and r = 0.7. The result is shown in Fig. 2(b). As the variabililty
increases, the prediction error decreases and reaches the bottom at around 0.7.
The error slightly increases for further increase in v, but it is much lower than
the case without variability.

192 G. Tanaka et al.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 0.2 0.4 0.6 0.8 1

(a)

N
M

SE

Variability v

Average testing error

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 0.2 0.4 0.6 0.8 1

(b)

N
M

SE

Variability v

Average testing error

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

(c)

N
M

SE

Variability v

Average testing error

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

N
M

SE

Variability v

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

(d)

N
M

SE

Variability v

Average testing error

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

N
M

SE

Variability v

Average testing error

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

N
M

SE

Variability v

Average testing error

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5
 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5
 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5

Fig. 2. The performance of the simple cycle reservoir with heterogeneous neurons.
The NMSE for the test set is plotted against the variability parameter v. The crosses
represent the results of 10 trials for each parameter value. The open circle indicates
the average of the 10 trials. (a) Mackey-Glass equation. (b) Santa Fe Laser dataset. (c)
NARMA 10th-order system. (d) NARMA 20th-order system.

For the NARMA 10th-order system, we set N = 100, Tinit = 200, Ttrn =
1000, Ttest = 1000, p = 0.87, and r = 0.86. Figure 2(c) shows the result, where
the variability can yield a better result if v is less than around 0.5 but for a
larger value of v the result is worse than the case without variability.

For the NARMA 20th order system, we set N = 100, Tinit = 500, Ttrn =
1000, Ttest = 1000, p = 0.87, and r = 0.95. The result for the NARMA 20th-
order system is similar to that for the NARMA 10-th order system as shown in
Fig. 2(d). Although a large value of v significantly increases the prediction error,
there exists a range of v in which the variability has a positive effect (the inset).

To clarify the conditions that the performance is improved by the unit vari-
ability, we indicated the parameter regions (black) for good computational per-
formance in Fig. 3. The performance increases with the variability v for the
range of r in Figs. 3(a), (b), whereas there is a optimal range of v in Figs. 3(c),
(d). There is a correlation between the values of r and v, suggesting that the
effective spectral radius is determined not only by r but by βi. It remains to
explicitly give the formula for the spectral radius in the simple cycle reservoir
with heterogeneous units.

Exploiting Heterogeneous Units for Reservoir Computing 193

(a) (b)

(c) (d)

 0.6 0.8 1 1.2 1.4
r

 0

 0.2

 0.4

 0.6

 0.8

 1
v

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.6 0.8 1 1.2 1.4
r

 0

 0.2

 0.4

 0.6

 0.8

 1

v

 0.01

 0.015

 0.02

 0.025

 0.6 0.8 1 1.2 1.4
r

 0

 0.2

 0.4

 0.6

 0.8

 1

v

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.6 0.8 1 1.2 1.4
r

 0

 0.2

 0.4

 0.6

 0.8

 1

v

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Fig. 3. The parameter region for good prediction performance on the (r, v)-plane. The
color bar indicates the NMSE for the test set. (a) The Mackey-Glass equation. (b)
The Santa Fe Laser dataset. (c) The NARMA 10th-order system. (d) The NARMA
20th-order system.

4 Conclusions

We have proposed to exploit heterogeneity in the reservoir units for improving
the computational performance in the reservoir computing with the simple cycle
architecture. We have introduced variability in the slope parameter in the hyper-
bolic tangent activation functions of the reservoir units. Numerical experiments
have shown that both the unit variability and the connection weight govern the
performance on the benchmark tasks for sequential information processing.

Our result is beneficial for hardware implementation of reservoir computing
because of the simple reservoir structure and the unavoidable unit variability
when implemented with nano/micro devices. For verification of the effectiveness
of our method, we need further numerical experiments using other datasets. It is
significant to clarify the conditions under which the unit variability works well.
The mathematical mechanism of the positive role of the unit variability still
remains to be investigated.

194 G. Tanaka et al.

Acknowledgments. This work was partially supported by JSPS KAKENHI Grant
Number 16K00326 (GT).

References

1. Haykin, S.: Neural Networks. A Comprehensive Foundation, 2nd edn. Prentice
Hall, Englewood Cliffs (1998)

2. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL,
EKF and the “echo state network” approach. GMD-Forschungszentrum Informa-
tionstechnik (2002)

3. Schrauwen, B., Verstraeten, D., Van Campenhout, J.: An overview of reservoir
computing: theory, applications and implementations. In: Proceedings of the 15th
European Symposium on Artificial Neural Networks, pp. 471–482 (2007)

4. LukošEvičIus, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

5. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural
networks-with an erratum note. German National Research Center for Information
Technology GMD Technical Report 148, Bonn, Germany 34 (2001)

6. Jaeger, H.: Short term memory in echo state networks. GMD-Forschungszentrum
Informationstechnik (2001)

7. Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In:
Advances in neural information processing systems, pp. 593–600 (2002)

8. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Comput. 14(11), 2531–2560 (2002)

9. Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M.,
Massar, S.: Optoelectronic reservoir computing. Scientific Reports 2, 287 (2012)

10. Kulkarni, M.S., Teuscher, C.: Memristor-based reservoir computing. In: 2012
IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH),
pp. 226–232 (2012)

11. Katayama, Y., Yamane, T., Nakano, D., Nakane, R., Tanaka, G.: Wave-based neu-
romorphic computing framework for brain-like energy efficiency and integration.
IEEE Trans. Nanotechnology (Accepted)

12. Yamane, T., Katayama, Y., Nakane, R., Tanaka, G., Nakano, D.: Wave-based
reservoir computing by synchronization of coupled oscillators. In: Arik, S., Huang,
T., Lai, W.K., Liu, Q. (eds.) Neural Information Processing, pp. 198–205. Springer,
Switzerland (2015)

13. Rodan, A., Tiňo, P.: Minimum complexity echo state network. IEEE Trans. Neural
Netw. 22(1), 131–144 (2011)

14. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems.
Science 197(4300), 287–289 (1977)

15. Wyffels, F., Schrauwen, B., Verstraeten, D., Stroobandt, D.: Band-pass reservoir
computing. In: IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence), pp. 3204–3209. IEEE (2008)

16. Weigend, A., Gershenfeld, N.: Time series prediction: forecasting the future and
understanding the past. In: Proceedings of a NATO Advanced Research Workshop
on Comparative Time Series Analysis, held in Santa Fe, New Mexico (1994)

	Exploiting Heterogeneous Units for Reservoir Computing with Simple Architecture
	1 Introduction
	2 Methods
	2.1 Model
	2.2 Reservoir Structure
	2.3 Heterogeneous Units
	2.4 Simulation Setting

	3 Results
	4 Conclusions
	References

