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Preface

This volume is part of the four-volume proceedings of the 23rd International Con-
ference on Neural Information Processing (ICONIP 2016) held in Kyoto, Japan, during
October 16–21, 2016, which was organized by the Asia-Pacific Neural Network
Society (APNNS, http://www.apnns.org/) and the Japanese Neural Network Society
(JNNS, http://www.jnns.org/). ICONIP 2016 Kyoto was the first annual conference of
APNNS, which started in January 2016 as a new society succeeding the Asia-Pacific
Neural Network Assembly (APNNA). APNNS aims at the local and global promotion
of neural network research and education with an emphasis on diversity in members
and cultures, transparency in its operation, and continuity in event organization. The
ICONIP 2016 Organizing Committee consists of JNNS board members and interna-
tional researchers, who plan and run the conference.

Currently, neural networks are attracting the attention of many people, not only from
scientific and technological communities but also the general public in relation to the
so-called Big Data, TrueNorth (IBM), Deep Learning, AlphaGo (Google DeepMind),
as well as major projects such as the SyNAPSE Project (USA, 2008), the Human Brain
Project (EU, 2012), and the AIP Project (Japan, 2016). The APNNS’s predecessor,
APNNA, promoted fields that were active but also others that were leveling off.
APNNS has taken over this function, and further enhances the aim of holding technical
and scientific events for interaction where even those who have extended the contin-
uing fields and moved into new/neighboring areas rejoin and participate in lively
discussions to generate and cultivate novel ideas in neural networks and related fields.

The ICONIP 2016 Kyoto Organizing Committee received 431 submissions from 38
countries and regions worldwide. Among them, 296 (68.7 %) were accepted for pre-
sentation. The first authors of papers that were presented came from Japan (100), China
(78), Australia (22), India (13), Korea (12), France (7), Hong Kong (7), Taiwan (7),
Malaysia (6), United Kingdom (6), Germany (5), New Zealand (5) and other countries/
regions worldwide.

Besides the papers published in these four volumes of the Proceedings, the con-
ference technical program includes

– Four plenary talks by Kunihiko Fukushima, Mitsuo Kawato, Irwin King, and
Sebastian Seung

– Four tutorials by Aapo Hyvarinen, Nikola Kazabov, Stephen Scott, and Okito
Yamashita,

– One Student Best Paper Award evaluation session
– Five special sessions, namely, bio-inspired/energy-efficient information processing,

whole-brain architecture, data-driven approach for extracting latent features from
multidimensional data, topological and graph-based clustering methods, and deep
and reinforcement learning

– Two workshops: Data Mining and Cybersecurity Workshop 2016 and Workshop on
Novel Approaches of Systems Neuroscience to Sports and Rehabilitation

http://www.apnns.org/
http://www.jnns.org/


The event also included exhibitions and a technical tour.
Kyoto is located in the central part of Honshu, the main island of Japan. Kyoto

formerly flourished as the imperial capital of Japan for 1,000 years after 794 A.D., and
is presently known as “The City of Ten Thousand Shrines.” There are 17 sites (13
temples, three shrines, and one castle) in Kyoto that form part of the UNESCO World
Heritage Listing, named the “Historic Monuments of Ancient Kyoto (Kyoto, Uji and
Otsu Cities).” In addition, there are three popular, major festivals (Matsuri) in Kyoto,
one of which, “Jidai Matsuri” (The Festival of Ages), was held on October 22, just after
ICONIP 2016.

We, the general chair, co-chair, and Program Committee co-chairs, would like to
express our sincere gratitude to everyone involved in making the conference a success.
We wish to acknowledge the support of all the sponsors and supporters of ICONIP
2016, namely, APNNS, JNNS, KDDI, NICT, Ogasawara Foundation, SCAT, as well
as Kyoto Prefecture, Kyoto Convention and Visitors Bureau, and Springer. We also
thank the keynote, plenary, and invited speakers, the exhibitors, the student paper
award evaluation committee members, the special session and workshop organizers, as
well as all the Organizing Committee members, the reviewers, the conference partic-
ipants, and the contributing authors.

October 2016 Akira Hirose
Seiichi Ozawa

Kenji Doya
Kazushi Ikeda

Minho Lee
Derong Liu
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Emotion Prediction from User-Generated Videos
by Emotion Wheel Guided Deep Learning
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Abstract. To build a robust system for predicting emotions from user-
generated videos is a challenging problem due to the diverse contents and
the high level abstraction of human emotions. Evidenced by the recent
success of deep learning (e.g. Convolutional Neural Networks, CNN) in
several visual competitions, CNN is expected to be a possible solution to
conquer certain challenges in human cognitive processing, such as emo-
tion prediction. The emotion wheel (a widely used emotion categorization
in psychology) may provide a guidance on building basic cognitive struc-
ture for CNN feature learning. In this work, we try to predict emotions
from user-generated videos with the aid of emotion wheel guided CNN
feature extractors. Experimental results show that the emotion wheel
guided and CNN learned features improved the average emotion predic-
tion accuracy rate to 54.2 %, which is better than that of the related
state-of-the-art approaches.

Keywords: Deep learning · Emotion wheel · Emotion prediction

1 Introduction

As the bandwidth of Internet broadens and the ability to capture videos from
various consumer devices increases, users can easily record and share videos on
social networks and/or websites to express their feelings. Moreover, understand-
ing user emotions expressed in these contents is beneficial for many applications
(e.g. predicting users’ opinions for a certain event or topic). Therefore, how to
robustly predict emotions from user-generated videos (UGV) became an inter-
esting research topic in AI and machine learning communities, very recently.
However, predicting emotions in UGV is a very challenging problem since UGV
usually have diversified content and without pre-defined script and professional
post-editing. This explains why the average prediction accuracy achieved in the
state-of-the-art work (e.g. [20]) is still less than 50 %.

Building an image-based computational framework for conducting emotion
prediction has been studied extensively over the last decade. A comprehensive
survey [19] on previous approaches depicts several systems on the basis of low-
level visual features. Considering the emotional cues could be carried in high-level
abstractions that beyond visual or audio features, such as attributes in images,
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 3–12, 2016.
DOI: 10.1007/978-3-319-46687-3 1
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Fig. 1. The psychological emotion wheel which consists of 8 basic emotions.

the research work [2] proposed a framework using mid-level attribute features
for emotion detection. They built a large scale visual sentiment ontology based
on different emotional concepts and images collected from Flickr. The detector
was trained for each concept to construct a detector bank for visual sentiments.

In contrast to the progress made in image sentiment analysis, the efforts for
emotion prediction in videos are mainly focusing on movies. The research work
[11] proposed a mean-shift based clustering framework to classify movie clips into
genres such as action, comedy, horror or drama, according to several low-level
visual features. In [18], they utilized multiple modalities existed in videos (such
as visual and audio) to formulate a number of audiovisual features for bridging
the cognitive gap. This approach revealed the advantages of fusing different
modalities for emotion analysis in movies.

The research work [20] first introduced the emotion analysis problem and
constructed a UGVEmotion dataset based on the 8 basic emotions as shown in
Fig. 1. This type of videos has several unique characteristics as compared with
movies. The first one is that UGV usually contain a single clear emotion in a
short time period. The second one is that UGV are often taken by amateur users,
resulting diverse environments and unstable qualities.

The design of high performance handcraft features for emotion prediction in
UGV remains a challenging problem since numerous existing features have been
evaluated in the research work [20] and the obtained prediction accuracy is still
less than 50 %.

On the other hand, the deep learning technique (e.g. CNN) learns the fea-
tures from the data directly and has demonstrating significant performance gain
in numerous visual tasks (e.g. ImageNet challenge [6,15], object recognition [3],
face verification [16], semantic segmentation [7] and video classification [5]) and
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drawing considerable attention in computer vision and machine learning soci-
eties.

Inspired by the success of CNN, we are interested in leveraging deep learning
framework to resolve the challenging emotion prediction problem in UGV.

2 Related Work

2.1 Emotion Wheel

In emotion wheel, human emotion responses can be divided into eight primary
classes with bipolar relationships [10]: joy vs. sadness, trust vs. disgust, fear vs.
anger, and surprise vs. anticipation as demonstrated in Fig. 1. The theory of
emotion wheel [10] argues these basic emotions are important to increase the
fitness for surviving of human beings (e.g. fear inspires fight-or-flight response).
The theory of emotion wheel suggests that the other emotions (e.g. optimism)
are the combination of these 8 primary emotions. In other words, these 8 basic
emotions laid the foundations for emotion analysis and prediction.

2.2 Deep Learning

Convolutional neural network (CNN) is a learning framework that aims to learn
features from data. Due to the progress on GPU programming, one has the
ability to train CNN on a large scale image dataset like ImageNet [12] with an
affordable time cost.

2.3 Emotion Prediction

The research of emotion analysis focused on the challenging UGV scenarios in
recent years. The latest research works about emotion prediction in UGV can
be summarized as follows:

– UGVEmotion [20] A comprehensive computational framework [20] has been
built including several modalities, such as visual, audio, and other high-level
attributes.

– Multimodal DBM [8] The deep boltzmann machine (DBM) method is adopted
by [8] for emotion prediction in UGV. In contrast to extract features from each
modality (e.g. visual, audio), they proposed to learn a joint density model
over the multimodal inputs for DBM. The multimodal DBM improves the
prediction accuracy as compared with that of the original UGVEmotion.

3 Proposed Method

3.1 Emotion Wheel Guided CNN Feature Extractor

Since the outputs of the last fully connected layer in CNN are commonly treated
as effective features for video classification [21], we construct a feature learn-
ing hierarchy through combination and concatenation of CNN-based feature
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Fig. 2. The proposed emotion wheel guided CNN learning hierarchy for feature extrac-
tion. The final concatenated features is denoted by the square bracket [fA, fC(V )].

Table 1. The proposed subset divisions of the emotion wheel.

Subset Emotion

S1 Anger, Fear, Joy, Sadness

S2 Anticipation, Disgust, Surprise, Trust

extractors and classifier, as shown in Fig. 2. The obtained concatenating fea-
ture [fA, fC(V )] is expected to perform well in emotion prediction since CNN
has very good credit for learning appropriate features from data, directly.

In Fig. 1, the angular distance between two emotions of the emotion wheel
represents the level of emotion similarity. Therefore, the bipolar emotion pair
(e.g. joy vs. sadness) locates in the opposite positions of the emotion wheel. In
order to obtain a more discriminative feature extractor, we divide the UGVEmo-
tion training videos into 2 disjoint subsets (as shown in Table 1) with maximal
emotion diversity in each subset.

As illustrated in Fig. 2, the proposed emotion wheel guided CNN feature
extractor consists of 3 feature extractors and 1 binary classifier for constructing
the final representative feature. The functions and parameters of the proposed
feature learning hierarchy can be summarized as follows.

– fA: fA denotes the CNN feature extractor which is trained by using all the
training videos in UGVEmotion dataset.

– fS1 or fS2: fS1(or fS2) represents the CNN feature extractor that is trained by
the training videos in UGVEmotion dataset whose emotion category belongs
to subset S1 (or S2).

– C(V ): A CNN trained binary classifier that predicts the emotion category,
C(V ), of video V is either S1 or S2.
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The final representative feature is the concatenated result of the features
extracted by fA and fC(V ). As pre-described, the concatenation operation (or
result) is represented by a square bracket, [fA, fC(V )], in this work.

4 Frame-Level Feature Extraction

4.1 Preprocessing

UGV usually have some post-production frames inserted by users (e.g. additional
captions like “thanks for watching”). We want to detect and remove these frames
because these additional materials contribute very little visual information in
regard to emotion expression. Therefore, we manually labeled 1000 frames for
training a detector. And then we compute a 16×16×16 color histogram for each
frame. Since those post-production frames typically have monotonous colors,
the variance of color histogram will be a good feature for distinction. Then, we
utilize color histogram variance as the feature to train an SVM model to detect
and remove the above-mentioned emotion unrelated frames from the original
UGVEmotion dataset.

4.2 Visual Feature Extraction

The visual CNN architecture is optimized for single-image inputs, while the
input of UGV is, in general, a video. In order to train a CNN with image-based
architecture but applicable to UGVEmotion dataset, we subsample the input
video with 3 FPS (frames-per-second) sampling rate and rescale each image to a
fixed size of 256×256 pixels with 3 (i.e. RGB) color channels. The visual feature
extraction of each frame follows the procedure illustrated in Fig. 2.

4.3 Audio Feature Extraction

In the previous subsection, a CNN feature extraction pipeline has been built for
each video frame. Audio waves are naturally one-dimensional signals; however,
a two-dimensional image-like data representation is a must for applying the
pre-described transfer learning technique to learn effective CNN based audio
features. Therefore, we transform the audio waves into spectrograms to meet
this requirement. Each spectrogram has a window of size one second with 0.5 s
overlap. The same feature extraction pipeline, as shown in Fig. 2, is applied to
the spectrograms to extract audio features.

4.4 Motion Feature Extraction

The video classification task would be challenge for CNN since the original archi-
tecture is tailored to suit single-image inputs. There is research work [14] address-
ing video classification by CNN incorporating with spatial and temporal streams.
However, the video classification accuracy of state-of-the-art CNN based app-
roach [14] is still less than that of the improved dense trajectories (IDT) feature
[17] with stacked Fisher encoding [9,13]. Therefore, we choose IDT plus fisher
vector (IDT+FV) encoding as our motion feature for UGV emotion prediction.
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5 Video-Level Feature Encoding

Figure 3 illustrates our proposed system flow for fusing multimodal features.
The frame-level features are post-processed and encoded as a video level feature.
First, the IDT feature, addressed by Fisher vector encoding, is treated as a video-
level motion feature. Second, in contrast to the common averaging of frame-level
features, the video-level feature encoding for the CNN-based frame-level visual
and audio features is resolved by bags of words (BoW) approach in this paper.
Finally, the early fusion method presented in [1] is adopted to fuse visual, audio
and motion video-level features together to train our SVM classifier for emotion
prediction.

Fig. 3. The operational flow and system block diagram of the proposed multimodal
feature fusion. The emotion wheel guided CNN feature extractor is applied to both
visual data and audio data. The motion activity is captured by IDT feature plus Fisher
vector (IDT+FV) encoding.

6 Experiments

In order to evaluate the performance of the proposed emotion wheel guided
feature engineering and the overall prediction accuracy of the multimodal feature
fusion, we did a series of tests of our system on UGVEmotion dataset [20], which
is the largest UGV dataset with emotion annotations, publicly available up to
now. The emotion UGV dataset is composed of videos downloaded from YouTube
and Flickr. The released dataset consists of video clips annotated with one of
the 8 basic emotion categories, depicted in Fig. 1.

The “VGG” CNN model [15] is chosen as our deep learning testbed for emo-
tion prediction, because of its top performance in ImageNet 2014 competition.
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Table 2. Performance comparison of various tested feature engineering approaches.
The notations V., A., Att. and Mot. represent visual, audio, attribute and motion,
respectively.

Features V A Att Mot

fA (from scratch) 9.5 8 - -

fA 11.7 12.6 - -

fA (from scratch) + SVM 33.6 20.1 - -

fA + SVM 48 37.8 - -

[fS1, fS2] + SVM 47.2 35.6 - -

fC(V ) + SVM 47.8 36.9 - -

[fA, fS1, fS2] + SVM 48.5 37.3 - -

[fA, fC(V )] + SVM 50.1 38.5 - -

UGVEmotion 41.9 28.8 40 -

IDT-FV (motion) + SVM - - - 40.8

Table 3. Performance comparison of different video-level encoding methods.

Algorithms Encoding Visual Audio

[fA, fC(V )] Avg. 50.1 38.5

[fA, fC(V )] BoW 51.3 40.2

Table 4. Overall system performance comparisons. The notations V., A., Att. and
Mot. represent visual, audio, attribute and motion, respectively.

Algorithms UGVEmotion Multimodal DBM Proposed

Category Visual V. + A. + Att V. + A. + Att Visual V. + A. + Mot.

Anger 49.4 53 50.9 41 64

Anticipation 3 7.6 3.4 13 18

Disgust 35.1 44.6 39.9 38 47

Fear 45 47.3 54.5 63 70

Joy 44.8 48.3 59 65 56

Sadness 23.5 20 21.7 58 50

Surprise 75.6 76.9 82.8 66 69

Trust 10.3 28.5 31.2 41 37

Overall 41.9 46.1 49.9 51.3 54.2

The model provided by [15] was trained on ImageNet 2014 dataset using Caffe
learning toolkit [4].

We examined the performance (in terms of prediction precision) of different
feature engineering approaches for CNN based visual and audio feature extrac-
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tion. The overall system performance is also compared with the state-of-the-art
results reported in UGVEmotion [20] and Multimodal DBM [8].

6.1 Performance of the Proposed Feature Engineering

Table 2 illustrates the performances of different feature engineering approaches
for emotion prediction. All CNN based feature extractors (including both visual
and audio) are incorporated the transfer learning technique from ImageNet into
the tests, except the results reported in the first row (i.e. the “from scratch”
approach). The naive application of CNN model gives the lowest prediction
accuracy without applying the transfer learning technique from ImageNet (as
shown in the row indicated as fA (from scratch) of Table 2). The incorporation
of SVM classifier provides much better prediction accuracy than that of CNN
built in soft-max classifier for the extracted features. Therefore, SVM is chosen
as the final feature classifier in our system.

The integration of CNN feature extractor fA (with transfer learning from
ImageNet) and SVM has already outperformed UGVEmotion in prediction pre-
cision. The proposed emotion wheel guided hierarchical feature extractor shows
its outstanding performance (prediction accuracy goes up to 50.1 % by visual
feature only and 38.5 % by audio feature only) among the various tested feature
engineering configurations.

6.2 Performance of Video-Level Feature Encoding

Table 3 shows BoW encoding method provides a little bit better prediction per-
formance as compared with the common averaging approach for constructing
video-level features. Empirically, BoW encoding improves the prediction accu-
racy in both visual and audio features.

6.3 Performance of Overall System

The overall emotion prediction accuracy is demonstrated in Table 4, in which the
highest prediction accuracy result of each one of the comparisons is denoted in
boldface. The proposed system (by visual feature or by fused multimodal feature)
provides the highest prediction results in 7 out of the 8 emotion categories. The
work Multimodal DBM [8] shows the highest precision in ‘surprise’ emotion.

From Table 4, the proposed visual feature has already outperformed the two
afore-cited state-of-the-art approaches in overall emotion prediction accuracy.
The visual feature achieves the highest prediction accuracy in 3 out of the 8
emotion categories even compared with the proposed multimodal approach. This
phenomenon implies that the emotion prediction is dominated mainly by visual
features. The fact that those emotion categories “fear, joy, sadness, surprise”
can be well-predicted (i.e. accuracy > 55 %) by using visual feature only gives a
strong support for the arguments of emotion wheel theory. The emotion wheel
theory suggests that these basic emotions are important for human survival
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(a) Visual feature (b) Fused multimodal feature

Fig. 4. The confusion matrices of our emotion prediction results based on (a) the visual
feature and (b) the fused multimodal feature.

(e.g. fear inspires fight-or-flight response), because human brain is equipped
with superior surviving ability through rapid visual information processing.

The overall system performance achieves 54.2 % prediction accuracy which
outperforms the corresponding state-of-the-art results. The fused multimodal
feature, in most of cases, provides better prediction accuracy than the situation
using visual feature alone.

Figure 4 illustrates the confusion matrices of our emotion prediction results
based on (a) the visual feature and (b) the fused multimodal feature. The visual
feature based confusion matrix shows that the emotion ‘anticipation’ will easily
be mis-predicted as the emotion ‘surprise’. The emotion ‘trust’ will wrongly
be predicted as the emotion ‘joy’. However, as evidenced by Fig. 4(b), if the
fused multimodal feature is used, the occurrences of the above-mentioned mis-
prediction will be largely reduced.

7 Conclusion

UGV emotion prediction is an emerging and challenging problem. In order to
resolve this challenge, we leverage the psychological emotion wheel theory to
guide the design of CNN based feature extractors. The prediction accuracy is
improved up to 54.2 % which outperforms the state-of-the-art related research
results.
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Abstract. The combination of modern reinforcement learning and
deep learning approaches brings significant breakthroughs to a vari-
ety of domains requiring both rich perception of high-dimensional sen-
sory inputs and policy selection. A recent significant breakthrough in
using deep neural networks as function approximators, termed Deep
Q-Networks (DQN), proves to be very powerful for solving problems
approaching real-world complexities such as Atari 2600 games. To remove
temporal correlation between the observed transitions, DQN uses a sam-
pling mechanism called experience reply which simply replays transitions
at random from the memory buffer. However, such a mechanism does not
exploit the importance of transitions in the memory buffer. In this paper,
we use prioritized sampling into DQN as an alternative. Our experimen-
tal results demonstrate that DQN with prioritized sampling achieves a
better performance, in terms of both average score and learning rate on
four Atari 2600 games.

Keywords: Reinforcement Learning · Deep Learning · Deep Reinforce-
ment Learning · Policy control · Prioritized sampling

1 Introduction

Recent breakthroughs in both modern reinforcement learning (RL) and deep
learning (DL) have given rise to a new research direction called deep rein-
forcement learning (DRL) which combines advances in DL for sensory inputs
processing with RL [1–3]. One of the most notable DRL methods called Deep
Q-Networks (DQN) which combines a deep convolutional neural network with a
variant Q-learning algorithm in RL, has been shown to be capable of learn-
ing control policies in complex environments with high-dimensional sensory
inputs. DQN outperformed previous algorithms based on handcrafted features
and achieved or even surpassed a level comparable to that of a skilled human
player in some Atari 2600 games, using the same network architecture and hyper-
parameters [2].

On-line RL agents incrementally update the parameters of value functions
when they encounter a sequence of highly correlated transitions [4]. However,
most DL methods have two main requirements: (a) the training samples are
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 13–22, 2016.
DOI: 10.1007/978-3-319-46687-3 2
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independent of each other; (b) the samples can be reused many times dur-
ing training. A technique called experience replay [5] can be utilized to meet
these requirements. Therefore, this sampling mechanism was applied to the DQN
method [1,2], which stabilized the training of the algorithm. At each time step,
the agent stores every observed transition into the memory buffer and then
samples uniformly to get a number of mini-batch transitions for updating the
parameters.

However, this approach of uniform sampling is in some respects limited
because the memory buffer does not differentiate the importance of distinct tran-
sitions and always overwrites with recent transitions owing to the finite memory
size [2]. So in this paper, we propose a novel sampling mechanism termed priori-
tized sampling which is more effective and efficient than the case of all transitions
are sampled uniformly. Specifically, we set two priority levels on sampling tran-
sitions. On one hand, a more efficient sampling method should emphasize the
transitions from which the agent can learn the most. And we all know that transi-
tions with positive rewards are more informative and valuable for learning. So we
assign these transitions with higher priority to be sampled during training. This
modification of sampling can make transitions with positive rewards be sampled
more frequently so as to learn optimal policies faster. On the other hand, we
add an explicit penalty term to every transition being accessed to reduce the
probability of being sampled again. The degrees of punishment will be higher
with the increase of sampled times in order to make parts of the transitions never
been sampled recently have chances to be reused in time. More importantly, we
set the priority of sampling by measuring the magnitude of rewards higher than
the latter.

This paper presents a new model-free, off-policy RL algorithm, called PS-
DQN. PS-DQN makes two improvements based on the DQN algorithm. First,
its network is trained with samples obtained by prioritized sampling to eliminate
correlations between observed transitions. Second, it uses a soft target network
to give consistent target Q-values during temporal difference backups. On four
Atari 2600 games, PS-DQN appears better than DQN empirically, in terms of
both average score and learning rate.

2 Background

2.1 Reinforcement Learning

In reinforcement learning, the agent interacts sequentially with an unknown envi-
ronment, with the goal of maximizing cumulative rewards [4]. The environment
is often formalized as a sequence of state transitions (st, at, rt, st+1) of a Markov
Decision Process (MDP). The action-value function is used in many RL algo-
rithms. It describes the expected return after taking an action at in state st and
thereafter following policy π:

Qπ(s, a) = Eπ[Rt|st = s, at = a, π] (1)
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The action-value function obeys a fundamental recursion known as the Bell-
man equation:

Q∗(s, a) = E[r + γ max
a′

Q∗(s′, a′)|s, a] (2)

We generally use the Bellman equation as an iterative update to estimate the
action-value function:

Qi+1(s, a) = E[r + γ max
a′

Qi(s′, a′)|s, a] (3)

As the number of iterations approaches to infinity, value iteration algorithms
are guaranteed to converge to the optimal action-value functions, Qi −→ Q∗.
However, it is impractical to estimate the optimal Q-value of every single state-
action pair without any generalization because of the high complexity of state-
action space. One of the core ideas to alleviate the computational challenge is to
represent the Q-value using a function approximator such as a neural network,
Q(s, a) = Q(s, a; θ), although some RL algorithms (e.g.,Q-learning) appear to be
highly unstable when being combined with non-linear function approximators [6].

2.2 Deep Q-Networks

Deep Q-Networks (DQN) uses two main innovations in order to alleviate the
unstability of learning when combining traditional RL algorithms with a deep
convolutional neural network [2]. One key innovation is that DQN uses the expe-
rience replay mechanism. At each time-step t, the agent stores the transition
tuple et = (st, at, rt, st+1) into a memory buffer D = {e1, e2, . . . , et} and then
samples transitions uniformly for training. Another key innovation behind the
success of DQN is the use of two separate Q-networks Q(s, a; θ) and Q(s, a; θ−)
with current parameters θ and old parameters θ− respectively. At every updat-
ing iteration i, the current parameters θ are updated so as to minimize the
mean-squared Bellman error with respect to old parameters θ−, by optimizing
the following loss function:

Li(θi) = E

[(
r + γ max

a′
Q(s′, a′; θ−

i ) − Q(s, a; θi)
)2]

(4)

Differentiating the loss function with respect to the current parameters, we arrive
at the following gradient :

�θi
Li(θi) =

(
r + γ max

a′
Q(s′, a′; θ−

i ) − Q(s, a; θi)
)
�θi

Q(s, a; θ) (5)

Then, the parameters of the network are adjusted in the direction of the gradient
descent of the loss function:

θi+1 = θi + α�θi
Li(θi) (6)

DQN is off-policy, that is to say, it estimates the optimal Q-values by the greedy
strategy a = maxa Q(s, a; θ), while selecting actions by an ε-greedy strategy
with the purpose of ensuring the balance between exploration and exploitation.
In brief, DQN follows the greedy action with probability 1 − ε and selects a
random action with probability ε.
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3 Model Architecture and Algorithm

3.1 Details of Deep CNN Architecture

We use a deep convolutional neural network architecture in which there is a sepa-
rate output unit for predicting Q-values of discrete actions. The main advantage
of this architecture is its ability to compute Q-values for all possible actions
in a given state representation with only a single forward pass along the net-
work. The exact architecture used for most deep reinforcement learning tasks,
demonstrated in Fig. 1, is as follows. The model is similar to the DQN’s architec-
ture except that the full-connected layer is followed by a dropout operation [7]
in order to handle the problem of over-fitting. The input to our network is a
84 × 84 × 4 image produced by the preprocessing procedure [2]. The first convo-
lution layer convolves 32 filters of 8 × 8 with stride 4 with the input image and
followed by a rectifier nonlinearity (ReLU). The second hidden layer convolves
64 filters of 4 × 4 with stride 2, again applies a rectifier nonlinearity. Then the
final convolution layer of our network convolves 64 filters of 3 × 3 with stride 1
followed by a rectifier. This is followed by a fully-connected hidden layer con-
sisting of 512 rectifier units and then a dropout operation. Finally, the output
layer is a fully-connected linear layer with a single output for each valid action.
The number of valid actions varied from 4 to 18 on the Atari 2600 games.

Fig. 1. The exact architecture of the deep neural network.

3.2 Prioritized Sampling

As in DQN, uniform sampling has some limitations. This is because this method
does not make fully use of some valuable transitions from which we can learn the
most, and always overwrites with recent transitions owing to the finite memory
size. To alleviate this problem, here we use our prioritized sampling method
instead of uniform sampling.

Generally, we improve the efficiency of sampling by making the transitions
with positive rewards or high magnitude of TD errors to be sampled more fre-
quently. On the one hand, the transitions that provide positive rewards are
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extremely rare at the primary stage of learning. However, these transitions are
more valuable and informative than others for agents to learn from. So in our
algorithm, we use two separate memory buffers to improve the utilization of tran-
sitions with positive rewards. The higher priority buffer D1 is used to store tran-
sitions with positive rewards, and naturally the lower priority buffer D2 stores
transitions with non-positive rewards. Then we use a similar stratified sampling
method to sample transitions from the higher priority buffer with probability ρ
and from the other with probability 1 − ρ.

On the other hand, some fraction of transitions are never sampled before
they drop out of the buffers. To alleviate this problem, we add a term vt for
tracking the sampled times in the transition tuple et = (st, at, rt, vt, st+1). We
can assume that the frequently replayed transitions will have low TD errors
because of more opportunities to modify the Q-values so as to approximate the
target action-value functions. Naturally, we prefer to sample the transitions that
have not been sampled for a while, because they have relatively larger TD errors.
So our innovation is to use a prioritized sampling based on the sampled times
of each transition for ensuring every sample is replayed from time to time. We
define the priority of transition j as :

pj =
1

(vj + 1)
(7)

As we can see from this definition, the priority of transition j monotonously
decreases with the increase of sampled times.

However, greedy sampling solely based on the priorities of transitions may
make the training data lack of diversity. Specifically, to avoid expensive sweeps
over the entire memory buffers, greedy sampling is prone to sample the transi-
tions with higher priorities, meaning that a transition that has a lower priority
after a replay may not be sampled anymore. One consequence is that the TD
errors used for updating Q-values shrink slowly, especially when using the deep
neural network as a function approximator. It is necessary to propose a method
that can take full advantage of the transitions’ priorities and ensure the diversity
of sampling at the same time.

So we introduce a stochastic sampling method that falls in between pure
greedy sampling by priority and sampling uniformly. We make a guarantee that
the probability of being sampled to be monotonically increased in a transition’s
priority, while ensuring a non-zero probability of being sampled even for a tran-
sition with the lowest priority. Specifically, we define the probability of sampling
transition j as :

P (j) =
pα

j∑i=size(D1)
i=1 pα

i

(8)

where pj > 0 is the priority of transition j. The exponent α determines the
degree of prioritization when sampling transitions. It is obvious that setting
α = 0 corresponds to the uniform sampling, while α = 1 corresponds to the pure
greedy sampling case.
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We combine our prioritized sampling method with a deep reinforcement
learning agent known as DQN. Our main modification is to replace the uni-
form sampling used by DQN with our prioritized sampling method. The full
algorithm is presented in the next section.

Algorithm 1. deep Q-learning with prioritized sampling
1: Randomly initialize Q-Network Q with weights θ and soft target Q-Network Q̂ with

weights θ− ← θ; memory buffers D1 and D2 to capacity N ; mini-batch M , p1 = 1.
2: for episode 1,M do
3: Initialize sequence s1 = {x1} and preprocessed sequence Φ1 = Φ(s1).
4: for t = 1, T do
5: With probability ε select a random action at.
6: Otherwise select at = arg maxaQ(Φ(st), a; θ).
7: Execute action at and observe reward rt and new image xt+1.
8: Set st+1 = {st, at, xt+1}, vt = 0 and preprocess Φt+1 = Φ(st+1).
9: if rt > 0 then

10: Store transition (Φt, at, rt, vt, Φt+1) in D1.
11: else
12: Store transition (Φt, at, rt, vt, Φt+1) in D2.
13: for m = 1, M do
14: if random() < ρ then
15: Sample a transition (Φj , aj , rj , vj , Φj+1) from D1 according to a
16: probability distribution P (j) = (pj)

α/
∑

i(pi)
α.

17: else
18: Sample a transition (Φj , aj , rj , vj , Φj+1) from D2 according to a
19: probability distribution P (j) = (pj)

α/
∑

i(pi)
α.

20: Update replayed times: vj = vj + 1.
21: Update transition priority: pj = 1/(vj + 1).
22: end for

23: Set yj =

{
rj if sj+1 is terminal

rj + γ maxa′ Q̂(Φj+1, a
′; θ−) otherwise

24: Perform gradient descent step on the loss L(θ) = (yj − Q(Φj , aj ; θ))
2 with

25: respect to the network parameters θ.
26: Update the target networks: θ− ← τθ + (1 − τ)θ−.
27: end for
28: end for

3.3 Algorithm

Directly implementing Q-learning with a deep neural network proved to be unsta-
ble in many environments. However, such non-linear function approximators
appear to be necessary to learn more abstract and valuable feature representa-
tion when confronting with large state space. Therefore, we need to make two
improvements to ensure the stability of our algorithm.
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As in DQN, we firstly use the experience replay mechanism to address the
problem of highly correlation between samples. The transitions in the form of
(st, at, rt, vt, st+1) are stored into different buffers according to the magnitude
of rt. Parameters of the network are updated by performing stochastic gradient
descent using a mini-batch of transitions obtained by prioritized sampling from
the buffers.

The second modification aiming at ensuring the stability of our algorithm
is to use a separate target network Q(s, a; θ−) to generate the target Q-values:
yi = r + γ maxa′ Q(s′, a′; θ−

i ). We use a soft target update, rather than directly
copying the weights of the current network to the target network. Instead, the
weights of these target networks are then updated by slowly tracking the current
network: θ− ←− τθ + (1 − τ)θ− with τ � 1. Generating θ− in this way makes
the target Q-values change slowly, greatly improving the stability of learning
the optimal action-value functions. The full algorithm for training the network
is presented in Algorithm 1.

4 Experiments

4.1 Experimental Set up

We perform an evaluation of our proposed PS-DQN agent by conducting exper-
iments on four Atari 2600 games using the Arcade Learning Environment [8]
(ALE). ALE provides a challenging and diverse set of RL problems where an
agent must learn to play the games directly from the high-dimensional sensory
video inputs. In our experiments, all hyper-parameters are identical to DQN
unless stated differently.

Firstly, the “soft” factor τ is set to be 0.05 for having the target Q-network
slowly track the current network. The gradients are clipped to fall within [-5,5]
to guarantee the stability of learning. In addition, the parameter ρ starts at 0.5
and decays linearly to 0.25 over the first million frames because smarter agent
will get more transitions with positive rewards through incremental learning. For
the hyper-parameter α that are utilized to ensure the diversity of transitions, we
did a coarse grid search (evaluated on the game of Breakout), and found that
the setting α = 0.6 appears best in our algorithm. On each game, the network is
trained on a single GPU for 50 million frames consuming one week and utilized
two memory buffers with the capacity of one million most recent frames.

To summarize, our experiments only use a minimal prior knowledge con-
sisting of the input sensory images, the game-specific scores and a single set
of hyper-parameters across all games, resulting in an artificial agent with the
capability of learning to being expert in a diverse of challenging tasks.

4.2 Main Evaluation

We select the following four games for evaluation: Breakout, Boxing, Pong and
Space invaders as tested problems. The deep Q-Network described in [2] is used
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as a baseline. A random number of frames were skipped by repeatedly taking
the null or do nothing action before giving control to the agent for ensuring
variation in the initial conditions. The learned policies are then evaluated after
every 250000 steps (an epoch) based on the average reward per episode obtained
by running an ε-greedy policy with ε = 0.05 for 125000 steps.

In RL, we usually set an evaluation metric which is the total reward the agent
collects in an episode. Naturally, our first metric is the best average reward per
episode of 50 epochs for the two agents. The comparisons of training processes
of two agents on the four Atari games are depicted in Fig. 2.

Fig. 2. The average reward per episode for the two agents on four Atari 2600 games
as a function of the number of training epochs.

We find that adding prioritized sampling to DQN gives rise to a significant
improvement on four games embodied in higher average scores especially at the
early stage of training in most of the games. This improvement can be ascribed
to the increase of utilization rate of valuable and informative transitions with
positive rewards. Furthermore, we find that training agents by PS-DQN are
more stable in all games with the exception of Space invaders. This behavior
caused by our prioritized sampling which makes every transition be sampled
with a certain probability, rather than biasing toward out-of-date transitions
which have been sampled hundreds of times. However, the average reward per
episode metric tends to be noisy because small changes to the weights of a policy
can lead to large changes in the distribution of states the policy visits [1]. So
we used a more stable metric which is the average maximum predicted action-
value function. According to the results depicted in Fig. 3, we make a conclusion
that our PS-DQN algorithm leads to a faster convergence speed than DQN. On
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Fig. 3. The average maximum predicted Q-value per episode for the two agents on
four Atari 2600 games as a function of the number of training epochs.

Breakout and Boxing, negative reward doesn’t exist in the game and positive
reward is rare at the early stage of training. So with our sampling mechanism, Q-
values increase smoothly until the network converges. On pong, negative rewards
appear frequently during the early stage of playing. So the Q-values curve which
represents the learning process of DQN has a low peak as depicted in Fig. 3(c).
This fluctuation of the Q-value function is adverse to the learning of the agent.
Fortunately, our preference to transitions with positive rewards avoids a local
minimum of average Q-values, resulting in a performance boost on the stability
of learning. However, we do not lack the positive rewards at the beginning of the
agent’s learning on Space invaders. Our sampling mechanism inevitably leads to
an overuse of the samples with positive-reward. So it is not difficult to explain the
overestimation of Q-values at the beginning of training as depicted in Fig. 3(d).

Nevertheless, our PS-DQN algorithm also has some limitations. We can
see that there is almost no improvement in the curve of average reward of
Space invaders reflecting in lower average rewards for some epochs and the
instability of the training process induced by overusing of the transitions with
positive-rewards. The experimental results indicate that our PS-DQN agent is
considerably appropriate for these sensing and controlling tasks which could gen-
erate a mass of zero rewards except for some scattered positive rewards at the
primary stage of learning, such as Breakout and Boxing.

5 Conclusion and Future Work

We presented a novel algorithm, called PS-DQN, by combining the deep
Q-network with a prioritized sampling strategy. According to the analysis of
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our experimental results on four Atari 2600 games, we arrive at a conclusion
that using prioritized sampling may lead to a faster and more stable learning
process, and a better performance of scoring on some tested games. These pre-
liminary results might provide empirical clues for further research, in particular
developing an automatic way to adapt the hyper-parameter ρ on-line based on
the distribution of transitions distinguished by the magnitude of rewards.
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Abstract. This study proposes model-free deep inverse reinforcement
learning to find nonlinear reward function structures. It is based on our
previous method that exploits the fact that the log of the ratio between
an optimal state transition and a baseline one is given by a part of reward
and the difference of the value functions under linearly solvable Markov
decision processes and reward and value functions are estimated by logis-
tic regression. However, reward is assumed to be a linear function whose
basis functions are prepared in advance. To overcome this limitation, we
employ deep neural network frameworks to implement logistic regression.
Simulation results show our method is comparable to model-based previ-
ous methods with less computing effort in the Objectworld benchmark.
In addition, we show the optimal policy, which is trained with the shap-
ing reward using the estimated reward and value functions, outperforms
the policies that are used to collect data in the game of Reversi.

Keywords: Inverse Reinforcement Learning · Deep learning · Density
ratio estimation · Logistic regression

1 Introduction

Inverse Reinforcement Learning (IRL), which is a method of estimating a reward
function that can explain a given agent’s behavior [8,16], provides a computa-
tional scheme to implement imitation learning. It is also a promising approach
for understanding the learning processes of biological systems such as driving a
vehicle [4,9] and playing table tennis [6] because the reward specifies the goal of
the behavior.

Previously we developed IRL under the Linearly solvable Markov Decision
Process (LMDP) [13] that directly estimates the state-dependent reward and the
value function [14]. This method exploits the fact that the logarithm of the ratio
between an optimal and a baseline state transition is represented by a state-
dependent reward and the difference of the value functions under the LMDP
framework and they are efficiently estimated by logistic regression to classify
c© Springer International Publishing AG 2016
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whether the data are sampled from the optimal transition probability. Unlike
most previous IRL methods such as Maximum Entropy-based IRL (MaxEnt-
IRL) [16], our IRL does not need to find an optimal policy for every itera-
tion. However, most previous studies (including our method) use linear function
approximators in which a set of basis functions are prepared manually.

Recently, Wulfmeier et al. proposed DeepIRL, which combined MaxEnt-IRL
with a deep neural network architecture to find nonlinear reward functions [15].
However, their method suffers from the same two problems as MaxEnt-IRL.
One is that their method is a model-based approach, and an environmental
state transition probability is assumed to be known in advance. The other is
that the optimal policy should be computed for every iteration step and it is
computationally expensive. Finn et al. proposed a similar deep inverse optimal
control method [3] based on MaxEnt-IRL and relative entropy-based IRL [2].

This paper extends our previous method by introducing deep learning frame-
works to identify the nonlinear representation of reward and value functions. The
application of deep learning frameworks is straightforward, and the network
structure of binary classifiers is derived from the simplified Bellman equation
under LMDP. In the Objectworld benchmark, our simulation results show that
the performance of our model-free method resembles that of Wulfmeier’s model-
based method with less computing time. In addition, we show that appropriate
reward can be successfully retrieved and that the optimal policy trained with
the estimated reward outperforms policies that are used to collect data in the
game of Reversi. Furthermore, learning speed can be improved by the estimated
value function by the shaping reward theory [7].

2 Linearly Solvable Markov Decision Process

Let X and U respectively be continuous state and continuous action spaces.
At time step t, a learning agent observes environmental current state xt ∈ X
and executes action ut ∈ U that is sampled according to a stochastic policy
π(ut | xt). Consequently, an immediate reward r(xt,ut) is given by the envi-
ronment and the environment makes a state transition based on state transition
probability PT (yt | xt,ut) from xt to yt = xt+1 ∈ X by executing the action ut.
The goal of (forward) reinforcement learning is to construct an optimal policy
π(u | x) that maximizes the given objective function. Several objective functions
exist, and the most widely used one is a discounted sum of rewards given by

V (x) = E

[ ∞∑
t=0

γtr(xt,ut)

]
,

where γ ∈ [0, 1) is called the discount factor. The optimal state value function
for the discounted reward setting satisfies the following Bellman equation:

V (x) = max
u

[
r(x,u) + γEy∼PT (·|x,u) [V (y)]

]
. (1)

Eq. (1) is the nonlinear equation due to the max operator.
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The Linearly solvable Markov Decision Process (LMDP), also known as KL-
control, simplifies Eq. (1) under some assumptions [13]. LMDP’s key trick is to
directly optimize the state transition probability instead of the policy. More
specifically, two conditional probability density functions are introduced. One
is the controlled probability denoted by π(y | x), which can be interpreted as
an optimal state transition. The other is the uncontrolled probability denoted
by b(y | x), which can be regarded as an innate state transition of the target
system. Theoretically, b(y | x) is arbitrary and can be constructed by b(y | x) =∫

PT (y | x,u)b(u | x)du, where b(u | x) is a uniformly random policy.
Then the reward function is restricted to the following form:

r(x,u) = q(x) − 1
β

KL(π(· | x) ‖ b(· | x)), (2)

where q(x), β, and KL(π(· | x) ‖ b(· | x)) respectively denote a state-dependent
reward function, a positive inverse temperature, and the Kullback Leibler (KL)
divergence between the controlled and uncontrolled state transition densities. In
this case, the Bellman equation (1) is written as

V (x) = q(x) + max
π

∫
π(y | x)

[
− 1

β
log

π(y | x)
b(y | x)

+ γV (y)
]

dy.

We can maximize the right hand side of the above equation by applying the
Lagrangian method [13] to obtain the following solution:

exp(βV (x)) = exp(βq(x))
∫

b(y | x) exp(βγV (y))dy. (3)

The optimal controlled probability for the discounted reward setting is given by

π(y | x) =
b(y | x) exp(βγV (y))∫

b(y′ | x) exp(βγV (y′))dy′ . (4)

Note that Eq. (3) remains nonlinear even though desirability function Z(x) =
exp(βV (x)) is introduced because of the existence of discount factor γ.

3 Deep Inverse Reinforcement Learning

3.1 Bellman Equation for IRL

From Eqs. (3) and (4), we derive the following critical relation for the discounted
reward setting:

1
β

log
π(y | x)
b(y | x)

= q(x) + γV (y) − V (x). (5)

Equation (5) plays an important role in our IRL algorithms. Similar equations
can be derived for average-reward, first-exit, and finite-horizon problems. Note
that the right hand side of Eq. (5) is not a temporal difference error because q(x)
is the state-dependent part of the reward function in Eq. (2).
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Applying the Bayes rule into Eq. (5) yields the following:

log
π(x,y)
b(x,y)

= log
π(x)
b(x)

+ βq(x) + γβV (y) − βV (x). (6)

Our goal is to estimate βq(x) and βV (x) from the observed data, and we assume
two datasets of state transitions. One is Dπ from the controlled probability:

Dπ = {(xπ
i ,yπ

i )}Nπ

i=1, yπ
i ∼ π(· | xπ

i ),

where Nπ denotes the number of data points. In the standard IRL setting, Dπ is
interpreted as data from experts to be investigated. The other is a dataset from
the uncontrolled probability:

Db = {(xb
j ,y

b
j)}Nb

j=1, yb
j ∼ b(· | xb

j),

where N b denotes the number of data points. We are interested in estimating
ratios π(x)/b(x) and π(x,y)/b(x,y) from Db and Dπ.

3.2 LogReg-IRL: Logistic Regression-Based IRL

This subsection shows how Eq. (6) is used to estimate βq(x) and βV (x). LogReg,
which is a density estimation method using logistic regression [1,11], is appro-
priate to estimate the log ratio of the following two densities: log π(x)/b(x) and
log π(x,y)/b(x,y). First, to estimate log π(x)/b(x), assign a selector variable
η = −1 to the samples from the uncontrolled probability and η = 1 to the
samples from the controlled probability:

b(x) = Pr(x | η = −1), π(x) = Pr(x | η = 1).

The density ratio can be represented by applying the Bayes rule:

π(x)
b(x)

=
(

Pr(η = 1 | x) Pr(x)
Pr(η = 1)

)(
Pr(η = −1 | x) Pr(x)

Pr(η = −1)

)−1

=
Pr(η = −1)
Pr(η = 1)

Pr(η = 1 | x)
Pr(η = −1 | x)

.

The first ratio, Pr(η = −1)/Pr(η = 1), is estimated by N b/Nπ, and the second
ratio is computed after estimating the conditional probability Pr(η | x) by a
logistic regression classifier:

Pr(η | x) = σ (ηfx(x;wx)) ,

where σ(x) = 1/(1 + exp(−x)) is a sigmoid function and fx(x;wx) denotes a
deep neural network function parameterized by the weight vector wx. Note that
the logarithm of the density ratio is given by

log
π(x)
b(x)

= fx(x;wx) + log
N b

Nπ
. (7)
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Network weights wx can be estimated by the backpropagation whose objec-
tive function is given by the negative regularized log-likelihood. The closed-form
solution is not derived, but it is possible to minimize it efficiently by standard
nonlinear optimization methods such as backpropagation.

Next, log π(x,y)/b(x,y) is estimated by Eq. (6) in the same way. Nonlinear
function approximators for βq(x) and βV (x) are respectively introduced by

βq(x) ≈ fq(x;wq), βV (x) ≈ fV (x;wV ), (8)

where f·(x;w·) denotes the deep neural network function parameterized by the
weights w· and subscripts q and V respectively represent the reward and state
value functions. By substituting Eqs. (7) and (8) into Eq. (6), we obtain the
following relationship:

log
π(x,y)
b(x,y)

= fx(x;wx) + fq(x;wq) + γfV (y;wV ) − fV (x;wV ) + log
N b

Nπ
.

The above equation is also interpreted as a density ratio estimation problem, and
network parameters wq and wV are estimated by logistic regression in which the
classifier is given by

Pr(η | x,y) = σ (η (fx(x;wx) + fq(x;wq) + γfV (y;wV ) − fV (x;wV ))) . (9)

Note that the inverse temperature β is not estimated as an independent para-
meter. The parameter vectors can be optimized by standard logistic regression
algorithms.

Fig. 1. Proposed network architecture for inverse reinforcement learning that consists
of three networks: density ratio, reward, and value function. Then the Bellman equa-
tion (6) is computed from the outputs of the three networks.
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Figure 1 shows our proposed deep neural network. The input consists of cur-
rent state x and next state y, and the output consists of label η that addresses
whether (x,y) are given from Dπ or Db. The network has three sub-networks:
density-ratio network fx(x;wx), reward network fq(x;wq), and value network
fV (w;wV ). Note that state y is given only to the value network. After the
sub-networks compute the log of the density ratio, the reward, and the value
functions, the log of the density ratio is computed by the Bellman equation (6)
and used to compute the classifier’s probability (9).

4 Experiments

4.1 Objectworld Benchmark

To validate our method, we select the ObjectWorld benchmark [5] because it is
also used by Wulfmeier et al. [15]. It is a 32×32 grid of states with five actions per
state: motions in all four directions and staying in place. State x is described by a
two-dimensional vector where each dimension represents the minimum distance
to an object of one of two colors. Each action has a 30 % chance of moving in
a different random direction. The reward function is positive for cells that are
both within a distance of 3 of color 1 and a distance of 2 of color 2, negative if
only within a distance of 3 of color 1 and zero otherwise. See task description
[5] for more details.

We created two environments: training and transfer. The optimal policy is
computed under the true reward in the training environment and its policy
including 30 % random actions is used to collect optimal dataset Dπ, while a ran-
dom policy is used to collect baseline dataset Db. In this experiment, our method
is implemented by a feedforward neural network with two hidden layers with rec-
tified linear units and one linear output layer for the density ratio, reward, and
value networks. As a comparison, the original deep IRL by Wulfmeier et al.
and the model-free Wulfmeier’s method are evaluated where the state transition
probability is estimated by Db.

In accordance with our previous study, we evaluated the performances of the
proposed method and DeepIRL by the expected value difference scores, which
are measures of the sub-optimality of the learned policy under the true reward.
It is the difference between the expected sum of the rewards obtained for the
optimal policy given the true reward and that for the optimal policy based on
the estimated reward.

Figures 2(a) and (b) respectively show the scores in the training and test envi-
ronments. The score of our model-free proposed method was almost the same as
that of the model-based Wulfmeier’s method in the training and transfer envi-
ronments, while the model-free Wulfmeier’s method performed poorly because
the estimated environmental state transition probability was less accurate. Note
that our method is model-free and does not require the state transition prob-
ability of the environment. Figure 2(c) compares the computing time, and our
method found a solution much faster than the other two methods because it
does not need to solve forward reinforcement learning problems.
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Fig. 2. Results of Objectworld benchmark: (a) Training case where identical environ-
ment is used to collect test data; (b) Transfer case where a new environment with
different object configurations is created to collect test data; (c) Computing time.

4.2 Reversi

Reversi (a.k.a. Othello), which is a deterministic, perfect information, zero-sum
game for two players, has been studied by the AI community. The game’s goal is
to control a majority of the pieces at the end of the game by forcing as many of
your opponent’s pieces to be turned over on an 8× 8 board as possible. A single
move might change up to 20 pieces, and an average of 60 moves are needed
to complete the game. Although reinforcement learning has been successfully
applied to the game of GO, which is much more complicated than Reversi, it
took a huge amount of computing time to find an optimal policy because a
sparse reward was used [10]. This provides motivation for finding a dense reward
structure by IRL.

To collect optimal dataset Dπ, we prepared three stationary policies (RAN-
DOM, HEUR, and COEV) used in previous studies [12], and every policy repeat-
edly plays against every other. Then the state transitions are retrieved from the
game trajectories of the winners. On the other hand, baseline dataset Db is con-
structed by retrieving the state transitions from the trajectories in which two
RANDOM policies play the game. The numbers of samples are |Dπ|= |Db| = 105.

In this experiment, we used the same type of neural networks used in Sect. 4.1.
The input is given by a 64-node vector x ∈ {−1, 0,+1}64, where 0 represents an
empty square, and +1 and −1 respectively represent the black and white pieces.
Every hidden layer has 100 nodes.

We evaluated the Q-learning method trained by the following rewards and
the three stationary policies against all other methods using the winning rate as
performance measures: (1) q(x), estimated by the proposed method, (2) shaping
reward q(x) + γV (y) − V (x), estimated by the proposed method, (3) reward
estimated by the model-free Wulfmeier’s method, and (4) sparse reward, where
1, 0.5, and −1 respectively stand for win, tie, and lose. Figures 3(a) and (c) show
that Q-learning trained with the estimated reward outperformed RANDOM and
Q-learning trained with the sparse reward at the beginning and took about
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3 × 104 plays to defeat HEUR and COEV. Figure 3(b) shows that the learning
speed was significantly improved by the shaping reward. For example, the Q-
learning agent trained with the reward estimated by Wulfmeier’s method failed
to collect samples to win the game because the agent trained with the shaping
reward learned faster.

Fig. 3. Learning performance with estimated reward: (a) Agent trained with reward
q(x) estimated by our method plays with three stationary policies and two learn-
ing agents trained by sparse reward and reward estimated by model-free Wulfmeier’s
method; (b) Agent trained with shaping reward q(x)+γV (y)−V (x) estimated by our
method plays with other agents; (c) Agent trained with reward estimated by model-free
Wulfmeier’s method plays with other agents.

5 Conclusion

We integrated our IRL method with deep neural networks for the automatic
extraction of features. Our model-free method found rewards that produced
comparable performance to the model-based Wulfmeier’s method with less com-
puting time in the ObjectWorld benchmark. Next, our method and the model-
free Wulfmeier’s method were utilized to estimate the reward function in the
game of Reversi. Since our method estimates the value function at the same
time, it is used as the potential function for reward shaping to accelerate speed
of learning. The optimal policy trained with the shaping reward outperformed
three stationary policies and optimal policies trained by Wulfmeier’s method.
More systematic investigations on such deep networks as activation functions
and learning algorithms are needed for future study.

Acknowledgements. This paper is based on results obtained from a project com-
missioned by the New Energy and Industrial Technology Development Organization
(NEDO).
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15. Wulfmeier, M., Ondrúška, P., Posner, I.: Maximum entropy deep inverse reinforce-
ment learning. In: NIPS Deep Reinforcement Learning Workshop (2015)

16. Ziebart, B.D., Maas, A., Bagnell, J.A., Dey, A.K.: Maximum entropy inverse rein-
forcement learning. In: Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (2008)



Parallel Learning for Combined Knowledge
Acquisition Model

Kohei Henmi(B) and Motonobu Hattori

Interdisciplinary Graduate School of Medicine, Engineering and Agriculture,
University of Yamanashi, Kofu, Yamanashi, Japan

{g16tk012,m-hattori}@yamanashi.ac.jp

Abstract. In this paper, we propose a novel learning method for the
combined knowledge acquisition model. The combined knowledge acqui-
sition model is a model for knowledge acquisition in which an agent
heuristically find new knowledge by integrating existing plural knowl-
edge. In the conventional model, there are two separate phases for com-
bined knowledge acquisition: (a) solving a task with existing knowledge
by trial and error and (b) learning new knowledge based on the expe-
rience in solving the task. However, since these two phases are carried
out serially, the efficiency of learning was poor. In this paper, in order to
improve this problem, we propose a novel knowledge acquisition method
which realizes two phases simultaneously. Computer simulation results
show that the proposed method much improves the efficiency of learning
new knowledge.

Keywords: Direct-Vision-Based reinforcement learning · Combined
knowledge acquisition model

1 Introduction

Given a task which has been never experienced before, we humans can manage
to solve it by combining existing knowledge by trial and error. Then, once the
task is successfully solved, the experience becomes new knowledge and will be
used for other tasks later. Such ability to acquire knowledge is indispensable
for intelligent systems like a robot. We have already proposed such a knowledge
acquisition model based on neural networks and reinforcement learning. The
learning of the model consists of two phases. In the first phase, it uses plural
knowledge in corporation in order to solve an inexperienced task. After the task
has been solved, new knowledge is constructed by integrating plural knowledge
used into one in the second phase. We have shown that our model gradually
becomes able to solve complicated tasks as it acquires new integrated knowledge,
and it can be applied to real environment [1–3]. However, since the above two
phases are carried out serially, it takes a long time to build new knowledge.
Above all things, it is likely that we humans carry out one phase in parallel with
the other. So, the objective of our research is to develop a learning method for
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-46687-3 4
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the combined knowledge acquisition model which realizes learning of two phases
simultaneously.

The rest of this paper is organized as follows. In Sect. 2, we briefly review our
combined knowledge acquisition model. In Sect. 3, we propose parallel learning
method for the model. Then, computer simulation results are shown in Sect. 4.
Finally, we make some conclusions in Sect. 5.

2 Combined Knowledge Acquisition Model

Here, we explain the Direct-Vision-Based (DVB) reinforcement learning [4] pro-
posed by Shibata et al. first, which is used in the learning of the combined
knowledge acquisition model. Then, we explain the architecture and learning
algorithm of the combined knowledge acquisition model.

2.1 Direct-Vision-Based Reinforcement Learning

Shibata et al. have proposed a reinforcement learning called Direct-Vision-Based
(DVB) reinforcement learning for the box pushing task by a mobile robot [4].
In the DVB reinforcement learning, only raw visual sensor signals are given to
a multilayer neural network, and which is trained by Back Propagation using
training signals that is generated based on reinforcement learning. They have
shown that the mobile robot could learn to go and push a box directly from
only visual image without any image pre-processing, control methods and task
knowledge. That is, the DVB reinforcement learning is inherently a very strong
technique which can learn the whole process from sensors to motors including
recognition of environment, attention, memory, planning, control and so on. So,
we have employed the DVB reinforcement learning in our combined knowledge
acquisition model.

The learning of the DVB reinforcement learning is based on actor-critic archi-
tecture where actor (action command generator) and critic (state value genera-
tor) are composed of the output layer of a multilayer neural network. Namely,
the hidden layers are commonly used by both actor and critic.

In the learning of the critic, Temporal Difference (TD) error r̂t is used

r̂t = rt + γP (st) − P (st−1) (1)

where rt is a reward, γ is a discount factor, st is a state vector, and P (st) denotes
a state value. The state value at t − 1, P (st−1) is trained by

PT (st−1) = P (st−1) + r̂t = rt + γP (st) (2)

where PT (st−1) denotes the training signal for the state value. On the other
hand, the actor output vector a(st−1) is trained by

aT (st−1) = a(st−1) + r̂trndt−1 (3)
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where aT (st−1) denotes the training signal for the actor vector, and rndt−1

is a random vector from the uniform distribution for trial and error. By using
Eqs. (2) and (3), the multilayer neural network is trained by Back Propagation
algorithm. As the learning progresses, actor vector becomes to gain more state
value.

2.2 Architecture and Learning Algorithm

Figure 1 shows the architecture of the conventional combined knowledge acqui-
sition model. Assume that there are N knowledge, each of which is represented
by a multilayer neural network learned by DVB reinforcement learning. That is,
each multilayer neural network has been constructed to solve a particular task,
and we regard it as a piece of knowledge.

Fig. 1. Architecture of the conventional combined knowledge acquisition model.
(a) Selection learning is followed by (b) integration learning.

In the conventional combined knowledge acquisition model, given an inexpe-
rienced task, selection learning is carried out first, in which the selection network
is learned by DVB reinforcement learning so that appropriate knowledge can be
selected for the state of the environment (Fig. 1(a)). The selection network selects
the knowledge i which takes the maximum value of the sum of the output value
ai(st) and the random value rndt,i, where rndt,i is the ith element of rndt. The
actor output ai(st−1) is trained by

aT
i (st−1) =

{
ai(st−1) + r̂trndt−1,i if i = selected action

ai(st−1) otherwise
(4)
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where aT
i (st−1) denotes the training signal for the actor output. The selection

network is trained by Back Propagation based on the training signals, Eqs. (2)
and (4).

After the task success rate by the selection network has become sufficiently
high, integration learning is carried out (Fig. 1(b)). In this phase, the action
produced by the selection network is learned and integrated in the integration
network as follows:

(1) Observe the state of the environment, st.
(2) Input the state of the environment st to the selection network which has been

already learned, and then select a piece of knowledge among N knowledge
according to the output of the selection network.

(3) Execute the corresponding network for selected knowledge, that is, st is given
to the network and actor vector a(st) is obtained as output.

(4) Input st to the integration network, and let it learn with a(st) as teaching
vector by Back Propagation.

(5) Act against the environment with a(st). This causes the change of the state
of the environment. Go to (1).

Repeating (1) to (5) until a certain criterion is satisfied, combined knowledge
is integrated into the integration network. The obtained integration network is
added to the pool of knowledge as the N + 1th knowledge for the future use.
One of advantages to integrate plural knowledge into a single multilayer neural
network like this is that its action becomes much more seamless than that by the
selection network [1–3]. Furthermore, accumulating knowledge in this manner, it
becomes able to solve more complicated tasks which can not be solved without
combination of knowledge [2,3].

3 Parallel Learning for Combined Knowledge Acquisition
Model

Since the learning of the conventional combined knowledge acquisition model
requires two phases, it takes a long time to build new integrated knowledge.
From engineering point of view, the learning should be much more efficient.
Moreover, it is unlikely that such a serial manner of knowledge acquisition is
executed in our brain. So, we propose a new learning method for the model
which enables both selection learning and integration learning simultaneously.

Figure 2 shows the architecture of the proposed parallel learning. Although
it is almost identical to Fig. 1(b), the fundamental difference between Figs. 2 and
1(b) is that the selection network of the proposed method has not been learned
yet. Therefore, there is one big concern about parallel learning, which is that
teacher signals coming from the selection network is not reliable especially in
the beginning of learning.

In order to deal with this problem, we propose a learning method for the
integration network, which is based on TD error r̂t (Eq. (1)). TD error r̂t is a
value indicating good or bad of state transition from st−1 to st. If r̂t is positive,
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Fig. 2. Architecture of the proposed parallel learning.

it shows that the selection of knowledge by the selection network at t − 1 was
good. Conversely, if r̂t is negative, the selection was bad. Here, we propose two
learning method for the integration network:

(1) The integration network is learned only when r̂t > 0.
(2) The integration network is learned with positive learning rate when r̂t > 0,

and with negative learning rate when r̂t ≤ 0.

Hereafter, we indicate (1) as TD-p learning and (2) as TD-pn learning.

4 Computer Simulation Results

4.1 Experimental Setup

In order to examine the effectiveness of the proposed parallel learning, we used a
small mobile robot called Khepera in a robot simulator, Webots Ver.7.2.0. Khep-
era is mounted eight light sensors, eight infrared sensors, and 64-dimensional
visual sensor. Each of these 80 dimensional sensor values was normalized into
a real number between 0.0 and 1.0, and applied to neural networks as a state
vector. Khepera is controlled by giving the rotation speed of the left and right
wheels. Therefore, the output vector of the integration network is 2 dimensions.

In order to evaluate the performance of the proposed parallel learning, we set
adaptive obstacle avoidance task, in which the robot has to go straight as much as
possible while avoiding obstacles and walls to the left or to the right adaptively
in the environment. Before performing this task, left-turn obstacle avoidance task
and right-turn obstacle avoidance task were separately carried out. For example,
in the left-turn obstacle avoidance task, the robot has to go straight as much as
possible while avoiding obstacles and wall to the left. Then, obtained two pieces
of integrated knowledge were stored in the pool of knowledge. In addition, we
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prepared twelve primitive actions shown in Fig. 3 as fundamental knowledge (In
each fundamental knowledge, the rotation speed of wheels was fixed to perform
specific action. That is, it is not represented by a neural network). Therefore,
fourteen pieces of knowledge in total were available for the adaptive obstacle
avoidance task. The experimental environment is shown in Fig. 4. The action
area is 200 cm × 200 cm which is surrounded by a height of 10 cm white wall,
and in which 40 obstacles were placed randomly in each trial except around the
initial position of Khepera (indicated by slanted lines in Fig. 4). The size of each
obstacle is 10 cm × 10 cm × 10 cm. The initial position of Khepera was fixed at
the center of the environment, and the initial angle was chosen randomly in the
range of 360◦.

Fig. 3. Khepera and 12 pieces of prim-
itive knowledge.

Fig. 4. Experimental environment.

Table 1 shows parameters and conditions used in this experiment.
In each simulation, we carried out 100 times of test trial every 10 times of

learning trials, and regarded as the learning had been completed when the success
rate and going-straight rate became more than 95 % and 0.9, respectively. The
going-straight rate β was defined by

β =
min

(∑100
i=1 wL

i ,
∑100

i=1 wR
i

)

max
(∑100

i=1 wL
i ,

∑100
i=1 wR

i

) (5)

where w
L(R)
i denotes the rotation distance of the left (right) wheel at the ith

trial. So, the going-straight rate value of 1 indicates the robot went straight
during test trials, and 0 means that the robot was rotating by centering one of
the wheels.
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Table 1. Parameters and conditions used in the adaptive obstacle avoidance task.

No. of hidden layers 3

No. of hidden neurons 40

Learning rate for BP 0.1(TD-p, TD-pn), −0.005 (TD-pn)

No. of trials in learning 10

No. of trials in test 100

Reward 0.05

Penalty −0.9

Conditions for reward Knowledge of going-straight is selected

Knowledge of right-turn is selected when obstacle/wall is in the left

Knowledge of left-turn is selected when obstacle/wall is in the right

Condition for successful trial Elapsed 2000 steps without failure

Condition for failure Collision with obstacle/wall

Required success rate (α) 95%

Required going-straight rate (β) 0.9

Table 2. Averaged trails required for learning to satisfy criteria (α and β) based on
10 simulations.

Conventional TD-p TD-pn without TD

Selection & Integration - 239 181 2205

Selection 246 - - -

Integration 365 - - -

Total 611± 235.4 239± 78.8 181± 46.1 2205± 1151.9

Table 2 shows the averaged trials required for learning until the criteria (α
and β) were satisfied based on 10 simulations.

There was significant difference between the total trials required for the con-
ventional model and those for the proposed TD-p and TD-pn learning (p < 0.05),
and also between those for the parallel learning without using TD error and pro-
posed methods (p < 0.05). This result shows that the integration network can
acquire integrated knowledge rapidly by using the proposed parallel learning.
Surprisingly, the learning of the integration network by the proposed methods
tends to be faster than that of the selection network by the conventional method.
This result shows that the sign of TD error is an excellent guide for the integra-
tion learning.

Although there is not significant difference between TD-p and TD-pn, it
seems that TD-pn is faster than TD-p. This is because in a certain situation an
appropriate action and inappropriate one exist at opposite poles in this task.
That is, if turning to the left doesn’t yield good state transition, it means that
the robot should have turned to the right. So, TD-pn learning worked very well
in obstacle avoidance task. We think the effectiveness of the TD-pn learning
depends on the characteristics of a task.
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5 Conclusions

In this paper, in order to improve the efficiency of learning and validity of the
combined knowledge acquisition model, we have proposed parallel learning meth-
ods. The proposed methods enable the learning of selection network and integra-
tion network simultaneously by using TD error. We have applied the proposed
methods to obstacle avoidance task and shown that they could significantly
reduce required trials for learning in comparison with the conventional learning
method.

In the future research, we will apply the proposed parallel learning method
to more complicated tasks.
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Abstract. Aiming for the emergence of higher functions such as “log-
ical thinking”, our group has proposed completely novel reinforcement
learning where exploration is performed based on the internal dynamics
of a chaotic neural network. In this paper, in the learning of an obsta-
cle avoidance task, it was examined that in the process of growing the
dynamics through learning, the level of exploration changes from “lower”
to “higher”, in other words, from “motor level” to “more abstract level”.
It was shown that the agent learned to reach the goal while avoiding the
obstacle and there is an area where the agent looks to pass through the
right side or left side of the obstacle randomly. The result shows the pos-
sibility of the “higher exploration” though the agent sometimes collided
with the obstacle and was trapped for a while as learning progressed.

Keywords: Reinforcement learning · Chaotic neural network · Higher
exploration · Emergence of intelligence · Obstacle avoidance

1 Introduction

Our group has pointed out the difficulty of developing a program by hand for
such massively parallel and highly flexible computation that our brain is doing,
and proposed the approach that a Neural Network (NN) is responsible for the
whole process from sensors to motors and various functions emerge in the NN
through Reinforcement Learning (RL) [1,2]. Recent excellent performance of
“Deep Learning” especially in the area of recognition [3] and the surprising result
in the TV games by combining it with RL [4] are thanks to its emergence ability
of useful internal representations, and support the significance of our approach.

Because higher functions such as “memory”, “prediction”, “logical thinking”
and so on, need to cope with dynamics, a Recurrent Neural Network (RNN) is
used on behalf of a layered NN. The emergence of “memory” or “prediction” has
been confirmed in a simple task [5,6]. However, the learning of a task requiring
multiple state transitions is not easy [7], and the emergence of what we can call
“logical thinking” has not been shown yet.

c© Springer International Publishing AG 2016
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Therefore, we have felt the need of another approach in which desired dynam-
ics is not obtained from scratch in a non-chaotic “silent” NN, but is reformed
from chaotic dynamics through learning in a chaotic NN. We have also thought
that “exploration” should be considered as a function based on internal dynamics
as well as “memory” or “prediction”, and random-like “exploration” is expected
to grow up in “logical thinking” through learning. According to the hypothesis,
we have proposed a completely novel RL where exploration is performed based
on the internal chaotic dynamics without adding external random numbers [8].

On the other hand, recently, the ability of reservoir computing has been
unveiled, and it was surprising that complicated dynamic patterns are easily
learned using a chaotic NN by FORCE Learning [9]. In addition, it was shown
that by adding exploration noises from the outside, a chaotic NN can learn
complicated dynamic patterns based on a reward signal without giving any target
signal directly [10]. From the above ability of chaotic NNs, RL using a chaotic
NN is expected to develop greatly hereafter.

Authors thought that in the process of growing from “exploration” to “logical
thinking”, the level of exploration changes from “lower”, which is motor-level,
to “higher”, which is more abstract level. For example in a forked road, we don’t
move our each muscle randomly, but choose whether to go the right way or left
way in more abstract action space. That is because we have already learned that
though we go on a non-road area, we cannot get a good result.

Therefore in this paper, aiming to show the possibility of emergence of the
higher exploration, we replace the forked road situation with an obstacle avoid-
ance task in which an agent learns to reach a goal while avoiding an obstacle, and
whether the agent passes the right side or the left side of the obstacle is focused
on. The task refers to [11], in which an agent learned appropriate actions based
on regular RL using a layered NN, but there was a place where the agent could
not move before the obstacle when no random number for exploration is added.

2 Reinforcement Learning Using a Chaotic Neural
Network

Reinforcement learning is autonomous and purposive learning of appropriate
actions to get more reward and less punishment. Generally, an agent explores
stochastically based on random numbers. However here, as mentioned in Intro-
duction, an agent explores by chaotic dynamics that a chaotic NN produces
without adding noises or random numbers. In this paper, for continuous input-
output mappings, Actor-Critic is used as a RL architecture. A chaotic NN and
a non-chaotic layered NN are used for actor and critic respectively as shown in
Fig. 1, and the sensor signals are the input for both NNs. Here, the neuron model
used in both NNs is static that is different from [9] or [10] as

u
(l)
j,t =

N(l−1)∑
i=1

w
(l)
j,io

(l−1)
i,t

⎛
⎝+

N(l)∑
i=1

wFB
j,i o

(l)
i,t−1

⎞
⎠ (1)
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where u
(l)
j,t and o

(l)
j,t are the internal state and the output of the j-th neuron

in the l-th layer at time t, w
(l)
j,i is the synaptic weight from the i-th neuron in

the (l-1)-th layer to the j-th neuron in the l-th layer. The second term in the
right-hand side is only for the hidden layer in the chaotic NN, and wFB

j,i is the
weight for the recurrent connection from the i-th neuron in the hidden layer.
The activation function is the sigmoid (tanh) function f( ) whose value ranges
from −0.5 to 0.5, and the output is o

(l)
j,t = f(u(l)

j,t). The chaotic NN has two actor
outputs A(St) that are used as motion signals, and the non-chaotic NN has a
critic output V (St) where St is the sensor inputs at time t.

Fig. 1. Reinforcement learning system and the obstacle avoidance task in this paper

For learning, TD-error r̂t is represented as

r̂t = rt+1 + γV (St+1) − V (St) (2)

where rt+1 is the reward given at time t+1, γ is a discount factor. TVt
is the

target for the critic output at time t and is computed as

TVt
= V (St) + r̂t = rt+1 + γV (St+1). (3)

The critic NN is trained once according to Error Back Propagation using this
target signal. To adjust the value range, 0.5 is added to the output of the critic
NN and 0.5 is subtracted from the target TVt

before using them actually.
In the chaotic NN in this paper, chaotic dynamics is produced by strong feed-

back connections between hidden neurons, and there is no feedback connections
from the output. For the input-hidden and hidden-output connection (synaptic)
weight w

(l)
j,i in the chaotic NN, is modified using the trace c

(l)
j,i,t as

Δw
(l)
j,i,t = η

(l)
A r̂tc

(l)
j,i,t (4)
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where Δw
(l)
j,i,t is the modification of the weight w

(l)
j,i at time t, η

(l)
A is a learning

rate for the l-th layer of the actor chaotic NN. The trace c
(l)
j,i,t holds the past

contribution of the pre-synaptic signal to the output increase in the post-synaptic
neuron, and at each time step, it takes in the pre-synaptic signal o

(l−1)
i,t and

forgets the past trace value according to the change in the post-synaptic neuron
Δo

(l)
j,t = o

(l)
j,t − o

(l)
j,t−1 as

c
(l)
j,i,t = (1 − |Δo

(l)
j,t|) · c(l)j,i,t−1 + Δo

(l)
j,t · o(l−1)

i,t . (5)

The feedback connection weights wFB
j,i are not modified here.

3 Simulation

In this paper, to examine the acquisition of higher exploration, an obstacle avoid-
ance task is simulated referring to the task in [11]. In this simulation, as shown
in Fig. 1, there is a 20× 20 field, and a goal is fixed at the upper center area
(0, 8). An obstacle and an agent are located randomly at the beginning of every
episode. The agent moves according to the outputs of the actor chaotic NN, and
when it reaches the circle with a radius of 1.0 around the goal, 1.0 is given as a
reward. When it reaches the circle with a radius of 1.5 around the obstacle or it
collides with a wall at the boundary of the field, −0.01 is given as a punishment.
The episode is terminated when the agent either reaches the goal or fails to do so
in 1,000 steps. 6 sensor signals as shown in Fig. 1 are sent to the both networks
as input. Each of the two actor outputs decides the one-step move in x or y
direction. The parameters used in the simulation are shown in Table 1.

At first, critic (state value) and actions when the obstacle is put at (0, 0) are
observed in the two cases after 100,000 episodes (a) and after 1,000,000 episodes
(b) of learning. The agent was located at x = −2,−1, 0, 1, 2, y = −8 and the
trajectories and the change in the critic values along the trajectories are shown
in Fig. 2. It can be seen that after 1,000,000 episodes (b), the trajectories are
smoother and the agent reaches the goal in smaller steps than in the case after
100,000 episodes (a). However after 1,000,000 episodes (b) when the agent starts
from (2,−8) (red trajectory), the agent collided with the obstacle and could not
move for 8 steps. Therefore, the number of steps to the goal when the agent
moved along the red trajectory is larger than the others.

Figure 3 shows the distribution of the critic output as a function of the agent
location when the obstacle is put as the above. In both cases, the critic value is
larger as the agent location is closer to the goal and lower around (0,−2) where
the obstacle disturbs the agent to go to the goal. This result shows that the
agent learned that when the agent is close to the goal, the state is good, and
when the obstacle exists around the line segment from the agent to the goal,
the state is not good. In (b) after 1,000,000 episodes, the critic value is higher
in total than (a) after 100,000 episodes, and that shows the agent can reach the
goal in smaller number of steps in the case of (b).
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Table 1. The parameters used in the simulation

Name Actor net Critic net

Step limit in each episode 1,000

Number of layers 3

Number of inputs 6

Number of hidden neurons 100 10

Number of outputs 2 1

Value range of sigmoid function −0.5 − 0.5

Gain of sigmoid Output 1

Function Hidden 2 1

Learning rate η Output <- Hidden 0.00001 1

Hidden <- Input 0.001 1

Hidden <- Hidden 0.0 —

Range of initial weights
(uniformly random)

Hidden <- Hidden (feedback) ±20 —

others ±1

Discount factor γ — 0.95

(a) after 100,000 episodes (b) after 1,000,000 episodes

Fig. 2. Sample trajectories of the agent and change in the critic (state value) along the
trajectories (Color figure online)
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(a) after 100,000 episodes (b) after 1,000,000 episodes

Fig. 3. Distribution of critic (state value) output as a function of the agent location
(Color figure online)

The learning curve is shown in Fig. 4. The red trace shows the number of
steps from the initial location of the agent to the goal for each episode, and the
blue trace shows the average number of steps over every 100 episodes. Since the
agent learns how to go to the goal and avoid the obstacle, the number of steps is
decreased. However, after 200,000 episodes, although the average number of steps
(blue trace) still continues to decrease, the number of steps looks to increase.
This mean that, when the agent collided with the obstacle, it was sometimes
trapped at the place for a while such as the red trajectory in Fig. 2(b).

In this paper, as an index of chaotic property, Lyapunov exponent, which
shows the sensitivity to small perturbations, is computed. When the Lyapunov
exponent is positive, the dynamics is chaotic. Here, every 1,000 episodes, a ran-
dom vector whose size is normalized to 0.001 is added to the internal state
of the hidden neurons in the chaotic NN. After one-step action according to
the actor outputs, the Euclidean distance d of the hidden states from the case
when no perturbation is added was compared between before and after the
action. The above is performed in 400 situations in which the agent’s location
varies as x = −9,−7, · · · , 9, y = −2, −8 and the obstacle location varies as
x = −9,−7, · · · , 9, y = 0, 5, and the Lyapunov exponent λ is calculated by

λ =
1

400

400∑
p=1

ln
d
(p)
after

d
(p)
before

=
1

400

400∑
p=1

ln
d
(p)
after

10−3
. (6)

The change in Lyapunov exponent according to the learning progress is shown
in Fig. 5. The Lyapunov exponent is decreased quickly before the 100,000th
episode and slowly after the 100,000th episode keeping the value positive. As
shown in Fig. 2, in the case of after 100,000 episodes (a), the influence of the
chaotic dynamics looks large, but around the end of the learning (after 1,000,000
episodes (b)), it looks smaller though still some irregularities can be seen.
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Fig. 4. Learning curve: change in the number of steps to the goal (red trace: steps at
every episode, blue trace: average steps for every 100 episodes, pink arrows: the detail
performances are shown in Figs. 2, 3 and 6) (Color figure online)

Fig. 5. Change in the Lyapunov exponent during learning

(a) after 100,000 episodes (b) after 1,000,000 episodes

Fig. 6. Distribution of the agent initial location from which the agent passed the right
side or left side of the obstacle to reach the goal (blue: left side, red: right side) (Color
figure online)

In order to discuss whether the “higher exploration” emerges or not, Fig. 6
shows how the side of the obstacle through which the agent passed to avoid it
varies depending on the initial location in the area y < −2 where the agent is
located farther than the obstacle from the goal. In the both cases, after 100,000
episodes (a) and after 1,000,000 episodes (b), the agent is likely to pass through
the right side of the obstacle when the initial location is in the right part of the
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field, and vice versa. Around the boundary of the two areas, especially in (a),
the side the agent passed varies frequently depending on the initial location and
so the agent looks to choose the side randomly. In (b), the distribution of these
two areas is more symmetrical and reasonable than in (a). The result also shows
that the agent is not trapped completely in front of the obstacle even without
adding any external random numbers to the actor output, and that is different
from the result in [11]. It is thought that the possibility of the emergence of
higher exploration in which learning is reflected could be shown although it is
ideal not to collide with the obstacle.

4 Conclusion

It was shown that by RL using a chaotic NN, the agent learned to go to the
goal while avoiding a randomly-located obstacle. The distribution of the agent
initial location where the agent passed the right side or left side of the obstacle
did not have a clear boundary and the agent looks to choose the side to pass
randomly. There was no place where the agent could not move to the right or left
to avoid the obstacle. These results suggest the emergence of higher exploration,
which would appear on the way to the emergence of “thinking”, we expect. In
the latter half of learning, Lyapunov exponent was decreased, and the agent
sometimes collided with the obstacle and was trapped at the place for a while.
Since the sensor inputs in this task are different from in [11], it is necessary
to think about the solution of the problem from both sides of task setting and
control of the chaotic property.
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Abstract. PM10 is one of contributors to air pollution. One cause of increases
in PM10 concentration in ambient air is the dust of bare land from rivers in
drought season. The Taan and Tachia river are this study area, and data on PM10

concentration, PM2.5 concentration and meteorological condition at air moni-
toring site are used to establish a model for predicting next PM10 concentration
(PM10(T + 1)) based on an artificial neural network (ANN) and to establish a
mechanism for warning about PM10(T + 1) concentration exceed 150 μg/m3

from rivers in drought season. The optimal architecture of an ANN for pre-
dicting PM10(T + 1) concentration has six input factors include PM10, PM2.5

and meteorological condition. The train and test R was 0.8392 and 0.7900.
PM10(T) was the most important factor in predicting PM10(T + 1) by sensitivity
analysis. Finally, mechanism constraints were established for warning of high
PM10(T + 1) concentrations in river basins.

Keywords: Artificial neural network � Dust �Warning mechanism � Predictive
model

1 Introduction

Four major rivers (the Taan River, the Tachia River, the Wu River and the Choshui
River) flow in central Taiwan. Owing to the extreme steepness of the riverbed upstream
segments of all four rivers, the annual sediment yields of fine sludge in the downstream
segments of the four rivers are extremely huge [1]. Moreover, there have been hap-
pened bare-soil downstream during the drought season when dams were constructed
upstream of the rivers obstruct most of the water in the upstream portions. Farmers
turn over bare soil, exposing it to insolation for around one month before growing
watermelons. This action destroys the condensation surface layer of the soil that pre-
vents the underlying dust from becoming suspended in the wind, exacerbating the
phenomenon of river dust during strong monsoon seasons [2–4]. Under weather
conditions, the Asian dust storms (ADS) that are caused by frontal activities in northern
China in mid-October to mid-May can affect the air quality all over Taiwan [5, 6].
During these ADS, high PM10 concentrations are detected at most of the air-quality
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monitoring stations in Taiwan. Not only does pollution arrive by long-range transport,
but also local area suffers from local pollution [7, 8]. Lin et al. [5] analyzed aerosol
concentrations in Taiwan from 2002 to 2008 and found that major transport paths for
the dry type (DT) dust cases passed through anthropogenic source areas in the low
boundary when the major path for dust cases passed over the ocean in wet type (WT).
Lin et al. [9] found that, during dust events, some anthropogenic chemicals, such as CO
and SO2, precede dust particles over northern Taiwan following frontal passage.
Although chemical pollution that accompanies dust has been observed throughout
northern Taiwan, the developing of river dust in local area and the long-range transport
of aerosol particles over the island and the contributions of these two forms aerosols
from continental East Asia in concert with local aerosol emissions have not been
quantified.

Environmental epidemiologic studies have demonstrated the impact of ADS on
many human health measures, such as mortality, hospitalizations, emergency room
visits and clinic visits [10–12]. Most relevant investigations have examined the health
impact of ADS events by identifying temporal changes in these health measures under
either the ambidirectional framework or the lag framework. The ambidirectional
framework compares health measures both prospectively and retrospectively based
upon an arbitrarily chosen reference period with respect to ADS events and the seven
days after an ADS event, and investigates the varying health measures before, during,
and after such events [13]. Lag framework studies of delayed health impacts that occur
over time support the hypothesis that the most significant impact on human health as a
direct result of ADS events may actually occur many days after the storm has ended
[12]. Nonetheless, to date, the geographic variation of health risks from exposure to
ADS events has not been thoroughly investigated.

To protect human health, real-time information about air quality is required.
Reliable forecasts of air quality should be provided by different air quality predictive
models not only to predict the occurrence of severe pollution episodes, but also to abate
emissions when the probability of the occurrence of such episodes is heightened.
Recently, many researchers tested NN-based methods to forecast airborne PM con-
centrations [14, 15]. de Gennaro et al. [16] developed and tested to forecast PM10 daily
concentration in two contrasted environments in NE Spain by using artificial neural
network (ANN) and hourly PM concentration. The best forecasted performance
indexes for the regional background site in Montseny (R2 = 0.86, SI = 0.75), influ-
enced by local and sometimes unexpected sources. Hooyberghs, Mensink, Dumont,
Fierens and Brasseur [17] presented an ANN for forecasting one day ahead the daily
average PM10 concentrations in Belgium, in which the most important input variable
was the boundary layer height.

In this study, an ANN was used to forecast the PM10 concentration in the central
Taiwan’s river basin. ANN–based model that uses hourly PM10 concentrations pro-
vided an alert for high dust concentrations. The model input data for predicting 24 h
average PM10 concentrations one day in advance were the hourly PM10 and PM2.5

concentrations, and meteorological data such as wind speed, wind direction, rainfall,
solar radiation, temperature and relative humidity. The main goal of this work is the
protection of the alerted population based on accurate and timely information.
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2 Methodology

2.1 Study Area

Two major rivers (the Taan River and the Tachia River) flow through Taichung in
central Taiwan. In recent years, the Taiwan EPA has reported that a particular type of
local air pollutant event is suspected to be affected by the river dust in monsoon season.
This type of episode is referred to herein a “river dust episode”. To manage the
problem, the Taiwan EPA established monitoring stations (Shalue) to detect the con-
centration of PM10 and meteorological conditions in the two corresponding river
basins. Figure 1 is a site map of the two river basins with hot spots of dust. Based on
historical information from the Shalue monitoring station obtained from 2005 to 2013,
the sources of dust were north and northeast of the site. Table 1 present the concen-
tration of PM10 and meteorological conditions there.

2.2 Model for Predicting PM10 Concentration Based on ANN

Data-driven approaches to determining the nonlinear relationships between input and
output variables include those based on ANN. An ANN imitates the behaviors of the
human brain, recognizing the patterns of the relationships between input and output
human brain, recognizing the patterns of the relationships between input and output
variables after a period of learning from a set of training data. The basic structure of an

Fig. 1. Study area
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ANN can be described as comprising three mutually independent layers - input, hidden,
and output layers (Fig. 2). The layers are connected with neural synaptic weight
coefficients (wij). Typically, when inputs (xi) enter the system, they are multiplied by
synaptic weights and summed at each node (

PðwijÞðxiÞ). When these values exceed
corresponding threshold values, the summed values can be passed throughout the
network, activating all hidden nodes until they reach the output layer. After the input
has been processed in all layers, the errors between the computed and non-computed
outputs are presented as well. The synaptic weights and threshold values are uncertain
numbers. However, the network can adjust these values by considering a particular
example case in the learning process. The overall learning process is composed of
repeat calculating the training data and testing data until the local error close to zero.

The hidden nodes are activated by using the sigmoid activation function. When the
networks finished the training at first epoch, the computed errors are sent back to the

Table 1. Concentrations of coarse and fine particles and meteorological parameters in Shalue
monitoring station

Year PM10(μg/m
3) PM2.5

(μg/m3)
Temp.a

(°C)
RHb

(%)
Rainfall
(mm)

Pressure
(hpa)

Sunlight
(hr)

Wind
speed (m/s)

2005 56.87 34.03 23.32 73.62 0.22 1012.88 0.28 3.89
2006 54.59 31.90 23.78 74.97 0.18 1012.69 0.29 3.78
2007 62.51 31.73 24.37 73.73 0.24 1012.36 0.31 3.65
2008 61.91 31.29 23.38 73.80 0.20 1012.78 0.28 3.60
2009 56.28 32.87 23.41 73.78 0.12 1012.41 0.26 3.66
2010 49.87 32.70 23.34 77.44 0.14 1013.17 0.23 3.55
2011 51.97 34.47 23.04 73.63 0.08 1012.95 0.22 3.79
2012 45.57 29.70 23.45 75.79 0.19 1011.81 0.22 3.49
2013 49.43 35.12 23.47 75.59 0.23 1012.80 0.23 3.45
aTemperature
bRelative Humidity

Fig. 2. Basic structure of ANN
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first step again for correcting the error and weight adjustment of each layer. The
network recognizes the optimal network pattern the target or an expected output. This
process of data-based training is called back-propagation. The back-propagation
algorithm works as follows [18, 19].

(1) Define the input data set for training the neural network
(2) Calculate the actual outputs of each hidden layer (j) using the following mathe-

matical formula, where n is the number of inputs of neuron j, and h is the
threshold value.

yi ¼ f ð
Xn

i¼1
wijx

0
i � hjÞ ð3Þ

(3) Transform the output values (yj) in the hidden layer using the sigmoid function as
follows.

f xð Þ ¼ 1
ð1� exp �yj

� �Þ ð4Þ

(4) Calculate the actual outputs of the output layer (k), where m denotes the number of
inputs of neuron k, and transform yk by applying the sigmoid function,

yk ¼ f ð
Xm

j¼1
wjkxjk � hjkÞ ð5Þ

(5) Calculate the error in the output layer (ek), where yd;k is the desired output of
neuron k in the output layer.

ek ¼ ykð1� ykÞðyd;k � ykÞ ð6Þ

(6) Change the weights in the output layer (w�
ij), where g is a constant, called the

learning rate.

w�
ij ¼ wij þ gð Þ yj

� �
ekð Þ ð7Þ

(7) Calculate (back-propagate) the error in the hidden layer (ej), where l denotes the
number of outputs of neuron k in the hidden layer.

ej ¼ ðyiÞð1� yjÞ
Xl

k¼1
ekwjk ð8Þ

(8) Change the weights of the relationship between input variables with the hidden
neurons (w�

ijÞ.

w�
ij ¼ wij þðgÞðxiÞðejÞ ð9Þ

(9) Repeat the above calculations and allow the system to learn how the error is
related to the inputs, outputs, and weights. Finally, the optimal condition among
the parameters will be identified.
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3 Result and Discussion

3.1 Optimal Model Selection and the Results of Network Training
and Testing

To identify the optimal model, eight situations of PM10(T + 1) concentration prediction
are considered (Table 2) and the mean of PM10(T + 1) is presented predict PM10 value
for next day. Table 2 presents the results of training and testing in the eight situations.
In eight situations, the result show that the VI model is the best situation which training
R and testing R were 0.8352 and 0.7900. The optimal solution involves PM10(T)
concentration, temperature (T), PM2.5(T) concentration, sunlight per hour (T), pressure
(T) and wind speed (T). Figure 3 displays the MAPE that compares the predicted and
actual concentrations of PM10 obtained using the training data. Figure 4 displays the
MAPE that compares the predicted and actual PM10 concentration obtained using the
testing data. Compare with [20], our results show when actual value over then
75 μg/m3, the model can predict high concentration in MAPE < 20 %.

3.2 Accuracy Analysis and Sensitivity Analysis

In this study, 75 μg/m3 was used as the critical standard to classify PM10(T + 1)
concentration in two type (PM10(T + 1) < 75 μg/m3 and PM10(T + 1) ≥ 75 μg/m3).
The results in Table 3 demonstrate that the overall accuracy of the VI model was
85.99 % when the correct classification rate exceeded 80 %. Compared actual con-
centration of PM10(T + 1) ≥ 75 ug/m3 with predictive concentration of PM10(T + 1)
< 75 μg/m3 was about 6.32 %. To evaluate the relative importance approach, the

Table 2. The predictive program of PM10 concentration
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connection and the actual concentration of PM10(T + 1) < 75 μg/m3 with predictive
concentration of PM10(T + 1) ≥ 75 ug/m3 was about 7.71 % when the incorrect
classification rate was lower than 20 %.

Sensitivity analysis can be applied to investigate the relative importance among the
various input factors on PM10(T + 1) emission bymeans of theweightsmethod proposed
weights between the input, hidden, and output layers were used to identify which input
factor is themost important in determining PM10(T + 1). The six considered input factors
were the actual concentration of PM10(T), temperature, concentration of PM2.5(T), wind
speed (T), sunlight per hour (T), and pressure (T). Table 4 presents the relative importance
of the factors. The actual concentration of PM10(T) is the most significant factor in the

Fig. 3. Comparison between predict and actual concentrations of PM10 obtained using training
data

Fig. 4. Comparison between predicted and actual concentrations of PM10 obtained using testing
data
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prediction of PM10(T + 1), followed by temperature and concentration of PM2.5. The
mean show when the high concentration of actual PM10 was happened, the high con-
centration of PM10 might be happened next day.

3.3 Mechanism for Warning About River Dust Event

To establish a mechanism to warn about a river dust event, three values of the most
significant factor, concentration of PM10(T + 1) - include PM10(T + 1) < 75 μg/m3,
75 μg/m3 ≦ PM10(T + 1) < 100 μg/m3 and PM10(T + 1) ≧ 100 μg/m3 are identified,
what the level was definition by monitoring site at local area.

Table 3. Confusion matrix of predicted and actual data

Predictive concentration

PM10(T + 1) < 75 μg/m3 PM10(T + 1) ≥ 75 ug/m3 Total

Actual concentration PM10(T + 1) < 75 μg/m3 272(74.72 %) 28(7.70 %) 300(82.42 %)

PM10(T + 1) ≥ 75 ug/m3 23(6.32 %) 41(11.26 %) 64(17.58 %)

Total 295(81.04 %) 69(18.96 %) 364(100.00 %)

Accuracy 85.99 %

Table 4. The impact factor results of VI model from weight method

Input variable U+ U− │U+
–U−│ Ranking

PM10(T) –0.5215 –0.8342 0.3127 1
Temp. (T) –0.8007 –0.5565 0.2441 2
PM2.5(T) –0.8299 –0.6623 0.1676 3
Sunlight (T) –0.7223 –0.7079 0.0144 6
Pressure (T) –0.8034 –0.8908 0.0874 5
Wind speed (T) –0.8455 –0.7234 0.1221 4

Table 5. The mechanism constraints of warning on river dust event and forecast rate

Constraints Result PM10 ≥
100 μg/m3

N The
forecast
rate

The forecast
rate in
efficiency

The predict concentration
of PM10 ≥ 75 μg/m3

69 17 364 18.96 % 24.64 %

The actual concentration of
PM10 ≧ 76.28 μg/m3

Temp. < 24.06°C
PM2.5 ≧ 45.52 μg/m3

The wind direction
from North
Rainfall < 0.019 mm
Wind speed ≧ 2.17 m/s

25 10 364 6.87 % 40.00 %
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In predicting process, we found the two constraints for warning were predicted
PM10 (T + 1) ≥ 75 μg/m3 which is the first constraints, the second constraint involved
actual PM10(T) ≧ 76.28 μg/m3, temperature < 24.06°C, PM2.5 ≧ 45.52 μg/m3,
northerly wind direction, rainfall < 0.019 mm and wind speed ≧ 2.17 m/s by using
basic statistical analysis. Table 5 presents the warning forecasts in efficiency. The
result of first constraint demonstrates the efficiency of warning forecast rate (24.64 %),
and the result of second constraint demonstrates the efficiency of warning forecast rate
(40.00 %).

4 Conclusion

The study applied a prediction model and warning mechanism to prevent the event of
the high dust concentration. The input variable of the prediction model was PM10

concentration. The prediction of the dust concentration ignored both the area of bare
land and the source of the pollutant. This prediction model had high accuracy (80 %).
Step 1 of the warning mechanism examines whether the concentration of PM10 pre-
diction exceeds 75 μg/m3, and step 2 of warning mechanism examines whether the
concentration of PM10 prediction exceeds 100 μg/m3 and must conform the second
constraints.
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Abstract. Currently, the World Wide Web (WWW) is the primary
resource for cloud services information, including offers and providers.
Cloud applications (Software as a Service), such as Google App, are one
of the most popular and commonly used types of cloud services. Hav-
ing access to a large amount of information on SaaS offers is critical for
the potential cloud client to select and purchase an appropriate service.
Web harvesting has become a primary tool for discovering knowledge
from the Web source. This paper describes the design and development
of Web scraper to collect information on SaaS offers from target Digi-
tal cloud services advertisement portals, namely www.getApp.com, and
www.cloudreviews.com. The collected data were used to establish two
datasets: a SaaS provider’s dataset and a SaaS reviews/feedback dataset.
Further, we applied sentiment analysis on the reviews dataset to establish
a third dataset called the SaaS sentiment polarity dataset. The signifi-
cance of this study is that the first work focuses on Web harvesting for
cloud computing domain, and it also establishes the first SaaS services
datasets. Furthermore, we present statistical data that can be helpful to
determine the current status of SaaS services and the number of services
offered on the Web. In our conclusion, we provide further insight into
improving Web scraping for SaaS service information. Our datasets are
available online through www.bluepagesdataset.com.

Keywords: Software as a Service · Service offer ·Web harvesting · SaaS
dataset

1 Introduction

Over the past few years, with the continuous and rapid growth of cloud com-
puting technologies, Software-as-a-Service (SaaS) has become one of the world’s
c© Springer International Publishing AG 2016
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largest digital business industries. SaaS shows a hybrid year-to-year increase,
and several reports indicate that SaaS is becoming widely accepted. For instance,
Gartner stated that in 2014, SaaS achieved 48.8 billion dollars in revenue [1].
One prediction indicates that by 2020, sales of SaaS will be more than 132 billion
dollars. Another prediction by the International Data Corporation (IDC) is that
by 2017, the SaaS market will be worth $107 billion, more than twice as much as
its 2013 estimate of $47.4 billion [2]. Hence, the SaaS market has become highly
competitive for SaaS service providers all over the world.

The Internet is the primary resource and the only distribution channel for
the SaaS industry, transforming the Internet into a global SaaS marketplace. For
example, there is a vast amount of SaaS information provided by SaaS-related
websites containing SaaS offers, SaaS prices and details on SaaS providers. In
addition, there has been a growth in Web-based portals, such as cloud reviews
[3] and getApp [4], which provide a list of service offers collected from multiple
sources on the Web.

Generally, publicly available search engines, such as Google, Yahoo, and Bing,
are used to search for SaaS service offers on the World Wide Web (WWW). The
results of these search engines show the potential that exists for extracting SaaS
offers from the Web. However, the key issues lie within the quality of the results,
as these search engines do not recognize SaaS offers. Usually, the obtained results
comprise both relevant and irrelevant web sources. Consequently, accessing infor-
mation on SaaS offers remains a problem as there is a lack of an available and
efficient searching and information retrieval tools to find SaaS offers on the Web.

Therefore, our research concept is to utilize the existing content and struc-
tures of SaaS offers used from multiple sources to investigate SaaS offers on the
Web in order to provide a complete view of the available SaaS offers. In other
words, this study attempts to discover the SaaS offers which are available on the
Web today.

The majority of the research to date, however, has focused on enhance SaaS
discovery by using semantic technology to enhance Cloud information retrieval
such as in [5,6]. The results of these research studies have shown the potential
that lies in using semantic technologies to enhance data retrieval results from
existing text-based search engines. Research by [7] proposed semantic informa-
tion filtering of a search engine’s results. Basically, the filter identifies the simi-
larities between the cloud ontology concepts and the search engine’s results, and
then based on the specific threshold, it identifies if the information retrieved is
relevant or irrelevant to the cloud domain. The cloud domain ontology comprises
424 concepts, which present the information. The semantic filter has been eval-
uated using virtual websites with up to 15700 web pages, including irrelevant
and relevant cloud service providers’ virtual sites.

In 2013 Noor et al. [8] consulted a cloud ontology to crawl Web-based
resources, and then stored the crawling result in a local repository in order
to obtain a cloud dataset. This study is considered to be the first effort toward
obtaining a cloud dataset, but the dataset has several limitations, including a
lack of primary service information, such as service name and service URLs,
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and the data values do not have the semantic meaning associated with them.
Even though there have been numerous efforts to enhance the discovery of cloud
services over the Web, the main limitation of these studies is that they fail
to address the issue of investigating and discovering cloud service offers across
multiple Web resources.

Therefore, to address this issue, this work introduces a framework for har-
vesting multiple SaaS offer resources to build the first SaaS repository. In this
paper, we propose a SaaS Web scraper which crawls across several publicly avail-
able web portals to establish SaaS datasets. Our proposed method shows better
results compared with existing approaches in regard to the provision of details
on how many SaaS services are available today on the Web. We successfully
collected around 5294 existing SaaS offers accessible on the Web today. Our
dataset on SaaS offers comprises the main attributes that are needed for service
selection. Moreover, this dataset assists in drawing a statistical distribution of
SaaS offers, therefore providing accurate conclusions.

Web harvesting (Web scraping) is a computer technique to extract informa-
tion and data from Web sources [9]. In other words, it is the transformation of
unstructured data (HTML format) into structured data, also called Web data
extraction. Although there has been much research on the subject of Web har-
vesting, no previous study so far has used the Web harvesting technique to
investigate, collect, and gather information about cloud computing from the
Web. In this work, we apply the Web harvesting task that targets Web sources
to extract data about SaaS offers and SaaS consumers’ reviews. This paper aims
to obtain SaaS data from multiple sources. For this study, the target is restricted:
to extract SaaS offers and consumers’ reviews and feedback on the services from
multiple sources on the WWW.

In this work, we establish three datasets: a SaaS offers dataset, a SaaS reviews
dataset, and a SaaS polarity dataset, which can be potentially used as a resource
for SaaS service discovery, selection, and composition. Moreover, this data could
be used for SaaS knowledge discovery which plays a vital role in the construction
of a SaaS knowledge base. This research makes the following contributions: we
examine the potential of using the Web harvesting technique to extract informa-
tion on SaaS services offers and SaaS consumers’ reviews from multiple sources
on the WWW; we introduce the notion of a SaaS services dataset to collect SaaS
service offers that can be potentially used as a base for SaaS service discovery,
selection, and composition; a SaaS dataset can also be used for SaaS knowledge
discovery in order to construct a SaaS knowledge base; by continually scraping
the existing SaaS service sources available on the Web, the dataset is capable
of providing up-to-date data on SaaS services, hence this dataset is effective for
service discovery, we collect and analyse the results and present various statistics
including how many SaaS are accessible and what different categories of SaaS
are accessible and we apply sentiment analysis and run several machine learning
experiments on the SaaS reviews dataset containing the SaaS polarity dataset
that can be accessed on the Web today.

To the best of our knowledge, this is the first study to do the following:
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1. to investigate the Web to discover the amount of SaaS offers available today
on the Web;

2. to establish a SaaS offers dataset;
3. to collect SaaS consumers’ reviews to analyse and investigate overall satis-

faction of SaaS consumers. Such analysis could provide useful information to
improve the quality of SaaS provided;

4. to establish a SaaS polarity dataset that can possibly be used for applying
some machine learning prediction techniques and for deep learning as well;

5. to provide ongoing research which aims at establishing the largest cloud ser-
vices dataset and knowledge base.

The rest of this paper is organized as follows: Sect. 2 describes some of
the related work; Sect. 3 discusses resources to find SaaS service offers; Sect. 4
describes the architecture of the dataset; Sect. 5 describes the methodology of
our research; Sect. 6 discusses the results and the evaluation of harvesting SaaS
web sources; Sect. 7 describes some of the challenges in the discovery of services;
Sect. 8 discussed conclusion and future work.

2 Related Work

Recently, researchers have shown an increased interest in the discovery of cloud
service issues, whereas previously many had focused on the discovery of cloud
services on the Web using semantic technologies. A considerable amount of liter-
ature has been published on building a cloud ontology to enhance the dynamic
discovery of cloud services over the WWW. A recent study by Afify et al. [5]
developed a system for cloud service discovery containing a business ontology
that assists service registry, service discovery, filtering and ranking the final
result. This study does not support the dynamic discovery of cloud services,
hence the information of the service offers need to be provided manually.

Research by Magesh et al. [10] proposed a semantic description for cloud ser-
vice offers including service name, service level of agreement, service price, and
service features. The study suggested representing each cloud offer as a single
ontology and then combining all of them to construct a global ontology. The con-
structed global ontology has 64 entities and 128 properties. Unfortunately, this
study neglects the need for quality of service information and rating attributes
in selecting the services. In another effort by Kang et al. [11] a cloud service
ontology was introduced to enhance the dynamic discovery of cloud services on
the Web. This research used several reasoning methods to find semantic simi-
larities between the user’s request and the search engine results. The selected
services are ranked, based on the price in the time slots that were determined
by the consumers.

A different approach taken by Tahamtan et al. [12] is to assist a business
organization to find an appropriate cloud business service, and a cloud business
functions ontology was proposed to achieve this goal. The ontology includes
most of the business function concepts and classifications outlined in [13]. In
order to locate the right service with the right provider, the ontology is designed
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to map between the cloud service concepts and business concepts. In addition,
the ontology includes some other important service attributes, such as service
characteristics and service delivery model. Unfortunately, as with other existing
work, their work, too, fails to account for the model’s QoS parameters.

Although semantic searching methods may partially support the discovery
of cloud services, they do not provide users with efficient ways to find proper
services. Additionally, a scarcity of contributions in the current literature to
determining the current status and distribution of cloud services. Very little
research has been conducted on investigating cloud services on the Web. In [8]
the authors’ details on cloud services were collected throughout the Web by
crawling Web sources. However, the study does not provide a complete view of
the cloud services on the Web, and also the dataset provided in this study lacks
primary service information, such as service name and service URL, and the
data values do not have the semantic meaning associated with it. Therefore, it
may provide inaccurate or misleading conclusions.

A recent study by Alkalbani et al. [14] proposed establishing a central repos-
itory for SaaS services. The study makes use of an open source, namely the
Nutch-Hadoop crawler, to crawl details on SaaS offer from the Web and then
stores the result in a local repository. The key shortcoming of this research is
that the study only provides a service URL and service name.

3 SaaS Services Offer Resources

Finding information on SaaS service offers is not an easy task, especially since
SaaS offers do not have standards to support service publishing, service descrip-
tion, discovery of service providers and their services offered, as is the case for
Web services. For Web services, a service registry has been developed which
plays a vital role as a publicly available, central access point to describe and
publish Web services using semantic annotations. However, generally speaking,
cloud service discovery is strictly tied to publicly available general search engines,
such as Google, Yahoo, and Bing. These engines search text to find information
related to service offers. However, they usually retrieve both relevant and irrel-
evant information. The following briefly describes the range of possible Web
resources for finding SaaS services offers on the Web.

3.1 Cloud Service Portals or Directories

Web-based service directories or portals, such as getApp, cloudreviews, and oth-
ers, is one possible method for finding SaaS services. The majority of services
listed in these portals and directories have been collected from different cloud
providers. Capturing SaaS services from these portals requires access to their
repositories which are not publicly accessible. Another way to capture service
offer data is by building a custom web scraper designed to capture and collect
the service offer data from each portal independently, which is the focus of our
research.
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4 SaaS Datasets

Service offer information is a business structure for publishing service and busi-
ness information which should be carefully considered when selecting the service.
In the case of SaaS service offers, the service offer is simply meta-information
or in other words, a HTML document. Therefore, for the purpose of this study,
we target only meta-information for each service offer, which usually includes:
service name, service description, service provider, service URL, service rating,
service price, etc. In addition, this research considers collecting the services’
rating as a part of the service offer that needs to be known when making a
service selection decision. Also, this study considers collecting service reviews
and feedback which could provide a useful summary about SaaS users’ satisfac-
tion. Thus, this research establishes three SaaS datasets: (1) SaaS offers dataset,
(2) SaaS reviews dataset, and (3) SaaS sentiment polarity dataset. The next
section details our procedure to construct these datasets.

5 Methodology

The mechanism implemented to achieve our research objectives is as follows:
(1) defining the accessible Web-based sources from which SaaS information can
be obtained, including publicly available web portals such as getApp, (2) design-
ing and building a Web scraper to automatically crawl and collect information
about SaaS including SaaS offers and SaaS consumers’ reviews/feedback, and
finally storing the results in a local repository to establish SaaS datasets, which
is explained in more detail in the results section. Our research framework, as
shown in Fig. 1, consists of the following stages:

– Meta-collector: To collect the meta-resources, first we download the Web
source for each Web portal home page (HTML document), and then we extract
the service offer links (URLs) from the home page sources. Then, we obtain
the meta-information for each service link (URL).

– Meta-validator: We verify and validate the collected URLs and ensure that
we retrieve all the offered URLs.

– Meta-storage: We store the meta-information on each URL (service offer
page source) as a “Meta-Source object”.

– Meta-parser: In this step, we define the targeted information that needs to
be harvested for all services including: service offer template (service name,
service price, service provider), and service reviews.

– Meta-database: Finally, we store the extracted information for each service
offer as a “Service Object”, and lastly we establish a meta-database which has
around 5294 SaaS service offers.

6 Results and Statistics

In this section, we present the results and details of the SaaS datasets and the
statistics on the harvested data. The harvested data is distributed among two
datasets as follows:
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Fig. 1. Research framework

1. SaaS offers dataset: contains the primary information on SaaS offers har-
vested from the targeted Web resources. The SaaS offers data collection
shows that each offer comprises the following attributes: service name, service
provider name, provider URL, service rate, service description, year founded,
mobile application (yes/no), starting price, service type, service category, free
trial (yes/no).

The data harvesting took place between February 2015 and August 2015,
and the total number of SaaS offers harvested was 5294. Our constructed
dataset illustrates that the majority of harvested offers are from getApp,
which provides around 5146 service offers. Table 1 presents details on the
SaaS dataset with respect to the resources used to collect the SaaS offers.
Also, the results of this study, as illustrated in Table 2, indicate that the
total number of unique SaaS offers is 3184, and surprisingly, we found that
around 2110 are duplicated. This result may be explained by the fact that
some services belong to more than one category (Table 2 shows that around
1512 service offers belong to more than one category). Also, the study found
that, so far, the maximum number of service offers per category is five. In
addition, Table 3 shows that there is no feedback data recorded in our con-
structed dataset from www.cloudreviews.com, whereas around 6343 were col-
lected from www.getApp.com. This table shows the distribution of service
reviews by service category. The data in the table indicates that the opera-
tions management application received the highest feedback from users, fol-
lowed by customer management. Moreover, as can be seen from Fig. 1, only
14 % of offers provide a URL. The data collected shows that the majority of

www.cloudreviews.com
www.getApp.com
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service offers published do not have a provider link, which accounts for 86 %
of the constructed dataset.

2. SaaS reviews/feedbacks dataset: contains the collected reviews/feedback
that have been made by services’ users.

3. SaaS sentiment polarity dataset: Sentiment analysis was applied on the
Saas reviews/feedback dataset to determine the tone of each SaaS post/review
as being either positive, negative, or neutral. As a result of this analysis, we
have another dataset, namely “the SaaS sentiment polarity dataset”. The
results obtained from the sentiment analysis on the SaaS reviews are shown
in Table 4. More details on this analysis can be found in [15]. This dataset is
a very useful for training machine learning algorithms and for further study.
To conclude, all these can be accessed online through www.bluepagesdataset.
com as the first publicly available datasets for SaaS offer information, SaaS
reviews and feedback, and the SaaS sentiment polarity dataset.

Table 1. Summary of harvested SaaS offers per web resources

www.getApp.com www.cloudreviews.com

Harvested offers 5146 148

Execution time 3 minutes 1 minutes

Total harvested offers 5294

Table 2. Summary of Unique/Duplicated harvested SaaS offers per web resource

www.getApp.com www.cloudreviews.com Total

Unique offers 3038 146 3184

Duplicated offers 2108 2 2110

Total harvested offers 5294

7 SaaS Harvesting Challenges

At any point, Web portals may update service offers, therefore the Web scraper
needs to be able to update or revisit Web resources to identify the changes that
have taken place and update the downloaded data. Additionally, the number
of SaaS services increases as well as the number of web portals, therefore it
is an ongoing process to keep data up-to-date. From our experience with Web
harvesting in this work, to achieve database availability, the challenges are:

– the customized Web scraper needs to monitor sites/pages for changes and
updates.

– adding more repositories to our dataset requires designing and adding more
code to our customized scraper.

– building a dynamic scraper that can handle the addition of more repositories
and page source changes.

www.bluepagesdataset.com
www.bluepagesdataset.com
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Table 3. Number of reviews/feedback per service type

Service types Reviews/Feedbacks

T1 Finance & accounting 1055

T2 Marketing 797

T3 Communications applications 389

T4 collaboration applications 1448

T5 Sales 1263

T6 Project management 1203

T7 Customer management 1655

T8 IT management 997

T9 Customer service & support 763

T10 Operations management 1822

T11 Business Intelligence & Analytics 208

T12 HR & Employee management 931

Fig. 2. SaaS provider URL distributions

Table 4. Summary of sentiment analysis

Polarity of reviews Number of reviewers

Positive 2487

Neutral 1312

Negative 201

Total 4000
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8 Conclusions

Finding and selecting relevant Software as a Service (SaaS) offers is mainly
done manually by scanning through a number of suggestions from general search
engines, such as Google or Bing. The dynamic discovery of SaaS service offers
is necessary, especially when the number of services on the Web and the num-
ber of Web portals continues to significantly increase. Our study presented the
implementation of a “Web scraper” to discover and investigate the number of
SaaS offers available on the Web. We harvested SaaS offers from targeted web
portals. The results provide an overview of the current status of SaaS offers and
knowledge on the Web. An interesting result shows that some SaaS services are
categorized according to business function, and some services belong to more
than one category. For future work, our objective is to construct a large SaaS
knowledge base and we will continue harvesting more Web sources as well as
develop effective tools to dynamically update our datasets.
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Abstract. Organizations need to continuously monitor, source and process large
amount of operational data for optimizing the cloud computing environment. The
research problem is: what are cloud monitoring data challenges – in particular
virtual CPU monitoring data? This paper adopts a Systematic Literature Review
(SLR) approach to identify and report cloud monitoring data challenges. SLR
approach was applied to initially identify a large set of 1861 papers. Finally, 24
of 1861 relevant papers were selected and reviewed to identify the five major
challenges of cloud monitoring data: monitoring technology, virtualization tech‐
nology, energy, availability and performance. The results of this review are
expected to help researchers and practitioners to understand cloud computing data
challenges and develop innovative techniques and strategies to deal with these
challenges.

Keywords: Big data · Cloud computing · Capacity planning · Monitoring · And
virtual CPU

1 Introduction

Cloud computing is a virtual data-intensive environment, which runs multiple virtual
machines in large scalable clusters [11]. Cloud computing is one such new modes that
supports pay-as-you-go and on-demand services (e.g. software as a service, platform as
a service, infrastructure as a service) to enable business agility and flexibility [10]. Cloud
computing seems to offer lucrative benefits [3], however, organizations need to actively
monitor and analyze the operational data about the quality of cloud services and utiliza‐
tion of underlying virtual resources such as CPU, memory, storage and network [6].
This is also important to verify and identify any service performance related issues
including Service Level Agreement (SLA). Monitoring is also important to track and
control the expenses associated with the cloud service resource utilization [4].

There are a number of tools (e.g. AWS Cloud Watch) that claim to support the data
monitoring including data acquisition and processing [e.g. 9]. However, to effectively
adopt or develop specific cloud monitoring data tools, organizations need to identify and
understand the fundamental challenges of cloud monitoring data. The understanding of
challenges will help organizations in making informed decisions about the development
and improvement of specific cloud monitoring data sourcing and processing tools for
different types of cloud resources (e.g. CPU data, storage device data) at different levels
(e.g. resource utilization data, health data). Cloud monitoring data is a broad topic. This
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paper mainly focuses on the monitoring challenges of virtual CPU utilization data within
the overall context of cloud monitoring. Thus, the main research question is: what are
cloud monitoring challenges – in particular virtual CPU utilization monitoring data?

This paper applied the well-known Systematic Literature Review (SLR) method [7]
to systematically search, identify and synthesize the challenges of virtual CPU utilization
monitoring data. This paper is organized as follows. Firstly, it discusses the research
method. Secondly, it presents the research findings. Finally, it discusses the research
findings and future research directions before concluding.

2 Research Method

This paper applied the SLR guidelines [7] for systematically searching, selecting,
reviewing and synthesizing the cloud monitoring data challenges from relevant
academic and industry publications (2011–2015). This study included the paper written
in English language, which were selected from five well-known electronic databases
(Table 3).

Table 1 presents the keyword or terms that were used during the first attempt to
search the topic. All of the terms from the search category field “Monitoring of Virtual
CPU” were also joined using the “AND” or “OR” operator to examine different combi‐
nations. In addition to this, search history features were used to combine different
returned searched results to narrow down to the desired topics. Table 2 presents the paper
selection criteria stages, which were applied to systematically identify the relevant
papers for this study.

Table 1. Search keywords

Search category Keywords/Phrases
Monitoring of virtual CPU (using advanced

search interfaces)
Virtual Processor; Virtual CPU; Monitoring

Tool; Monitoring Technique; Cloud
Computing; Virtual Machine; SaaS
Monitoring Technology.

Monitoring of virtual CPU (using advance
command search)

((“virtual processor”) OR (“virtual CPU”))
AND ((“monitoring tool*”) OR
(“monitoring technique*”)) and ((“cloud
computing*”))

((“*virtual processor*”) OR (“*virtual
CPU*”)) AND ((“*monitoring tool*”) OR
(“*monitoring technique*”)) and ((“*cloud
computing*”))

Initial search of keywords and filtration (based on title) across five selected databases
resulted in a large number of 1861 papers. Second filtration resulted in 97 papers (based
on the review of abstract), and finally, third filtration stage (based on the exploration of
paper contents) resulted in 24 relevant papers for this review (Table 3). Please note that
for the first and second search filtration stages, the items such as news, eBooks and
tutorials were excluded as the contents were not suitable for this academic study. Finally,
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only those papers were selected that satisfied the five Assessment Criteria – Final Search
Filtration (Table 2).

Table 2. Paper selection criteria

Filtration stage Method Assessment criteria
First search filtration Explore the title Title = search keyword (s) Yes = accepted

No = rejected
Second search

filtration
Explore the abstract Abstract = CPU OR Virtual CPU OR VCPU

Yes = accepted No = rejected
Final search filtration Explore the content 1. Address Virtual CPU OR Monitoring Tool

OR Cloud Computing
2. Well-referenced
3. Objective is clearly defined
4. Well-presented argument and justified
5. Clearly stated findings (Yes = accepted,

No = rejected)

Table 3. Search results

Database 1st Search filtration 2nd filtration Final count
Web of Science 462 40 3
IEEE 913 30 10
Google Scholar 67 16 7
Gartner 12 6 2
Scopus 407 5 2
Total 1861 97 24

3 Findings

The selected 24 papers were analyzed and interpreted in order to answer the research
question in hand. The detailed review of the selected papers resulted in five major chal‐
lenge categories as shown in Table 4. These challenge categories are: monitoring tech‐
nology, virtualization technology, energy, availability and performance. These

Table 4. Findings – data monitoring challenges categories

Challenge categories Sources Frequency (number of
studies)

Percentage

C1. Monitoring Technology S14, S15, S16, S17, S18,
S19, S20, S21

8 34 %

C2. Virtualization technology S1, S2, S3, S4, S5, S6 6 25 %
C3. Energy S10, S11, S12, S13 4 17 %
C4. Availability S7, S8, S9 3 13 %
C5. Performance S22, S23, S24 3 13 %
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categories were extracted after the careful review of the papers by using the analysis
techniques from the well-known Grounded Theory [2], which is useful for identifying
the relevant concepts and categories from a large volume of qualitative data or text [1].
Table 4 presents the identified major challenge categories and corresponding literature
sources (see Appendix for selected literature sources S1–S24).

3.1 Monitoring Technology

Monitoring of a specific remote virtual CPU resource is a challenge in the complex
distributed cloud environment. Monitoring technology category is heavily referenced
in the literature (e.g. 34 % of the selected studies) and can help to resolve this challenge.
(Table 4). This challenge category has identified three key underlying monitoring tech‐
nology data challenges: (1) lack of data standardization, (2) live resource monitoring
data, and (3) interoperability of data. Lack of monitoring data standards (e.g. templates,
format) hinder the ability to integrate disparate monitoring tools and different types of
virtual CPU data [e.g. S14]. The accurate monitoring data of a live virtual CPU resource
in a cluster, which can be dynamically added, updated or removed, is challenging [e.g.
S16]. Finally, third challenge is about the inability of the monitoring technology to
support the interoperability of monitoring data across different cloud platforms [e.g.
S18].

3.2 Virtualization Technology

Monitoring of the virtualized CPU resource data can also be impacted by the hypervisor,
which is used to virtualize the physical CPU resource [5]. Interaction between the moni‐
toring tool and hypervisor is important for collecting the utilization data. This is the
second highly referenced category (25 % of the selected studies) (Table 4). This chal‐
lenge category has identified two key underlying challenges: (1) dual monitoring data
and (2) heterogeneous virtual environment data. Hypervisor and virtualized CPU share
physical resources and the challenge is that both need to be monitored for collecting the
correct utilization data. Thus, this dual monitoring challenge needs to be addressed to
accurately collect the utilization data [e.g. S1]. Heterogeneous virtual environment,
containing different types of hypervisors and virtual CPUs, poses the challenge of
dealing with different hypervisors’ APIs and monitoring tools’ APIs for monitoring,
collecting and processing large amount of data in different formats [e.g. S2].

3.3 Energy

This is the third referenced category (17 % of the selected studies) (Table 4). This chal‐
lenge category has identified two key underlying energy related challenges: (1) energy
utilization data and (2) energy efficiency. Virtualized cloud environments claim to offer
low energy utilization. These challenges draws our attention to the challenge of
collecting and processing large amount of monitoring data using minimal energy or
power. Energy utilization data needs to be monitored and optimized for energy efficiency
[e.g. S10 and S11].
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3.4 Availability

It is not about the CPU resource monitoring data. The monitoring should also provide
the capability to collect and provide the virtual CPU availability data [e.g. S8]. This is
the fourth referenced category (13 % of the selected studies) (Table 4). This challenge
category has identified two key underlying availability related challenges: (1) SLA
verification data, and (2) detecting and alerting data. The availability, in the context of
virtual CPU utilization, is important and draws our attention to the challenge of moni‐
toring availability SLAs, and then processing it for detecting and alerting any related
issues or breaches [e.g. S7 and S8].

3.5 Performance

Finally, this category draws our attention to the computational performance challenge
of both the virtual machines and monitoring. This is the fifth referenced category (13 %
of the selected studies) (Table 4). This challenge category has identified two key chal‐
lenges: (1) performance identification, and (2) detecting and alerting. The monitoring
should provide the capability to collect and provide the data about the performance of
the virtual CPU resource and monitoring technology to help detecting and alerting any
performance issues [e.g. S24]. Based on the performance results, we can dynamically
adjust the utilization and control the number of virtual CPUs assigned to a physical CPU
[e.g. S24]. Further, performance results can lead to the consolidation and de-consoli‐
dation of the virtual CPUs and underlying physical resources [e.g. S22 and S23].

4 Discussion

The effective utilization of cloud requires monitoring the hypervisors and the virtual
environments. Monitoring data growth and velocity are increasing, and different moni‐
toring standards, architectures, tools, and APIs are required to monitor the resource
usage and capture a large amount of operational data [8]. However, the monitoring of
cloud, in particular virtual CPUs hosted on a heterogeneous environment, poses several
challenges. This paper addresses this research problem and systematically identify the
five key challenges categories and underlying challenges.

Firstly, our findings highlighted that monitoring (34 %) and virtualization (24 %)
technology were the most important challenge categories with respect to virtual CPU
monitoring data collection and processing. Thus, we can classify these two as core chal‐
lenge categories. Other challenge categories such as energy (17 %), availability (13 %),
and performance (13 %) were classified as secondary. This is because they were not
heavily reported, although, they could impact the monitoring (Table 4).

Secondly, our findings highlighted that the effective monitoring of the heterogeneous
environment requires monitoring standards and frameworks for monitoring data inte‐
gration and interoperability across different cloud platforms. This is important to facil‐
itate the effective adoption of cloud.

Thirdly, our findings highlighted that the capturing and processing of the monitoring
data are not enough. Monitoring capability should also support detecting any issues and
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alerting or taking corrective actions or adjustments. This leads to the identification of
whole new area of research about smart data-driven and analytics-enabled adaptive
monitoring. Monitoring of large and complex environment generates huge amount of
data, which draws our attention to another area of research about BigData analytics for
cloud monitoring data.

Similar to any other SLR studies, this paper has some limitations. One limitation
could be the use of finite number of selected literature databases and studies. This paper
included studies from well-known databases, and we have full confidence that the
selected databases and studies provided us with the relevant and recent literature to
address the research question in hand. One may argue about the possible bias in the
selection of studies and inaccuracy of analysis. To mitigate this risk, we developed and
applied relevant search string and keywords, systematic study selection criteria
(Tables 1–2) and analysis techniques from well-known Grounded Theory [2]. This was
done to ensure that the relevant studies were not omitted.

Despite possible limitations, this paper provided useful insights for both practitioners
and researchers interested in the area of cloud monitoring data capturing and processing.
For instance, practitioners may be interested in developing new tools, formats and
standards for exchanging monitoring data across different cloud platforms. Researchers
may be interested in developing new frameworks for BigData analytics enabled smart
and adaptive monitoring.

5 Conclusion

This paper presented a SLR of virtual CPU utilization monitoring data challenges. This
paper systematically searched, identified and reviewed a set of twenty-four relevant
papers. The detailed review of selected papers provided us with the five major challenge
categories. This study provided a knowledge-base of monitoring data challenges to
practitioners and researchers who have interest in cloud computing. The findings of this
paper can be further used in developing monitoring data sharing and processing stand‐
ards, formats and tools to facilitate the effective cloud monitoring data management.
The findings of this paper will provide necessary inputs to further research and develop
the BigData analytics enabled framework for smart and adaptive cloud monitoring data.
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Abstract. Recommender systems provide personalized suggestions by
learning users’ preference based on their historical feedback. To allevi-
ate the heavy relying on historical data, several online recommendation
methods are recently proposed and have shown the effectiveness in solv-
ing data sparsity and cold start problems in recommender systems. How-
ever, existing online recommendation methods neglect the use of social
connections among users, which has been proven as an effective way to
improve recommendation accuracy in offline settings. In this paper, we
investigate how to leverage social connections to improve online recom-
mendation performance. In particular, we formulate the online social
recommendation task as a contextual bandit problem and propose a
Locality-sensitive Linear Bandit (LS.Lin) method to solve it. The pro-
posed model incorporates users’ local social relations into a linear contex-
tual bandit model and is capable to deal with the dynamic changes of user
preference and the network structure. We provide a theoretical analysis
to the proposed LS.Lin method and then demonstrate its improved per-
formance for online social recommendation in empirical studies compared
with baseline methods.

Keywords: Social recommendation · Linear bandits · Online learning

1 Introduction

Recommender systems are ubiquitous in online applications ranging from e-
commence websites to content recommendation services such as Yahoo! and
Digg, since they can effectively help users to relieve the problem of information
overload by filtering out irrelevant information and also provide users relevant
information according to their personal preferences. Most techniques used in rec-
ommender systems are heavily relying on users’ historical feedback (e.g., in the
form of a rating to an item or a click behavior) in order to learn reliable mod-
els of a user’s preferences. However, the user’s preferences may be diverse and
changed dynamically. Moreover, for new users, there are obviously no sufficient
historical records for recommendation methods to learn the true preference.
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 80–90, 2016.
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To alleviate the critical reliance of recommender systems on historical infor-
mation, online recommendation methods are proposed and have shown the suc-
cess in solving the cold start and diversified recommendation problems. Online
recommendation methods aim at building models that can continue to learn and
improve their performance automatically as long as users provide feedback (i.e.,
ratings on items or clicks on links) to them. To achieve the self-learning goal,
online recommendation algorithms always need to explore some uncertain results
to identify users’ unknown preferences or to adapt to the dynamic changes of
users’ preferences. To strike a balance between uncertain exploration and conser-
vative exploitation to achieve high quality recommendation performance, several
recent studies formulate this online recommendation task as a multi-armed ban-
dit problem [9,12,20].

The multi-armed bandit (MAB) problem [6] has been extensively studied
and becomes increasingly popular in the machine learning community recently.
It can be formulated as a sequential decision-making problem, where in each
of the T rounds the player needs to select one arm from a set of arms, each
having an unknown distribution of rewards. In each round, only the reward of
the selected arm can be observed. Thus, the player has to make this decision
based on its historical decisions. The goal of the player is to maximize his/her
cumulative rewards during the T rounds. When the arms are represented by
their feature vectors that can be observed by the player, this problem is known
as the contextual bandit problem [1,10,20], which has been successfully adopted
to recommender systems. Though existing contextual bandit algorithms have
shown their contributions to online recommendation, some new challenges come
alongside with the rapid development of social media. In many recent appli-
cations, users are always not independent, but have strong social connections
among them. Such augmented social network information provides an impor-
tant source of evidence, reflecting the affinities between users and their friends,
and has shown its contribution in offline social recommendation tasks.

To leverage the knowledge from social networks, in this paper, we propose
the Locality-sensitive Linear Bandit Model (LS.Lin) for online social recommen-
dation. Specifically, our model assumes that each user in the social network
has a set of unknown parameters and the feedback (ratings or clicks) of users
comes from a linear combination of items’ contexts and users’ parameters. We
show that our proposed method follows a robust theoretical bound as other lin-
ear bandit models and it demonstrates improved performance for online social
recommendation in empirical studies, compared with other contextual bandit
methods.

2 Preliminary

We first introduce some general notations for matrices and vectors. Note we
shall use player and user exchangeably in the following sections. Let G = (V,E)
denote a social network, where V is a set of users (|V | = M) and E ⊂ V × V
is a set of relationships between users. Nu(G) represents the neighbors of user
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u in graph G. We use ‖x‖p to denote the p-norm of a vector x ∈ Rd and I to
denote identity matrix. For a positive definite matrix A ∈ Rd×d, the weighted
norm of vector x is defined as ‖x‖A =

√
xT Ax. Let λmin(A) denote the smallest

eigenvalue of the positive definite matrix A. det(A) denotes the determinant
value of matrix A. The inner product is represented as 〈·, ·〉 and weighted inner
product xAT y = 〈x, y〉A.

Now we introduce the contextual bandit problem and show how to involve
it into recommender systems. Let T be the number of rounds and k be the
number of arms. At time t∈T, a player u observes k available arms with their
arm-specific feature vectors {xt,a(i)} ∈ R

d, where i ∈ 1, 2, ..., k. Without loss of
generality, we assume ‖xt,a(i)‖2 ≤ L in this paper, where L is a hyperparameter.
The player is then asked to make a decision and select an arm at to play and
once the arm at is chosen, the player receives a reward rt,at

from it. Specifically,
for a particular player u, we use au

t to represent u’s decision at time t. Note
that no reward information from other arms can be observed at this time. For
each arm a(i), the reward rt,a(i) is assumed to be a linear function with xt,a(i)

as follows,
rt,a(i) = xT

t,a(i)θ
�
u + ηt, (1)

where θ�
u is the unknown parameter of player u, and ηt is a zero mean random

variable. The goal of a contextual bandit problem is to design a strategic algo-
rithm in order to maximize the user’s expected cumulative reward E[

∑T
t=1 rt,at

]
over T rounds. The difference between the player’s total reward and the total
reward of the optimal strategy is called the pseudo-regret of the algorithm and
it can be written as,

RT =
T∑

t=1

(rt,a�
t

− rt,at
), (2)

where a�
t represents the player’s optimal choice at round t. Similarly, we can

use a�u
t to represent a particular user u’s optimal choice at time t. Clearly,

maximizing the learner’s expected cumulative reward is equivalent to minimize
the regret of the algorithm. Therefore, our goal is to design an algorithm whose
regret is as small as possible.

3 Locality-Sensitive Linear Bandit Model

Although contextual bandit algorithms have been proven to be an effective online
recommendation technique to solve the cold-start and data sparsity problem in
recommender systems, how to leverage social network information into contex-
tual bandit algorithms is still not well understood. Different from traditional
contextual bandit based online recommendation methods, the users in online
social recommendation tasks are not assumed to be independent, but form a
social network by setting up links with others.

Motivated by most of offline social recommendation methods [21,22,24], we
propose the Locality-sensitive Linear Bandit (LS.Lin) method based on the
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assumption that user u’s unknown parameter should be similar with his/her
local neighbors, i ∈ Nu(G). Formally, LS.Lin still follows a linear reward formu-
lation to link arm’s contextual features with a user’s parameters, in which the
parameter can be estimated by using ridge regression [1,10]. Moreover, LS.Lin
method also requires to minimize the following regularization term when solving
the ridge regression,

‖θ�
u − θ�

u′‖2F , (3)

where ‖ · ‖F is the Frobenuis norm and θ�
u′ represents an integrated social regu-

larized parameter from the neighbors of user u, Nu(G)
Therefore, seamlessly combining Eqs. (1) and (3) together, we can estimate

user u’s parameter θ̂u by solving the following regression problem,

1
2
‖bu,t − Xu,tθ̂u‖2F +

λ

4
‖θ̂u‖2F +

λ

4
‖θ̂u − θ̂u′‖2F (4)

where λ is the weight for regularization terms, Xu,t is a matrix whose rows are
x1,au

1
, x2,au

2
,...,xt,au

t
corresponding to user u’s historical selected contexts and

bu,t is the corresponding historical rewards vector. θ̂u is the estimation of user
u’s true but unknown parameters θ�

u and θ̂u′ is the estimated social regularized
parameter. Thus, θ̂u can be estimated as Eq. 5.

θ̂u = (Xu,tX
T
u,t + λI)−1(Xu,tbu,t +

λ

2
θ̂u′), (5)

Since in real online social recommendation scenario, different users may not
be involved simultaneously (users rate movies or click links at different time), it
is crucial to differentiate the confidence interval of the estimated parameters for
different users with different number of historical contexts and rewards, espe-
cially when constructing a similarity regularization term (θ̂u′). To achieve this
goal, we record the number of feedback from each user u till time t as nu, and
employ a weighted combination based on softmax functions to produce a reliable
social regularization term for the proposed LS.Lin method.

As depicted above, the basic idea of LS.Lin model is to maintain a confidence
set for the true parameter of each user u with the help of his/her local neighbor’s
parameters. Specifically, for each round, the confidence set is constructed from his
historical contexts x1,au

1
,...,xt,au

t
, the corresponding rewards {rt,au

t
} and his/her

neighbors’ estimated parameters θ̂u′ . In the following Theorem 1, we show that
by estimating parameter as Eq. 5, the true parameter θ∗

u always falls into the
confidence set with high probability. Thus, the algorithm can efficiently compute
an upper confidence bound of rewards for each arm, {r̂t,a(1), ..., r̂t,a(k)}. Finally,
the arm with highest upper confidence bound will be given to the oracle as the
recommendation in this round. The algorithm of proposed model is shown as
Algorithm 1 and the time complexity over T rounds is O(T (d3 +kd)), where k is
the number of arms and d is the number of features of each arm. In Algorithm 1,
at each time t, we first use a softmax function to build up a weighted vector
for u’s neighbors according to their historical playing times and then use it
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Input: λ, α1, α2, ..., αT

Initialization:
for each user u do

A0
u ← λId×d,bu ← 0d

end
Simulation:
for round t ← 1, ..., T do

for each user u do
for v ∈ Nu(G) do

pv ← exp(nv)∑
v′∈Nu(G) exp(nv′ )

end

θ̂u′ ←∑v∈Nu(G) pv θ̂v

θ̂u ← A−1
u (bu + λ

2
θ̂u′)

for i ∈ 1, ..., k do

r̂t,a(i) ← xT
t,a(i)θ̂u + αt

√
xT

t,a(i)A
−1
u xt,a(i)

end
Choose the arm au

t ← arg maxa(i) r̂t,a(i)

Observe rewards rt,au
t

At
u ← At−1

u + xt,au
t
xT

t,au
t

bu ← bu + rt,au
t
xt,au

t

nu ← nu + 1
end

end

Algorithm 1. LS.Lin simulation algorithm.

to construct the social regularization term θ̂u′ . In this way, we can offer more
confidence on u’s neighbors with more historical records to build a reliable social
regularization term. Moreover, the softmax-based combination allows LS.Lin to
handle the change of social networks by only changing components involved in
the computation for θ̂u′ . After u finishes playing and providing feedback to the
system, only u’s parameters, Xu,t, bu,t and nu, will be updated.

Now, we show the theoretical analysis of the proposed LS.Lin algorithm. The
main theorem is stated as follows.

Theorem 1 (Cumulative regret analysis of Algorithm 1). Without loss
of generality, assume that ‖θ∗

u‖2 ≤ 1, ‖xt,a(i)‖2 ≤ L and rt,a(i) ∈ [0, 1]. Given

δ ≥ 0 and set αt =
√

d log(1+
tL2

λ

δ ) + 3
2λ

1
2 , with probability at least 1 − δ, the

cumulative regret of LS.Lin satisfies

RT ≤ 4M
√

dT log(1 + TL2

λd )(
√

d log(1+
T L2

λ

δ ) + 3
2λ

1
2 ),

for any T ≥ 0.
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To prove Theorem 1, we first state a modified concentration result derived in [1].
This result shows that the true parameter θ∗

u lies within an ellipsoid centered at
θ̂u for all rounds t ≥ 0 with high probability, as Theorem 2 shows.

Theorem 2. Assume for each user u, rt,au
t

= xT
t,au

t
θ∗

u+ηt, ‖θ∗
u‖2 ≤ 1, ‖xt,au

t
‖2 ≤

L and rt,au
t

∈ [0, 1]. Define At
u = λI +

∑
t xt,au

t
xT

t,au
t
. Then with probability at

least 1 − δ, for all round t ≥ 0,

‖θ̂u − θ∗
u‖At

a
≤

√
d log(

1 + tL2

λ

δ
) +

3
2
λ

1
2 . (6)

Proof of Theorem 2.

θ̂u = (Xu,tX
T
u,t + λI)−1(Xu,tbu,t +

λ

2
θ̂u′)

= (Xu,tX
T
u,t + λI)−1(Xu,t(XT

u,tθ
∗
u + ηt) +

λ

2
θ̂u′).

= θ�
u − λ(Xu,tX

T
u,t + λI)−1θu∗ + (Xu,tX

T
u,t + λI)−1Xu,tηt

+
λ

2
(Xu,tX

T
u,t + λI)−1θ̂u′ .

(7)

Thus,
xT θ̂u − xT θ∗

u = −λxT (Xu,tX
T
u,t + λI)−1θu∗

+ xT (Xu,tX
T
u,t + λI)−1Xu,tηt +

λ

2
xT (Xu,tX

T
u,t + λI)−1θ̂u′

= 〈x,XT
u,tηt〉At

u
−1 − λ〈x, θ∗

u〉At
u

−1 +
λ

2
〈x, θ̂u′〉At

u
−1 ,

(8)

where At
u = Xu,tX

T
u,t + λI. Now by following Lemma 9 (Self-normalized bound

for vector-valued martingales) from [1], we can easily complete the proof. 
�
To show Theorem 1, we still need to provide some lemmas besides Theorem 2.

Lemma 1. Let At
u = λI+

∑T
t xt,au

t
xT

t,au
t
, assume ‖xt,au

t
‖2 ≤ L, then det(At

u) ≤
(λ + TL2/d)d.

Proof: Let α1, ..., αd be the eigenvalues of At
u. Then det(At

u) =
∏

i αi,
trace(At

u) =
∑

i αi. According to inequality of arithmetic and geometric means,
we can obtain

det(At
u) ≤ (

trace(At
u)

d
)d,

since

trace(At
u) = trace(λI +

T∑
t

xt,au
t
xT

t,au
t
) = λd +

T∑
t

‖xt,au
t
‖22 ≤ λd + TL2,

with ‖xt,au
t
‖2 ≤ L, we have det(At

u) ≤ (λ + TL2/d)d. 
�
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Lemma 2. Let {xu
t } be a sequence, At

u = λI +
∑t

s=1 xs,au
s
xT

s,au
s
, then if

‖xt,au
t
‖2 ≤ L and λmin(λI) ≥ max(L2, 1),

t∑
s=1

‖xs,au
s
‖2

As−1
u

−1 ≤ 2 log
det(At

u)
det(λI)

≤ 2d log(1 +
tL2

λd
).

This lemma directly follows Lemma 11 from [1]. Now we could show the proof
of Theorem 1.

Proof of Theorem 1. We first show the regret of LS.Lin in each user and each
round can be bounded as follows,

regretut = xT
t,a∗u

t
θ∗

u − xT
t,au

t
θ∗

u

≤ xT
t,au

t
θ̃u − xT

t,au
t
θ∗

u = xt,au
t
(θ̃u − θ̂u) + xT

t,au
t
(θ̂u − θ∗

u)

≤ ‖xt,au
t
‖At

u
−1(‖θ̃u − θ̂t−1‖At

u
+ ‖θ̂t−1 − θ∗

u‖At
u
)

≤ 2αt‖xt,au
t
‖At−1

u
,

(9)

where αt =
√

d log(1+
tL2

λ

δ )+ 3
2λ

1
2 , θ̃u is the optimal parameter for xt,au

t
following

the condition ‖θ̃u‖2 ≤ 1 and the first inequality follows the fact that xT
t,au

t
θ̃u is

the optimal reward in round t. The last inequality follows Theorem 2. Then the
cumulative regret bound of LS.Lin can be obtained as follows,

RT =
M∑

u=1

T∑
t

regretut ≤ M

√√√√T
T∑
t

regret2t

≤ M

√√√√T

T∑
t

(2αt‖xt,au
t
‖At

a
−1)2 ≤ M

√√√√4α2
T T

T∑
t

(‖xt,au
t
‖At

a
−1)2

≤ 4M

√
dT log(1 +

TL2

λd
)(

√
d log(

1 + TL2

λ

δ
) +

3
2
λ

1
2 ).

(a) d = 5 (b) d = 10 (c) d = 15 (d) d = 20

Fig. 1. Cumulative rewards analysis with different feature space (Last. fm).
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(a) d = 5 (b) d = 10 (c) d = 15 (d) d = 20

Fig. 2. Cumulative rewards analysis with different feature space (Delicious).

4 Experimental Results

4.1 Experimental Setup

We conduct experiments on two real world datasets, Last.fm and Delicious, which
are both publicly available [8]. Last.fm dataset contains 1,892 users and 17,632
items with 11,946 tags, 12,717 social relations and 92,834 feedbacks. Delicious
dataset contains 1,867 users and 69,226 items with 53,388 tags, 7,688 social
relations and 104,799 feedbacks. Both datasets contain users’ feedback to items.
For example, in Last.fm data, users can choose artists and in Delicious dataset,
users can bookmark URLs. Here we view artists and URLs as arms and use
users’ binary feedback as payoff information on each arm. For each arm, we
follow the operation of [9,12]: we represent arms by the TF-IDF value of their
corresponding tags and then employ PCA to obtain the principle components
as final context features. We choose different numbers of principle components
and report the experimental results in the following section.

In order to demonstrate the benefits of our approach, we compare the pro-
posed LS.Lin method with three baseline methods: (1) Random, (2) NetBan-
dits [12] and (3) GOB.Lin [9]. Random selection is the simplest strategy that
randomly selects an arm for a user in each round. The other two methods are
introduced in above sections and since both NetBandits and GOB.Lin have
proven their better performance than other contextual bandit algorithms, we
would not include other methods for comparison.

4.2 Performance Comparisons

Figures 1 and 2 show the experimental results of average cumulative rewards
on two datasets. We find that the proposed model always performs better
than baseline methods on the two datasets. The reasons we consider are: (i)
although NetBandits [12] is built on an interesting observation that even when
a user is randomly selected for promotion, other users close to the selected
user in the network will be influenced. Their algorithm, which uses one user’s
selected context to update all other close users’ historical contexts, is unsuitable;
(ii) Since GOB.Lin allows one users context to update all users parameters in the
social network, the context may mislead the updating of unrelated users through
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the whole network propagation. Different from these baseline methods, LS.Lin
only use users’ local social relations to construct a reliable social regularization
term and thus avoids the uncertain impact from context propagation.

5 Related Work

Offline Social Recommendation. Integrating social network information into
recommender systems has become a popular research direction in recent years.
There are also several methods [17,22,27,30,31] that focus on incorporating
social network knowledge into recommender systems. Fang et al. [11] decom-
posed the social trust relations between users into multiple aspects to improve
rating estimation accuracy. Guo et al. [15] proposed TrustSVD by extending
SVD++ [18] to incorporate social trust relations. Ma et al. [21] proposed a SoRec
model to collaboratively factorize both rating matrix and social network matrix.
Hu et al. [16] combined SoRec and topic matrix factorization to improve rec-
ommendation performance. However, none of these methods consider the online
setting for social recommendation, where historical records are limited and the
structure of social network may change over time.

Multi-armed Bandit. Multi-armed bandit [3,4,6] has attracted great research
interests in recent years, ranging applications from online advertising [25,28],
routing [5], web search and ranking [2,26], game playing and optimization [13],
recommendation [19,29], etc. The contextual bandit problem, which allows arms
to be observed with their features, arises as a natural extension of traditional
bandit problems and has shown success in online recommendation [1,10,20].
Although much effort has been done in contextual bandit problems, only a
few recent papers investigate social networked bandit problems. [7] considered
a non-contextual bandit problem in social networks. [9] proposed a GOB.Lin
method and [12] proposed a disjoint linear bandit algorithm. [14] investigated
the online community bandit problems and [23] further studied this problem
with a dynamic community formation setting.

6 Conclusion and Future Work

In this paper, we study the online social recommendation problem and pro-
pose a Locality-sensitive Linear Bandit Model to solve it. We provide a theoret-
ical analysis to it and conduct experiments to evaluate the performance of our
method on two real world datasets. The results demonstrate the effectiveness of
the proposed model compared with baselines. For future work, we are interested
in investigating how to use bandit algorithms to model complex user behaviors
in social networks, such as collaboration or competition.
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Abstract. In crowdsourcing systems, task recommendation can help
workers to find their right tasks faster as well as help requesters to receive
good quality output quicker. A number of previous works adopted active
learning for task recommendation in crowdsourcing systems to achieve
certain accuracy with a very low cost. However, the model updating
methods in previous works are not suitable for real-world applications.
In our paper, we propose a generic online-updating method for learning
a factor analysis model, ActivePMF on TaskRec (Probabilistic Matrix
Factorization with Active Learning on Task Recommendation Frame-
work), for crowdsourcing systems. The larger the profile of a worker (or
task) is, the less important is retraining its profile on each new work
done. In case of the worker (or task) having large profile, our algorithm
only retrains the whole feature vector of the worker (or task) and keeps
all other entries in the matrix fixed. Besides, our algorithm runs batch
update to further improve the performance. Experiment results show
that our online-updating approach is accurate in approximating to a full
retrain while the average runtime of model update for each work done is
reduced by more than 90% (from a few minutes to several seconds).

1 Introduction

Crowdsourcing aims to outsource a task to people on the Internet to reduce the
production cost [1]. In recent years, crowdsourcing systems attract much atten-
tions at present [8]. In a crowdsourcing system, a requester has to verify the
quality of every answer submitted by workers, and it is very time-consuming.
Alternatively, requesters highly rely on redundancy of answers provided by mul-
tiple workers with varying expertise, but massive redundancy is very expensive
and time-consuming. The available worker history makes it possible to mine
workers preference on tasks and to provide favorite recommendations. Task rec-
ommendation can help requesters to receive good quality output quicker as well
as help workers to find their right tasks faster. Probabilistic Matrix Factoriza-
tion (PMF) [7] is the state-of-the-art approach for recommendation systems.
A factorization model has to be trained and learned before the model can be
applied for prediction. In real-world applications, the performance of a factor-
ization model is highly affected by how the model is updated, and thus dynamic
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 91–101, 2016.
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updating a model is very important [6]. When updating a worker’s profile, the
profile will not change much if the worker having large profile; while the profile
will have great change if the worker having small profile. Therefore, it does not
make sense to retrain the model from scratch whenever a worker of large pro-
file completes a task, because the performance improvement by retraining the
model in the case is tiny but the cost of retraining model is high. Moreover,
when a large number of workers are working in the crowdsourcing system at the
same period of time, the computational complexity is very high if the model is
retrained after each worker completes a task. Batch update can reduce both user
waiting time and computational complexity.

To overcome the weakness mentioned above, this paper proposes a task rec-
ommendation framework for quality assurance for crowdsourcing systems. Our
contribution are: (1) This paper proposes a generic online-updating method for
learning a factor analysis model, ActivePMF on TaskRec (Probabilistic Matrix
Factorization with Active Learning on Task Recommendation Framework). Our
approach considers the varying expertise of workers for different tasks in real
crowdsourcing scenarios. The most informative task and the most skillful worker
are selected to learn the factor analysis model. (2) Our proposed online-updating
methods are generic and applicable for all PMF models. (3) Complexity analysis
shows that our model is efficient and is scalable to large datasets. (4) Experimen-
tal results show that the prediction of online-updating ActivePMF on TaskRec
model approximates to that of a full retrain of ActivePMF on TaskRec model
while the running time of online-updating algorithm is significantly lower than
that of a full retrain of the model (reduced by more than 90 %).

The rest of this paper is organized as follows. Section 2 presents the related
works. Section 3 presents our task recommendation framework for quality assur-
ance in crowdsourcing systems. Section 4 presents our proposed Online-Updating
Probabilistic Matrix Factorization with Active Learning algorithm. Section 5
describes our experiments. Section 6 concludes our paper.

2 Related Work

2.1 Task Recommendation in Crowdsourcing Systems

Recently, many research works [2,3,9–11] proposed recommendation systems
based on a Probabilistic Matrix Factorization (PMF) model to improve the out-
put quality in crowdsourcing systems. Jung and Lease [3] proposed to use a PMF
model to infer unobserved labels to reduce the bias of the existing crowdsourced
labels, thus improve the quality of labels. Later, Jung [2] proposed to use a
PMF model to improve the quality of crowdsourcing tasks. Experimental results
proved that the strength of PMF over Singular Value Decomposition (SVD)
and baseline methods. However, it does not consider a huge number of tasks on
crowdsourcing systems in reality. Yuen et al. [9,11] considered various task cat-
egories in real scenarios in crowdsourcing systems and proposed a PMF model
for task recommendation in crowdsourcing systems. They proved that consider-
ing task categories in PMF can improve the performance. However, it does not
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consider to reduce the labeling cost by applying active learning approach. Later,
Yuen et al. [10] proposed an active learning model for task recommendation
systems, but new workers have to wait for a long time before having a list of
preferred tasks recommended due to lack of worker performance history for all
new workers. Moreover, some previous works proposed various ways to improve
the performance of recommendation systems for real-world scenarios [4,6]. How-
ever, no previous work considers dynamic-updating for reducing the user waiting
time in task recommendation in crowdsourcing systems.

2.2 Our Motivation

Our motivation is the observation of the need to improve system performance in
terms of model update time per completed task in task recommendation for real-
world scenarios [4]. We propose an online-updating method for learning a factor
analysis model, ActivePMF on TaskRec, to recommend tasks in crowdsourcing
systems. The prediction of our online-updating approach approximates that of a
full retrain of the model, whilst the running time of our online-updating approach
is significantly lower than that of a full retrain of the model.

3 Task Recommendation Framework

Our task recommendation framework (TaskRec) is based on matrix factoriza-
tion method, to perform factor analysis to learn the worker latent feature, the
task latent feature and the task category latent feature. For quality assurance,
ActivePMF is used to select the most informative task to be learned and select
the best worker to query from. We define the problem of task recommendation
in crowdsourcing systems as follows:

Definition 1 Task recommendation problem: Given a worker wi, a set of
tasks V S= {vj}nj=1 and a set of ratings R = {rij} associated between worker wi

and task vj, rank the ratings in R and select the top few tasks in V S for task
recommendation to worker wi.

To facilitate our discussions, Table 1 defines basic terms and notations used
throughout this paper.

3.1 Probabilistic Matrix Factorization on Task Recommendation
Framework

Our model consists of three parts. First, we connect workers’ task preferring
information with workers’ category preferring information through the shared
worker latent feature space. Second, we connect workers’ task preferring infor-
mation with tasks’ category grouping information through the shared task latent
feature space. Third, we connect workers’ category preferring information with
tasks’ category grouping information through the shared category latent feature
space. The graphical model of the TaskRec framework is represented in Fig. 1.



94 M.-C. Yuen et al.

Table 1. Basic notations throughout this paper

Notation Description

WS= {wi}m
i=1 WS is the set of workers, wi is the i-th worker, m is the

total number of workers

V S= {vj}n
j=1 V S is the set of tasks, vj is the j-th task, n is the total

number of tasks

CS= {ck}o
k=1 CS is the set of task categories, ck is the k-th task

category, o is the total number of task categories

l ∈ R l is the number of dimensions of latent feature space

W ∈ R
l×m W is the worker latent feature matrix

V ∈ R
l×n V is the task latent feature matrix

C ∈ R
l×o C is the task category latent feature matrix

R = {rij}, R ∈ R
m×n R is the worker-task preferring matrix, rij is the extent of

the favor of task vj for worker wi

U = {uik}, U ∈ R
m×o U is the worker-category preferring matrix, uik is the

extent of worker wi’s preference for task category ck

D = {djk}, D ∈ R
n×o D is the task-category grouping matrix, djk indicates the

task category ck that task vj belongs to

N(x|μ, σ2) Probability density function of Gaussian distribution
(mean μ, variance σ2)

IR
ij IR

ij is the indicator function that is equal to 1 if the entry
rij is observed and equal to 0 otherwise

Fig. 1. Graphical Model for TaskRec
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Table 2. Transformation of workers’ behaviors into values

Worker behavior Value

Worker’s work done is accepted by requester −→ 5

Worker’s work done is rejected by requester −→ 4

Worker completes a task and submits the work done −→ 3

Worker selects a task to work on but not complete it −→ 2

Worker browses the detailed information of a task −→ 1

Worker does not browse the detailed information of a task −→ 0

By using a worker-task preferring matrix, we can measure the extend the
worker prefer to work the task and provide output that accepted by requesters.
Unlike traditional recommendation systems, workers do not have to give ratings
to tasks to indicate the extent of their favor of each task. To have ratings on
tasks, we transform workers’ behaviors into values as shown in Table 2.

According to the graphical model of the TaskRec framework described in
Fig. 1, the local minimum can be found by performing the gradient descent on
Wi, Vj and Ck. The detailed derivation can be found in [11].

4 Online-Update on Active Learning for Concurrent
Selection of Task and Worker

In this section, we present our Online-Updating Probabilistic Matrix Factoriza-
tion with Active Learning, which is presented in Algorithm 1.

4.1 Random New Task Selection for Reliable Worker

To learn the most accurate classifier with the least number of workdone, we first
query all new tasks, as given in Eq. (1), and select the most reliable worker in
the task category to query from, as given in Eq. (2).

v∗ = {vj |∃vj ∈ V S; Iij = 0,∀wi ∈ WS}. (1)

w∗ = arg max
wi∈WS

uik where djk = 1, vj = v∗. (2)

In Algorithm 1, Step 6 represents the process of new task selection for the
most reliable worker in the category.
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Algorithm 1 Online-Updating on ActivePMF
Input:

Partially observed worker-task matrix, R;
Threshold, Threshold;
Batch size, BatchSize;
Active-sampling heuristic, h (use uncertainty-sampling using the
Maximum Difference between predicted rate and observed rate:

arg maxvj∈V S

∑m
i=1

1∑m
i=1 Iij

∣
∣IR

ij g WT
i Vj

) − rij
)∣
∣);

Output:
Full worker-task matrix Rfull valued within the interval [0, 1] predicting unobserved entries of
R;

Initialize:
Rtmp = R; /* currently observed data */
NumQueries = 0; /*num of queries done by workers*/

1: R̄full = PMF(Rtmp); /* compute full matrix R̄full */

2: Un = set of unobserved entries of Rtmp;

3: NewT = Select all new tasks;
4: NewW = Select all new workers;
5: Set = ActiveSelect(h, R̄full, Un); /* select the most uncertain unobserved instances (Maxi-

mum Difference between predicted rate and observed rate) from Un-New using h and current
predictions R̄full */

6: if |NewT | > 0 then
Select a new task v∗ from New using Eq. (1);
Select the most reliable worker w∗ for task v∗ using Eq. (2);
Request worker w∗ to work on task v∗;
Add the rate to Rtmp;
NumQueries = NumQueries + 1;

7: else
8: if |NewW | > 0 then

Select the most uncertain task v∗∗ from Set using Eq. (3);
Select a new worker w∗∗ for task v∗∗ using Eq. (4);
Request worker w∗∗ to work on task v∗∗;
Add the rate to Rtmp;
NumQueries = NumQueries + 1;

9: else
Select the most uncertain task v∗∗∗ from Set using Eq. (5);
Select the most reliable worker w∗∗∗ for task v∗∗∗ using Eq. (6);
Request worker w∗∗∗ to work on task v∗∗∗;
Add the rate to Rtmp;
NumQueries = NumQueries + 1;

10: end if
11: end if
12: if (Worker Profile >= Threshold) and (Task Profile >= Threshold) then

Update the feature vectors of the selected worker wm′ ;
Update the feature vectors of the selected task vn′ ;

13: else
14: if (Worker Profile >= Threshold) then

Update the feature vectors of the selected worker wm′ ;

15: else
16: if (Task Profile >= Threshold) then

Update the feature vectors of the selected task vn′ ;

17: else
Update the feature vectors of all workers and all tasks;

18: end if
19: end if
20: end if
21: if (No new incoming work done) then
22: return R̄full;

23: end if
24: if (NumQueries mod BatchSize = 0) then

NumQueries = 0;
Go to Step 1;

25: else
Go to Step 2;

26: end if
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4.2 Uncertainty Sampling for Task Selection for Randomly Selected
New Worker

The algorithm assumes a particular active learning heuristic specified as an
input, and we adopt uncertainty-sampling [5] using the Maximum Difference
between predicted rate and observed rate as in Eq. (3) to choose the most uncer-
tain task, that requires minimization of uncertainty. To let new workers having
a list of preferred tasks recommended but not having to work on a large amount
of tasks beforehand, we randomly select a new worker (if any) to query from, as
given in Eq. (4).

v∗∗ = arg max
vj∈V S

m∑
i=1

1∑m
i=1 Iij

∣∣IRij
(
g

(
WT

i Vj

) − rij
)∣∣. (3)

w∗∗ = {wi|∃wi ∈ WS; Iij = 0,∀vj ∈ V S}, (4)

where the logistic function g(x) bounds the range of WT
i Vj within the range

[0, 1].
In Algorithm 1, Step 8 represents the process of most uncertain task selection

for new worker.

4.3 Uncertainty Sampling for Task Selection for Reliable Worker

The algorithm assumes a particular active learning heuristic specified as an
input, and we adopt uncertainty-sampling [5] using the Maximum Difference
between predicted rate and observed rate as in Eq. (5) to choose the most uncer-
tain task, that requires minimization of uncertainty. To select the most reliable
worker for the most uncertain task, we select the worker with the maximum
worker-category preferring score where the category that the task belongs to as
in Eq. (6).

v∗∗∗ = arg max
vj∈V S

m∑
i=1

1∑m
i=1 Iij

∣∣IRij
(
g

(
WT

i Vj

) − rij
)∣∣. (5)

w∗∗∗ = arg max
wi∈WS

uik where djk = 1, vj = v∗∗∗. (6)

where the logistic function g(x) bounds the range of WT
i Vj within the range

[0, 1].
In Algorithm 1, Step 9 represents the most uncertain task selection for the

most reliable worker.
After annotation, the selected task is removed from the unlabeled data set.

Then, the selected task and its rate are added to the set of labeled dataset.
Next, the algorithm has to update the model.
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4.4 Partial Update

The impact on retraining the whole learning model decreases as the profile size
of the worker (or task) increases. Especially when work done by new workers or
work done on task having small profile, updating the feature matrix is crucial.
For a new worker, each work done by him will result in much change in his task
preference in his worker profile; while for a worker that has already completed a
lot of tasks, each work done by him will not change much in his worker profile.
Updating feature vectors for a worker (or task) having smaller profile results in
a much better model. As a result, for a worker (or task) having large profile, we
observe that the model learned from retraining the feature vector of the worker
(or task) only is approximate to that learned from a full retrain.

In Algorithm 1, Step 12, 14 and 16 represent the process of a partial update.
For a worker (or task) having profile size larger than the threshold, the algorithm
retrains the feature vector of the worker (or task) and keep all other entries in
the matrix unchanged; otherwise, the algorithm retrains the feature vectors of
all workers and all tasks.

4.5 Batch Update

The time for retraining a learning model is proportional to the computational
complexity of the model and the amount of information stored in the model;
while the amount of information depends on the number of workers, the number
of tasks and the number of work done. Retraining a large learning model takes
a long time. For a large real-world crowdsourcing system, it is inefficient if the
whole model is retrained from scratch once a worker completes a task.

In Algorithm 1, Step 24 and 25 represent the process of a batch update. When
the number of work done is smaller than the batch size, the learning model is
not retrained. On the other hand, when the number of work done is larger than
the batch size, the algorithm retrains the learning model.

4.6 Complexity Analysis

To compute the complexity of our Online-Updating ActivePMF, we consider
both the computation of the gradient descent methods and the computation of
selecting the most uncertain task for the most reliable worker. The main compu-
tation of the gradient descent methods is evaluating objective function E and cor-
responding gradients on variables. Because of the sparsity of matrices R, U , and
D, the complexity of evaluating the objective function is O (nRl + nU l + nDl),
where nR, nU and nD are the number of non-zero entries in matrices R, U , and
D respectively, and l is the number of dimensions of latent feature space. For the
computation of selecting the most uncertain task for the most reliable worker,
the complexity of selecting the most uncertain task in Eq. (5) is O (nRl), the
complexity of selecting the most reliable worker in Eq. (6) is O (m), and thus
the total complexity of assigning a task to a worker is O (m + nRl). As a result,
the total complexity for one iteration is O (m + nRl + nU l + nDl). It means that
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the complexity is linear with respect to the number of workers and the number
of observations in the three sparse matrices. The complexity analysis shows that
Online-Updating ActivePMF can scale to very large datasets.

5 Experimental Analysis

In this section, our experiments are intended to address the following two
research questions:

1. How is the partial update on Online-Updating ActivePMF approach com-
pared with the full-retrain of ActivePMF approach?

2. How is the batch update on Online-Updating ActivePMF approach compared
with the full-retrain of ActivePMF approach?

5.1 Description of Dataset

Our dataset is retrieved from the recent NAACL 2010 workshop on crowdsourc-
ing, which has made publicly available all the data collected as part of the work-
shop1. The statistics about our dataset: No of workers is 1,592; No of different
tasks is 6,639; No of categories is 43; Total HITs from all tasks is 19,815; No of
ratings is 19,815. We categorize the dataset by both languages and keywords of
tasks given by MTurk [9].

5.2 Evaluation Metrics

To compare the prediction quality of our Online-Updating ActivePMF method
with the full retrain of ActivePMF approach, we use the Mean Absolute Error
(MAE) and the Root Mean Squared Error (RMSE) as the comparison metrics.

5.3 Performance Comparison

We compare our approach with the full retrain of ActivePMF approach, where
Probabilistic Matrix Factorization (PMF) [7] is the state-of-the-art approach for
recommendation systems.

In the comparison, we randomly select 20 % of ratings from the dataset as
training data, randomly choose 60 % of ratings from the dataset as active dataset,
and leave the remaining 20 % as prediction performance testing. For the value
transformation, we have 10,411 approved tasks (value transformed to 5), 9,399
submitted tasks (value transformed to 3) and only 5 rejected tasks (value trans-
formed to 4). Most rejected tasks are removed in our dataset. We set θW = θV =
θC = 0.00004, set θU = 0.0001 and θD = 0.01, set the number of latent features
k = 20. The MAE results, the RMSE results and the runtimes of model update
are reported in Table 3.

1 NAACL 2010 workshop: http://sites.google.com/site/amtworkshop2010/data-1.

http://sites.google.com/site/amtworkshop2010/data-1
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Table 3. Comparison on a full-retrain with online-updating approach on ActivePMF
model learning (Feature k = 20; No of work done = 11,000)

ActivePMF model MAE RMSE Runtime (min)

Full Retrain 0.0156 0.0845 3.839

Online-Updating (P = 0.001; Batch = 1) 0.0156 0.0845 3.374

Online-Updating (P = 0.001; Batch = 10) 0.0191 0.0914 0.675

Online-Updating (P = 0.001; Batch = 50) 0.0313 0.1353 0.142

Online-Updating (P = 0.001; Batch = 100) 0.0515 0.2103 0.137

Online-Updating (P = 0.001; Batch = 150) 0.0768 0.2977 0.049

Online-Updating (P = 0.001; Batch = 200) 0.0513 0.2033 0.038

Online-Updating (P = 0.001; Batch = 500) 0.1022 0.3445 0.017

By using the partial update method, the prediction quality of ActivePMF
with partial updates (threshold t = 0.001) approximates to that of ActivePMF
with full retrain, but the average runtime per workdone of ActivePMF with
partial updates (threshold t = 0.001) is greatly reduced by 12 % compared with
that of ActivePMF with full retrain.

By using the batch update method, the average runtime on model update
per work done can be further reduced. As batch size increases, both the MAE
results and the RMSE results also increase, while the average runtime on model
update per work done decreases significantly. Batch size 10 is the best choice
among all the choices in Table 3.

6 Conclusion

In this paper, we have proposed a generic online-updating method for learning a
factor analysis model, ActivePMF on TaskRec, for crowdsourcing systems. Our
algorithm improves the runtime of model update significantly but the prediction
accuracy still approximates to that of full retrain. Experiment results show that
the average runtime of model update for each workdone is reduced by more than
90 % (decreases from a few minutes to several seconds).
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Abstract. The medial temporal lobe is crucial for the encoding and retrieval of
episodic long-term memories. It is widely assumed that memory encoding is
associated with information transfer from sensory regions via the rhinal cortex
into the hippocampus. Retrieval of information should then be associated with
transfer in the reverse direction. However, experimental evidence for this mech‐
anism is still lacking. Here, we show in human intracranial EEG data during two
independent recognition memory paradigms that rhinal-hippocampal information
flow significantly changes its directionality from encoding to retrieval. Using a
novel phase-based method to analyze directional coupling of oscillations,
coupling values were more positive (i.e., from rhinal cortex to the hippocampus)
during encoding as compared to retrieval. These effects were observed in the delta
(1–3 Hz) range where rhinal-hippocampal post-stimulus phase synchronization
increased most robustly across both experiments.

Keywords: Directional coupling · Long-term memory · Intracranial EEG ·
Medial temporal lobe · Hippocampus · Rhinal cortex

1 Introduction

Processes within the human medial temporal lobe are crucial for episodic long-term
memory [1–3]. It is assumed that encoding of new events depends on information flow
from sensory cortices via peri- and entorhinal cortex (here together referred to as rhinal
cortex, RC) to the hippocampus (HC), which supports the rapid formation of novel
memory traces. Retrieval of these events after a short time period should be associated
with information flow in the reverse direction [4, 5]. To our knowledge, no previous
study has tested this prediction, possibly due to methodological challenges: First,
recording neural activity from medial temporal brain structures is difficult in humans
and ideally requires intracranial EEG electrodes, which are only implanted in specific
populations of pharmacorefractory epilepsy patients. Second, EEG activity is charac‐
terized by oscillatory networks [6, 7], but investigating directional interactions between
oscillators is a methodologically complex issue [8].
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Here, we report results from two intracranial EEG experiments in which time-
resolved analyses of directional coupling were performed in order to characterize the
flow of information between RC and HC during memory encoding and retrieval. EEG
was recorded via medial temporal depth electrodes in epilepsy patients undergoing
presurgical evaluation. In both experiments, a large number of trial-unique pictures
either with complex landscapes and houses (experiment 1; n = 11 patients), or with cut-
out depictions of faces and houses (experiment 2; n = 7 patients), was presented for
encoding and had to be recognized again among a smaller number of lures during
retrieval (Fig. 1). To investigate directional information flow, we first identified the
frequency band which in both experiments and during both, encoding and retrieval,
consistently showed task-related changes in RC-HC phase synchronization (i.e.,
increases in phase synchronization after a stimulus is presented as compared to baseline).
Then, we estimated directional RC-HC coupling within this frequency band with a
phase-based method particularly well suited to capture oscillatory EEG dynamics [9,
10]. Finally, directional coupling values for the encoding and the retrieval phase were
compared with non-parametric label permutation tests [11]. Because RC-HC

Fig. 1. Analysis of directional coupling during memory encoding and retrieval. (A) In the
first experiment (n = 11), recognition memory was tested for complex landscapes and buildings.
(B) In the second experiment (n = 7), participants encoded pictures of faces and houses, and
memory was afterwards inquired in a recognition test. (C) Post-implantation MRI from one patient
showing one intracranial EEG electrode contact in the rhinal cortex (left) and in the hippocampus
(right). (D) Directional coupling between rhinal cortex and hippocampus was analyzed based on
phase dynamics of delta (1–3 Hz) oscillations in the two regions. In principle, the influence of
activity in one region on activity in the other region was quantified by the improvement of
prediction of activity in region A at time t by knowledge of activity in region B at time t-τ.
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information transfer is thought to depend on the output of early rhinal memory operations
[12], we furthermore evaluated the temporal dependency between directional coupling
effects and the rhinal N400 component.

2 Methods

2.1 Participants and Experimental Design

Both experiments were performed by patients with pharmaco-refractory temporal lobe
epilepsy undergoing invasive presurgical investigation. The first experiment (involving
memory encoding and recognition of landscapes and buildings) was conducted by 11
patients (39.4 ± 10.1 years), the second experiment (involving encoding and recognition
of houses and faces) by 7 patients (35.3 ± 13.2 years). Previous analyses of these
experiments have been published before (first experiment: [13]; second experiment:
[14]), and details about the paradigms can be found in these papers.

In brief, in the first experiment (Fig. 1A), we presented complex pictures of land‐
scapes and buildings in four separate learning sessions, which took place on two different
days (two on each day). In each learning session, 80 pictures were presented (presen‐
tation time 1200 ms, inter-trial interval 1800 ± 200 ms), and subjects had to indicate
whether they were presented a landscape (half of the items) or a building. On one day,
the first learning session was followed by an afternoon “nap” of around 60 min duration,
while subjects did not take a nap on the other day. The second learning session followed
15 min after the nap (or around 90 min after the first learning session on the day without
nap) and contained 80 new pictures on each day. During the subsequent retrieval phase,
which followed the second learning session after an interval of 15 min, subjects were
shown the 160 items presented before on that day, randomly intermixed with 80 new
items, and were asked to indicate via button-press whether they remembered each item
or not (presentation time 1200 ms, inter-trial interval 2000 ms ± 200 ms).

The second experiment (Fig. 1B) consisted of several (between 2 and 8, depending
on the participant’s availability) consecutive blocks, each of which contained a famili‐
arization phase, an encoding phase, and a retrieval phase. During the familiarization
phase, four stimuli which afterwards served as “repeats” (see below) were presented
four times each in random order. These data were not analyzed here. During the encoding
phase, 112 pictures from three different classes were presented (presentation time
2500 ms, inter-trial interval 1500 ms), and subjects had to rate their pleasantness by
either pressing the left mouse button or the right mouse button. Items from class one
(80/112 items, “expected”) consisted of trial-unique pictures of a house or a face,
presented on a green or a red background. In each block, all expected items showed
either faces or houses, and had either red or a green background, and this changed
throughout the blocks. Items from class two (16/112 items, “unexpected”) showed trial-
unique pictures from the other category and with the other background color. Finally,
items from class three (16/112 items, “repeats”) consisted of the four pictures shown
during the familiarization phase, which had the same category and background color as
the expected items (but were not trial-unique). During retrieval, we presented 72 test
items (presentation time 5000 ms, inter-trial interval 1500 ms). Thirty-two of them were
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old items shown on “expected” trials, 16 were new items from the same category and
background color as in the expected trials, 16 were old items shown on “unexpected”
trials, and 8 were novel items from the same category and background color as the
unexpected trials. On each trial, subjects indicated on a four-point scale whether they
believed an item had been presented before (“sure old”, “unsure old”, “unsure new”,
“sure new”). Notably, in our previous paper [14], we compared EEG activity during
presentation of expected and unexpected items in the encoding phase; in the current
analysis, we focused on “expected” items during both encoding and retrieval.

2.2 Recordings

The location of electrode contacts was ascertained by MRI in each patient (see Fig. 1C
for a typical example). Electrodes (AD-Tech, Racine, WI, USA) had 10 cylindrical
platinum-iridium contacts and a diameter of 1.3 mm. All recordings were performed
using a Schwarzer recording system (Schwarzer GmbH, Munich, Germany). The EEG
data were referenced to linked mastoids, recorded at a sampling rate of 1000 Hz, and
band-pass filtered (0.01 Hz [6 dB/octave] to 300 Hz [12 dB/octave]). EEG trials were
visually inspected for artifacts (e.g., epileptiform spikes), and trials with artifacts were
excluded from further analysis. Group statistical analyses were performed by analyzing
data from one rhinal and one hippocampal contact in each patient. All recordings were
taken from the nonepileptic hemisphere (i.e., contralateral to the epileptogenic focus),
to minimize the possibility of artifact contamination. In each patient, we selected one
rhinal and one hippocampal contact based on the following criteria: (1) anatomical
localization in post-implantation MRI scans; (2) low contamination by electrical and
epileptiform artifacts; (3) high overall t-value within the analyzed epochs (averaged
across all conditions and then compared to baseline), indicating relatively consistent
responses across trials. Recordings were performed at the Department of Epileptology,
University of Bonn, Germany. The studies were approved by the local ethics committee,
and all patients gave written informed consent.

2.3 Analysis of Phase Synchronization

Phase synchronization was quantified based on calculating circular variance [15]. To
avoid edge effects, data were demeaned before phase estimation and the borders of the
time windows were cut off afterwards (keeping the central 1200 out of 4096 data points).
For the analysis of synchronization strength, we used wavelet transformation (Morlet
wavelet) to derive phases for 23 different center frequencies (logarithmically scaled).
The synchronization values were averaged across a baseline interval from −200 ms to
0 ms, as well as across a poststimulus interval from 0 to 1000 ms.

2.4 Analysis of Directional Coupling

The time-resolved measure used here is an extended variant of the directional coupling
measure proposed by Rosenblum and Pikovsky [9], which is based on the concept of
phase synchronization. This time-resolved directional coupling measure has been
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described in detail previously ([10]; see Fig. 1D). Phase values were estimated using a
combination of a band-pass filter (1st order forward/backward Butterworth filter) and a
subsequent Hilbert transformation. It was shown that this transformation is equivalent
to the usage of the wavelet transformation applied above [16]. In the following, the
phases of two systems (1,2) – in our case: EEG recordings from rhinal cortex and hippo‐
campus – are denoted as Φ1,2(tj

r). With j = 1,…,n as a time index related to an arbitrary
time point (e.g. an external cue) of an ensemble of realizations r = 1,…,m. We modeled
the slope of the phase of one system as a function of the phases of both systems. For
example, the phase dynamics of system 1 were quantified by the phase slope of system
1 between two time points with a time delay τ,
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These phase dynamics were modeled by two-dimensional Fourier series
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with k, l denoting the order of the Fourier terms, by approximating the Fourier coeffi‐
cients ak

j
, l in a least-square sense over the m realizations. In this model, the phase

dynamic of system 1 depends on previous phase states of system 1 and system 2.
Following Rosenblum and Pikovsky [9], we used fixed combinations of orders k, l and
a fixed value of τ, corresponding to the average length of one oscillatory cycle. The
influence from system 2 onto system 1 was calculated via

c2
j
(1|2) = 1∕(a0,0

j
)2
∑

k,l
(ak,l

j
)2

With l ≠ 0, as described previously [17]. With the analogously calculated influence of
system 1 onto system 2, the time-resolved directional interaction follows as

Dj(1, 2) = cj(2|1) − cj(1|2)
Therefore Dj > 0 reflects a predominant influence of system 1 onto system 2, Dj < 0 a
predominant influence of system 2 onto 1, while Dj ≈ 0 corresponds to a bidirectional
or no influence between the systems.

The calculation of directional coupling requires large numbers of trials, which need
to be equal across conditions [10]. Therefore, we cumulated all encoding trials from the
two subsequent days in experiment 1, and compared these to an equal number of
randomly drawn retrieval trials. In experiment 2, the minority of trials which differed in
terms of background color and picture category (“unexpected items”) were excluded
from further analysis, and again an equal number of encoding and retrieval trials was
selected. All statistical results were corrected on the cluster level for multiple compar‐
isons using a nonparametric permutation-based approach [11]. This procedure effec‐
tively corrects the alpha level for multiple comparisons on an assumption-free basis
regarding the sampling distribution under the null hypothesis. We first calculated for
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each time point whether coupling directions differed significantly (using a paired-
samples t-test with an uncorrected threshold of p < .05). Then, we added the t-values
for contiguous significant time points, resulting in one sum t-value for each cluster. Next,
we shuffled the data across trials within each condition (encoding and retrieval) and for
each patient, thereby randomly re-assigning rhinal cortex activity from trial i to hippo‐
campal activity from trial j, and again extracted clusters as in the empirical data. For
each permutation, only the largest surrogate cluster was taken into account. Finally,
corrected p values were obtained as the rank of each empirical data cluster within the
sorted distribution of surrogate data.

2.5 Results

First, we investigated the strength of stimulus-related phase synchronization in different
frequency bands during encoding and retrieval. We calculated a four-way ANOVA with
“band” (delta: 1–3 Hz, theta: 4–8 Hz, alpha: 9–12 Hz, beta: 13–25 Hz, gamma:
26–45 Hz), “encoding vs. retrieval” and “poststimulus vs. baseline” as repeated meas‐
ures and “study” as between-subject factor. We found an interaction of “poststimulus
vs. baseline” with “band” (F4,64 = 4.428; p = 0.003), indicating that both experiments
were associated with significantly different task-related changes of phase synchroniza‐
tion in the different frequency bands. Importantly, there were no main effects of, or
interactions with, the factors “study” or “encoding vs. retrieval”, indicating similar
stimulus-related effects across encoding and retrieval and in both studies.

Given the “poststimulus vs. baseline” × “band” interaction, we next calculated sepa‐
rate three-way ANOVAs in all bands with the factors “encoding vs. retrieval” and
“poststimulus vs. baseline” as repeated measures and “study” as between-subject factor.
In the delta frequency range, there was a significant main effect of “poststimulus vs.
baseline” (F1,16 = 7.941; p = 0.012), reflecting a significant enhancement of rhinal-
hippocampal delta synchronization during memory processing in both paradigms. For
the beta band, there were significant interactions for “poststimulus vs. baseline” ×
“encoding vs. retrieval” (F1,16 = 6.959; p = 0.018) and “poststimulus vs. baseline” ×
“encoding vs. retrieval” × “study” (F1,16 = 4.627; p = 0.047). In the beta range, we thus
compared phase synchronization during the experiment as compared to the baseline
phase separately during encoding and retrieval using T-tests. However, none of these
tests became significant. There were no main effects of, or interactions with, the factor
“poststimulus vs. baseline” in the theta, alpha, or gamma frequency range. As poststi‐
mulus (task-related) increases in RC-HC phase synchronization were exclusively
evident in the delta (1–3 Hz) frequency range across the two experiments, further anal‐
yses of directional coupling focused on rhinal and hippocampal phase dynamics in this
frequency band.

Next, we compared the direction of information flow during encoding and retrieval.
As described in detail in the Methods section, we used a surrogate-based non-parametric
statistical approach to search for significant clusters of differences between these two
experimental conditions [11]. In the first experiment, we found that the direction of
information flow significantly differed between encoding and retrieval from 244 to
247 ms and from 251 to 295 ms after stimulus presentation, with an increased RC�HC
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coupling during encoding as compared to retrieval (pcorr < .05; Fig. 2A). Similar results
were obtained for the second experiment: Here, the direction of information flow
reversed between 113 and 161 ms, again with a significantly increased RC�HC
coupling during encoding as compared to retrieval (Fig. 2B).

Fig. 2. Direction of rhinal-hippocampal coupling changes between memory encoding and
retrieval. (A, B) In two separate recognition memory experiments, we found that during memory
encoding, directional coupling values from RC to HC are more positive than during retrieval
(average values across patients and standard errors of the mean are shown; difference values are
depicted by red lines where significant). These effects occurred slightly earlier in the second as
compared to the first paradigm. (C) These latency differences were paralleled by a numerically
earlier peak of the average encoding-related rhinal event-related potential (N400 component) in
the second as compared to the first experiment. (D) There was a significant inter-individual
correlation between the peak latencies of the rhinal N400 components during encoding and the
latencies of directional coupling effects (R = 0.62; p = 0.006).

Finally, we investigated the functional relevance of these effects in greater detail.
Hippocampal memory processes are thought to depend on the output of rhinal memory
operations evaluating, for instance, stimulus novelty [18]. Since early rhinal memory
operations are considered to be reflected by the N400 component [12], we tested whether
latencies of the rhinal N400 component predicted inter-individual differences in the
latencies of directional RC-HC coupling effects (Fig. 2C). Corresponding to the earlier
directional coupling effect in experiment 2 compared to experiment 1, the average N400
peak during encoding occurred numerically earlier in experiment 2 (see Fig. 2C; indi‐
vidual peak latencies did not significantly differ in both experiments). More importantly,
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directional coupling latencies across both experiments correlated significantly with the
peak latencies of the N400 component during encoding (R = 0.62; p = 0.006; Fig. 2D),
and a similar trend was evident during retrieval (R = 0.41; p = 0.09). Hereby, maximal
directional coupling differences occurred at times corresponding to the pre-peak slope
of the rhinal N400 component.

2.6 Discussion

Our data show that the direction of information flow between RC and HC changes
significantly between memory encoding as compared to retrieval, with a stronger
RC�HC coupling during encoding and stronger HC�RC coupling during retrieval.
The timing of directional coupling differences fits well with single-cell and intracranial
EEG data indicating that earliest hippocampal responses to visual stimuli occur around
200 ms [14, 19], i.e. in close temporal proximity to the observed increase of RC�HC
information transfer during encoding.

An electrophysiological marker of early rhinal memory operations, which are
thought to precede and provide a necessary basis for hippocampal processes, is the rhinal
N400 component [12]. This component has been found to be related, for instance, to
semantic preprocessing and evaluation of stimulus novelty [18, 20, 21]. Thus, we
hypothesized that rhinal N400 peak latencies and the latencies of directional coupling
effects may be interindividually correlated. Indeed, we observed such an interrelation.
Generally, the peak of an event-related potential rather corresponds to the endpoint than
to the initiation of a neural process. Together with the finding that maximal directional
coupling differences occurred at times corresponding to the pre-peak slope of the rhinal
N400 component, this suggests that RC-HC information transfer crucially depends on
the output of early rhinal memory operations.

Furthermore, our results are in line with findings showing that phase synchronization
of oscillations across RC and HC is highly relevant for memory operations [7, 22].
During both encoding and retrieval, we consistently detected prominent stimulus-related
synchronization enhancements in the delta frequency range. Based on this initial finding,
we demonstrated a reversal of directional RC-HC coupling of delta oscillations during
encoding compared to retrieval. Our results are in accordance with recent intracranial
EEG data indicating a prominent role of human medial temporal delta oscillations for
memory encoding and retrieval [23–27]. In this sense, our findings moreover support
the idea that rodent medial temporal theta oscillations, which are an essential element
in models of hippocampal encoding and retrieval operations [4, 28], may be functionally
most closely paralleled by human delta oscillations [24–27, 29].

As a methodological remark, the applied method for estimating directional coupling,
although particularly well suited to capture oscillatory dynamics, requires large amounts
of data to provide robust estimates [9, 10]. Therefore, we used as many trials as possible
and were unable to analyze relevant subconditions, for instance, encoding trials with
subsequently remembered versus forgotten items or retrieval trials with correct versus
incorrect responses. Still, the interindividual variance of the directional coupling values
appears to be quite large, in particular, during the second 500 ms after stimulus presen‐
tation (Fig. 2A and B). Hence, application of the described method to more extended
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encoding and retrieval data is needed to validate our findings. Furthermore, an improved
method for the quantification of directional oscillatory coupling being less reliant on
large amounts of data would be desirable.

To summarize, our data show that the direction of oscillatory coupling within the
human medial temporal lobe reverses between memory encoding and retrieval. Further
studies, including analysis of larger EEG data sets and recordings of action potentials
in animal experiments, will be required to validate our findings and to elucidate the
cellular mechanisms underlying this effect.
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Abstract. Synaptic connections in local cortical circuit are highly het-
erogeneous and nonrandom. A few strong synaptic connections often
form “cluster” that is a tightly connected group of several neurons.
Global structure of the clusters, however, has not been clarified yet. It is
unclear whether clusters distribute independently and isolated in corti-
cal network, or these clusters are a part of large-scale of global network
structure. Here, we develop a network model based on recent experi-
mental data of V1. In addition to reproducing previous result of highly
skewed EPSPs, the model also allows us to study mutual relationship
and global feature of clusters. We find that the network consists with
two largely different sub-networks; a small-world network consists only
of a few strong EPSPs and a random network consists of dense weak
EPSPs. In other words, local cortical circuit shows a duality, and pre-
viously reported clusters are results of local observation of the global
small-world network.

1 Introduction

Local cortical circuit is highly nonrandom [4,10,11]. Distribution of synaptic
strength, i.e. amplitude distribution of excitatory postsynaptic neurons (EPSPs)
is largely skewed to the right hand side, which is well described by long-tail dis-
tributions, typically the lognormal distribution [2,8]. The lognormal distribution
of synaptic strength means that whereas almost all connections are weak, a few
synaptic connections are extremely strong comparing with the weak typical value
of amplitude of EPSPs. Actually, while typical amplitude of EPSP is less than
1 mV, a few connections have about 10 mV EPSPs, which is dozens of times
larger than the typical strength.

A few strong EPSPs distribute neither randomly nor homogeneously in local
cortical circuit. Physiological experiments using multi-electrode array revealed
that strong synaptic connections often form “cluster” structure [11]. For pairs of
excitatory neurons, probability of bidirectional connection is higher than naively
expected from probability of unidirectional connections and the former probabil-
ity increases as strengths of EPSPs of these connection increases [11]. Moreover,
c© Springer International Publishing AG 2016
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for triplet of excitatory neurons, distribution of cluster structure that character-
ized patterns of connections among these three neurons, called “network motif”,
clearly shows that connected network motives, or clusters, are formed with sig-
nificantly high probability than random network [11].

Synaptic connectivity including skewed distribution of EPSPs and cluster
structure in the network actually affects spiking dynamics of neurons in local
circuit. Spontaneous ongoing activity, for example, that is measured actually in
vivo is realized more robustly in networks with the skewed EPSP distribution
than these with normally distributed EPSPs [5,7,12,13]. Moreover, it is shown
by theoretical studies that existence of cluster structures in network often enrich
variety of the spontaneous firing state [1,6,9], which can responsible for various
computational function in the brain like as working memory for example.

However, global nature of the cluster structure has not been clarified yet.
Because previous studies of cluster structure treated groups of neurons consist
of up to three neurons, it is still unknown whether these clusters distribute
independently and are isolated in the network or they are the tips of the icebergs
of a global structure of the local circuit.

In this paper, in order to solve the problem, we develop a network model of
neurons based on the data obtained from the latest physiology experiment of
primary visual cortex (V1) that reveals positive relationship between synaptic
connectivity between pairs of neurons and correlation of receptive fields of them
[3]. In addition to reproduce previous results of cluster structure, we show that
we can approach global relationship among them owing to mediation of receptive
fields of neurons at edges of each synaptic connection. As a result, we show that
previously reported clusters are a just observed parts of global “small world”
feature of the network. We also show that the network consists two sub-networks
with different network topology; the small-world network consists of a few strong
EPSPs and apparently random network consists of major and dense weak EPSPs.

2 Network Model

We develop our network model based on recently reported data of neurons in V1
that shows positive relationship between synaptic connectivity between neurons
and correlation between receptive fields of them. In the paper, the authors find
that both connection probability and mean amplitude of synaptic connections, if
it exists, increases almost monotonically as correlation of receptive fields of them
increases. In other words, neurons are connected more tightly if their receptive
fields are more similar.

We first prepare 10000 of excitatory model neurons and assign them receptive
fields virtually using the 2-dim Gabor function,

G(x′, y′) = A exp(− x′2

2σ2
x

− y′2

2σ2
y

) cos(2πfx′ + φ) (1)

x′ = (x − cx) cos θ − (y − cy) sin θ (2)
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y′ = (x − cx) sin θ + (y − cy) cos θ (3)

where A is amplitude, (cx, cy) is center of the Gaussian, σx and σy are standard
deviations of the Gaussian perpendicular, θ is orientation, f is frequency, and φ
is phase. Parameters of the Gabor function for each excitatory neuron are chosen
uniformly and randomly from a ranges of parameters that are adjusted as they
reproduce seemingly natural shape of receptive fields and reported distribution
of correlation coefficient between receptive fields. Correlation coefficient between
receptive fields is defined as the simple pixel-wise inner product of 2-dim images
of receptive fields. Actual range of parameters of the Gabor filter are A = 1.0,
0.35 ≤ cx, cy ≤ 0.65, 0 ≤ θ, φ ≤ 2π and 1 ≤ s ≤ 4, σx = σy = 0.20/s, f = 1.25s.
Figure 1 shows obtained distribution of correlation coefficient of pairs of neuron
models. As similar to experimental report, the distribution has a sharp peak
around zero correlation coefficient. Moreover, we have confirmed that decay curve
of the distribution is well fitted by the exponential function and decay rate of the
function agree well to the experimental result (Fig. 2). Figure 3 shows examples
of assigned receptive fields.

Based on the assigned receptive fields, we construct synaptic connections for
all pairs of neurons in the network. Because experimentally reported connection
probability between neurons [3] is well fitted by p(c) = 0.55c2 + 0.22c + 0.064,
where c is correlation coefficient between receptive fields of these neurons, we
measure correlation coefficient of assigned receptive fields of a pair of neurons
and put each unidirectional connection between them independently with the
connection probability p(c). Then, we assign amplitude of EPSP of each connec-
tion, if exists, as explained below.

Experimental report provided the average amplitude of EPSPs as a function
of correlation coefficient between receptive fields between presynaptic and post-
synaptic neurons. Detailed values of these amplitude, however, are not explic-
itly given. In order to overcome the limitation, we assume that distributions of
amplitude of EPSPs conditioned by the mean are described as the exponential
function p(a|m) = 1/m exp(−a/m), where m is the mean amplitude. Thus, the
whole distribution of EPSPs (Fig. 4) is given as;

Pa(a) =
∫

dcPc(c)
∫

dmδ(m − fm(c))p(a|m), (4)

where Pc(c) is the distribution function of correlation coefficient between recep-
tive fields given in Fig. 1 and fm(c) is the mean of EPSP as a function of the
correlation coefficient, which we approximate as fm(c) = 0.28 exp(2.5c) based
on the experimental report, Extended data Fig. 2b of [3]. Thus, final procedure
to chose amplitude of EPSP of each synaptic connection is as follows; we first
measure correlation coefficient c between receptive fields of presynaptic and post-
synaptic neurons and derive the mean of the EPSP as m = fm(c), then randomly
choose an actual value of EPSP from the exponential distribution p(a|m). If the
random sampling gives biologically implausible value of EPSP that is larger
than 20 mV, we simply discard the value and resample a value from the same
distribution.
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Fig. 1. Obtained distribution of cor-
relation coefficient of pairs of neu-
ron models. As similar to experimen-
tal report, the distribution has a sharp
peak around zero correlation coeffi-
cient.

Fig. 2. Decay curve of the distribution
(blue line) is well fitted by the expo-
nential function and decay rate of the
function agree well to the experimen-
tal result (red points). (Color figure
online)

Fig. 3. Examples of assigned receptive
fields.

Fig. 4. Obtained distribution of EPSPs
of neuron models (blue line) is simi-
lar to experimental report (red points).
(Color figure online)

3 Results

3.1 Amplitude Distribution of EPSP

In order to verify the proposed model, we numerically obtain amplitude dis-
tribution of EPSPs of the network model (Fig. 4). As shown in the figure, the
obtained distribution agrees well with previously reported experimental data.
As with experimental observation, distribution of our model shows a bell-shaped
curve when it is plotted in a semi-logarithmic plot. The average amplitude of
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EPSP of the model is about 0.25 mV while a few connections have about 10 mV
strengths. These results imply that our model precisely reproduces highly het-
erogeneous nature of the synaptic strength, i.e. coexistence of sparse strong and
dense weak connections.

Note that our model gives the lognormal EPSP distribution even though
we assumed that conditional EPSP distributions are exponential functions, thus
short-tailed distributions. This is because superposition of exponential functions
with different means, Eq. (4), can give similar almost long-tailed function like
the lognormal function.

3.2 Global Network Statistics Imply Duality of Cortical Circuit

Based on previous literature [11] and above results that show highly heteroge-
neous nature of synaptic connections in the model, it is naturally expected that
topology of the network including distribution of cluster structures has different
tendency depending on strength of synaptic connections or amplitude of EPSPs.
In order to study the possibility and characterize network topology as a function
of amplitude of EPSPs, we divide connections or edges of the model network into
20 group by dividing amplitude of EPSPs equally in logarithmic scale. Then, we
construct 20 sub-networks from the model network consisting of edges belonging
each sub-group (Fig. 5). Each sub-network, therefore, consists only of approxi-
mately same strength connections. Note that while numbers of nodes are almost
the same over these sub-networks, numbers of edges and therefore connection
rate are very different over sub-networks because of heterogeneous amplitude
distribution of EPSPs.

For these sub-networks, we measure network statistics, the cluster coeffi-
cient (CC) and the mean shortest path length (MPL). These statistics, however,
strongly depend on connection rate of networks. In order to remove influence
of connection rate from these statistics, we artificially construct uniform ran-
dom networks with the same number of nodes and edges of each sub-network.
We evaluate CC and MPL of each sub-network as relative values of them from
corresponding uniform random network with same numbers of nodes and edges.

Figure 6 shows results of these network statistics. Thick line and dotted line
are CCs and MPLs normalized by random uniform networks respectively. As we
expected, normalized CC rapidly increases from about 1 mV, which agrees well
with the previous literatures and means synapses with a few strong EPSPs form
cluster with higher probability than that expected from random network. The
normalized MPLs, however, are kept to almost unity for all sub-networks even
though the relative CCs are rapidly increasing for sub-networks with strong
EPSPs. If clusters with a few strong EPSPs are, as indicated from previous
literature, isolated in the network, the normalized MPL must take very large
value. The result, therefore, implies that, despite previous view of distributed
clusters, clusters of a few EPSPs are connected each other and may form a large
component i.e. a global structure.

In order to study details of above result of connected clusters, we decom-
pose each sub-networks into connected components and measure the number
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Fig. 5. We divide connections or edges
of the model network into 20 group by
dividing amplitude of EPSPs equally
in logarithmic scale and construct 20
sub-networks from the model network
consisting of edges belonging each sub-
group.

Fig. 6. Thick line and dotted line
are CCs and MPLs normalized by
random uniform networks respectively.
Whereas the normalized MPLs are
close to unity for all sub-networks,
normalized CC rapidly increases from
about 1mV.

of connected components and size of the maximum components, so called
the giant components. Figure 7 shows these results. The size of the maximum
components rapidly decreases for sub-networks with extremely large EPSPs,
log(EPSP) ≥ 0.8, since the number of edges of these networks are extremely
small. However, the size is kept to almost the same number with the network
size itself up to the sub-network with log(EPSP) < 0.8 whose relative CC is
enough high, as shown in Fig. 6. Moreover, the numbers of components remain

Fig. 7. The number of connected component (red) and size of the maximum connected
component, or the giant component (blue) of each sub-network. (Color figure online)
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small for these sub-networks with log(EPSP) < 0.8. These results means that,
excepting extremely large EPSPs, sub-networks actually consists with one or a
few giant components whose size is compatible the size of these network them-
selves even though CCs of a sub-network is high.

4 Discussion

We have revealed using the model network that cortical network consists on two
networks with significantly different features, a small-world network of sparse
strong connections and a random network of dense weak connections. Previously
reported clusters are not independently distributed in the network. Rather, they
are parts of the small-world structure, i.e. cliques of the small-world network.

Topology of the network significantly affects spiking dynamics of neurons in
the network. Therefore, it is an important future task to elucidate what kind
of spiking dynamics of population of neurons appears on the network with the
duality. Also, it is an important to consider functional roles of the duality in
higher-order function of cortex, learning rule or synaptic plasticity that gives
the duality.

Acknowledgement. This work was partially supported by the Ministry of Internal
Affairs and Communications with a contract entitled “R&D for fundamental technology
for energy-saving network control compatible to changing communication status” in
FY2015 and Kakenhi 25430028 and JP16H01719.
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Abstract. EEG microstate of the brain has been suggested to reflect functional
significance of cognitive activity. In this paper, from math-gifted and non-gifted
adolescents’ EEG during a reasoning task, four classes of microstate configuration
were extracted based on clustering analysis approach. Computations of multiple
parameters were down for each class of EEG microstate. Between-groups statis‐
tical and discriminating analyses for these parameters discovered significant
functional differences between math-gifted and non-gifted subjects in momentary
microstates, involving mean duration and occurrence of EEG electric field
configuration. Additionally, the topological differences between the two groups
vary across classes and reflect functional disassociation of cognitive processing
of the reasoning task. Our study suggests that the microstate classes can be used
as the effective EEG features for identifying mental operations by individuals
with typical cognitive ability differences.

Keywords: EEG microstate topology · Math-gifted adolescents · Cluster-based
analysis · Microstate class

1 Introduction

Electroencephalography (EEG) microstates are defined as the transient, patterned, and
quasi-stable topologies with short periods (80–120 ms). During the duration of a micro‐
state, the global topology remains a fixed electric field configuration, but strength might
vary and polarity invert [1]. In previous neuroscience studies, EEG microstate sequence
of the human brain has been found to be associated with disease, mental disorder,
modalities of thinking activity etc., and EEG microstate parameters were suggested to
index functional significance of cognitive activity of the brain [2–5].

Math-gifted adolescents have shown significant differences in cognitive perform‐
ance and functional brain activity, as compared with non-gifted individuals. The
previous empirical studies have discovered that, during reasoning, mental imagery, or
creative thinking processes, math-gifted individuals primarily displayed superior central
executive function of the prefrontal cortex, enhanced fronto-parietal brain network, and
greater involvement of the right hemisphere in information processing [6].
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In this study, topological microstates of brain activities of math-gifted and non-gifted
subjects were extracted over the time process of EEG recording. According to well-
established standard approach to microstate analysis, similar spatial configurations were
clustered into four typical classes of topological maps. Relevant parameters of each class
were calculated for each group respectively, and between-groups comparisons were
conducted to further discover the functional correlations with math-gifted brain. Based
on the findings from EEG microstate variance across humans with different reasoning
ability levels, the relevant cognitive psychological mechanism of math-gifted adoles‐
cents was analyzed and discussed.

2 Materials and Methods

2.1 Participants

Eight gifted adolescents (five males and three females) aged 16.5 ± 0.7 (mean ± SD)
with high intelligence level and specific aptitude in mathematics were recruited in this
experiment. The control group was composed of seven normal adolescents (five males
and two females) aged 16.3 ± 0.8 (mean ± SD), who had average-level performance in
mathematical and intelligence tests. Exclusion criteria of subjects included left hand‐
edness, neurological illness, and history of brain injury. All subjects were given
informed consent and the study was approved by the Academic Committee of the
Research Center for Learning Science, Southeast University, China.

2.2 Experimental Task

A deductive reasoning task was performed by each subject. Deductive reasoning is the
process that draws a conclusion from given premises, which is regarded as an essential
element of human thinking and cognitive ability. In this study, the deduction task with
categorical arguments is composed of three basic letter items, such as ‘‘S’’, ‘‘M’’, and
‘‘P’’, which can constitute a three-stage (major premise, minor premise, and conclusion)
reasoning model [7]. Figure 1 shows the valid, invalid and baseline samples of three-
stage reasoning process.

Fig. 1. Some samples of valid, invalid and baseline trials of deductive reasoning with categorical
arguments.

During experiment process, the stimuli of the three-stage reasoning task were
presented along the timeline, as shown in Fig. 2. The letter items of each trial were
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randomly selected from 26 letters of the English alphabet. All the subjects were asked
to judge whether the conclusion was correct or wrong.

Fig. 2. Experiment protocol: Timeline of stimuli presentation of three-stage deductive reasoning
task.

For each subject, the time length of this experimental task was about 30 min. Valid,
invalid, and baseline trials of the reasoning task were presented randomly in the E-Prime
2.0 procedure. Before the formal experiment, each subject conducted a practice session
composed of five trials.

2.3 EEG Recording and Preprocessing

EEG signals were recorded by Neuroscan international 10–20 system, which includes
60 data electrodes covering frontal, parietal, temporal, occipital regions, 2 reference
electrodes located at the bilateral mastoids, and 4 surface electrodes monitoring ocular
movements and eye blinks.

The EEG signals were band-pass filtered between 1 Hz and 30 Hz. The EEG trials
were extracted by using a time window of 3000 ms, which covers the second stage of
deductive reasoning, i.e., premise integration, since it is viewed as the period of actual
reasoning [7]. Through further baseline-correction and artifacts rejection, 192 effective
trials were retained for math-gifted subjects and 176 trials for non-gifted subjects. Addi‐
tionally, the signals in pre-stimulus periods were used as the eyes-open epochs of resting
state. The independent component analysis (ICA) was used to clear visible artifacts,
e.g., the components of possible ocular and muscle movements.

2.4 Extraction and Analysis of EEG Microstate Classes

The extraction and analysis of microstates were conducted by using the Cartool EEG
analysis software (http://www.fbmlab.com/cartool-software/) and the EEGLAB
Toolbox [8]. For each trial, the EEG time points of global field power (GFP) peaks with
maximal potential strength were collected first, which are considered as optimal repre‐
sentations of stable electric field configuration. The GFP at time point t is the empirical
standard deviation across all the EEG signals,

GFP(t) =
√

1
n

∑n

i=1
(v

i
(t) − v(t))2 (1)
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where v(t) = (v1(t),… , v
n
(t)), which is the vector of potentials of signals at time t. Here,

n is the number of EEG electrodes, and v(t) = 1
n

n∑
i=1

v
i
(t).

After collecting the EEG signals at the peaks of GFP, these microstates were analyt‐
ically clustered into mean classes of EEG maps, i.e., mean microstate topologies,
through k-means clustering algorithm [9]. The microstate classes were considered as
the maximal representations of the variance of EEG electric field configuration. After
that, four typical classes of microstates of EEG signals was produced by the clustering
analysis method. The EEG data for each trial were then assigned to these microstate
topographies.

According to the definitions from previous studies [4, 5], we computed three micro‐
state parameters for each class, including “mean duration”, “occurrence” and
“coverage”. “Mean duration” refers to the averaged time length lasted for a given
microstate topology, which can physiologically index the temporal stability of non-
overlapping patterns of synchronous activation of the brain regions related to the
momentary EEG measurements. “Occurrence” represents the mean number of distinct
microstates of a specified class emerged in 1 s time window. The parameter can quantify
how often each class of brain state is activated, so it is considered as an index of the
relative utilization of different cognitive resources [5]. “Coverage” is the percentage of
time points of a given microstate class covering a task course [4].

2.5 Statistical Analysis on Microstate Measures

The differences in microstate measures derived from single-trial samples were examined
by the analysis of variance (ANOVA) in the Matlab Statistics Toolbox.

To assess the task effect on EEG microstates, the differences in mean duration,
occurrence, and coverage between resting state and task period were tested by using the
one-way ANOVA, with time period (rest/task) serving as the within-subjects factor.

Group differences of the microstate measures in reasoning task were then assessed
by one-way ANOVAs, with each measure of each microstate serving as between-
subjects factor. To reveal the difference of each class in topological distribution, EEG
data with assigned class were statistically tested between the two groups for each pair
of channels. The Bonferroni Corrections were conducted in the multiple comparisons,
with significance level set to 0.05.

To further validate the effectiveness of the microstate parameters in identifying math-
gifted and non-gifted brain states, microstate duration, occurrence, and coverage of the
four classes were combined to construct a 12-dimension initial feature vector
d1, d2,… , d12. The single-trial samples from the two groups were then labeled with
“math-gifted” and “non-gifted”. Linear discrimination analysis (LDA), support vector
machine (SVM) and Naive Bayes classifiers with 10-fold cross validation were respec‐
tively adopted to perform a between-groups discrimination.
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3 Results and Discussions

3.1 Electric Configurations of EEG Microstate Topologies

As with the normative microstate maps that have been revealed by most studies [1–5],
the four mean classes of microstates during the reasoning task are produced for the two
groups in our study. As shown in Fig. 3, class A reflects frontal to parietal activation,
class B shows mostly frontal and medial to slightly less occipital activity, class C covers
right-frontal to left-posterior activity, and class D involves left-frontal to right-posterior
activity.

Fig. 3. EEG microstate topologies of four classes (From left to right: Classes A, B, C and D)
retrieved from k-means clustering algorithm for math-gifted and non-gifted group respectively.

3.2 Task Effect on Microstate Measures

The ANOVA tests reveal significant task effect on the measures of the four microstate
classes, as illustrated in Table 1.

Table 1. The changes of microstate measures from resting state to reasoning task. p value
indicates significance level of ANOVA, in which * represents p < 0.05, and ** denotes p < 0.01.

Microstate class Mean duration Occurrence Coverage
A B C D A B C D A B C D

p value – * ** * – * ** * – * * *
Resting → reasoning – ↗ ↘ ↘ – ↘ ↗ ↗ – ↗ ↗ ↗

In the reasoning process, mean duration of microstate class B was significantly
increased as compared with the baseline resting state, but the measures of classes C and
D were decreased. The results indicate higher temporal stability of brain topology of
microstate class B. Additionally, from resting state to reasoning process, occurrence of
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classes C and D was increased significantly, which means more frequent utilization of
the two classes of microstates than the other brain resources. Significant increases of
coverage were found in microstate classes B, C and D, which denotes more total usage
time in the task course relative to resting state. There is no significant task-related change
in microstate class A.

3.3 Between-Groups Differences in Microstate Measures

The results with significant difference between the math-gifted and control groups are
illustrated in Fig. 4. While performing the reasoning task, the math-gifted adolescents
show shorter duration of microstate classes A, B and D than the control subjects, whereas
microstate class C has lasted longer in the math-gifted group. The four classes of micro‐
states display higher occurrence in math-gifted group as compared to control group. The
shorter duration and more frequent usage of microstate A, B and D support the opinion
that math-gifted adolescents have higher flexibility of brain topology in cognitive
processing [12].

Fig. 4. Statistical boxplots of ANOVA tests between the math-gifted and control groups
(p < 0.05). Left: mean duration; right: occurrence. In each plot, from left to right: microstate
measures of classes A, B, C, and D. The red boxplots represent the math-gifted group and the blue
boxplots indicate the control group. (Color figure online)

However, in microstate class C, there are longer mean duration and higher occur‐
rence in math-gifted group. It should be noted that, microstate class C refers to the brain
activity ranging from right-frontal to left-posterior brain regions. These regions are
highly involved in spatial information processing, reasoning and creative thinking,
which have been suggested as the important indications of precocious mathematical
ability of gifted adolescents [10, 11]. Higher temporal stability (duration) and more
active brain topology (occurrence) of microstate class C might reflect an optimized state
of fronto-parietal network of math-gifted brain during reasoning process, which has been
suggested by Zhang et al.’ study [12].

Topological representation of between-groups difference in each microstate class are
illustrated by Fig. 5. In microstate class A, the math-gifted group has higher activity in
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parietal regions (Fig. 5A), which could be associated with spatial relationship processing
of the reasoning task. The difference in microstate class B is discovered in occipital
regions (Fig. 5B). The brain area is considered to be connected to visual processing of
cognitive materials.

Fig. 5. Brain mapping of significant differences between the math-gifted and control groups.
From left to right: microstate classes A, B, C, and D. The value of each channel is derived from
a multiplication between EEG data difference and log p value of ANOVA test between the two
groups.

Microstate class C reveals higher task-related activity of the math-gifted brain in
right frontal to posterior regions, which reflects the dominance of right hemisphere
involvement in information processing (Fig. 5C). Additionally, the math-gifted group
shows stronger brain activity in left-frontal to medial brain regions in microstate class
D (Fig. 5D). Previous studies have discovered that, three-stage reasoning task without
concrete content basically activates the left-lateral fronto-parietal brain network and also
requires highly imaginative situation in the right hemisphere [7]. Since the enhanced
reliance on the right hemisphere function has been suggested as the important neural
characteristic of math-gifted brain [10], microstate class C might be the most key
momentary brain state that can be connected to specific aptitude in mathematics. More‐
over, the group difference in microstate class D could be viewed as a reflection of
neurocognitive differences in basic reasoning abilities, such as executive controlling
function of anterior brain regions, functional interaction in fronto-parietal network etc.,
which are more relevant to higher level of general intelligence of math-gifted adoles‐
cents.

Furthermore, the accuracy for classifying math-gifted and non-gifted EEG data is
63.5–66.3 % (Table 2), suggesting the discriminant validity of microstate features in
identifying the mental operations of individuals with typical cognitive ability differ‐
ences.

Table 2. Classification accuracy of LDA, SVM, and Naive Bayes in identifying “math-gifted”
and “non-gifted” EEG samples.

Classifier LDA SVM Naive Bayes
Accuracy 65.5 % 66.3 % 63.5 %
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4 Conclusions

By extracting the cognitive microstates of math-gifted and non-gifted adolescents during
a reasoning task, our study discovers the significant association of four microstate classes
with the math-gifted brain in mean duration and occurrence. Moreover, the topological
differences between the two groups varied across classes, suggesting the functional
disassociation of different microstate classes for reflecting individual differences in
cognitive processing of reasoning problems. Specifically, microstate class C with topo‐
logical difference in the right hemisphere shows more characteristics related to specific
ability in mathematics. Functional network research on different microstate classes of
math-gifted brain, especially on class C, is worthy to be systematically explored further.
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Abstract. Figure-ground (FG) segregation is a crucial function of the inter‐
mediate-level vision. Physiological studies on monkey V2 have reported border-
ownership (BO) selective cells that signal the direction of figure along a local
border. However, local borders in natural images are often complicated and they
often do not provide a clue for FG segregation. In the present study, we hypothe‐
size that a population of V4 cells represents FG by means of surface rather than
border. We investigated this hypothesis by the computational analysis of neural
signals from multiple cells in monkey V4. Specifically, we applied Support
Vector Machine as an ideal integrator to the cellular responses, and examined
whether the responses carry information capable of determining correct local FG.
Our results showed that the responses from several tens of cells are capable of
determining correct local FG in a variety of natural image patches while single-
cell responses hardly determine FG, suggesting a population coding of local FG
by a small number of cells in V4.

Keywords: Visual cortex · V4 · Figure ground segregation · Natural image ·
Electrophysiology · Population coding · Support Vector Machine

1 Introduction

Figure-ground segregation is a crucial step towards object recognition. Physiological
studies have reported that a number of cells in monkey V2 are selective to Border
Ownership (BO) that shows the direction of figure along the border [e.g., 1, 2]. Recent
computational studies have reported that model BO-selective cells based on surround
modulation can discriminate BO in natural contours with 66 % correct [3, 4]. Our
computational study further showed that an integration of the model BO-selective cells
increases the correct rate to 85 % with 10 model cells. [5]. BO may be considered as a
contour-based clue for the determination of FG. We consider that the next step is the
construction of a surface-based representation of FG. Physiological studies on monkeys
have reported that V4 cells appear to be sensitive to the organization of FG [6, 7]. Our
physiological study reported that a number of cells in V4 were selective to FG [8],
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although their performance on FG discrimination with natural contours was barely above
chance. Our computational study reported that an integration of the responses of 50 FG-
selective cells in V4 were capable of determining FG in natural contour patch with 66 %
correct [8]. In the present study, we further investigate the representation of FG in V4
with the consideration of difference responses. Physiological studies often use difference
responses, such as  as an index for the representation of BO. In the
present study, we focus on such difference responses and investigate the surface-based
population representation of FG in monkey V4.

Our hypothesis is that V4 cells code FG by surface-based representation from differ‐
ence responses. To test the surface-based representation, we presented pairs of stimuli
that were slightly translated. The translation enabled the recording from the responses
to figure and ground, respectively, of stimulus patches where figure and ground parts,
not the border, were projected on to the classical receptive fields of the cells. We exam‐
ined whether the difference responses (Rfigure − Rground) of single cells were capable of
determining correct FG. We further examined whether an integration of the responses
of multiple cells increases the discrimination rate of FG. Because the way to integrate
multiple responses is controversial, we used Support Vector Machine (SVM) as an ideal
integrator. If the machine is capable of discriminating correct FG from the cellular
responses, it indicates that the cellular responses included sufficient information for
judging FG. An analysis of single cell responses showed that about 20 % of cells
exhibited significance to FG while the discrimination rates for natural image patches
were very low, slightly above the chance, for the most of cells. The integration of the
paired responses from 40 cells increased the discrimination rate to 66 %. The integration
of the unpaired responses also showed a similar discrimination rate. These results
suggest that a group of a small number of V4 cells provides a surface-based represen‐
tation of FG without the necessity of difference responses.

2 Methods

We recorded multiple single unit activities from V4 of two analgesized and immobilized
macaque monkeys (Macaca fuscata) using 32 channel array electrodes. Eight hundred
forty patches that were sampled from natural images with the constrains of diversity [11]
were presented for ten times. The experiments were approved by the ethics committee
of the institute and performed in accordance with The Code of Ethics of the World
Medical Association (Declaration of Helsinki). Stimuli presented to the monkey were
comprised of four set of small patches. The first set consisted of single squares and two
overlapping squares, which were similar to those used in previous studies on BO [1, 2],
With a variation in contrast, translation and rotation, a total of 64 square stimuli were
presented, as examples are shown in Fig. 1(Left). The second set consisted of natural
contours with one side filled with black and the other side white. We used Human
Marked Contours (HMC) available in Berkeley Segmentation Dataset [9, 10] that were
drawn by 10 human participants. We chose pseudo-randomly 105 subregions (69 × 69
pixel) from the HMC with the constrain of diversity, as similar to our previous experi‐
ment [11]. Figure 1(Right). shows a few examples of filled patches. Note that purely-
random choice of image patches end up with a set of similar contours such as straight
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lines because the distribution of contour characteristics are highly non-uniform in natural
scenes. To assure the diversity of stimuli (not to chose similar contours), we controlled
the distribution of the degree of convexity, closure and parallel of stimuli (uniformly
chosen from each range of these characteristics) [11]. With a variation in contrast and
mirror image, a total of 420 filled patches were presented. The third set consisted of the

Fig. 1. Examples of square stimuli (left) and filled patches whose borders represent natural
contours (right).

Fig. 2. Examples of patches. A patch filled with black (fill-black, left) was translated to the right
(fill-black, right). We prepared contrast-reversed and mirrored patches. The red dots indicates the
CRF center. (Color figure online)
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patches of the second set, which were slightly translated orthogonally with respect to
the border near the CRF. Figure 2 shows the example of patches. This set aimed to obtain
responses to Figure and Ground in each patch. We analyzed the difference in responses
to Figure and Ground ( ). With a variation in translation, a total of 840
filled patches were presented. Subtracting the response to “ground” patch from that to
“figure” patch, we obtained differential response that may extract FG signal. The patches
in the fourth set were the original natural-image patches of the second set (a total of
210). To obscure the boundary of stimulus and background, we attenuated contrast
towards the periphery with a Gaussian function. The stimuli were presented for 200 ms
with a blank interval of 200 ms in a random order with the repetition of 10. The patches
were scaled to maximize cellular responses in the preparation phase of the experiment
(2.5°–20°). The CRF of single cells was estimated from the responses to grating stimuli
that were presented at 25 locations. We performed a psychophysical experiment to
obtain the veridical label of FG for the stimulus patches taken from natural images [8].

3 Single Cell Responses to Natural Patches

We analyzed whether the responses of single cells in monkey V4 depend on FG organ‐
ization of stimuli with respect to their CRF center. The electrophysiological recording
included the responses to 2430 neurons of which 1725 cells showed their CRF center

Fig. 3. The responses of a single cell to the square (left) and filled (right) stimuli in the unpaired
(top) and paired (bottom) response analyses. Error bars indicate SE. The mean responses per trial
(200 ms) are shown. Icons indicate categories, i.e. figure-ground and contrast. The red dots in
icons illustrate the location of the CRF center. (Color figure online)
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located within stimulus patches. We did not take visual response and spike counts into
account for the analysis. To examine whether FG and contrast are significant factors for
the responses, we performed a two-way ANOVA with the two factors at the CRF center.
Twenty percent (351/1725) of cells showed the significance to FG (p < 0.05), 30 % to
contrast, and 12 % to the interaction. Figure 3(Top) shows example responses of a single
cell that showed significance to FG. For paired responses, 12 % of cells showed the
significance to FG, with an example shown in Fig. 3(Bottom). We also determined the
correct rate for the discrimination of FG. The mean discrimination rate among all FG-
selective cells for all stimulus patches was 51 % with 0.6 % Standard Error (SE), indi‐
cating that single cells barely discriminate FG. These results indicate that 10–20 % of
V4 cells exhibit the selectivity to local FG, however, it does not directly mean that these
single cells are capable of representing FG.

4 Discrimination of FG from a Group of Cellular Responses

The determination of FG in natural image patches was difficult for single cells, leading
to the idea that multiple cells work simultaneously as a population for the veridical
determination of FG. To examine this hypothesis, we applied SVM to the responses of
cells so as to maximize the correct rate of FG discrimination. We used the responses of
139 V1 cells and 1586 V4 cells for the analysis. Specifically, we used SVM to

Fig. 4. The discrimination rates of the SVM models as a function of the number of cell for the
integration. The results for the un-paired and paired response analyses are shown on the top and
bottom rows, respectively. The results for FG significant and non-FG-significant cells are shown
in the left and right columns, respectively. The error bars indicate SE.
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discriminate FG at the center of CRF from the cellular responses to filled-contour stimuli
(set 3). We repeated the learning 200 times with five-fold cross-validation. We imple‐
mented this procedure by using LIBSVM software package [12] with Gaussian kernels.
Optimal parameters were determined by Grid Search Method. The learning was
successful with more than 99 % correct. The mean correct rates are shown in Fig. 4 as
a function of the number of cells. With unpaired responses, the correct rates of FG
significant cells increase as the number of cells increases. With 50 cells, the mean correct
rate reaches 66 % with 50 cells (SE = 0.1 %). The mean correct rates of non-FG signif‐
icant cells were in the range of chance for the entire range of the number of cells exam‐
ined (up to 100). These results indicate that FG significant cells, in fact, carry the infor‐
mation necessary for the determination of FG. With paired responses, the mean correct
rate increases as the number of cells increases regardless of FG significance though the
magnitude is significantly different (p < 0.05). The mean correct rate for FG significant
cells reaches 67 % with 40 cells (SE = 0.2 %). It appears that non-FG significant cells
also carry information relevant to FG determination in some extent, specifically when
cellular responses are paired. In real-life situations, such paired responses are not acces‐
sible. Further investigation on the functional role of paired responses is expected.

5 Conclusion and Discussions

Our results showed that a population of V4 cells is capable of discriminating FG from
a variety of natural image patches. Since how the visual system integrates cellular
responses has not been revealed, we applied SVM for the integration with an expectation
that the discrimination rate is maximized. In the un-paired signal analysis, the result of
the computational experiment showed the mean correct rate of 66 % with 50 cells for
filled natural patches, similarly in the paired signal analysis, the mean correct rate was
67 % with 40 cells. These results suggest that a group of V4 cells are capable of discrim‐
inating local FG in natural image.

In the paired signal analysis where we subtracted a signal evoked by a ground region
from that by a figure region for each patch, the mean correct rate of non-FG-significant
cells increased as the number of cells for the integration increased. This result indicates
that single cells are not capable of discriminating FG but a group of the cells is capable
of discriminating FG. This phenomenon may be caused by the extraction of FG infor‐
mation through the difference between two paired images in which only FG differ. SVM
might be capable of discriminating FG in the paired signal analysis because of its aston‐
ishing discrimination power. Because cortical cells may not be accessible to the paired
signals in real situations, FG significant cells that are labeled based on single cell
responses may contribute substantially to the FG discrimination as a population.

We paired patches so that the contrast of figure regions remains the same (e.g., Fill-
Black Left and Fill-Black Right were paired). However, when we focus on the contrast
of a region that fall onto the CRF center, the pair of stimulus changes (e.g., Fill-Black
Left and Fill-White Right should be paired). In the present study, we assumed that
neurons represent the contrast of FG, not that of a region projected onto the CRF. It may
be important to analyze further the effects of contrast.
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Spatial extent of the receptive field of V4 cells is typically several to ten degree in
central vision, suggesting that FG selective cells may represent local FG, not global FG.
A psychophysical study [9] reported that human subjects show 70 % correct in local FG
determination from small patches with respect to the global inspection of the scene. In
the present study, the integration of the responses from 40–60 V4 neurons achieved 67 %
correct in local FG discrimination, suggesting that a group of cells may underlie the
perception of local FG. The global figure-ground segregation of an entire scene would
require further mechanisms [e.g., 13].
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Abstract. Electroencephalography (EEG) based preliminary examina-
tion has been widely used in diagnosis of brain diseases. Based on pre-
vious studies, clinical brain death determination also can be actualized
by analyzing EEG signal of patients. Dynamic Multivariate empirical
mode decomposition (D-MEMD) and approximate entropy (ApEn) are
two kinds of methods to analyze brain activity status of the patients
in different perspectives for brain death determination. In our previous
studies, D-MEMD and ApEn methods were always used severally and
it cannot analyzing the patients’ brain activity entirety. In this paper,
we present a combine analysis method based on D-MEMD and ApEn
methods to determine patients’ brain activity level. Moreover, We will
analysis three different status EEG data of subjects in normal awake,
comatose patients and brain death. The analyzed results illustrate the
effectiveness and reliability of the proposed methods.

Keywords: Electroencephalography (EEG) · Multivariate empirical
mode decomposition (MEMD) · Dynamic-MEMD · Approximate
entropy (ApEn)

1 Introduction

Electroencephalography (EEG) is a recording of voltage fluctuations resulting
from ionic current flows within the neurons of the brain and refers to the record-
ing of the brain’s spontaneous electrical activity over a short period of time.
The healthy subjects in normal awake have high brain activity because of their
healthy brain cells. On the contrary, the patient in brain death state has no
normal brain cells, so that their brain activity is extremely low. The concept of
brain death was proposed in 1960’s. It is defined as the irreversible and complete
loss of all brain activity including involuntary activity necessary to sustain life
due to total necrosis of cerebral neurons following loss of blood flow and oxy-
genation [1]. According to this definition, the Japanese established the criterion
to diagnose the brain death can be shown as Fig. 1.
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Fig. 1. The process of diagnosing brain death in clinical.

For supporting the diagnosis of brain death, we have proposed an EEG pre-
liminary examination method as a reliable yet safety and rapid way for the
determination of brain death [2]. That is, after items (1)–(3) have been verified,
and an EEG preliminary examination along with real-time recorded data analy-
sis method is applied to detect the brain wave activity at the bedside of patients.
To extract informative features from noisy EEG signals and evaluate their signif-
icance, approximate entropy (ApEn) measure and Multivariate empirical mode
decomposition (MEMD) were proposed for the EEG analysis in our previous
study. ApEn is to extract informative features from noisy EEG signals and eval-
uate their statistical significance, several complexity measures are developed for
the quantitative EEG analysis [3]. MEMD, which is extended of empirical mode
decomposition (EMD), have been used for EEG to evaluate the brain activ-
ity through calculate power spectrum within the frequency band multiplied by
recorded EEG time. In the previous study, we used MEMD or ApEn method
to analysis patients’ data to evaluate EEG activity. We have proposed MEMD
to calculate the energy of EEG of randomly chosen interval of one second [1].
However, by using MEMD, it is difficult to observe EEG energy variation of
subjects. The most important things for clinical medicine application, consider-
ing the safety of the patient, it has low reliability and certain risk to evaluate
patients’ status if we use only one method.

In this paper, we present a combine analysis method based on dynamic ApEn
and D-MEMD to analysis the real-life recorded EEG signal. By using D-MEMD
and dynamic ApEn methods, we can not only denoise the original EEG data but
also calculate the EEG energy of subjects with the time series. In addition to this,
we observe EEG energy variation of subjects to increase the reliability and show
three examples of healthy subject in normal awake, comatose patient and brain
death. The analyzed results illustrate the effectiveness and performance of the
proposed method in calculation of EEG energy for evaluating consciousness level.

2 Methods of Data Analysis

2.1 EMD and MEMD Algorithms

The original signal was decomposed into a finite set of amplitude- and/or
frequency- modulated components by EMD method [6,8]. These components
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termed intrinsic mode functions (IMFs), which represent its inherent oscillatory
modes [7]. More specifically, for a real-valued signal x(t), the standard EMD
finds a set of K IMFs {ck(t)}K

k=1, and a monotonic residue signal r(t), so that

x(t) =
K∑

k=1

ck(t) + r(t). (1)

IMFs ck(t) are defined so as to have symmetric upper and lower envelopes,
with the number of zero crossings and the number of extrema differing at most
by one. The process to obtain the IMFs is called sifting algorithm. Moreover,
the first complex extension of EMD was proposed in [4]. An extension of EMD
to analyze complex/bivariate data which operates fully in the complex domain
was first proposed in [5], termed rotation-invariant EMD (RI-EMD). In MEMD,
we choose a suitable set of direction vectors in n-dimensional spaces by using:
(i) uniform angular coordinates and (ii) low-discrepancy pointsets. The multi-
variate extension of EMD suitable for operating on general nonlinear and non-
stationary n-variate time series is summarized in the following.

1. Choose a suitable pointset for sampling on an (n − 1) sphere.
2. Calculate a projection, denoted by {pθk(t)}T

t=1, of the input signal {v(t)}T
t=1

along the direction vector xθk , for all k (the whole set of direction vectors),
and giving {pθk(t)}K

k=1 as the set of projections.
3. Find the time instants {tθk

i } corresponding to the maxima of the set of pro-
jected signals {pθk(t)}K

k=1.
4. Interpolate [tθk

i ,v(tθk
i )] to obtain multivariate envelope curves {eθk(t)}K

k=1.
5. For a set of K direction vectors, the mean m(t) of the envelope curves is

calculated as

m(t) =
1
K

K∑
k=1

eθk(t). (2)

6. Extract the ‘detail’ d(t) using d(t) = x(t) − m(t). If the ‘detail’ d(t) fulfills
the stoppage criterion for a multivariate IMF, apply the above procedure to
x(t) − d(t), otherwise apply it to d(t).

The stoppage criterion for multivariate IMFs is similar to the standard one
in EMD, which requires IMFs to be designed in such a way that the number of
extrema and the zero crossings differ at most by one for S consecutive iterations
of the sifting algorithm. The optimal empirical value of S has been observed to
be in the range of 2–3 [4].

2.2 Dynamic MEMD Algorithm

The D-MEMD is an adaptive algorithm of the MEMD. We have defined the
EEG energy using the power spectrum within the frequency band multiplied
by recorded EEG time [2]. To observe EEG energy variation of subjects, we
extend MEMD in the temporal domain along time-coordinate of EEG signal.
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Supposing a multivariate EEG data series v(t) consisting of N segments (epochs)
{vn(t)}N

n=1, the MEMD can be carried out through each segment.
The Dynamic MEMD is defined as the MEMD applied to all segments such

that

v(t) = [v1(t), . . . ,vN (t)]

=

[
K1∑
k=1

ck,1(t) + r1(t), . . . ,
KN∑
k=1

ck,n(t) + rN (t)

]
(3)

where rN (t) are residue signals and {ck,n(t)}Kn

k=1 are IMF components with Kn

(n = 1, . . . , N) being the number of IMFs for the segmented nth signal vn(t).
Consequently, in our experiment, we remove the residue signal rN (t) and Q

IMFs from {ck,n(t)}Kn

k=1 which is not expected, and combine the (N − Q) IMFs
to be the denoised signal. We have defined the EEG energy using the power
spectrum within the frequency band multiplied by recorded EEG time. Thus
we change the denoised signal from time domain to frequency domain by Fast
Fourier Transformation and integrate it to compute the EEG energy.

2.3 Approximate Entropy

Given a time series {x(n)}, (n = 1, · · · , N), to compute the ApEn(x(n),m, r)
(m: length of the series of vectors, r: tolerance parameter) of the sequence, the
series of vectors of length m, v(k) = [x(k), x(k + 1), · · · , x(k + m − 1)] is firstly
constructed from the signal samples {x(n)}. Let D(i, j) denote the distance
between two vectors v(i) and v(j) (i, j ≤ N − m + 1), which is defined as the
maximum difference in the scalar components of v(i) and v(j), or

D(i, j) = max
l=1,··· ,m

|vl(i) − vl(j)| . (4)

Then, we further compute the Nm,r(i), which represents the total number of
vectors v(j) whose distance with respect to the generic vector v(i) is less than
r, or D(i, j) ≤ r. Now define Cm,r(i), the probability to find a vector that differs
from v(i) less than the distance r. And φm,r, the natural logarithmic average
over all the vectors of the Cm,r(i) probability as

Cm,r(i) =
Nm,r(i)

N − m + 1
, (5)

φm,r =
∑N−m+1

i=1 log Cm,r(i)
N − m + 1

. (6)

For m + 1, repeat above steps and compute φm+1,r. ApEn statistic is given by

ApEn(x(n),m, r) = φm,r − φm+1,r . (7)
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The typical values m = 2 and r between 10 % and 25 % of the standard
deviation of the time series {x(n)} are often used in practice [9].

Furthermore, base on the algorithm for computing ApEn of one sequence, we
extend it in the temporal domain along timecoordinate of EEG signal. Supposing
an EEG data series SN consists of N sequence intervals {xi(n)}, the ApEn mea-
sure is carried out through each interval. We define the dynamic ApEn measure
of given EEG signal as

ApEn(SN ,m, r) = [ApEn(x1(n),m, r), ..., ApEn(xN (n),m, r)] (8)

Consequently, in our experiment, the ApEn(SN , m, r) statistic measures the
variation the of complexity of a EEG data series SN . The occurrence of irregular
pattern of one interval is excepted to be followed by the next in brain-death EEG.

3 Experiments and Results

3.1 EEG Signal Recording

A portable EEG system (NEUROSCAN ESI) was used to record the healthy
subjects’ brain signal in normal awake. Six exploring electrodes (Fp1, Fp2, F3,
F4, F7 and F8) as well as GND were placed on the forehead, and two electrodes
(A1, A2) as the reference were placed on the earlobes based on the standardized
10–20 system. The sampling rate of EEG was 1000 Hz and the resistances of the
electrodes were set to less than 10 kΩ. With the same setting of healthy subjects
EEG recording experiments, the EEG data was directly recorded at the bedside
of the patients in the intensive care unit (ICU) from a hospital of Shanghai,
China.

3.2 The Result for Healthy Subject, Comatose Patient and Brain
Death Using Dynamic MEMD

Firstly, let us show dynamic EEG energy of healthy subject, comatose patient
and brain death by using D-MEMD. The example for healthy subject’s EEG
examination was performed in August 2013. By applying D-MEMD algorithms
described in Part 2.2, we obtain EEG energy variation of healthy subject
(Fig. 3(a)) in 60 seconds. In Fig. 3(a), EEG energy of each channel are between
1.43 × 104 and 8.65 × 104. The comatose case is concerned with a male patient.
By the same way of healthy subject to analysis the EEG data of this patient
by D-MEMD, we obtain the EEG energy variation of comatose patient in 60 s
(Fig. 3(b)). This patient’s EEG energy of each channel is between 1.05 × 104

to 4.2 × 104 (Fig. 2(b)) that reflects a high intensity of brain activity. With the
same analysis for brain death, we still analyzed 60 seconds EEG data by using
D-MEMD as an example. Figure 2(c) shows each channel’s EEG energy. This
patient’s maximum value of 6 channels’ EEG energy is only 7.03×103, the value
is extremely low.
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Fig. 2. Results for a dynamic EEG energy analysis used D-MEMD.

From the analysis result by using D-MEMD, we can see that the brain activity
of health subject and comatose patient were more obvious than the brain death
one. It means that, the brain cell of comatose patient has smaller extent of
damage than the brain death patient.

3.3 The Result for Healthy Subject, Comatose Patient and Brain
Death Using Dynamic ApEn

First, we use dynamic ApEn to analysis the patients’ EEG signal. In our pre-
vious study, when the patients in Quasi-Brain-Death state, ApEn value will be
approximate to 1, or greater than 1. However the patients’ brain activity in the
coma state produces ApEn of a low number but not approximate to 0. The result
can be seen in Fig. 3(a), the average results of each channel are from 0.165 to
0.291. This result indicates that patient still having spontaneous brain activity.
Then, we use the same method to analysis second patient’s EEG. It can be seen
from the Fig. 3(b), comparing with the first patient, ApEn measure distribution
of each channel is mostly over 0.9, and the average results of each channel are
from 0.707 to 1.1, and gives us a much higher ApEn value of approximate to
1. From this result above, we suspect the patient was in the quasi-brain-death
state.

Last, we also analyzed a health subject and the result were shown in Fig. 3(c).
From this result, we can see that the average value of each channel is from 0.079
to 0.222.
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3.4 The Comparison for Healthy Subject, Comatose Patient and
Brain Death

Furthermore, we analyzed 5 healthy subjects, 5 comatose patients and 5 brain
deaths’ EEG data by using D-MEMD and Dynamic ApEn methods. The EEG
energy of all subjects is shown in Fig. 4. The EEG energy of healthy subject is
between 2.52×104 and 3.22×105, the EEG energy of comatose is between 1.65×
104 and 3.05×105, the EEG energy of brain death is under 1.00×104. From these
results, the EEG energy of healthy subject and comatose patients is significantly
higher than brain death. And we find the brain activity of comatose patients
whose EEG energy is close to the brain deaths’ are not high. We speculate that
they are brain damage. But another part of comatose patients’ EEG energy is
close to, even more than the healthy subject’s. These patients still have high
brain activity.

In Fig. 4, we also use ApEn method to analysis the same EEG data. In Fig. 4,
we calculate the average ApEn value of 6 channels of each subjects. From the
result in Fig. 4, we can see that the average ApEn value of each patients in brain
death state were from 0.82 to 1.09. And the average ApEn value of each patients
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Fig. 3. Results for a dynamic EEG analysis used dynamic ApEn.
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in coma state were from 0.13 to 0.23. The ApEn value of health subjects were
from 0.12 to 0.26.

4 Conclusion

In this paper, we focus on a novel data analysis method based on D-MEMD and
ApEn to analysis EEG recorded from the healthy subjects, comatose patients
and brain deaths and observe the state changes of patients’ consciousness. By
using D-MEMD and ApEn, we can not only denoised the original EEG data but
also calculate the EEG energy of subjects with the time series. Two methods were
used to analysis same patients’ EEG from different perspectives improving the
reliability of the analysis results. In addition to this, we recorded EEG energy
variation of subjects and compared them. The result is that EEG energy of
healthy subjects is extremely high and show a high brain activity. EEG energy
of brain death is extremely low and demonstrate that brain death has no brain
activity. In comatose patients, a part of patients’ EEG energy is close to the brain
deaths’. We speculate that they are brain damage. Another part of comatose
patients’ EEG energy is close to, even more than the healthy subjects’. They are
no-brain-damage and still have high brain activity. The analyzed results illustrate
the effectiveness and performance of the proposed method in calculation of EEG
energy for evaluating consciousness level and increase the reliability.
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Abstract. In this paper, we develop an event-based adaptive robust sta-
bilization method for continuous-time nonlinear systems with uncertain
terms via a self-learning technique called neural dynamic programming.
Through system transformation, it is proven that the robustness of the
uncertain system can be achieved by designing an event-triggered optimal
controller with respect to the nominal system under a suitable triggering
condition. Then, the idea of neural dynamic programming is adopted to
perform the main controller design task by building and training a critic
network. Finally, the effectiveness of the present adaptive robust control
strategy is illustrated via a simulation example.

Keywords: Adaptive dynamic programming · Adaptive robust stabi-
lization · Event-based control · Neural dynamic programming · Neural
network

1 Introduction

When dealing with the control design of uncertain systems, the robustness and
the related optimality issues have been studied by many researchers [1–3]. This
brings in a great research interest to the optimal regulation design. The adaptive
or approximate dynamic programming (ADP) method was originally proposed
by Werbos [4] as an effective avenue to conquer the phenomenon of “curse of
dimensionality” arising in optimal control problems. It is implemented by solving
the Hamilton-Jacobi-Bellman (HJB) equation through the function approxima-
tion structures, usually referring neural networks. Hence, it also can be called
neural dynamic programming [5]. The novel ideas of ADP have been utilized for
designing feedback controller with optimality [6–11].

Unlike the time-triggered control methods, in the event-triggered control
mechanism, the sampling instant for updating the feedback controller is deter-
mined by a certain triggering condition, rather than relying on a fixed sampling
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 149–157, 2016.
DOI: 10.1007/978-3-319-46687-3 16
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interval. This always results in a significant reduction on computation and com-
munication resources. Recently, the combination of event-triggering mechanism
and ADP method has achieved considerable attention [12,13]. Note that under
the new mechanism, the ADP-based controller is only updated when an event is
triggered, and hence, the computational burden of learning and updating can be
greatly saved. However, it is apparent to find that the dynamical uncertainties of
the controlled plant are not always considered in the existing work of ADP-based
event-triggered feedback design, which motivates our research. Consequently,
in this paper, we investigate the event-based adaptive robust stabilization for
continuous-time nonlinear systems using neural dynamic programming.

2 Problem Description

In this work, we consider a class of input-affine continuous-time nonlinear
systems

ẋ(t) = f(x(t)) + g(x(t))u(t) + Z(x(t)), (1)

where Z(x(t)) is the uncertain dynamics satisfying

Z(x) = G(x)d(ϕ(x)), dT(ϕ(x))d(ϕ(x)) ≤ hT(ϕ(x))h(ϕ(x)). (2)

In system (1), x(t) ∈ R
n is the state vector and u(t) ∈ R

m is the control
vector, f(·) and g(·) are differentiable in their arguments with f(0) = 0. In
(2), the terms G(·) ∈ R

n×r with ‖G(x)‖ ≤ Gmax and ϕ(·) with ϕ(0) = 0 are
fixed functions reflecting the structure of uncertainty, d(·) ∈ R

r is an uncer-
tain function satisfying d(0) = 0, and h(·) ∈ R

r is a known function satisfying
h(0) = 0.

We study how to stabilize system (1) adaptively. Note the nominal system
of (1) is

ẋ(t) = f(x(t)) + g(x(t))u(t). (3)

Like other literature, we let x(0) = x0 be the initial state vector and assume that
f + gu is Lipschitz continuous on a set Ω in R

n containing the origin and that
the system (3) is controllable. The following lemma presents the achievement of
robustness of (1).

Lemma 1 (cf. [10]). Assume that there exist a continuously differentiable cost
function V (x) which satisfies V (x) > 0 for all x �= 0 and V (0) = 0, a bounded
function Γ (x) satisfying Γ (x) ≥ 0, and a feedback control function u(x), such
that

(∇V (x))TZ(x) ≤ Γ (x); (4a)

U(x, u) + (∇V (x))T(f(x) + g(x)u) + Γ (x) = 0, (4b)

where ∇(·) � ∂(·)/∂x is employed to denote the gradient operator, U(x, u) =
Q(x) + uTRu, and Q(x) = xTQx with Q = QT ≥ 0 and R = RT > 0. Under the
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action of the control input u(x), there exists a neighborhood of the original state,
such that system (1) is locally asymptotically stable. In addition, define the cost
function of system (3) as

J(x0, u) =
∫ ∞

0

{
U(x(τ), u(x(τ))) + Γ (x(τ))

}
dτ, (5)

which ensures that J(x0, u) = V (x0) holds.

According to Lemma 1, the cost function V (x), the bounded function Γ (x),
and feedback control u(x) satisfying (4a) and (4b) can guarantee the robust
stabilization of system (1). It is important to note that the optimal cost function
and optimal control law of system (3) can provide specific forms of the cost
function and feedback control. Hence, we should make great effort to cope with
the adaptive optimal control problem of system (3) with V (x0) considered as
the cost function. The designed optimal feedback control must be admissible.
For system (3), it can be observed that (4b) is an infinitesimal version of the
cost equation V (x) and is the nonlinear Lyapunov equation.

In the following, for consistency, we generally take J(x) to denote the cost
function, instead of V (x). In light of the classical optimal control theory, we
define the Hamiltonian of transformed problem as H(x, u,∇J(x)) = U(x, u) +
(∇J(x))T(f +gu)+Γ (x). Let Ω be a compact subset of Rn and Ψ(Ω) be the set
of admissible controls on Ω. The optimal cost function of system (3) is defined
as J∗(x0) = minu∈Ψ(Ω) J(x0, u). Note that the optimal cost J∗(x) satisfies
the continuous-time HJB equation of the form 0 = minu∈Ψ(Ω) H(x, u,∇J∗(x)).
Hence, the optimal control of system (3) is

u∗(x) = −1
2
R−1gT(x)∇J∗(x). (6)

From [10], for any continuously differentiable function V (x), if we define
Γ (x) = hT(ϕ(x))h(ϕ(x))+ 1

4 (∇V (x))TG(x)GT(x)∇V (x), then (∇V (x))TZ(x) ≤
Γ (x). Using the optimal control u∗(x) and this specific form of Γ (x), the HJB
equation becomes

0 = U(x, u∗)+(∇J∗)T(f+gu∗)+hT(ϕ(x))h(ϕ(x))+
1
4
(∇J∗)TGGT∇J∗ (7)

with J∗(0) = 0. Based on (6), (7) can also be written as

0 = Q(x) + (∇J∗(x))Tf(x) + hT(ϕ(x))h(ϕ(x))

− 1
4
(∇J∗(x))Tg(x)R−1gT(x)∇J∗(x) +

1
4
(∇J∗)TG(x)GT(x)∇J∗ (8)

with J∗(0) = 0. Since it is always difficult to solve the nonlinear optimal control
analytically, kinds of ADP-based methods combining the idea of reinforcement
learning have been proposed to get the approximate solution [6]. However, nearly
all of the existing methods are implemented predicated on the time-driven formu-
lation, which generally speaking, is time-consuming. Thus, in the following, we
turn to the event-driven adaptive robust controller design using neural dynamic
programming.
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3 Event-Based Robust Control via Neural Dynamic
Programming

In this section, the adaptive robust stabilization method under event-based
framework is established, followed by the event-triggered ADP implementation
via neural network.

3.1 Adaptive Robust Stabilization with Event-Based Formulation

Let N = {0, 1, 2, . . . } denote the set of all non-negative integers. In order to
employ the event-triggering method to control the sampled-data system, we first
define a monotonically increasing time sequence of triggering instants as {sj}∞

j=0

with s0 = 0 such that sj < sj+1, j ∈ N. Assume that the nominal system (3) is
sampled at the triggering instants sj , which results in the sampled state vector
x(sj) � x̂j for all t ∈ [sj , sj+1), j ∈ N. Then, the event-triggered controller μ(x̂j)
is updated based on the sampled state x̂j rather than the current state x(t).
That is to say, the controller μ(x̂j) is executed at every triggering instants. By
using a zero-order hold, the corresponding control sequence {μ(x̂j)}∞

j=0 becomes
a continuous-time input signal μ(x̂j , t), i.e.,

μ(x̂j , t) = u(x̂j) = u(x(sj)),∀t ∈ [sj , sj+1), j ∈ N. (9)

For simplicity, we use the notation μ(x̂j) instead of μ(x̂j , t). Define the event-
triggered error between the sampled state and current state as

ej(t) = x̂j − x(t),∀t ∈ [sj , sj+1), j ∈ N. (10)

Thus, the event-triggered optimal control problem can be described. For the
corresponding sampled-data system

ẋ(t) = f(x) + g(x)μ(x(t) + ej(t)). (11)

Based on (6) and (9), the event-triggered optimal controller can be given by

μ∗(x̂j) = −1
2
R−1gT(x̂j)∇J∗(x̂j),∀t ∈ [sj , sj+1), (12)

where ∇J∗(x̂j) = (∂J∗(x)/∂x)|x=x̂j
. Under the framework of event-triggering

mechanism, the HJB Eq. (8) can be rewritten as

H(x, μ∗(x̂j),∇J∗(x))

= Q(x)+(∇J∗(x))Tf(x)+hT(ϕ(x))h(ϕ(x))− 1
2
(∇J∗(x))Tg(x)R−1gT(x̂j)∇J∗(x̂j)

+
1
4
(∇J∗(x̂j))Tg(x̂j)R−1gT(x̂j)∇J∗(x̂j)+

1
4
(∇J∗(x))TGGT∇J∗(x) (13)

with J∗(0) = 0. Note that unlike the time-triggered HJB Eq. (8), the new formula
(13) is in fact the event-triggered HJB equation.

In event-triggered control, a triggering condition should be designed to deter-
mine the event-triggering instants and guarantee the stability of the closed-loop
system.
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Assumption 1 (cf. [13]). The control law μ(x) is Lipschitz continuous with
respect to the event-triggered error, i.e., ‖μ(x(t)) − μ(x̂j)‖ ≤ L‖ej(t)‖, where L
is a positive real constant and μ(x) = u(x).

Theorem 1. For the nominal system (3), suppose that J∗(x) is the solution of
the HJB equation and μ∗(x̂j) is the event-triggered optimal controller. For all
t ∈ [sj , sj+1), j ∈ N, if the triggering condition is defined as

‖ej(t)‖2 ≤ (1 − η2
1)λmin(Q)‖x‖2 + ‖rμ∗(x̂j)‖2

L2‖r‖2 � ‖eT ‖2, (14)

where eT denotes the threshold, λmin(Q) is the minimal eigenvalue of Q, and
η1 ∈ (0, 1) is a designed sample frequency parameter, then the closed-loop form
of system (1) with event-triggered controller (12) is asymptotically stable.

Proof. Choose L1(t) = J∗(x) as the Lyapunov function. The derivative of
L1(t) is

L̇1(t) = (∇J∗(x))T (f(x) + g(x)μ∗(x̂j) + Z(x)) . (15)

From (6), we have gT(x)∇J∗(x) = −2Ru∗(x). The derivative (15) can be rewrit-
ten as

L̇1(t)≤(∇J∗)Tf+(∇J∗)Tg(x)μ∗(x̂j)+Γ ≤−Q(x)+u∗T(x)Ru∗(x)−2u∗T(x)Rμ∗(x̂j). (16)

Adding and subtracting μ∗TRμ∗, letting R = rTr, and using Assumption 1, it
yields

L̇1(t)≤−η2
1λmin(Q)‖x‖2+(η2

1−1)λmin(Q)‖x‖2+L2‖r‖2‖ej(t)‖2−‖rμ∗(x̂j)‖2. (17)

If the triggering condition (14) is satisfied, then it follows from (17) that L̇1(t) ≤
−η2

1λmin(Q)‖x‖2 < 0 for any x(t) �= 0, t ∈ [sj , sj+1). This proves that the
triggering condition (14) can guarantee the asymptotic stability of the uncertain
system (1). �

3.2 Neural Dynamic Programming and Implementation Process

According to the universal approximation property, J(x) can be reconstructed
by a neural network on a compact set Ω as J(x) = ωT

c σc(x) + εc(x), where
ωc ∈ R

l is the ideal weight vector, σc(x) ∈ R
l is the activation function, l is the

number of neurons in the hidden layer, and εc(x) is the approximation error of
the neural network. Then, ∇J(x) = (∇σc(x))Tωc + ∇εc(x). Under the frame-
work of ADP, since the ideal weight vector is unknown, a critic neural network
can be built in terms of the estimated weight elements as Ĵ(x) = ω̂T

c σc(x) to
approximate the cost function. Then, we have ∇Ĵ(x) = (∇σc(x))Tω̂c. Accord-
ing to (12), we describe the event-triggered optimal control law as μ(x̂j) =
− 1

2R−1gT(x̂j)
(
(∇σc(x̂j))Tωc+∇εc(x̂j)

)
. In addition, the event-triggered approx-

imate optimal control law can be formulated as

μ̂(x̂j) = −1
2
R−1gT(x̂j)(∇σc(x̂j))Tω̂c. (18)
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As for the Hamiltonian, when taking the neural network into account, it
becomes

H
(
x, μ(x̂j), ωc

)
= U(x, μ(x̂j))+hT(ϕ(x))h(ϕ(x))+ωT

c ∇σc(x)
(
f(x)+g(x)μ(x̂j)

)

+
1
4
ωT

c ∇σc(x)G(x)GT(x)(∇σc(x))Tωc � ecH , (19)

where ecH = −(∇εc(x))T
(
f(x) + g(x)μ(x̂j)

) − 1
2ωT

c ∇σc(x)G(x)GT(x)∇εc(x) −
1
4 (∇εc(x))TG(x)GT(x)∇εc(x) represents the residual error due to the neural net-
work approximation. Using (18), the approximate Hamiltonian can be obtained
by

Ĥ
(
x, μ(x̂j), ω̂c

)
= U(x, μ(x̂j))+hT(ϕ(x))h(ϕ(x))+ω̂T

c ∇σc(x)
(
f(x)+g(x)μ(x̂j)

)

+
1
4
ω̂T

c ∇σc(x)G(x)GT(x)(∇σc(x))Tω̂c � ec. (20)

By letting the error of estimating the critic network weight be ω̃c = ωc − ω̂c and
combining (19) with (20), we find that

ec = − ω̃T
c ∇σc(x)

(
f(x) + g(x)μ(x̂j)

)
+

1
4
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))Tω̃c

− 1
2
ωT

c ∇σc(x)G(x)GT(x)(∇σc(x))Tω̃c + ecH , (21)

which shows the relationship between the terms ec and ecH .
For training the critic network, it is desired to design ω̂c to minimize the

objective function Ec = 0.5eTc ec. Note that the approximated control law (18) is
often used for conducting the learning stage because of the unavailability of the
optimal control law μ(x̂j). At present, we employ the standard steepest descent
algorithm to tune the weight vector as ˙̂ωc = −αc(∂Ec/∂ω̂c), which, based on
(20), is in fact

˙̂ωc =−αc

(
U(x,μ̂(x̂j))+hT(ϕ(x))h(ϕ(x))+φTω̂c+

1
4
ω̂T

c ∇σc(x)G(x)GT(x)(∇σc(x))Tω̂c

)

×
(

φ +
1
2
∇σc(x)G(x)GT(x)(∇σc(x))Tω̂c

)
, (22)

where φ = ∇σc(x)(f(x) + g(x)μ̂(x̂j)) and αc > 0 is the designed learning rate
of the critic network. Then, recalling ˙̃ωc = − ˙̂ωc and (21), we can further derive
that the error dynamical equation of approximating the cost function by the
critic network is

˙̃ωc =−αc

(
φTω̃c−1

4
ω̃T

c∇σc(x)G(x)GT(x)(∇σc(x))Tω̃c+
1
2
ωT

c∇σc(x)G(x)GT(x)(∇σc(x))Tω̃c−ecH

)

×
(
φ+

1
2
∇σc(x)G(x)GT(x)(∇σc(x))Tωc− 1

2
∇σc(x)G(x)GT(x)(∇σc(x))Tω̃c

)
. (23)

Actually, we observe that the closed-loop sampled-data system is an impulsive
dynamical system with flow dynamics for all t ∈ [sj , sj+1) and jump dynamics for
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all t = sj+1, j ∈ N. When defining an augmented state vector as z = [xT, x̂T
j , ω̃c]T

and basing on (10), (11), and (23), the dynamics of impulsive system can be
described by
⎧
⎪⎪⎨
⎪⎪⎩

ż=

⎡
⎣

[
(f(x) + g(x)μ̂(x̂j))T, 0

]T

−αc

(
φTω̃c− 1

4
ω̃T

c Bω̃c+
1
2
ωT

c Bω̃c−ecH

)(
φ+

1
2
Bωc− 1

2
Bω̃c

)
⎤
⎦ , t∈ [sj , sj+1);

z(t) = z(t−) +
[
0, (x − x̂j)T, 0

]T
, t = sj+1,

where B � ∇σc(x)G(x)GT(x)(∇σc(x))T, z (t−) = lim�→0 z (t − �), and the term
0 represents a null vector with appropriate dimension.

At last, we turn to the stability issue of the closed-loop system. Before pro-
ceeding, the following assumption is needed, as often used in ADP literature like
[8,11,12].

Assumption 2. The dynamics g(x) is Lipschitz continuous such that ‖g(x) −
g(x̂j)‖ ≤ A‖ej(t)‖, where A is a positive constant. It is also upper bounded
such that ‖g(x)‖ ≤ gmax, where gmax is a positive constant. Besides, the deriv-
ative of the activation function, i.e., ∇σc(x) is Lipschitz continuous such that
‖∇σc(x) − ∇σc(x̂j)‖ ≤ B‖ej(t)‖, where B is a positive constant. The deriva-
tive term ∇σc(x) is also upper bounded such that ‖∇σc(x)‖ ≤ ∇σcmax, where
∇σcmax is a positive constant.

Here, we present the closed-loop stability result. Suppose that Assumption 2
holds. The tuning law for the critic network is given by (22). Then, the closed-
loop system (11) is asymptotically stable if the adaptive triggering condition

‖ej(t)‖2 ≤ (1 − η2
2)λmin(Q)‖x‖2 + ‖rμ̂(x̂j)‖2

2�2‖ω̂c‖2‖R−1‖ � ‖êT ‖2 (24)

is satisfied, where η2 ∈ (0, 1) is the parameter to be designed as the sample
frequency and �2 = A2∇σ2

cmax + B2g2max. The proof is omitted here due to the
space constraint.

4 Simulation

We consider an input-affine continuous-time nonlinear system with an uncertain
term

ẋ =
[ −x1 − 2x2

x1 − x2 − cos x1 sin x2
2

]
+

[
1

−1

]
u(x) +

[
p1x1 sin x2

2

0

]
, (25)

where x = [x1, x2]T ∈ R
2 and u(x) ∈ R are the state and control vectors,

while Z(x) = [p1x1 sin x2
2, 0]T (with p1 ∈ [−2, 2]) represents the uncertainty.

Letting ϕ(x) = x and considering the uncertain structure, we can select G(x) =
[1, 0]T, d(ϕ(x)) = p1x1 sinx2

2, and h(ϕ(x)) = 2x1 sinx2
2. Let Q(x) = 2xTx and

R = I (I denotes an identity matrix with suitable dimension). The activation
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Fig. 1. Event and time based controls.
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dition.

function is selected as σc(x) = [x2
1, x1x2, x

2
2]

T. Denote the weight vector as ω̂c =
[ω̂c1, ω̂c2, ω̂c3]T. We set the learning rate as αc = 0.1 and let the initial state of
system (25) be x0 = [1,−1]T.

In the simulation process, we add a probing noise to guarantee the persis-
tency of excitation condition. We experimentally choose η2 = 0.6 and � = 12. The
sampling time is chosen as 0.1 s. We observe that the weight vector of the critic
network converges to [0.8013,−0.2200, 0.7583]T. We also find that the event-
triggered controller only needs 1640 samples of the state while the time-triggered
controller uses 3500 samples. Next, we choose p = −2 to evaluate the robust con-
trol performance. Let L = 12 and η1 = 0.5. The sampling time is chosen as 0.02s
for the uncertain system (25). The Fig. 1 compares the performance of control
inputs obtained under the event-triggered and the time-triggered frameworks,
where the latter is approached by the former gradually. The Fig. 2 displays the
evolution of triggering condition during the robust control implementation. The
above results verify the excellent control performance.

5 Conclusion

A novel event-based ADP formulation is developed to design the adaptive robust
control for a class of uncertain nonlinear systems under a suitable triggering
condition. An artificial neural network is constructed for implementing the ADP
technique and establishing the event-driven approximate optimal control law
with simulation study.
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Abstract. This paper analyzes entropy of occupancy grid map (OGM)
for evaluating registration performance of SLAM (simultaneous local-
ization and mapping) algorithms. So far, there are a number of SLAM
algorithms having been proposed, but we do not have general measure
to evaluate the registration performance of point clouds obtained by
LRF (laser range finder) for SLAM algorithms. This paper analyzes to
show that good registration seems corresponding to large overlap of point
clouds in OGM as well as large entropy, large uncertainty and low infor-
mation of OGM. This analysis indicates a method of entropy maximiza-
tion of OGM for selecting good registration of SLAM algorithms. By
means of executing numerical experiments, we show the validity and the
effectiveness of the entropy of OGM to evaluate the registration perfor-
mance.

Keywords: Entropy maximization of occupancy grid map · Evaluation
of registration performance · ICP-SLAM · Registration of point clouds
of LRF range data

1 Introduction

This paper analyzes entropy of occupancy grid map (OGM) for evaluating the
registration performance of SLAM (simultaneous localization and mapping)
algorithms. Recently, we have presented a method to improve the accuracy
of localization and mapping obtained by ICP-SLAM (iterative closest point -
SLAM) algorithm [1]. The method has utilized CAN2 (competitive associative
net) [2] for learning piecewise linear approximation of nonlinear functions to deal
with point clouds of range data obtained by LRF (laser range finder) charac-
terized as involving lack of data called black spots, quantization error owing to
range and angular resolution (e.g. 10 mm and 0.25◦, respectively), data density
different from region to region. Furthermore, the method has utilized LOOCV
(leave-one-out cross-validation) to reduce the propagation error owing to itera-
tive pairwise registration of ICP-SLAM. We have shown that the effectiveness
of the method in reducing LOOCV-MSE (mean square error) of point clouds
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 158–167, 2016.
DOI: 10.1007/978-3-319-46687-3 17
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approximated by the CAN2. Since LOOCV-MSE is a measure of iterative and
relative error between approximated point clouds registered at the current step
and point cloud expected to perform better registration, this measure cannot be
used to compare with other registrations even for the registrations obtained by
the same method using CAN2s with different number of units. As a result, we
could not have optimized the number of units of the CAN2 for obtaining better
registration. Here, note that, as shown in a research review of range image reg-
istration [3], the performance of a number of algorithms is evaluated by means
of registration error for synthetic data, but no general measure to evaluate reg-
istration performance for non-synthetic data has been mentioned.

In the field of medical image registration [4,5], maximization of mutual infor-
mation (MI) is widely used for registering multimodality images such as CT and
MRI, where the analysis of MI as well as Shannon entropy is described from the
point of view of measure of information and registration. Since OGM represents
the posterior probability of existence of objects, the entropy can be naturally
introduced and has a possibility to be used as a measure of information and
registration. It seems important to analyze good registration of range data from
the point of view of information and entropy because good registration is not
always obtained owing to the amount of information of given data involving var-
ious noise and resolution different from region to region. Incidentally, from the
perspective of the amount of information, entropy reduction of OGM is utilized
as information gain in robot exploration [6,7]. In this paper, we analyze entropy
of OGM from the perspective of good registration of point clouds, and show
that good registration corresponds to large overlap of registered point clouds in
OGM as well as large entropy, large uncertainty and low information of OGM.

In the next section, we show a formulation of OGM and entropy of OGM,
and describe the relationship between good registration of point clouds of range
data and entropy of OGM, and then the validity and the effectiveness of the
method is examined by means of numerical experiments in Sect. 3.

2 Large Entropy of OGM for Good Registration
Performance

2.1 Measurement Data

For a better readability, we first describe specifications of our equipments. We
have used a pioneer 3-AT mobile robot from MobileRobots Inc. equipped with
a Hokuyo UTM-30LX LRF mounted on the top as shown in Fig. 1(a). The
specification of UTM-30LX is as follows; the distance scanning range is 0.1 to
30 m and the angular scanning range is φmax = 270◦, while the accuracy is
±30 mm for the distance from 0.1 to 10 m and ±50 mm from 10 to 30 m, and the
angular resolution is Δφ = 0.25◦. We use an application of ICP-SLAM with icp-
classic option provided by MRPT (Mobile Robot Programming Toolkit) [8]. It is
an offline application which provides an estimated trajectory of the robot poses
(positions and orientations) and an estimated 2D point map after a running of
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Fig. 1. (a) Mobile robot (P3-AT) equipped with LRF (Hokuyo UTM-30LX) mounted
on the top to scan the environment horizontally and a note PC on the robot used in the
experiment, (b) a point cloud obtained by a single 2D scan of the LRF, and (c) a map
of registered range data and a robot route estimated by the ICP-SLAM application.

the robot, where the point map is represented as registered point clouds of LRF
range data as shown in Fig. 1(c).

Now, let zt = (Dt, x̂
(0)
t ) denote the measurement data at a discrete time

t ∈ Itime = {1, 2, · · · }. Here, Dt = {r
(i)
t | i ∈ Iscan} denotes a point cloud of range

(distance) data obtained by the LRF, where r
(i)
t for Iscan = {0, 1, 2, · · · , imax =

φmax/Δφ} is the ith scanned range data. The notation x̂
(0)
t = (x̂(0)

t , ŷ
(0)
t , θ̂

(0)
t )T

denotes the pose of the robot estimated by SLAM method. Then, the scanned
range data r

(i)
t corresponds to the position x

(i)
t = r

(i)
t R(iΔφ − φr + θ̂

(0)
t )ex +

(x̂(0)
t , ŷ

(0)
t )T on the global map, where ex = (1, 0)T , R(θ) =

(
cos θ − sin θ
sin θ cos θ

)

denotes the rotation matrix, and φr the orientation of the robot on the LRF
coordinate system.
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2.2 OGM

Let p(m | z1:t) be the posterior probability of OGM, denoted by m, given the
measurements z1:t = z1z2 · · · zt from time 1 to t. We divide the map m into
Ngm × Ngm grid cells m[i] whose centers are given by x [i] = (x[i], y[i])T =(
(k + 0.5)Δgm + xgm

min, (l + 0.5)Δgm + ygm
min

)T for i = lNgm + k and k, l =
0, 1, 2, · · · , Ngm − 1. Here, Δgm represents the grid size, and the absolute value
of xgm

min = ygm
min (=−40 m in the experiments shown below) is set as large as

all registered data x
(i)
t and their all rotations on the global map m are in the

square area bounded by the four points (±xgm
min,±ygm

min), where the necessity of
rotations is shown below. The notation p(m[i]) represents the probability that
m[i] is occupied by some obstacle, and p(m[i]) = 1 − p(m[i]) the probability that
m[i] is not occupied. For simplicity as shown in [7], we assume p(m | z1:t) =∏

i p(m[i] | z1:t). From Bayesian inference (BI) using conditional independence
assumption (CIA), known as naive BI, we derive

p(m[i] | z1:t) =
1
Zt

p(zt | m[i], z1:t−1) p(m[i] | z1:t−1)
���������������������������������

(∵ BI) (1)

� 1
Zt

p(zt | m[i])
����������

p(m[i] | z1:t−1) (∵ CIA) (2)

=
1
Zt

p(zt) p(m[i] | zt)
p(m[i])

���������������

p(m[i] | z1:t−1) (∵ BI) (3)

where Zt represents the normalization coefficient for holding p(m[i] | z1:t) +
p(m[i] | z1:t) = 1, and CIA assuming p(zt | m[i], z1:t−1) � p(zt | m[i]) is shown
effective in many applications of naive BI [9]. Similarly, we have

p(m[i] | z1:t) =
1
Zt

p(zt)p(m[i] | zt)

p(m[i])
p(m[i] | z1:t−1). (4)

From (3) and (4) and log-odds (logarithm of odds) given by

l
[i]
1:t = log

(
p(m[i] | z1:t)

/
p(m[i] | z1:t)

)
, (5)

we have

l
[i]
1:t = l

[i]
1:t−1 + l

[i]
t − l0. (6)

Here, l0 = log p(m[i])/p(m[i]) represents the log-odds of the prior of occupancy,
and l

[i]
t is obtained by the inverse sensor model (slightly modified from [7] for

computational efficiency), or

l
[i]
t = log

p(m[i] | zt)

p(m[i] | zt)
=

⎧
⎪⎨
⎪⎩

locc if ĩ ∈ Iscan and |r̃[i] − r
(̃i)
t | < α/2,

lfree if ĩ ∈ Iscan and r̃[i] ≤ r
(̃i)
t − α/2,

l0 otherwise,
(7)
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Fig. 2. OGM algorithm modified from [7] for computational efficiency. The function
round(·) denotes round half up function, or round(x) = floor(x+0.5) for a real number
x, and round(x ) = (round(x), round(y)) for a vector x = (x, y).
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Fig. 3. Shannon’s entropy H = −p log2 p − (1 − p) log2(1 − p) of the probability p of
binary random variable. We encounter infinity calculation for − log2 p with p → 0 and
− log2(1 − p) with p → 1 in practice although H converge to 0 theoretically.

where α indicates the thickness of obstacle (we set α = 100 mm in the experi-
ments shown below), ĩ = round(φ̃[i]/Δφ) for φ̃[i] = atan2(y[i] − ŷ

(0)
t , x[i] − x̂

(0)
t )−

θ̂
(0)
t + φr and r̃[i] = ‖x [i] − x̂

(0)
t ‖. The log-odds locc(> l0) and lfree(< l0) indicate

the cell being occupied or not, respectively. We use the probability p0 = 0.5,
pocc = 0.9 and pfree = 0.1 which correspond to l0 = log p0/(1 − p0) = 0,
locc = log(pocc/pfree) � 2.2 and lfree = log(pfree/pocc) � −2.2 in the exper-
iments shown below. In order to obtain l

[i]
1:t from l

[i]
1:t−1 for all i ∈ Iscan and

t ∈ Itime, we use the algorithm shown in Fig. 2 which is modified from [7] for
computational efficiency.

2.3 Shannon’s Entropy of OGM and Relationship with Good
Registration

From (5), we have the probability p(m[i] | z1:t) = 1/(1 + exp(−l
[i]
1:t)). Here, in

order to avoid infinity calculation practically (not theoretically) in the following
step (see Fig. 3), we truncate p(m[i] | z1:t) so as to be in between p̃occ = 0.99
and p̃free = 0.01. Then, Shannon’s entropy for binary random variable m[i] is
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obtained by

H(m[i]) = p(m[i] | z1:t) log(p(m[i] | z1:t)) + p(m[i] | z1:t) log(p(m[i] | z1:t)), (8)

and we use the entropy of the map m given by

H(m) =
〈
H(m[i])

〉
i∈Igm

=
1

|Igm|
∑

i∈Igm

H(m[i]) (9)

where 〈·〉 denotes the mean and the subscript indicates the range of the mean.
The notation |Igm| = (Ngm)2 denotes the number of elements in Igm =
{0, 1, 2, · · · , (Ngm)2 − 1}. Note that the above H(m) is a normalized version
of the entropy shown in [6,7].

Let us examine how H(m) works for evaluating registration performance.
From (6) and (7) with locc = −lfree and l0 = 0, we have l

[i]
1:t =

∑t
k=1 l

[i]
k =

(n[i]
occ − n

[i]
free)locc, where n

[i]
occ and n

[i]
free indicate the number of overlaps of the

ith cell occupied and unoccupied, respectively, by the registered point x
(j)
t

(via (7)) for all t ∈ Itime and j ∈ Iscan. Then, we have p(m[i] | z1:t) =(
1 + (1/pocc − 1)n[i]

occ−n
[i]
free

)−1

. Now, let n
[i]
overlap = |n[i]

occ − n
[i]
free|, and let us call

it the amount of overlap. Then, H(m[i]) = 1 for n
[i]
overlap = 0, and H(m[i]) < 0.35

for n
[i]
overlap ≥ 1 and pocc = 0.9. Here, when good registration is achieved, the grid

cell m[i] corresponding to obstacle and free area is expected to have large amount
of overlap n

[i]
overlap � n

[i]
occ and n

[i]
overlap � n

[i]
free, respectively. Then, the number of

non-overlap cells with n
[i]
occ = 0, which have the largest entropy H(m[i]) = 1, is

expected large because occupied and unoccupied areas assigned by x
(j)
t via (7)

are constant for any registration (i.e., translation and rotation) and the number
of registered points x

(j)
t for all t ∈ Itime and j ∈ Iscan is constant. As a result,

good registration is expected corresponding to large entropy H(m) =
〈
H(m[i])

〉
i
.

Incidentally, this property of large entropy seems to contradict the properties
of entropy of medical images such that low entropy corresponds to good regis-
tration as well as small uncertainty, low information, and small dispersion of
probability [4,5]. This superficial contradiction arises from the difference of the
definition of probability. Namely, the (joint) probability distribution of medical
images represents uncertainty of transformation between two images and good
registration has small entropy as well as small uncertainty. On the other hand,
the probability distribution of OGM represents uncertainty of grid occupancy,
and the relationship between large entropy and good registration has not been
clarified, so far.

However, from the above analysis of overlap of registered points and entropy
of OGM, we may say that good registration corresponds to large overlap of
registered points and large entropy of OGM. From the perspective of information
theory, large entropy corresponds to large uncertainty and small information.
Furthermore, the best registration may correspond to the principle of maximum
entropy which states that “you should select that distribution which leaves you
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Fig. 4. OGM registered by (a) ICP-SLAM and (b) CAN2+LOOCV whose mean
entropy are 〈H(m)〉θj

= 0.981605 and 0.983487, respectively.

the largest remaining uncertainty (i.e., the maximum entropy) consistent with
your constraints” [10]. This principle may be useful when we embed additional
constraint, such that two walls should intersect at right angle, then the best
registration will be obtained by maximizing the entropy under this constraint.
Although we do not examine this property in this paper, it is one of interesting
future research studies.

One of the problems to use large entropy of OGM for good registration is that
the value is not independent from the grid size and the origin and orientation of
OGM. The grid size should be tuned appropreately because information loss of
measured data will occur for very large grid size, and inefficient computational
cost will be exhasted for very small grid size. We obtain the mean entropy
〈H(m)〉θj∈ΘM for rotated points x (i)

t = R(θj)
(
r
(i)
t R(iΔφ − φr + θ̂

(0)
t )ex + x̂

(0)
t

)
for θj ∈ ΘM = {2πj/M | j = 0, 1, 2, · · · , M − 1}. The influence of some shift
of the origin to the value of entropy may be reduced by the above processing of
rotation mean because a change of rotation is represented by a chnge of shift as
R(θ + Δθ)x (i)

t = R(θ)x (i)
t + Δx

(i)
t .

3 Experimental Results

We have operated the robot to run around a corner of a corridor in our depart-
ment building as shown in Fig. 1(c), and we have 45 pairs of robot poses and LRF
point clouds for the sampling rate 1 s. We have executed ICP-SLAM followed by
our method [1], which we denote CAN2+LOOCV, to improve the performance of
registration obtained by ICP-SLAM. For CAN2+LOOCV, we have used CAN2s
with different number of units N = 70, 80, 90, 100, 110 and terminated the iter-
ations at titerate =1000 for reducing performance measure called LOOCV-MSE.
And then, we have selected the registration for N = 90 and titerate = 356 which
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has achieved the maximum mean entropy 〈H(m)〉θj∈ΘM for M = 9 rotations
and the grid size Δgm = 100 mm (see below for details). We show the OGM
registered by ICP-SLAM and the selected CAN2+LOOCV in Fig. 4. We can see
that non-parallel walls are observed at the vertical corridor (white region) in (a)
and they are corrected in (b). Furthermore, (b) has achieved larger mean entropy
〈H(m)〉θj

than (a), which indicates that the OGM in (b) of CAN2+LOOCV has
achieved better registration than the OGM in (a) of ICP-SLAM.

Fig. 5. Registration performance measure vs. the iteration to improve registration
performance. The measures are (a) the mean entropy 〈H(m)〉θj

for the mean of M = 9

rotations of θj ∈ ΘM and the grid size Δgm = 100mm, (b) superimposed entropy
H(m) for M = 9 rotations and N = 90, (c) the mean entropy 〈H(m)〉θj

for M = 20

rotations and Δgm = 200 mm, (d) LOOCV-RMSE. The largest mean entropy 〈H(m)〉θj

is 0.983487 at titerate = 356 in (a), and 0.983504 at titerate = 357 in (c).

In Fig. 5, performance measure of registration vs. the iteration of improv-
ing registration performance is shown. From (a), we can see that the largest
〈H(m)〉θj

for the mean of M = 9 rotations of θj ∈ ΘM is achieved by N = 90
and titerate = 356, while the difference and the variance of constituent H(m)
for N = 90 is shown in (b). From these results, we would like to say that the
registrations achieved by the largest mean entropy for N = 80 and 90 through
iiterate between 200 and 400 are not so different, while they are better than the
registrations for N = 70, 100 and 110. Here, this statement may underestimate
the results for N = 110 and 100, namely, 〈H(m)〉θj

= 0.983431 and 0.983333 for
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N = 110 and 100 at iiterate = 235 and 152, respectively, are smaller than those
for N = 90 and 80 although we do not have checked the significance. These
results seem reasonable from the point of view that the number of piecewise
linear regions from 80 to 90 (or 110) may be appropreate to approximate each
of 45 LRF point clouds, and the LOOCV method to reduce the registration
error has appropreate range of the number of iterations. By means of compar-
ing (a) and (c) for (Δgm,M) = (100, 9) and (200, 20), respectively, we may say
that almost the same largest mean entropy is obtained robustly for the grid size
Δgm from 100 to 200 mm and the number of rotations M from 9 to 20. For
larger Δgm = 300, 400 and 500 mm, the largest 〈H(m)〉θj

is achieved by N =
90, 80 and 80, respectively, and iiterate being slightly different from those for
Δgm = 200 mm. These results suggest that largest entropy of OGM is robustly
useful for a wide range of grid sizes in selecting good registration and good model
parameters such as N and iiterate. This is possible when the information loss of
OGM by the increase of grid size is almost uniform for all registrations and all
model parameters.

From (d), we can see that LOOCV-RMSE decreases with the increase of
iterations with fluctuation until about 200 iterations, which is supposed to reflect
the improvement of registration performance. However, after 200 iterations, it
fluctuates and we cannot decide when good registration is achieved. Furthermore,
as we have mentioned in Sect. 1, LOOCV-MSE is a measure of iterative and
relative error and cannot be used to evaluate the performance of registrations
for different N , which is understandable by means of comparing (a), (c) and (d).

4 Conclusion

We have analysed entropy of OGM from the point of view of good registration
and overlap of registered point clouds in OGM. Then, we have shown that good
registration seems corresponding to large overlap as well as large entropy, large
uncertainty and low information of OGM. We have executed numerical experi-
ments and shown the validity and the effectiveness of the entropy to evaluate the
performance of registration. The principle of maximum entropy suggests that we
examine and develop a method to maximize the entropy under some constraints,
such as two walls should intersect at right angle (see Sect. 2.3), which is for our
future research studies.
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for Cognitive Robot
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Abstract. A service robot requires natural and interactive interaction with users
without explicit commands. It is still one of the difficult problems to generate
robust reactions for the robot in the real environment with unreliable sensor data
to satisfy user’s requests. This paper presents an intention-response model based
on mirror neuron and theory of mind, and analyzes the performance for a
humanoid to show the usefulness. The model utilizes the modules of behavior
selection networks to realize prompt response and goal-oriented characteristics
of the mirror neuron, and performs reactions according to an action plan based
on theory of mind. To cope with conflicting goals, behaviors of the sub-goal unit
are generated using a hierarchical task network. Experiments with various
scenarios reveal that appropriate reactions are generated according to external
stimuli.

Keywords: Intention-response � Hybrid architecture � Behavior selection
network � Planning � Hierarchical task network

1 Introduction

To facilitate interaction with user and agents such as conversational agents,
train-booking agents, intelligent agents for smartphone, and robots, we need to make
them to understand user’s intention and respond to user’s actions or command
reflecting the intention. In this regard, a new interface for the intention-response is
demanded in various research fields [1]. Because it requires techniques for recognizing
the user intention from various sensory information and responding to it, we proposed a
model to imitate cognitive process of the human brain inspired by mirror neuron and
theory of mind [2]. As many researchers have used simple methods like rule-based
systems that lack the rationale from the brain science point of view, the interfaces have
a difficulty to process reactions flexibly like humans [3]. It is also difficult to represent
relations between the intention and the action. We presented an intention-response
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model based on brain nervous system composed of the mirror neuron system and the
theory of mind system.

In this paper, we fine tune the model and analyze the performance by categorizing
user intentions into simple ones for sub-goals and complex ones for task goals. The
model for simple intentions based on mirror neuron system uses modules of behavior
selection networks (BSNs) to respond to low-level intentions. The BSN modules
mimicked the mirror neuron have difficulty to generate a behavioral sequence to handle
complex intentions with conflicting goals. To cope with this problem, the model for
complex intentions based on theory of mind system employs planning by a hierarchical
task network to control the modules. The planner can configure a sequence of
behaviors automatically using the conditions defined independently of the modules.
The model has the advantage of having a well-defined structure which makes it more
scalable. To verify the feasibility of the model, we implemented it on a humanoid
robot, NAO, and attempted to analyze the performance with various scenarios in real
situations.

2 Related Works

2.1 Mirror Neuron and Theory of Mind

In the literature of human brain research, the two systems called the mirror neuron and
theory of mind are well known for understanding other’s state through observation; we
can understand other’s intentions through the systems. The mirror neuron system
consists of anterior intraparietal sulcus (aIPS), premotor cortex (PMC), and superior
temporal sulcus (STS) [4]. The aIPS relates to goal-oriented actions, the PMC identifies
goals or actions based on the previous memory, and the STS parses motions into a
meaningful sequence [6]. Simple actions composed of sub-goals activate these areas
[7]. The theory of mind system consists of temporo-parietal junction (TPJ) and medial
prefrontal cortex (mPFC) [5]. The TPJ is crucial for the representation of goals and
intentions, and the mPFC plays a role in reflective reasoning of actions and judgments,
including goals and intentions [8].

2.2 Hybrid Control System

The hybrid control architecture to generate robot behavior is categorized into the two
types: reactive and deliberative control [9]. Reactive control allows the robot to select
an appropriate action instantaneously in the given environment because it uses local
information obtained from sensory information. On the other hand, deliberative control
manages the plan about the global environment to achieve high-level goals.

Some of the relevant studies are shown in Table 1. Min proposed the goal-oriented
BSN system to generate behaviors of the delivery service robot [10]. The system used
BSN and priority-based sequence plan which can be changed by the user’s input and
the robot generates behaviors over the sequence. Yun developed a humanoid control
system using MBSN and predefined sequence [11]. A BSN in the modules was selected
in a fixed order by the planner. This system connected the emotion and reactivity of the
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robot in multiple layers, and adopted the planning facility with probability. Quintero
proposed a control system of autonomous robots using automated planning technique
and 2-layer actions [13]. The hybrid control system cannot only solve the problems of
each method, but also maximize the advantages of each method. However, since
previous studies have not sufficiently considered the scalability problem and unstable
environment, there are limitations on achieving long-term goals through solving
complex problems in the real world.

3 System Architecture

3.1 Overview

This paper is based on an intention-response model for a humanoid NAO that was
originally proposed at our previous study [14]. First, the intention is divided into simple
and complex intentions. The simple intention is explained by the mirror neuron system
which can understand mere actions instinctively and mimic the user’s behaviors. The
complex intention is described by the theory of mind that can recognize abstract state of
the user and infer user’s inner mind without direct observation. The entire process of
the model is shown in Fig. 1. Simple intention-response model using the modularized
BSN (MBSN) is activated by understanding the low-level intention including a
sub-goal. On the other hand, complex intention-response using the planning-driven
BSN is recruited by understanding the high-level intention in terms of the task goal.

Definition 1. Intention-Response:
I = {SI, CI} is a set of the user’s intentions, where SI = {si1, si2, …, sin} is a set of
simple intentions based on the mirror neuron system, and CI = {ci1, ci2,…, cin} is a set
of complex intentions based on the theory of mind. Let S be the state, and t be the
time. G = {SG, TG} is a set of goals, SG = {sg1, sg2, …, sgn | 8sgi ← 9sim} is a set of
the sub-goals, and TG = {tg1, tg2, …, tgn | tgi = {sga, sgb, …, sgd}, 8tgn ← 9cii}} is a
set of the task goal. The response R according to the user’s intention can be defined as
follows:

Table 1. Previous studies on hybrid control system

Authors Methods Domain

Min et al. [10] BSN and priority-based sequence Mobile service
robot

Yun et al. [11] MBSN and predefined sequence Humanoid service
robot

Christopher
et al. [12]

Control parameter modulations and
probability-based sequence

Mobile robot
navigation

Quintero et al.
[13]

2-layer action Autonomous
mobile robot

170 J.-M. Yu and S.-B. Cho



3.2 Simple Intention-Response Modelling

For responding to simple intention, the model is based on the BSN which generates
suitable reactions rapidly and copes with the uncertain environment flexibly. However,
the BSN has problems such as conflicting goals and slow reaction time. To solve these
problems, Tyrrell proposed modular BSN, each of which is designed for only one goal
[15]. The module allows the scalability and reusability easier than the BSN.

Definition 2. Maes’ BSN B = {EB, NB, GB}:
EB = {eB1, eB2,…, eBn} is a set of the environments, NB = {nB1, nB2,…, nBn} is a set of
behavioral nodes, and GB = {gB1, gB2, …, gBn} is a set of goals. Therefore, Tyrrell’
MBSN M can be defined by M = {EM = {emi} | 8emi 2 EB, NM = {nm} | 8nm 2 NB,
GM ≅ gBi }. The model has the relevance to simple intention-response based on the
mirror neuron system. The mirror neuron system is activated by external stimulus
rapidly and is used to understand actions including a sub-goal. Similarly, the model
consists of the stimulus, behavior nodes, and a sub-goal.

Definition 3. Simple intention-response:
SR = {S, N, SG} is a set of simple intention-response pairs. Let U = {u1, u2, …, un} be
a set of user’s actions. S = {U, EM} is a set of stimuli, and N = {n1, n2, …, nn} is a set
of behaviors for the intention-response. The module is selected by the recognized
intention. After that, the model generates the response for user’s intention.

Fig. 1. Overview of the intention-response process (left) and the process of complex
intention-response (right)
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3.3 Complex Intention-Response Modelling

Complex intention-response method for responding to high-level intentions requires
the ability that can solve complex problems by achieving long-term goals. The BSN
can generate the response reactively to achieve a sub-goal containing simple intention.
However, since it cannot make sequence to solve the complex problem, it is not
suitable for responding to complex intention. To work out this problem, we present
planning by hierarchical task network. When the goal is set, sequence is made by
actions which are added into a queue to achieve the goal.

If an agent is faced with unexpected situations, it would fail to realize its sub-goals,
and then it cannot perform the next plan. To solve this problem, we modify the module
so that a failure of sub-goals can be managed, and the plan can be revised. If a node is
abnormally repeated or the number of total steps is unusually overflowed, that is
considered a failure about achieving the goal.

Definition 4. Complex intention-response:
CR = {S, N, TG} is a set of complex intention-response. Let U = {u1, u2, …, un} be a
set of user’s actions. S = {U} is a set of stimuli, and N = {n1, n2, …, nn} is a set of
behaviors for the intention-response. The method based on theory of mind can cope
with user’s abstract intentions deliberatively through the process of decomposing the
complex intention into simple intentions using the planning by hierarchical task
network.

4 Experiments

In this section, we apply the intention-response model to NAO, a humanoid robot
platform, and show the usefulness of the model. We show that it can overcome pre-
viously mentioned problems of requiring a reactive control system while performing
behaviors corresponding to user’s intention. The NAO is a useful robot platform to
implement human cognitive structure, but this type of robots needs more sophisticated
control process on many joints that might cause errors. Therefore, our experiments
were performed on both the Webot simulation and a real world environments as shown
in Fig. 2.

4.1 Analysis of Simple Intention-Response

We design a BSN to confirm imitation and achieving a sub-goal in the simple
intention-response. Figure 3 shows a BSN designed for the activity moving a box to
the left or the right. For example, ‘stand by’ is one of the stimuli, and ‘attention’ is
contained in behaviors. Lastly, ‘move(object)’ is the sub-goal for responding to the
simple intention. The observed behaviors trigger spreading activation energy between
the nodes through links, and one node is finally selected.

As a result of the experiment, the model makes proper behaviors according to the
intention of the observed objects as shown in Fig. 3(right). We can confirm that
behaviors which should be performed at that time are activated appropriately.
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4.2 Analysis of Complex Intention-Response

Scenario: A user requests to NAO that the OBJECT be delivered from PLACE _A to
PLACE_B, when the NAO’s current position is PLACE _A.

The experiment was based on the scenario to verify appropriate reactions to the
changing environment. Accordingly, we aim to confirm the suitable responses to
accomplish a target goal. As a result of the experiment, BSN planning queue is con-
structed automatically. When user’s intention to clean a room is input, four interme-
diate purposes are generated (detect the object, pick up the object, detect the place, and
putdown the object). Through the observation of environment around, the node having
the highest activation energy is chosen at every time step. The node chosen is per-
formed right away. That is, the value of activation can be zero or not.

Figure 4 shows the activation nodes of agent robot and internal processing of
command. After moving to the object, NAO picked up the object, and the module
which can put down object is performed in succession. At the same time, pickup
module was deleted in planning queue of right top. When all modules in planning
queue is performed completely, intention-response process is terminated. Whenever
user tries conversation to NAO, this system analyzes the intention. If the intention is

Fig. 2. Real world (left) and virtual simulation (right) environments

Fig. 3. The BSN module for moving a box (left) and response process (right)
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complicated, system creates a planning queue which performs a task in regular
sequence. Left side of the figure shows the corresponding flow of scenario and internal
components. X-axis of the figure means the flow of time. When a complex intention
like “Please throw away garbage to trash” is recognized, the model generates a queue
of behavior sequence of responding to the intention. For instance, GrabA to detect
garbage, Putdown to throw away garbage, and Return to user. In this figure, we can
confirm the generation and elimination of queue.

Figure 5 shows the result after running the experiments 15 times. This result shows
the response rate, success rate and average execution time of service process. Detection
requires the longest time, and this condition leads to high success rate accordingly. In
movement, direction of walk or the number of walk can be changed on experiment
environment. That is the reason why success rate is low despite of high response rate.
We can confirm that if intermediate process is not performed appropriately, final goal is
influenced by intermediate process. Average execution time of action is one third of
detection. The reason of this difference can be explained by understanding environment
of BSN. Because all environment conditions of behavior nodes are satisfied, BSN can
perform the final goal directly without detection or movement.

Fig. 4. Internal states of a response process
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5 Concluding Remarks

This paper evaluated the service process of agent robot which is based on
intention-response model. This model can select appropriate response according to
user’s various requests and generate corresponding behaviors. The experiment was
based on the scenario to verify appropriate reactions to the changing environment. As a
result, we can confirm the usefulness of this model. Also, processes of internal system
of agent robot were presented to explain this model. Through the series of iterating
experiments, we got quantitative results which can be evaluated on various aspects. In
the future, we need to validate the accuracy and effectiveness comparing to other
response methods, and conduct additional iterative experiments to show the reliability.
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Abstract. In this paper, a novel dynamic surface sliding mode control method
is proposed for three-dimensional trajectory tracking control of autonomous
underwater vehicle (AUV) in the presence of model errors. To enhance the
robustness, the sliding mode control approach is modified by employing
dynamic surface control (DSC). The radial basis function neural network
(RBFNN) approximation technique is used for approximating model errors,
furthermore the norm of the ideal weighting vector in neural network system is
considered as the estimation parameter, such that only one parameter is adjusted.
The proposed controller guarantees uniform ultimate boundedness (UUB) of all
the signals in the closed-loop system via Lyapunov stability analysis, while the
tracking errors converge to a small neighborhood of the desired trajectory.
Finally, simulation studies are given to illustrate the performance of the pro-
posed algorithm.

Keywords: Autonomous underwater vehicle(AUV) � Three-dimensional
trajectory tracking � Dynamic surface control(DSC) � Sliding mode control
(SMC) � Radial basis function neural network(RBFNN)

1 Introduction

Nowadays the ocean space is an important competition field of military and economic
powers in the world, and many countries are vigorously developing deep sea explo-
ration technology [1]. It is well known that an underwater vehicle is the favored
solution to be deployed in many undersea applications especially in the military field
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and the oil and gas industry [2]. Therefore the precise trajectory tracking of AUV is
required, so far various control strategies have been proposed for tracking of AUV. Due
to the simple algorithm, the traditional sliding mode control (SMC) has been suc-
cessfully applied to dynamic positioning and motion control of AUV [3], nevertheless,
the main disadvantage of the control algorithm was chattering effect. To enhance the
algorithm, it is a commonly used method that SMC was combined with other control
algorithm, such as fuzzy control [4, 5], dynamic surface control [6] and genetic
algorithm [7]. Recently, a simple adaptive neural tracking controller was proposed for
an uncertain AUV system in [8]. In the algorithm, only one parameter needs to be
estimated online regardless of the number of the NN nodes, so it is convenient to
implement in applications. However, the accuracy of filter is not satisfied, which has
effect on the robustness of controller [9].

According to the above observations, this paper designs a dynamic surface sliding
mode control algorithm based on radial basis function neural network(RBFNN) for
trajectory tracking control of an AUV in the presence of model errors. The controller is
designed by combination of sliding mode control, dynamic surface control and
RBFNN approximation technique. A simulation is carried out for an AUV, the sim-
ulation results show that the designed controller achieves a good performance for
three-dimensional trajectory tracking control.

2 Problem Formulation and Preliminaries

The mathematical model for underwater vehicle motion of six degrees of freedom can
be obtained in the general form [8].

M gð Þ€gþC v; gÞð _gþG gð ÞþD v; gð Þ _gþ sd þD v; gð Þ ¼ s ð1Þ

where, g ¼ x y z / h w½ �T is the position and Euler angles vector with respect
to earth-fixed coordinate system:v ¼ u v w p q r½ �T is the velocity vector with
respect to body-fixed coordinate system; MðgÞ is the inertia matrix, Cðv; gÞ is the
so-called centripetal-Coriolis matrix. Both M gð Þ and Cðv; gÞ are related to rigid-body
dynamics and added mass forces and moments.gðgÞ is the gravitational or restoring
forces vector, Dðv; gÞ denotes the general damping coefficients matrix derived from
potential damping, skin friction, and damping due to vortex shedding etc. sd is an
immeasurable environmental disturbance vector due to waves or cable traction etc. s
denotes the external forces vector provided by rudders, thrusters or etc. D v; gð Þ denotes
modeling errors or system perturbation. In some cases, the modeling errors do affect the
control performance of underwater vehicle, especially in low speed maneuvering.

The control objective of this paper is to track the desired trajectory gd of AUV in
the presence of the model error, i.e. lim

t!1 g� gdk k\d; d[ 0.

Assumption 1: The desired trajectory gd is a sufficiently smooth function of t and gd ,
_gd , €gd are bounded, that is, there exists a positive constant B0 satisfy g2d þ _g2d þ €g2d �B0.
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Assumption 2: D v; gð Þ is bounded, that is, there exists a positive unknown constant
D � v; gð Þ such that Di v; gð Þj j �D � v; gð Þ; 1� i� 6.

Notation 1: kmax Að Þ and kmin Að Þ denote the largest and smallest eigenvalues of a
square matrix A, respectively. �k k stands for Frobenius norm of matrices and Euclidean
norm of vectors, i.e., given a matrix B and a vector Q, the Frobenius norm and
Euclidean norm are given by Bk k2¼ tr BTBð Þ ¼Pi;j b

2
ij and Qk k2¼Pi q

2
i .

Notation 2: In this paper, radial basis function NNs are employed to approximate
unknown nonlinear functions. Given any real continuous function f : X ! R, then
there exists a basis function vector S : Rm ! Rl and ideal weight vector W� 2 Rl such
that f ¼ W�TS Zð Þþ e, where Z 2 X � Rm is the input vector, e 2 R is the NN
approximation error satisfying ej j ��e with �e[ 0, andW� is an optimal weight vector of
W and is defined as

W� ¼ arg min
W2Rl

sup
Z2X

f xð Þ �WTS Zð Þ�� ��� �

where the weight vector W ¼ w1 ; � � � ; wl½ �T2 Rl, the NN node number l[ 1, and
S Zð Þ ¼ s1 Zð Þ; s2 Zð Þ; . . . ; sl Zð Þ½ �T with

si Zð Þ ¼ 1ffiffiffiffiffiffi
2p

p
gi
exp � Z � lið ÞT Z � lið Þ

2g2i

 !
; i ¼ 1; � � � ; l

where li ¼ li1; li2; � � � ; lim½ �T is the center of the receptive field and gi is the width
of the Gaussian function.

3 Controller Design and Stability Analysis

The detailed design procedure is described in the following steps. It mainly includes 2
steps.

Step 1. Choosing x1 ¼ g; x2 ¼ _g, then (1) can be rewritten as follows.

_x1¼ x2

_x2¼�M�1 gð ÞC v;gð Þx2�M�1 gð ÞD v;gð Þx2�M�1 gð ÞG gð Þ�M�1 gð Þsd�M�1 gð ÞD v;gð ÞþM�1 gð Þs

Define the error surface

z1 ¼ x1 � gd ð2Þ

_z1 ¼ x2 � _gd ð3Þ

Choose the Lyapunov function candidate
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V1 ¼ 1
2
zT1 z1 ð4Þ

_V1 ¼ zT1 _z1 ð5Þ

Choose virtual control law for the first subsystem

a01 ¼ �c1z1 þ _gd ð6Þ

where a1 is a new state variable and can be obtained by introducing a first-order filter
with a time constant e as follows.

e _a1 þ a1 ¼ a01 a1 0ð Þ ¼ a01 0ð Þ ð7Þ

Define the filter error

h1 ¼ a1 � a01 ð8Þ

Define the second error surface

z2 ¼ x2 � a1 ð9Þ

_z2 ¼ _x2 � _a1 ð10Þ

Substituting (9) and (8) into (3) gives

_z1 ¼ z2 þ h1 þ a01 � _gd ð11Þ

Step2. Consider the position tracking, virtual control and filter error, choose the
following Lyapunov function candidate.

V2 ¼ V1 þ 1
2
zT2 z2 þ

1
2
hT1h1 ð12Þ

Due to _z2 ¼ _x2 � _a1; _h1 ¼ a01�a1
e � _a01 ¼ �h1

e þ c1 _z1 � €gd , so

_V2 ¼zT1 ðz2 þ h1 þ a01 � _gdÞþ zT2 ð�M�1 gð ÞC v; gð Þx2 �M�1 gð ÞD v; gð Þx2 �M�1 gð ÞG gð Þ
�M�1 gð Þsd �M�1 gð ÞD v; gð ÞþM�1 gð Þs� _a1Þþ hT1 ð

�h1
e

þB2Þ
ð13Þ

where B2 ¼ c1 _z1 � €gd ;B2 ið Þ is a continuous function and has a maximum value M2 ið Þ
i.e. B2 ið Þj j �M2 ið Þ , please refer to [10] for details. (1� i� 6, it will be used
throughout this paper).

Combining the definition of sliding mode control, define the sliding surface is
s ¼ z2, now, if Δ is known, we can design the dynamic surface sliding mode control.
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s� ¼M gð Þ½M�1 gð ÞC v; gð Þx2 þM�1 gð ÞD v; gð Þx2 þM�1 gð ÞG gð ÞþM�1 gð Þsd
þM�1 gð ÞD v; gð Þþ _a1 � f:sgnðz2Þ � c2z2�

ð14Þ

where c2 [ 0; f[ 0, and f is a constant.
The RBFNN is used to approximate the �M�1 gð ÞD v; gð Þ, we have

�M�1 gð ÞD v; gð Þ ¼ W�T
2 S2 Zð Þþ e2 ð15Þ

zT2W
�T
2 S2 Zð Þþ zT2 e2 �

kT2 z2k k2 S2 Zð Þk k2
2b22

þ b22
2

þ z2k k2
2

þ �e2k k2
2

ð16Þ

Remark 1: kT2 ¼ W�
2

�� ��2 is the norm of the ideal weighting vector in a neural net-

work. Since W�
2 is unknown, kT2 will be replaced by its estimation value in the fol-

lowing design procedure. Throughout this paper, let k2 � k̂2 ¼ ~k2.

Choose the Lyapunov function candidate

V3 ¼ V2 þ 1
2
~kT2C

�1
2
~k2 ð17Þ

where ~k2 ¼ k2�k̂2;C2 ¼ CT
2 [ 0 is a gain constant matrix, so

_V3 ¼ _V2 � ~kT2C
�1
2

_̂k2 ð18Þ

Choose the final controller

s ¼ C v; gð Þx2 þD v; gð Þx2 þG gð Þþ sd �M gð Þz2k̂T2 S2 Zð Þk k2
2b22

þM gð Þ _a1
� f:M gð Þsgnðz2Þ � c2M gð Þz2 ð19Þ

Substituting (6) (13) (16) and (19) into (18), choose

c1 � 1þ a0; c2 � 1þ a0;
1
e
� 1

2
þ M2

2

2
þ a0

Then (18) can be written as follows.

_V3 � � a0 z1k k2�fsgnðz2Þz2 � a0 z2k k2 þ b22
2

þ
~kT2 z2k k2 S2 Zð Þk k2

2b22

þ �e2k k2
2

� M2k k2 h1k k2
2

� a0 h1k k2 þ B2k k2 h1k k2
2

þ 1
2
� ~kT2C

�1
2

_̂k2

ð20Þ

Because of B2j j �M2, so
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_V3 � � a0 z1k k2�a0 z2k k2�a0 h1k k2�fsgnðz2Þz2
� ~kT2C

�1
2

_̂k2 þ
~kT2 z2k k2 S2 Zð Þk k2

2b22
þ �e2k k2

2
þ b22

2
þ 1

2
ð21Þ

Choose adaptive law

_̂k2 ¼ C2
z2k k2 S2 Zð Þk k2

2b22
� r2 k̂2 � k02

� � !
ð22Þ

Noting the follow.

r2~k
T
2 k̂2 � k02

� �
� � r2~k

T
2
~k2

2
þ r2 k2 � k02

	 
2
2

� � a0~k
T
2C

�1
2
~k2 þ

r2 k2 � k02
	 
2

2
ð23Þ

where, r2
2kmax C�1

2ð Þ � a0; k
0
2 are initial values of k2; r2 [ 0; k02 and r2 are design

constants.
Substituting (22) and (23) into (21)

_V3 � � 2a0V3 þD� fsgnðz2Þz2 � � 2a0V3 þD ð24Þ

where D ¼ 1
2 þ

b22
2 þ �e2k k2

2 þ r2 k2�k02ð Þ2
2 .

From (24), one has

V3ðtÞ� D
2a0

þ V3 t0ð Þ � D
2a0

� �
e�ðt�t0Þ ð25Þ

It follows that, for any l1 [ D=a0ð Þ1=2, there exists a constant T [ 0 such that
z1 tð Þk k� l1 for all t� t0 þ T , and the tracking errors can be made small, since

D=a0ð Þ1=2 can arbitrarily be made small if the design parameters are appropriately
chosen.

4 Simulation Result

In this section, an example is given to show the efficiency of the proposed controller.
We will use the nonlinear model of Naval Postgraduate School AUV II [11].

The reference trajectory is

gd ¼ 3 sinðtÞ 3 sinð2tÞ 25 sinð4tÞ 12 sinð0:25tÞ 12 sinð0:5tÞ 25 sinð2tÞ½ �T

Modeling error is assumed Dðv; gÞ ¼ 6 sin n ðn ¼ z1 þ _z1Þ. The disturbance is
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sd ¼ 2þ2sinðtÞ 4þ2cosðtÞ 1þ2sinð2tÞ 1þ2cosðtÞ 3þ2sinðtÞ 2þ2cosðtÞ½ �T

The designed parameters of the above controller are given as c1 ¼ 12; c2 ¼ 15;
e ¼ 0:1;C2 ¼ diagf0:5g; r2 ¼ 0:5; k02 ¼ 0. The number of the NN nodes are chosen as
l ¼ 25, the centers of basis function are evenly distributed in ½�1; 1� 	 ½�1; 1� with the
width g1 ¼ 5.

The simulation result is shown in Fig. 1, it can be observed that the tracking
performance is satisfactory under the disturbance and model errors.

5 Conclusion

In this paper, employing dynamic surface technique and sliding mode technique, a
dynamic surface sliding mode control based on neural network (NN) method is pro-
posed for trajectory tracking control of AUV in the presence of model errors. This
algorithm enhances the robustness of this system with less computational burden.
Simulation result shows the performance of the proposed algorithm.
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Abstract. Reservoir computing is a computational framework suited
for sequential data processing, consisting of a reservoir part and a read-
out part. Not only theoretical and numerical studies on reservoir com-
puting but also its implementation with physical devices have attracted
much attention. In most studies, the reservoir part is constructed with
identical units. However, a variability of physical units is inevitable, par-
ticularly when implemented with nano/micro devices. Here we numeri-
cally examine the effect of variability of reservoir units on computational
performance. We show that the heterogeneity in reservoir units can be
beneficial in reducing the prediction error in the reservoir computing
system with a simple cycle reservoir.

Keywords: Reservoir computing · Sequential data processing · Simple
cycle reservoir · Heterogeneous neurons · Energy efficiency

1 Introduction

Recurrent neural networks are capable of producing high-dimensional complex
dynamics due to feedback connections, which has often been utilized for informa-
tion processing of sequential data [1]. The training methods for recurrent neural
networks have been proposed, including the backpropagation through time algo-
rithm, the real-time recurrent learning, and the extended Kalman filter method
[2]. These algorithms try to adapt all the connection weights by minimizing
the total error between the network output sequence and the desired output
sequence. Since they have relatively high time complexity, their practical appli-
cations with large-scale networks are still not realized. Reservoir computing is
one of the potent frameworks that can overcome the problem of the training cost
in recurrent neural networks for energy efficient computing [3,4]. The reservoir
computing framework was established by combining the concepts from the echo
state network (ESN) [5–7] and the liquid state machine [8].
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DOI: 10.1007/978-3-319-46687-3 20



188 G. Tanaka et al.

The reservoir computing system consists of the reservoir part and the read-
out part. The reservoir part is used for mapping the input sequence to a high-
dimensional spatiotemporal pattern. The readout part is used for adjusting the
output connection weights so that the spatiotemporal pattern generated by the
reservoir is appropriately mapped to the desired output sequence. Since not all
the weights but only the output weights are adapted, the reservoir comput-
ing can save the learning time compared with the conventional recurrent neural
networks. Moreover, the fixed reservoir can be implemented with nonlinear phys-
ical systems and devices, including optoelectronics [9], memristors [10], and wave
phenomena [11,12].

In the standard ESN [5], the reservoir is given as a randomly connected
recurrent neural network. The performance of reservoir computing relies on the
number of neurons and the weight matrix in the reservoir, which govern the
length of the history of input sequence that can be embedded into its spatiotem-
poral dynamics. For constructing a good mapping from an input sequential data
to an output one, the reservoir is required to satisfy the echo state property [5]
which indicates the property that the influence of the input stream is gradually
attenuated with time. This means that the mapping represented by the reservoir
should be neither expanding nor highly contracting. Hence, the spectral radius of
the weight matrix is often set to be less than and close to unity, corresponding to
the edge of chaos [2]. However, the random reservoir topology is not mandatory.
A deterministically designed reservoir with simple ring architecture is compara-
ble to the standard random reservoir in their computational performance [13].
The simple cycle reservoir enables theoretical analyses of reservoir computing
properties such as memory capacity. In addition, it is favorable for hardware
implementation because only local connections and uniform weights are needed.

In this study, we incorporate variability into the neuron units in the simple
cycle reservoir, motivated by two aspects. One is that the simple cycle reservoir
with identical units seems to be too uniform to produce rich nonlinear dynamics.
The unit variability is expected to diversify the dynamics of individual units.
The other is that the variability of the reservoir units are inevitable when they
are implemented with physical devices, particularly with nano/micro devices.
We examine how heterogeneity of the reservoir units impacts on the reservoir
dynamics and its computational capability. We show that the variability in the
reservoir units can improve the performance of the simple cycle reservoir.

2 Methods

2.1 Model

The reservoir in the standard ESN consists of neuron units which interact with
each other through weighted random connections as illustrated in Fig. 1(a).
The numbers of input units, internal units, and output units are denoted by
L, N , M , respectively. Then, the states of the input, internal, and output
units are represented by the column vectors u(t) = (u1(t), u2(t), . . . , uL(t))T ,
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x(t) = (x1(t), x2(t), . . . , xN (t))T , and y(t) = (y1(t), y2(t), . . . , yM (t))T , respec-
tively. The input connectivity, the reservoir connectivity, the feedback connectiv-
ity, and the output connectivity are represented by W in ∈ R

L×N , W ∈ R
N×N ,

an W fb ∈ R
M×N , and W out ∈ R

N×M , respectively.
The states of the ith internal unit (i = 1, . . . , N) is updated as follows:

xi(t + 1) = fi
(
(W in

i )T · u(t + 1) + (Wi)T · x(t) + (W fb
i )T · y(t)

)
, (1)

where fi stands for the activation function of the ith neuron in the reservoir
and W in

i , Wi, and W fb
i are the ith row of the input, reservoir, and feedback

weight matrices, respectively. The states of the jth output unit (j = 1, . . . , M)
is given by

yj(t) = fout
(
(W out

j )Tx(t)
)
, (2)

where fout represents the activation function of the output neurons and W out
j is

the jth row of the output weight matrix. Here we use fout(x) = tanh(x).

Reservoir tuptuOtupnI

Win Wout

W

u(t) x(t) y(t)

Wfb

Reservoir tuptuOtupnI

Win Wout

W

u(t) x(t) y(t)

Wfb

Fig. 1. Structure of the reservoir. (a) Random topology. The standard architecture in
the ESN [5]. (b) Ring topology called the simple cycle reservoir [13].

When an input sequential data u(t) is given, the output sequence is generated
by Eqs. (1)–(2). The characteristic of the reservoir computing is that the weights
in the input and reservoir connections are not adapted but only the output
connection weights W out are determined by a learning rule. The output matrix
W out is obtained to minimize the error between the network output sequence
y(t) and a desired output sequence d(t), given by

E = 〈||y(t) − d(t)||2〉, (3)

where 〈·〉 denotes an average over a time period. The minimization of E can be
achieved using regression methods. Here we employ the pseudoinverse computa-
tion [2].
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2.2 Reservoir Structure

We use the simple cycle reservoir as shown in Fig. 1(b), where the connectivity of
the reservoir nodes has ring topology and the connection weights are uniform [13].
It is represented as the weight matrix W = (wi,j) where wi+1,i = r, w1,N = r,
and all the other entries are zero. For the standard reservoir, the necessary
condition for the echo state property is given by ρ(W ) < 1 where ρ(W ) is the
spectral radius of W and the sufficient condition is given by σ̄(W ) < 1 where
σ̄(W ) is the largest singular value of W [5]. For the simple cycle reservoir [13],
ρ(W ) = σ̄(W ) = r. The simple cycle reservoir is comparable to the standard
reservoir in the performance of time series predictions and its memory capacity
can be theoretically derived [13].

2.3 Heterogeneous Units

In most studies on reservoir computing, the units of the reservoir have been
assumed to be identical. The hyperbolic tangent function is normally used as
the nonlinear activation function of the units in ESNs. In the standard reservoir,
the diversity of the dynamics of the reservoir units are brought about by the
random weight matrix. However, in the simple cycle reservoir with identical
units, the dynamics generated by the individual units become uniform. The
total system can be essentially reduced to a lower-dimensional system. This is
unbenefited for producing high-dimensional spatiotemporal dynamics. Thus, we
introduce the variability in the activation function of the reservoir units, which
are represented as follows:

fi(x) = tanh(βix), (4)

where the parameter βi, corresponding to the slope of the function at the origin,
controls the nonlinearity of the function. Although there are many ways to intro-
duce variability in βi, for simplicity we assume that βi is randomly generated
from the uniform distribution in the range [1 − v, 1], where v (0 ≤ v ≤ 1) is the
control parameter representing the degree of variability.

2.4 Simulation Setting

Initially, we give the internal state x(0) and the output weight matrix W out ran-
domly. The weights of input connections have the same absolute value p but the
signs are randomly assigned. After a washout period with length Tinit, the sam-
ple sequential data with length Ttrn are used for training the output weights and
subsequently the sequential data with length Ttest are used for testing the gen-
eralization ability of the reservoir. The computational performance is evaluated
using the normalized mean squared error (NMSE) defined as follows:

NMSE =
〈||y(t) − d(t)||2〉

〈d(t)2〉 . (5)

We use the following benchmark tasks on sequential data processing, which
have been widely used to test the performance of reservoir computing.
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(1) Mackey-Glass equation [14]:

dy(t)
dt

=
ay(t − τ)

1 + y(t − τ)10
− by(t), (6)

where a = 0.2, b = 0.1, and τ = 30. The dataset was generated by numeri-
cally solving this equation with time step Δt = 1 [15]. The task is to predict
the value of y(t + 1) from the past values up to time t.

(2) Laser dataset: The Santa Fe Laser dataset is a crosscut through periodic to
chaotic intensity pulsations of a real laser [16]. The task is the same as that
in the previous one. The simple cycle reservoir has been applied to this task
[13].

(3) NARMA 10th-order system: The nonlinear auto-regressive moving average
(NARMA) system of order 10 is described as follows:

y(t + 1) = 0.3y(t) + 0.05y(t)
9∑

i=0

y(t − i) + 1.5u(t − 9)u(t) + 0.1, (7)

where u(t) is the input sequence which is randomly sampled from the uniform
distribution in the range [0, 0.5]. This task is widely used in the literature of
recurrent neural networks and reservoir computing [7,13].

(4) NARMA 20th-order system: The NARMA system of order 20 is described
as follows [13]:

y(t+ 1) = tanh

(
0.3y(t) + 0.05y(t)

19∑
i=0

y(t− i) + 1.5u(t− 19)u(t) + 0.01

)
, (8)

where u(t) is generated as in the previous task. This task is more difficult
compared with the NARMA 10th-order system due to the dependence of the
current state on the longer history of inputs.

3 Results

In the following numerical experiments, the input and output data were scaled
and shifted appropriately for each dataset. For the dataset generated by the
Mackey-Glass equation, we set N = 2, Tinit = 500, Ttrn = 1000, Ttest = 1000,
p = 0.87, and r = 1. The result of the test performance is shown in Fig. 2(a).
The plot for the variability parameter v = 0 corresponds to the result for the
simple cycle reservoir with the identical units [13]. As the variability parameter
v is increased, the NMSE is gradually decreased. Namely, the variability of the
units can improve the computational performance.

For the Laser dataset, we set N = 100, Tinit = 500, Ttrn = 2000, Ttest = 3000,
p = 0.87, and r = 0.7. The result is shown in Fig. 2(b). As the variabililty
increases, the prediction error decreases and reaches the bottom at around 0.7.
The error slightly increases for further increase in v, but it is much lower than
the case without variability.
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Fig. 2. The performance of the simple cycle reservoir with heterogeneous neurons.
The NMSE for the test set is plotted against the variability parameter v. The crosses
represent the results of 10 trials for each parameter value. The open circle indicates
the average of the 10 trials. (a) Mackey-Glass equation. (b) Santa Fe Laser dataset. (c)
NARMA 10th-order system. (d) NARMA 20th-order system.

For the NARMA 10th-order system, we set N = 100, Tinit = 200, Ttrn =
1000, Ttest = 1000, p = 0.87, and r = 0.86. Figure 2(c) shows the result, where
the variability can yield a better result if v is less than around 0.5 but for a
larger value of v the result is worse than the case without variability.

For the NARMA 20th order system, we set N = 100, Tinit = 500, Ttrn =
1000, Ttest = 1000, p = 0.87, and r = 0.95. The result for the NARMA 20th-
order system is similar to that for the NARMA 10-th order system as shown in
Fig. 2(d). Although a large value of v significantly increases the prediction error,
there exists a range of v in which the variability has a positive effect (the inset).

To clarify the conditions that the performance is improved by the unit vari-
ability, we indicated the parameter regions (black) for good computational per-
formance in Fig. 3. The performance increases with the variability v for the
range of r in Figs. 3(a), (b), whereas there is a optimal range of v in Figs. 3(c),
(d). There is a correlation between the values of r and v, suggesting that the
effective spectral radius is determined not only by r but by βi. It remains to
explicitly give the formula for the spectral radius in the simple cycle reservoir
with heterogeneous units.
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Fig. 3. The parameter region for good prediction performance on the (r, v)-plane. The
color bar indicates the NMSE for the test set. (a) The Mackey-Glass equation. (b)
The Santa Fe Laser dataset. (c) The NARMA 10th-order system. (d) The NARMA
20th-order system.

4 Conclusions

We have proposed to exploit heterogeneity in the reservoir units for improving
the computational performance in the reservoir computing with the simple cycle
architecture. We have introduced variability in the slope parameter in the hyper-
bolic tangent activation functions of the reservoir units. Numerical experiments
have shown that both the unit variability and the connection weight govern the
performance on the benchmark tasks for sequential information processing.

Our result is beneficial for hardware implementation of reservoir computing
because of the simple reservoir structure and the unavoidable unit variability
when implemented with nano/micro devices. For verification of the effectiveness
of our method, we need further numerical experiments using other datasets. It is
significant to clarify the conditions under which the unit variability works well.
The mathematical mechanism of the positive role of the unit variability still
remains to be investigated.
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Abstract. How can we build robot controllers that are able to work
under harsh conditions, but without experiencing catastrophic failures?
As seen on the recent Fukushima’s nuclear disaster, standard robots
break down when exposed to high radiation environments. Here we
present the results from two arrangements of Spiking Neural Networks,
based on the Liquid State Machine (LSM) framework, that were able to
gracefully degrade under the effects of a noisy current injected directly
into each simulated neuron. These noisy currents could be seen, in a sim-
plified way, as the consequences of exposition to non-destructive radia-
tion. The results show that not only can the systems withstand noise, but
one of the configurations, the Modular Parallel LSM, actually improved
its results, in a certain range, when the noise levels were increased. Also,
the robot controllers implemented in this work are suitable to run on a
modern, power efficient neuromorphic hardware such as SpiNNaker.

Keywords: SNN · Liquid state machines · Robot control · Noise ·
Graceful degradation · Robustness

1 Introduction

Five years have passed since Fukushima’s nuclear disaster and current robot
technology is still not ready for such a big challenge. The high level of radia-
tion in areas close to the reactors was lethal for human beings and the robots
sent to the site have severely suffered from it, hence making clear the need for
more research. Modern computers, and therefore robot controllers, are designed
around digital circuits and, despite several advances in manufacturing processes,
design and simulation, they are still not immune to it. Digital systems also suffer
from non-destructive radiation, since it can generate Single-Event Upsets (SEU)
or “soft-errors”. A SEU is an alteration in a logic state as a result of an energetic
particle entering the microelectronic device [11]. In addition to man-made radi-
ation sources, space and terrestrial environments are also subjected to cosmic
rays and naturally available radioactive isotopes.
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 195–204, 2016.
DOI: 10.1007/978-3-319-46687-3 21
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There is evolutionary pressure for natural information processing systems to
be fault tolerant. If damaged or malfunctioning neuronal cells were to change
drastically the overall behaviour of the organism, it would restrict chances of
survival. According to [16], graceful degradation is defined as “graded, proba-
bilistic deficits, with some sparing of function, and with performance strongly
influenced by the frequency or familiarity of the stimulus and/or its degree of
consistency with other items”. As such, we can identify graceful degradation in
a number of neural systems. For example, in motor control neurologic disorders,
Essential Tremor (characterised by periodic 4–12 Hz low amplitude movements)
is among the most common (prevalence ≈ 4.0 % among aged 40 years or older),
while motor disorder with choreoathetotic and ballistic movements i.e. “exces-
sive, spontaneous, irregularly timed, non-repetitive, randomly distributed and
abrupt in character” has a prevalence ≈ 0.01 % [2,9,22]. As another example, in
memory encoding and consolidation, engram cells distribute learned information
so that no individual neuron is responsible for a particular information, but their
collective activation. Recent advances are being made in elucidating the biology
behind this [18,19].

Efficiency is another characteristic seen all around nature designs. The best
example is the human brain, since cortex and cerebellum together spend on
average around 15W [6]. On the other hand, the Human Brain Project expects
to simulate the whole brain, in the cellular level, using an exascale computer or
60 MW [12].

In an attempt to start developing solutions for the current problems robotic
systems encounter when exposed to an environment with a high level of radiation,
we propose in this work the use of biologically inspired robot controllers [1] for
a more nature-like graceful degradation, instead of a catastrophic failure, when
exposed to it. Modular and Monolithic designs of a special type of feedback
enhanced parallel Liquid State Machines (LSM) [14,15] are exposed to different
noise levels, in a simulated environment, and the results analysed with a robotic
task as the benchmark. White Gaussian noise is injected directly into the neuron
model, which could be seen as an example of the result from the non-destructive
effects of radiation. Additionally, LSM are modelled based on Spiking Neural
Networks (SNN), therefore power efficiency could be easily acchieved implement-
ing the SNN in a neuromorphic hardware such as SpiNNaker [5], BrainScaleS [21]
or Silicon Neurons (SiN) [7] which could also improve the reliability even further.

2 Materials and Methods

The investigation presented here was based on an earlier work1, where a new
humanoid robot control framework using parallel, diverse and noisy groups of
biologically inspired LSM was introduced [1]. This robot controller was able to
reproduce trajectories (shapes) previously learned from a teacher, but the effects
of varying noise levels were not studied.

1 Source code available at github.com/ricardodeazambuja/IJCNN2016.

http://github.com/ricardodeazambuja/IJCNN2016
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In this new work, eleven different noise levels (100 trials each), starting from
the standard one defined in [8] and going up to 100 % above that (see Sect. 2.2),
were employed to verify the noise effect on two different parallel LSM config-
urations: Modular and Monolithic (see Sect. 2.1). The final analysis was done
through the robot’s resultant movement performing the benchmark task of draw-
ing a square shape on a table (see Sect. 2.3).

2.1 Modular and Monolithic Parallel LSM

The idea of breaking an LSM into multiple liquids (or simplified models of cor-
tical columns) in parallel to increase the computational power was initialy pre-
sented in [15], but only in [1] was an external feedback loop, as suggested in [8,14],
explored for this particular situation. Also the parallel system presented in [15]
had an external output layer (readout) shared among all neurons contrasting
with the one presented in [1] where each liquid was trained individually and
had its own readout resulting in a system with improved learning capabilities.
Those two approaches are called here the Monolithic Parallel LSM (Fig. 1b)
and Modular Parallel LSM (Fig. 1a), respectively. To facilitate comparisons, the
same random seeds from [1], therefore the same liquids, were employed here, but
the readout layers were trained again as the Monolithic approach has not been
tested before.

2.2 Neuron Model and Noise Levels

The neuron model applied in this work, the Leaky Integrate and Fire (LIF)
partially represented by the Eq. 1 (for more details see [1]), has its membrane
reset voltage (Vreset) drawn from a uniform distribution ([13.8 mV, 14.49 mV])
when the neural network is created and generates a spike when it reaches 15 mV
(Vthreshold). On the algorithmic level, the membrane voltage is always clamped

(a) (b)

Fig. 1. The Modular approach (a) uses individual readout layers for each liquid. The
Monolithic approach (b) has only one readout layer shared among all its neurons. Both
systems reuse the same five LSM (liquids) from [1], but with retrained readouts.
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(a) (b) (c) (d) (e) (f)

Fig. 2. As an easy way to visualize the noise effects, the photographs (top row) had
added to their greyscale values (0 to 255) noise proportional to how Anoise affects the
membrane voltage, varying it from 0.0 (a) to 1.0 (f). On the bottom row, noise is
applied to a sinusoid whilst keeping the same scale.

between −15mV and +15mV, although its rest potential is 0 mV and it is set
back to the reset value (Vreset) after every spike. Consequently, most of the time,
the neuron membrane will fluctuate between Vreset and Vthreshold or, in the worst
scenario, with ΔV ≈ 1.2mV.

The simulation of a faulty system through the injection of noise (see Sect. 1)
is accomplished using the inoise variable from Eq. 1. Its value is drawn from a
Gaussian distribution (μ = 0 and σ = 1nA) multiplied accordingly to what
we call here noise level (Anoise). Having a noise level of 100 %, 110 %, 120 %,
. . . , 200 % means the multiplier value goes from 1.0 up to 2.0. The parameters
were defined according to what was presented in [8,15], hence cm = 30nF and
τm = 30ms. This yields, ignoring other noise sources, a Signal-to-noise ratio

(SNR) of approximately
(

ΔV/mV
Anoise

)2

. Thus the system has its SNR varied from
1.44 to 0.36 (see Fig. 2).

dv(t)
dt

=
ie(t) + ii(t) + ioffset + inoise(t)

cm
+

vrest − v(t)
τm

(1a)

die(t)
dt

= − ie(t)
τsyne

(1b)

dii(t)
dt

= − ii(t)
τsyni

(1c)

2.3 Benchmark Task

The benchmark test consisted of the simultaneous control of four joints (Fig. 3)
of a simulated BAXTER robot in order to draw a square shape on top of a
table (for more details see [1]). All analyses are done on the robot’s taskspace
(Cartesian space) instead of joint space. Although being a two dimentional shape
drawn on a surface, the system follows a human-inspired movement [4] and, for
that reason, must keep in control a total of four dimensions: X, Y, Z and time.
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(a) (b)

Fig. 3. Simulated BAXTER robot inside V-REP [17], with joint names indicated on its
right arm, drawing the square on top of a table (a). Joint curves necessary to command
the robot to generate the square shape (b).

(a) (b)

Fig. 4. An example of how the DTW fits a very distorted square (green triangles)
against a perfect one (blue squares) (a). The path that minimises the accumulated
distance (b). The DTW path cost for the distorted square is 42.12. (Color figure online)

Cost Calculation. Using the Dynamic Time Warping (DTW) [20] the total
distance defined by the path formed with the minimum values of the accumulated
distance (Fig. 4, right-hand side) can be easily applied to compare the quality
between different shapes. If the shapes are exactly the same, that distance is
minimal and forms a straight diagonal line. The use of this same algorithm in a
robotic task was already presented in [1].

3 Results and Discussion

Eleven distinct levels of noise were tested here for both, Modular and Mono-
lithic, approaches (Sect. 2.1) with Anoise varying from 1.0 to 2.0 (Sect. 2.2). These
experiments resulted in a total of 2, 200 simulations, where each one consisted
of 3, 000 spiking neurons (five 600 neurons liquids in parallel). After every run,
the joint values produced were loaded into the simulated Baxter robot inside
V-REP to verify the final movement executed for the benchmark task and the
results processed by the DTW algorithm (Sect. 2.3).
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(a) Anoise = 1.0

(b) Anoise = 1.5

(c) Anoise = 2.0

Fig. 5. Each plot shows the DTW path cost (bottom) for all trials and some of
the shape outcomes (top) comparing the Modular (blue, circles) and the Monolithic
approaches (red, triangles). The shapes (top) were selected based on the sorted cost
values of both configurations to show a more comprehensive set of examples. Average
values plotted as horizontal dashed lines (bottom). (Color figure online)

The DTW path cost values generated from three different noise intensi-
ties (Anoise equal to 1.0, 1.5 and 2.0) are presented in Fig. 5 with all one hundred
trials (bottom) and ten examples of the final shapes generated (top). Clearly as
the noise is increased, the square shapes become strongly degraded, but the Mod-
ular approach still can produce some rectangular forms even with Anoise = 2.0
or a noise level twice that injected during the readout training phase (see Fig. 2
for a visual hint about noise levels). However, when using the standard noise
level (Anoise = 1.0), the Monolithic approach had a better performance with
an average cost value about 39 % smaller than the Modular one. This type of
system, sometimes, get stuck into a value and needs noise to be able to proceed,
but the DTW algorithm penalises it as the trajectory it sees, although with a
nice quality, was not completed. Therefore the difference between Modular and
Monolithic approaches, with Anoise = 1.0, could be explained by the limited
number of simulated steps (2,000 steps).
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(a) (b)

Fig. 6. Modular (a) and Monolithic (b) approaches with Anoise = 2.0.

Fig. 7. Average DTW path cost and its standard error for all trials (hundred in total
for each Anoise level). The growth, considering the first value incremented by 10%,
20% . . . 100 %, is shown as a dashed line.

In Fig. 6, all hundred trials with Anoise = 2.0 were plotted together on 3D
Cartesian space (same scale for all views) to make it easier to evaluate them,
as mean values do not work well if there are time delays among trials. Despite
the fact that a strong effect on the 2D square shape is clear, the Z axis (or the
height control) is barely affected (top right).

The main question raised at the introduction was about the behaviour of
this kind of system when affected by different noise levels and if it would have
a nature like graceful degradation. To analyse that, the DTW path cost average
and standard error values were calculated and are presented in Fig. 7. The same
figure also presents what would be the evolution of the cost considering the
initial values incremented in steps of 10 %.

Both approaches presented here, Modular and Monolithic parallel LSM, had
what is considered a graceful degradation, as with the increase of the noise the
systems did not catastrophically fail, but the DTW path cost grew in a well
behaved manner. Comparing both LSM configurations, the Modular approach
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had an almost constant behaviour up to Anoise=1.4 when it started growing
linearly with nearly the same slope as the Monolithic approach. Therefore, the
Modular system (between the Anoise range of 1.0 to 1.4) was able to withstand
the noise better than a simple linear growth as showed by the dashed blue
line (Fig. 7) whilst the Monolithic configuration always increased its DTW path
cost with the increase of noise.

4 Conclusions and Future Work

The robot controllers presented here were able to withstand, or at least gracefully
degrade, when exposed to different noise levels - modelled here as white Gaussian
noise based currents injected into the neuron model. These noisy currents could
be seen, in a simplified way, as the consequences of exposition to non-destructive
radiation. It is important to develop systems that are able to be implemented
using new technologies, such as neuromorphic hardware, as they seem to be
one of the possible ways to bypass the declining applicability of Moore’s law [23]
without having to expend huge amounts of energy [12]. Also, one of the strategies
to decrease energy consumption, in a quadratic way, is the reduction of the
voltage supplied to the digital circuits (near-threshold voltage [10]). However,
this naturally leads to a decrease in the noise immunity as the voltage margin
until a transistor changes its state is reduced. Another consequence of voltage
reduction is within the speed a transistor changes its state. Still, neural systems
are well known to be parallel, but relatively slow systems when compared to
modern digital circuits. Even if MEMS-based logic gates [3] evolve up to the
point of a final product, a digital system does not degrade gracefully in normal
conditions and always needs extra gates to implement error correction.

The Modular design presented here opens up the possibility for a hot-swap
hardware implementation, fitting SpiNNaker very well as it is able to turn on
and off chips if necessary, and also decreasing the time and memory spent during
learning. Also, having smaller readout layers, the time spent during learning is
smaller than when using the Monolithic setup.

The Monolithic approach uses one big readout layer while the Modular one
has smaller individual output layers and a node producing the average among
them. In a future work, this simple average junction could be replaced by an extra
on-line learning layer with weights connecting the analogue readout outputs
directly to the neuron membrane, opening the possibility to vary the amount of
trust the system has to each individual LSM without the need of changing the
readout weights, thus saving energy and simplifying the design.

Additionally, to extend what was presented here, other parameters could be
checked to verify their influence on the robustness. One good example, easily
implemented, is the number of parallel liquids and the number of neurons used
with each one.

In some trials, the systems got stuck in the middle of a well defined trajec-
tory producing high DTW path cost values (see Fig. 5a, trials 42 and 99). Our
experience, after several experiments have been done using this type of system,
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together with the results presented in the Fig. 7, suggests a certain minimum
background noise is actually necessary for this kind of system. This idea of a
“good” noise is not new [13] and will be left as another avenue for future works.

All the source code necessary to generate the results presented here will be
available at http://github.com/ricardodeazambuja/ICONIP2016.
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Abstract. We investigate reservoir computing systems whose dynamics
are at critical bifurcation points based on center manifold theorem. We
take echo state networks as an example and show that the center mani-
fold defines mapping of the input dynamics to higher dimensional space.
We also show that the mapping by center manifolds can contribute to
recognition of attractors of input dynamics. The implications for realiza-
tion of reservoir computing as real physical systems are also discussed.

Keywords: Reservoir computing · Echo state network · Bifurcation
phenomena · Center manifold theory · Physical reservoir

1 Introduction

Reservoir computing (RC) is an emerging special class of neural networks with
a variety of engineering applications such as time series prediction, system iden-
tification, signal generation [3]. In the narrowest sense, RC is a special archi-
tecture for recurrent neural networks with two functional components. One is a
fixed recurrent neural network, called reservoir, which is a (non-linear) mapping
of input data to a high dimensional space. The other is adaptive filters, called
readout, which extract desired results from the reservoir output. The remarkable
feature of RC is that the internal connection matrix in a reservoir is initialized
randomly and left unchanged. Only the readout part are trained by simple linear
adaptive filters so that difference of the output of the readout and desired results
is minimized. This means that RC requires relatively fewer parameters and less
learning cost than traditional neural network algorithms. In addition, RC sys-
tems can be implemented not only as software but also as (nonlinear) physical
systems. In fact, some interesting physical implementations have been reported
so far, for example, photonic systems [6]. Embedding computation into physi-
cal dynamics is an attractive research direction since it can potentially lead to
significant power reduction or high throughput if we carefully choose the physics.
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However, RC is often considered to be somewhat black box because of its
random nature of construction. In addition, it is not still clear how the insights
obtained by the software simulations should be translated to real physical sys-
tems due to lack of unified design principle for physical reservoir. The purpose
of this paper is to bridge the gap between mathematical models of RC and
their physical implementations. More specifically, we choose echo state networks
(ESN) as an example of RC and study their dynamics when the spectral radius
of internal connection matrix is close to 1 because a lot of empirical results
suggest that the performance is often optimized in this case [1]. From the view-
point of dynamical system theory, spectral radius close to one means that the
dynamics lies near the critical bifurcation point, that is, the edge of stability.
Therefore, we study the dynamics based on the center manifold theory [2] which
can describe the dynamics at the critical bifurcation point. We discuss how slow
neurons with absolute eigenvalue one and fast neurons with eigenvalues smaller
than one can contribute for reservoirs to solve classification task. As for the
physical implementations, we take laser systems with external feedback as an
example of physical system and discuss how concepts of ESNs can be translated
to such laser systems.

2 A Short Review of Echo State Networks

The ESN is a variant of RC which operates with rate coding neurons and in
discrete time [3]. The most basic equation for updating reservoir state is

x(n + 1) = tanh(Wresx(n) + Winu(n)), (1)

where x(n) is the N -dimensional reservoir state, Wres is the (N × N) reservoir
internal weight matrix, Win is the N × K input weight matrix, u(n) is the
K-dimensional input signal. Note that the tanh activation function is applied
to each component of a vector. Both the matrix Wres and Win are initialized
randomly and fixed throughout its operation.

To solve practical tasks, the reservoirs need to satisfy the echo state property
[1]. Informally, the echo state property means that the reservoir dynamics should
not be self-excitatory but be driven only by input signals. Furthermore, the
reservoirs should be state forgetting in the sense that the impact of the reservoir
state in the far past vanishes with time. However, it is generally difficult to check
the echo state property directly for practical applications. Instead, the spectral
radius (SR) of Wres, the maximum of the absolute value of the eigenvalues of
Wres, is often set to be less than unity [1]. Although this spectral radius condition
is not equivalent to echo state property, it offers a simple empirical alternative. In
addition, the spectral radius is often a crucial key tuning parameter of ESNs. For
example, the spectral radius controls the speed of fading memory in the reservoir.
Spectral radius closer to one implies that reservoirs retain longer-lasting memory
of the input signal. In many practical applications, the spectral radius is set
close to one to optimize performance since real world applications often requires
relatively long term memory of the input signal.
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From the viewpoint of dynamical system theory, the spectral radius is one
of bifurcation parameters of the reservoir dynamics. In our work, we restrict the
input signals to be generated by a deterministic dynamical systems as u(n+1) =
G(u(n)), n = 0, 1, 2 . . . to analyze the reservoir dynamics by bifurcation theory
of dynamical systems.

3 The Center Manifold Theorem

Suppose the N dimensional dynamics Xn+1 = F (Xn) has a fix point at the
origin: F (0) = 0 and the Jacobian matrix at the origin DF (0) has eigen values
Nc eigen values on the unit circles, Ns eigen values within the unit circle and Nu

eigen values outside the unit circle on the complex plane (N = Nc + Ns + Nu).
This means that the dynamics is operating at the critical bifurcation point and
is described by combination of slow variables with eigen values on the unit circle
and fast variables within or outside the unit circle. Using the eigen basis, we
can rewrite the dynamics X(n + 1) = F (X(n)) into two dynamics X(n) =
(x(n),y(n)) for slow variables x ∈ R

Nc and fast variables y ∈ R
Ns+Nu as

x(n + 1) = Ax(n) + f (x(n),y(n)), y(n + 1) = By(n) + g(x(n),y(n)) (2)

where, A is a Nc × Nc matrix whose eigen values lie on the unit circle and
B is a (Ns + Nu) × (Ns + Nu) matrix whose eigen values lie within or out-
side the unit circle on the complex plane. The functions f and g are suffi-
ciently smooth nonlinear terms higher than second order and we also assume
that f (0, 0) = 0,Df (0, 0) = 0, g(0, 0) = 0,Dg(0, 0) = 0. Then, there exist a Nc

dimensional (local) invariant manifold W c, called center manifold, represented
by a graph y = h(x) as

W c = {(x,y) : y = h(x)}, h : RNc → R
Ns+Nu , ‖x‖ < δ, h(0) = Dh(0) = 0, (3)

and y(n) = h(x(n)) + O(e−γn) holds for some constant γ > 0. The graph of the
center manifold y = h(x) can be determined by the following equation

h(Ax + f (x, h(x))) − Bh(x) − g(x, h(x)) = 0. (4)

The implication of the center manifold theorem is that the fast variables y
are “slaves” which quickly follow the slow “master” variables x and the overall
dynamics is finally governed by only those of x along the center manifold.

4 Echo State Networks at the Edge of Stability

In this section, we apply the center manifold theorem to the analysis of dynamics
of ESNs. We assume that the input dynamics u(n + 1) = G(u(n)) has a fixed
point at origin: 0 = G(0). The Jacobian matrix of entire system of the ESN and

input dynamics at the origin is
(

Wres Win

0 DG(0)

)
. Therefore, the eigen values of

Wres and DG(0) determines the dynamics around the origin.
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4.1 Dynamics Without External Input

The Jacobian matrix of an ESN at the origin is Wres when no input is applied.
As an example, we take the following two-dimensional ESN without input.

x(n + 1) = tanh(Wresx(n)), Wres =
(

0.9398 0.6526
0.0575 0.3770

)
. (5)

The eigen values of Wres are 1.0 and 0.3168. To see the effect of SR to the ESN
dynamics, we rescale the Wres by multiplying the gain g > 0 to Wres to control
the spectral radius.

Figure 1(a) shows the the dynamics for SR = 0.2. Both neurons moves toward
the origin very quickly.

Figure 1(b) shows the case SR = 1.0. The notable feature is that the coex-
istence of two neurons with quite different time scales. One is the slow neuron
with eigen value 1.0 (x-axis) moving slowly along the center manifold toward
the origin, which corresponds to long term memory. The other is the fast
neuron with smaller eigenvalue 0.3168 (y-axis) attracted quickly to the cen-
ter manifold and following the slow neuron. To obtain an approximate form
of center manifold, we assume the graph y = h(x) as infinite power series as
h(x) = a2x

2 + a3x
3 + a4x

4 + . . .. Plugging this power series into the Eq. (4) and
comparing the coefficients from lower order to higher, one can determine the
coefficients recursively. Then, all even order terms are found to be zero and tak-
ing up to the 7th order term, we obtain an approximate form of center manifold
for (5) as y = h(x) = 0.0582x3 + 0.0513x5 + 0.00649x7.

Figure 1(c) shows the behavior of ESN with SR above unity, 1.5. In this case,
SR causes the pitchfork bifurcation to the reservoir. The origin loses its stability
and two new stable fixed points appear on both sides of the origin. Note that
echo state property does not hold any more in this case since to which fixed
points the reservor state converges depends on the initial state of the reservoir.

4.2 Dynamics with External Input

We assume that the input dynamics is of hyperbolic type. Then the dynamics can
be described locally as u(n) = (u1(0)λn

1 , . . . , uK(0)λn
K), |λi| �= 1. Figure 2 shows

the reservoir dynamics when input dynamics of hyperbolic type is applied. In
the presence of input dynamics, the center manifold u = h(x) is not unique but
dependent on input u, that is, each trajectory corresponds to a different center
manifold.

The center manifold defined by the graph y = h(x) naturally induces the
mapping between the tangent space of input and reservoir dynamics. If the
dimension of input dynamics K is larger than Nc, the mapping cannot be a one-
to-one embedding and the information of input dynamics is inevitably lost. This
means that not only spectral radius but also the dimension of center manifold
Nc matters in order to capture the input dynamics correctly.



Dynamics of Reservoir Computing at the Edge of Stability 209

Fig. 1. (a) SR (spectral radius) = 0.2. (b) SR = 1.0. The bold line is the approximate
graph of the center manifold up to 7th order. (c) SR = 1.5.

Fig. 2. Dynamics with external input. (a) 1 > λ1, λ2 > 0, (b) λ1 > 1, 1 > λ2 > 0. The
trajectories start with different initial points of u.

4.3 An Example of Attractor Recognition

In this subsection, we show that how the center manifold can contribute to the
recognition of input dynamics. It is already known that the RC shares a remark-
able feature with kernel methods in machine learning. In fact, both reservoirs
and kernels map the input data into higher dimensional space so that the input
data becomes more linearly separable for classification tasks. In the reservoir
of ESNs, the slow neurons can keep track of the behavior of input dynamics
because they have long fading memory of the input. On the other hand, the
fast neurons quickly follow slow neurons and fail to keep up with input dynam-
ics due to fast fading memory. Then, the dynamics of x(n) can be viewed as
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Fig. 3. Recognition of attractors for pitchfork bifurcation. Two fixed points are not
separable in one dimensional space, but they become linearly separable as indicated
by the dashed line after mapped to two dimensinal space by the reservor.

a “copy” (or feature vector) of input dynamics u(n) and the graph of center
manifold h : x �→ (x,y) = (x, h(x)) can be viewed as extension of the copied
input dynamics.

Let us take a simple example for the input dynamics described below.

u(n + 1) = (1 + μ)u(n) + 0.4u(n)2 − u(n)3. (6)

The dynamics (6) exhibits pitchfork bifurcation; it has a unique stable fixed
point at origin if μ < 0 and the origin becomes unstable and two new stable fixed
points appear around the origin. As can be seen from Fig. 3, the two attractors
indicated by the black circles and the white circle cannot be linearly separable.
However, if we use the ESN (5) with input (6), the reservoir maps the input
(6) to two dimensional space by center manifold and makes the two attractors
linearly separable. The problem of recognition of the shape of attractors needs
long term memory of input dynamics and slow neurons play a significant role.

5 From Echo State Networks to Physical Reservoir
Systems

One of the advantages of RC is that the reservoir needs no costly learning and
can make use of various physical dynamics. What is necessary to obtain better
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performance is tuning of whole dynamics rather than learning of each intercon-
nection weight. In the previous sections, we have observed that the reservoir
neurons with eigen values close to one play a crucial role for the performance of
ESNs. From this viewpoint, one can make an analogy between ESNs and physi-
cal dynamics which seemingly have no relations to neural networks. That is, we
can associate (critical) eigen modes in nonlinear physical dynamics with (slow)
neurons of ESNs.

Let us take an example from the simplified Lang-Kobayashi equations
describing semiconductor laser field with external feedback in long delay limit [5]:

dE(t)
dt

= (1 + iα)(p − |E(t)|2)E(t) + ηe−iΩE(t − 1). (7)

α is the line width enhancement factor, p the excess pump rate above the solitary
laser threshold, η ≥ 0 is the feedback strength, and Ω the free-running laser
optical frequency. First, assuming the amplitude |E| is small enough, we ignore
the cubic nonlinear term. Then, the Eq. (7) is reduced to the following linear
delay-differential equation:

dE(t)
dt

= ηe−iΩE(t − 1). (8)

Following the standard procedure to solve linear differential equations, we
assume a special solution as E(t) = Ceλt. Plugging this solution into the
(8), we have the characteristic equation λ − ηe−λ−iΩ = 0. This equation is
transcendental and can have infinitely many complex solutions λ = γ + iω
which are called eigen modes. The existence of infinitely many eigen modes
means that delay-differential systems are inherently infinite dimensional. In
order for the stationary solution E(t) = 0 to be stable, the real part γ of all
eigen values have to be negative. In the critical case where γ = 0, we have
Ω + (−1)kη = (k + 1/2)π, k = 0, 1 and ω = (−1)kη. As we increase the feedback
strength η, the eigen modes become unstable one by one.

Turning back to the Eq. (7), one can see that the cubic nonlinearity prevents
the amplitudes of unstablized eigen modes from growing infinitely and keeps
their oscillation stable with finite amplitude. The transition from steady state
E = 0 to stable oscillations is known as Hopf bifurcation and the resulting stable
oscillations are called limit cycles. As the feedback strength η increases, the
dynamics of (7) generate limit cycles by successive Hopf bifurcations. Poincaré
map reduces the limit cycles to asymptotically stable fixed points and they
are neutrally stable along the orbit, that is, dynamics along the orbit neither
grow nor shrink and are stable in the directions across the orbit. Therefore,
limit cycles can be used as alternatives of slow neurons with absolute eigen
value 1 in ESNs [7]. However, when the feedback strength η becomes larger, the
dynamics exhibits complicated bifurcations such as period doubling and collision
of periodic branches and finally reaches chaotic region, which cannot be used as
reservoirs.

The story described here is not limited to laser system but is universal
for many non-linear non-equilibrium dynamics [4]. Most nonlinear physical
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dynamics have control parameters and undergo bifurcation phenomena as the
control parameters changes. At the bifurcation point, one of the degree of free-
dom of the dynamics changes its stability from stable state to unstable one (or
vice versa). Such control parameters, for example, the feedback strength η of
laser systems, are analogous to spectral radius of ESNs. At the critical bifur-
cation points, some of the degree of freedom of the dynamics have eigen values
with absolute value one (discrete time case) or zero real part (continuous time
case) and can be asymptotically or neutrally stable, which can be used as a
reservoir. Linear systems like (8) are decoupled into independent eigen modes.
On the other hand, the non-linearity of dynamics can cause mode couping by
interaction among eigen modes. In the case of Hopf bifurcation generating limit
cycles, they can serve as coupled oscillator reservoir systems [7]. It is generally
difficult to determine the detail of interactions among these eigen modes of real
physical systems, but fortunately we do not necessarily need to know it since
reservoirs are originally constructed randomly.

6 Conclusion

We have investigated the dynamics of reservoir computing, especially ESNs, at
critical state, i.e., edge of stability. In such cases, ESNs are composed of fast van-
ishing neurons and slowly moving neurons which dominate the overall dynamics.
Using center manifold theory, we have shown that the combination of slow and
fast variables defines mapping of input time series to center subspace and exten-
sion to higher dimensional space. Extending this view of reservoirs to physical
systems, we have shown that critical eigen modes of nonlinear physical systems
can be candidates for reservoirs into which computation can be embedded. We
have shown that dynamics with time-delay have rich behavior enough to work
as reservoir, taking an example of the laser systems with external feedback.
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Abstract. This paper proposes a new approach to object tracking using the
Hybrid Gravitational Search Algorithm (HGSA). HGSA introduces the Gravita‐
tional Search Algorithm (GSA) to the field of object tracking by incorporating
Particle Swarm Optimization (PSO) using a novel weight function that elegantly
combines GSA’s gravitational update component with the cognitive and social
components of PSO. The hybridized algorithm acquires PSO’s exploitation of
past information and fast convergence property while retaining GSA’s capability
in fully utilizing all current information. The proposed framework is compared
against standard natural phenomena based algorithms and Particle Filter. Experi‐
ment results show that HGSA largely reduces convergence to local optimum and
significantly out-performed the standard PSO algorithm, the standard GSA and
Particle Filter in terms of tracking accuracy and stability under occlusion and non-
linear movement in a large search space.

Keywords: Object tracking · Gravitational Search Algorithm · Particle Swarm
Optimization

1 Introduction

Object tracking, defined as the process of locating a target object across a sequence of
video frames, has received much attention in recent decades. Algorithms such as Kalman
Filter and Particle Filter have been widely applied to accommodate the need for a fast
and accurate object tracker that matches the human vision system.

Kalman Filter [1] is a state-space model which recursively compute the optimal state
with lowest possible variance. This approach is highly efficient but is limited by its ability
in recognizing deformed or occluded objects. Particle Filter [2] does not have such
shortcomings. However, it has relatively high computation cost and suffers from low
performance in the case of motion blur and disappearance of target object.

Promising results have been achieved using algorithms developed based on natural
phenomena. Two prominent examples are Genetic Algorithm and Particle Swarm Opti‐
mization (PSO) [3–6]. The Genetic Algorithm was developed based on the process of
evolution. It proved useful in object tracking but suffered from parameter tuning
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problems and low convergence speed. PSO, on the contrary, has proven to be
outstanding both in terms of speed and accuracy. However, it suffers from pre-mature
convergence to a local optimum and imbalance particle diversity.

The Gravitational Search Algorithm (GSA) was first introduced in Rashedi et al.
(2009) as a new optimization algorithm based on the Newtonian gravity and the laws of
motion [7]. Since then, variations of GSA have been widely applied in solving a diverse
range of problems, including parameter tuning and function optimization [8–11].
However, it has not yet been applied to object tracking. GSA has an advantage over PSO
since it utilizes all current information provided by the system of agents instead of only
the local best of a particle and the global best in the swarm of PSO. This gives GSA
better exploration capability and prevents pre-mature convergence to a local optimum.
In contrast to PSO, GSA fails to retain the past results during the update process and has
a slower convergence speed. A better algorithm can be achieved by incorporating the
memory feature and fast convergence property of PSO into GSA while retaining the
exploration power of GSA.

This paper proposes a new approach to object tracking using a Hybrid Gravitational
Search Algorithm (HGSA) by optimally combining GSA with PSO with a novel weight
function. Section 2 gives a detailed outline on the application of the standard GSA in
object tracking. Section 3 describes the standard PSO algorithm. Section 4 provides the
theoretical foundation for the proposed HGSA. Section 5 presents the experiment results
using HGSA, the standard GSA, the standard PSO and Particle Filter algorithm.
Section 6 concludes the paper.

2 GSA in the Framework of Object Tracking

GSA was originally developed from the natural phenomenon of the gravitational forces
for the purpose of optimizing multi-dimensional mathematical functions. Modification
is made below to incorporate GSA into the framework of object tracking.

Prior to the start of tracking, a HSV histogram representation of the target object is
extracted as the feature model from the first frame and is stored as a reference for
comparison. A system of I agents given in Eq. (1), each represents a potential candidate
of the tracking solution, is then initialized in a given search space.

X =
(
x1,… , x

I

)
(1)

Each agent has two dimensions describing its x and y coordinates which is the center
of a rectangle that has similar size to the target object. During the update process, a HSV
histogram representation of the said rectangle is extracted and compared to the target
object using the Bhattacharyya distance, represented in the Eq. (2):

fit
i

(
H

i
, H

T

)
= 1 −

√√√√√1 −
1√

H̄
i
H̄

T
K2

K∑
k=1

√
H

i
(k)H

T
(k) (2)
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where H
i
 and H

T
 denote the histogram representations of the ith agent where i ∈ {1,… , I}

and the target respectively. H̄ refers to the mean of the histogram and K denotes the total
number of histogram bins. The Bhattacharyya Distance is chosen for its robustness in
handling deformation and rotation of target objects. The fitness values of the agents are
calculated by subtracting the Bhattacharyya distances from 1 and are then used as input
to Eq. (3) in calculating the inertial mass of each agent.

m
i
(t) =

fit
i
(t) − worst(t)

best(t) − worst(t)
(3)

where best(t) and worst(t) correspond to the highest and the lowest fitness value of the
set of agents at time t. A heavier inertial mass m

i
(t) means that an agent is a better

candidate and therefore requires a larger force to move. Using m
i
(t), the mass ratio

denoted in M
i
(t) is calculated for each agent in Eq. (4).

M
i
(t) =

m
i
(t)∑I

i=1 m
i
(t)

(4)

The mass ratio M
i
(t) divides the mass of an agent by the total mass of the whole set

of agents. This represents the relative mass of a particular agent and is used as the input
for the calculation of the gravitational force F in Eq. (5)

F
ij
(t) = G(t)

M
i
(t) × M

j
(t)

R
ij
(t) + 𝜀

(
x

j
(t) − x

i
(t)
)

(5)

where j ∈ {1,… , I} and i ≠ j. R
ij
(t) is the Euclidian distance between the agents i and

j and 𝜀 is a small constant that prevents the division of zero in the case that two agents
appear in the same position within the search space. F

ij
(t) is a two dimensional vector

representing the x and y component of the force acting on the agent. G(t) is the gravi‐
tational constant given by Eq. (6).

G(t) = G

(1
t

)𝛼

(6)

where G is a pre-defined constant, t is the current iteration and 𝛼 < 1 is a parameter
controlling the convergence speed of GSA. G(t) allows the agents to search more
aggressively in the search space at early iterations and facilitates convergence at the end.
The forces acting on a particular agent is summed in a stochastic manner and is divided
by the agent’s mass ratio, giving the acceleration vector of the agent at time t:

a
i
(t) =

∑I

j=1,i≠j j
R

j
⋅ F

ij
(t)

M
i
(t)

(7)

a
i
(t) is then used in the update the position of the agents using Eqs. (8) and (9).
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v
i
(t + 1) = Rv

i
(t) + a

i
(t) (8)

x
i
(t + 1) = x

i
(t) + v

i
(t + 1) (9)

where R is a random vector in [0, 1] and v
i
(t) is the velocity of the agent at time t. The

above-mentioned process is iterated and the best fitting agent is output as the solution
for a particular frame at the end of the iteration. For the following frame, agents are
reinitialized around the solution of last frame for better tracking results.

3 The Standard PSO Algorithm

Particle Swarm Optimization is a search strategy developed from swarm behaviors such
as bird flocking and fish schooling [5]. Similar to the system of agents in GSA, PSO
requires the initialization of a swarm of particles and the evaluation of the fitness of each
particle, followed by velocity updates according to Eq. (10).

v
i
(t + 1) = w ⋅ v

i
(t) + R1 ⋅ C1 ⋅

(
PBest − x

i
(t)
)
+ R2 ⋅ C2 ⋅

(
GBest − x

i
(t)
)

(10)

where PBest t denotes the location of an individual particle that, among past and present
iterations, gives the highest fitness value and GBest denotes the location that, among all
particles in past and present iterations, gives the highest fitness value. C1 and C2 are
constant that by convention is set to 2 whereas w is set to 1.

The first random component updates particles based on the difference between their
current location and the PBest while the second random component updates particles
based on their current location and the GBest. Intuitively, the first component is the
‘cognition’ part, reflecting the individual thinking of the particles whereas the second
component is the ‘social’ part, giving the particle’s behavior within the whole cohort of
particles. These two components allow PSO to perform update on particles using past
information and to ensure that the best solution found is not lost during the process of
iteration. The new velocities of the particles from Eq. (10) are used to update the location
of the particles with an equation identical to Eq. (9). This process is repeated and, at the
end of all iterations, gives the GBest as the solution.

4 The Proposed HGSA

The standard GSA described above with Eqs. (1)–(9) can be further simplified and
modified to gain potential improvements in tracking performance. Since GSA updates
the agents based on all current fitness values, it is less likely than PSO to suffer from
pre-mature convergence to local optimum and diversity loss. However, the lack of
memory in the standard GSA not only reduces its efficiency in finding the best solution,
but also induces the possibility of losing a better solution that was found previously.
Therefore, the incorporation of PSO memory and fast convergence property into GSA
can draw from the best of both worlds.
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The derivation of HGSA starts with Eq. (5) which can be reformulated by factorising
the term G ⋅ C(t) stated in Eq. (11) to give Eq. (12). C(t) keeps the gravitational force
high in early iterations to facilitate exploration of the search space.

G(t) = G

(1
t

)𝛼

= G ⋅ C(t) (11)

F
ij
(t) = G ⋅ C(t)

M
i
(t) ⋅ M

j
(t)

R
ij
(t) + 𝜀

(
x

j
(t) − x

i
(t)
)
= G ⋅ C(t) ⋅ f

ij
(t) (12)

By substituting Eq. (12) into Eq. (7) and perform the same factorization, it gives
Eq. (13) for j ≠ i.
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j=1 R
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⋅ C(t) ⋅ f

ij
(t)
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= G ⋅ C(t)
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j=1 R
j
⋅ f
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(t)

M
i
(t)

= G ⋅ C(t) ⋅ ȧ
i
(t) (13)

Pioneer work on hybridising PSO and GSA has been accomplished in research in
other fields, for instance, function optimization and economic dispatch problems
[8–11]. However, they merely involve the addition of the PSO update components to
the GSA with little or no modification and are unfit for application in the context of
object tracking. In the proposed approach, the velocity update of the agents is re-
designed to synthesize the standard GSA component with two extra components from
PSO, represented in Eq. (14).

v
i
(t + 1) =R0 ⋅ v

i
(t) + C(t) ⋅ G ⋅ ȧ

i
(t) + (1 − C(t))

⋅

(
R1 ⋅ C1 ⋅

(
PBest − x

i
(t)
)
+ R2 ⋅ C2 ⋅

(
GBest − x

i
(t)
)) (14)

Equation (14) is a modification of Eq. (10) using C(t) to incorporate the PSO compo‐
nents. C(t) is a function that starts off at 1 and gradually approaches 0 as iteration
increases and therefore is used as a weight to synthesize the two algorithms. At early
iterations, larger weight is given to the GSA component to search more thoroughly. As
more iterations are completed, the weight is shifted from the GSA component to the
cognitive and social components of PSO to allow for more rapid convergence. The
parameter 𝛼 which takes value from 0 to 1 in Eq. (12) determines the dynamic rate of
shifting towards PSO. A low value of 𝛼 indicates that the function C(t) decreases more
slowly, resulting in a more gradual shift towards PSO. In addition, the parameter G
serves as an adjustable weight that fine-tunes the static balance of the GSA and PSO
components. In HGSA, PBest and GBest are documented throughout the whole iteration
process, thus giving better results by safeguarding the memory of the historically best
solutions.

From Eq. (3), for a given set of agents, the one that has the lowest fitness values
always results in a zero mass. It follows that the mass ratio of that particular agent will
also be zero, leading to a division by zero in Eq. (7). Moreover, the purpose of Eq. (3)
in the original GSA is to normalize the fitness values of the agents to between 0 and 1.
Since the output of the Bhattacharyya distance is already normalized, it is therefore
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desirable to equate the output of Eq. (2) directly to the inertial mass m
n
(t). The flowchart

in Fig. 1 gives an abstract view of HGSA in object tracking.

Fig. 1. Flowchart of HGSA

5 Experiment Results

The performance of HGSA was primarily compared with the standard GSA and the
standard PSO algorithm. Particle Filter is included as a benchmark for the robustness of
our results. The number of agents/particles in HGSA, GSA and PSO are set to 20 and
the number of iterations is set to 10, totaling 200 particles per frame. Number of particles
in Particle Filter is set to 200. HGSA is found to have the best performance with the
parameters G = 250, 𝛼 = 0.6, 𝜀 = 0.1, C1 = 2 and C2 = 2. Same values of G, 𝛼 and 𝜀 are
adopted in GSA and C1 and C2 are adopted in PSO. All parameters are chosen at the
values that maximizes algorithms’ performance from repeated trials.

Many agent/swarm based frameworks impose restriction on particles/agents move‐
ment by imposing a sub-search space as a boundary [5, 6]. This sub-search space
concentrates particles/agents around the target object and thus increases algorithm effi‐
ciency. In testing, the sub-search space is set to 200*200 instead of the standard 30*30
for better visualization of the difference in performance among algorithms.

Test 1 was conducted using the ship video. The target object in this video is a white
ship moving linearly in a large frame. Test 2 was conducted using a video of a moving
coin. The coin is partially occluded by a human hand and is moved out of and back into
frame. The frames of interest of the two tested videos are documented in Tables 1 and
2 while the Euclidean errors of all algorithms for each frame are documented in Figs. 2
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 and 3. Error during occlusion is set to 0 for better visualization. Link to results: https://
www.youtube.com/channel/UCrQAWuVqzbqzvAjkJxo9cZA.

Table 1. Ship video (1920 × 1080)

Frame Particle Filter PSO GSA HGSA
43

133

166

Table 2. Coin video (720 × 480)

Frame Particle Filter PSO GSA HGSA
1

70

278

The video in test 1 contains a ship that moves linearly from left to right. This video
provides a large search area with many sub-optimums, for instance the cliff and the
horizon, which have similar histogram composition to the target ship. It can be observed
from Fig. 2 that both HSGA and GSA had very low error and were on track of the target
throughout the whole video whereas Particle Filter lost the target object from frame 210
onwards. PSO had a few peaks of errors and lost the target object from frame 144 to
frame 230. Since the sub-search space was large relative to the size of the target object,
the particles/agents were more likely to miss the target in early iterations. If a solution
with similar histogram composition as the target, for instance, the PSO solution in frame
43, 133 and 166 in Table 1 was found instead, particles/agents had a tendency to
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converge pre-maturely to that local optimum. This explains the poor performance of
PSO. On the other hand, HGSA and GSA, with better exploration capability, were able
to successfully locate the target object.

In the coin video, a coin was first placed at the center of the frame. As shown in
Table 2 frame 70, a finger was positioned on top of the coin to occlude nearly all of the
coin’s surface. Then the coin was gradually moved towards the edge of the frame. It
then disappeared from frame 95 onwards and reappeared in frame 273. Prior to the
disappearance of the coin in test 2, HGSA successfully tracked the coin in all frames
while the other algorithms had temporary deviations from the target. After the reap‐
pearance of the coin, only HGSA was capable in providing satisfactory tracking result.
PSO and GSA jumped frequently to local optimums and Particle Filter lost the target
permanently as shown in Table 2 frame 278. Testing results showed that HGSA out-
performs other algorithms in both accuracy and stability in tracking of occluded and
non-linear moving targets.

6 Conclusion

This paper proposes a new Hybrid Gravitational Search Algorithm for object tracking
by incorporating PSO into GSA. HGSA retains GSA’s capability in fully utilizing all
current information while introduces PSO’s exploitation of past information and fast
convergence property. The choice of the novel weight function ensures the smooth inte‐
gration of PSO into GSA, allowing HGSA to optimally balance the merits of both algo‐
rithms. Experiment results show that, keeping other factors constant, HGSA has a
significantly higher accuracy and stability when tracking in a large search space with
sub-optimums. An outstanding result is also achieved in occlusion handling and tracking
of non-linear moving targets. Future research will aim to implement a weight adjustment
function for changing particle inertia in HGSA.

Fig. 2. Error comparison - ship Fig. 3. Error comparison - coin
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Abstract. Reservoir computing is a novel paradigm of neural network, offering
advantages in low learning cost and ease of implementation as hardware. In this
paper we propose a concept of reservoir computing consisting of a semiconductor
laser subject to external feedback by a mirror, where input signal is supplied as
modulation pattern of mirror reflectivity. In that system, non-linear interaction
between optical field and electrons are enhanced in complex manner under
substantial external feedback, leading to achieve highly nonlinear projection of
input electric signal to output optical field intensity. It is exhibited that the system
can most efficiently classify waveforms of sequential input data when operating
around laser oscillation’s effective threshold.

Keywords: Reservoir computing · Recurrent neural network · Sequential data
processing · Laser · Silicon photonics · Energy efficiency

1 Introduction

Biological systems possess a wealth of complexity and diversity in its architecture, that
sometimes exhibit advanced capability in performing highly complex cognitive tasks.
Recent development of artificial intelligence has successfully introduced such biological
architectures into their algorithms. One of the most successful examples should be Deep
Neural Network (DNN), consisting of multiply connected layers composed of nonlinear
elements (neurons), where information propagates unidirectionally from layer to layer.
In spite of the fact that DNN profits by its extremely high accuracy in many recognition
tasks [1–3], high learning cost is still critical bottle neck, and fundamentally its function
is oriented to static recognition. Recurrent Neural Network (RNN), another bio-inspired
architecture, consists of connected nonlinear elements but has recurrent loop of infor‐
mation propagation. Owing to its recurrent feedback loop, RNN has internal memory
that allows recognition of dynamic (sequential) information. Despite that advantage,
however, RNN also suffers from learning cost as same as DNN.

Reservoir Computing (RC) is an emerging computation algorithm, which can over‐
come drawback of high learning cost that dangles about Neural Network (NN) [4, 5].
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RC consists of mainly two parts; RNN with random connections, called reservoir, and
linear classifier called output layer. The feature of RC is that randomly given weight
values between nodes in reservoir are left untrained, and only weights between reservoir
and output layer are updated during training process. That trick allows RC’s learning
cost to be low compared with other NNs. Provided that the number of reservoir’s nodes
is large enough, input data is nonlinearly projected into high dimensional space with
plenty of random basis, therefore can be linearly classified at output layer, being anal‐
ogous with kernel method of machine learning. Leveraging its low learning cost and
high capability in classification of sequential data, RC has been applied to several clas‐
sification tasks such as spoken digit recognition [6], hand-written digit recognition [7],
phoneme recognition [8], etc.

RC has another great advantage in its ease of implementation as hardware. Due to
serial processing and Von-Neumann bottleneck, software implementation of bio-
inspired algorithms has been facing critical issue of energy-consumption. While a human
brain consumes only 10 W for daily cognitive tasks, today’s high-performance computer
is anticipated to consume the order of 10 kW in 2020 for the same tasks even on the
ideal extrapolation of Moore’s Law. In contrast, hardware implementation of bio-
inspired algorithms can overcome that issue thanks to its parallel processing and distrib‐
uted information representation [9]. Owing to small amount of tunable weights, RC is
suitable for this purpose. Several hardware implementations of RC have been reported
so far by Mackey-Glass electronic circuit [10], soft silicon material [11], connected
Semiconductor Optical Amplifier (SOA) [12], laser with time-delayed feedback loop
[13], etc. What is remarkable moreover in hardware implementation is that a reservoir
is not necessarily a RNN but can be any dynamical physical system, only provided that
the system possesses rich nonlinearity. If one can implement reservoir as nonlinear
physics with short time constant, processing in reservoir is performed as physical
phenomena, therefore high-speed and low-power processing will be achieved.

Among several types of hardware implementations of RC, photonic implementation
will be in particular of importance, because photon-electron nonlinear interaction have
extremely short time constant around ps to ns, and moreover, it is highly compatible
with existing interconnect technology, Silicon Photonics (SiPh) that is highly compat‐
ible with matured CMOS process [14]. Multi-integration of electric circuit, SiPh circuit,
and photonic RC circuit on the identical silicon chip will tremendously expand the
computing capability for cognitive tasks at edge devices, that are indispensable for IoT
and cognitive era.

In this paper, we propose a photonic RC consisting of a semiconductor laser with a
tunable external mirror, which is suitable for SiPh owing to its simple and compact
configuration. The reservoir is tested by a simple task of waveform classification with
varying system’s parameter, carrier injection rate to the laser and mirror reflectivity. The
best operation window as a reservoir is scrutinized.
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2 Methods

2.1 Chaotic Dynamics of Laser

Three-variable systems like Lorentz model are well-known to exhibit chaotic behavior
under some conditions met. It was 1975 when distinctive analogy between Maxwell-
Bloch equations that describe light-matter interaction of laser and Lorenz equations that
describe fluid convection was pointed out by Haken. Despite that analogy, in most of
lasers including semiconductor lasers, damping of polarization (γp) is much faster than
other two parameters; population inversion (γN) and electric field (κ), then γp is adiabat‐
ically eliminated, and the lasers operate as stable two-variable systems. Although a
semiconductor laser itself oscillates with stable state, external perturbation introduces
additional freedom to this two-variable system, and induces chaotic dynamics.

External feedback to a semiconductor laser is one of the most popular methods to
bring on chaotic state [15]. Under critical amount of external feedback, intrinsic laser
mode with relaxation oscillation frequency fRO and external frequency fEC compete each
other and construct complex temporal pattern. The key of RC is to make the system to
be highly nonlinear but stay verging on chaotic state, so-called “edge of stability”. This
delicate state is realized by tuning several laser parameters.

Lang-Kobayashi equation is well-known equations that describe laser system with
time-delayed feedback [16, 17]. Electric field E(t) with slowly varying amplitude in a
single mode laser and carrier density N(t) are coupled in the form of rate equations,

dE1(t)

dt
=

1 + i𝛼

2

[
GN

(
N1(t) − N0

)

1 + 𝜀||E1(t)
||2

−
1
𝜏p

]
E1(t) +

𝜅

𝜏in

E2(t − 𝜏) exp (−i𝜔t), (1)

dN1(t)
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= J1 −

N1(t)

𝜏s

−

[
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(
N1(t) − N0

)

1 + 𝜀||E1(t)
||2

−
1
𝜏p

]
||E1(t)

||2, (2)

where physical variables J1, N1, E1, E2, represent carrier injection rate, carrier density,
electric field in a laser cavity, electric field reflected from an external mirror respectively.
κ represents coupling coefficient between internal mode and external mode, given by
κ = (1 − r1

2)r2/r1, where r1 and r2 are laser facet reflectivity and external mirror reflec‐
tivity. Other optical parameters are given in Table 1 [16].

We numerically solve those equations to investigate temporal dynamics of the laser-
feedback system with varying laser’s parameters. And then, we connect a linear classifier
to the system and test its capability as a reservoir to nonlinearly transform input signal
to allow efficient classification.
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Table 1. Optical parameters used in the calculation.

Symbols Parameters Values
GN Gain coefficient 8.4 × 10−13 m3s−1

α Linewidth enhancement factor 5.0
N0 Carrier density at transparency 1.4 × 1024 m−3

Nth Carrier density at threshold 2.02 × 1024 m−3

τs Carrier lifetime 2.04 × 10−9 s
τp Photon lifetime 1.93 × 10−12 s
λ Optical wavelength 1.54 × 10−6 m
ω Optical angular frequency 1.23 × 1015 s−1

ε Gain saturation coefficient 2.5 × 10−23

2.2 Computational Set-up

We assume the reservoir to consist of a semiconductor laser and an external mirror whose
reflectivity is tunable (see Fig. 1). The laser oscillates under the constant carrier injection
to the gain medium, being perturbed by external feedback light. Input information to the
system is supplied as electric signal pattern of other carrier injection that modulates the
mirror reflectivity. The input signal pattern is transported to the laser as modulated
optical field pattern, and interacts with intrinsic laser field in the cavity and electrons.
Optical output power from the laser is periodically sampled, being regarded as output
information from the reservoir. By closely chaotic dynamics in the laser, signal pattern
is nonlinearly transformed. Here, each sampling point on temporal axis represents
“node” of the reservoir, being connected to output nodes. Sampled optical intensities
are weighted-summed and fed into output nodes consisting of nonlinear activation func‐
tions such as sigmoid functions. The weights connecting temporal “nodes” and output
nodes are updated during training.

Fig. 1. Conceptual diagram of photonic reservoir. Input signal is supplied to the reservoir as
electric signal to modulate DBR mirror reflectivity. Output power from the laser is converted to
digital signal, and sampled at FPGA/CPU, then weighted summed.
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Considering integration with SiPh, we assume a reservoir consisting of available
photonic devices familiar with today’s SiPh. For an external mirror, we can leverage
Distributed Bragg Reflection (DBR) mirror, which has periodic structure in wavelength
scale. Integrating pn junction, electric current is supplied to the DBR to change carrier
density inside the structure, causing to modulate the reflectivity. By carefully designing
DBR mirror’s periodicity to make it’s photonic band-edge around wavelength of inci‐
dent light, the reflectivity can be modulated from 0.0 to 1.0 by small amount of electric
current. Optical power is transferred by Si waveguide (SiWG), and detected by Photo
Detector (PD), and converted to digital signal by Analogue Digital Converter (ADC),
and then its sampling and weighted-summation are performed at CPU/FPGA, that is
located outside of the SiPh chip. Compared with looping feedback system, the proposed
system has advantage of spatial compactness owing to in-line device configuration free
from optical coupler for output monitoring.

To simulate dynamics of the proposed system, we performed calculation by numer‐
ically solving Eqs. (1) and (2) by 4th order of Runge-Kutta algorithm.

2.3 Recognition Task

For testing performance of the photonic reservoir, we set a simple task to classify sine/
triangular wave forms. Each waveform is supplied to the system independently as a
modulation pattern of mirror reflectivity. Weight values of output layer are trained to
exhibit 01 and 10 for sine and triangular waveforms respectively. For varying sample’s
patterns and making the task more complex, frequency ωn of nth waveform sample is
given by 𝜔n = 𝜔0 + 𝛼n𝜔0, where 𝛼n is a random value satisffying 𝛼n ∈ [0, A). Higher A
expands sample’s variation and makes the task more difficult. In this paper we set
parameters A = 0.3 for the first test. The variations of waveforms are shown in Fig. 2.

Fig. 2. Waveform variations of input data. Sine wave with lowest (a) and highest (c) frequency
and triangular wave with lowest (b) and highest frequency (d).

3 Results

3.1 Dynamics of Reservoir

Fist we investigate fundamental dynamics of the reservoir without injecting input signal
patterns, meaning, mirror reflectivity is fixed. We scrutinize temporal dynamics of
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output optical intensity under different laser parameters; normalized carrier injection
rate J/J0 and reflectivity rex of the external mirror. It should be noticed that J0 is laser
oscillation threshold without external feedback, but actual threshold slightly decreases
under feedback. External cavity length L is fixed to 1 cm.

In order to measure the complexity of laser dynamics, we investigate number of
temporal extremal values of output power, Nex, for temporal range from 30 to 50 ns, that
is enough after passing transient state required to start laser oscillation. Nex is 2D-plotted
as a function of J/J0 and reflectivity rex in Fig. 3(a). It is shown that Nex is zero under
low carrier injection and mirror reflectivity, meaning the laser oscillates in stable state,
but increases with J/J0 and rex, and creates variety of temporal patterns. Most represen‐
tative four patterns, stable oscillation, periodic oscillation, pulse package, and chaos are
shown (see Fig. 3(b–e)). With increase of J/J0 and rex, those four states appear in seem‐
ingly random manner, but statistically pulse package and chaos states occur more
frequently. We investigate reservoir’s performance as a function of J/J0 under different
r0, central mirror reflectivity.

Fig. 3. Number of temporal extremals Nex is color plotted as a function of mirror reflectivity and
carrier injection to the laser (a). Typical four temporal dynamics are shown; stable state (b),
periodic state (c), pule packages (d), and chaotic state (e), each corresponding to b–e in (a).

3.2 Performance of Classification

To test performance of classification, Eq. (1) and (2) are numerically solved with modu‐
lating external mirror reflectivity by rex = r0 + rmodsin(𝜔nt) or r0 + rmodtriangular(𝜔nt).
We train the system with 400 training samples (200 sine and 200 triangular waveforms),
with different J/J0 ranging from 0.5 to 2.0 under different r0, central mirror reflectivity.
rmod is fixed to 0.2. Output intensity is periodically sampled in 30 ns < T < 50 ns. Sampled
1000 data is fed into output nodes consisting of sigmoid functions and their connection
weights are trained. Simple ordinary least square algorithm is used for updating the
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weights. After training, error rate is measured by 100 test samples independent from
training samples.

The error rates as a function of J/J0 with different r0 are shown in Fig. 4. Remarkable
is that the reservoir exhibits best classification performance when J/J0 is close to 1 in
each r0. This is the range, according to Fig. 3, where the system transits from periodic
to pulse package state by sweeping of rex. Meanwhile, if the system is fixed around stable
state or reaches chaotic state, its classification performance is substantially degraded.
That feature will be qualitatively explained by complexity of laser dynamics. Higher
carrier injection rate or feedback amount enhance nonlinearity of photon-electron inter‐
action, therefore input signals are transformed in more complex manner, making wave‐
form classification easier because slight but essential differences of waveforms are
enhanced. If nonlinearity of the system is too high, inessential trivial differences are also
enhanced by “sensitivity to initial condition”, and classification becomes even more
difficult.

Fig. 4. Error rate of waveform classification task as a function of J/J0 at different central mirror
reflectivity r0.

Another point to notice is that with increase of mirror reflectivity, “operation
window” of reservoir, where error rate is low, broadens and carrier injection rate to
achieve that window decreases. From the point of view of low-energy consumption and
stability of operation, it will be desired to work with external mirror with high reflec‐
tivity.

4 Conclusion

We proposed a photonic RC system consisting of a semiconductor laser with a tunable
external mirror, possessing advantage in compactness of integration owing to its in-line
device configuration. Complex interaction between internal laser field and reflected laser
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field realizes highly nonlinear projection of input sequential data to output. Testing by
waveform classification task, it is confirmed that the reservoir exhibits best classification
performance when laser is tuned to effective oscillation threshold, that is around “edge
of stability”.

In this paper, we selected J/J0 and r0 for reservoir’s tuning parameters, but it is also
possible to tune laser’s parameters more directly, for example Q-factor of laser cavity.
It is crucially important as future works in this area to identify the ideal tuning parameters
and its operation window as a reservoir, from the viewpoint of practical flexibility after
integration.

References

1. Quoc, V.L.: Building high-level features using large scale unsupervised learning. In: 2013
IEEE International Conference on Acoustic, Speech and Signal Processing, pp. 8595–8598,
Vancouver, BC (2016)

2. Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: Deep face: closing the gap to human-level
performance in face verification. In: 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1701–1708 (2014)

3. Wang, W., Arora, R., Livescu, K., Bilmes, J.: On deep multi-view representation learning.
In: Proceedings of the 32nd International Conference on Machine Learning, pp. 1083–1092
(2015)

4. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy
in wireless communication. Science 304, 78–80 (2004)

5. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new
framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560
(2002)

6. Verstraeten, D., Schrauwen, B., Stroobandt, D.: Isolated word recognition using a liquid state
machine. In: Proceedings of the 13th European Symposium on Artificial Neural Networks
(ESANN), pp. 435–440 (2005)

7. Jalalvand, A., Wallendael, G.V., Walle R.V.: Real-time reservoir computing network-based
systems for detection tasks on visual contents. In: 7th International Conference on
Computational Intelligence, Communication Systems and Networks (CICSyN), pp. 146–151
(2015)

8. Triefenbach, F., Jalalvand, A., Schrauwen, B., Martens, J.-P.: Phoneme recognition with large
hierarchical reservoirs. Adv. Neural Inf. Process. Syst. 23, 2307–2315 (2010)

9. Yamane, T., Katayama, Y., Nakane, R., Tanaka, G., Nakano, D.: Wave-based reservoir
computing by synchronization of coupled oscillators. In: Arik, S., Huang, T., Lai, W.K., Liu,
Q. (eds.) ICONIP 2015. LNCS, vol. 9491, pp. 198–205. Springer, Heidelberg (2015). doi:
10.1007/978-3-319-26555-1_23

10. Appeltant, L., Soriano, M.C., Van der Sande, G., Danchaert, J., Massar, S., Dambre, J.,
Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynamical
node as complex system. Nature Commun. 2, 468–472 (2011)

11. Nakajima, K., Hauser, H., Li, T., Pfeifers, R.: Information processing via physical soft body.
Sci. Rep. 5, 10487 (2015)

12. Vandoorne, K., Dierckx, W., Schrauwen, B., Verstraeten, D., Baets, R., Bienstman, P.,
Campenhout, J.V.: Toward optical signal processing using photonic reservoir computing.
Opt. Express 16, 1182–1192 (2008)

Photonic Reservoir Computing Based on Laser Dynamics 229

http://dx.doi.org/10.1007/978-3-319-26555-1_23


13. Brunner, D., Soriano, M.C., Mirasso, C.R., Fischer, I.: Parallel photonic information
processing at gigabyte per second data rates using transient state. Nature Commun. 4, 1364
(2012)

14. Vlasov, Y.: Silicon integrated nanophotonics: From fundamental science to manufacturable
technology. http://spie.org/newsroom/pw15_plenary_landing/pw15_plenary_vlasov

15. Sciamanna, M., Shore, K.A.: Physics and applications of laser diode chaos. Nat. Photonics
9, 151–162 (2015)

16. Kannno, K., Uchida, A.: Complexity analysis in a semiconductor laser with time-delayed
optical feedback. Rev. Laser Eng. 39, 543–549 (2011)

17. Sukow, D.W., Gauhier, D.J.: Entraining power-dropout events in an external-cavity
semiconductor laser using weak modulation of the injection current. IEEE J. Quantum
Electron. 36, 175–183 (2000)

230 S. Takeda et al.

http://spie.org/newsroom/pw15_plenary_landing/pw15_plenary_vlasov


FPGA Implementation of Autoencoders Having
Shared Synapse Architecture

Akihiro Suzuki(B), Takashi Morie, and Hakaru Tamukoh

Graduate School of Life Science and Systems Engineering,
Kyushu Institute of Technology,

2-4 Hibikino, Wakamatsu-word, Kitakyushu-City 808-0196, Japan
suzuki-aKihiro@edu.brain.kyutech.ac.jp

Abstract. Deep neural networks (DNNs) are a state-of-the-art process-
ing model in the field of machine learning. Implementation of DNNs into
embedded systems is required to realize artificial intelligence on robots
and automobiles. Embedded systems demand great processing speed
and low power consumption, and DNNs require considerable process-
ing resources. A field-programmable gate array (FPGA) is one of the
most suitable devices for embedded systems because of their low power
consumption, high speed processing, and reconfigurability. Autoencoders
(AEs) are key parts of DNNs and comprise an input, a hidden, and an
output layer. In this paper, we propose a novel hardware implementa-
tion of AEs having shared synapse architecture. In the proposed archi-
tecture, the value of each weight is shared in two interlayers between
input-hidden layer and hidden-output layer. This architecture saves the
limited resources of an FPGA, allowing a reduction of the synapse mod-
ules by half. Experimental results show that the proposed design can
reconstruct input data and be stacked. Compared with the related works,
the proposed design is register transfer level description, synthesizable,
and estimated to decrease total processing time.

Keywords: Autoencoders · Deep learning · Digital hardware · FPGA ·
Shared synapse architecture

1 Introduction

In recent years, deep neural networks (DNNs) have been actively studied because
they exhibit high performance in the field of machine learning [8]. DNNs consist
of stacked neural networks; consequently, they require a huge amount of process-
ing. DNNs are mainly developed via a software implementation with a hardware,
especially graphic processing units (GPU). There are several frameworks and
libraries for DNNs [1–3]. In contrast, there are few reports of implementations
with hardware such as field programmable gate arrays (FPGA) and specialized
chips [6,11].

One of the applications of DNNs is embedded systems. Artificial intelligence
is expected to apply on latest products such as service robots and automatic
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 231–239, 2016.
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motorists. To realize them, embedded systems should incorporate DNNs. Embed-
ded systems require real-time processing, low power consumption, and flexibility
to their purpose. Since hardware can run faster than software, hardware imple-
mentation is better for them. Particularly in hardware, FPGA are low power
consumption and what reconfigure the circuit to realize a function as user want.
Therefore, it is best to implement DNNs with FPGA.

Autoencoders (AEs) are related to DNNs [4]. They are composed of three
layers, and multilayered version of them are employed as part of DNNs [5]. To
date, a few relevant reports about hardware implements of AEs have been pub-
lished. One such report discussed the simulation of learning Kyoto pictures with
the behavior model sparse AE; however, the model was too large to realize on
an actual circuit by logic synthesis [9]. A second report disclosed the implemen-
tation of stacked AEs [5] by high-level synthesis (HLS) with Open Computing
Language. According to this report, the AEs were implemented onto FPGA,
Altera Stratix V GS D5 [10]. Although Stratix V has abundant resources and
exhibits a high performance, a circuit by HLS is far from an optimized circuit
by register transfer level (RTL) and the performance would be less than that of
GPU and mobile GPU.

In this paper, AEs are implemented with a novel hardware architecture,
shared synapse architecture. To save the FPGA resources, the proposed archi-
tecture halves the number of synapse modules by using the AEs’ feature allowing
the weights of the hidden layer and output layer to be shared. The proposed
design is based on the RTL design to optimize the circuit, and it is intended to
be stacked and construct DNNs. Experimental results show that a digital circuit
with the proposed design works as an AE, and the circuit can easily change the
number of AEs’ units and can be stacked. Depending on the design, proposed AE
shows better performance than related works at the point of processing speed
estimation.

2 Autoencoders

DNNs comprise pre-training and fine-tuning phases. AEs are stacked and form a
pre-training phase of DNNs. AEs comprise three layers: an input layer, a hidden
layer, and an output layer. Each layer has a unit that is connected via weights
to all other layer’s units, as shown in Fig. 1. AEs reconstruct the input via two
operations, an encode and a decode; therefore, the output and input layers have
the same number of units.

The learning algorithm of AEs is as follows. In AEs, vector y of hidden units
is encoded by vector x of input units, as shown in Eq. 1, and vector z of output
units is decoded by vector y , as shown in Eq. 2, where σ is the sigmoidal function,
vector b is the bias of hidden units, b’ is the bias of output units, and W is a
weight between each layer and is N × Mmatrix. Each parameter is updated by
Eqs. 3, 4, and 5 with η as learning rate.

ym = σ(
N∑

n=0

Wmnxn + b) m = 0,1 . . . , M − 1,M. (1)
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Fig. 1. Autoencoders

zn = σ(
M∑

m=0

W T
nmym + b′) n = 0,1 . . . , N − 1,N. (2)

ΔW = η
((

W (x − z ) ∗ y ∗ (1 − y) · xT
)

+
((

(x − z )yT
)T))

(3)

Δb = η (W (x − z ) ∗ y ∗ (1 − y)) (4)

Δb ′ = η(x − z ) (5)

A processing flow of the learning phases of the proposed design AE is as
follows.

1. Get the hidden units.
Calculate Eq. 1. The hidden units are mapped by the input units.

2. Get the output units.
Calculate Eq. 2. The output units are reconstructed by the hidden units.

3. Update the parameters.
Reconstruction error is measured by the cross error function. To reduce the
error, the update value of each parameter is determined by Eqs. (3, 4, and
5). Each update value is added to the original parameters, W , b, and b ′.

4. Repeat operations 1, 2, and 3 until the error is small enough.

3 FPGA Implementation of Autoencoders

3.1 Shared Synapse Architecture

Assuming all processes of evaluating the outputs of AEs are divided into two
modules—a neuron module and synapse module—the entire circuit is described
in Fig. 2(a) when the input layer has four units and the hidden layer has two
units.

We propose a shared synapse architecture where the synapse modules are
reduced by half, as shown in Fig. 2(b), because the value of each weight could
is shared by two interlayers [7] between the input layer-hidden layer and the
hidden layer-output layer.
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Fig. 2. Architecture of AEs. (a) Flow of evaluating outputs of AEs. (b) Shared synapse
architecture

3.2 Digital Circuit of Shared Synapse Architecture

In the proposed circuit, there are three main modules that further contain some
submodules. The entire circuit is shown in Fig. 3, and the details of the circuits
that include the submodules are shown in Figs. 4 and 5.

Fig. 3. Entire circuit

All modules have a common interface and, consequently, are easily combined
with each other. In addition, the parameters that control the modules’ size and
function can be externally controlled.

The roles of each circuit is described in the list below.

(a) AE Process Module: The reconstruction from the input to output
(a-1) Synapse Module: The multiplication and memory for the weights
(a-2) Neuron Module: The sequence sum and sigmoidal function

(b) Update Function Module: The calculation for the update value of each para-
meter
(b-1) b’ Update Module: For the update value of b ′

(b-2) b Update Module: For the update value of b
(b-3) W Update Module: For the update value of W

(c) Write Update Module: The update values are added to each parameter.

4 Experimental Results

To evaluate the proposed architecture, the digital circuits with the proposed
architecture were written by Verilog Hardware Description Language and eval-
uated by logic simulation in Veritak Verilog HDL simulator.
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Fig. 4. Detail of AE circuit

Fig. 5. Detail of update function circuit

4.1 Performance Validation as AEs

To validate the proposed design circuit as AEs, the simulation determined
whether the output of the circuit could reconstruct the input. Each parame-
ter was given 0 as an initial value, and the learning rate η was 0.0078125, which
was represented by shifting seven bits to the right side.

The input data was sixteen kinds of a set of four binary data, e.g., (0,0,0,0),
(0,0,0,1), (1,1,1,1), etc. The output data must be given as fractional number and
considered in the following manner below for representing the output data as a
reconstruction of the input data.

output =

{
1 (zn � 0.5)
0 (zn < 0.5)

n = 0,1 . . . , N − 1,N. (6)
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Fig. 6. Observation of learning process by cross entropy errors

The cross entropy error C was calculated by Eq. 7, which we employed as an
error function and was calculated every epoch in the learning process.

C =
1
4

3∑
n=0

(x logz + (1 − x ) log (1 − z )) n = 0,1,2,3. (7)

The results of the evaluation of sixteen learning processes are shown in Fig. 6.
From the results, it is obvious that the more the epoch increases, the more each
unit approximates the target value until, finally, each output may be regarded
as a reconstruction of its own input.

We set the FPGA, Xilinx Virtex-6 xc6vlx240t as a target device and synthe-
sized it by Xilinx ISE 14.7. The slice utilization and maximum frequency for the
entire circuit and main three parts are shown in Table 1.

4.2 Construction of Stacked AEs

In stacked AE, there is a second AE instead of the hidden layer of the first AE,
as shown in Fig. 7. To prove the possibility to change the number of units in
each layer, the second AE was constructed with the same parts as the first AE
constructed in the previous sections. To shift the first AE to the second AE
with the same parts, each part had to be slightly rewritten. The result of logic
synthesis is shown in Table 2.

Since the hidden layer of the first AE could be the second AE, the input
layer of the second AE was reduced by sharing it with the hidden layer of the
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Table 1. Results of logic synthesis of shared synapse AE and its parts

Registers LUTs Freq. (MHz)

Entire circuit 6407 (2.13%) 5835 (3.87%) 310.366

AE process module 2855 (0.95%) 2484 (1.65%) 370.233

Synapse module 325 (0.11 %) 239 (0.16 %) 453.926

Neuron module 144 (0.05 %) 159 (0.11 %) 395.101

Update function module 5844 (1.94%) 5490 (3.64%) 388.999

b’ update module 594 (0.20 %) 454 (0.30 %) 419.639

b update module 1141 (0.38 %) 1187 (0.79 %) 402.414

W update module 397 (0.13 %) 410 (0.27 %) 419.639

Write update module 518 (0.17%) 7 (0.004%) 651.042

Fig. 7. Stacked AE with shared synapse architecture

first AE. Hence, the total number of stacked AE process module’s registers and
LUTs was less than the sum of AE process module’s and the second AE’s by
sharing the neuron module and any other sub modules.

4.3 Comparison with Other Reports

A comparison of the proposed implementation with others on FPGA is shown
in Table 3.

Table 2. Results of logic synthesis of stacked AE process module and second AE
process module

Registers LUTs Freq. (MHz)

AE process module 2855 (0.95 %) 2484 (1.65 %) 370.233

Stacked AE process module 3133 (1.04 %) 2975 (1.97 %) 370.233

Second AE process module 815 (0.27 %) 819 (0.54 %) 391.083
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Table 3. Comparison of the proposed implementation with other implementations

Algorithm Method Logic synthesis

Proposed AE (Stacked AE) RTL Possible

Jin et al. [9] Sparse AE Behavior Impossible

Joao et al. [10] Stacked AE HLS Possible

Table 4. Modules that need an extra clock

Module name Extra

Synapse 2766

Neuron 5837

b update 5106

Other sub modules 7830

According to Table 3, the proposed design circuit was compared with Ref.
[9] in terms of the implementation on FPGA and, with Ref. [10], in terms of
processing speed.

Since the design of Ref. [9] needs huge FPGA resources such as memory and
multiplier, realizing it in the FPGA is difficult. The synthesis report was not
shown in the report.

In HLS, the code of a behavioral model is analyzed to be scheduled to create
RTL hardware description language. Generally, there is a difference as a waste-
ful part between a circuit written by HLS and a circuit optimally written like
a proposed architecture. The processing speed of the proposed design was com-
pared with Ref. [10]; since the RTL designed circuit has no wasteful part, it was
expected to operate faster than the HLS-designed circuit that has a wasteful
part. To expand the network size of the proposed design to the network size
of the Ref. [10], the proposed AE needs 21617 clocks, which includes the extra
21539 clocks shown in Table 4. Considering the extra clocks, the total processing
time of the proposed design is 2.90[s] while the Ref. [10] design needs 16.87[s]
for doing the same thing.

5 Conclusion

In this paper, we proposed a novel hardware shared synapse architecture for
AEs. This proposed architecture can save the limited resources of FPGA since
the synapse modules are halved because the weight is the same for both the
hidden and the output layer. The proposed design was validated and could work
as an AE that can reconstruct a set of four binary data. Furthermore, the circuit
can diminish the size of network and the different size circuits can be combined
with each other to construct stacked AEs.

Future studies will use the proposed design circuit to construct huge scale
AEs and stacked AEs. Furthermore, the other neural networks related to DNNs
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will be implemented with FPGA and we plan to develop a system where any
digital circuit of neural networks is dealt with as an object.
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Abstract. Time-domain weighted-sum operation based on a spiking
neuron model is discussed and evaluated from a VLSI implementation
point of view. This calculation model is useful for extremely low-power
operation because transition states in resistance and capacitance (RC)
circuits can be used. Weighted summation is achieved with energy dissi-
pation on the order of 1 fJ using the current CMOS VLSI technology if
1 GΩ order resistance can be used, where the number of inputs can be
more than a hundred. This amount of energy is several orders of mag-
nitude lower than that in conventional digital processors. In this paper,
we show the software simulation results that verify the proposed calcula-
tion method for a 500-input neuron in a three-layer perceptron for digit
character recognition.

Keywords: Time-domain computing · Weighted sum · Spike-based
computing · Deep neural networks

1 Introduction

In artificial neural networks, weighted summation is an essential and heavy cal-
culation task. Usually, such arithmetic is digitally performed by very-large-scale
integration (VLSI) circuits in current computers, but if analog operation of com-
plementary metal-oxide-semiconductor (CMOS) VLSI circuits is used for the
task, extremely low-power consumption operation can be achieved. Although
the calculation precision is limited because of the non-idealities of analog oper-
ation such as noise and device mismatches, neural network circuits and their
operation can be designed to be robust to such non-idealities [4].

Time-domain computation based on spiking neuron models was proposed
as a realistic mathematical model for biological neurons [1,2]. In contrast to
conventional weighted-sum operations using analog voltages or currents, time-
domain computation is more suitable for lower-power consumption operation in
CMOS VLSI implementation of artificial neural networks.

c© Springer International Publishing AG 2016
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We have already proposed a device and circuit that performs time-domain
weighted-sum calculation [5]. The circuit used consists of plural input resistors
and a capacitor, which can lead to extremely low-power operation. However, we
have to consider how weighted-sum operations that include both positive and
negative weight values are performed.

In this paper, we discuss such a case and show simulation results for a 500-
input neuron in a three-layer perceptron for digit character recognition.

2 Time-Domain Weighted-Sum Calculation

An integrate-and-fire-type (IF) neuron model is shown in Fig. 1(a). In this model,
the neuron receives spike pulses via synapses from other neurons. The spike pulse
represents an analog value by the input timing, and its pulse width and amplitude
give no effects on the following processing. A spike generates a temporal voltage
change as a response called a post-synaptic potential (PSP), and the internal
potential of neuron n, Vn(t), is equal to the spatiotemporal summation of all
PSPs. When Vn(t) reaches the firing threshold θ, the neuron outputs a spike,
and then Vn(t) settles back to the resting state.

Based on the model proposed in [1], a simplified weighted-sum operation
model using IF neurons has been proposed [5]. Only one spike is assumed to be
fed from each neuron during the arbitrarily predefined time span Tin. Further-
more, the time course of a PSP generated at the input spike timing ti is assumed
to be linear with slope ki, as shown in Fig. 1(b).
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output spike

PSP
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in
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internal potential

firing thresholdθ

Vn
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λβ

t1 t3 t2 time

Fig. 1. IF neuron model for weighted-sum operation: (a) schematic of the model and
(b) time-domain weighted-sum operation using rise timing of PSPs.
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A required weighted-sum operation is that normalized variable
xi (0 ≤ xi ≤ 1) is multiplied by a predefined weight coefficient ai and the
multiplication results are summed regarding i (i = 1, 2, · · · , N), where N is the
number of inputs. This weighted-sum operation can be performed using the ris-
ing slopes of PSPs in the above-mentioned IF neuron model. Input spike timing
ti is determined based on xi using the relationship ti = Tin(1−xi). Coefficients ai

are transformed into the PSPs’ slopes ki; ki = λai, where λ is a positive trans-
formation constant. If the neuron’s firing time is defined as tν , the following
equation is obtained:

N∑
i=1

ki(tν − ti) = θ. (1)

If we define the following parameter:

β =
N∑

i=1

ai, (2)

we obtain
N∑

i=1

ai · xi =
θ/λ + β(Tin − tν)

Tin
. (3)

In this approach, the normalization of sum of ai is not necessary unlike the
previous work [1,2,5].

Here, we assume that all weights of ai have the same sign. When all inputs
are minimum (∀i xi = 0), the left side of Eq. (3) is zero, and therefore the output
timing tν is given by

tmin
ν =

θ

λβ
+ Tin. (4)

On the other hand, when all inputs are maximum (∀i xi = 1), the left side of
Eq. (3) is β, and tν is given by

tmax
ν =

θ

λβ
. (5)

The time span when tν can be observed is [tmax
ν , tmin

ν ], and its interval is

Tν ≡ tmin
ν − tmax

ν = Tin. (6)

Thus, the time span of the output spikes are the same as that of the input spikes,
Tin. However, since the weighted-sum result is given by the expression including
the multiplication of β and tν , as shown in Eq. (3), and since β are generally
different for all neurons, output spikes cannot be directly fed into the next stage
circuit as input spikes. Because β is given before the calculation operation, we
have to calculate the weighted-sum from tν at each stage.
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(b)
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Fig. 2. RC circuit for performing time-domain weighted-sum calculation: (a) circuit
diagram in which resistors are connected with the gate of an FET for weighted-sum
operation, where each resistor should have rectification function to prevent an inverse
current, and (b) step voltage input and its approximate linear response generated by
an RC circuit.

3 RC Circuits That Perform Time-Domain
Weighted-Sum Calculation

The above-mentioned calculation model can approximately be implemented
using a circuit that consists of a field effect transistor (FET) connected to an
array of resistors, as shown in Fig. 2(a). The approximate linear slope k is gener-
ated by capacitance C of the FET gate and resistance R with step voltage input
Vin, as shown in Fig. 2(b), where we use step voltages instead of spike pulses as
inputs.

In such time-domain calculations, time constant τ for processing should be
fairly long, such as τ = 1 μs, to guarantee a sufficient calculation resolution. If
C is assumed to be on the order of 1 ∼ 10 fF, which is a typical order for the
gate capacitance of a nanoscale MOSFET and parasitic capacitance, R should
be around 1 GΩ to obtain τ ∼ 1μs.

Under the above assumption, the energy consumed for a weighted-sum oper-
ation is Ews ∼ CV 2 ∼ 1 ∼ 10 fJ, where V is assumed to be 1 V. Fur-
thermore, if N resistors are connected with capacitor C for N -parallel mul-
tiplication operations, the energy required for one multiplication operation is
Em = Ews/N ∼ 10 ∼ 100 aJ for N = 100, which will be more than several orders
of magnitude lower than the current highest efficiency digital processors [3]. How
many inputs can be effectively implemented in this method from the power con-
sumption point of view depends on how large the parasitic capacitance for each
input is.
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Fig. 3. Network of a perceptron, which has 784 neurons in the input layer, 500 neurons
in the hidden layer, and 10 neurons in the output layer, for classifying MNIST digit
characters.

(a)

(b)

Fig. 4. Inputs and weights of a neuron in the output layer: (a) distribution of 501
inputs, and (b) that of 501 weights corresponding to the 501 inputs.

4 Simulation Results of Time-Domain Weighted-Sum
Calculation

To perform a weighted-sum operation with both positive and negative weights,
we divide a weighted-sum operation into two operations, in which one is for
all the positive weights and the other is for all the negative ones. Then the
time-domain weighted-sum calculation in an RC circuit is performed in each of
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them. According to Eq. (3), the results of the two operations are obtained as
spike timing, and the two results are summed as the final result of the original
weighted summation. We performed software simulation to verify the proposed
method.

In this simulation, we used a multi-layer perceptron (MLP) with a single
hidden layer shown in Fig. 3, which is a feed-forward neural network to classify
the MNIST digit character set. The size of each digit character pattern is 28×28
pixels. The MLP has 784 input neurons, 500 neurons in the hidden layer, and
ten output neurons, so that there exist a large number of multiplications and
summations for each neuron in the hidden and output layers to perform the
weighted-sum calculation. First, we trained the MLP, and then, we applied the
time-domain weighted-sum method described in Sect. 2 to the trained MLP to
test the performance of MNIST digit character recognition. Figure 4 showed the

(a)

(b)

Fig. 5. Simulation results for the proposed approach: (a) PSP of positively weighted-
sum operation with 249 inputs in which Tin = 1, λ = 1, β = 24.01, θ = 24.25, and thus
tν = 1.635, and the weighted-sum result is 8.99, (b) PSP of negatively weighted-sum
operation with 252 inputs in which Tin = 1, λ = 1, β = −21.19, θ = −21.4, and thus
tν = 1.81, and the weighted-sum result is −4.272.
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)b()a(

)d()c(

Fig. 6. Distributions of weights ai and inputs xi involved in the time-domain weighted-
sum calculation: (a) distribution of 249 positive weights, (b) distribution of 249 inputs
corresponding to the 249 positive weights, (c) distribution of 252 negative weights, and
(d) distribution of 252 inputs corresponding to the 252 negative weights.

distributions of the inputs and the corresponding weights of a neuron, which
has 500 inputs from the hidden neurons and one bias input, in the output layer
during testing. Note that the well-trained weights consist of both positive and
negative values, as shown in Fig. 4(b).

Figure 5 shows the simulation results, in which the neuron has 249 positive
weights and 252 negative weights, and a total of 501 weights and inputs. The
correct value of the weighted summation was 4.718, and the sum of the two
results is equal to that, as shown in Fig. 5. Figure 6 shows the distributions of
weights ai and inputs xi involved in the simulation of the time-domain weighted-
sum calculation.

Considering the energy consumption for this weighted-sum calculation, we
have to use two capacitors to complete one precise weighted-sum operation.
This means that we will consume only twice as much energy as that discussed in
Sect. 2. Even so, the energy consumption will still be more than several orders of
magnitude lower than that of the current highest efficiency digital processors [3].

5 Conclusions

In this paper we addressed the time-domain weighted-sum calculation based on
a spiking neuron model. To perform weighted-sum operation with both posi-
tive and negative weights, we proposed an approach where such an operation
is divided into two parts with two RC circuits in which one performs positive
weighted-sums and the other performs negative weighted-sums.

We performed simulation and verified that the result of the weighted-sum
can be calculated correctly. It can be concluded that the proposed approach is
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promising to achieve the extremely low-energy consumption for a vastly large
number of weighted-sum calculations.
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22240022 and 15H01706. Part of the work was carried out under the Collaborative
Research Project of the Institute of Fluid Science, Tohoku University.

References

1. Maass, W.: Fast sigmoidal networks via spiking neurons. Neural Comput. 9, 279–
304 (1997)

2. Maass, W.: Computing with spiking neurons. In: Maass, W., Bishop, C.M. (eds.)
Pulsed Neural Networks, pp. 55–85. MIT Press (1999)

3. Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan,
F., Jackson, B.L., Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser,
S.K., Appuswamy, R., Taba, B., Amir, A., Flickner, M.D., Risk, W.P., Manohar,
R., Modha, D.S.: A million spiking-neuron integrated circuit with a scalable com-
munication network and interface. Science 345(6197), 668–673 (2014)

4. Morie, T., Amemiya, Y.: An all-analog expandable neural network LSI with on-chip
backpropagation learning. IEEE J. Solid-State Circuits 29(9), 1086–1093 (1994)

5. Tohara, T., Liang, H., Tanaka, H., Igarashi, M., Samukawa, S., Endo, K., Taka-
hashi, Y., Morie, T.: Silicon nanodisk array with a fin field-effect transistor for
time-domain weighted sum calculation toward massively parallel spiking neural
networks. Appl. Phys. Express 9, 034201-1-4 (2016)



A CMOS Unit Circuit Using Subthreshold
Operation of MOSFETs for Chaotic

Boltzmann Machines

Masatoshi Yamaguchi1, Takashi Kato1, Quan Wang1, Hideyuki Suzuki2,
Hakaru Tamukoh1, and Takashi Morie1(B)

1 Graduate School of Life Science and Systems Engineering,
Kyushu Institute of Technology,

2-4, Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
morie@brain.kyutech.ac.jp

2 Graduate School of Information Science and Technology, Osaka University,
1-5, Yamada-oka, Suita, Osaka 565-0871, Japan

Abstract. Boltzmann machines are a useful model for deep neural net-
works in artificial intelligence, but in their software or hardware imple-
mentation, they require random number generation for stochastic oper-
ation, which consumes considerable computational resources and power.
Chaotic Boltzmann machines (CBMs) have been proposed as a model
using chaotic dynamics instead of stochastic operation. They require no
random number generation, and are suitable for analog VLSI implemen-
tation. In this paper, we describe software simulation results for CBM
operation, and propose a CMOS circuit of CBMs using the subthreshold
operation of MOSFETs.

Keywords: VLSI implementation · Chaotic Boltzmann machine · Sub-
threshold operation · MOSFET

1 Introduction

Boltzmann machines (BMs) are considered a useful neural network model not
only for deep neural networks with deep learning but also for solving optimization
problems [1,2,8,10,11]. Different trials for hardware implementation of BMs have
been reported [3,6,7,9,12,15]

The BM is a network of symmetrically connected neuron-like units that make
stochastic decisions about whether to be on or off, and therefore we call the orig-
inal BMs stochastic BMs (SBMs). However, the computation cost for SBMs is
very high, and it therefore seems difficult to apply SBMs to real-world problems.
To reduce their computation cost, chaotic Boltzmann machines (CBMs) have
been proposed [14]. CBMs use chaotic dynamics instead of stochastic operation.

From the hardware implementation point of view, SBMs require random
number generators to emulate stochastic operation [4,5]. In contrast, CBMs
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A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 248–255, 2016.
DOI: 10.1007/978-3-319-46687-3 27



A CMOS Unit Circuit for Chaotic Boltzmann Machines 249

require analog dynamical operation, which means that CBMs are suitable for
implementation in analog VLSI circuits.

In this paper, we describe software simulation results for the operation of
CBMs, and propose a CMOS circuit of CBMs using the subthreshold operation
of MOSFETs.

2 Chaotic Boltzmann Machine Model

We first describe the operation of a conventional SBM. Let us define Si ∈ {0, 1}
as the output of unit i in an SBM consisting of N units. Unit i turns on with a
probability given by

P [Si = 1] =
1

1 + exp(−zi/T )
, (1)

where T denotes the temperature of the system, and zi represents its total input
calculated by

zi =
N∑
j=1

wijSj + θi, (2)

where wij is the symmetric weight of the connection between units i and j, and
θi is the bias applied to unit i. If the units are updated sequentially, the network
of units will eventually reach its equilibrium state. Hardware implementation
of SBMs requires random number generation for stochastic operation, which
consumes considerable computational resources and power.

In contrast, a CBM is a deterministic system represented by the dynamics
of nonlinear oscillators based on a pseudo-billiard model, as shown in Fig. 1.
CBMs can emulate BMs without using any random numbers. In CBMs, a unit
is associated with state variable x ∈ [0, 1], which is called the internal state of
the unit. Internal state xi of unit i evolves according to the following differential
equation:

dxi

dt
= (1 − 2Si)

{
1 + exp

(1 − 2Si)zi
T

}
, (3)

which is determined so that the speed |dxi/dt| is inversely proportional to the
probability P [Si] given by Eq. (1) (see [13,14] for more details). The states of
the units are updated by the deterministic rule in which they change when and
only when their internal states reach 0 or 1, as shown in Fig. 1(a). The change
speed of a unit’s internal state changes when the other units’ states change, as
shown in Fig. 1(b). In this way, the units interact with each other. In general,
the state of BMs is represented with an energy function defined by

E = −
∑
i<j

wijSiSj − θiSi. (4)

The units in CBMs can operate in parallel, and no random number genera-
tion is required. Therefore, it is highly anticipated that CBMs can be efficiently
implemented as parallel and distributed hardware systems.
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Fig. 1. Dynamics of CBMs: (a) single unit dynamics and (b) slope change in xi when
Sj of another unit changes.
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Fig. 2. Software simulation results of a CBM that consists of three units: (a) initial
condition and (b) intervals between Si changes in a unit at T = 1.

Fig. 3. Software simulation results of the dynamics of units i and j in a CBM composed
of ten units.

Figure 2 shows the software simulation results of a CBM that consists of
three units. The interval between change events of Si is plotted as a function of
the step of change events of Si in the time sequence of a unit. The distribution
of the interval seems chaotic, although a detailed analysis is needed. The unit
dynamics shown in Fig. 3 are consistent with those shown in Fig. 1. According to



A CMOS Unit Circuit for Chaotic Boltzmann Machines 251

Fig. 4. Software simulation results of changes in energy of chaotic and stochastic
Boltzmann machines by lowering temperature T from the same initial condition.

the dynamics shown in Fig. 1, internal state xi oscillates between 0 and 1 contin-
uously, which is clearly shown in the simulation results in Fig. 3. In addition, in
the simulation, temperature T is lowered after each state update of an arbitrary
unit in both SBMs and CBMs from the same initial temperature. Figure 4 shows
that with the temperature change, the energy of the two models has nearly the
same time course.

3 Design of a CMOS Unit Circuit for Chaotic Boltzmann
Machines

The proposed unit circuit consists of a switched variable current source (SVCS)
circuit, a switched exponential current source (SECS) circuit, and a voltage pulse
converter (VPC) circuit, as shown in Fig. 5.

3.1 Operation of SVCS Circuit

The SVCS circuit converts synaptic current Izi (=
∑N

j=1 wijSj +θi) to ISV CS(=
(1−2Si)Izi/T ). Current Izi is changed to voltage Vzi with a resistor. The SVCS
operates as follows;

(1) If the synapse current is not fed into the SVCS: Izi = 0 (Vzi = Vz0), the
SVCS outputs no current; ISV CS = 0.

(2) If a positive synapse current is fed into the SVCS: Izi > 0 (Vzi > Vz0), and
if unit state Si = 1, the SVCS outputs a negative current; ISV CS < 0.

(3) If unit state Si turns over or the direction of Izi reverses, the direction of
ISV CS reverses.

(4) If voltage VT is changed, the absolute value of ISV CS changes.

3.2 Operation of SECS Circuit

The SECS converts ISV CS to ISECS (= (1−2Si)(1+exp(ISV CS))). MOSFET M1

operates in a subthreshold region and continues outputting normalized current
I1 that corresponds to “1” in Eq. 3. Current ISV CS is changed to voltage Vexp

with a resistor. The SECS operates as follows:
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Fig. 5. Unit circuit for CBMs: (a) architecture, (b) SVCS circuit, (c) timing diagram of
SVCS, (d) SECS circuit, (e) timing diagram of SECS, (f) VPC circuit, and (g) timing
diagram of VPC.
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(1) If ISV CS is not fed into SECS: ISV CS = 0 (Vexp = V1) and Si = 0, SECS
outputs ISECS = 2I1.

(2) If unit state Si turns over, the direction of ISECS reverses.
(3) If Vexp increases, the absolute value of ISECS decreases exponentially, and

voltage Vba decreases. However, |ISECS | larger than |I1|.
(4) If Vexp decreases, |ISECS | increases exponentially, and voltage Vba increases.

3.3 Operation of VPC Circuit

The oscillation of a CBM is achieved by the VPC as follows:

(1) Voltage Vx is initialized at Vini by initialization signal Sini and VPC starts
to oscillate.
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Fig. 6. Circuit simulation (HSPICE) results.
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(2) If Si = 0, capacitor Cx is charged by ISECS , and Vx increases.
(3) When Vx exceeds Vmax, Si turns over.
(4) If Si = 1, capacitor Cx is discharged by ISECS , and Vx decreases.
(5) When Vx exceeds Vmin, Si turns over.

For low power operation, we designed a circuit in which Vba controls a part of
the tail current of the differential pair circuit to optimize the power consumption
of the circuit depending on the slope of Vx.

3.4 Circuit Simulation Results

We designed a CBM unit circuit using 0.25 µm CMOS technology and performed
a circuit simulation (HSPICE) for the operation of this circuit. The simulation
results are shown in Fig. 6. We set the following values: Vz0 = 1.65 V, V1 =
1.55 V, Vsub = 2.2 V, Vini = 1.9 V, Vmax = 2.3 V, Vmin = 1.3 V and Vbm = 0.6 V.
We changed Vzi from 1.65 V to 1.95 V and VT from 0.65 V to 0.75 V. These
simulation results verified that the designed circuit operated successfully.

4 Conclusion

We verified the operation of chaotic Boltzmann machines (CBMs) by software
simulation, designed a CMOS unit circuit for CBMs, and verified its operation.
In future research, we will fabricate a CMOS VLSI chip based on the designed
results, and evaluate the chip by measuring the circuit.
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15H01706 and 15K1211. The circuit design was supported by VLSI Design and Edu-
cation Center(VDEC), the University of Tokyo in collaboration with Cadence Design
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Abstract. We have been developing the “Neurocommunicator”, an EEG-based
communication aid for people with severe motor disabilities. This system
analyzes an event-related potential (ERP) to the sequentially flashed pictograms
to indicate a desired message, and predicts the user’s choice in the brain. To speed-
up of this decoding process, we introduced a special algorithm, the Virtual Deci‐
sion Function (VDF), which was originally designed to reflect the continuous
progress of binary decisions on a single trial basis of neuronal activities in the
primate brain. We applied the VDF to the EEG signals, and succeeded in faster
decoding of the target.

1 Introduction

Brain-computer/machine interface (BCI/BMI) to provide a direct link between the brain
and external devices. There is recent world-wide interest in developing the BMI as
advanced assistive technologies, which have the potential to improve the quality of life
for individuals with disabilities. Although the recent big movement was motivated by
the motor BMI that control prosthetic devices such as a robot arm mainly via invasive
multielectrode recording in the brain [13], the cognitive BMI is also expected to support
communication for patients with severe motor deficits.

In order to develop the cognitive BMIs, we have been focusing two topics, the deci‐
sion-making process as well as single trial prediction. It is important to know the deci‐
sion-making process because it is related to the selection of the internal messages in the
brain [4, 6, 9], On the other hand, single-trial prediction of brain activities is also core
technique for the real-time control of the external devices [5, 7, 8].

One of the good examples of BMIs is the P300 speller, which is based on the Elec‐
troencephalography (EEG) [2, 3]. In the P300 speller system, a user focused on one out
of 36 different characters (‘target’), which was presented with a 6 by 6 matrix of char‐
acters. Six rows and six columns of this matrix were successively and randomly flashed
at a specific rate. As one particular row and one particular column contained the target,
the row and the column with the target were expected to evoke the stronger P300
responses than those without the target. Therefore, the target was decoded by the combi‐
nation of the row and the column.

Recently we have extended this technique to develop a cognitive BMI, “Neurocom‐
municator” (Fig. 1) (reported by a press release at 2010/03/29); Neurocommunicator is

© Springer International Publishing AG 2016
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a practical BMI system that interprets the intention in real time based upon EEG data
with a small device and enables the users to convey 512 kinds of message (8 * 8 * 8).
Although we expect that this system will enables communication by patients with severe
motor disabilities, both the accuracy and the speed should be more optimized as the
basic specs.

Fig. 1. An EEG-based communication system, Neurocommunicator. This device decodes the
user’s intentions based upon the brain waves in real time; it can effectively and quickly convey
even a long message via his/her CG or Robot avatar.

In this study, we attempted to speed up the decoding of the pictogram that was the
“target” in the brain. We have introduced a special algorithm, Virtual Decision Function
(VDF). The VDF was originally designed to reflect the continuous progress of binary
decisions on a single trial basis of neuronal activities of the superior colliculus in the
primate brain. We have applied the VDF to the EEG signals to develop the high-speed
version of the Neurocommunicator with the same level of accuracy.

2 Methods

2.1 Behavioral Paradigm

We collected EEG data from 17 normal adult subjects under the protocol approved by
the guideline and the committee of our institutes. All subjects were tested in two sessions
(‘training’ and ‘test’) each. Each session consisted of 8 ‘games’. In each game, the
subject focused attention on one of 8 pictograms (‘target’) in the matrix, which was
prescribed by the investigator. During each game, each pictogram was flashed at 8 Hz,
displaying 4 Japanese characters (e.g. “Ko-Re-Ka-Na”) with green color [10, 12]. In a
block of 8 flashes, all 8 pictograms were selected in a pseudorandom fashion. A block
of 8 flashes were consecutively repeated 15 times for ‘training’ session and 5 times for
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‘test’ session. As completing one block corresponded to 1 s, it took 15 s and 5 s for the
training and the test sessions respectively. The subjects had 10 s of resting time between
games. The total times were 190 s for the training session and 110 s for the test session.
There was 5 min of resting time between sessions.

2.2 Recording

EEG data was obtained by a custom-made recording system, in which a small EEG
amplifier was attached on a plastic headgear. The headgear localized the electrode posi‐
tions around the top of the head; in this study positions of 8 signal electrodes (ID1@FC1,
ID2@FC2, ID3@C3, ID4@CZ, ID5@C4, ID6@CP1, ID7@CP2, and ID8@PZ) and
one earth (ground) electrode (@CPZ) were selected in the 10 % (10-10) system [1]. A
common reference electrode was positioned on a neutral point (earlobe). While conduc‐
tive gels were used for the 8 signal electrodes and the earth electrode, a disposable
electrode with solid gel was used for the reference. Raw EEG data were measured at a
sampling late of 256 Hz, bandpass filtered (0.2–30 Hz) and digitized as 16 bit per sample.
The digitized data were, in real time, sent to the PC with a wireless transmission method.

2.3 Decoding

In the PC, the original 8 channels of continuous EEG data were downsampled to 21.3 Hz
after additional software bandpass filter (1–30 Hz). Then the data were aligned to extract
the event-related potential (ERP) associated with the onset of the single flash of each
pictogram. As described above, all subjects completed both the training and the test
sessions. We performed linear discriminant analysis (LDA) to generate a pattern recog‐
nition model after the training session. The optimized LDA model was designated to
produce a high score for the target and a low score for the non-target. The test session
was conducted to confirm whether the LDA model had enough ability to discriminate
the target from the non-targets. The pictogram with the highest total (accumulative)
discriminant score was regarded as the target.

In the test session real-time feedback was given to the subject about the prediction
of the target on the final (5th) block after each game. After the 8 games of a session, the
success rate was computed by dividing the number of the successfully predicted games
(0 to 8) by the number of total games (8) in each subject. We mainly focused on the
success rate on the final (5th) block of the test session as the index of the accuracy of
our system. In order to reveal the progress of the accuracy, we also calculated the success
rate not only on all 5 blocks of the test session but also on all 15 blocks of the training
session. The success rate of the test session was examined using the single model gener‐
ated by all data of the training session of each subject. On the other hand, the success
rate of the training session was examined by the cross-validation, especially the “leave-
one-out” method, in which the prediction of individual games was made using the model
generated by the data of remaining games.

In addition to the standard decoding methods above, we have introduced the new algo‐
rithm for high-speed decoding, using the virtual decision function (VDF) [7, 8] with some
small changes for EEG data such as the use of LDA instead of multiple regression anal‐
ysis. In order to obtain this function in this study, the accumulative LDA score for each

258 R.P. Hasegawa and Y. Nakamura



pictogram in each game in the test session was multiplied by the success rate at the corre‐
sponding block in the training session (Fig. 2). The post-hoc prediction of the target by the
VDF in the test session was made when any of the VDFs reached the threshold, which was
set, by the simulation in each subject using the data from the training session so as to keep
the same level of the success rate. The advantage of this method is to speed up the decoding
by finishing to flash the pictogram when the target was predicted even before the final block.

Fig. 2. Schematic drawing of the prediction by the virtual decision function (VDF). The VDF
scores (bottom panel) were obtained by multiplication of the success rate (top) and the
accumulative LDA scores (middle) in each block. The pictogram with the VDF score that first
reached the threshold is regarded as the target (user’s choice).

Although this simple idea and the procedure of the calculation could be applied to
the test session in real time, we conducted the post hoc analyses with the VDF in order
to compere the result by the VDF with the result by the original (currently used) decoding
method, in which the pictogram with the highest accumulative LDA score at the final
(fifth) block was regarded as the target.

3 Results

3.1 Average EPR Analysis

In this study, it was expected for the flash of the target pictogram to extract the P300,
which should be strong enough for the real-time prediction. Therefore, we first made
sure whether the P300 was included, at least, in the average ERP. We compared average
ERPs between the target and non-target conditions in the training session. The response
to the target was typically stronger than that to the non-target, showing a positive peak
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around 200–400 ms, to some extent, at all electrode positions. Although the waveform
of the P300 was similar, within the subject, between the training and the test session,
we observed a variety of individual differences among subjects about temporal patterns
of waveforms at each electrode location (Fig. 3).

3.2 Single-Game Prediction by the Accumulative LDA Scores of the Fixed Block

We first describe the original decoding method. Instead of the waveform of P300 itself,
the converted LDA scores made it possible to predict the target in single games. We

Fig. 3. Event-Related Potentials (ERPs) of a single subject in the training (left) and test (right)
sessions. Each panel corresponds to each electrode location. Blue and purple lines represent the
response to the target and non-targets respectively.

Fig. 4. An example of the decoding in a specific game. The average ERPs of all 8 channels to
all 5 flashes for each pictogram (outer panels) and accumulative discrimination scores (central
panel) to the pictograms are shown when the pictogram ID-3 was predicted.
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compared the accumulative LDA scores among pictograms. In an example of this anal‐
ysis, the pictogram with the highest LDA score was the correct target (Fig. 4); the target
pictogram elicited the P300-like waveform, only showing a positive number. Although
the non-target pictograms sometimes showed a positive number too, the correct target
was mostly higher than it (if not the prediction was considered to be unsuccessful). The
radar chart by LDA scores was useful to visualize how confidently the target was
predicted.

It is thought that this method is useful if the appropriate number of the flashes (blocks)
to elicit the differential responses between the target and the non-target is consistent.
The minimum number to predict the correct target, however, could change game by
game.

3.3 Post-hoc Prediction by the VDF

In this study, we attempted to speed up the decoding of the target pictogram using the
flexible number of flashing method. For this purpose, we introduced the concept to stop
flashing the pictograms depending on the level of confidence of the prediction; we
converted the LDA scores to the VDF scores (Fig. 2) as well as determined the level of
the threshold to be referred.

Fig. 5. (A) Examples of the prediction by the VDF in specific games. The VDFs for the target
(green line) generally reached the threshold (dashed orange line) faster than the non-targets
although such a timing was different game by game. (B) The reduction of the block made by the
VDF prediction. (Color figure online)
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We applied this method to 8 games of all 17 subjects. While some predictions were
correctly made before the final block (e.g. Fig. 5(A) cases 1–2), others still needed to
be waited until the final block (e.g. Fig. 5(A) case 3). While the prediction by the original
method resulted in the average success rate of 17 subjects at the fifth block in the test
session was 91 %, the VDF made the faster prediction at the 3.84 block, keeping the
similar accuracy level (90 %), which corresponded to the 1.16 s reduction (Fig. 5(B)).

4 Discussion

4.1 General

We have been developing our cognitive BMI system, “Neurocommunicator” as a proto‐
type of a communication aid based upon the EEG. In this study, we administered neural
decoding experiments to normal subjects in order to verify the spec of our system as
well as our data collection methods, which would be the adjustment processes for indi‐
vidual patients in the future. Our system was originally designed to create a variety of
messages by the combinations of pictograms after 3 consecutive predictions of the
targets. As a BMI, the neural decoding module was one of the most important aspects
in our system. Therefore, we focused on the accuracy of not the 3 consecutive but the
single predictions of the target as the indicator of the accuracy. We obtained satisfactory
data from the subjects, which encouraged us to start systematic bed-side monitor experi‐
ments.

4.2 Speed-up of the Prediction by the VDF

It is useful to obtain the data from the normal subjects before the clinical trials in order
to assess our system from the technical aspects independent of specific conditions of
individual patients. The success rate of the prediction, especially on the 5th block, was
used as the index of the accuracy of our system. In fact, the success rate of our system
was about (91 %) in average of 17 subjects, which was far above the chance level
(12.5 %). Keeping the similar accuracy level (90 %), the VDF succeeded in speed-up of
the decoding from the 5th block to the 3.84 block, which is close to our final goal 95 %
at the 3rd block.

We are planning to start systematic monitor experiments for the patients mostly
living at home [11]. Toward such a clinical use, these results suggest the VDF might
contribute to improve the QOL of the future users of the Neurocommunicator.
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Abstract. The echo state network is a framework for temporal data
processing, such as recognition, identification, classification and predic-
tion. The echo state network generates spatiotemporal dynamics reflect-
ing the history of an input sequence in the dynamical reservoir and
constructs mapping from the input sequence to the output one in the
readout. In the conventional dynamical reservoir consisting of sparsely
connected neuron units, more neurons are required to create more time
delay. In this study, we introduce the dynamic synapses into the dynam-
ical reservoir for controlling the nonlinearity and the time constant. We
apply the echo state network with dynamic synapses to several bench-
mark tasks. The results show that the dynamic synapses are effective for
improving the performance in time series prediction tasks.

Keywords: Echo state networks · Reservoir computing · Dynamic
synapses · Short-term synaptic plasticity · Time series prediction ·
Recurrent neural networks

1 Introduction

The echo state network (ESN) is a computational framework for processing time
series data, consisting of two parts: the dynamical reservoir (DR) and the read-
out [1]. The DR is often constructed with sparsely connected recurrent neural
networks (RNNs), which play the role to map the input time series into non-
linear spatiotemporal dynamics generated by the DR. The dynamics of the DR
is a function of the input history, and therefore, the activation states in the
DR contain the information of the input data. The readout is used to make a
mapping from the activation states in the DR to the output time series. In the
readout, the outputs of the ESN are often created by a linear combination of
the activation states of the DR.

The feature of the ESN is that only the connection weights in the readout part
are trained. The input connection weights and the internal connection weights
c© Springer International Publishing AG 2016
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in the DR are all fixed in advance. Therefore, in terms of computation time,
the ESN is advantageous compared with the RNNs where all the weights are
adjusted [2]. Particularly when the readout is a linear transformation, it is easy
to obtain the weights that minimize the difference between the network output
sequence and the desired output sequence by any linear regression method.

The ESNs have been successfully applied to a variety of tasks such as time
series prediction, system identification, system control, adaptive filtering, noise
reduction, function generation, and pattern classification. However, the ESN
with the neuron-based reservoir is not good at dealing with slowly changing
time series data whose time constant is smaller than that of the neuron unit. A
time delay is required to handle the slow dynamics in the sample data. Although
a delay line can be realized by connecting neurons in a chain in an unidirectional
way, more time delay requires more neurons. Here, to change the nonlinearity
and the time constant of the DR in another way, we introduce dynamic synapses
into the DR.

Dynamic synapse, also called short-term synaptic plasticity, refers to the
synapse in which the efficiency of synaptic transmission changes transiently due
to the changes in the calcium concentration and the release of neurotransmitters
[3]. The short-term synaptic plasticity persists for only several hundred mil-
liseconds. Mongillo et al. theoretically showed that short-term facilitation in the
prefrontal cortex is implicated in working memory [4]. Their simulations indi-
cate that a population activity can be reactivated by weak nonspecific excitatory
inputs as long as the synapses remain facilitated. Thus, dynamic synapses can
store the history of the past neural activities for about one second as the changes
in the synaptic transmission efficiency. Therefore, they can process information
in accordance with the past neural activity. Hence dynamic synapses may play
an important functional role in time series processing in the brain.

In this study, we propose the ESN with dynamic synapses and investigate
its computational performance in time series prediction and memory capacity.
We perform numerical experiments on several benchmark tasks to evaluate the
effectiveness of the dynamic synapses in information processing. This research
is important for understanding the dynamical behavior of the brain as well as
realizing bio-inspired / energy-efficient information processing systems.

2 Methods

2.1 Models

(1) Echo State Network. In this study, we use the ESN with dynamic
synapses. Our ESN consists of K input layer neurons I(t) = [Ii(t)]1≤i≤K , ran-
domly connected N hidden layer neurons H(t) = [hi(t)]1≤i≤N (dynamical reser-
voir), and L output layer neurons Y(t) = [yi(t)]1≤i≤L. The N ×K input weight
matrix Win = [win

i,j ] is created as an uniform random matrix in the range [−0.5,
0.5], and the N × N internal weight matrix W = [wij ] is created as an uni-
form sparse random matrix in the range [−0.5, 0.5]. W is normalized by the
spectral radius represented as αsd(< 1). We set the sparseness of the internal
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weight matrix W at 15 %. The reservoir state H(t) is generated by the following
difference equation:

H(t + 1) = f(WinI(t + 1) + WH(t)), (1)

where f denotes the component-wise application of the unit’s activation function
f . We use the sigmoid function f(s) = 1/(1 + exp(−s)), the hyperbolic tangent
f(s) = tanh(s), and the linear function f(s) = s. The output Y(t) is generated
by the following difference equation:

Y(t + 1) = fout(WoutH(t)), (2)

where Wout is an L × (K + N + L) output weight matrix calculated by using
input-output training data pairs [2]. We use the output activation function
fout(s) = tanh(s).

(2) Dynamic Synapse. The short-term plasticity of dynamic synapses is
caused by quantitative alteration of the releasable neurotransmitters and the
calcium concentration [5,6]. The dynamics of dynamic synapses are described
by the following two equations for the variables xi representing the ratio of the
releasable neurotransmitters and ui representing the calcium concentration of
neuron i(i = 1, ..., N):

xi(t + 1) = xi(t) +
1 − xi(t)

τD
− xi(t)ui(t)hi(t), (3)

ui(t + 1) = ui(t) +
Use − ui(t)

τF
+ Use(1 − ui(t))hi(t), (4)

where τD and τF are time constants for the dynamics of xi and ui, respectively.
If no action potential comes to the presynaptic terminal, xi and ui recover to
the steady state level 1 and Use, respectively. Here, the efficiency of synaptic
transmission is proportional to xj(t)uj(t). Therefore, when we innovate dynamic
synapses, the strength of the connection from the jth neuron to the ith neuron is
redefined as Dij(t) = wijxj(t)uj(t)/Use. This standard dynamic synapse model
requires 0 < hi. Therefore, this model cannot use tanh units and linear units,
and instead we use the sigmoid units in this model.

The standard dynamic synapse model reproduces faithfully the experimental
results. However, this model is not necessarily suitable for the neural network. For
example, (1) this dynamic synapse model is not superset of the static synapse.
(2) Dynamics of synaptic efficacy is not monotonic. (3) Dynamic synapse is
complex because it includes two variables. To solve these problem, I devised a
new univariate dynamic synapse model as follows:

ei(t + 1) = ei(t) +
1 − ei(t)

τi
+ ai(ei(t) − mi)(Mi − ei(t))hi(t), (5)

where ei(t) is the synaptic efficacy of neuron i, and ai determines the rate of
change of synaptic efficacy, mi and Mi are the minimum and maximum values of
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synaptic efficacy, respectively (0 < mi < 1, 1 < Mi). Now wij can be described
by Dij(t) = wijej(t). In this model, if ai > 0, then the short-term facilitation
occurs. If ai < 0, then the short-term depression occurs. If ai = 0, then synapses
become static. This model can use tanh units.

2.2 Tasks

(1) Memory Capacity. In order to evaluate the short-term memory capacity
of ESN with dynamic synapses, we calculated the Memory Capacity (MC) [2,7]
of the network. We consider an ESN with a single input unit I(t) and many
output units {yk(t); k = 1, 2, ...}. The input I(t) is a random signal generated by
sampling from a uniform distribution in the interval [−0.5, 0.5]. Training signal
dk(t) = I(t−k) are delayed versions of input signal I(t). Memory Capacity (MC)
of an ESN is defined as follows:

MC =
∞∑
k=1

max
wout

r2(I(t − k), yk(t)), (6)

where

r2(I(t − k), yk(t)) =
cov2(I(t − k), yk(t))
σ2(I(t − k))σ2(yk(t))

(7)

is the determination coefficient (cov denotes the covariance and σ2 denotes the
variance).

(2) NARMA 10 Time Series. NARMA (Nonlinear autoregressive moving
average) is a generalized version of the autoregressive moving average model,
where the regression is nonlinear. NARMA is often used in many studies to
evaluate the performance of time series processing of RNNs. The NARMA 10
time series, which includes 10 steps time lag, is generated by the following recur-
rence relation:

y(t) = αy(t − 1) + βy(t − 1)
n∑

i=1

y(t − i) + γI(t − n)I(t − 1) + δ, (8)

where α = 0.3, β = 0.05, γ = 1.5, δ = 0.1, n = 10 [8]. The input I(t) is a
signal generated by randomly sampling from a uniform distribution in [0, 0.5].
The task is to predict y(t) from I(t).

(3) NARMA 20 Time Series. The NARMA 20 time series includes 20 steps
time lag. This is a more difficult task than the NARMA10 because of the longer
history. The NARMA 20 has an additional nonlinear transformation by tanh to
confine the signal in a finite range. The NARMA 20 is generated by the following
recurrence relation:

y(t) = tanh

(
αy(t − 1) + βy(t − 1)

n∑
i=1

y(t − i) + γI(t − n)I(t − 1) + δ

)
, (9)

where n = 20 and the rest of conditions are the same as NARMA 10.
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A B

C D

E F

Fig. 1. Comparison of Memory Capacity between the static synapse and the dynamic
synapse. We set N = 400 and αsd = 0.99. We use the standard dynamic synapse
model in A–B, and the univariate dynamic synapse model in C–F. A, B. Dependence
of Memory Capacity on the time constant. We ran 20 trials with different initial weights,
and we calculate the average value. We use the standard dynamic synapse model C.
Forgetting curves of linear DR with static synapses. D. Forgetting curves of the tanh
DR with static synapses. E. Forgetting curves of the linear DR with dynamic synapses.
F. Forgetting curves of the tanh DR with dynamic synapses.
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3 Results

First, the memory capacity of the ESN with dynamic synapses was evaluated in
comparison with the ESN without static synapses. In this task, we set αsd = 0.99,
N = 400, and win

ij ∈ [−0.1, 0.1]. The activation function of the neuron units in
the dynamic reservoir is given by the linear type, the tanh type or the sigmoid
type. Figure 1 shows the results of the numerical experiments on the memory
capacity task. Figures 1A and B show how the memory capacity depends on the
delay parameters τD and τF in the dynamic synapses when using sigmoid units.
These results show that a smaller value of τD gives a larger memory capacity
and the value of τF is not influential on the capacity. Figures 1C–F show the
forgetting curves which indicate how much input history can be embedded in
the spatiotemporal dynamics of the dynamic reservoir. As the length of the delay
k is increased, the determination coefficient tends to decrease. In this task, we
use the univariate dynamic synapse model. We set ai ∈ [0, 0.1] (random) , τi ∈
[1, 20] (random), mi ∈ [0, 0.1] (random), and Mi ∈ [1, 4] (random). Figures 1C
and D for linear units show that the memory capacity is much decreased by
introducing the dynamic synapses. This means that the linearity of the original
dynamic reservoir, which is favorable for the transmission of the input data
without transformation, is lost by the nonlinearity of the dynamic synapses. In
the case of tanh units, the decrease in the memory capacity is relatively small

Table 1. Comparison of the performance between the static synapse and the dynamic
synapse. We ran 20 trials with different initial weights, and we calculate the average
value and the standard deviation. In these tasks, we use the univariate dynamic synapse
model. A. Memory Capacity of the ESN. We set αsd = 0.99, N = 400, ai ∈ [0, 0.1]
(random), τi ∈ [1, 20] (random), mi ∈ [0, 0.1] (random), and Mi ∈ [1, 4] (random).
B. NARMA task. We set αsd = 0.8, and use the tanh units. The rest of conditions are
the same as those in A.

A

task activation function static synapse dynamic synapse

MC
linear DR 159.3380 ± 8.1009 49.8540 ± 3.0186
tanh DR 56.1503 ± 2.9915 48.9405 ± 4.7646

B

task measure static synapse dynamic synapse

NARMA10
NRMSE

training 0.13920.0220 0.0768±0.0155
testing 0.2452±0.0294 0.1541±0.0267

RMSE
training 0.0204±0.0033 0.01080.0020
testing 0.0359±0.0049 0.0218±0.0050

NARMA20
NRMSE

training 0.3511±0.0641 0.2997±0.0743
testing 0.5514±0.0503 0.4966±0.0842

RMSE
training 0.0148±0.0028 0.0127±0.0033
testing 0.0232±0.0020 0.0210±0.0040
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as shown in Figs. 1E and F. Table 1A summarizes the statistical results for 20
trials in the above four cases. Overall, the dynamic synapses are not effective for
improving the memory capacity due to their highly nonlinear property.

Next, NARMA time series prediction performance of the ESN with dynamic
synapses was evaluated in comparison with the ESN without static synapses.
In this task, we use the univariate dynamic synapse model. We set αsd = 0.8,
N = 400, win

ij ∈ [−0.3, 0.3], ai ∈ [0, 0.1] (random) , τi ∈ [1, 20] (random),
mi ∈ [0, 0.1] (random), and Mi ∈ [1, 4] (random). Table 1B summarizes the
statistical results for 20 trials. In the NARMA 10 task, we normalize output
to range [−0.5, 0.5]. As a result, we found that the dynamic synapse reduce
the prediction error about 39.3–47.1 % in NARMA 10 and about 9.5–14.2 % in
NARMA 20. Figure 2 shows the time series of training signals (NARMA 10,
NARMA 20) and output signals.

A

B

C

D

Fig. 2. Training signal (the dotted line) vs Output signal (the solid line). The activation
function of the internal units is given by f = tanh. A. NARMA10 time series with the
static synapses. B. NARMA10 time series with the dynamic synapses. C. NARMA20
time series with static synapses. D. NARMA20 time series with the dynamic synapses
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4 Conclusion

We have proposed an echo state network incorporating dynamic synapses which
can change the nonlinearity and the time constant of the dynamic reser-
voir. Numerical experiments were performed to evaluate the effect of dynamic
synapses on the computational ability of the echo state network. In the memory
capacity task, the dynamic synapses are not effective for improving the perfor-
mance. This is because the linear dynamics, which is advantageous for the mem-
ory capacity task, is broken by the dynamic synapses. In the time series predic-
tion tasks with NARMA 10 and NARMA 20, the dynamic synapses can reduce
the prediction error. These tasks require highly nonlinear dynamics, which can
be brought about by the dynamic synapses. In this way, the dynamic synapses
are suited for relatively difficult tasks that require a dynamical reservoir gener-
ating highly nonlinear dynamics. Further numerical experiments for other tasks,
however, are necessary to fully reveal the effect of the dynamic synapses on
computational ability of the echo state network. In particular, the prediction of
time series with slow dynamics is an interesting task to understand how dynamic
synapses control the time constant.
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Abstract. In recent years, a breakthrough has been made in infant level AI due
to the acquisition of representation, which was realized by deep learning. By
this, the construction of AI that specializes in a specific task that does not require
a high-level understanding of language is becoming a possibility. The primary
remaining issue for the realization of human-level AI is the realization of general
intelligence capable of solving flexible problems by combining highly reusable
knowledge. Therefore, this research paper explores the possibility of
approaching artificial general intelligence with such abilities based on meso-
scopic connectome.

Keywords: Artificial general intelligence � Computational neuroscience �
Biologically inspired cognitive architecture

1 Introduction: Deep Learning Realize Infant Level AI

Conventional AI had strength in intelligence tasks in which adults excel, such as
planning and logical inference. In contrast, it was weak in nonlinguistic intelligence
such as pattern recognition and motion generation, which could be performed by a
three-year old child. Because of this disparity, representations for pattern recognition
had to be designed by hand in conventional machine learning technology.

However, in 2012, deep learning [1] in visual information processing
over-whelmed conventional technology, and was surpassing humans by 2015. The
basis of this change is the possible automatic acquisition of representation from data by
deep learning technology. For example, in the Google cat that became famous in the
earliest state, the representation for identifying typical cats was generated inside by
making the deep learning device read a large volume of data. This representation
learning technology greatly resolved the frame issue, symbol grounding issue, and
intelligence acquiring bottleneck, which were long-standing problems in AI.

By realizing such “child-like AI,” AI became capable of human-like image
recognition and improved skillful control. Thus, AI research that is aligned with human
development became possible. Current AI is widely realized for specialized learning
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already, except for high-level understanding of natural language. However, the ver-
satility for solving various problems by combining multiple types of heterogeneous
knowledge has not yet been realized, and this artificial general intelligence (AGI) is
described in the next chapter. The whole brain architecture (WBA) approach tries to
achieve AGI by using the knowledge of neuroscience that had made significant pro-
gress in recent years. Non-profit organizations and Youngers group have been estab-
lished for promoting research on WBA approach.

2 Artificial General Intelligence [2]

The modern practical AI is a specialized AI that behaves intelligently in individual task
areas. In contrast, AGI is the AI that acquires intelligence in a wide range of problem
areas autonomously and flexibly solves problems. Therefore, it is an AI that can solve
problems beyond the assumptions at the time of design.

Consequently, versatility is the biggest issue toward the realization of human-level
AI. Therefore, AGI is a critical technology goal. However, like humans, it does not
mean that AGI possesses universal intelligence from the beginning.

2.1 Impact of AGI

As the realization of AGI nears, AI can be designed in various problem areas at a low
cost, and it surpasses specialized AI. For example, designing intelligence for work sites
such as for a convenience store clerk is too cluttered for a human designer.

Moreover, if AGI had sufficient autonomy, it would consider an enormous amount
of hypotheses including failure as if it were playing, and it would perform various trials
to the outside world. By supporting the problem solving ability for exceptional situ-
ations for which it cannot be designed, the knowledge of the outside world that was
acquired through play would obtain robustness and resilience as intelligence. For
example, this would be a useful technology for service robots performing domestic
chores in various environments such as in a household.

The ability to expand knowledge through play is the basis for creativity. This ability
contributes to artistic activities, new business planning, and scientific technology
development. If such AI can understand the world, it will help innovate medical
technologies and solve global problems of humanity.

2.2 Cognitive Architectures

AGI research is mainly based on the technology of cognitive architecture, which is a
static design that draws the placement of components that constitute the intelligent
agent, so it is not a part of learning technology. Then, it implements the overall
real-time behavior from perception to action.

What is especially important for the realization of AGI is providing various
functions through a dynamic combination (interaction) of highly reusable components,
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enabling some kind of action for unexpected or unknown situations, and having ver-
satility as a result.

3 Whole Brain Architecture (WBA) Approach

In conventional cognitive architecture research, design and evaluation were done based
on human behavior. However, the approach from cognitive architecture (BICA: Bio-
logically Inspired Cognitive Architectures) [3] that takes hints from living creatures has
been reexamined, since the knowledge in neuroscience has increased rapidly in recent
years.

3.1 WBA Approach Become Feasible

Based on such a technological background, the WBA approach was proposed as a
strong new course for the realization of AGI. The source hypothesis is the following
“Whole Brain Architecture Centric Hypothesis”:

The brain combines modules, each of which can be modeled with a machine
learning algorithm, to attain its functionalities, so that combining machine learning
modules in the way the brain does enables us to construct a generally intelligent
machine with human-level or super-human cognitive capabilities.
Using this hypothesis, research and development in a WBA approach is divided into
the following two tasks shown in the Fig. 1:

(1) Developing machine learning modules having the function of brain organs, and
(2) Combining the machine learning modules into a cognitive architecture.

Until recently, there was a technological difficulty in both tasks, but it has become
an increasingly possible approach in recent years because of the following background:

(1) The neocortex has a large role in the versatility of the brain; however, researchers
have had success with deep learning studies in recent years, which could be seen
as a model for neocortex.

Fig. 1. Whole brain architecture/approach
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(2) Overall brain connection manner (connectome) can be seen as a model for con-
structing the cognitive architecture for the flexible combination of machine
learning [5]. A connectome includes static nerve connection structure [6] and also
dynamic nerve activity connectivity during task execution and resting states.

If the cognitive architecture based on a mesoscopic connectome can be constructed,
then this will advance research on the realization of AGI capable of flexible problem
solving.

3.2 Why It Is Beneficial to Learn from the Brain

The following reasons outline why it is beneficial to learn from the brain in AGI
construction:

• We finally reach the AGI by modeling more detail as needed;
• We can create AI with a high affinity with people;
• We can validate the direction of research;
• We can deal with the difficulty with a general purpose technology design;
• We can glean hints about unsolved issues;
• We can promote collaboration; and
• We can use it as a trunk for aggregating knowledge.

Each of these viewpoints is important, but it is important to highlight the “difficulty
of general purpose technology design.” There are three methods for designing a sys-
tem: based on the purpose decomposition, repeating prototypes (or machine learning),
and mimicking creatures.

If the purpose of system is clear, the design can be done by breaking up that
purpose into functions. In other words, specialized AI is fit for design by hand. In
contrast, the importance of machine learning and creature mimicking is increased in
AGI with multi purposes. The basic architecture of deep learning has taken hints from
the visual cortex of the brain during early development. Therefore, before the
asymptotic improvement by engineering, there often exist breakthrough ideas taken
from living creatures.

3.3 Research Map of AGI

The organizations working on the realization of AGI can be largely categorized into
four quadrants based on two axes: whether they aim to recreate the overall brain
function and whether they aim to seek biological plausibility (Fig. 2). Recently, the
first quadrant (shown in the upper right in Fig. 2) became crowded with organizations
aiming to build an entire brain based on neuroscientific knowledge. Our WBA
approach also sits in this position.

Shown in this upper right quadrant, DeepMind made their debut with a research
project called the Deep Q Network in which an algorithm that combined deep learning
and reinforcement learning is made to learn the play of an arcade game. This technique
is applied to Go game and beats world-class player Lee Se-dol March 2016.

278 H. Yamakawa et al.



These machine-learning technologies have corresponding regions in the brain, and
have a good affinity with the WBA approach. Additionally, the CEO of DeepMind, Mr.
Hassabis, is interested in the modeling of the brain and is aiming for the realization of
AGI. DeepMind is releasing the research results (such as the algorithm) in the form of
research paper. GoodAI, a Czech company founded in 2015, aims to realize WBA-like
AGI, and they are releasing their tools. The Centre for Theoretical Neuroscience at the
University of Waterloo in Canada is developing and releasing the whole brain simu-
lator Nengo1 [5]. The NPO carboncopies is targeting the reverse engineering of the
brain by whole brain emulation. Compared to carboncopies and Nengo, the WBA
approach does not necessarily seek strong conformity with biological truth.

In the upper left quadrant of Fig. 2, Numenta and Vicarious are companies trying to
create learning machines that learn from the cerebral cortex, but they do not handle the
overall brain. However, Numenta has a method of learning from the cerebral cortex,
which is a useful reference, and is expected to partially release their algorithm. In the
lower right quadrant, OpenCog does not take the approach of referencing the brain, but
instead has an open AGI research approach that takes the same stance as WBAI.
The NPO OpenAI established December 2015 as research company to build AI ben-
eficial for humanity.

In Japan, new AI projects are being led by the Ministry of Economy, Trade, and
Industry; the Ministry of Education, Culture, Sports, Science, and Technology; and the
Ministry of Internal Affairs and Communications. Ichisugi, one of the advocates of

Fig. 2. World developer map of AGIs

1 http://www.nengo.ca/.
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WBAI, is conducting the research of BESOM, a machine learning device that learns
from the cerebral cortex, at the Artificial Intelligence Research Center of the National
Institute of Advanced Industrial Science and Technology. He aims for the gradual,
long-term realization of AGI.

As demonstrated by these examples in Japan, alone, research and development that
targets AGI has expanded rapidly in the last few years.

4 Promoting WBA Approach

In August 2015, the authors founded the specified nonprofit corporation “WBAI:
Whole Brain Architecture Initiative.”2 Now, we believe that a co-creation of 10,000
engineers on brain architecture is a democratic and fastest AGI development scenario,
and promote it by indicating direction and by preparing supportive tools for
developments.

In addition to this, a youth WBA organization called WBA Future Leaders, which
aims to support the future of WBA, was founded a year earlier.

4.1 WBA Future Leaders3

WBA Future Leaders was established in August 2014 as an organization that coop-
erates in WBA study groups. As a community for everyone who is interested in the
brain, artificial intelligence, and their effects, two targets are proposed:

(1) Create a place where the technology for modeling the vast knowledge related to
WBA can be learned systematically, and

(2) Think about the ideal form of the “coexistence of human and artificial intelli-
gence” that can be widely understood, and heighten the interpretability of artificial
intelligence in society.

The main activities performed so far focus on two-hour study groups hosted every
1–2 months with a set lecturer and theme. Lecturers selects themes related to AI and
neuroscience regardless of their expertise, and present to the group after a 2–5 month
preparation period. The casual talk is hosted every six months, where ideas and indi-
vidual interests can be offered in a short presentations. A diverse group of people
gathers at the exchange meeting focused on the “brain and AI,” and they are
encouraged to engage in candid discussions regardless of their professional positions.
The first WBA Hackathon was co-hosted with the NPO WBAI in September 2015, and
another is planned for this year.

The participants include students (from high school, college, and graduate school),
researchers (post-doctoral, research lab staff, and faculty members), business people,
entrepreneurs, and creators. As of July 2016, there were more than 1,100 participants in
the related Facebook group. Through these activities, participants can be matched with

2 http://wba-initiative.org/.
3 http://wbawakate.jp/.
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young researchers, corporations, and other parties interested in contributing to the
research and development of the WBA approach.

5 Conclusions

This research paper described the feasibility, advance point, positioning, and driving
force of AGI development based on the WBA approach. Today’s acceleration of AI
technology makes the AGI researches level more realistic soon. So we should promote
our development scenario speedily, and we should also consider various contribution
and impacts of AGI to humanity from technological view.

The vision of this program is that “Let’s build the AGI, that enhance our future
happiness, along with a number of engineers and citizens based on understanding of
human.”

Acknowledgements. Thanks to all members, advisors and supporters of the WBAI and the
various members of the WBA Future Leaders.
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Abstract. Risk-aware control is a new type of robust nonlinear stochas-
tic controller in which state variables are represented by time-varying
probability densities and the desired trajectory is replaced by a cost
function that specifies both the goals of movement and the potential
risks associated with deviations. Efficient implementation is possible
using the theory of Stochastic Dynamic Operators (SDO), because for
most physical systems the SDO operators are near-diagonal and can thus
be implemented using distributed computation. I show such an imple-
mentation using 4.3 million spiking neurons simulated in real-time on a
GPU. I demonstrate successful control of a commercial desktop robot
for a visually-guided reaching task, and I show that the operators can be
learned during repetitive practice using a recursive learning rule.

Keywords: Stochastic control · Spiking network · Reaching · Optimal
feedback control · Stochastic Dynamic Operators · Risk-aware control

1 Introduction

Robot reaching in a laboratory or manufacturing environment has many known
solutions. However, if the robot kinematics or dynamics are unknown, if there are
potential random or malicious perturbations to the movement, if sensory data are
unreliable, or if there are fixed or moving high-risk or delicate areas that must be
avoided, then current methods are rarely effective. Such problems are effortlessly
solved by humans, and this leads us to ask whether simple approximately-correct
algorithms exist that can be implemented efficiently on neural-like hardware.

Risk-aware control theory describes how the dynamics of human movement
change when the risk of movement changes [4]. In particular, humans will mod-
ify their trajectory, response to perturbation, baseline stiffness, and muscle co-
contraction in response to perceived changes in risk, where risk is defined as the
product of probability of error and cost of error [1,2]. The response is primarily
involuntary, although it can be modified by training. Imagine for example, the
difference in the kinematics of walking while on a narrow path on a flat road
compared to walking on a narrow and high bridge without a handrail.
c© Springer International Publishing AG 2016
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The theory of Stochastic Dynamic Operators (SDOs) provides a mechanism
by which risk-aware control can be implemented. SDOs describe the behavior
of stochastic nonlinear optimizing systems when state variables are replaced
by probability densities and desired trajectories are replaced by cost functions.
SDOs have the particularly useful property that the effect of multiple control
inputs is a linear combination of the individual SDOs, and thus flexible control of
complicated partially unknown approximate systems in uncertain environments
can be implemented using linear operations [3]. SDOs for physical systems are
always near-diagonal, which means that if the probability densities for state vari-
ables are represented by coarse-coded population behavior, then there will be
very little nonlocal interaction. This permits an efficient distributed representa-
tion of SDOs for complex systems.

Here I will demonstrate such a system, using it to control visually-guided
reaching on a desktop robot. To make the problem more realistic, a variety of
visually-identifiable non-target objects will also be visible, including objects that
are dangerous or painful to touch, and others that are so delicate that compliance
needs to be controlled to avoid damaging contact. I show that a distributed spik-
ing neural network implemented on GPU hardware is able to control the robot
in realtime in order to reach toward identified objects while avoiding potentially
dangerous obstacles in its path. Furthermore, I show that the network can be
learned recursively from multiple samples of reaching behavior.

2 Theory

2.1 Stochastic Dynamic Operators

For a large class of stochastic physical systems, dynamics can be described by
the equation:

∂p(x, t)
∂t

= Lp(x, t) (1)

where x is the underlying (and only approximately known) state variable, p(x, t)
is the time-varying probability density of x, and L is a linear operator. We can
write this more simply as ṗ = Lp. For example, the well-known Fokker-Planck
equation describing a drift/diffusion process is given by Eq. 1 where

Lp = −a
∂p

∂x
+ b2

∂2p

∂x2
(2)

with drift rate a and diffusion rate b. For physical systems, there is an equivalent
Ito stochastic differential equation of the form dx = f(x, t)dt + g(x, t)dw, where
f and g are often nonlinear.

When a(x) depends on x, the rate of flow or the direction of flow can be
different for different values of x. In particular, it is possible to represent stable
dynamics with convergence to x0 if a(x) > 0 for x < x0, and a(x) < 0 for
x > x0. Oscillatory behavior occurs only for second-order systems, which in this
formulation would mean that there are coupled dynamics for x and ẋ so that
ṗ(x, ẋ, t) = Lp(x, ẋ, t).
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2.2 Structure of Operators

Since real physical systems have state variables x(t) that are continuous and can-
not make instantaneous jumps, ṗ(x, t) will be nonzero only near values of x for
which p(x, t) is nonzero. Therefore the operators L are “diagonal” in this sense.
When x is discretized (the underlying state is discrete or the digital represen-
tation is quantized), then L admits a matrix representation and the matrix will
have nonzero values only near the diagonal. For example, consider the dynamics
described by

ṗ = −a
∂p

∂x
(3)

which describes a deterministic unidirectional movement at rate a. The matrix
representation for discrete state x will have −a above the diagonal, 0 on the
diagonal, and a below the diagonal for each column. The differential operator
will be the limit as the discretization becomes progressively finer, which is the
derivative of a delta function centered on the diagonal for each column.

2.3 Control of Dynamics

If we wish to introduce a control vector u, we can do so by parametrizing L(u).
Because L is a linear operator even when the underlying stochastic dynamics
are nonlinear, it is possible to construct superposition systems using a weighted
average of different dynamics:

ṗ =

(∑
i

uiLk

)
p (4)

and this provides a mechanism for control. In particular, the vector < u0 . . . uN >
is a control vector that determines the superposition. This is a parametrization
L(u) =

∑
uiLi. When u(t) is time-varying, it can be shown that the set of

short-time achievable dynamics is given by:

p(x, t + Δt) = eMΔtp(x, t) (5)

for short intervals Δt, where M is an element of the Lie algebra generated by
the set {Li}.

Note that even when each member of the set of operators Li is unstable, stable
dynamics can be achieved by a state-dependent superposition u(x). For example,
if L1 has a > 0, L2 has a < 0 and u(x) =< u1(x), u2(x) > is such that u1(x) = 1
for x < x0 and 0 otherwise, and u2(x) = 1 for x > x0 and 0 otherwise, then the
state-dependent superposition dynamics L =

∑
ui(x)Li is equivalent to a single

operator with stable dynamics around x0. When u(x) depends on state we refer
to this as “feedback control”. Note that feedback control significantly expands
the set of achievable dynamics, since the linear superposition of operators Li

can be different for each column (each value of x). If u(x, t) is also time-varying,
then the resulting Lie algebra of achievable dynamics is much larger than the
span of the original set of operators Li.
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2.4 Short-Time Optimal Feedback Control

Suppose we have a value function v(x) which gives the current (or immedi-
ate future) value of each state x. Then the expected total value at time t
is Ev =

∫
v(x)p(x, t)dx, and the rate of change of expected total value is

∂Ev/∂t =
∫

v(x)ṗ(x, t)dt which we can write more succinctly as vT ṗ or vLp.
This is maximized for superposition dynamics when

ui = vT Lip (6)

meaning that the weighting for each operator Li is proportional to the expected
increase in value due to that operator. Because v(x) depends on x and p(x, t)
depends on t, Eq. 6 describes a time-varying feedback controller and thus makes
full use of the Lie algebra of available operators.

2.5 Distributed Representation of Operators

When x takes discrete values {xk}, the probability density p(x, t) can be repre-
sented by a vector < p0(t) . . . pM (t) >, where pk(t) = Prob{x(t) = xk}. For a
tridiagonal matrix operator L with elements lk,m, we have

ṗk(t) = lk,k−1pk−1(t) + lk,kpk(t) + lk,k+1pk+1(t) (7)

This is a local representation, since ṗk(t) depends only on nearby values of pk(t).
We can perform short-time optimal control in the distributed representation

if v(x) =< v0 . . . vM > is also distributed, in which case we obtain the controller

ui(t) =
∑

k

uik(t) =
∑

k

vk

(
lik,k−1pk−1(t) + lik,kpk(t) + lik,k+1pk+1(t)

)
(8)

where lik,m is the k,m’th element of matrix Li. This requires a sum-reduction
operation over all the distributed elements, but since only a few local values pk

are nonzero at any time, the sum-reduction itself is local.

2.6 Adjoint Feedback Controller

While it is natural to compute ṗi = Lip and then set ui = vT ṗi, we could just
as easily calculate ṽi = LT

i v and then set ui = pT ṽi, where LT
i indicates the

adjoint operator of Li, which for real matrices is the transpose. In practice, this
is usually more efficient because p tends to change faster than v which means the
calculation of ṽi = LT

i v for the adjoint controller can be updated less frequently
than the calculation of ṗi = Lip for the forward operator.

2.7 Distributed Learning Rule

When the operator L is unknown, observation of ṗ and p allows each element
to be learned, and because of the locality of the representation elements can be
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learned using a local learning rule. This type of learning will create an internal
representation of observed dynamics. In order to learn a controller, we also need
to learn the effect of each control input ui. Because of linear superposition, we
have

ṗk(t) =
∑

i

ui

(
lik,k−1pk−1(t) + lik,kpk(t) + lik,k+1pk+1(t)

)
(9)

which can be learned by approximating the coefficients lik,m in the linear network
over the second-order polynomial basis uipm:

ṗk(t) =
∑
i,m

lik,m(uipm(t)) (10)

where m goes from k − 1 to k + 1.
For prediction we seek to estimate the forward model ṗ = Mf (p, u) whereas

for control we seek to estimate the inverse model u = Mi(p, v). In other words,
estimation of ṗ allows the circuit to predict the effect of actions u, whereas for
control with a specified cost function v our goal is to calculate u that leads
to an increase in the expected value of the state d/dt(vT p) = vT ṗ. This will
increase if ṗ(x) and v(x) have the same sign for most values of x. In particular,
the goal for local learning is to choose uik such that ṗk and vk have the same
sign. Therefore we can learn u = Mi(p, v) by approximating u ≈ M̃i(p, ṗ) where
ṗ is the change that resulted from exerting command u with state estimate p.
Because there may be a delay Δ between the command and the result, we are
actually learning: u(t − Δ) ≈ M̃i(p(t − Δ), ṗ(t)), which can be done by learning
the coefficients aimk for the linear model:

uik(t − Δ) =
∑
m

aimkṗk(t)pm(t − Δ) (11)

where m goes from k − 1 to k + 1. Once learned (or during learning), we can
control the system by using the coefficients to calculate u from v according to
u(t) ≈ M̃i(p(t), v(t)) using:

uik(t) =
∑
m

aimkvk(t)pm(t) (12)

where v(t) is playing the role of the desired ṗ(t + Δ), and the control output is
ui =

∑
k uik.

2.8 Spike-Based Learning Rule

A common form of rate-coded spike representation is for spikes to occur with
Poisson statistics, where the Poisson rate λ(t) encodes the underlying variable.
In any small time interval Δt the probability of a spike event is λ(t)Δt. To
implement Eq. 12, we code vk(t) and pm(t) in this way, but allow the coefficient
aimk to be a continuous signed variable perhaps represented by the synaptic
strength of an excitatory or inhibitory synapse. If spike generators with rates vk
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and pm are independent, then the probability of the joint event of both firing
during interval Δt is the product vkpmΔt2. So if we set uk to be proportional
to aimk whenever the vk and pm spikes both fire, then the expected probability
of the output neuron firing will correctly represent Eq. 12 [5]. Note that vk is
allowed to be negative (representing states with negative value, or positive cost).
Therefore we use two copies of the implementation of Eq. 12: one for positive
values of vk, and another (with the sign of both vk and aimk changed) for negative
values of vk.

Equation 11 can be implemented similarly, in this case with ṗ being signed
so that there are two copies for the two cases with different signs. For recursive
learning, only the sign of the change in a matters, so when aimkṗ > 0, we increase
aimk whenever uik and pm both fire, and when aimkṗ < 0, we decrease aimk

whenever uik and pm both fire. It is usually necessary to enforce both positive
and negative bounds on aimk which represents realistic limitations on excitatory
or inhibitory synaptic efficacy. For each local block k, we need 2 neurons (for
positive and negative values) for each of ṗ, v, and LT v, and 1 neuron for p (which
has only positive values). Therefore we need 7 neurons per block.

For each local computation k, m ∈ (k − 1 . . . k + 1), and i ∈ (1 . . . N), so
we need 3N different coefficients aimk. For example, if u has two outputs which
control leftward or rightward force pulses, then there are 6 coefficients for each
local block. If we have additional outputs for horizontal or vertical force pulses,
then we need to learn a total of 12 coefficients. Since all the coefficients are
learned independently of other blocks, the learning is quite rapid so long as
experience brings the robot into the region that activates pk sufficiently often
(persistent excitation).

Fig. 1. One-dimensional simulation for 5000 time points t (horizontal axis). Vertical
axis is the state index xk. Black dots show firing of the neurons representing p(x, t),
red line is the desired position x∗(t) = maxx v(x, t), and blue line is the actual position
x̂(t) = maxx p(x, t). (Color figure online)
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3 Simulation Results

Figure 1 shows results of simulation of a one-dimensional simulated controller.
At each time-point, the position x(t) ∈ [0, 1] (sensory information) is encoded
in p(t) as a Gaussian with standard deviation (SD) of 0.03, the cost function
v(t) ∈ [−1, 1] is encoded as a Gaussian with SD = 0.06, and ṗ(t) is encoded
from the first difference approximating ∂p/∂t. The cost function is centered on a
sinusoidal desired trajectory. All representations use Poisson-coded binary spikes
with a population size of 1000 blocks. Two output controls uLEFT and uRIGHT

provide forces in each direction, and the sum of ui over all cell clusters provides
the total output force. The true dynamics are thus described by LLEFT = ∂p/∂x
and LRIGHT = −∂p/∂x and so it is helpful to compute the spatial derivative
∂p/∂x as well as the derivative for adjoint control ∂v/∂x. All data elements for
each local computation are binary (spikes either fired or didn’t), and the learning
trains weights using Eq. 11 and at each step exerts control using Eq. 12.

Initial weights are set to random values centered on zero, and Fig. 1 shows
poor tracking of the target at the start of learning. Coefficients a are very rapidly
learned so that after 1000 time points and 1.5 cycles of the sinusoidal desired
trajectory, tracking is reliable. Note that learning and movement are occurring
simultaneously; there are no separate learning and performance phases.

Fig. 2. Robot with visually-controlled two-dimensional tracking. The cost function is
positive only for green objects seen by the camera, and the robot tracks the objects in
realtime. (Color figure online)

Figure 2 is a single frame from a video demonstrating two-dimensional track-
ing. In this case, there are separate controllers for horizontal and vertical move-
ment, requiring in 14 neurons per block, 640× 480 = 307,200 blocks (one for each
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VGA pixel) for a total of 4.3 million neurons. Realtime control is implemented
on a GPU running on a laptop computer (NVidia GTX970) programmed using
the CUDA environment under Python (Anaconda2, Python 2.7). The desktop
robot has a 1 kHz update loop (Geomagic Touch, using Ghost SDK software)
and the cost function v is provided from the USB camera at 30 Hz (openCV).

4 Conclusion

The results demonstrate successful adaptive feedback control using an array of
Poisson spiking neurons. Because of the probability representation of state, this
structure yields risk-aware control, with rapid corrections for perturbations and
ongoing adjustment of stiffness and safety margins. This is the first full imple-
mentation of Stochastic Dynamic Operators using a population of simulated
spiking neurons, and it demonstrates the speed of convergence of learning as
well as the flexibility of programming. It is our hope that in the future this will
provide a new type of flexible and scalable compliant adaptive controller for use
in human-computer interactions, surgery, exoskeletons, or wherever rapid and
appropriate response to a compliant yet dangerous environment with unpre-
dictable perturbations is needed.
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Abstract. We describe a method of regularization for the restricted
Bayesian network BESOM, which possesses a network structure similar
to that of Deep Learning. Two types of penalties are introduced to avoid
overfitting and local minimum problems. The win-rate penalty ensures
that each value in the nodes is used evenly; the lateral-inhibition penalty
ensures that the nodes in the same layer are independent. Bayesian net-
works with these prior distributions can be converted into equivalent
Bayesian networks without prior distributions, then the EM algorithm
becomes easy to be executed.

1 Introduction

One of the remarkable hypotheses in the latest neuroscience is “the cerebral
cortex is a kind of Bayesian network [4].” The cerebral cortex plays an important
role in human intelligence. The cerebral cortex has many similarities to Bayesian
networks [2], from the functional and structural point; this is suggested by a
number of neuroscientific phenomena, well-simulated by the models involving
Bayesian networks (For example [4–6,8–10]).

Deep Learning, which stems from the Neocognitron [1], is garnering atten-
tion for its high recognitive performance. Neocognitron was designed to have
the functionality of the visual cortex through the imitation of the hierarchical
structure of ventral pathway of the cortex.

Combining the latest neuroscientific insights and the Deep Learning tech-
nology will lead to the better performing machine learning technology, which
has the more human-like ability. With this goal in mind, we are developing a
machine-learning algorithm called BESOM (BidirEctional Self-Organizing Map),
a Bayesian network with a layer structure and each node has restricted CPT
(Conditional Probability Table) model [6]. Though our BESOM algorithm is
under development and lacks accuracy, it already has the ability to show the
potential applications in engineering and as a possible computational model of
the cerebral cortex [6,8,11].

Deep Learning using a Bayesian network is thought to be promising not only
because of its similarity to the human brain but also from a technical viewpoint,
particularly with respect to the following points:
c© Springer International Publishing AG 2016
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– Inference in Bayesian networks can sometime be executed with low computa-
tional complexity.

– Because Bayesian networks have top-down information flow in addition to
bottom-up, they may be more powerful than feed-forward neural networks.

– It is easy to build in prior knowledge about learning targets.

Despite these advantages, large-scale Bayesian networks like BESOM are not
widely used, probably because of their large computational complexity, overfit-
ting and local minima problems.

For the issue of computational complexity, efforts are being addressed by the
use of restricted CPTs [3,11].

The problems of overfitting and local minima are thought to arise from the
high expressiveness of large-scale Bayesian networks. Assigning an adequate prior
distribution to the parameters, this high expressiveness would be reasonably
lowered to solve these problems.

In this study, we describe two types of prior distribution: the win-rate penalty
and the lateral-inhibition penalty. We also introduce an approximate learning
rule for use with these penalties. The two mechanisms can be applied simulta-
neously. They add biases to the recognition results: the win-rate penalty ensures
that each value in the nodes is used evenly; the lateral-inhibition penalty ensures
that the nodes in the same layer are independent.

2 The Architecture of BESOM

BESOM is a Bayesian network having a deep hierarchical structure similar to
Deep Learning (Fig. 1). Like many Deep Learning architectures, it has connec-
tions between layers forming local receptive fields, while there are no connections
in the same layer.

Fig. 1. An example of a BESOM network. Ovals are nodes (random variables) and the
white circles inside are units (possible values for the random variables).

In BESOM, variables are called nodes and possible values for the variables
are called units. In general, nodes are multinomial variables. If a black and white
image is to be learned, the input pixel values are given as the observed binary
variables in the bottom layer.
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BESOM can be used in both unsupervised and supervised learning. When
used for unsupervised learning, all variables in BESOM are hidden, except those
in the bottom layer. In this case, acquired features are expressed in the upper lay-
ers. For supervised learning by BESOM, there are ways to assign the supervisory
signal. One of the way, for example, is to assign the supervisory signal to a single
node in the uppermost layer. In the test phase, the uppermost node becomes a
hidden variable, whose inference value (the maximum posterior probability) is
taken to be the recognition result.

Another significant feature of BESOM is the limitation placed on CPT, which
will be explained in Sect. 4.

3 The Objective Function for Learning

Let P (h, i|θ) be a joint probability model with the a set of hidden variables h
and the set of input variables i, with given parameter θ. By i(t), we give the
set of values of input variables at the time t. Under the assumption that the
input data sequence forms i.i.d. (independent and identical distributions) for
fixed parameter θ, the probability for the input data sequence i(1), i(2), · · · , i(t)
occurring under the parameter θ, which is likelihood of θ, is calculated like this:

P (i(1), ..., i(t) | θ) =
t∏

i=1

P (i(i) | θ) =
t∏

i=1

∑
h

P (h, i(i) | θ) . (1)

The objective of learning is to obtain MAP (maximum a posteriori) estimate
of the parameter. In other words, the objective is to find maximizing parameter
of θ, say θ∗:

θ∗ = argmax
θ

[
t∏

i=1

∑
h

P (h, i(i) | θ)

]
P (θ). (2)

To estimate parameter θ, the online EM (Expectation-Maximization) algo-
rithm or its approximation is used. One method of approximation is given as
follows.

The approximation algorithm here is combination of two steps, one for recog-
nition and the other for learning. First, in the recognition step, based on current
parameter θ(t) and given the input values i(t), the maximum posterior proba-
bility estimation values of the hidden variables ĥ(t) (i.e., MPE, Most Probable
Explanation) are obtained as follows:

ĥ(t) = argmax
h

P (h|i(t), θ(t)) = argmax
h

P (h, i(t)|θ(t))
P (i(t))

= argmax
h

P (h, i(t)|θ(t)). (3)

Approximate calculation of this formula can be efficiently executed by, for exam-
ple, loopy belief revision algorithm [8].
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Next, in the learning step, the marginalization of the hidden variables in
Eq. (2) is approximated using the estimated value ĥ(i) and the result is taken
to be θ(t + 1).

θ(t + 1) = argmax
θ

[
t∏

i=1

P (ĥ(i), i(i)|θ)
]
P (θ). (4)

The prior distribution for parameter θ is defined as the product of two factors,
as follows:

P (θ) = PWinRate(θ) PLateral(θ). (5)

The detailed explanation of the win-rate penalty PWinRate(θ) and lateral-
inhibition penalty PLateral(θ), are given in Sects. 5 and 6, respectively.

4 The Conditional Probability Table Model

One important characteristic of BESOM is in its CPT model. (Note that the
win-rate penalty and lateral-inhibition penalty mechanisms, which are the main
subject of this paper, are thought to work with the other types of CPT models.)

In a Bayesian network an O(2m) number of parameters is generally needed
with respect to m, the number of parent nodes, to express the CPT for each
node. This causes an explosive increase in computational complexity and memory
requirements as well as introducing the problem of overfitting and local minima.

To allow CPTs to be expressed with fewer parameters, we limited them in
the following manner:

P (x|u1, · · · , um) =
1
m

m∑
k=1

w(x, uk). (6)

As the simplest form of w(x, uk), we currently use the following:

w(x, uk) = P (x|uk). (7)

In this case, the conditional probability P (x|uk) is expressed by a single para-
meter wxuk

.
When this restrictions are introduced, the belief propagation algorithm can

be optimized and computational complexity is dramatically reduced [11]. It has
also been shown that the information flow between the nodes closely matches
the characteristic anatomical structure of the cerebral cortex [6,8].

5 Win-Rate Penalty

5.1 Purpose

If the BESOM network parameters are learned in a naive way, learning progresses
for only a small set of units and the other units tend to stay at their initial values.
In this case, learning is thought to fall into a local minimum.
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An effective way to address this problem is to set the prior distribution for
the parameter appropriately, and assign a bias so that the units in each node
are used evenly.

Our approach uses the Kullback-Leibler (KL) divergence between the win-
rate distribution that is targeted by each unit and the actual distribution. Penal-
ties are imposed when the divergence is large. Here, the win-rate refers to the
frequency with which units become the estimated values for the node.

In BESOM, the units are values of random variables, and the unit corre-
sponding to the estimated value in one node (a random variable) is called the
winner unit.

Using this penalties, it is expected that as learning progresses, the win-rate
of each unit will approach the target value. The mechanism is called the win-rate
penalty because units with larger win-rates are penalized.

5.2 The Problem of Complex Prior Distributions and Its Solution

The maximum likelihood estimate for the parameters of a Bayesian network with
hidden variables can be estimated using an EM algorithm which can be executed
efficiently using the result of inference [7]. However, when the parameter has
a complex prior distribution, it is not obvious to perform the EM algorithm
efficiently.

If a Bayesian network with a prior distribution for its parameter can be
converted into an equivalent Bayesian network without a prior distribution, then
the EM algorithm will become easy to be executed.

Fortunately, a Bayesian network with a prior distribution describe below can
be converted into an approximately equivalent Bayesian network with no prior
distribution. In the converted Bayesian network, restriction nodes are added to
give bias to the recognition result.

5.3 Defining a Prior Distribution, and Deriving an Equivalent
Bayesian Network

The win-rate penalty PWinRate(θ) is defined as follows:

PWinRate(θ) =
∏

X∈X

exp(−CWinRateDKL(Q(X)||P (X; θ))). (8)

where X is the set of all nodes and CWinRate is a constant that determines the
strength of the win-rate penalty.

Q(X) is the distribution set as the target for the win-rate of node X and the
network architect decides the shape of this distribution. For example, if the goal
is to make the win-rate of the node units uniform, Q(X) is defined for all units
xi (i = 1, 2, · · · , s) as

Q(X = xi) = 1/s (9)

where s represents the number of units in node X.
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The Kullback-Leibler divergence between distributions Q(X) and P (X; θ) is
defined by the following equation:

DKL(Q(X)||P (X; θ)) =
∑

x

Q(x) log
Q(x)

P (x; θ)
. (10)

We define a function R(x; θ) as follows:

R(x; θ) =
Q(x)

P (x; θ)
log

Q(x)
P (x; θ)

. (11)

We can expect the following approximation holds because x ∼ P (x; θ):

∑
x

f(x; θ) ≈
t∑

i=1

1
t

1
P (x(i); θ)

f(x(i); θ). (12)

Therefore,

DKL(Q(X)||P (X; θ)) =
∑

x

Q(x) log
Q(x)

P (x; θ)

≈
t∑

i=1

1
t

1
P (x(i); θ)

Q(x(i)) log
Q(x(i))

P (x(i); θ)
=

t∑
i=1

1
t
R(x(i); θ) (13)

holds. Then, PWinRate(θ) can then be rewritten as follows:

PWinRate(θ) =
∏

X∈X

exp(−CWinRateDKL(Q(X)||P (X; θ)))

≈
∏

X∈X

exp(−CWinRate
t∑

i=1

1
t
R(x(i); θ))

=
∏

X∈X

t∏
i=1

exp(−1
t
CWinRateR(x(i); θ))

=
t∏

i=1

∏
X∈X

exp(−1
t
CWinRateR(x(i); θ)). (14)

Equation (4), which MAP estimates parameter θ in the learning step, can be
rewritten as follows (for simplicity, P (θ) = PWinRate(θ) is assumed here):

θ(t + 1) = argmax
θ

[ t∏
i=1

P (ĥ(i), i(i)|θ)
]
PWinRate(θ)

= argmax
θ

[ t∏
i=1

∏
X∈X

P (x(i)|pa(x(i)); θ)
][ t∏

i=1

∏
X∈X

exp(−1
t
CWinRateR(x(i); θ))

]

= argmax
θ

t∏
i=1

∏
X∈X

[
P (x(i)|pa(x(i)); θ) exp(−1

t
CWinRateR(x(i); θ))

]
(15)



296 Y. Ichisugi and T. Sano

X1 X2 X3

RX1 RX2 RX3

...

Fig. 2. Restriction nodes representing the win-rate penalty.

where pa(x(i)) represents the values of the parent nodes of node X at time i.
The above equation can be interpreted as that each node X has a corre-

sponding restriction node RX (Fig. 2) whose conditional probability is defined
as follows:

P (RX = 1|X = x; θ) = exp(−1
t
CWinRateR(x; θ)). (16)

(Node RX always has a observed value 1.) The Bayesian network with restric-
tion nodes no longer has prior, therefore, it is possible to conduct parameter
estimation using an EM algorithm.

Because CWinRate is multiplied with the regularization parameter 1/t, the
penalty’s influence decreases as time progresses when online learning.

The value P (x; θ) needed to calculate R(x; θ) can be simply estimated using
statistics of values.

6 Lateral-Inhibition Penalty

6.1 Purpose

When the BESOM network parameters are learned in a naive way, nodes in
the same layer that receive inputs from the same child nodes tend to represent
similar feature. This phenomenon is also thought to relate to local minima or
overfitting problems. Each of the hidden layers in BESOM, similar to those in
Deep Learning, is expected to work as a feature extractor. When the same feature
are redundantly expressed in many nodes, it is not preferable for recognition in
the upper layers.

As in the previous section, this problem is addressed by defining a penalty as
a prior distribution, and then, an equivalent Bayesian network without a prior is
derived. In the prior distribution, a bias is applied in such a way that by assign-
ing penalties to cases in which two nodes express similar values. Because this
mechanism is thought to have a similar role to the lateral inhibition mechanism
in the cerebral cortex, we name it the lateral-inhibition penalty.
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6.2 Defining a Prior Distribution, and Deriving an Equivalent
Bayesian Network

The prior PLateral(θ) corresponding to lateral inhibition is defined as

PLateral(θ) =
∏

(U,V )∈L

exp(−CLateralI(U, V ; θ)) (17)

where CLateral is the constant which determines the strength of the lateral-
inhibition penalty and L are the set of pairs of nodes conducting lateral inhibi-
tion. Usually, each pair of nodes in the same layer that share child nodes should
laterally inhibit each other.

I(U, V ; θ) is the mutual information between nodes U and V and is defined
as follows:

I(U, V ; θ) =
∑

u

∑
v

P (u, v; θ) log
P (u, v; θ)

P (u; θ)P (v; θ)
. (18)

Here, we define a function R(u, v; θ) as follows (θ has been omitted):

R(u, v) =
P (u, v)

P (u)P (v)
log

P (u, v)
P (u)P (v)

= (P (u|v)/P (u)) log P (u|v)/P (u). (19)

Given these definitions and the approximate Eq. (12), the following holds:

I(U, V ; θ) ≈
t∑

i=1

1
t
R(u(i), v(i); θ). (20)

Following the same logic as in Sect. 5, we can derive an equivalent Bayesian
network without the prior. In the network, for each node pair (U, V ) ∈ L that dis-
plays lateral inhibition, there is a shared binary-valued child node RUV (Fig. 3)
whose conditional probability is defined as follows:

P (RUV = 1|u, v; θ) = exp(−1
t
CLateralR(u, v; θ)). (21)

Thus, the maximum likelihood value of a parameter can be easily estimated
using an EM algorithm.

The values P (u|v; θ) and P (u; θ) required to calculate the value of R(u, v; θ)
can be simply estimated using statistics of values.

7 Evaluation

We evaluated the effectiveness of the proposed method using recognition rates
of an MNIST handwritten digit database1.

1 http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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X1 X2 X3

RX1X2 RX2X3 RX3X1

...

Fig. 3. Restriction nodes representing the lateral-inhibition penalty.

Table 1. Accuracy of recognition results of MNIST hand-written digits. (WR: Win-
Rate penaltiy, LI: Lateral-Inhibition penaltiy)

With WR Without WR

With LI 80.6 % 81.8 %

Without LI 82.2 % 63.6 %

We used a four-layer BESOM network for this experiment. For the bottom
layer, we created a 28 × 28 layout of two-unit nodes to take binary pixel values
from a 28× 28 input images. For the uppermost layer, we used a single 10-unit
node to provide the supervisory signal. There were two hidden layers: for the
layer immediately above the input layer we created a 5× 5 array of 20-unit nodes
and for the layer above that, a 3× 3 layout of 30-unit nodes.

We evaluated the recognition rate by having the network first randomly learn
10,000 pieces of training data from a possible 60,000 pieces and then randomly
recognize 1,000 pieces from 10,000 pieces of test data.

For learning, a very rough approximation of an online EM algorithm was
used. First, an optimized loopy belief propagation algorithm [11] was applied.
This was used to calculate the marginal posterior probabilities for each node.
For each node, the value with maximum posterior was taken to be its estimated
value, and the parameter was updated using the value.

Table 1 summarizes the results; each value is the average of 10 experiments.
For both penalties, the recognition rate was higher than when no penalties were
applied. This result also shows that two prior distribution can be applied simul-
taneously; however, it does not show the best accuracy in this case.

8 Conclusion and Future Work

Two regularization methods for parameter learning of layered Bayesian networks
are proposed and an experiment shows that they are promising. We believe they
alleviate both overfitting and local minima problems; however, more detailed
evaluation and analysis may still be required.

BESOM is beginning to be used as a machine-learning algorithm; however,
sufficient recognition precision has not been attained to enable its use in practical
applications. The main reason for this is thought to be that the restrictions of
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CPTs described in Sect. 4 are too strong. To address this problem, it is necessary
to develop a new CPT model and a suitable approximate belief propagation
algorithm. This is what we are currently working on.

Acknowledgements. This paper is based on results obtained from a project com-
missioned by the New Energy and Industrial Technology Development Organization
(NEDO).
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Abstract. Whole brain architecture (WBA) which uses neural networks to
imitate a human brain is attracting increased attention as a promising way to
achieve artificial general intelligence, and distributed vector representations of
words is becoming recognized as the best way to connect neural networks and
knowledge. Distributed representations of words have played a wide range of
roles in natural language processing, and they have become increasingly
important because of their ability to capture a large amount of syntactic and
lexical meanings or relationships. Relation vectors are used to represent relations
between words, but this approach has some problems; some relations cannot be
easily defined, for example, sibling relations, parent-child relations, and
many-to-one relations. To deal with these problems, we have created a novel
way of representing relations: we represent relations by planes instead of by
vectors, and this increases by more than 10 % the accuracy of predicting the
relation.

1 Introduction

As an approach to achieving artificial general intelligence, brainlike calculation
methods are gathering attention, and one such method is known as whole brain
architecture (WBA) [1]. An important aspect of this is determining how knowledge is
represented in a computer, and one approach is to use distributed representations of
words in a neural network. Distributed representations use dense vectors in a relatively
low-dimensional vector space to represent the targets. A convenient characteristic of
this is that the vectors that represent relations between words are obtained by using
distributed representations of words. For example, suppose that a vector r represents
the relation between the present and past tense of verbs; then, the distributed repre-
sentation of “ran” is located nearest to the vector, that is, the distributed representation
of “run” plus r. However, there are various types of relations, and some cannot be
easily defined in this way.

In this paper, we propose a novel approach to this problem: instead of using vectors
to represent relations, we propose the use of planes, that is, sets of vectors. The use of
planes increases the number of degrees of freedom in the representation of relations.

© Springer International Publishing AG 2016
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We evaluated the accuracy of predictions, and we found that the proposed method is
more successful than the previous method.

In Sect. 2, we will review past research on distributed representations, and in
Sect. 3, we will discuss the problems of representing relations using a distributed
representation. Our proposed method will be presented in Sect. 4, and we will present
the results of our evaluation in Sect. 5. Our conclusions are presented in Sect. 6.

2 Neural Network Language Model

A neural network language model uses a neural network to learn distributed repre-
sentations of words from a large, unlabeled corpus. The first neural network language
model was introduced by Bengio et al. [2], and Mikolov et al. [3] reduced the com-
putational complexity; the model of Mikolov et al. is shown in Fig. 1. These models
use nearby words to predict a given word in a sentence. In particular, in the model of
Mikolov et al. distributed representations of words are learned in to order to increase
the dot product of words that co-occur. As a result, words that are lexically or gram-
matically close are mapped to close points in representation space. However, this
approach has some problems.

The first problem is that the existing methods are unable to deal with words that
have multiple meanings, so an active area of research is to develop methods that can do
this. For example, Jauhar et al. [4] uses ontology with corpus as the input data.
Specifically, WordNet, a lexical ontology, is used to separate multiple meanings, and
distributed representations of words are learned so that related words in WordNet are at
nearby points in representation space. Neelakantan et al. [5] proposed a model in which
the average of the distributed representation of co-occurring words is defined as the
context, and meanings are then distinguished for a given context.

The second problem is that the previous methods were unable to deal with ambi-
guity, although there is an existing model that can do so. In this approach, each word is

Fig. 1. Two models for distributed representations of words, as proposed by Mikolov et al. [3].
The continuous bag-of-words (CBOW) model predicts the current word from the surrounding
words, and the Skip-gram model predicts the surrounding words from the current word.
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represented by a Gaussian function; for ambiguous words, the variance is high, and
thus they are widely distributed in representation space. A word with an unambiguous
meaning is thus represented by a low-variance Gaussian function and will be locally
distributed.

The last problem is concerned with how relations are represented, and the earlier
methods cannot represent certain relations. This will be discussed in the following
section.

3 Problems of Current Representation of Relations of Words

It was shown by Mikolov et al. [3] that relationships between words can be represented
by vectors. For example, (Tokyo, Japan), (Paris, France), and (Beijing, China) are pairs
of words that each have the same relation, a capital and its country. If we let vw be a
distributed representation of word w, then

vJapan � vTokyo ; vFrance � vParis
; vChina � vBeijing

holds. Therefore, if (Paris, x) has the same relation as (Tokyo, Japan), we can predict
that x represents “France” by searching for the word whose distributed representation is
the nearest to vJapan � vTokyo þ vParis

However, if we assume an ideal situation, that is, where equality holds, then we
cannot explain relations that follow a reflexive law, such as a sibling relation, those that
follow a transitive law, such as a is-a relation or a many-to-one relation. For example, if
we let (A, B) be a reflexive law, then (B, A) has the same relation. Hence,

vB � vA ¼ vA � vB
) vA ¼ vB

Note that A and B are not the same words, but they have the same distributed
representation and the relation vector is thus 0; these are problematic. To deal with this
problem, we propose a novel way to represent relations.

4 Representations of Relations Using a Plane

4.1 Summary of Proposed Method

We propose a method for representing relations as planes (sets of vectors), which can
then be used to predict the subject, given an object, the distributed representation of the
words, and a training set consisting of subject-object pairs of words in the same
relation. In other words, a relation is represented by the sum of a certain vector and a
certain subspace of representation space V. Let R be the set that represents the relation,
then
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R ¼ rþU
¼def rþ uju 2 Uf g

where r is a vector and U is a subspace. We now discuss how to determine R. Let
Straining ¼ f si; oið Þ i ¼ 1; . . .;Nj be a set of pairs of subject si and object oi in the same
relation; then, we find the R that minimizes the cost function f, which is defined as the
sum of squares of the Euclid distance between si þR and oi.

f ¼
XN

i¼1

d vsi þR; voið Þ2

¼
XN

i¼1

min
x2vsi þR

x� voij j2
ð1Þ

Let (s, x) be a pair in the same relation as in Straining; then, x is predicted by
calculating:

argmin
w

d vs þR; vwð Þ

4.2 Calculation Technique

We now explain a technique for implementing the proposed method. Eq. 1 is trans-
formed as follows:

f ¼
XN

i¼1

d R; voi � vsið Þ2

If we let xi ¼ voi � vsi , then we can show that r ¼ �x (average of xi) holds.
Let D be the dimension of V, let E be the dimension of U, and let b1; . . .; bDð Þ be an

orthonormal basis of V, where b1; b2; . . .; bE spans U; then,

d R; xið Þ2 ¼ d U; xi � rð Þ2

¼ xi � rj j2�
XE

j¼1

b>j ðxi � rÞ
� �2

¼
XD

j¼1

b>j ðxi � rÞ
� �2

�
XE

j¼1

b>j ðxi � rÞ
� �2

¼
XD

j¼Eþ 1

b>j ðxi � rÞ
� �2
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) f ¼
XN

i¼1

d R; voi � vsið Þ2

¼
XD

j¼Eþ 1

XN

i

b>j xi � rð Þ
� �2

Solving this, we find that f is minimized when r ¼ �x. Therefore, by setting
x̂i ¼ xi � �x, we can determine the value of U that minimizes the following equation:

f ¼
XN

i¼1

d U; x̂ið Þ2

¼
XD

j¼Eþ 1

XN

i

b>j x̂i
� �2

We note that f can be transformed as follows:

f ¼
XD

j¼Eþ 1

XN

i

b>j x̂i
� �2

¼
XD

j¼Eþ 1

XN

i

b>j x̂ix̂
>
i bj

¼
XD

j¼Eþ 1

b>j
XN

i

x̂ix̂
>
i bj

We note that
PN

i x̂ix̂>i is a symmetric matrix, and hence there exists an orthonormal
basis of eigenvectors that can be used to transform it to a diagonal matrix. Therefore,
we can choose E eigenvectors in descending order of eigenvalues and use them to
define U, which represents the subspace spanned by them.

Let B be a matrix whose columns are normalized eigenvectors that are orthogonal
to U. Then, the Euclid distance function d can be simplified as follows:

d vs þR; vwð Þ ¼ B> vw � vsð Þ�� ��

4.3 Another Interpretation of the Proposed Method

Our proposed method can be interpreted in another way. Here,
PN

i x̂ix̂>i is the
variance-covariance matrix of fxig multiplied by a constant value. Hence, the method
can be interpreted as changing the basis so that the covariance of fxig becomes 0,
reduce the elements of distributed representations in descending order of variances of
fxig, and taking the vector that is the average of fxig to represent the relations, as in the
previous method. This leads to choosing the correct elements to explain the relation.
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5 Experiments

5.1 Experimental Settings

We used word2vec1 to obtain the distributed representations of the words. The
dimensionality of the representation space was set to 300, and we used both the
continuous bag-of-words (CBOW) model and the Skip-gram model. The training
corpus was the English language Wikipedia site2, which contains a total of 1.8 billion
words, 1.7 million of unique words occur more than five times; we obtained a dis-
tributed representation for each word in this subset. As in Mikolov [3], we used a
normalized distribution.

Pairs of city and country names were used to evaluate how well the proposed
method could learn the relation. The data were obtained from GeoNames3; 10 pairs
were obtained by country in descending order of the population of the cities. We only
used pairs in which the city and the country names consist of a single word each,
because our method is currently unable to process phrases that consist of two or more
words. We obtained 599 pairs of city and country names.

We performed two experiments on this data. In Experiment 1, we evaluated the
accuracy rate of predicting the country, given the city; we performed a ten-fold
cross-validation for each E, with the dimension of U ranging from 1 to 160. The
experiment was performed under two conditions: in the first case, a response was
considered to be correct when the country name was the word nearest to vsubject þR; in
the second, a response was considered to be correct when the country name was within
the 100 words nearest to vsubject þR. For comparison, we also performed an experiment
in which the relation vector was simply the following average [7]:

R ¼ �x

¼
PN

i¼1 voi � vsið Þ
N

In the proposed method, it is necessary to determine E in advance, which is why we
performed Experiment 2. For each step of the ten-fold cross-validation, we repeated the
ten-fold cross-validation for the training set, and we determined E as the number of
dimensions that would result in the best prediction of the country; we then evaluated
the prediction accuracy using this value for E. To prevent a sudden change in the
accuracy rate, the accuracy of a given dimension was defined as the average of the
accuracy rates in the range of that dimension plus and minus two. For example, the
accuracy for ten dimensions was the average for D = 8, 9, 10, 11, 12.

1 https://code.google.com/archive/p/word2vec/.
2 https://en.wikipedia.org/wiki/Main_Page.
3 http://www.geonames.org/.
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5.2 Experimental Results

The results of Experiment 1 are shown in Table 1. The results of the comparative
experiment were equivalent to these results when the dimensionality of U was 0.
For CBOW 1, the accuracy rate was improved by about 11 %, compared to the
comparative results, and this occurred when the dimensionality of U was 50.
For CBOW 100, the accuracy rate was improved by about 5 %. For Skip-gram 1, the
accuracy rate was improved by about 12 % when the dimensionality of U was 120, and
for CBOW 100, the accuracy rate was improved by more than 6 % when the dimen-
sionality of U was either 70 or 120. Hence, we demonstrated that our proposed method
of using a plane to represent a relation is more effective than the previous method.
Overall, the skip-gram model yielded better scores than did the CBOW model, but our
method improved the accuracy of both. The accuracy rates improved and stabilized as
the dimensionality of U increased, and this corresponds to reducing the dimensionality
of the distributed representation. Therefore, it is conceivable that some elements causes
the representation of the relation to deteriorate, and thus the accuracy rate can be
improved by discarding redundant elements.

Table 1. Results of Experiment 1. The values are the obtained accuracy rates, and E is the
dimensionality of U. The number n after CBOW and Skip-gram means that the prediction was
considered correct when the correct words fell within the n nearest words to the predictive vector.
For example, in CBOW 1, the prediction was only considered correct when the correct word was
the word nearest to the predictive vector. In each column, the best score is shown in bold. Due to
space limitations, we show the results for U in increments of ten.

E CBOW 1 CBOW 100 Skip-gram 1 Skip-gram 100

0 0.600653 0.905951 0.546843 0.882874
10 0.639042 0.942344 0.606313 0.940493
20 0.662119 0.946226 0.594920 0.934761
30 0.677540 0.948149 0.616038 0.940530
40 0.693033 0.953919 0.621843 0.940530
50 0.710305 0.953882 0.616001 0.942453
60 0.698803 0.948149 0.641001 0.946299
70 0.696807 0.953919 0.623730 0.948186
80 0.704463 0.953882 0.639151 0.944340
90 0.687192 0.959652 0.648766 0.946263
100 0.681459 0.955806 0.648766 0.944376
110 0.693033 0.955806 0.658382 0.946263
120 0.681495 0.946190 0.662192 0.948186
130 0.687228 0.942380 0.654499 0.946263
140 0.691074 0.940457 0.656495 0.942417
150 0.691074 0.936575 0.648839 0.945417
160 0.666074 0.928919 0.635377 0.940493
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The results of Experiment 2 are shown in Table 2. Here, the predictions of both
CBOW 1 and Skip-gram 1 were improved by about 10 % compared to the comparative
results, and CBOW 100 and Skip-gram 100 were improved by about 5 %. Here, the
accuracy was less than the best accuracy rate obtained in Experiment 1, but the pro-
posed method still showed a consistent improvement in the accuracy. Hence, it was
demonstrated that our proposed method can be used as a predictor when the dimen-
sionality of U is determined in advance from a training set.

6 Conclusions

We investigated the use of planes to represents relations. We found that the use of a
plane instead of a vector greatly improved the accuracy of predicting the object in a
many-to-one relation, such as cities and their country. There are many other relations
that fit this pattern, so a future task will be to evaluate how well the proposed method
can represent various other relations. We also intend to perform experiments using
other distributed representations with different settings, different models, and using a
different corpus.

Acknowledgements. This paper is based on results obtained from a project commissioned by
the New Energy and Industrial Technology Development Organization (NEDO).
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Abstract. Emotion is a very popular but not well-known phenomenon of
animals. Human emotion/feeling is more complex including the emotion features
and the intelligent features. Though there are many researches on emotion/feeling,
its computational role on self-maintenance is not known well. But it must be
important because most of animals look to have similar emotion and there must
be a reason for its similarity. Therefore, in this paper, we discuss on a possible
component of emotion system, compare their computational model, and propose
a possible hypothesis that the emotion is a system of value calculation for a deci‐
sion making. For a discussion, we show a possible computational model of feeling
system in brain.

Keywords: Emotion · Decision making · Value system · Computational model

1 Introduction

Near future, products using AI technology will become popular, and will be requested
to have more human like nature. A typical case is a human-AI interaction that is an
important application field of AI. The human interaction includes a communication
between human and AI in wider sense, and its implementation requires AI a set of ability
like an intention estimation and a needs understanding of human and also an ability of
expressing intention of self.

However, methods of communication by human is diverse and complex. They
include a clear and explicit commands like a language or a sign, an implicit and ambig‐
uous information like a gesture or an action, and their combination on going in parallel.
The human interaction is a task in which these various information are read and inter‐
preted in parallel and acted to change other’s recognition, thinking and action.

As the task is easy and unconscious for human, we often think it is easy. But it is not
easy when we think its internal process and its implementation. The purpose of this paper
is a discussion for its understanding and a computational modeling.

In this paper, we focus on an emotion/feeling as a key factor for the understanding
of human interaction. The emotion is a phenomenon that contain important function for
animals especially in a communication. But most of emotion studies are focusing and
analyzing on phenomenological side and few are discussing on its cognitive process,
and more, its computational role in a brain information processing. So, in this study, we

© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 308–315, 2016.
DOI: 10.1007/978-3-319-46687-3_34



discuss on a possibility of its computational modeling based on an idea that the emotion
in a wider sense, which we call feeling, is a value calculation system for an action
decision.

2 Conventional Models of Emotion/Feeling

2.1 Importance of Mental State Estimation in Communication

There are plenty of phenomenological studies on emotion in physiology and psychology
fields [1–3], and on the role of emotion in communication [4, 5]. In human interaction
scene, Abe [6] studied an interaction strategy of nursery nurses in a robot-child inter‐
action scene, and suggested an importance of the emotion guiding for a success of
communication.

In conventional communication study by language or gesture, the emotion of other
person is not considered so well in spite of its importance. The emotion of other is an
unobservable internal variable and we encounter many difficulties for its estimation.
However, it is obvious that the human communication largely changes based on an
emotional state of other. We can’t avoid modeling of the emotion when we consider
human interaction through a personified agent.

2.2 Conventional Models of Emotion

There are many models for the emotion description [1, 2]. However, these are model of
phenomenon description and don’t approach to the brain and/or cognitive mechanism,
and its computational meaning. For a role of emotion or more complicated human
feeling, Toda proposed a qualitative theory for explaining a human complex feeling as
a process of value assigning through an inference toward an action decision [7].

Recently, Koelsch proposed a quartet theory of human emotion that divide factors
of emotion into four part, self-maintenance, safety, attachment and economic value [8].
In this theory, an economic value is included as a part of the emotion and orbitofrontal
area of brain is supposed for its due. This theory is unique as it includes the economic
value into the emotion. It is true that our emotion is strongly related to the economic
value. For example, we will be pleased when we earn much money. This theory may
give us a new concept of the feeling.

3 Hypothesis: Emotion as a Value Calculation System

3.1 Emotion Common in Animals

Some of animals, at least from reptile and later in evolutional course, have brain stem
and diencephalon in common, and these part of brain are called as a reptile brain. With
the reptile brain, animal can have the emotions, like fear and anger, to protect self.
LeDoux studied on fear, and uncovered physiological system of the fear response
including a fear condition recognition and its learning [3].
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Not limited to the fear, most of basic emotions are common with human and animals
suggesting a small change of the emotion system along evolution. It means there should
be a reason for the emotions be kept in the evolution process. To discuss on its reason,
we have to understand the role of emotions on current animals in more abstracted level
before discussing on its evolution.

3.2 Action Decision and Value Calculation

We are making various decisions in our daily life. It is considered that we consciously/
unconsciously calculate value of possible choices for the decision [9]. With this calcu‐
lation, human sometimes makes useless looking decision when he or she thinks the
decision will contribute a future merit. Then, what is the merit?

The Quartet Theory of Emotions (QTE) proposed by Koelsch [8] includes Brain‐
stem, Diencephalon, Hippocampus system and Orbitofrontal to cover the wide range of
human emotions. A specific feature of the model is its wide range of its subparts, like a
memory in the hippocampus and an inference in the orbitofrontal, to be included in the
feeling system. But when we look at its internal process, it looks to be similar to a value
calculation and a value representation for the action decision.

3.3 Hypothetical Value Calculation System

In our feeling model in this paper, we think the four brain parts that Koelsch supposed
is not enough. We assume the human feeling system includes Amygdala, Basal Ganglia,
Medial Prefrontal Cortex and Nucleus Accumbens at least in addition to the areas
supposed by Koelsch. Though his paper comments on those areas, a positioning of those
area is not clear.

We assume functions of these areas as follows: a maintenance of body by Brainstem,
a state value learning by Basal Ganglia, an association between episode and value by
Hippocampus, an emotive situation evaluation by Diencephalon, a state value inferenced
in Orbitofrontal and a value information integration by Nucleus Accumbens. As a whole,
stimulus from an outer world is perceptually processed in Cortex, converted to inherent

Fig. 1. Overview of Feeling System Model
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value information at each brain areas and summed up and distributed at Nucleus Accum‐
bens (Fig. 1).

4 Computational Modeling of the Proposed System

In this model of feeling, we assume an operating cycle of Prefrontal Cortex to implement
probabilistic search with a priori knowledge on world events, and to decide a value of
the searched results in real-time.

When we assume the feeling system as a value calculation system, the understanding
of its computational mechanism is important because it relates the meaning of the
computation. Table 1 shows a possible computational theory for each brain area. About
the self-maintenance and safety, their process is physically embedded somewhere of the
body and is genetically fixed. Though some parts, like Amygdala, shows learning capa‐
bility, it is rather simple compared to Cortex system and realizable using conventional
pattern recognition method.

Table 1. Possible computaional models of value system in brain

Value class Possible computational algorithm & theory Brain area
Self-maintenance Direct detection by biological body state sensors and

a pattern recognition of their combined signal.
Brainstem

Safety Pattern recognition of fixed environment situations
with fixed value and learned situations with
experienced value.

Diencephalon,
Amygdala

Attachment Episodic association between a scene and value, and
their generalization with Reinforcement
Learning.

Hippocampus, Basal
Ganglia

Economical
Value

Probabilistic inference or tree search from current
situation, and a value mapping from the basic
emotion system.

Orbitofrontal, Medial
Prefrontal

In our model, the attachment is assumed as a habitual recollection of past experienced
value as a result of accumulated episodes related values. For its realization, we suppose
two stages of processing, a recognition of value related object/event that appear in
episodes, and a habit formation process as a generalization of those episodes. We can
explain and implement the former as a pattern recognition process in Cortex and the
latter as RL. Then, we consider the attachment can be approached by a conventional
machine learning framework.

The value calculation process with inference could be modeled as below.

(1) When an agent encounter new situation and can’t assign value immediately by past
experience.

(2) The agent iterate predict resulting states of possible actions using a priori knowledge
on its current environment, in parallel with a probabilistic way.

(3) Then, a part of the predicted states reach a state that a value can be assigned.
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(4) The agent gives a discounted value by uncertainty to the initial current state and
the actions to reach the valued state. This is the inference of value for the action at
the initial state.

(5) Assign the values to all the predictable states, and decide an action that maximize
the value.

In our model, we use a probabilistic search by Monte Carlo method that can realize
tree search in parallel and is possible in brain neural circuit. The probabilistic neural
excitation and its associative propagation in Prefrontal Cortex is representing a proba‐
bilistically constrained tree search. The predicted neural states are immediately evalu‐
ated its value by the emotion system, and affect the next prediction.

5 Simulation of Frontal Value Calculation System

5.1 Navigation Task as a Toy-Model of Value Search in Human Brain

When we decide action, we often can choose optimal one unconsciously. In opposite
case that when we have to decide action at a place without any experience, we search
our memory for a similar experience and choose a best looking one. In the process, we
use a prediction based inference for searching the experience.

As a very simple toy-model of such an experience based and an inference based
action decision task, in this paper, we adopted a navigation problem in 2D grid world
where an agent thinks to look for a proper action not by the try and error in RL but by
a tree search like memory search without an actual action.

In many of grid world action decision and/or optimal route search research, RL is
often used and have demonstrated good performances. But RL requires many times of
try and error, and is largely different from an intuitive and thinking like action decision
that human or animals take.

So, in this model, in place of the try-and-error real action in RL, and in place of a
symbolic tree search that is often used in conventional AI algorithm, we adopt multistep
Monte Carlo association of neural excitation from a current state representation to a next
time step representation implementing the parallel and probabilistic search, and seek for
a highest valued action sequence on line.

5.2 Three Layered Model of Distributed Inference

The model has three layered structure, Map layer, Place-Value Association (PVA) layer
and Probabilistic Parallel Search (PPS) layer (Fig. 2). Map layer is a representation of
spatial map and corresponds to Hippocampus and Prefrontal Cortex in brain. In this
study, we assume a priori knowledge of world map. PVA layer has a function to give
experience based value to the locations in the world map. Basal Ganglia is supposed to
have this function of allocating an expected reward to an experienced situation by RL.
In our model, we assume Q-learning for the function using the Eq. (1).
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Fig. 2. Navigation task in a toy model simulation

In our simulation, we assumed a part of the world locations have assigned values in
advance. If the agent seeks for next action in the locations, it can immediately know
what to act by RL mechanism. But if current location of the agent is not assigned, the
agent must think what to act next using the iterative inference.

PPS layer represent the neural excitation by the multistep Monte Carlo association
in brain. Given a stimulus from an outer world, the agent recognize the current position
of self and start searching for a goal position where the value becomes maximum. The
iterated activity propagation with a priori knowledge create a wide spread of knowledge
constrained neural activity, and enables a reaching of the neural excitation to a value
assigned state. We used SoftMax Eq. (2) for the neural excitation propagation direction
decision in Monte Carlo method and the value based action choice. We can modulate
sensitivity of excitation propagation direction over Q-value by changing a temperature
parameter T in Eq. (2). Though we fixed T value, we will be able to control the width
of neural excitation by changing the T value in more complex [16].

P(i) =

exp

(
Q
(
s, ai

)
T

)

∑n

j
exp

(
Q
(
s, aj

)
T

) (2)

5.3 Cost Definition in Our Simulation

In the simulation, an agent is placed at random initial place and started action decision
in two ways. One is a conventional RL and another is our method with probabilistic
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parallel search. As for a cost of search, we supposed cost of actual one step movement
of the agent is ten times larger than the neural one step associative propagation in brain.

5.4 Simulation Result

Figure 3 shows a result of the simulation. A vertical line shows the cost till the goal
position from a starting position for every trial. The horizontal line indicates the number
of each trial. So, the graph shows change of cost for an agent to reach a goal along trial.
RL method required large cost for initial part of the learning because many times of
physical movement were necessary till Q-values were assigned to each of the location
in the map. But with our method, the agent can find without actual moving and the cost
became low in most of the map area. It also suggests that the initial location of the agent
doesn’t affect the searching cost suggesting that a change of goal in a known map,
meaning a new task in the same world, doesn’t affect searching cost. This is an ability
of knowledge reuse.

Fig. 3. Comparison of search cost between RL and the proposed method.

6 Conclusion

In this paper, starting from the discussion on emotion/feeling system in brain, we
proposed the hypothesis of an emotion in wide sense is compatible with the value calcu‐
lation system for action decision, and discussed on the possible neural mechanism of
inference for the value estimation. Though the simulation is too simple and the model
is rough, whole image of the basic emotion/feeling system has shown and the specific
feature of human intuitive inference has reproduced.

For the next study, we need to evaluate the inference model in more realistic situation
and implement the whole system in a virtual environment. This study was supported by
MEXT KAKENHI Grant Number 15H01622.
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Abstract. The Whole Brain Architecture Initiative is a non-profit organization
(NPO) founded in Japan in August 2015, whose purpose is to support research
activities aiming for realizing artificial intelligence with human-like cognitive
capabilities by studying the entire architecture of the brain. It performs educa‐
tional activities such as holding seminars and hackathons and compiling educa‐
tional materials, as well as R&D activities such as developing software platforms
to support research in artificial intelligence and facilitating communication among
research communities.

Keywords: Biologically inspired cognitive architecture · Artificial general
intelligence · Open software · Non-profit organization

1 Introduction

The Whole Brain Architecture Initiative (WBAI) is a non-profit organization (NPO)
whose purpose is to support research activities aiming to realize artificial intelligence
with human-like cognitive capabilities by studying the entire architecture of the brain.

1.1 Whole Brain Architecture Seminars

In the summer of 2013, Hiroshi Yamakawa (the current chairperson of WBAI), Yutaka
Matsuo (vice-chairperson), and Yuuji Ichisugi (The National Institute of Advanced
Industrial Science and Technology of Japan (AIST)) met and agreed that it would be
possible to create advanced artificial intelligence having cognitive abilities on par with
human beings by referring to the information processing architecture of the entire brain,
with the increase of computational resources and progress in machine learning, as well
as the rapid accumulation of findings in neuroscience in recent years. They also agreed
that, in order to realize such artificial intelligence, it would be necessary to gather and
foster human resources in various disciplines such as neuroscience, cognitive science,
and machine learning as well as artificial intelligence. They soon decided on using the
term “whole brain architecture (WBA)” to designate the approach to create artificial
general intelligence by referring to the architecture of the entire brain, and held their
first seminar in Tokyo on December 19th in 2013. Since then, whole brain architecture
seminars have been held a few times a year to invite outstanding researchers to speak
about related subjects.

© Springer International Publishing AG 2016
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1.2 Up to the Foundation

In 2014, researchers interested in the whole brain architecture approach held meetings
and discussed methodology to substantiate the approach. By the end of the year, they
agreed that they would create an organization called the Whole Brain Architecture
Initiative, to give their programs a concrete form as a research community. At the
beginning of 2015, they decided to make the organization non-profit, and after necessary
procedures, the NPO was founded on August 21st.

1.3 Financial Support

The operations of WBAI have been financially supported by sponsors including private
companies. As of July 2016, it has seventeen sponsors consisting of enterprises and
individuals.

2 The Whole Brain Architecture Approach

The WBA approach is an engineering approach that aims to create artificial general
intelligence (AGI) by learning from the architecture of the entire brain.

2.1 Artificial General Intelligence

AGI is artificial intelligence that can learn to perform tasks including those not foreseen
at the time of its conception, unlike ‘narrow’ artificial intelligence designed to perform
specific tasks. Such general intelligence would be necessary because, for instance, arti‐
ficial intelligence, sometimes embodied in robots, will be required to cope with unex‐
pected situations when collaborating with human beings in the real world.

2.2 Whole Brain Architecture

Human beings possess general intelligence in the sense that they can learn to perform
previously unforeseen tasks. If the human brain instantiates general intelligence, it
would be reasonable to endeavor to realize AGI by taking inspiration from the human
brain. As intelligence is not a function of part of the brain but of the entire brain, it is
also reasonable to seek inspiration from the architecture of the entire brain.

2.3 The Central WBA Hypothesis

Observing the development in machine learning technologies in recent years, WBAI
further adopts the following hypothesis:

“The brain combines modules, each of which can be modeled with a machine learning algorithm,
to attain its functionalities, so that combining machine learning modules in the way the brain
does enables us to construct a generally intelligent machine with human-level or super-human
cognitive capabilities”.
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This is a working hypothesis that constrains the scope of research so that we can
concentrate resources.

3 Our Policies

The mission of WBAI is ‘to create (engineer) a human-like AGI by learning from the
architecture of the entire brain’. WBA deploys educational and R&D businesses to
instantiate the mission.

The goal of our educational business is to help people conducting research on the
WBA approach on a long-term basis. WBAI conducts educational activities in related
areas such as artificial intelligence, neuroscience, cognitive science, and machine
learning. In particular, WBAI holds seminars and hackathons; participates and collab‐
orates in academic events; and also collaborates and communicates with related
academic societies.

The goal of our R&D business is to support research using the WBA approach. While
research projects in general may or may not last for a few years, we are committed to
supporting research infrastructures not only for particular projects but also for terms
longer than project lifespans. Such infrastructure includes software for supporting
research and neuroinformatic databases. However, WBAI itself does not conduct
research on the WBA approach and does not compete with researchers in the area.

3.1 WBAI and Open Development of AGI

As an NPO, WBAI aims to make related technical information available to the public to
be used in better ways. To this end, WBAI not only publishes the products of its activi‐
ties, but is also determined to facilitate open research and development. For example, it
collaborates and has discussions with other open AGI projects such as OpenCog1. It also
tries to facilitate research by publishing the previously mentioned research infrastructure
so that more people can try out or apply published technologies with ease.

4 Activities in the First Year

Activities in the first year (from September 2015 to July 2016) include educational and
R&D endeavors following the previously mentioned policy.

4.1 Educational Business

As noted previously, the goal of the educational business is to help people who can
conduct research on the WBA approach on a long-term basis. In the first year, WBAI
held the first hackathons and WBA seminars; participated in BICA 2015 in Lyon; and
started creating learning material on the Web (in Japanese).

1 http://opencog.org.
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WBA Seminars and Symposium. As previously noted, WBA seminars have been held
since before the foundation of WBAI. In the first year, WBAI held three seminars and
a symposium with the following themes and speakers (mainly in Japanese):

• 11th Seminar: August 26, 2015, Inside Deep Learning
Masayuki Ohzeki (Assistant Professor, Kyoto University), Yoichi Mototake (Univ.
of Tokyo), Adam Gibson (CTO, Skymind)

• 12th Seminar: January 14, 2016, Learning Architecture of the Brain
Kenji Doya (Professor, Okinawa Institute of Science and Technology)

• 13th Seminar: March 15, 2016, Connectome and AI
Haruo Mizutani (Harvard University), Hiroki Kurashige (Univ. of Tokyo)

• First WBAI Symposium: May 18, 2016, Accelerating AI, Accelerating World
• 14th Seminar: May 18, 2016, Neocortical Computational Models beyond Deep

Learning
Takuya Matsuda (NPO Einstein), Manabu Tanifuji (Riken BSI)

• 15th Seminar: June 14, 2016, Evolution, Development, and Learning in Intelligence
Nobuyuki Kawai (Nagoya Univ.), Hiroyuki Okada (Tamagawa Univ.)

The First Hackathon. Together with the Whole Brain Architecture Future Leaders,
WBAI held its first hackathon at the Yokohama campus of Keio University for five days
from September 19. Seven teams consisting of mainly undergraduate and graduate
students participated in this event. Each team set their own task to meet the theme
“development of a combined learner” and worked on it while staying in lodging facilities
on campus. As one of WBAI’s educational activities, this event aimed to improve the
knowledge and skill of the participants and provide an opportunity for social networking
among students and researchers interested in areas such as neuroscience and machine
learning. The event received support from AIST, the University of Electro-Communi‐
cations, and AlpacaDB, Inc., as well as additional backing from the Dwango AI Lab
(Dwango Corporation). The products of the hackathon have been published on GitHub
in English.2

Participating in BICA 2015. The BICA Society is an academic community on biolog‐
ically inspired cognitive architectures (BICA) that holds international conferences annu‐
ally. As WBA is apparently BICA, their theme accords well with ours. The BICA 2015
conference was held in Lyon, France, where five regular members and a WBA Future
Leader participated as authors of submitted papers [1, 2]. There was also a WBA special
session in the conference.3 Moreover, WBAI invited three students, as the winners of
the first hackathon, to present their work in the WBA session and write a report on the
conference.

Compiling Learning Material on the Web. To disseminate basic knowledge for
WBA in areas such as artificial intelligence, neuroscience, cognitive science, and
machine learning, WBAI has been compiling glossaries (in Japanese) on its Web site.

2 https://github.com/wbap/Hackathon2015.
3 https://liris.cnrs.fr/bica2015/wiki/doku.php/wba.
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Furthermore, WBAI is collaborating with university educators in each area. For the time
being, a glossary in machine learning is getting ready.

4.2 R&D Business

As noted in Sect. 3, the goal of the R&D business is to support research activities on the
WBA approach.

R&D at WBAI. WBAI is actively working to develop research infrastructure such as
software and databases to be used in research and make it public. In particular, WBAI
is working on a generic software platform for constructing WBA, evaluation methods
of AGI, learning environments for WBA, and infrastructure for neuroinformatics.

• Generic Software Platform [1]
The generic software platform for constructing WBA supports a mechanism that
performs cognitive functions while machine learning modules corresponding to brain
parts communicate each other, according to the core WBA hypothesis described in
Sect. 2.3. In particular, platform modules communicate with numeric vector values
corresponding to signals transmitted in axons. In collaboration with Riken and Keio
University, the effort to create this platform began in 2014. It was named BriCA
(Brain-inspired Computing Architecture) and implemented in Java (Version 0), then
Python (Version 1), and currently in C++ (Version 2).
Together with the BriCA platform, a language that describes its architecture has also
been designed and implemented. This BriCA Language describes modules and connec‐
tions among them for WBA platforms. Such an architecture description language facil‐
itates the understanding and module modification of architecture implementation, and
would work well with open, collaborative development. While the current implemen‐
tation of BriCA Language uses the BriCA platform, it can also use other platforms such
as ROS, Brain Simulator TM, or Nengo, in which modules pass messages to each
other. Dwango AI Lab has offered support also for the design and implementation of
this BriCA Language.

• Learning Environments
Human-like AGI is expected to learn and acquire skills in a world similar to that in
which human beings live. Though such a learning agent could be implemented as a
physical robot, such a design may also require electro-mechanical engineering
besides artificial intelligence. Therefore, in cooperation with the Dwango AI Lab,
WBAI is working on robot simulators in the virtual world as learning environment
for AGI. Some results from the first quarter of 2016 have been published on the Web.
The first result is the creation of environments with the Gazebo robot simulator
combined with BriCA, Nengo, or Brain Simulator TM (Fig. 1), and the second shows
the Unity game engine combined with machine learning modules from Chainer APIs
(Fig. 2). The latter is the first of the software series called Life in Silico (LIS).4

4 https://github.com/wbap/lis.
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• Infrastructure for Neuroinformatics

Knowledge of the architecture of the entire brain is required to create artificial general
intelligence on the WBA approach. In particular, the knowledge (information) on the
parts of the human/mammalian brain, microstructure of the parts, and interconnection
between parts (connectome) are all required. Much of this knowledge already exists but
is scattered across countless academic papers. To use it efficiently, this information
should be integrated in one place. WBAI is working to centralize this information for
improved knowledge integration.

Fig. 1. Gazebo simulator + BriCA Fig. 2. LIS: unity game engine + Chainer

WBAI is also developing a software prototype of a WBA viewer called BICAmon
(Brain-Inspired Cognitive Architecture monitor), which shows the activities of parts of
cognitive architecture as if they are parts of a brain.5 It interactively displays virtual
brain parts and connections on a Web browser, while active parts in the corresponding
cognitive architecture are highlighted. The viewer has been developed together with the
Dwango AI Lab.

R&D on WBA. As noted in Sect. 3, WBAI does not conduct research on whole brain
architecture itself, but supports others doing research using the WBA approach. One
form of support is sharing discussion among researchers in areas related to WBA; WBAI
hold discussion meetings inviting interested researchers and students. Areas of interest
include affects and the hippocampus.

4.3 Forming an Open Community for AI Development

In June 2016, WBAI created a community of engineers for open AI development on
Slack. This occurred after mini-hackathons held in the same month, where participants
succeeded in implementing Deep Predictive Coding Networks (Deep PredNet)6,
proposed by William Lotter et al. in May as a promising model of the neocortex [3].

5 https://github.com/kiyomaro927/bicamon.
6 e.g., https://github.com/quadjr/PredNet.
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The community integrates engineering activities around WBAI including those
described in Sect. 4.2.

WBAI intends to augment this community in quality and quantity with the support
of researchers in related areas to work on issues such as:

• Development of learning environment
• Development and evaluation of machine learning algorithms
• Experiments with AI agents that learns behaviors in interesting environments
• Implementation of new cognitive functions for AI agents
• Data analysis and tool development in neuroscience for the WBA approach

4.4 WBAI Activities and Volunteering

WBAI activities like WBA seminars and hackathons have been conducted with non-
paid volunteers, except for two paid part-time workers at the secretariat and honorarium
paid for hackathon tutors. PR activities focused on constructing and maintaining the
Web site have been performed on a voluntary basis. WBAI has been collaborating with
another volunteer organization called WBA Future Leaders for activities including
WBA seminars and hackathons.

Fig. 3. Relations among stakeholders around WBAI
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5 Future Direction

The current development in AI and machine learning is quite rapid, and the advent of
certain AGI is becoming more plausible every day. Thus, WBAI has set a goal to ensure
that AGI is beneficial to all of humanity, with the realization of AGI in the near future in
mind. To achieve this goal, WBAI is promoting and popularizing the use and develop‐
ment of technology inspired by WBA by holding events such as hackathons and providing
tools for related technologies so that AGI development will be democratized. Figure 3
summarizes the relationships among stakeholders around WBAI in this direction.

Acknowledgments. The activities of WBAI have been made possible with support from
sponsors and volunteers. We appreciate their support and invite more people to join this promising
endeavor.
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Abstract. We consider a system of two-level quantum quasi-spins and
gauge bosons put on a 3+1D lattice. As a model of neural network of the
brain functions, these spins describe neurons quantum-mechanically, and
the gauge bosons describes weights of synaptic connections. It is a gen-
eralization of the Hopfield model to a quantum network with dynamical
synaptic weights. At the microscopic level, this system becomes a model
of quantum brain dynamics proposed by Umezawa et al., where spins
and gauge field describe water molecules and photons, respectively. We
calculate the phase diagram of this system under quantum and thermal
fluctuations, and find that there are three phases; confinement, Coulomb,
and Higgs phases. Each phase is classified according to the ability to
learn patterns and recall them. By comparing the phase diagram with
that of classical networks, we discuss the effect of quantum fluctuations
and thermal fluctuations (noises in signal propagations) on the brain
functions.

Keywords: Hopfield model · Gauge neural network · Quantum brain
dynamics

1 Introduction

Various functions of the human brain such as awareness, learning, and recalling
patterns have been subjects of intense studies in wide area of science including
neuroscience, medical science, psychology. A widely adopted approach in these
studies is to model the brain by a neural network (network of neurons) and
simulate its static and dynamical properties. A well known example of such
network is the Hopfield model [1], which offers us an interesting mechanism of
associative memory (recalling memorized patterns of neurons).

In the Hopfield model, each neuron may have two states (fired or not) and the
state of the i-th neuron is described by the Ising (Z(2)) variable Si(= ±1) (i =
1, · · · , N). Si represents the scaled membrane potential as Si = 1 (fired) and Si =
−1 (not fired). The information of memorized patterns of Si is stored here in the
parameters Jij , which are called synaptic weights, through the Hebb’s rule [2].
The time development of Si(t) (t = 0, 1, 2, · · · is a discrete time) is intrinsically
c© Springer International Publishing AG 2016
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deterministic, but, due to noises in signal propagation, it becomes random. This
situation is modeled by introducing the energy E(Si(t), Jij) and considering
statistical mechanics with Boltzmann distribution P (Si) ∝ exp[−βE(Si, Jij)]
where the effective “temperature” T ≡ 1/β starts from zero (no noise) and
rises as noise increases. Then the system is regarded as an Ising spin system
with random (lomg-range) interactions Jij . The phase diagram is calculable and
consists of three phases; spin-ordered phase, spin-disordered phase, spin-glass
phase according to the values of Jij and β. The spin-ordered (ferromagnetic)
phase corresponds to the state of successful recalling of learned patterns of Si,
while the spin-disorders (paramagnetic) phase to failed recalling, and the spin-
glass phase to failed learning due to more patterns than the capacity.

As the next step, by regarding synaptic weights connecting neurons as plastic
dynamical variables, various models of learning patterns have been proposed
[3]. In Refs. [4,5] a set of new networks for learning have been proposed by
promoting synaptic-weight parameters Jij appeared in the Hopfield model to a
dynamical gauge field Jij(t) (t is the time). The energy of these gauge neural
networks respects gauge symmetry. Introduction of gauge theory as a model of
brain functions is motivated from the function of synaptic weight itself. Let us
consider the electric signal which starts from the neuron j and arrives at the
neuron i. The electric potential transported by this signal is modulated from
the initial value Sj at j to JijSj at j through the synapse. The synaptic weight
Jij is just the conversion factor of propagating potential. That is, Jij expresses
relative difference of two frames of potential at j and i. Any quantity having
this nature, i.e., a measure of relative orientations of local frames, is to be called
a gauge field. The gauge symmetry just implies that observable quantities such
as energy should be independent of change of local frames as it should be. By
treating these gauge models as models in statistical mechanics, we calculated
their phase diagrams. Generally, they consist of three phases; confinement phase,
Coulomb phase and Higgs phase. Each phase is characterized by the ability of
learning patterns and recalling them (See Table 1).

Our common sense tells us that the brain functions have nothing to do with
quantum theory (or quantum effect is negligibly small). However, as long as
our brain is made of atoms and molecules at the microscopic level, the micro-
scopic model of the brain itself should be described in terms of these atoms and
molecules. If we are involved in the enterprise of describing and understanding
the brain functions by a framework of physics, our task should be relating such
microscopic quantum model to widely studied neural networks at the macro-
scopic level and calculating the quantum effect upon them quantitatively. This
paper concerns these two points.

In Sect. 2 we briefly explain quantum field theory proposed by Umezawa
et al. [6] as a model of brain dynamics at the microscopic level. It consists of
two-level quasi-spin variables describing dielectric dipoles of water molecules and
bosons describing photons inside the brain which mediate the electromagnetic
(EM) forces between dipoles. We respect the U(1) gauge invariance of EM inter-
action and introduce the CP1+U(1) lattice gauge theory put on a 4D lattice
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Table 1. Three phases of gauge neural network and abilities of learning and recalling
patterns of Si [4,5]. 〈O〉 is the Boltzmann average of O. 〈Jij〉 �= 0 implies that Jij

has small fluctuations around the average (given by Hebb’s law [2]), and the enough
information of memorized patterns are stored in Jij , while 〈Jij〉 = 0 implies that strong
fluctuations wash out such information. Similarly 〈Si〉 �= 0 implies that Si sustains an
almost definite pattern, while 〈Si〉 = 0 implies Si is totally unfocused.

Phase 〈Jij〉 〈Si〉 Ability of learning Ability of recalling

Higgs �= 0 �= 0 Yes Yes

Coulomb �= 0 0 Yes No

Confinement 0 0 No No

(3 spatial directions and 1 imaginary-time direction for path-integral quantiza-
tion) as its lattice version. Introduction of a lattice model is to discuss an effective
model at semi-macroscopic scales through renormalization. We then discuss that
this lattice gauge theory itself may be regarded also as an effective GNN after
parameters of the model are renormalized through coarse graining.

In Sect. 3 we calculate the phase diagram of this 4D CP1+U(1) lattice gauge
theory for general parameters and characterize each phase of Table 1 by measur-
ing electric field, magnetic field, and magnetic monopole density. By considering
this model as a GNN, we discuss the ability of learning and recalling patterns
in each phase, and the quantum and thermal(noise) effects upon that ability by
referring to the results of classical GNN’s.

2 Quantum Brain Dynamics and the 4D CP1 + U(1)
Lattice Gauge Theory

Umezawa et al. [6] proposed a quantum spin-boson model that may describe the
brain at the microscopic level, and argued that memories may be stored in the
ordered ground state and low-energy excitations. They considered a system of N
atoms which interact through exchanging bosons. The m-th ago (m = 1, · · · , N)
is described by s = 1/2 SU(2) pseudo-spin operators Sm = (Sm1, Sm2, Sm3), and
a boson having a 3D momentum k and energy E(k) is described by canonical
annihilation operator Ck and creation operator C†

k. Its Hamiltonian H is given
by

H =
∑

k

EkC†
kCk + ε

∑
m

Sm3 − f
∑
m

(CmSm+ + H.c.), (1)

where Sm+ = Sm1 + iSm2 is the spin rising operator and Cm is the Fourier
transform of Ck. Each term expresses energy of bosons, level splitting of spins
by external field, and emission and absorption of bosons and associated spin
flips. Jibu and Yasue [7] argued that the quasi-spins and bosons in Eq. (1)
have explicit counterparts in the human brain; each quasi-spin Sm describes
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an electric dipole moment of each molecule of bound water (water molecules
stand almost still) and the bosons Ck describe evanescent photons mediating
short-range interaction among dipoles.

To pursue this interpretation further and improve a couple of points of the
model (1), we introduce a model with the following properties; (i) manifest U(1)
local gauge invariance of EM interaction; (ii) self-consistently determined photon
energy E(k) (massive or massless); (iii) a lattice model with a cut-off scale to
make renormalization-group transformation straightforward. It is a CP1+U(1)
lattice gauge theory defined on the 4D hyper-cubic lattice, a variation of Wil-
son’s lattice gauge theory [8] by replacing fermonic quark variables by the CP1

spin variables. We shall work in the path-integral representation of the partition
function, Z = Tr exp(−βH). The imaginary time τ(∈ [0, β]) is also discretized
with the lattice spacing a0. We use x = (x0, x1, x2, x3) as the site index of the
4D hypercubic lattice, and x1, x2, x3 = 0, 1, · · · , N − 1 and x0 = 0, 1, · · · , N0 − 1
and β = N0 ×a0. We use μ = 0, 1, 2, 3 as the direction index and also as the unit
vector in the μ-th direction. The lattice spacing aμ = (a0, a, a, a) is regarded
as a parameter to set the scale of the model in the sense of renormalization
group. The s = 1/2 spins are described by the so-called CP1 (complex projec-
tive) variables zxσ(σ = 1, 2) on each site x, a two-component complex variables
satisfying |zx1|2 + |zx2|2 = 1. On each link (x, x + μ) (straight path between two
nearest-neighbor (NN) sites), we have a U(1) gauge variable, Uxμ = exp(iθxμ)
[θxμ ∈ (−π,+π)]. In the naive continuum limit (aμ → 0), it is expressed as
Uxμ = exp(igaAμ(x)) where Aμ(x) is the vector potential and g is the gauge
coupling constant [8]. Uxμ measures the relative orientation of the two internal
coordinates which measure the wave function of charged particles at x and x+μ
[8]. Then Z is written as

Z =
∫

[dU ][dz] exp(A[U, z]),

[dU ] ≡
∏
x,μ

dUxμ =
∏
x,μ

dθxμ

2π
, [dz] ≡

∏
x

dzx1dzx2δ(|zx1|2 + |zx2|2 − 1). (2)

A[U, z] is the action of the model given by

A =
c1

2

∑
x,μ,σ

(
z̄x+μ,σUxμzxσ+ c.c.

)
+

c2

2

∑
x,μ<ν

(
ŪxνŪx+ν,μUx+μ,νUxμ+ c.c.

)
, (3)

where c1 and c2 are real parameters of the model. These parameters are regarded
to characterize each brain, i.e., each person has his(her) own values of c1 and
c2 (and the other parameters for (irrelevant) interactions not included here).
The action A is invariant under the following U(1) local (x-dependent) gauge
transformation;

zxa → z′
xa = eiΛxzxa, Uxμ → U ′

xμ = eiΛx+µUxμe−iΛx . (4)

Here we note that the partition function Z of (2) is a function of βc1 and βc2.
Below we set β = 1 in the most of expressions for simplicity. The β-dependence



328 S. Sakane et al.

is easily recovered by replacing c1(2) → βc1(2). In the continuum limit a, a0 → 0,
the c1-term of (3) becomes the kinetic term of zx, while the c2-term becomes
the electomagnetic action ∝ EE + BB.

By applying the renormalization-group transformation to the model (2), one
may obtained an effective theory at the lattice spacings a′

μ = λaμ. The analysis
made for the related models of lattice gauge theory [9] shows that the relevant
interactions at larger distances are the c1 and c2 terms and next-NN terms such
as z̄UUUz, z̄UUUUz, and no qualitatively different terms emerge. Thus we think
that the model (2) may be worth to study as an approximation of the effective
model of neural network for the brain. In this viewpoint, the meaning of variables
are as follows; (i) the CP1 variable zxσ is the probability amplitude of quantum
neuron state |Sx〉 = zx1|1〉x + zx2|2〉x where |1〉 and |2〉 are two independent
states, such as fired or unfired, and (ii) the U(1) variable Uxμ = exp(iθxμ) is the
phase part of wave function of the synaptic connection weight between NN pair
(x, x + μ). Therefore, by replacing zxσ and Uxμ by the neuron variable Sx and
the synaptic weight variable Jxμ respectively, the action A of Eq. (3) is viewed
as the action of GNN at macroscopic level;

A=
c1

2

∑
S̄x+μJx+μ,xSx+

c2

2

∑
Jx,x+νJx+ν,x+μ+νJx+μ+ν,x+μJx+μ,x + c.c. (5)

We note that its first term c1SJS corresponds to the Hopfield energy [1] and the
second term c2JJJJ describes the reverberating current of signals explained in
Ref. [2], which runs along a closed loop (x → x + μ → x + μ + ν → x + ν → x).

Of course we recognize that the brain itself is far more complicated than this
effective model; e.g., the network is multilayer with column structure and the
synaptic connections are long-range and asymmetric (Jij and Jji are indepen-
dent) with various strengths (Jij ∈ R). However, these points can be incorpo-
rated systematically into the present model (2) in the framework of quantum
gauge theory as inputs in the stage of model building, and we leave them as
future problems.

3 Phase Structure of the 4D CP1 + U(1) Gauge Theory

In this section we study the phase structure of the model (2) by Monte Carlo sim-
ulation (MCS) and mean field theory (MFT) and discuss the effect of quantum
and thermal fluctuations upon the ability of learning and recalling patterns.

3.1 Phase Diagram

In our MCS, we consider a hypercubic lattice of size L4 with periodic boundary
condition. This implies the corresponding “temperature” T tends to zero T → 0
as the thermodynamic limit L → ∞ is taken [9]. We use standard Metropolis
algorithm to generate Markov process and present the results of L = 16 with
typical sweep number for single run as 50000 + 10× 5000. Errors are estimated
as standard deviation of 10 samples taken in the last half of each run. To locate
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the phase transition point, we calculate the internal energy U and the specific
heat C defined as the thermodynamic averages as

〈O〉 ≡ 1
Z

∫
[dU ][dz]O[U, z]eA[U,z], U =

1
L4

〈−A〉, C =
1
L4

〈(A − 〈A〉)2〉, (6)

where Z and A are given in Eqs. (2) and (3). We measure U and C as a function
of c1 for a fixed value of c2 (and vice versa). Location of phase transition point
is determined from their behavior as follows;

(i) If U(c1) shows hysteresis while c1 makes a round trip, it exhibits a first-order
transition. Such hysteresis effect should diminish as MC runs more sweeps and
leaves a gap ΔU(c1) at the transition point c1 = c1c (ΔU(c1) ≡ limε→0+ [U(c1+ε)
−U(c1 − ε)]).
(ii) If U(c1) shows no hysteresis, but C(c1) has a peak developing as L increases
and/or a gap of ΔC(c1) appears at c1 = c1c, a second-order transition takes
place there.

As typical examples of these transitions, we show the following three figures;
In Fig. 1 we show U and C for c2 = 0.9. U exhibits a hysteresis curve around
c1 ∼ 0.9 and a first-order transition takes place. In Fig. 2 we show U and C for
c2 = 0.4. C exhibits a peak around c1 
 1.63 at which a second-order transition
takes place. In Fig. 3 we show U and C for c2 = 2.0. C exhibits a small jump
which we take as a sign of a gap ΔC implying a second-order transition.
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Fig. 1. U(c1) (left) and C(c1) (right) for c2 = 0.9. U shows a hysteresis between
c1 � 0.88 ∼ 0.93. C shows double peaks near the edges of hysteresis.

In Fig. 4 we show the phase diagram in the c2-c1 plane. There are three phases
as indicated. To identify each phase as shown there we measured squared electric
field WE , squared magnetic field WB , and the magnetic monopole density Q [10]
defined as follows;

WE ≡ 1
3L4

∑
x,i

〈(Ex,i − 〈Ex,i〉)2〉 =
1
3

∑
x,i

[
c2〈cos θx,0i〉 − c2

2〈sin2 θx,0i〉
]
,

WB ≡ 1
3

∑
x,i<j

〈sin2 θx,ij〉,

Q ≡ −1
2

∑
i,j,k

εijk〈nx+i,j,k − nx,jk〉 =
1
4π

∑
i,j,k

εijk〈θ̃x,jk − θ̃x,jk〉, (7)
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Fig. 2. U(c1) (left) and C(c1) (right) for c2 = 0.4. C(c1) shows a peak at c1 � 1.64, at
which a second-order transition takes place.
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Fig. 3. U(c1) (left) and C(c1) (right) for c2 = 2.0. C(c1) has a jump at c1 � 0.65 which
we judge as a gap ΔC �= 0, implying a second-order transition.
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Fig. 4. Phase diagram of the 4D CP1+U(1) model (2) in the c2-c1 plane determined
by the MCS for the lattice L = 16. The transition between Coulomb and Higgs phases
is of second-order. The confinement-Coulomb transition is of weak first order (almost
second order), The confinement-Higgs transition is (i) first-order near the triple point,
i.e., for 0.6 � c2 � 1.0, and (ii) second-order for c2 � 0.6.
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where i, j, k takes 1, 2, 3 and we decompose θx,ij = ∇iθxj − ∇jθxi as θx,ij =
2πnx,ij + θ̃x,ij , (−π < θ̃r,ij < π). nx,ij ∈ Z describes nothing but the Dirac
string (quantized magnetic flux). In short, WE measures the magnitude of fluc-
tuations of electric field E, and WB and Q measure fluctuations of magnetic field
B = rotA. Because vector potential A and E are canonically conjugate each
other, uncertainty principle ΔAΔE ∼ ΔBΔE � const. holds. In confinement
phase, ΔE 
 0 and ΔB is large. In the deconfinement phase such as Coulomb
and Higgs phases, ΔE is large and ΔB is small. ΔB is smaller in the Higgs
phase than the Coulomb phase. We show these quantities for three values of c2

shown in Figs. 1, 2 and 3; c2 = 0.9 in Fig. 5, c2 = 0.4 in Fig. 6, c2 = 2.0 in Fig. 7.
In general, in the small-c1 phase, WB is large and WE small, and in the large-c1

phase, other way around. From these properties, it is straightforward to identify
three phases as shown in Fig. 4.
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Fig. 5. WE(c1) (left), WB(c1) (middle), Q(c1) (right) for c2 = 0.9.
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Fig. 6. WE(c1) (left), WB(c1) (middle), Q(c1) (right) for c2 = 0.4.

3.2 Effect of Quantum and Thermal Fluctuations

To discuss the effect of quantum fluctuations, we introduce a classical model
corresponding to the present quantum model (2). It is the 4D Z(2) gauge theory
defined by the action of Eq. (5) with the choice Sx = ±1 and Jx,x+μ = Jx+μ,x =
±1. These Z(2) variables are discrete and express thermal fluctuations but no
quantum fluctuations. In Fig. 8 we show the phase diagrams of these two mod-
els obtained by MCS. It shows that the region of Higgs phase is smaller in the
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Fig. 7. WE(c1) (left), WB(c1) (middle), Q(c1) (right) for c2 = 2.0. Q almost vanishes
here due to strong suppression of monopoles due to large c2, while fluctuations in
zero-monopole sector generate small but finite WB .

c1
2.0

1.5

1.0

0.5

0
0 1 2 3 4 5

c2

Higgs

Coulomb

Con
fine
ment

4DCP1+U(1)(L=16)
4DZ2(L=16)

Fig. 8. Phase diagrams by MCS for
4D Z(2) model and 4D CP1+U(1)
model. Higgs region is smaller in the
CP1+U(1) model. The transition line
of the Z(2) model terminates at c2 �
0.28.
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Fig. 9. Phase diagrams by MCS for 3D
and 4D CP1+U(1) lattice gauge mod-
els. Higgs region is smaller in the 3D
model. The 3D model has no Coulomb
phase and the marks at c2 � 1.4 ∼ 1.6
show the crossover.

CP1+U(1) model than in the Z(2) model. Therefore we conclude that the quan-
tum fluctuations in the present model generally reduce both abilities of learning
patterns and recalling them (see Table 1).

So far we considered the case of no noises (T = 0). In contrast with T = 0,
the high-temperature limit T → ∞ implies N0 → 1 in β = N0a0; i.e., the
CP1+U(1) model put on the 3D cubic lattice. Therefore, the effect of noises
in signal propagations is estimated by comparing the results of the 4D model
and 3D model with the same set of variables and action. In Fig. 9 we show the
phase diagrams of the 3D model obtained by MCS [11] together with that of
the 4D model in Fig. 4. In the 3D model, the confinement-Coulomb transition
becomes a crossover and Coulomb phase disappears. Furthermore, the region of
Higgs phase is smaller than that of the 4D model. Therefore we conclude that
the thermal fluctuations in the present model generally reduce both abilities of
learning patterns and recalling them.
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4 Conclusion

We introduced the CP1+U(1) gauge theory on a 4D lattice as a microscopic
model of quantum brain dynamics. It describes a system of molecules of bound
water and photons in the brain and respects U(1) gauge symmetry of the electro-
magnetism. This model may be regarded also as a neural network of the brain
after coarse graining. We calculated its phase diagram and compared it with
related models. We found that both quantum fluctuations and thermal fluctua-
tions by noise reduce the ability of learning and recalling patterns. We plan to
confirm this point by an explicit simulation of learning processes.

Finally, we comment on the network structure of the CP1+U(1) model. To be
realistic, the human brain has complicated network structures, such as left and
right hemispheres, multilayer-structure, column-structure, small-world network,
etc. Because the way to coase-grain the microscopic model is not unique by itself,
additional argument is required to explain the realistic brain structure. On this
point, it is interesting to define the coase-grained CP1+U(1) models on these
networks and study their phase diagrams. Although we expect the basic three
phases appeared in Table 1, the details should be structure-dependent and shed
some light on the study of brain architecture.
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Abstract. Brain-inspired Computing Architecture (BriCA) is a generic
software platform for modular composition of machine learning algo-
rithms. It can combine and schedule an arbitrary number of machine
learning components in a brain-inspired fashion to construct higher level
structures such as cognitive architectures. We would like to report and
discuss the core concepts of BriCA version 1 and prospects toward future
development.

Keywords: Software platform · Cognitive architecture ·Machine learn-
ing · Modularity · The Whole Brain Architecture

1 Introduction

Recent advancements in computational neuroscience has driven the develop-
ment of machine learning algorithms based on the neurological characteristics
of the brain: one of the most prominent being deep learning [8]. This has moti-
vated research of implementing complex machine learning systems by combining
machine learning algorithms of different paradigms to achieve performance and
functions which were unaccomplished with conventional machine learning sys-
tems [7,10,15]. The Whole Brain Architecture (WBA) project has set up a cen-
tral hypothesis which claims that the brain attains its functionality by combining
modules which can be modeled as machine learning algorithms, thus combining
machine learning modules according to the brain will result in at least human-
level artificial intelligence. The goal of the WBA project is to constructively test
this hypothesis by developing machine learning modules which represent specific
brain components and combining those modules to build cognitive architectures.
The WBA hypothesis contains at least three major points of discussion; if the
brain is modular, if brain components are representable as machine learning
algorithms, and if machine learning algorithms are non-additive.

c© Springer International Publishing AG 2016
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In order to test the WBA hypothesis it is required to collect neurological
knowledge of the brain, develop novel machine learning algorithms, design cog-
nitive architectures, and implement software to execute agents. As research in a
wide variety of domains is a necessity, it is essential to construct an environment
to encourage an open community driven cooperative development. To gather as
many collaborators as possible, it would be helpful to create a reference archi-
tecture for WBA and software for editing, sharing, and executing such architec-
ture. Brain-inspired Computing Architecture (BriCA) is an integrated software
platform for implementing, hierarchically connecting, and executing multiple
machine learning algorithms, which provides a domain specific language (DSL)
for editing architectures as well as learning curricula construction.

Implementation of WBA requires BriCA to be able to execute machine learn-
ing systems of distinct paradigms while providing interfaces for efficient schedul-
ing, synchronization, and communication. Some existing software which may be
applicable for such use case include robot middleware, data analysis platforms,
and simulation software. Robot OS (ROS) [11] and Middleware for Robotic
Applications (MIRA) [2] are robot middleware capable of executing heteroge-
neous software on distributed platforms, however they allow very high commu-
nication latency and do not offer a DSL for architecture definition. Data analysis
platforms (Weka [4], Garuda [3], Jubatus, TensorFlow [1]) and simulation soft-
ware (Simulink, LabVIEW, E-Cell [13] are not designed for execution in real
time and have limited functionalities. From our requirements analysis of BriCA
V0 [14], the minimal specifications for BriCA are currently as follows:

1. Provide a module library of novel and existing machine learning algorithms.
2. Support hierarchical connection of machine learning modules to compose cog-

nitive architectures.
3. Implement a unified messaging protocol to connect machine learning modules.
4. Provide a unified sensor/actuator interface to interact with an environment.
5. Provide real time scheduling for asynchronous calling and controlling of

machine learning modules.
6. Be scalable in terms of software and performance for N modules.
7. Support learning curricula creation and execution to deal with the combined

learning system problem.
8. Support a community based distributed development.

In BriCA, algorithms are chosen and used at the level of brain components
instead of that of neurons, which will most likely result in modules having differ-
ent loads during execution according to the chosen algorithm. As modules with
heavy loads will potentially postpone or block the execution of other modules
from the given interval in synchronous execution, modules must be executed in
a concurrent manner. Message passing is our current model for communication
for two reasons; it is scalable in terms of implementation and it is more likely to
be the communication model between brain components than the shared mem-
ory model. However, as architectures including the blackboard model may be
required in future development, a module dedicated for the purpose may be
implemented.
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2 Implementation

The main functionalities of BriCA V1 core are provided by five classes, namely
Unit, Component, Module, Agent, and Scheduler. The Unit is a class which is
meant to represent a unit of functionality and is inherited to implement the
Component and Module classes. A Unit has a set of input and output Ports
which holds some value in its buffer which may be interchanged with another
Port connected to itself. Ports can be aliased to other Ports, in which case the
internal buffers and its connections are shared and acts as the exact same Port.
Components represent a unit of implementation, and has three extra buffers
called inputs, states, and outputs. Its design is based on BriCA V0 Modules [14],
with an exception of allowing any type of data to be passed through the Ports.
Like the V0 Module, a Component also additionally owns a method named fire(),
which performs the following operation.

outputs, states <- fire(inputs, states)

The behavior of a Component is specified by implementing an algorithm
within the fire() function which must be overridden by inheriting from the Com-
ponent base class. In practice, because these Components must be executed con-
currently, the fire() can only access the buffers from the input and output Ports
indirectly. Therefore the following three step execution takes place as from V0
Modules [14].

1. inputs <- In Ports
2. outputs, states <- fire(inputs, states)
3. Out Port s <- outputs

BriCA V0, only with the Module class, had no way of creating nested Mod-
ules which for the development of WBA is a shortfall. To support hierarchical
structuring of cognitive architectures developed with BriCA, the Module class
implements an interface to contain an arbitrary number of Modules and Compo-
nents within itself. Unlike Components, Modules have no methods for defining
an implementation which makes structuring its sole purpose. The Agent class
is a subclass of the Module and serves as the top level Module of a cognitive
architecture. A Scheduler will execute the Components within a given Agent
starting at the offset time set for each Component and then periodically given
the interval specific to the Component. There are three categories of Schedulers
planned for implementation; virtual time, real time, and external time. Virtual
time schedulers will execute as if the given time has passed, which may be faster
or slower than the actual time. Real time and external time schedulers execute
synchronously with a given time system, where in real time Schedulers the ref-
erence will be the actual time and in external time Schedulers it will be another
software which may or may not be in sync with the actual time. There are two
types of Schedulers for each category, either calling all of the fire() methods from
every Component synchronously, or asynchronously.
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3 Results

BriCA V1 is implemented in Python language, available freely under the terms
of the Apache License. The source code is currently hosted online as a GitHub
repository (https://github.com/wbap/V1) and its documentation is available
at a GitHub pages site for the WBAP/V1 repository (http://wbap.github.io/
V1/). The NumPy Python library is required as a dependency when installing
BriCA V1.

To demonstrate the application of the BriCA architecture, a stacked autoen-
coder consisting of three individual autoencoders and a single layer perceptron
has been implemented to perform a categorization task of hand-written digits.
An autoencoder is a multi-layered artificial neural network which is optimized
to reconstruct the input from the hidden representation [6] which can result in
reduction of dimensionality, extracting important features from the input data.

Fig. 1. The BriCA based stacked autoencoder is composed of three autoencoder Com-
ponents and a simple perceptron Component. Arrows represent the connection between
Components and the labeled numbers are the dimensionality of vectors being commu-
nicated.

https://github.com/wbap/V1
http://wbap.github.io/V1/
http://wbap.github.io/V1/
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Autoencoders can be “stacked” to create stacked autoencoders. The hidden
layers of the preceding autoencoder is fed to the input of the following autoen-
coder, allowing the second autoencoder to extract features from the features
extracted by the first autoencoder. By training each autoencoder step by step it
is possible to construct a very deep neural network. For experimental purposes
we have encapsulated an autoencoder into a BriCA V1 Component and con-
nected the autoencoder Components to create a stacked autoencoder (Fig. 1).
The autoencoder Components take the input vector and transforms the values
to a hidden representation which is exposed to an Out Port. At the same time,
a single iteration of unsupervised learning is performed to train on the fed data.
A single layer perceptron that also exposes its transformed data to an Out Port
and performs a single iteration of supervised learning has been attached to the
end of the stacked autoencoder so the model can be used to perform classification
tasks. The stacked autoencoder, along with the perceptron has been wrapped
inside a Module to create a single classifier Module.

The MNIST dataset [9] has been used to train a stacked autoencoder with
a composition identical to that from the stacked autoencoder section of Deep
Learning Tutorials (Table 1) which has been trained for 20 epochs on a machine
with 12 cores Intel(R) Core(TM) i7-5930K CPU @ 3.50 GHz and GeForce GTX
TITAN X. The source code for the stacked autoencoder and its training is
posted as a GitHub gist (https://gist.github.com/ktnyt/455694506ee6595c92e4).
A stacked autoencoder with the same composition written only with the Chainer
framework has also been implemented and trained for comparsion. The classifica-
tion accuracy for the test dataset and execution time of the script in microseconds
for 100 iterations have been listed in (Table 2).

Table 1. Architecture of the stacked autoencoder

Network Input layer size Hidden layer size Output layer size

Autoencoder 1 768 (28 * 28) 1000 768

Autoencoder 2 1000 1000 1000

Autoencoder 3 1000 1000 1000

Perceptron 1000 No Hidden Layer 10

Table 2. Comparison of BriCA and chainer stacked autoencoders

Criteria Chainer BriCA V1

Accuracy (Test data) 0.965987 0.966094

Execution time (microseconds) 194,354,796 201,845,639

For both cases, the prediction accuracy for the test dataset reached 96.6 %.
Results from F-test on the samples have revealed that both results have equal

https://gist.github.com/ktnyt/455694506ee6595c92e4
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variance (P >> 0.05) and Student T-test showed no significant change in its
mean (P >> 0.05). Execution time showed a significant difference in its variance
(P = 0.004593) and Welch T-test indicated a significantly longer execution time
for the BriCA implementation (P = 2.2e–16). The overhead for communication
between components compared to the Chainer implementation was 3.85 %.

4 Discussion

In BriCA V1 there are two types of pluggable Units: Components and Modules,
while there was only one in V0 with characteristics of both classes. The base
class was split into two classes in order to loosen the restriction of the ports to
allow the communication of more flexible structures which could not be encoded
as distributed representations (e.g. trees and stacks). However, this partition
raises a question as a component is a unit of machine learning algorithm and
not necessarily a unit of brain function abstraction. Therefore scheduling of com-
ponents may not be the equivalent to the scheduling of brain regions depending
on the architecture. Although the current design of the library makes BriCA V1
simple in terms of software design it may not be intuitively suited for the use
as a WBA platform. This aspect, though, may be wrapped away from users by
implementing a domain specific markup language.

One aspect to take into account for future development is the support of
training curricula to solve the combined learning problem. There are a series of
technical issues in machine learning systems which were not present in classi-
cal computing, as pointed out by a paper published by a team at Google [12].
The problem that most attracts the attention of the BriCA development group
is boundary erosion. In machine learning systems it is difficult to draw strict
abstraction boundaries between two machine learning algorithms. For example,
in the case of the three layer SDA implementation from this paper, the sec-
ond autoencoder depends on the output of the first autoencoder, whose internal
representations of the raw signals may change with the introduction of a new
training datum. Such nature makes it difficult to add changes to a single com-
ponent as Changing Anything Changes Everything (CACE) [12]. This issue is
controversial, as (quoted in [12]) “the desired behavior cannot be effectively
implemented in software logic without dependency on external data”. However,
as a running WBA agent will have a static architecture these considerations must
be made during the design of the cognitive architecture. Ordering and schedul-
ing of the training curriculum must be taken into account during execution. An
implementation of a trainer class for supervising the training curricula for an
architecture is being planned.

As the application of BriCA is assumed in a wide variety of environ-
ments including robotics, gaming, and data analysis, there is a need for a sen-
sor/actuator interface capable of connecting to platforms widely used in these
areas. In the case of robotics, the widely used ROS and MIRA platforms provide
interfaces to add modules and have an interface for Gazebo, a robot simula-
tion software. Integration into popular game engines including Unity, Irrlicht
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Engine, and cocos2D will enable working with games. Some data analysis plat-
forms include Jubatus and Garuda. The current BriCA implementation supports
connection with ROS Indigo through the RosPy interface.

It is also important to implement popular algorithms from open source
machine learning libraries as BriCA V1 Components for use in machine learning
system development. Some examples of general libraries include Chainer, Scikit-
learn, PyBrain, Theano, Pylearn2, Apache Spark, Weka, MALLET, Dlib-ML,
shogun, and Stuttgart Neural Network Simulator (SNNS). Specialized libraries
include a number of implementations for simultaneous localization and mapping
(SLAM) (RatSLAM, RT-SLAM, LSD-SLAM), a model of the cerebral neocortex
designated BESOM, and a cerebrum feedback model MOSAIC [5].

Finally, the performance is a key issue in BriCA V1 as the library is imple-
mented in Python to serve as a proof of concept for the architecture. The cur-
rent communication overhead is large at 10 mis compared to the BriCA V0 Java
counterpart which is at 100 ns. The stacked autoencoder benchmarks showed a
significant increase in execution time when implemented in BriCA V1, which
suggests that the current implementation is not suited as the final product for
WBA implementation. As the most frequent neuron activation is at about 1 kHz,
assuming that 1 % of the execution time may be accepted as communication
overhead, it must be at maximum 10 ms, which cannot be overcome by Python.
We are currently developing V2 in C++ which will support reference passing in
an attempt to reducing the overhead. Another problem of Python is the global
interpreter lock (GIL) which restricts the number of threads executing under a
single Python interpreter instance to only one. BriCA V2 also seeks to provide
concurrency by implementing the Scheduler in C++ and allow asynchronous
scheduling of Components.
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Abstract. Cognition, judgment, action, and expression acquisition have been
widely treated in studies on recently developed deep learning. However,
although each study has been specialised for specific tasks and goals, cognitive
architecture that integrates many different functions remains necessary for the
realisation of artificial general intelligence. To that end, a cognitive architecture
fully described with restricted Boltzmann machines (RBMs) in a unified way are
promising, and we have begun to implement various cognitive functions with an
RBM base. In this paper, we propose new stacked half RBMs (SHRBMs) made
from layered half RBMs (HRBMs) that handle working memory. We show that
an ability to solve maze problems that requires working memory improves
drastically when SHRBMs in the agent’s judgment area are used instead of
HRBMs or other RBM-based models.

Keywords: Restricted Boltzmann machine � Cognitive architecture

1 Introduction

Cognitive architectures are blueprints for artificial general intelligence that models the
behavior of humans and other organisms. Although many cognitive architectures have
been proposed, to the best of our knowledge, none describe the entire architecture with
a unified computational theory. However, architecture described by a single compu-
tational theory would likely have a superior architectural view, extendibility, and
module connectivity.

If we adopt the core techniques of deep learning as a model for a unified description
of the entire cognitive architecture, then the results of recent research can be easily
incorporated. Furthermore, because many modules are complexly connected in com-
puting cognitive architecture, architecture based on unsupervised learning named
pretraining is more appropriate than that with a technique based on backpropagation or
end-to-end learning, as in [1].
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The primary techniques used in pretraining are autoencoder- and restricted Boltz-
mann machine (RBM)-type techniques. Among the several differences between the
types, of particular importance is that RBMs are stochastic models, which in cognitive
architecture look promising for stabilizing the whole system [2].

From that perspective, RBM-based cognitive architectures are promising as stan-
dard computational models. In response, this paper proposes stacked half RBMs
(SHRBMs) that carry out working memory functions as a step toward realizing
RBM-based cognitive architecture. Of all action test battery maze problems, we model
and use the eight-arm radial maze problem for our evaluative experiments. Such
problems rank among those often used in real life to investigate cognitive functions
concerning the working memory of mice.

In Sect. 2 of the paper, we summarize RBMs and the basis of half RBMs
(HRBMs). In Sect. 3, we explain the details of HRBMs and, in Sect. 4, the evaluative
experiments. We close the paper with a summary in Sect. 5.

1.1 Related Works

Since Soar [3] and ACT-R [4] use symbolic information expressions, they cannot
perform stochastic behaviors. At the same time, although OpenCogPrime [5, 6] par-
tially incorporates stochastic functions, because the entire architecture is constructed
using diverse modules, it experiences major problems with connections among mod-
ules. Moreover, though Nengo [7] has a highly united cognitive architecture, it does not
include learning functions.

RBM-based cognitive architecture, if actualized, might be able to realize stochastic
behaviors and learning functions, given the advantage of simple connections among
modules, many of which are constructed from RBMs and their extension modules.

At the same time, several proposed extended RBMs can handle time series data.
Temporal RBMs (TRBMs) [8] use both hidden and visible layers from several steps
earlier, and as some authors have shown, another method can perform unsupervised
learning of time series data using RBMs [9]. Though similar to that of TRBMs, the
method differs insofar as uses only hidden layer expressions from one moment earlier.
However, learning becomes difficult when the number of visible units is smaller than
the number of hidden units. Plus, as literature on TRBMs has shown, learning also
becomes difficult when it is multilayered.

On the contrary, HRBMs and SHRBMs can mitigate the tendency for learning to
become difficult when recursive rates are introduced, even if there is a large difference
in the number of visible and hidden units. Furthermore, when the primary focus is
working memory, performances improve with multilayering.

Although recurrent TRBMs (RTRBMs) [10] and RNN-RBMs [11] have been
proposed as improved models, RTRBMs are mitigated in terms of their stochastic
activity, and RNN-RBMs, which involve techniques combining RBMs and recurrent
neural networks (RNNs), constitute undesirable optimizations for use as base cognitive
architecture.
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2 Restricted Boltzmann Machines and Extended Models

2.1 Restricted Boltzmann Machines

The probability that a unit’s value is 1 is described in the following equations:

p hj ¼ 1jv� � ¼ r cj þ
XV

i
viwij

� �
ð1Þ

p vi ¼ 1jhð Þ ¼ r bi þ
XH

j
hjwji

� �
ð2Þ

in which r xð Þ is a sigmoid function, V and H are the numbers of visible and hidden
units, respectively, vi and hj are the visible and hidden units, b and c are biases of the
visible and hidden units, and wij is the weight between units vi and hj.

RBMs update their weights in order to minimise the following energy function
against the training data:

E v; hð Þ ¼ �
XV

i
bivi �

XH

j
cjhj �

XV

i

XH

j
viwijhj ð3Þ

The probability of all possible pairs of visible layers and hidden layer can be described
as follows, in which Z is a normalisation coefficient:

p v;hð Þ ¼ 1
Z
e�Eðv;hÞ ð4Þ

The gradient of the weight is expressed by the following equation, in which the
parameter lr is the learning rate:

Dwij ¼ lr vihj
� �

data� vihj
� �

model

� �
ð5Þ

2.2 Weight Determination Method for Echo State Networks
Using RBMs [9]

Some authors have proposed a weight determination method for echo state networks
(ESNs) using RBMs with hidden layer vectors from the previous moment connected to
visible layer vectors. Accompanying that, (1) and (2) are modified as (6) through (8),
energy function is expressed in (9), and the updated rules are (10):

p htj ¼ 1jvt; ht�1
� �

¼ r
XV

i
vtiwij þ

XH

k
ht�1
k wkj

� �
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X

j
htjwji

� �
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p ht�1
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Where, ht represents the expression of hidden layers during time t, and combðx; yÞ
represents the connection of vector x and y.

Trained RBM is converted into an ESN. Weights between vt and ht and between
ht�1 and ht in the RBM becomes the weights between the input layer and the reservoir
and among the reservoir in the ESN, respectively.

However, in that method, when the number of hidden units is larger than the
number of visible units, the learning result of the hidden layers’ expression constantly
becomes the same expression. That result is arguably due to the fact that when the
number of units of the hidden layers is larger than that of the visible layers,Wvtht

learning is neglected, because the priority of learning withWht�1ht andWvtht depends on
the number of units of both the visible and hidden layers.

3 Stacked Half Restricted Boltzmann Machines

In this section, we explain the model that [9] has extended even further. Because that
RBM is thought to be one with the hidden layer restriction ultimately removed, it is
called an HRBM. When that HRBM is further multilayered, it is called a stacked
HRBM.

Figure 1 shows the schematic diagram of the HRBM, with two points of
improvement from the method in [9].

The first improvement is that a recursive rate rrec has been introduced and a
restriction on recursive connections established. In Fig. 1, the number of units that
connect to a visible unit is limited to two by introducing the recursive rate rrec ¼ 1=3

Fig. 1. Structure of half restricted Boltzmann machines, with learning time construction (left),
deduction time (centre), and a stacked half restricted Boltzmann machine (right)
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for six hidden units. Thanks to this improvement, the network structure can be flexibly
adjusted, even when the number of units differs greatly.

The other improvement comes with changing the energy function. The HRBM
divides the energy function into two parts, and the energy is minimised accordingly:

E vt; ht
� � ¼ �

XV

i
vtiwijh

t
j ð11Þ

E ht�1; ht
� � ¼ �

XH�rrec
i

ht�1
i wijh

t
j ð12Þ

In the same way, the weights’ volume of change is expressed by the following:
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Through not renewing Wvh and Wh
0
h at the same time, the learning of visible unit

groups with different properties can be adequately controlled.
A SHRBM is shown in Fig. 1 (right). When normal RBMs are multilayered, it is an

unsupervised learning model with greedy layer-wise training from layers close to the
input.

4 Evaluative Experiments

In our evaluative experiments, we modelled and used the eight-arm radial maze
problem familiar in a behavioural test battery learning and memory experiments.

4.1 Eight-Arm Radial Maze Problem Outline and Modelling

Figure 2 (left) depicts an image of an eight-arm radial maze. In an eight-arm radial
maze problem, tasks are learned in an environment in which food, so to speak, lies at
the tips of mazes that fan out radially, with a mouse, so to speak, placed in the centre of
the maze. The mouse is required to obtain as much of the food as possible. Because the
mouse needs to remember where it has already visited, it tests working memory.

Fig. 2. Eight-arm radial maze problem (left) and its model (right)
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To explain the modelling of the eight-arm radial maze, Fig. 2 (right) presents a
picture of the modelled maze. The mouse, or agent, operates in the environment
according to the following steps:

1. Set the initial value to the middle of the maze;
2. Receive the current status;
3. Select the destination;
4. Receive a reward; and
5. Repeat Steps 2–4 15 times.

Here, the selected destination and current status are expressed respectively by a
nine-dimension symbolic vector. The agent receives a point when it acquires food, and
0 points in all other cases. After the above steps are followed, the test score is (Number
of foods acquired by the agent) - (Number of illegal state transitions attempted).

In this case, the ideal behaviour without sequential training is: (A) if it is outside the
centre of the maze, then move to the centre, and (B) if its own status is in the middle of
the maze, then move in the maze at random. It is particularly important that the place
selected in (B) is unbiased. When we assume that ideal status and request an expec-
tation with a computer simulation, the result is 5.25 points. We call that value the
chance level.

4.2 Agent Outline

Figure 3 is a schematic diagram of the agent.

Reward RBMs (RRBMs) apply unlearned data detection methods [12]. It is pos-
sible for RRBMs to judge situations in which receiving rewards are easy. When the
energy for the current status value is lower than the past average energy level, it gives
an anticipatory reward.

Fig. 3. Agent block diagram
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The parameters of the softmax layer and RRBM common to every state transition
learner (STL) are shown in Table 1.

The STL and softmax layer learn only the rewarding behaviour. The RBM, ESN,
HRBM, and their multilayered model are used as a STL and compared. However, the
SRBM is omitted because its improved accuracy via multilayering is undesirable.
Table 2 shows each parameter of the STL. For parameters shown here, the calculations
of the best results for each model within the range of the preliminary examination
results are used.

4.3 Results

Figure 4 shows the results of each STL as the moving average of each 100 trials. The
smaller box illustrates the intervals of trial scores less than 0.

A comparison of the single-layer RBM, ESN, and HRBM show that all three have
scores of roughly five. However, only the HRBM has intervals that exceed the chance
level. The stacked ESN has multiple layers of reservoirs with random connection
weights, and it has a high possibility of irregular expression with a complicated highest

Table 1. Common parameters of the softmax layer and reward restricted Boltzmann machine

Softmax layer Reward RBM

Number of input units 20 18
Number of output units 9 20
Learning rate 0.01 0.01
Mini batch size 100 1
Training epochs 1,000 1

Table 2. Parameters for the state transition learners

Single-layer models Multilayer models

R
B

M

Number of hidden units 20
Learning rate 0.05

Mini batch size 200
Training epochs 1,000

-

E
SN

Number of hidden units 20
Recursion rate 0.3

Number of hidden units 20,50,100
Recursion rate 0.3

H
R

B
M

Number of hidden units 100
Learning rate 0.05

Mini batch size 200
Training epochs 100
Recursion rate 0.3

Number of hidden units 20,50,100
Learning rate 0.05

Mini batch size 200
Training epochs 100
Recursion rate 0.3
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layer. Conversely, the SHRBM performs learning that enables it to ultimately acquire
the food seven times.

5 Conclusion

In this paper, we have proposed SHRBMs formed from multiple layers of HRBMs that
can learn time series and HRBMs, in order to aid the realisation of a RBM-based
cognitive architecture.

In our evaluative experiment, we modelled and used the eight-arm radial maze
problem used in real life to investigate the cognitive functions of agents. The results
suggested that HRBMs can display stronger working memory functions by being
stacked in multiple layers.
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Abstract. Artificial General Intelligence (AGI) refers to machine intelligence
that can effectively conduct variety of human tasks. Therefore AGI research
requires multivariate and realistic learning environments. In recent years, game
engines capable of constructing highly realistic 3D virtual worlds have also
become available at low cost. In accordance with these changes, we developed
the “Life in Silico” (LIS) framework, which provides virtual agents with learning
algorithms and their learning environments with game engine. This should in turn
allow for easier and more flexible AGI research. Furthermore, non-experts will
be able to play with the framework, which would enable them to research as their
hobby. If AGI research becomes popular in this manner, we may see a sudden
acceleration towards the “Democratization of AGI”.

Keywords: Artificial general intelligence · Simulation-Based learning
environment · Machine learning

1 Introduction

As the ability of AI draws closer to that of humans, the prospective large-scale effects
on society and technological innovation are stimulating efforts to advance Artificial
General Intelligence (AGI) via open source, joint development ventures.

One example of such projects is OpenCog, which started in 2008 with “Building
better minds together…” as its motto1. OpenCog’s AGI architecture is dubbed CogPrime
and consists of an assembly of heterogeneous modules. For its external environment,
CogPrime makes use of Minecraft, the game which provides an open 3D environment2.
OpenCog has also developed virtual pets that use imitation learning and provides a
learning environment using the game engine Unity3.

1 http://opencog.org/.
2 https://github.com/OC2MC/opencog-to-minecraft.
3 http://wiki.opencog.org/w/Setting_up_the_Unity3D_world.
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As another example, OpenAI has also released OpenAI Gym4, a toolkit for devel‐
oping and comparing reinforcement learning algorithms.

These examples show that, in recent years, learning from environments has been
occupying an important space in the development of AGI. Two fundamental parts are
needed here - AGI agents and the external environments for their learning. In this
particular example, CogPrime is the AGI agent and Minecraft is the external learning
environment.

Because of the pace at which technological development is rushing ahead, each of
the main components is being replaced rapidly. For example, for AGI agents, as the
interest in components that combine deep learning and reinforcement learning has grown
rapidly, many standalone techniques are now being open sourced. For external envi‐
ronments, a powerful 3D simulator game engine has been freely available since 2015.
This change has made it possible for anyone to freely create virtual environments to
reproduce a variety of existing environments. In February and March of 2016, the US
companies DeepMind, Facebook, and Microsoft proposed to use a 3D simulation-based
learning environment [1–3].

Such game engine innovation brings massive momentum to AGI development.
However, from the perspective of developers attempting to start new AGI research, there
is a risk of overcommitting to specific components. This is a barrier researchers and
developers hoping to enter to the field have to overcome.

We addressed this problem by developing the LIS Framework, which provides a
way to approach AGI learning in a flexible and easy-to-use manner by combining
multiple, interchangeable components. The framework allows AGI workers including
beginners to combine pre-installed LIS Framework components and begin AGI

4 https://gym.openai.com/.

Fig. 1. LIS Framework Conceptual diagram. Users can select one or more components from each
of the columns (marked with red circles) to create original modules. (Color figure online)
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development with ease. Furthermore, non-experts can set up learning environments and
develop AI to solve problems of their own choosing. If the basis for AGI research
continues to expand with this framework helped by the present deep learning boom, we
can look forward to realizing that everyone can create their AGI. We call it “Democra‐
tization of AGI” (Fig. 1).

2 LIS Framework

The LIS Framework5 is a simulation-based learning environment framework equipped
with state-of-the-art machine-learning methods and learning environment simulators.
The framework is designed to allow for off-the-shelf AGI research and development.

As shown in Fig. 2, the components in the same column will be switchable in the
future to allow a quick response to new technology, such that users can select one or
more components from each of the columns and combine them in a functional manner.

• Environment: The agent’s learning environment. Users select a preset learning envi‐
ronment or use the simulator to create a custom environment.

• Simulator: The simulator simulates the learning environment. In the future, users will
be able to choose simulators based on their needs. The simulator currently runs on
the Unity game engine.

• Agent: Agent varieties. In the future, users will be able to choose an agent based on
their needs.

5 https://github.com/wbap/lis.

Fig. 2. Detailed AGI learning LIS framework organizational chart A system built with a premise
of interchangeable components. Presently implemented components are circled in red. In the
cognitive architecture column, “CNN-DQN” consists of AlexNet [4] and Deep Q-Network [5].
(Color figure online)

A Game-Engine-Based Learning Environment Framework 353

https://github.com/wbap/lis


• Cognitive Architecture: Cognitive architecture provides the agent with cognitive
logic. Users can switch between architectures based on their needs and construct their
own architecture.

• Algorithm Modules: Algorithmic components for the cognitive architecture. Users
can select modules based on their needs.

3 Implementations

The currently implemented components on the LIS Framework are explained below
(i.e., those circled in red in Fig. 2).

3.1 3D Simulation-Based Learning Environment

AGI may require interaction with the environment via sensors and actuators. However,
when trying to implement it with real physical robots, spatial, and temporal limitations
exist. In a virtual space, many of these limitations are removed. Recently, 3D graphics
for games have advanced to the point where their graphics can be mistaken for photo‐
graphs. Moreover, user bases exist at a scale of several million. The systems are usable
with strong community supports.

For these reasons, we decided to adopt Unity Technology’s “Unity” game engine,
which is equipped with 3D graphics and a simple physics simulator. Agents inside the
Unity engine are equipped with socket transmission functionality and are controlled
directly via an external program. Unity sends camera images, depth images, and reward
information to the agent’s external program. The agent receives that information and
sends action information back to Unity.

3.2 Cognitive Architectures

The current agent’s cognitive architecture consists of cutting-edge machine learning
methods. Specifically, it uses a Convolutional Neural Network (CNN) for image

Fig. 3. System configuration
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processing and a Deep Q-Network (DQN) for reinforcement learning. The system
configuration is shown in Fig. 3.

3.3 Performance

We conducted a benchmark evaluation of this current implementation of the LIS Frame‐
work. As this functionality will change as development continues, the newest bench‐
marks will be listed on the open source page. A standard, commercially available desktop
PC (Intel Core i7-4790 K, 32 MB memory, GeForce GTX TITAN X, Ubuntu 14.04)
was used for testing.

In the learning environment, a large apple was placed on top of a path set above a
river. The agent was “rewarded” with a fail when the apple fell into the water and a
success upon taking the apple. The agent was allowed to go forward, jump, and turn
right or left. Within this environment, the agent conducted trial-and-error learning to be
able to obtain the apple without falling into the river. The agent’s 154587-dimension
(227 × 227 × 3) RBG image vision was exchanged by a 9216-dimension (6*6*256)
vector, which is AlexNet’s poop5 convolutional layer output. Afterwards, it was
changed to a 10240-dimension image by combining with depth imaging 1024-dimension
(32 × 32) vector. This 10240-dimension was input into a Q-Network that depicts the
policy with a neural net. For learning, the Q-Learning reinforcement-learning frame‐
work was used.

Our test allowed us to confirm that learning was qualitatively possible within our
framework. The decisions occurred every 0.15 s of Unity’s time. This allows approxi‐
mately 20 frames to be sent every second. Simulation can be accelerated by 2 to 3 times
compared to the normal speed.

Useable sensors are an RGB camera, depth camera, microphone (sound speed
settings are infinite for game engines), collision sensor, ray sensor, GPS sensor, IMU
sensor, and sonar sensor. A torque sensor can be used if Unity is connected with a

Fig. 4. Screenshot of the LIS interface
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database such as the Open Dynamics Engine (ODE) Library. This will, of course, incur
implementation costs (Fig. 4).

4 Results of AGI Research Foundational Expansion

We attempted to determine whether LIS could have a real user base by holding a Hack‐
athon in Tokyo, Japan on April 9, 2016 in which 151 attendees participated. LIS was
received favorably by the attendees as a form of “play using AI.” Partly because of the
synergistic effects from the deep learning boom of recent years, we were able to confirm
a high level of appeal to a general audience. From this, we conclude that this framework
can also be expected to be effective in spreading AGI research and development to the
general public.

Additionally, one of the aims of the LIS Framework is to make it possible for non-
experts to set up a learning environment and freely design AI. In approximately 8 h, begin‐
ners of machine learning and Unity were able to build games such as “3D Pong” and “an
agent that runs away from an approaching wall as in a 2D Super Mario game,” and each
person was able to learn the skills needed to actualize such tasks. Although these were toy
problems, they show the practicality of realizing the “democratization of AI.”

5 Conclusion

As we made the LIS Framework as open-source, the threshold for AGI research and
development within a 3D environment was lowered greatly. Additionally, we confirmed
that non-experts in AGI were able to set up an environment and implement intellectual
functions. There were also people who felt AGI was a form of play - this has potential
for expanding the AGI research base. We intend expanding the framework and grow
the community around it. It will bring AGI to everyone as a form of play. Therefore we
will be able to see “Democratization of AGI”.

Acknowledgements. Thanks to all members of the WBAI and the members of the WBA Future
Leaders.
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Abstract. The mean firing rate of a border-ownership selective (BOS) neuron
encodes where a foreground figure relative to its classical receptive field.
Physiological experiments have demonstrated that top-down attention increases
firing rates and decreases spike synchrony between them. To elucidate mecha-
nisms of attentional modulation on rates and synchrony of BOS neurons, we
developed a spiking neuron network model: BOS neurons receive synaptic input
which reflects visual input. The synaptic input strength is modulated multi-
plicatively by the activity of Grouping neurons whose activity represents the
object’s location and mediates top-down attentional projection to BOS neurons.
Model simulations agree with experimental findings, showing that attention to
an object increases the firing rates of BOS neurons representing it while
decreasing spike synchrony between pairs of such neurons. Our results suggest
that top-down attention multiplicatively emphasizes synaptic current due to
bottom-up visual inputs.

Keywords: Border-ownership � Selective attention � Spike synchrony �
Modulatory input

1 Introduction

Neural mechanisms underlying figure–ground segregation have been studied for dec-
ades. Particularly, the most fundamental process to perceive and understand objects and
their locations is the determination of the figure direction. Reports of physiological
studies have described that most neurons in monkey V2 and V4 have selectivity to
border-ownership: The mean firing rate of a border-ownership selective (BOS) neuron
changes depending on where a foreground figure is located relative to its classical
receptive field [1]. It is particularly interesting that when animals attend to the fore-
ground figure, the firing rates of these neurons are increased [2].

Martin and von der Heydt [3] recorded from pairs of BOS neurons responding
either to contours of different objects, or contours of the same object (Fig. 1A). In their
experiments, keystone-like stimuli were presented on the classical receptive fields of
BOS neurons. They reported that stimulation by the “Bound” condition produced
enhanced spike synchrony between the pairs of BOS neurons compared to “Unbound”.
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However, while attention to an object increased the firing rates of these neurons,
synchrony significantly decreased from the “ignore” to the “attend” condition.

To elucidate the mechanisms for paradoxical attentional modulation between mean
rates and synchrony of BOS neurons, we developed a network model of spiking
neurons (Fig. 1B). In the model, BOS neurons receive synaptic input from non-BOS
feature-selective neurons which reflect visual input. The synaptic input strength is
modulated multiplicatively by the activity of Grouping cells (G) which receive their
input from BOS neurons and whose activity represents the location of visual objects in
the scene [4]. Furthermore, the mean firing rate of a G-cell is increased when attention
is directed to an object that is represented by the G-cell. Model simulations agree with
experimental findings [3], showing that attention to an object increases the mean firing
rates of BOS neurons representing the object while decreasing spike synchrony
between pairs of such neurons. Our results therefore suggest that top-down attention
multiplicatively emphasizes synaptic currents due to bottom-up visual input. Results
further suggest that attention exerts its influence on BOS cells by boosting the firing
rates of G-cells, rather than directly influencing the activity of BOS or other
feature-selective neurons.

2 Proposed Model

2.1 Network Architecture

Figure 1B displays the network model architecture, which consists of two BOS pop-
ulations (BOSL and BOSR) and one Grouping cell population (G). The grouping
hypothesis assumed that G-cells integrate the responses of BOS neurons to generate a

(A) (B)

Fig. 1. (A) Examples of conditions for visual inputs and attention for physiological experiments
[3]. Black ellipses on the borders of the keystone-like stimuli represent classical receptive fields
of BOS neurons. In the “Unbound” condition, a pair of BOS neurons responded to contours of
different objects. In the “Bound” condition, the two BOS receptive fields lie on the borders of the
same object. On “attend” trials, monkeys attended the object, as shown by the star. (B) Model
architecture. Grouping (G) cells in V4 represent a grouping structure and top-down attention on
BOSL and BOSR neurons in V2. Details of the effects of feedback signals from G-cells are
presented in Fig. 2.
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representation of a fast sketch of the location and rough shapes of objects in the scene.
The G-cell function requires very little specificity in their responses; they are fully
characterized by the center location and receptive field size [4]. Although BOS neurons
are observed in cortical area V2 and neighboring areas V1 and V4, it remains unknown
where G-cells reside. The BOS neuron whose receptive field is presented by the left
(right) circle has right (left) side-of-figure preference (Fig. 1). It is therefore called as
BOSR (BOSL). These BOS neurons are driven by two external sources of input cor-
responding to bottom-up visual inputs and top-down G-cell signals. For simplification,
these external inputs, including G-cell, are given as a Poisson spike train. Bottom-up
visual inputs are independent processes, whereas top-down G-cell signals are common
to BOSR and BOSL neurons representing the same object. In our model and simula-
tions, the firing rate of a G-cell νG represented the conditions of visual stimuli and
attention (Fig. 1A). Details of settings for mean rates of these external inputs are
presented in Simulation Results. To elucidate the fundamental mechanisms of atten-
tional modulation of BOS neurons, we included in our current model only the mini-
mum number of neurons and synaptic connections. There were solely two types of
synaptic connections in this work: feedforward connections representing visual stimuli
to BOS and feedback from G to BOS cells. Note that, for simplifying the model
network and exploring the mechanism of top-down attentional modulation in BOS
neurons, we excluded the feedforward connections from BOS to G-cells (Fig. 1B).

In our model, BOS neurons are described as integrate-and-fire neurons. We used
specific values of the parameters [5, 6]. We assumed the firing threshold as
θ = −50 mV, and the reset potential as Vreset = −65 mV. Membrane capacitance Cm

was 0.5 nF. The membrane time constant τm was 20 ms. In mathematical terms, the
dynamics of the sub-threshold membrane potential V of a BOS neuron is given as the
following equation.

dVðtÞ
dt

¼ �VðtÞ
sm

þ IsynðtÞ
Cm

ð1Þ

In our proposed model, the bottom-up excitatory postsynaptic currents from visual
stimuli Isyn are simply modeled by an instantaneous rise of the synaptic conductance [5, 6].

IsynðtÞ ¼ wBOS
vis exp �t

�
ssyn

� � ð2Þ

In that equation, the postsynaptic current time constant is τsyn = 0.5 ms and wBOS
vis

represents the excitatory synaptic weight.
For BOSL and BOSR neurons, G-cells provide common modulatory inputs [4]. For

simplification of the model, the modulatory feedback from G-cells transiently boosts
the bottom-up synaptic currents from visual inputs. In our model, when BOS neurons
receive signals from G-cells, the bottom-up excitatory synaptic weight wBOS

vis is
increased to 1.4-fold during 50 ms (Fig. 2). Actually, the G-cell signals themselves do
not induce a spike of BOS neurons.
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2.2 Computation of Synchrony Between BOS Neurons

We computed the correlation between BOS neurons to see whether our proposed model
exhibits sufficient synchrony. Our methods for the analysis of spike synchrony were
based on physiological studies [3, 7, 8]. To analyze the simulation data more accu-
rately, we conducted the simulations of the model using 20 trials having length of 252 s
each.

To compute the spike correlation, we divided time into bins of biological width
1 ms, each containing either 0 or 1 spike. The spike train, SijðnÞ, is a binary vector in
which each component takes on either a value 0 if no spike is present in the interval
ðn; nþ 1� ms or 1 if a spike exists. Here, n stands for the bin index, i represents the trial
number, and j denotes a BOSL or BOSR neuron. The cross-correlation is defined as

CCiðsÞ ¼
Xtend þ 250

l ¼ t0�250

SiBOSLðlþ sÞ � f iBOSL

� �
SiBOSRðlÞ � f iBOSR

� �
ð3Þ

f ij ¼
1

tend � t0

Xtend

n ¼ t0

SijðnÞ; ð4Þ

where τ signifies the time lag between two spike trains (�250 ms� s� 250 ms). The
interval of the spike train is defined as t0 and tend. Also, f ij represents the mean spike
count per bin of spike train SijðnÞ in the interval t0 to tend. The magnitude of synchrony
between BOSL and BOSR neurons, M i, is defined as the integral of the correlation,
Eq. 3, in the range ± 40 ms as the following;

Mi ¼
X40

s ¼ �40

CCiðsÞ � binsize ð5Þ

where binsize = 1 ms.

Fig. 2. Feedback projections from G-cells temporally and multiplicatively enhanced the
synaptic currents induced by visual inputs. The black triangle shows the time of spikes occurring
in G-cells. Strength of the synaptic input is modulated multiplicatively by the signals from
G-cells whose activity was increased when attention is directed to an object represented by it.
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3 Simulation Results

To examine the mechanism of synchrony between BOS neurons, we conducted
numerical simulations of our proposed model with the stimulus corresponding to
Martin and von der Heydt [3] (Fig. 1(A)). The firing rate of a G-cell νG in the “Bound”
condition is higher than in the “Unbound” condition. In the latter situation (top of
Fig. 1(A)), the grouping hypothesis assumes that two objects (gray shapes) are located
left and right in the scene and different two G-cells are activated [4]. In addition to this
G-cell activity corresponding to the geometry of the scene, we assume that attention to
an object increases the firing rate of the corresponding G-cell further, as in the
“Bound-attend” condition (bottom of Fig. 1(A)). We used mean rates of G-cells νG of
2, 15, and 25 Hz to represent the “Unbound-ignore”, “Bound-ignore”, and “Bound-
attend” conditions, respectively. The visual inputs have the same statistics in all three
conditions, modeled as a Poisson spike train with mean rates of 675 Hz. With these
settings, the mean firing rates of BOS neurons for the “Unbound-ignore” condition are
about 10 Hz.

Figure 3(A) presents a summary of the mean firing rates of BOS neurons (νBOS) for
three conditions. The firing rates of BOS neurons for the “Bound” condition (gray bar)

(A)

(B)

(C)

Fig. 3. Responses of BOS neurons to stimuli for the corresponding physiological experiment
[3]. (A) Firing rates of BOS neurons. White, gray and black bars show “Unbound-ignore”,
“Bound-ignore” and “Bound-attend” conditions, respectively. (B) Simulated synchrony between
BOSL and BOSR neurons. Synchrony is highest in the “Bound-ignore” condition (gray solid),
lowest in the “Unbound-ignore” (gray dashed), and intermediate for “Bound-attend” (black). (C)
Magnitude of synchrony. Same conventions as those of (A).
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were significantly higher than that for the “Unbound” condition (white bar) (t-test,
p < 0.01). Furthermore, a significant difference in νBOS was found between “Bound-
ignore” (gray bar) and “Bound-attend” (black bar) conditions (t-test, p < 0.01). These
results show good agreement with physiological results [2, 3].

Important results of [3] were the observations that binding increased the spike
synchrony in the absence of attention compared to the unbound case, and that top-down
attention to an object decreased synchrony between BOS neurons representing that
object. We simulated this experiment by computing the spike train correlations between
BOSL and BOSR neurons in the “Unbound-ignore”, “Bound-ignore” and
“Bound-attend” conditions (Fig. 3(B)). In the ignored conditions (“Unbound-ignore”
and “Bound-ignore”), the synchrony for the “Bound-ignore” condition (gray solid line)
was markedly higher than for the “Unbound-ignore” condition (gray dashed line). In
contrast, the “Bound-attend” condition (black line) was much lower than for the
“Bound-ignore” condition (gray line). To quantify our simulation results, we computed
the magnitude of the synchrony based on Eq. (5) (Fig. 3(C)). A significant difference
was found in the magnitude of the synchrony between “Unbound-ignore” (white bar)
and “Bound-ignore” (gray bar) conditions (t-test, p < 0.01). However, we found a

(A)

(B)

Fig. 4. Firing rates (A) and the magnitude of synchrony (integrated over interval±40 ms around
lag 0) (B) for BOS neurons as function of the mean rates of G-cells (νG = 1–100 Hz). Small gray
dots represent the rate and the magnitude of synchrony for each simulation trial. (A)Mean rates of
BOS neurons are shown as white triangles in steps of 5 Hz. (B)White squares represent the mean
magnitude of synchrony of 20 simulated trials, in steps of 5 Hz of mean νG.
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significant decrease in the magnitude of synchrony from the “Bound-ignore” to the
“Bound-attend” (black bar) condition.

To ascertain the effects of top-down modulatory projections from G-cells on the
mean rates of BOS neurons and their synchrony, we parametrically varied the mean
rates of G-cells in the range νG = 1–100 Hz. The firing rates of BOS neurons mono-
tonically increased with increasing top-down signals (Fig. 4(A)). In contrast, the
magnitude of synchrony between BOSL and BOSR neurons indicated non-monotonic
modulation patterns, rising to a peak at about 15 Hz and then decreasing (Fig. 4(B)).
These simulation results show good agreement with the physiologically observed
changes both in firing rates and in synchrony between neural pairs [3].

4 Discussion and Conclusion

We have investigated the neural mechanisms of attentional modulation on the mean
firing frequency and spike synchrony of BOS neurons through computational simu-
lations of a network model of spiking neurons. In our proposed model, the strength of
the synaptic input is transiently and multiplicatively enhanced by the feedback signals
of G-cells whose activity is increased when attention is directed to an object that is
represented by the G-cell [4] (Figs. 1 and 2). Simulation results of our model indicate
that attention to an object increased the mean firing rates of BOS neurons while
decreasing spike synchrony between the pairs of these neurons, which shows agree-
ment with physiological responses [3].

In our proposed model, G-cells provided common inputs for BOSL and BOSR
neurons, which transiently boosted the bottom-up synaptic currents from visual inputs
(Fig. 2). In the absence of common inputs (νG = 0), the synchrony between BOS
neurons cannot exceed that of chance. At the other extreme, if the common feedback
inputs from G-cells are dense, then BOS neurons constantly receive the feedback
signals. As a consequence of constant steady input, the synaptic weight is apparently
consistently enhanced throughout simulation, which corresponds to the model con-
sisting of only BOS neurons and bottom-up visual inputs with synaptic weight
1:4wBOS

vis . The marked activation of the G-cells increases the mean firing rates, as shown
in Fig. 4(A), but it generates no spike–spike synchrony beyond chance. Therefore,
synchrony vanished both for very small and for very high firing rates of G-cells, with a
peak location at some intermediate point, as shown in Fig. 4(B).

Our model reproduced the recent physiological report for the behaviors of BOS
neurons [3]: selective attention to an object increased the firing rates, while decreased
spike-spike synchrony. However, little is known about the function of
attention-induced reduction of synchrony for visual processing and perception. These
paradoxical attentional modulations between mean rates and spike synchrony will
provide important insights for understanding the perceptual mechanism of the
camouflaged/occluded object. Perhaps, in order to understand the function of these
attentional modulations, it is important to discuss about the noise redundancy and
correlation of the BOS mechanism. Further studies are necessary to clarify the atten-
tional mechanism for the modulation in BOS neurons.
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We implemented the transient enhancement of the bottom-up synaptic currents as
the modulatory feedback from G-cells. Recent physiological work has reported that the
cortical feedback projections use slow, modulatory NMDA receptors rather than fast,
driving AMPA receptors [9]. Interestingly, a computational model with the feedback
projections mediated by synaptic kinetics of NMDA receptor [10] indicated the similar
behaviors of this current model.

In this work, we only used the integrate-and-fire neuron model for simulating the
BOS neurons. However, various types of neuron model have been proposed such as
leaky integrate-and-fire, Hodgkin-Huxley and Izhikevich neuron. Further studies are
needed to investigate whether paradoxical attentional modulations between mean rates
and spike synchrony depended on the types of neuron model.

Our model predicts that spike–spike synchrony is useful to infer common modu-
latory input and that attention exerts its influence on BOS neurons by boosting the
responses of G-cells, rather than directly influencing the activity of BOS neurons or
other feature-selective neurons. It is expected to examine these predictions from
physiological perspectives. Our results provide useful and testable predictions for
fundamental problems related to figure–ground segregation and object perception.
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Abstract. One of the traditional models for finding the location of a
mobile source is the time-of-arrival (TOA). It usually assumes that the
measurement noise follow a Gaussian distribution. However, in practical,
outliers are difficult to be avoided. This paper proposes an l1-norm based
objective function for alleviating the influence of outliers. Afterwards, we
utilize the Lagrange programming neural network (LPNN) framework
for the position estimation. As the framework requires that its objective
function and constraints should be twice differentiable, we introduce an
approximation for the l1-norm term in our LPNN formulation. From the
simulation result, our proposed algorithm has very good robustness.

Keywords: Source location · Time-of-arrival · Outliers · LPNN

1 Introduction

Estimating the position of a mobile source is very important in many applica-
tions, such as, emergency rescue, intelligent transport and resource management.
The time of arrival (TOA) [1] is the most popular measurement model for source
localization. In this model, three or more sensors are used to measure the time of
signal transmission from the mobile source to the sensors, as shown in Fig. 1(a).
Multiplying the measurement time by the signal propagation speed gives the
distances between the mobile source and the sensors. Under the noiseless sit-
uation, the exact position of the mobile source can be calculated from those
distances. In fact, the measurements usually contain noise. When the noise is
Gaussian, the maximum likelihood (ML) concept can be applied to estimate the
coordinate of the mobile source. However, the ML function is nonlinear. Using
some linearization techniques, we can formulate the TOA problem as a least
squares (LS) [2,3] problem. Several numerical methods [2,3] were proposed for
TOA source localization. In [4], an analog neural network technique was used for
solving the TOA ML problem. However, the mentioned methods do not consider
outliers. When there are some outliers in the TOA measurements, the estimated
position of the mobile source may have a very large error.

This paper proposes an robust algorithm based on the Lagrange program-
ming neural network (LPNN) framework [5]. As the l1-norm has a much better
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 367–375, 2016.
DOI: 10.1007/978-3-319-46687-3 41
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Fig. 1. (a) The source localization problem. The distance between the ith sensor and
the mobile source is denoted as di. (b) The approximation for the l1-norm.

ability to handle outliers, we replace the l2-norm in the objective function with
the l1-norm. However, the LPNN requires that its objective function and con-
straints are twice differentiable. But the l1-norm term in our objective function
is non-differentiable at 0 point. Hence, we introduce an approximation for the
l1-norm term.

The rest of this paper is organized as follows. Section 2 provides an intro-
duction of LPNN and the problem formulation. Section 3 presents our l1-norm
based LPNN positioning approach. Besides, theoretical analysis on the stability
of the neural model is also discussed. Simulation results are included in Sect. 4.
We then conclude the paper in Sect. 5.

2 Background

TOA-Based Source Localization. Let the unknown position of the mobile
source be c = [c1, c2]T, and let the coordinates of the sensors be {u1 =
[u1,1, u1,2]T, · · · ,um = [um,1, um,2]T}. At time τo the mobile source emits a
signal and the ith (i = [1, · · · ,m]) sensor obtains the signal at time τi. The trav-
elling time τi−τo can be converted to a distance measurement. Let di = ‖c−ui‖2
be the true distance between the ith sensor and the mobile source. The collection
of di’s is denoted as d = [d1, · · · , dm]T. We use r = [r1, · · · , rm]T to denote the
measurement distances, given by

ri = di + ψi, for i = 1, · · · ,m, (1)

where ψi is the measurement noise.
In the TOA localization problem, given the measurements r, the sensor

coordinates ui (i = [1, · · · ,m]), and the statistics of the noise ψ, our aim is
to estimate the source coordinates c. Usually, we assume that ψi’s follow the
Gaussian distribution with zero mean, and that ψ’s are independent. The objec-
tive function for estimating the mobile source position can be formulated as
E = 1

2

∑m
i=1(ri − ‖c − ui‖2)2. The traditional gradient descent like algorithm

may not be appropriate for minimizing E because the gradient vector of E con-
tains some factors that are in terms of (1/||c − um||2)’s. When the current
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estimate of c is close to one of um’s, we have the ill posed problem. Hence many
algorithms [2–4] formulated the problem as a constrained problem, given by

min
c,d

1
2
‖r − d‖22, (2a)

s.t. d2i = ‖c − ui‖22, and di ≥ 0, i = 1, · · · ,m. (2b)

Lagrange Programming Neural Networks. Applying analog neural net-
works for optimization has received considerable attention [6–8]. The neural
approach allows real-time computation because the neural circuits can be real-
ized by the VLSI or optical technologies. However, many existing models are
designed for solving a particular form of the constrained optimization problems.
For example, the method in [8] addresses the quadratic programming problem
only. While, the LPNN [4,5,9] provides a general approach for solving nonlin-
ear constrained optimization problems. It considers the following optimization
problem:

min
x

f(x), s.t. h(x) = 0. (3)

where x = [x1, · · · , xn1 ]
T is the variable vector being optimized, f : Rn1 → R is

the objective function, h : R → R
n2(n2 < n1) represents n2 equality constraints,

and f and h should be twice differentiable. In LPNN approach, we first define
the Lagrangian function L,

L(x,λ) = f(x) + λTh(x) (4)

where λ = [λ1, · · · , λn2 ]
T is the Lagrangian multiplier vector. The LPNN model

has two kinds of neurons: variable neurons and Lagrangian neurons. The n1

variable neurons are used to hold the decision variable vector x, while the n2

Lagrangian neurons are used to hold the Lagrangian multiplier vector λ. In the
LPNN framework, the dynamics of the neurons are given by

κ
dx

dt
= −∂L(x,λ)

∂x
and κ

dλ

dt
=

∂L(x,λ)
∂λ

, (5)

where the variable κ is called the characteristic time, whose value depends on
the resistance and capacitance of the analog circuit. Without loss of generality,
κ = 1 is assigned in this work. The differential equations in (5) are used to govern
the state transition of the neurons. After the neurons settle down, the solution is
obtained by measuring the neuron outputs at this stable equilibrium point. The
dynamics dx

dt are to seek for a state with the minimum objective value, while the
dynamics of dλ

dt are to restrict the system state within the feasible region. With
(5), the network will settle down at a stable state [5,9] if the network satisfies
some conditions.

3 Development of Proposed Algorithm

The problem defined in (2) has been studied many years, a number of algo-
rithms [2–4] were developed. However, in (2), we assume that the noise follow
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a Gaussian distribution. Unfortunately, outliers may exist in the TOA measure-
ments. Hence, to reduce the influence of the outliers, we consider the l1-norm in
the objective function, given by

min
c,d

1
2
‖r − d‖1, s.t. d2i = ‖c − ui‖2, and di ≥ 0, i = 1, · · · ,m. (6)

Before we apply the LPNN framework to solve the problem stated in (6), we
need to resolve two issues. First, there are a number of inequality constraints
in (6), but the LPNN framework can handle equality constraints only. Another
issue is that the objective function is non-differentiable.

For the first issue, the following theorem shows that the inequality constraints
can be removed.

Theorem 1: The optimization problem stated in (6) is equivalence to

min
c,d

‖r − d‖1, s.t. d2i = ‖c − ui‖2, i = 1, · · · ,m. (7)

Proof: Suppose {c∗,d∗} is the optimal solution of (6). From the properties of
absolute value operation, or saying the l1-norm, we have

‖r − d∗‖1 =
m∑
i=1

|ri − d∗
i | ≥

m∑
i=1

|abs(ri) − abs(d∗
i )| =

m∑
i=1

|ri − abs(d∗
i )| (8)

Since ri’s are the distance measurements, we have ri ≥ 0. Thus, the last equation
in (8) is satisfied. From (8), we have

m∑
i=1

|ri − d∗
i | ≥

m∑
i=1

|ri − abs(d∗
i )| (9)

Inequality (9) means that the objective function value
∑m

i=1 |ri − d∗
i | at the

optimal solution {c∗,d∗} is greater than or equal to the objective function value
at the point {c∗, abs(d∗)}. Note that {c∗, abs(d∗)} is also a feasible point. Since
{c∗,d∗} is the optimal solution, it is not possible to have another feasible point
with a smaller objective function value. Hence the equality in (9) is hold. That
means, d∗ = abs(d∗). Therefore, the inequalities in (6) can removed. The proof
is complete. �

To resolve the second issue, we consider the following approximation:

|x| ≈ ln(cosh(ax))
a

, (10)

where a > 1. Figure 1(b) shows the approximation with different a. It can be
seen that the approximation is quite accurate when a is large.

With the approximation, the problem (7) can be modified as

min
c,d

1
a

m∑
i=1

ln(cosh(a(ri − di))) s.t. d2i = ‖c − ui‖2, i = 1, · · · ,m. (11)
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The above formulation has several good properties. First, the objective function
is twice differentiable, hence we can apply the LPNN framework to solve it. Sec-
ond, the derivative of (1/a)

∑m
i=1 ln(cosh(a(ri−di))) is equal to tanh(a(ri−gi)),

namely, the hyperbolic tangent function, which is frequently used as an activa-
tion function in artificial neural networks. According to (11), we can construct
its Lagrangian function as

Lo(c,d,λ) =
1
a

m∑
i=1

ln(cosh(a(ri − di))) +
m∑
i=1

λi(d2i − ‖c − ui‖22). (12)

where the vector λ = [λ1, · · · , λm]T contains Lagrange multipliers. Afterward,
we can use (12) to drive the neural dynamics. However, according to our pre-
liminary simulation results, we find that an equilibrium point may not be sta-
ble. To improve the convexity and the stability, we introduce an augmented
term C0/2

∑m
i=1(d

2
i − ‖c − ui‖22)2 into the objective function. The augmented

Lagrangian function becomes

L(c,d,λ) =
1
a

m∑
i=1

ln(cosh(a(ri − di))) +
m∑
i=1

λi(d2i − ‖c − ui‖22)

+
C0

2

m∑
i=1

(d2i − ||c − ui||22)2. (13)

Note that at an equilibrium point the constrains are satisfied, i.e., d∗
i
2 = ||c∗ −

ui||22, i = 1, ...,m. Thus, the augmented term C0/2
∑m

i=1(d
∗
i
2 − ‖c∗ − ui‖22)2 is

equal to zero. Introducing the augmented term does not influence the objective
function value at equilibrium. Moreover, the augmented term is very useful in
accelerating the convergence [5].

According to (5) and (13), the dynamics are given by

dc

dt
= 2

m∑
i=1

[λi + C0(d2i − ‖c − ui‖22)](c − ui) (14)

ddi
dt

= tanh(a(ri − di)) − 2λiri − 2C0di(d2i − ‖c − ui‖22) (15)

dλi

dt
= d2i − ‖c − ui‖22. (16)

For LPNN, its circuit complexity depends on the complexity to compute the
time derivatives. From (14)–(16), the complexity to obtain the time derivatives
is O(m) only.

Another issue that we need to investigate is the local stability. Local sta-
bility means that a minimum point should be stable. Otherwise, the network
never converges to the minimum [5]. Let {x∗,λ∗} be a minimum point of the

problem, where x∗ =
[
d∗Tc∗T

]T
. There are two sufficient conditions for local

stability of LPNN. The first one is convexity, i.e., the Hessian matrix of the
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Lagrangian at {x∗,λ∗} should be positive definite. It is achieved by introduc-
ing the augmented term. Note that if C0 is chosen sufficiently large, then the
Hessian matrix ∂2L(x,λ)/∂x2 at the minimum is positive definite under mild
conditions [5]. The second one is that at the minimum point, the gradient vec-
tors of the constraints with respect to x should be linearly independent. The

gradient vectors of them at the equilibrium point x∗ =
[
d∗Tc∗T

]T
are given by

{
∂h1(x)

∂x

∣∣∣∣
x=x∗

, · · · ,
∂hm(x)

∂x

∣∣∣∣
x=x∗

}
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2d∗
1 0 ... 0

0 2d∗
2 ... 0

...
...

. . .
...

0 0 ... 2d∗
m

k∗
1,1 k∗

2,1 ... k∗
m,1

k∗
1,2 k∗

2,2 ... k∗
m,2

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (17)

where k∗
i,j = −2(c∗

j −ui,j), i = 1, · · · ,m, j = 1, 2. We can see that the m gradient
vectors are linear independent with each other, if for all i d∗

i �= 0. In other word,
as long as the estimated coordinates of the mobile source are not equal to the
coordinates of one of the sensors, the m gradient vectors are linear independent.

4 Simulation

4.1 Settings

This section conducts two experiments to test the robustness and efficiency of
our proposed algorithm. As a comparison, we also consider the LLS algorithm
[2], the TSWLS algorithm [3], and the l2-norm LPNN. The sensors are uniformly
distribution on a circumference of a circle with centre at (0, 0) and radius equal
to R = 10. Figure 2 shows the sensor position for m = {4, 5, 6, 7, 8}. The TOA
measurement errors are Gaussian random variables combining with some out-
liers. The outliers follow uniform distribution with mean value ranging from 1 to
19, and the width is equal to 2. For instance, if the mean of the outlier is 5, then
the outlier can equal to any real value between 4 to 6. Hence we can control the
intensity of the outlier by changing the mean of the outlier.
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Fig. 2. The configuration of the source and sensors.
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4.2 Experiment 1: Fixed Mobile Position

In this experiment, we fix the coordinates of mobile source at point (−4, 4). We
vary the outlier level by changing the mean value of outliers. We repeat this
experiment 100 times. Figure 3 shows the mean square errors (MSEs) of the
estimated mobile source coordinates under different settings.

First of all, we can see that no matter in which setting, the performance of
our proposed algorithm is much better than other algorithms.

Second, as shown in Fig. 3(a),(b),(c),(e),(f), if sufficient sensors are used, then
the performance of our proposed algorithm is insensitive to the outlier intensity.
For example, from Fig. 3(f), when there are two outliers, with eight sensors
the MSE of algorithm is lower than −30 dB, regardless of the outlier intensity.
While, for the other algorithms, even we increase the number of sensors, their
performances are still poor.

Lastly, from Fig. 3(c),(d) our proposed algorithm can work under both low
level and high level Gaussian noise environment.

4.3 Experiment 2: Random Mobile Position

This section tests the performance of our proposed algorithm under the situa-
tion that the position of the mobile source is randomly chosen at each repeated
experiment. The positions of the mobile source are uniformly distributed on a
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Fig. 3. The performance of various algorithms under different setting. All of them we
randomly choose one or two sensors and add outliers into TOA measurements. (a) 4
sensors with Gaussian noise variance 0.01 and 1 outlier; (b) 5 sensors with Gaussian
noise variance 0.01 and 1 outlier; (c) 6 sensors with Gaussian noise variance 0.01 and 1
outlier; (d) 6 sensors with Gaussian noise variance 0.01 and 1 outlier; (e) 7 sensors with
Gaussian noise variance 0.01 and 2 outliers; (f) 8 sensors with Gaussian noise variance
0.01 and 2 outliers.
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Fig. 4. The performance of various algorithms under different settings when the posi-
tion of mobile source is randomly chosen. The variance of Gaussian noise level equal
to 0.01. (a) 5 sensors with 1 outlier; (b) 6 sensors with 1 outlier; (c) 8 sensor with 2
outliers;(c) 9 sensor with 2 outliers.

circle centered at original point with radius 15. The simulation results are given
by Fig. 4. From the figure, we get a conclusion similar to that of Experiment 1.
That is, the performance of our proposed algorithm is much better than LLS,
TSWLS, l2-norm LPNN. Besides, if sufficient sensors are used, then the perfor-
mance of our proposed algorithm is insensitive to the outlier intensity.

5 Conclusion

This paper considers the source localization problem under the situation that
outliers exist in the TOA measurements. We propose an robust algorithm, based
on LPNNs and an approximation function, to solve this problem. Although the
original formulation contain some inequality constraints, we show that those
inequality constraints can be removed. To improve convexity of the network,
we introduce an augment term into the original objective function. From the
simulation results, we can see that our proposed algorithm greatly improves the
robustness against outliers. The performance of the proposed approach is much
better than the performances of the comparison methods, including the LLS
algorithm [2], the TSWLS algorithm [3], and the l2-norm LPNN.
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Task Based on the Internal Dynamics

of a Chaotic Neural Network
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Abstract. We have expected that dynamic higher functions such as
“thinking” emerge through the growth from exploration in the framework
of reinforcement learning (RL) using a chaotic Neural Network (NN). In
this frame, the chaotic internal dynamics is used for exploration and that
eliminates the necessity of giving external exploration noises. A special
RL method for this framework has been proposed in which “traces”
were introduced. On the other hand, reservoir computing has shown its
excellent ability in learning dynamic patterns. Hoerzer et al. showed that
the learning can be done by giving rewards and exploration noises instead
of explicit teacher signals. In this paper, aiming to introduce the learning
ability into our new RL framework, it was shown that the memory-
required task in the work of Hoerzer et al. could be learned without
giving exploration noises by utilizing the chaotic internal dynamics while
the exploration level was adjusted flexibly and autonomously. The task
could be learned also using “traces”, but still with problems.

Keywords: Chaotic neural network · Reservoir computing · Reward-
Modulated Hebbian Learning · Traces · Dynamic higher functions

1 Introduction

In recent years, Deep Learning, in which a large-scale neural network (NN) with
many layers learns to process raw sensor signals in parallel, has surpassed exist-
ing systems in various fields. That suggests the difficulty in understanding the
phenomenal performance of our parallel brain through our sequential conscious-
ness and then developing an appropriate program by hand for such massively
parallel processing. For a long time, our group has pointed out this difficulty and
has suggested the necessity to develop a system in which the whole process from
sensors to motors consists of a NN and necessary functions or useful internal
representations emerge through reinforcement learning (RL) with explorations
and rewards [1,2]. Recently, a recurrent NN (RNN) has been employed to deal
with dynamics, and it was confirmed that the function of “memory” or “pre-
diction” emerges in a simple task [3,4]. However, there seems to be a limitation

c© Springer International Publishing AG 2016
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for a non-chaotic “silent” RNN to form multi-stage state transitions through
learning [5].

Thus, we thought that the complex dynamics is not formed from scratch
in a non-chaotic “silent” RNN but is reformed from rich and chaotic internal
dynamics in a chaotic NN. The dynamics is used also for exploration in RL,
and that eliminates the need for giving exploration noises from outside. It is
expected to become purposeful through learning reflecting the causal relations
of the world and finally reach dynamic higher functions such as “thinking”. In
this new RL framework, since exploration components cannot be separated from
the outputs, training signals cannot be derived. Therefore, instead of using error
back propagation as in the conventional RL, a special learning method, in which
“traces” are introduced, was proposed and confirmed to work in an easy task
[6,7].

On the other hand, recently, reservoir computing such as Echo State Network
[8] and Liquid State Machine [9] has been focused on. In this trends, Sussillo
et al. trained reservoir networks by the new learning procedure called FORCE
Learning [10]. In this procedure, the outputs are returned to the network along its
feedback pathway and only readout weights are modified to match the network
outputs with target patterns. Then, the network can learn to generate complex
dynamic patterns amazingly easily and rapidly.

Hoerzer et al. showed that a reservoir network can learn through Reward-
Modulated Hebbian Learning in which instead of explicit teacher signals, explo-
ration noises and the reward to show the improvement of the performance derived
from the error between outputs and targets were given [11]. In this research, it
was shown that the network learned various dynamic patterns or a working
memory task.

From the above, we think that it is essential to introduce the learning ability
of dynamical patterns into our new RL framework to realize dynamic higher
functions such as “thinking”. In this paper, as the first step of this attempt, we
examine whether the working memory task, which a reservoir network learned
from reward signals in Hoerzer’s work, can be learned without giving external
exploration noises by utilizing the internal chaotic dynamics of the network as
well as in our new RL framework. Next, we also examine whether the network
can be trained with “traces”, which are used in our new RL.

2 Method

2.1 Network

In this paper, we use the network as in Fig. 1, which has basically the same struc-
ture and connection weights in the previous researches [10,11]. The network is
composed of N = 1000 neurons, and they are sparsely and recurrently connected
(connection probability p = 0.1). There are four external inputs each of which
is fed to all the neurons. There are two output units called readout units, and
are connected by all the network neurons. Each output from the corresponding
readout unit is returned to all the network neurons along its feedback pathway.
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Fig. 1. The network model. It has 4 inputs, u1 (green), u2 (orange), u3 (cyan), u4

(brown) and 2 outputs, z1 (red), z2 (purple). In the network, 1000 neurons (blue) are
recurrently connected (connection probability p = 0.1). (Color figure online)

The model of each network neuron is a dynamical firing-rate model. The internal
activity (membrane potential) of the j-th network neuron at time t is given as

xj(t) =
(
1− Δt

τ

)
xj(t−Δt)+

Δt

τ

(
λ

N∑
i=1

wrec
ji ri(t)+

I∑
i=1

win
ji ui(t)+

O∑
i=1

wfb
ji zi(t)

)
,

(1)
where the step size Δt = 1 [ms] and the time constant τ = 10 [ms]. λ is the
parameter that gives the scale of recurrent connection weights between the net-
work neurons, whose value is 1.8 or 1.5 (the latter is used in the training with
“traces”). Larger λ produces more chaotic activities of the network. wrec

ji is the
weight of recurrent connection from the i-th neuron to the j-th neuron. These
are set to a value generated randomly from a Gaussian distribution with zero
mean and variance 1/pN . I is the number of inputs. win

ji is the weight from the
i-th input to the j-th neuron. ui is the i-th input value. O is the number of
readout units. wfb

ji is the weight from i-th readout unit to j-th neuron. These
are set to a value generated randomly from a uniform distribution between −1
and 1. zi(t) is the output of the j-th readout unit. The output of network neuron
rj(t) is computed from its internal activity xj(t) as

rj(t) = tanh
(
xj(t)

)
. (2)

zj(t) at time t is derived from ri(t) and the corresponding readout weight wji as

zj(t) =
N∑
i=1

wjiri(t). (3)

Initially, wji is set to a value generated randomly from a Gaussian distribution
with zero mean and variance 1/N .
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2.2 Learning

In this paper, only readout weights wji are trained. Excepting that exploration
noises are not added, we basically followed the learning procedure by Hoerzer
et al. in [11]. The network is trained with reward or penalty which is given depen-
dently on whether the current performance of the network P (t) is improved as
compared to its running average P (t) with time constant 5 ms. P (t) is defined as

P (t) = −
O∑

j=1

(
zj(t) − fj(t)

)2

, (4)

where fj is the target for the j-th output of the network.
We use two learning methods in this research. First one is Reward-Modulated

Hebbian Learning in [11] with a little modification. The modulatory signal M(t)
is defined using P (t) and P (t) as

M(t) =
{

1 P (t) > P (t)
−1 P (t) ≤ P (t).

(5)

In [11], M(t) took the value of 1 or 0, but here 1 or −1 is used. The readout
weights are modified with M(t) as

Δwji = η
(
zj(t) − zj(t)

)
M(t)ri(t). (6)

where η is a learning constant and here η = 0.0005. z(t) is the running average
of z with time constant 5 ms.

Second, we use a learning method with traces that are used in our new RL.
In this learning, to limit the value range, the output z(t) is derived as

zj(t) = tanh
( N∑
i=1

wjiri(t)
)
. (7)

The readout weights are modified with P (t) and P (t) as

Δwji = η
(
P (t) − P (t)

)
cji(t), (8)

where cji(t) is the trace which expresses the correlation between the output
increase and the i-th input in the j-th readout unit and η = 0.05 here. cji(t) is
given by

Δzj(t) = zj(t) − zj(t − Δt). (9)

cji(t) =
(
1 − |Δzj(t)|

2

)
cji(t − Δt) +

Δzj(t)
2

ri(t), (10)

where 2 is the value range of each readout unit. This equation computes the value
similar to the running average of the input, but the time constant is derived from
the output change of the unit. Therefore, when the output change is large, the
signal ri(t) is considered to be important and taken into the trace largely. When
the output does not change, the past value is kept in the trace.
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2.3 Task

The network learns the task that requires working memory [11]. The network
has four inputs and two outputs. Input pulses with the average rate of 0.5 Hz
are given on each input signal independently. It goes up to 1.0 taking 50 ms and
then goes down with time constant 50 ms. Each signal has a different meaning.
u1 and u2 are respectively ON and OFF signals for the output z1, and u3 and
u4 are for the output z2. An ON or OFF signal makes the corresponding output
to be 1.0 or −1.0 respectively with time constant 20 ms, and the value is kept
until the opposite signal for the corresponding output comes in.

3 Results

Figure 2 shows the network activity: outputs, inputs and activities of some neu-
rons. Figure 2(a) shows the activities for the first 30 s of learning. At first, the
network did not know its desired behavior. However, noise-like fluctuations orig-
inated from the chaotic internal dynamics appeared in the output even without
external noises. The chaotic internal dynamics performs the role of exploration,
and the outputs looks to follow the targets with a lag. However, when learning
was stopped at this timing, the output could not follow the target.

Figure 2(b) shows the activities of the network for 30 s of testing after 250 s
of learning. The outputs almost match the target with no lag. This result shows
that the task can be learned without exploration noises. It is interesting that
as the learning progresses with successively given reward and penalty (M(t)),
the sharp change disappeared gradually. The activity of the network seems to
transit from exploration mode to stable mode, and the exploration component
from the internal dynamics decreases autonomously.

To observe whether the network can adjust the exploration level
autonomously when encountering unknown situation, the rule of learning task
was changed suddenly. Figure 2(c) shows the network activities when the ON
signal and OFF signal were swapped between u1 and u2 and between u3 and
u4 after 250 s of learning. The chaotic activities appeared again and exploration
was resumed even without any direction from outside. The network activities
for 300 s of learning after the rule change are shown in Fig. 2(d) in a compressed
time scale, and Fig. 2(e) shows 30 s of testing after that. It shows that the net-
work could resume to explore and successfully learn the task even though the
environment was changed suddenly in the middle of learning.

To show how the chaotic activities of network neurons change during learning,
the output errors and the output change of network neurons were recorded as in
Fig. 3. These values are the mean absolute error of the network output and the
mean absolute one-step change in each neuron output over all neurons over every
10000 time steps. In Fig. 3, it is seen in the term of 250 s from the start of learning
when the network learned under the first rule, the output error decreased and
the network activities decreased gradually. As soon as the rule was changed at
250 s, the output error increased and, a little later, the output change in the
network neurons also increased. Then the output change was large though it
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(a) First 30 seconds(training) (b) 30 seconds (testing) after 250 seconds
learning

(c) 30 seconds (training) around the rule
change at 250 seconds(vertical line)

(d) 350 seconds (training) around the
rule change at 250 seconds(vertical line)
in a compressed time scale

(e) 30 seconds (testing) after 300 seconds
from the rule change

(f) Learning with traces: 30 seconds
(testing) after 500 seconds of learning

Fig. 2. Network activities. Output z1, z2 are in red, purple respectively. The target
value is in black. Input u1, u2, u3, u4 are in green, orange, cyan, brown respectively.
The activities of 3 sample neurons from the network are in blue. (Color figure online)

decreased sometimes, before the change decreased again as the error decreased.
It shows that the network can make the internal dynamics chaotic autonomously
to explore in unknown situation.

The result after learning procedure with traces is shown in Fig. 2(f). In this
experiment, we used 0.9 and −0.9 as the maximum and minimum value of targets
to prevent reaching a limit of the outputs. Figure 2(f) shows that the reservoir
network could be trained with the traces. It seems that the outputs follow the
target precisely at a glance, but its values are close to −1.0 or 1.0 that is the
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Fig. 3. The mean absolute error (upper) and the mean absolute output change of
network neurons (lower) during learning. The vertical line is the timing of rule change.

upper or lower limit of the output. That means that the output values before
the transformation by tanh are very large due to large readout weights wji.
In addition, the network parameters needed very sensitive adjustment to learn
successfully, and occasionally the output deviated largely. In this case, because
the outputs stick upper or lower limit, it was difficult to output intermediate
values and was impossible to resume to explore when the rule of task was changed
during learning. There still remain problems to be solved.

4 Conclusion

In the Reward-Based Learning of Memory Required Task in a reservoir network,
it was confirmed that the internal chaotic dynamics can perform the role of
exploration on behalf of the exploration noises added from the outside. As the
learning progressed, noise-like fluctuations in the outputs originated from the
internal dynamics decreased and the network activities autonomously transited
from exploration mode to stable mode gradually. It was also shown that when
the task setting was changed during learning, the network adaptively resumed
exploration and learned appropriately after that. Using the traces, which is used
to train a chaotic NN in the newly-proposed novel RL, the same task could be
trained as well, but further investigations are necessary. From these results, it is
expected that the learning ability of the reservoir computing can be taken into
our approach, and that enables the emergence of higher functions as the result
of developing internal dynamics through RL.
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Abstract. Directional traveling waves are organized in a hippocampal
CA3 recurrent network model composed of biophysical pyramidal cells
and inhibitory interneurons with gap junctions. The network sponta-
neously organizes neuronal activities traveling in a particular direction
and the organized traveling waves are modified by repetitive local inputs.
We found that the distributions of inter-spike intervals (ISIs) of pyra-
midal cells and interneurons are involved with spontaneous traveling
waves that can be modified by local stimulation. Similar ISI distributions
emerge in a network that has no gap junctions, but strong mutual con-
nections between pyramidal cells and interneurons. These results suggest
that interaction between interneurons through gap junctions contributes
to enhancing the inhibition of pyramidal cells for organizing traveling
waves.

Keywords: Hippocampus · CA3 · Traveling waves · Gap junctions

1 Introduction

Theta oscillations travel along the longitudinal axis of the hippocampus [1,2]. A
possible mechanism of the traveling theta waves is the propagation of neuronal
activities through recurrent connections of the hippocampal CA3 [1,2]. It has
been demonstrated that radially propagating neuronal activities (non-directional
traveling wave) are spontaneously and input-dependently organized in a hip-
pocampal CA3 recurrent network model composed of biophysical pyramidal cells
and inhibitory interneurons [8]. On the other hand, we have demonstrated that
directionally propagating neuronal activities are input-dependently organized in
a simple recurrent network model with anisotropic inhibitory structure, which
does not cause propagating neuronal activities spontaneously [3]. A biophysical
CA3 recurrent network model with an anisotropic inhibitory structure, however,
spontaneously organizes directionally propagating neuronal activities [4].
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 384–392, 2016.
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The inhibitions play an important role in selecting the direction of the propa-
gation. In the hippocampal CA3, an activity of inhibitory interneurons is affected
by interactions through gap junctions [7]. It has been demonstrated that gap
junctions enhance the propagation of firings in a feedforward network [5]. Here,
we investigated the roles of gap junctions in organizing traveling waves in the
biophysical CA3 recurrent network model. We show that the biophysical CA3
recurrent network model with gap junctions can not only spontaneously but
also input-dependently organize directional propagation of neuronal activities
and gap junctions have a role in enhancing inhibition for the organization of
traveling waves.

2 Methods

2.1 Hippocampal CA3 Model

We modified CA3 recurrent network model developed by Yoshida and Hayashi
[8]. The CA3 network model is composed of 2, 304 pyramidal cells and 288
inhibitory interneurons. Pyramidal cells were placed on 48 × 48 (vertical × hor-
izontal) lattice points and inhibitory interneurons were uniformly distributed in
the network (Fig. 1). Edge neurons were positioned next to neurons in the oppo-
site side to remove the ununiformity of their connections (i.e. torus structure).
Each pyramidal cell (e.g. • in Fig. 1) was connected to 20 pyramidal cells in its
surrounding 7×7 region (e.g. solid rectangle in Fig. 1) and to all interneurons in
11×11 region (e.g. dashed rectangle in Fig. 1). On the other hand, each interneu-
ron (e.g. © in Fig. 1) was connected to 60 pyramidal cells and 5 interneurons in
its surrounding 13 × 9 region (e.g. gray solid rectangle in Fig. 1). In the region,
interneurons have slightly long connections in the downward direction. Indeed,
the axon projection of an inteneuron is biased in the hippocampus [6]. Further-
more, each interneuron was mutually connected with up to 5 interneurons in its
surrounding 9 × 9 region (e.g. dashed-dotted rectangle in Fig. 1).

The membrane potential Vi of i-th pyramidal cell was updated as follows:

CdVi/dt = gNam
2h(VNa − Vi) + gCas

2r(VCa − Vi) (1)
+ gCa(low)s

2
lowrlow(VCa − Vi) + gK(DR)n(VK − Vi)

+ gK(A)ab(VK − Vi) + gK(AHP)q(VK − Vi)
+ gK(C)cmin(1, χ/250)(VK − Vi) + gL(VL − Vi)
+ gaf(Vsyn(e) − Vi) + Isyn,

where gx and Vx of the 1st–7th term are the conductance and the equilibrium
potential for the respective ion channels (x): Na, Ca, Ca(low), K(DR), K(A),
K(AHP), K(C). gL and VL are the conductance and the equilibrium potential
for leakage, respectively. gaf and Vaf are the conductance and the equilibrium
potential for afferent excitatory synapse, respectively. Isyn is total synaptic cur-
rents from postsynaptic neurons.



386 T. Samura et al.

Fig. 1. The position of neurons in the hippocampal CA3 recurrent network (•: pyra-
midal cell; ©: interneuron) and connection rage from each type of neuron.

We introduced gap junctions [5] into interneurons. The membrane potential
of i-th interneuron was updated as follows:

CdVi/dt = gNam
3h(VNa − Vi) + gK(DR)n

4(VK − Vi) + gL(VL − Vi) + Isyn (2)

+ Σ
Ngap
j ggap(Vj − Vi),

where ggap is the coupling conductance through gap junction between interneu-
rons. Ngap

i is the number of the gap connection with other interneurons (6 ≤
Ngap

i ≤ 8). The details of the network model are described in ref. [8]; how-
ever a part of parameters was changed as follows: gaf = 0.004, Vip = −75,
ggap = 0.0015. The synaptic conductance between pyramidal cells was updated
by asymmetric STDP. We set the synaptic conductance for each synapse as fol-
lows: Cpp = 0.0004−0.001, Cpi = 0.002, Cip = 0.001, Cii = 0.001. We set different
maximum modification rates for LTP and LTD: MLTP = 0.05,MLTD = 0.0525
because stronger modification rate for LTD than that for LTP are required for
organizing directional traveling waves stably in the network (data not shown).

2.2 Simulation Conditions

Here, we used network model with gap junctions between interneurons as a
control. Additionally, we defined four conditions using a different network model
without gap junctions as shown in Table 1. In the first condition, gap junctions
are simply removed from interneurons (no-gap). In the three other conditions,
Cpi (pyramidal neuron → interneuron), Cip (interneuron → pyramidal neuron),
or both are strengthened (strPI, strIP, and strPI+strIP). We ran a simulation ten
times in each condition. In a simulation trial, we updated the membrane potential
of neurons for 250 s. Synaptic inputs and synaptic weights were updated from
1 s and 10 s, respectively. Burst inputs with doublet spikes (inter-spike interval:
10 ms; inter-burst interval: 125 ms) were applied into 3× 3 neurons in the center
of the network periodically for 100 s from 110 s. We evaluated traveling waves
organized in the networks before and after inputs.

2.3 Evaluation of Traveling Waves

Neuronal activities propagate in the vertical direction in the network where
interneurons elongate their axons in the vertical direction (e.g. Fig. 2a) [4].
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Table 1. Conditions of the network without gap junctions between interneurons

Conditions no-gap strPI strIP strPI+strIP

Cpi 0.002 0.0025 0.002 0.0025

Cip 0.001 0.001 0.0011 0.0011

Therefore, we evaluated synchronized activities of pyramidal cells at location
on a vertical axis to confirm whether directional propagation of neuronal activ-
ities emerges in the network. We calculated the ratio of co-firing neuron at the
same location on the vertical axis for each 20 ms bin (e.g. Fig. 2c). Stripes indi-
cate that traveling waves with horizontal wave fronts propagate in the vertical
direction (Fig. 2a, c).

We evaluated the direction, in which a pyramidal cell acquired strong connec-
tions. Such a weight direction reflects the direction of neuronal activities passing
through each pyramidal cell. The weight direction of the j-th pyramidal cell at
time t is calculated as follows:

Rj(t) =
1

NtrialNpost

Ntrial∑
k

Npost∑
l

(wk
lj(t) − wk

lj(0))eiθk
lj , (3)

where Ntrial and Npost are the number of trials and the number of postsy-
naptic pyramidal cells, respectively. wk

lj(t) is a synaptic weight to the l-th post-
synaptic pyramidal cell from the j-th pyramidal cell at time t in the k-th trial.
θk

lj indicates the angle between the j-th pyramidal cell and the l-th postsynaptic
pyramidal cell in the k-th trial. Larger Rj(t) indicates a stronger tendency of
traveling waves to pass through the j-th neuron in the evaluated direction across
trials (e.g. long arrows in Fig. 2e, f).

3 Results

3.1 Traveling Waves Organized in a Network with Gap Junctions

Directional traveling waves were spontaneously organized in the network model
with gap junctions. Figure 2a shows the neuronal activities for 20 ms from 109 s
in the 3rd trial. Most pyramidal cells and inhibitory interneurons fired simulta-
neously around 5 and 30 on the vertical axis. Upward traveling waves with hori-
zontal wave fronts were organized spontaneously in the network in 9 of 10 trials
(Fig. 2c). The direction can be confirmed by the weight directions of pyramidal
cells (Fig. 2e). On the other hand, traveling waves with horizontal wave fronts
were broken at 209 s by repetitive inputs into the center of the network (Fig. 2b,
d). The weight directions indicate that neuronal activities around the center of
the network rather propagate in the left- and rightward direction (Fig. 2f). In
other words, input-dependent traveling waves were newly organized.
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Fig. 2. Neuronal activities and weight directions organized in the hippocampal CA3
recurrent network model with gap junctions before (a, c, e) and after (b, d, f) inputs.
(a, b) Neuronal activities for 20ms at 109 s (a) and 209 s (b) in the 3rd trial. Figures
(a) and (b) correspond to the activities in solid and dashed rectangles in (c) and (d),
respectively. (c, d) Ratio of co-firing neuron at each location on the vertical axis of
the network for 300ms from 109 s (c) and 209 s (d). Each panel shows the results of
each trial. Two panels in the same row show neuronal activities occurring in the same
trial. (e, f) Weight directions of pyramidal cells (gray arrows) and the average weight
directions within a 6 × 6 region (black arrows) at 110 s (e) and 210 s (f).

3.2 Traveling Waves Organized in a Network Without Gap
Junctions

Figure 3 shows neuronal activities of the network without gap junctions before
applying inputs. Although traveling waves with horizontal wave fronts were not
organized clearly in the network under the no-gap condition (Fig. 3a), the weight
directions show that neuronal activities tend to propagate upward at each cell
position (Fig. 3e). On the other hand, traveling waves with horizontal wave fronts
were frequently organized under the other conditions (Fig. 3b–d), especially in
the strPI and strPI+strIP conditions (Fig. 3b, d). Upward weight directions were
obviously obtained in the network (Fig. 3f–h). The direction of propagation was
consistent across trials, but traveling waves without clear horizontal wave fronts
occurred in some trials (Fig. 3b–d). Figure 4 shows neuronal activities of the net-
work without gap junctions after applying inputs. Spontaneous traveling waves
were broken in most trials (Fig. 4a–d), and new propagation of neuronal activ-
ities was organized by the inputs. Neuronal activities around the center of the
network propagated in the left- and rightward direction (Fig. 4e–h).
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Fig. 3. Spontaneous neuronal activities and weight directions of the hippocampal CA3
recurrent network model without gap junctions. (a–d) Ratio of co-firing neuron at
each location on the vertical axis of the network for 300ms from 109 s under no-gap
(a), strPI (b), strIP (c) and strPI+strIP (d) conditions. (e–h) Weight directions of
pyramidal cells (gray arrows) and the average weight directions within a 6 × 6 region
(black arrows) at 110 s under each condition.

3.3 Distributions of Inter-Spike Intervals of Pyramidal Cells and
Interneurons

Here, we compared the distributions of inter-spike intervals (ISIs) obtained from
activities of the network under the five conditions (Fig. 5). In all conditions, the
largest and the second largest peaks exist around 20 and 180 ms, respectively.
Neuronal activities periodically pass through each cell position. The largest peak
around 20 ms corresponds to the intervals between firings within a traveling
wave and the second peak around 180 ms corresponds to the intervals between
wavefronts of traveling waves.

The peak around 180 ms depends on the conditions (Insets in Fig. 5a–e).
Under the control condition (Fig. 5a), the ISI distributions of pyramidal cells
and interneurons showed peaks around 180 and 140 ms, respectively. The ISIs
of interneurons were shorter than those of pyramidal cells. Under the no-gap
condition, the ISI distribution of pyramidal cells increased in the range of 100
to 150 ms, while that of interneurons decreased (Fig. 5b). Under the conditions
of strong Cpi (strPI and strPI+strIP), the difference between peak timings of
the distributions was obvious and the ISI distribution of pyramidal cells in the
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Fig. 4. Neuronal activities and weight directions of the hippocampal CA3 recurrent
network model without gap junctions organized by local stimulation. (a–d) Ratio of
co-firing neuron at each location on the vertical axis of the network for 300ms from
209 s under no-gap (a), strPI (b), strIP (c) and strPI+strIP (d) conditions. (e–h) Weight
directions of pyramidal cells (gray arrows) and the average weight directions within a
6 × 6 region (black arrows) at 210 s under each condition.

range of 100 to 150 ms decreased compared to no-gap condition (Fig. 5c, e). The
ISI distribution of pyramidal cells in the range of 100 to 150 ms also decreased
under the strIP condition (Fig. 5d). Consequently, the ISI distribution of pyra-
midal cells in the rage was prominently reduced under the strPI+strIP condition
(Fig. 5e). The similar distribution of ISIs in the control condition can be acquired
under the strPI+strIP condition.

Additionally, we evaluated the on-going activity of interneurons for 1 s from
109 s. Interneurons more frequently fire under the conditions in which traveling
waves with horizontal wave fronts are organized (control: 18.8 ± 2.58 Hz, strPI:
19.0 ± 2.55 Hz, strPI+strIP: 19.1 ± 2.68 Hz) than under the other conditions
(no-gap: 14.7 ± 3.49 Hz, strIP: 14.5 ± 3.20 Hz) (mean ± SD). Under the control
condition, the activities of interneurons were kept at the same level with the
activities in the strPI and strPI+strIP conditions.
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Fig. 5. The distributions of inter-spike intervals of pyramidal cells (solid line) and
interneurons (dashed line) obtained from spontaneous neuronal activities at 109 s. For
each neuron types, the distributions were obtained from all spike emitted by a neuron
in 10 trials under control (a), no-gap (b), strPI (c), strIP (d) and strPI+strIP (e)
conditions. Inset of each panel shows the magnification of the peak around 180ms.

4 Conclusion

We demonstrated that the CA3 recurrent network model with gap junctions
organizes traveling waves with horizontal wave fronts not only spontaneously but
also input-dependently. Local stimulation produced new traveling waves from the
stimulus site in the network causing spontaneous traveling waves. These results
suggest that traveling waves propagating rhythmically may encode information
applied into the hippocampal CA3 by changing its wave front.

We also found that the network with gap junctions causes specific ISI dis-
tributions of pyramidal cells and interneurons in the range of 100 to 200 Hz.
Similar ISI distributions were shown in the network where synaptic connections
between pyramidal cells and interneurons were strengthened (strPI+strIP con-
dition) even if there were no gap junctions in the network. Since new traveling
waves were caused by local stimulation in the network causing spontaneous trav-
eling waves under the strPI+strIP condition, the ISI distributions of pyramidal
cells and interneurons would be involved with causing such traveling waves.

These results suggest that the role of gap junctions is the enhancement
of inhibition of pyramidal cells for organizing traveling waves as if the synap-
tic connections from pyramidal cells (interneurons) to interneurons (pyramidal
cells) would be enhanced. Under the condition with gap junctions, the connec-
tions from inhibitory interneurons to pyramidal cells were weak compared to
those under strPI+strIP condition. The high-frequent firing of interneurons is
required for causing inhibition at the same level with strPI+strIP condition.
However, the on-going activities of interneurons are similar to those under the
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strPI+strIP condition. The enhancement of inhibitory output to pyramidal cells
by gap junctions is not derived just from strong inhibitory connections and high-
frequent activities of interuenorns. It is supposed that the interaction between
interneurons through gap junctions improves the effect of inhibition by causing
inhibition at the proper timing for organizing traveling waves.
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Towards Robustness to Fluctuated Perceptual Patterns
by a Deterministic Predictive Coding Model in a Task
of Imitative Synchronization with Human Movement
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Abstract. The current paper presents how performance of a particular deter‐
ministic dynamical neural network model in predictive coding scheme differ
when it is trained for a set of prototypical movement patterns using their modu‐
lated teaching samples from when it is trained using unmodulated teaching
samples. Multiple timescale neural network (MTRNN) trained with or without
modulated patterns was applied in a simple numerical experiment for a task of
imitative synchronization by inferencing the internal states by the error regres‐
sion, and the results suggest that the scheme of training with modulated patterns
can outperform the scheme of training without them. In our second experiment,
our network was tested with naturally fluctuated movement patterns in an imita‐
tive interaction between a robot and different human subjects, and the results
showed that a network trained with fluctuated patterns could achieve generaliza‐
tion in learning, and mutual imitation by synchronization was obtained.

Keywords: Neuro-robotics · Recurrent neural networks · Imitative
synchronization · On-line adaptation

1 Introduction

The idea of the predictive coding [1–3] is based on the hypotheses that by accumulated
learning of the perceptual experience, our brains become able to predict perceptual
outcomes of own intention for acting to the external environment [1, 2]. Some dynamical
neural network models such as recurrent neural network with parametric biases
(RNNPB) [1] applied the idea of predictive coding. The current intention represented
by the PB vectors are modulated by means of prediction error minimization in order to
predict perceptual input sequences in RNNBP. Perceptual sequences, for example
proprioception and visual input sequences, can be generated by the RNNPB as corre‐
sponding to given intention state in terms of the PB vector. Actual motor movement can
be generated by feeding predicted proprioception state at each time step into the motor
controller as a target posture. Moreover, in RNNPB, an optimal intention can be inferred
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for a given perceptual sequence pattern by means of inferencing the internal states by
the error regression of the PB vector towards minimizing the prediction error.

This corresponds to recognition of the perceptual sequence pattern. In this manner,
the RNNPB mechanized by the predictive coding principle can account for the mirror
neuron functions [4] in terms of pairing generation and recognition of movement
patterns [1].

One flaw of implementing the idea of the predictive coding in deterministic dynamic
models such as RNNPB is their vulnerability to noisy and fluctuated patterns [5]. To solve
this problem, Bayesian predictive coding scheme endowed by free-energy principle was
introduced [2]. As inspired by [2], so-called the stochastic continuous time RNN (S-
CTRNN) in which next step perceptual state can be predicted by its expected mean and
variance (inverse precision) instead of its actual value was proposed by Murata and collea‐
gues [5]. However, it has been shown that deterministic RNN models can also learn to
extract probabilistic structures latent in observed sequential patterns by embedding them
into deterministic chaos or transient chaos [6–8]. This study aims to examines such charac‐
teristics of a particular RNN model incorporated with the scheme of predictive coding.

The central ideas to be examined in the current study are as follows. (i) Mean values
of periods and amplitudes for a set of prototypical cyclic patterns can be learned from
their fluctuated teaching samples as embedded in deterministic dynamic structure of
multiple timescale recurrent neural network (MTRNN) by using the initial sensitivity
of the internal neural states. The intention for generating the corresponding prototypical
patterns as well as variance to account for deviation of each teaching sample are repre‐
sent by the initial values of the internal neural states. (ii) The network can achieve a sort
of generalization in learning accounting for possible fluctuation when mean values of
periods and amplitudes for a set of prototypical patterns are learned from such fluctuated
teaching samples. (iii) Robustness in recognizing novel fluctuated test patterns by means
of inferencing the internal states by the error regression can be obtained when a network
achieved generalization in learning.

We evaluated the aforementioned ideas by conducting a simple simulation experi‐
ment and an embodied experiment on imitative interaction between a robot and human
subjects. The paradigm of synchronized imitation [9] in which the network models
trained for a set of prototypical sequential pattern can “recognize” a given target
sequence pattern by predicting its next step value as synchronized with the input
sequence was employed in both experiments. This recognition by “predictive synchro‐
nization” can be performed by inferencing the internal neural states in different timescale
levels in the MTRNN model by means of the error regression.

Our first experiment showed that how mean values of periods and amplitudes for
two different prototypical cyclic patterns can be learned from multiple cyclic teaching
sample patterns which had different amplitudes and periods, obtained from a normal
distribution, in each cycle of them. Furthermore, it was shown how better the network
model trained with such modulated teaching samples can show synchronized imitation
with the test target input than the one trained with unmodulated teaching samples.
Moreover, it was revealed that the synchronized imitation using inferencing the internal
states by the error regression outperformed the conventional input entrainment scheme
where the feeding of cyclic inputs to the network model could entrain the internal neural
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dynamics for synchronization. In our last experiment, first, an imitation game [9] in
which a set of prototypical movement patterns were learned by a humanoid robot was
conducted. Then, several subjects were asked to explore those prototypical patterns
learned by the robot by means of the imitative synchronization. Our experimental results
showed how mutual imitation by synchronization between the robot and the human
subjects can be achieved in our proposed scheme in facing with naturally fluctuated
movement patterns of the human subjects when the network model in the robot have
been trained with modulated teaching samples.

2 MTRNN Model

2.1 Overview

MTRNN uses neurons with different timescales in order to develop the self-organization
of a functional hierarchy in which neurons with a small time constant are called fast
context (FC) units, and ones that have a bigger time constant are called slow context
(SC) units. In our robotic experiments, we also use another type of neurons that own an
intermediate time constant called middle context (MC) unit. There are no connections
between FC and SC units in this case. Similar to [10], input and output units are only
connected to FC neurons although all output units have a time constant of 1 in this paper
(there is no recurrency in output units). The current external input states can be received
by the input units, and their predicted states are generated by the output units. Neural
activities are calculated based on a conventional firing rate model in which each neuron’s
activity entails average firing rate of other neurons and its own decayed internal value
from the previous time step as shown in the following equation.

ui,t+1 = (1 −
1
𝝉 i

)ui,t +
1
𝝉 i

(
∑

j
wijcj,t +

∑
k

wikxk,t + bi) (1)

where ui,t is the internal state value of ith neuron at time t, wij is the connectivity weight
from ith context neuron to jth context neuron, wik is the connectivity weight from ith
neuron unit to kth input unit, cj,t is the context activation value of jth neuron at time t,
xk,t is the external input of kth input unit at time t, bi is the bias of the ith neuron, and 𝜏i

is the time constant of the ith neuron.

2.2 Generation and Training Method

The equations for the forward dynamics of the MTRNN can be seen in [10, 12]. A conven‐
tional back-propagation through time (BPTT) scheme [11] is used to train the networks.
Details about the calculation of softmax transformation for the input units and gradients of
learnable parameters (weights, biases, and initial states) can be seen in [10, 12]. We do not
include these equations here because of lack of space). In all of our experiments, the open-
loop generation approach is used in the training mode in which MTRNN receives the
current external inputs and generates one or multiple look-ahead prediction steps of the
outputs. Open-loop generation can also be called as the entrainment but we often use the
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first term in this paper. The closed-loop mode is defined as giving the current prediction
outputs to the next time inputs. This can also be referred as the mental simulation of
actions. A schematic of open-loop and closed-loop generations are shown in [12].

2.3 Training with Fluctuated Teaching Samples

In many real-time neuro-robotics experiments, it is expected to have modulations and
fluctuations in signals received by sensors due to plenty of reasons. Consequently, it is
crucial that the trained network should be robust enough in controlling the robots
successfully against such fluctuated perceptual input patterns. In the training phase of
MTRNN, we exploited several modulated teaching samples for each prototypical pattern
using the normal distribution in order to provide robustness of the trained network at
the moment of on-line recognition of untrained fluctuated patterns. It means that we
generated several target sequences in which amplitudes and periods were modulated
randomly by means of the normal distribution. Standard deviations were different for
each target sequence of a prototypical pattern. It is expected that prototypical patterns
with mean values of amplitudes and periods can be learned from their modulated
teaching samples as embedded in deterministic MTRNN by using the initial sensitivity
of the internal neural states. The intention for generating the corresponding prototypical
patterns and variance to account for deviation of each sample are represented by the
initial values of the internal neural states. The network can achieve a sort of generali‐
zation in learning accounting for possible fluctuations when a set of prototypical patterns
are learned from fluctuated teaching samples.

2.4 Inferencing the Internal States by the Error Regression

After a network is trained, it can achieve the imitative synchronization with the test
target inputs by inferencing the internal states by using the error signal between the test
input and the output. In the testing phase, by passing the output generation errors in a
bottom-up manner from the output units to all neural states of MTRNN, the intention
can be changed in a top-down manner from the higher neural states to the output units
within a temporal window (W) of the immediate past. More in detail, the generation
errors from the t-W time step to the current t time step can modulate the internal states
at the t-W time step, which result in updating of all context units inside the window, by
means of the BPTT scheme while the connectivity weights and biases obtained in the
training phase are fixed. This process is called inferencing the internal states by the error
regression. Unlike [8] who just updated the SC units, we updated the other contexts units
such as MC and FC units also in order to facilitate adaptation to the detail profiles in the
target patterns. Inferencing in lower-level internal states by the error regression can
facilitate modifications in higher-level internal states for both recognition of actual
behavior through the bottom-up pass way and intentional predictions through the top-
down pass way. Inferencing the internal states by the error regression was applied on
all time steps during the testing mode and in a closed-loop manner. More specifically,
there were no external inputs to MTRNN, and inferencing the internal states by the error
regression scheme was used in order to achieve the imitative synchronization with test
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target inputs by minimize the prediction error (closed-loop output patterns compared
with target patterns) inside the temporal window. The equations for updating the internal
states are similar to updating equations of the initial states in [12]. However, the error
regression adaptation rate (𝛼ER) was set to 0.001, and we did not use the momentum term
(𝜇) in this stage. The window length was set to 15 and inferencing the internal states by
the error regression was performed for 100 regression steps at each time step within this
temporal window in which all former internal states were overwritten from the t-15 time
step to the current t time step. By inferencing the internal states inside the temporal
window, the prediction of internal states and output values after the window referred as
the future plan can be also modified.

3 Numerical Experiment

To examine our proposed method for imitative synchronization with multiple modulated
test samples, we conducted one experiment in the simulation in which eleven MTRNN
models were trained to generate two-dimensional sinusoidal patterns. The equations to
generate sine curves are shown as followings
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where A, B are variables that modulate amplitude and period of the sine curves and p is
set to 30.

First, one MTRNN was trained by giving only two prototypical patterns to the input
units by setting A = B = 1 in both Eqs. (2) and (3). The variable x is an integer which
changes from 0 to 300 in order to produce 5 cycles of y1 and y2. The MTRNN consisted
of 30 fast and 15 slow context neurons with time constants of 2 and 50, respectively.
There were 11 softmax units for each real input and output dimensions, which means
that MTRNN models had 22 softmax input, and output units in this experiment.

The network was trained to generate 5 look-ahead prediction step (l = 5) of the input
sequences in their output units. Then, other ten MTRNN models were trained by the
same parameter setting as the first MTRNN model but 8 teaching patterns were given
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to each network. To generate 4 teaching signals for each prototypical pattern, A and B
in both Eqs. (2) and (3) were chosen randomly from a normal distribution with a mean
(𝜇) of 1 and standard deviations (𝜎) of 0.05, 0.1, 0.15, and 0.2 (𝜎 is 0.05 for the first
teaching signal and 0.1 for the second teaching signal, and so on). The outputs (y1 and
y2) consisted of 5 cycles in all teaching signals, and each cycle of them had different A
and B values. For example, the first teaching signal for the first MTRNN was generated
by picking 5 pairs of A and B values (each pair for one cycle) randomly from a normal
distribution with a mean of 1 and standard deviation of 0.05. For the other MTRNN
models, the same procedure was applied but all teaching signals were different because
of random selection of A and B values. All eleven networks were trained with the same
initial weights and biases for 3000 epochs to generate 5 look-ahead prediction step (l = 5)
of the input sequences in their output units.

After the training was finished for all networks, the closed-loop generation of all 8
modulated patterns were executed for 50000 time steps by starting from their corre‐
sponding initial states of the slow context neurons. In 10 MTRNN models with modu‐
lated training patterns, the closed-loop generation outputs were synchronizing with the
teaching signals. However, after a few hundred steps, A and B values of all modulated
patterns for the both prototypical patterns converged to the same values around the mean
(𝜇 = 1), which means that only one stable attractor was generated for each prototypical
pattern.

To test our MTRNN models for imitative synchronization, different modulated test
patterns were used for both closed-loop generation while inferencing the internal states
by the error regression and open-loop generation schemes. The fluctuated test patterns
were different in the amplitude, and period from the fluctuated teaching samples by
randomly picking different values of A and B in both Eqs. 2 and 3 from a normal distri‐
bution with mean of 1 and standard deviation of 0.3. Outputs and the mean square error
(MSE) of the first MTRNN model which was trained with unmodulated patterns and
one of the tenth MTRNN models which was trained with modulated patterns are depicted
in Fig. 1 given the first test target signal (obtained by Eq. 2). By looking at MSEs of two
networks, it can be observed that our proposed method significantly outperforms another
network. Results of other 9 MTRNN models, open-loop results, and results of fluctuated
test patterns obtained by Eq. 3 are not depicted because of lack of space. However, one
can compare all results in Table 1 that shows the average mean square error (MSE) of
the prediction outputs for all MTRNN models (with or without fluctuated teaching
samples) using closed-loop generation while inferencing the internal states by the error
regression and open-loop generation. MSE was summed up for all cycles of the predic‐
tion outputs except their transient response at the beginning (first 50 time steps) and
divided by the time step length to compute the average value. For 10 MTRNN models
with modulated patterns, 10 MSE values were obtained and average of them are repre‐
sented in Table 1 (third column). As can be seen, the MTRNN trained with fluctuated
teaching samples showed better performance in the imitative synchronization driven by
inferencing the internal states by the error regression.
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Fig. 1. Outputs and MSE results of two networks (one trained with modulated patterns and one
trained with unmodulated patterns) given modulated test pattern with different pairs of A and B
obtained from a normal distribution with mean of 1 and standard deviation 0.3.

Table 1. Average MSE of prediction outputs

MSE
ER W/O Mod ER W/Mod O-L W/O Mod O-L W/Mod

Pattern 1 0.0715 0.0202 0.2994 0.0456
Pattern 2 0.0467 0.0097 0.1695 0.0157

ER W/O Mod: error regression without modulated patterns
ER W/Mod: error regression with modulated patterns
O-L W/O Mod: open-loop generation without modulated patterns
O-L W/Mod: open-loop generation with modulated patterns.

4 Robot Experiments

We designed an imitative interaction game between a robot and human subjects for
investigating how well mutual imitation by synchronization can be achieved with natu‐
rally modulated patterns of the human subjects using the proposed scheme to control
the robot. One experiment was conducted for generation/recognition of multiple proto‐
typical movement patterns. We employed a NAO humanoid robot (developed by Alde‐
baran Robotics) and a Kinect sensor (developed by Microsoft) for imitative interaction
tasks. The Kinect SDK and OpenNI framework were used to track the 3-D (X, Y, Z)
coordinates of a human’s arm joints. The human-user arms’ 3-D positions were mapped
to the NAO’s arms’ 3-D positions with respect to the robot coordinate system. Next, the
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3-D positions of NAO were mapped to its joint angles (shoulder roll, and pitch and elbow
roll, and yaw) by applying the inverse kinematics. In our experiment, an imitation game
was designed for an imitative interaction game in which several human subjects were
asked to participate in an exploratory assignment.

First, the training data were collected by only one experimenter who interacted with
NAO using the direct method (without any networks). Three cyclic prototypical patterns
were generated by using only shoulder roll and pitch of both arms while other joint
angles were fixed. To generate the training data, we collected 5 training sequences for
each cyclic prototypical pattern. This means that we had 15 movement patterns (5 for
each prototypical pattern) that were used to train a MTRNN model, which consisted of
30 FC, 20 MC, 10 SC, 44 softmax input and 44 softmax output units. The time constants
of FC, MC, and SC units were set to 5, 25, and 150, respectively. One important point
is that there was around 520 ms delay between actual human movement patterns and
perceiving them by the Kinect sensor. To overcome this delay, the prediction step was
set to 7 because one-time step corresponded to 75 ms in our robot experiments. After
the training was completed successfully, the MTRNN model endowed with inferencing
the internal states by the error regression was used as the NAO’s brain in an imitative
interaction game.

10 university students (2 females and 8 males) participated in our experiment in
which they interacted with NAO without any prior knowledge about the movement
patterns trained. Their first task was to explore all of the prototypical patterns memorized
by the robot by achieving imitative synchronization for each pattern. They were given
20 min first for the exploration. All participants were able to interact with NAO success‐
fully. However, two of them could not figure out one of the movement patterns. The
second task for the subjects who successfully explored all patterns was to synchronize
with the robot. They had to repeat the movement pattern 1 first until they felt that they
were synchronized with NAO well, and then they could switch to the movement pattern
2 and do the same and finally, they could switch to the movement pattern 3 and
synchronize with the robot.

Figure 2 displays the dynamic for inferencing the internal states by the error regres‐
sion for one of the participants during the synchronization stage. In Fig. 2, switching of
the movement patterns from 1 to 2 (MP1 → MP2) and from 2 to 3 are shown on the top
of the sensory prediction panel. The temporal windows of the error regression at a
particular moment of switching from movement pattern 2 to 3 are depicted by gray areas
in all panels, and the right line of the windows display the current time. The neural
internal states cannot be modified before the temporal window but they can be revised
within the window to minimize the prediction error by means of BPTT to achieve the
imitative synchronization with the human subject’s movement patterns. The prediction
states after the window can be obtained by continuing the closed loop generation to the
end for each time step. As can be seen in the third row, at the transition point of the
movement pattern 2 to the movement pattern 3, a large error occurs. As a result, neural
internal states in both SC and FC units are revised in order to reduce the error, and the
intentional behavior generation is changed.
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Fig. 2. The dynamic for inferencing the internal states by the error regression for a human subject
in the synchronization stage of the imitation game.

5 Conclusion

It was shown in both numerical and robotic experiments that generalization in learning
accounting for possible fluctuations was achieved for the deterministic MTRNN by
using fluctuated samples for the training. By the aid of this generalization capability,
network exhibited robustness in recognizing novel fluctuated test patterns by inferencing
the internal states by the error regression. In our first experiment, the network trained
with teaching patterns in which the periods and amplitudes obtained from a normal
distribution with different standard deviations showed significantly better performance
than the one trained with unmodulated patterns. Furthermore, the superior performance
of the scheme of inferencing the internal state by error regression compared to conven‐
tional entrainment scheme reveled the effectiveness of the on-line modulation of the
internal states by the error regression for achieving imitative synchronization.

The second experiment showed that aforementioned advantageous characteristics of
the employed model could appear even in quite natural setting of human-robot imitative
interaction during spontaneous mutual exploration between two sides. Possible scaling
of the proposed scheme such as introducing much more number of more complex human
movement patterns with replacing the current Kinect input to pixel level visual inputs
should be considered in future study.
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Abstract. Graph Cuts has became increasingly useful methods for the
image segmentation. In Graph Cuts, given images are replaced by grid
graphs, and the image segmentation process is performed using the min-
imum cut (min-cut) algorithm on the graphs. For Graph Cuts, the most
typical min-cut algorithm is the B-K algorithm. While the B-K algo-
rithm is very efficient, it is still far from real-time processing. In addition,
the B-K algorithm gives only the single min-cut even if the graph has
multiple-min-cuts. The conventional Graph Cuts has a possibility that a
better minimum cut for an image segmentation is frequently overlooked.
Therefore, it is important to apply a more effective min-cut algorithm
to Graph Cuts. In this research, we propose a new image segmentation
technique using Graph Cuts based on the maximum-flow neural network
(MF-NN). The MF-NN is our proposed min-cut algorithm based on a
nonlinear resistive circuit analysis. By applying the MF-NN to Graph
Cuts instead of the B-K algorithm, image segmentation problems can
be solved as the nonlinear resistive circuits analysis. In addition, the
MF-NN has an unique feature that multiple-min-cuts can be find easily.
That is, it can be expected that our proposed method can obtain more
accurate results than the conventional Graph Cuts which generates only
one min-cut. When the proposed circuit model is designed with the inte-
grated circuit which can change graph structure and branch conductance,
a novel image segmentation technique with real-time processing can be
expected.

1 Introduction

In recent years, Graph Cuts is used as an effective technique for the image seg-
mentation [1]. The accuracy of the image segmentation by Graph Cuts is superior
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 403–412, 2016.
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to other several state of the art interactive tools such as Magic Wand, Intelli-
gent Scissors, Level Sets and for matting [2]. In Graph Cuts, given images are
replaced by grid graphs with defined edge weights, and the image segmentation
is realized by finding a minimum cut (min-cut) of the graph using the min-cut
algorithm. Therefore, the most of a performance of Graph Cuts is affected by
the min-cut algorithms. For Graph Cuts, the most typical min-cut algorithm is
the B-K algorithm proposed by Y. Boykov and V. Kolmogorov [4]. While the
B-K algorithm is very efficient, with the execution time of only a few seconds for
a typical problem, it is still far from real-time processing. In general, real-time
processing is the very important issue in vision applications. In addition, the
B-K algorithm gives only the single min-cut even if the graph has multiple min-
cuts. Multiple min-cuts show that plural cuts with the same min-cut capacity
exist in the same graph. The conventional Graph Cuts has a possibility that a
better minimum cut for an image segmentation is frequently overlooked. There-
fore, a novel Graph Cuts that corresponds to real-time processing and multiple
min-cuts is required.

In this paper, we propose a new image segmentation technique using Graph
Cuts based on the maximum-flow neural network (MF-NN). The MF-NN is our
proposed min-cut algorithm based on a nonlinear resistive circuit analysis [6].
The MF-NN in which each neuron nonlinearity has a saturation characteristic
defined by the piecewise linear function can be realized by using a simple non-
linear resistive circuit, and has the advantage of being suitable for hardware
implementation. The hardware implementation of the MF-NN can be associated
with “network flow optimization by a resistor circuit” by M. Hasler and J.-E.
Nussbaumer [7]. By applying the MF-NN to Graph Cuts instead of the B-K
algorithm, image segmentation problems can be solved as the nonlinear resis-
tive circuits analysis. In addition, we previously reported that the MF-NN has
an unique feature that multiple min-cuts can be find easily [8]. That is, it can
be expected that our proposed method can obtain more accurate results than
the conventional Graph Cuts which generates only one min-cut. Moreover, when
the proposed circuit model is designed with integrated circuits such as analog
type Programmable Logic Device (PLD), Memristor or Phase Change Memory
(PCM) which can change graph structure and branch conductance, the novel
Graph Cuts based on the MF-NN with real-time processing can be expected.

2 Image Segmentation by Graph Cuts

In this section, we explain about the conventional Graph Cuts for the image
segmentation [3]. Let each pixel in an image P be considered as p ∈ P, each
label on the pixel is set to L = {Lp | p ∈ P}. Each Lp belongs to either an
object label (“obj”) or a background label (“bkg”), and adjacent pixels of p is
set to q ∈ N where N is a set of all pairs of neighboring pixels. Then, the soft
constraints that we impose on boundary and region properties of L are described
by the cost function E(L):

E(L) = λ · R(L) + B(L), (1)
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Fig. 1. Weighted graph made from input image.

where

R(L) =
∑
p∈P

Rp(Lp), (2)

B(L) =
∑

(p,q)∈N
B{p,q} · δ(Lp, Lq), (3)

and

δ(Lp, Lq) =

{
1, ifLp �= Lq,

0, otherwise.
(4)

The coefficient λ ≥ 0 in (1) specifies a relative importance of the region prop-
erties term R(L) versus the boundary properties term B(L). The regional term
R(L) assumes that the individual penalties for assigning pixel p to “object” and
“background”, correspondingly Rp(obj) and Rp(bkg), are given. The image seg-
mentation is performed by finding the label L which minimizes the cost function
E(L) defined by R(L) and B(L) using Graph Cuts.

In Graph Cuts, the image is replaced by a graph G as shown in Fig. 1. The
graph G consists of a source S, a terminal T and nodes corresponding to each
pixel of the image. An edge connected to each node is called “n-link”, and an
edge connected form each node to S and T is called “t-link” as shown in Fig. 1(b)
and (c), respectively. Each edge cost of n-link and t-link is set as shown in Table 1.
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Table 1. Each edge cost in G.

Edge Cost For

n-link {p, q} B{p,q} {p, q} ∈ N
t-link {p, S} λ · Rp(bkg) p ∈ P, p /∈ O ∪ B

K p ∈ O
0 p ∈ B

{p, T} λ · Rp(obj) p ∈ P, p /∈ O ∪ B
K p ∈ O
0 p ∈ B

The functions Rp(obj), Rp(bkg), B{p,q} and K are defined by

B{p,q} ∝ exp

(
− (Ip − Iq)2

2σ2

)
· 1
dist(p, q)

, (5)

Rp(obj) = −lnPr(Ip|O), (6)
Rp(bkg) = −lnPr(Ip|B), (7)

K = 1 + max
p∈P

∑
q:{p,q}∈N

B{p,q}, (8)

where B{p,q} penalizes a lot for discontinuities between pixels of similar intensi-
ties when |Ip − Iq| < σ. However, if pixels are very different, |Ip − Iq| > σ, then
the penalty is small. dist(p, q) is the Euclidean distance between p and q. O
and B denote the subsets of pixels marked as “object” and “background” seeds,
respectively. The seeds of O and B must be specified by user in advance. Ip is
a luminosity value of the pixel p. Pr(Ip|O) and Pr(Ip|B) are histograms for O
and B intensity distributions, and these histograms are used to set the regional
penalties Rp(obj) and Rp(bkg) as negative log-likelihoods.

The image segmentation is realized by finding a min-cut of the graph G
using the min-cut algorithm as shown in Fig. 1(d). In the image segmentation by
Graph Cuts, the most typical min-cut algorithm is the B-K algorithm proposed
by Boykov and Kolmogorov [4]. While the B-K algorithm is very efficient, with
the execution time of only a few seconds for a typical problem, it is still far
from real-time processing. In addition, since the B-K algorithm gives only the
single min-cut even if the graph has multiple min-cuts, there is a possibility that
the conventional Graph Cuts frequently misses a better min-cut for the image
segmentation.

3 Grash Cuts Based on Nonlinear Resistive Circuits

In our previous study, we proposed the Maximum-Flow Neural Network (MF-
NN) which is the effective min-cut algorithm based on nonlinear resistive circuits,
and we reported that the MF-NN has an unique feature that multiple min-cuts
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Fig. 2. Association between neuron i and j.

can be find easily [8]. In this research, the graph G as shown in Sect. 2 is replaced
by the nonlinear resistive circuit, and image segmentation problems are solved
by the nonlinear resistive circuits analysis.

3.1 Maximum-Flow Neural Network

Now, we explain about the MF-NN. Each neuron is connected by the nonlin-
ear resistance which has a saturation property, and the state equation of the
MF-NN is described by the simultaneous differential equation on the node volt-
age. Figure 2 shows the connection between a neuron vi and a neuron vj in the
nonlinear resistive network. Aij is a nonlinear resistance that exists between vj

and vi. The MF-NN has the saturation characteristic such that the entire net-
work converges to the equilibrium state if a certain amount of the current in the
S-point vS goes out. The I-V characteristic from vi to vj is described by

Iij = Aijf(ui − uj), (9)

where

f(x) =

⎧
⎪⎨
⎪⎩

1, for Vth � x,

x/Vth, for 0 < x < Vth,

0, for x � 0.

(10)

Aij is defined by the branch capacity cij in given flow network. If a directional
branch from vi to vj does not exist, Aij is defined by Aij = 0. Iij is a current value
that flows from vi to vj , and Iij is equal to the flow fij in a flow network. ui and
uj are node voltages of the neuron vi and vj respectively. Vth is an important
positive threshold which determines the range of the potential difference that
shows the state of each branch in the equilibrium state. Now, the state equation
of the MF-NN is given by

Ci
dui

dt
= −

n∑
vj∈Γ (vi)

Aijf(ui − uj)

+
n∑

vk∈Γ−1(vi)

Akif(uk − ui), (11)
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Fig. 3. Minimum cut by MF-NN.

where
0 � Aijf(ui − uj) � Aij = cij (12)

Γ (vi) = vj

∣∣ (vi, vj) ∈ B(N),

Γ−1(vi) = vj

∣∣ (vj , vi) ∈ B(N). (13)

Ci is a capacitor that exists between vi and the ground (0V). The S-point vS

and the T-point vT do not have these capacitors. A constant initial voltage uS

is given to vS , and vT is grounded (uT = 0V). When the network goes to the
equilibrium state, solutions of the state equation converge as follows,

lim
t→∞ Ci

dui

dt
= 0. (14)

Then the maximum flow Fmax which is the sum of currents from vS is given by

Fmax =
n∑

vi∈Γ (vS)

Asif(uS − ui). (15)

The min-cut which is a cut with the smallest cut capacity can be obtained
from node voltages ui in equilibrium state. The cut is a partition of the vertices
of the graph into two disjoint subsets that are joined by at least one edge, and the
total of branch capacities contained in the cut is called the cut capacity. In the
MF-NN, the min-cut can be defined by a boundary of potential difference which
is Vth and more in (10) between two disjoint node-subsets. For example, when
node voltage is arranged according to high voltage (va, vb, · · · , ve) as shown in
Fig. 3, the boundary between vc and vd which is “Vth � Vcd” becomes the min-
cut. When multiple min-cuts exist in the same graph, we can easily obtain all
min-cuts by finding all boundary lines with the potential difference over Vth.
The unique feature of the node information (node voltages ui) in the MF-NN
enables to obtain multiple min-cuts.
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3.2 Nonlinear Resistive Circuits for Grash Cuts

We apply the MF-NN to Graph Cuts as an alternative to the B-K algorithm, and
solve image segmentation problems by the nonlinear resistive circuits analysis.
The graph G as shown in Fig. 1(d) is replaced by the nonlinear resistive circuit
as shown in Fig. 4. Each Aij is the edge cost defined as shown in Table 1. The
threshold of (10) is set to Vth = 1V. A voltage uS = 100V is constantly given to
S, and T is grounded (uT = 0V). Then, the voltage distribution is generated as
shown in Fig. 5. From this circuit analysis, it is observed that the boundary line
in which potential difference is over Vth corresponds with the min-cut. That is,
in the proposed method, image segmentation results can be obtained by finding
the boundary line in the voltage distribution.

4 Simulation Result

In this simulation, we uses three color images as shown in Figs. 6(a), 7(a) and
8(a). Each image size was 481 × 321, 249 × 196, and 256 × 256, respectively.
The object label (“obj”) and the background label (“bkg”) were indicated in
red line and blue line as shown in Figs. 6(b), 7(b) and 8(b). From nonlinear
resistive circuits analysis by our proposed method, each voltage distribution
was generated as shown in Figs. 6(c), 7(c) and 8(c). Figures 6(d), 7(d) and 8(d)
showed each voltage distribution from a different angle where the horizontal
axis is voltage [V ]. All min-cuts in each figures were marked with dot-lines.
Image segmentation results by the conventional Graph Cuts were obtained as
shown in Figs. 6(e), 7(e) and 8(e). The best image segmentation results by our
proposed Graph Cuts were obtained as shown in Figs. 6(f), 7(f) and 8(f). Since
our method could obtain image segmentation results with the same number of
min-cuts which include the result by the conventional Graph Cuts, we selected
the best image segmentation result on our judgement in this simulation.
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Fig. 6. Deer simulation.

Fig. 7. Starfish simulation.
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Fig. 8. Parrots Simulation

The different between the conventional Graph Cuts and the proposed Graph
Cuts were marked with dotted line circles on Figs. 6(e), 7(e) and 8(e). The con-
ventional method could not remove a portion of background area where a seg-
mentation is difficult in particular. On the other hands, our proposed method
successfully removed theses areas. The way to select one best min-cut automat-
ically from all min-cuts will be considered in our future work.

5 Conclusion

In this research, we proposed a new image segmentation technique using Graph
Cuts based on the maximum-flow neural network (MF-NN). By applying the
MF-NN to Graph Cuts, image segmentation problems can be solved as the non-
linear resistive circuits analysis. Moreover, we showed that the proposed method
can obtains more accurate results than the conventional Graph Cuts. A higher
precision segmentation which has been overlooked in the conventional method
became possible by getting various output images from multiple min-cuts. The
circuit analysis of the proposed model was performed by computer simulation.
Since there is the premise that real-time processing is realized by the hardware
implementation, we did not make a comparison of the computation time by
computer simulation in this experiment. The hardware implementation of our
proposed method is an issue in the future. When the proposed circuit model can
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be designed in future by the integrated circuit like analog type Programmable
Logic Device (PLD), Memristor or Phase Change Memory (PCM) which can
change graph structure and branch conductance, the novel image segmentation
technique with real-time processing can be expected.
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Abstract. This paper considers the joint routing and bitrate adjust-
ment optimization for DASH (Dynamic Adaptive Streaming over HTTP)
video service using neuro-dynamic programming (NDP) in software-
defined networking (SDN). We design an open optimization architec-
ture based on OpenFlow based SDN. Following this architecture, we
formulate the joint routing and bitrate adjustment problem as a Markov
Decision Process (MDP) for maximizing the average reward. In order to
solve the curses of dimensionality, we employ neuro-dynamic program-
ming method to conceive an online learning framework and develop a
NDP based joint routing and bitrate adjustment algorithm for DASH
video service. At last, an emulation platform based on POX and Mininet
is constructed to verify the performance of the proposed algorithm. The
experimental results indicate our algorithm has more excellent perfor-
mance compared with OSPF based algorithm.

Keywords: DASH · Neuro-dynamic programming · Bitrate adjust-
ment · Routing algorithm · Software-defined networking

1 Introduction

With the significant advances of the video compression technology, video ser-
vices are widely provided via Internet. Dynamic Adaptive Streaming over HTTP
(DASH) is an adaptive bitrate streaming technique that enables high quality
streaming of media content to be delivered from conventional HTTP web servers.
DASH works by breaking the content into a sequence of small HTTP-based file
segments. Each segment contains a short part of the content and the content
is compressed with different bit rates. Users can autonomously select video seg-
ments based on current network conditions. However, with the expansion of the
scale of DASH video service, it is unpractical to handle the rapidly increas-
ing bandwidth requirements in the conventional network by increasing physical
bandwidth. Software-defined networking (SDN) [1] has been fast emerging as
a promising network technology. The architecture of OpenFlow-based [2] SDN
provides the programmability of multiple network layers to improve the utility
of network resources and the network agility. Against this network, we conceive
a joint routing and bitrate adjustment algorithm for DASH video service.
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 413–420, 2016.
DOI: 10.1007/978-3-319-46687-3 46
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Fig. 1. SDN experimental environ-
ment framework

Fig. 2. Architecture of DASH video
transmission service

There are some related researches on routing and bitrate adaptation algo-
rithm. [3,4] propose routing algorithms respectively from two aspects of user
perception and power allocation in wireless networks. An online routing algo-
rithm using neuro-dynamic programming (NDP) method is proposed in [5]. In
[6], a DASH video routing algorithm in SDN is presented based on segment
flows. And a dynamic adaptive bitrate algorithm is proposed in [7,8] according
to playback buffer state of DASH client. However, there are very few researches
discussing a centralized management algorithm for both DASH video routing
and bitrate adjustment.

In this paper, we formulate the problem of routing and bitrate adjustment
for DASH video transmission in SDN as a Markov decision process [12]. In con-
sideration of the large scale in our network, it is unpractical to solve our problem
by traversing the state space. NDP [9,13,14] is an approximate dynamic pro-
gramming methodology which could provide an approximate value function for
MDP solution. Hence, we employ NDP method to solve the curses of dimen-
sionality of our problem. The main contributions of this paper are enumerated
as follows. Firstly, an open architecture for joint routing and bitrate adjust-
ment optimization is constructed based on OpenFlow. Based on the observable
network state from the network view provided by OpenFlow controller, we for-
mulate the routing and bitrate adjustment into Markov decision problem (MDP)
of maximizing the average reward. To solve the curses of dimensionality of the
problem, we employ NDP method to construct an online learning framework. At
last, in order to verify the performance of the proposed algorithm, we develop an
emulation platform and the experimental results show that the proposed strat-
egy significantly improves performance compared with a commonly used OSPF
based algorithm.

2 System Model

The OpenFlow based network for the DASH video service is shown in Fig. 1. The
network consists of OpenFlow switches as a software-defined substrate layer. A
global OpenFlow controller controls all the switches as a control layer, while the
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management and decision is in the charge of the management server. In addition,
a DASH video server is deployed to provide DASH video contents.

We conceive an open architecture for joint routing and bitrate adjustment
optimization as depicted in Fig. 2. It is composed of Management Server, Open-
Flow Controller, OpenFlow Switches, DASH Server and Users. The basic serving
process of the system is described as below. Users request video transmissions
from the DASH Server. The User Manager in the Management Server authorize
the access to the video service if there are available paths for the transmission.
Then the request is further forwarded to the Decision Manager in the Man-
agement Server to select an optimal path for the transmission. The Decision
Manager will notify the OpenFlow Controller to map the routing decision into
forwarding rules and flush these rules into the flow tables in the OpenFlow
switches. When there is a bitrate adjustment request from the access user, the
Decision Manager in the Management Server will agree the bitrate adjustment
request if there is an increase in the average reward. Otherwise, the bitrate
adjustment request will be rejected.

3 Dynamic Programming Formulation

The problem of routing and bitrate adjustment for DASH video transmission
could be formulated as a Markov decision process. We consider an OpenFlow
network consisting of a set of node N = {1, · · · , N} and a set of unidirectional
links L = {1, · · · , L}, where each link l has a total capacity of B(l) units of
bandwidth. Let us define bt(l) to denote the traffic of the link l at the time
instant t, which satisfies the capacity constraints, i.e., bt(l) ≤ B(l). Then, the
state st of the network at time t consists of a list of the link traffics bt(l), i.e.,
st = [bt(1), bt(2), · · · , bt(L)]T . The set of all possible states is referred to as the
state space S. Let M = {1, · · · ,M} be the set of the video identifiers, where
each video m has n layers with different bitrates and bandwidth requirements.
Let c(m,n) be the immediate reward obtained whenever the request of the layer
n of the video m is accepted.

When a DASH video transmission request arrives or a bitrate adjustment
request arrives or a transmission is completed, we say that an event e ∈ E
occurs. When e is a departure event, there is no action to taken. If a DASH video
transmission request of the layer n of the video m arrives, the action space A(s, e)
is defined as the set of the rejection action and the possible routes. The rejection
action takes place when the bandwidth requirement does not meet the capacity
constraints. When a bitrate adjustment request of the access user arrives, the
path for the transmission will not be changed, the only action is accepting the
bitrate adjustment request or rejecting it. The instantaneous reward after taking
the action a is defined as f(s, e, a). If e represents the video transmission request
of the layer n of the video m and a is an action to admit the video m along a
route, we have f(s, e, a) = c(m,n), or e represents the bitrate adjustment request
of changing the layer of the video m to n′, then f(s, e, a) = c(m,n′) − c(m,n).
Otherwise, f(s, e, a) = 0.
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We define a policy μ to map the state space and the event space to the action
space, i.e., μ(s, e) ∈ A(s, e),∀s ∈ S, e ∈ E . Then the average reward associated
with the policy μ could be defined as

υ(μ) = lim
N→∞

1
tN

N−1∑
k=0

f(stk , ek, atk), (1)

where tk is the time of the kth event ek occurring, and atk = μ(stk , ek) is
the corresponding action. Then, the target of the problem is maximizing υ(μ).
This could be solved as a dynamic programming problem [11]. Let J∗(s) be
the optimal (maximal) expected long-term reward (cost-to-go function) starting
from state s. Then Bellman’s equation takes the following form

υ∗Eτ{τ |s} + J∗(s) = Ee{ max
a∈A(s,e)

[f(s, e, a) + J∗(s′)]}, s ∈ S. (2)

Here, v∗ denotes the optimal average reward and τ is the time from current
state s to the next state s′. Eτ{τ |s} stands for the expectation of τ under the
current state s. On the right side of the equation, Ee{·} is the expectation
reward associated with event e. According to Bellman’s equation, the optimal
policy could be given by

μ∗(s, e) = arg max
a∈A(s,e)

[f(s, e, a) + J∗(s′)]. (3)

When a bitrate adjustment request of changing the layer of the video m to
n′ arrives, the corresponding reward by the layer changing can be defined as

ΔQ = c(m,n′) − c(m,n) + J∗(s′) − J∗(s). (4)

The bitrate adjustment request will be accepted if the bandwidth requirement
meets the capacity constraints and ΔQ > 0.

It is easy to solve the problem and make the optimal action while we know
the long-term reward J∗(s) of each state. However, the state in our system is
defined as the traffic of all links. Then the cardinality of state space is very large.
It is too hard to compute the long-term reward with traversing the state space.
Hence, we employ the method of NDP, which could provide an approximate
reward function to obtain an approximate optimal policy.

4 Neuro-Dynamic Programming Solution

4.1 Approximation Architecture

Neuro-dynamic programming is a simulation based approximate dynamic pro-
gramming methodology. The central idea of NDP is an approximate architecture
shown in Fig. 3, which is easy to calculate to replace the long-term reward func-
tion. In order to select an approximation architecture for J̃(s′, α) to replace
J∗(s′) in (3), we need to define a feature vector r(s′) [10], which is understood
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Fig. 3. Approximating architecture of NDP system.

as feature extractor in Fig. 3. The feature vector is extremely important to indi-
cate the basic characteristic of the current state. And it is usually handcraft
based on insight or experience. In our system, the traffic of links is used as the
feature which shows the information of the current state and the future capac-
ity of the links. We consider a linear architecture, and let J̃(s′, α) = αT r(s′),
where the superscript T stands for transpose. The dimension of the parameter
vector α is equal to the dimension of the feature vector. Then the approximation
architecture could be the form of

J̃(s′, α) =
∑
l∈L

[α(l) + α(l, b)b(l) + α(l, b, b)b(l)2]. (5)

The dimension of parameter α is equal to 3L, where L is the number of links in
our system. Then the optimal policy is changed to the form

μα(s, e) = arg max
a∈A(s,e)

[f(s, e, a) + J̃(s′, α)]. (6)

And the reward by the layer changing can be given by

ΔQα = c(m,n′) − c(m,n) + J̃(s′, α) − J̃(s, α). (7)

4.2 Iteration Method

In this section, we employ the simplest version of Temporal-Difference (TD)
learning algorithm, which is called the TD(0) algorithm, to train the parameter
α. The central idea of TD(0) is to improve the approximation of the optimal
value function as more state transitions are observed. The iteration rules are
given as follow:

αk = αk−1 + γkdk∇αJ̃(stk−1 , αk−1), (8)

where dk is the temporal difference, which is defined by

dk = f(sk−1, e, atk−1) + J̃(stk , αk−1) − J̃(stk−1 , αk−1) − υ̃k−1Δtk. (9)

Then the optimal average reward changes with iteration as follow:

υ̃k = υ̃k−1 + ηk(f(sk−1, e, atk−1) − υ̃k−1Δtk). (10)
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Here, Δtk = tk − tk−1, which is due to Eτ{τ |s} in (2). And γ and η are small
step size parameters, which should satisfy the following conditions generally:∑∞

k=0 γk = ∞, sum∞
k=0γ

2
k < ∞,

∑∞
k=0 ηk = ∞,

∑∞
k=0 η2

k < ∞.

4.3 Decision Process

After the steps presented above. The specific steps of the decision process are
shown as follow:

Step (1) With an initial state s0 and a parameter vector α0. Establish the
approximation architecture J̃(s0, α).

Step (2) When a new video transmission request arrives, make approximate
optimal action μα(s, e) by (6). When a btirate adjustment request
arrives, agree the bitrate adjustment request if the bandwidth require-
ment meets the capacity constraints and ΔQα > 0

Step (3) Update the parameter vector α under previous action by (8). The
approximate optimal average reward υ is obtained by (10).

Step (4) Return to step (2) if a new video transmission request or a bitrate
adjustment request arrives. Otherwise, update the state if a transmis-
sion is completed.

5 Experimental Results

In this section, we developed an emulation platform by integrating POX and
Mininet, where POX is a real python-version OpenFlow controller, and Mininet
is a network emulation orchestration system. For the performance comparison,
we also implemented OSPF routing strategy. OSPF is a widely applied routing
algorithm which preferentially selects the shortest path by using Dijkstra algo-
rithm. In this benchmark algorithm, the DASH video transmission request and
the bitrate adjustment request are accepted if the available bandwidth could
accommodate the video stream.

As shown in Fig. 4, our experiment system includes 7 OpenFlow switches
and 9 links. The bandwidth of each link is set to 100 Mbps. The DASH server is
connected to switch 2 and users are attached to the switch 1 and switch 3 which
are regarded as the access points. Each access point has 100 users to randomly
request the DASH video content. Three kinds of video are encoded to different
bitrate and the corresponding information of the videos is shown in Table 1. In
the experiment, each DASH client randomly requests a video transmission with
the lowest bitrate, and will select a bitrate version for the next segment based
on the average bitrate, which is calculated by gathering statistics of the total
bytes and time of the transmission.

We compare our algorithm with OSPF algorithm under different arrival inter-
vals of users. The average reward of two algorithms is shown in Fig. 5. In most of
the time, OSPF algorithm causes a more loss of average reward, because OSPF
algorithm cannot provide reasonable path management and bitrate management



Joint Routing and Bitrate Adjustment for DASH Video 419

Fig. 4. Topology of the experiment.

Table 1. DASH videos.

Video Bitrate Bandwidth Reward

Video 1a 2000 3.91 10

5000 5.68 12

8000 8.49 14

Video 2b 2000 3.57 11

5000 7.63 14

8000 9.55 17

Video 3c 2000 4.22 10

5000 8.19 15

8000 9.7 17
aBig Buck Bunny
bElephants Dream
cRed Bull Playstreets
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for DASH users. By comparison, our algorithm based on NDP can provide rea-
sonable path management for DASH video transmission according to global net-
work state. Meanwhile, our algorithm can also provide the bitrate adjustment
management and reject the bitrate adjustment request when the bitrate adjust-
ment cannot increase the average reward. The percentage of the access users
in Fig. 6 further confirms the decision by our algorithm. Therefore, the results
of the experiment indicate the joint routing and bitrate adjustment algorithm
for DASH video transmission proposed by this paper can effectively increase
the average reward and realize the efficient utilization of network bandwidth
resources.

6 Conclusion

In this paper, we considered the joint routing and bitrate adjustment optimiza-
tion for DASH video service in SDN. We conceived an open architecture based
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on OpenFlow. Based on the observed network state provided by OpenFlow con-
troller, we formulated the joint routing and bitrate adjustment problem into
Markov decision problem of maximizing the overall average reward. The neuro-
dynamic programming solution is employed to handle the curse of dimensionality
in the context of MDP. In order to verify the performance of the proposed algo-
rithm, we developed an emulation platform by integrating POX and Mininet.
The experimental results show that the proposed method has higher achievable
performance compared with the OSPF based algorithm.
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Abstract. This paper studies dynamic binary neural networks that can
generate various periodic orbits. The networks is characterized by signum
activation function and ternary connection parameters. In order to ana-
lyze the dynamics, we present two simple feature quantities that char-
acterize plentifulness of transient phenomena and superstability of the
periodic orbits. Calculating the feature quantities for a class of networks,
we investigate transient and superstability of the periodic orbits.

Keywords: Dynamic binary neural networks · Periodic orbits ·
Stability

1 Introduction

Applying a delayed feedback to the binary feed forward network [1,2], the
dynamic binary neural network (DBNN) is constructed [3–5]. The DBNN is
characterized by signum activation functions, ternary connection parameters,
and integer threshold parameters. Depending on parameters and initial condi-
tions, the DBNN can generate various binary periodic orbits in the steady state.
The DBNN is based on the logical/sequential circuits [1] and the dynamics can
be integrated into the digital return map (Dmap) defined on a set of points [3].
The Dmaps are regarded as a digital version of analog return maps, important
study objects in nonlinear dynamics [6]. The Dmaps are related deeply to the
cellular automata that can generate various spatiotemporal patterns [7]. Engi-
neering applications of the cellular automata and DBNN include information
compressors [8], image processors [9], and control of switching circuits [3,10].
Analysis of the DBNN is important not only as fundamental nonlinear problems
but also for engineering applications. However, systematic analysis is not easy
because the dynamics is complex even in a simple class of DBNNs.

In order to analyze the dynamics, this paper presents two simple feature
quantities. The first quantity characterizes plentifulness of transient phenomena.
The second quantity characterize superstability such that all the initial values fall
instantaneously into a periodic orbit. Using the feature quantities, we construct
a feature plane that is useful in visualization and classification of the stability.

This work is supported in part by JSPS KAKENHI#15K00350.
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We then analyze a simple class of DBNNs: 6-dimensional DBNNs having several
periodic orbits. Calculating the feature quantities, it is shown that the simple
DBNNs can generate a variety of periodic/transient phenomena and cutting
connection can reinforce stability of the periodic orbits.

2 Dynamic Binary Neural Networks

Let us begin with introducing the dynamic binary neural network (DBNN) and
digital return map (Dmap) presented in [3–5]. As shown in Fig. 1, The DBNN is
constructed by applying a delayed feedback to a feed-forward network with the
signum activation function. The dynamics is described by

xt+1
i = sgn

⎛
⎝

N∑
j=1

wijx
t
j − Ti

⎞
⎠ (1)

sgn(x) =
{

+1 for x ≥ 0
−1 for x < 0 i = 1 ∼ N

ab. xt+1 = F1(xt), xt ≡ (xt
1, · · · , xt

N ) ∈ BN

where xt is a binary state vector at discrete time t and xt
i ∈ {−1,+1} ≡ B is

the i-th element. The dimension N is a finite positive integer. The connection
parameters are ternary wij ∈ {−1, 0,+1} and the threshold parameters are
integers Ti ∈ {0,±1,±2, · · · }. Let w = (wij) denote the connection matrix. The
“0” elements in w can be effective to suppress spurious memories as discussed
in [5]. When an initial state vector x1 is given as an input, the DBNN outputs
x2, the x2 is fed back as the next input. Repeating in this manner, the DBNN
generates a binary sequence. Since the number of the N -dimensional binary
vector is finite, the DBNN must exhibits a binary periodic orbit (BPO) in the
steady state.

In order to analyze the DBNN, we introduce the Dmap. Since the set of all
the binary vectors BN is equivalent to a set of 2N points L2N , the dynamics of
the DBNN can be integrated into the Dmap

xt+1 = FD(xt), xt ∈ {C1, · · · , C2N } ≡ L2N .

The 2N points C1 to C2N are expressed by decimal value of the binary code. xt

denotes a variable of Dmap corresponding to xt of DBNN. Figure 1 illustrates
the DBNN and its Dmap for N = 3 where L23 = {C1, · · · , C8}; C1 = 0 ≡
(−1,−1,−1), · · · , C8 = 7 ≡ (+1,+1,+1); It should be noted that, since the
number of points in L2N is 2N , direct memory of all the inputs/outputs becomes
hard/impossible as N increases. However, for relatively small value of N , the
DBNN can exhibit a variety of periodic/transient phenomena some of which are
applicable to engineering systems. For examples, the cases N = 6 and N = 9
have been applied to control signal of switching power converters [3–5].
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Fig. 1. DBNN and Dmap. wij = 1: red branch. wij = −1: blue branch. wij = 0: no
connection. Red points: PEPs. Blue orbit: a PEO with period 2. (Color figure online)

3 Feature Quantities

Here we present two feature quantities and a feature plane in order to analyze
various BPOs of the DBNN. As preparations, we give basic definitions.

Definition 1. A point xp ∈ L2N is said to be a periodic point (PEP) with period
p if F p

D(xp) = xp and FD(xp) to F p
D(xp) are all different where F p

D is the p-fold
composition of FD. A periodic point with period 1 is referred to as a fixed point.
A sequence of the PEPs, {FD(xp), · · · , F p

D(xp)}, is said to be a periodic orbit
(PEO). Note that the steady state must be a PEO (corresponding to a BPO of
the DBNN) because the domain L2N consists of a finite number of the points.
Note also that at least one PEP must exist in the Dmap. Figure 1 shows a Dmap
and a PEO with period 2.

Definition 2. A point xe ∈ L2N is said to be an eventually periodic point (EPP)
with step q if xe is not a PEP but falls into some PEP xp after q iterations:
F q(xe) = xp. The EPPs are basic to consider stability of a PEO. An EPP with
step 1 is said to be a direct eventually periodic point (DEPP). A PEO (PEP) is
said to be superstable if all the points are DEPPs (except for the PEP).

Here we present two feature quantities. The first quantity is the rate of EPPs
that can characterize plentifulness of transient phenomena:

α =
The number of EPPs

2N
,

1
2N

≤ α ≤ N − 1
2N

. (2)

The second quantity is the rate of DEPPs that can characterize similarity to
superstability:

β =
The number of DEPPs

2N
,

1
2N

≤ β ≤ α. (3)

As β increases, a PEO approaches to be superstable. A PEO with k is superstable
if β = α = (1 − k)/2N .
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Fig. 2. Dmap examples. (a) wij in Table 1 and Ti = 0. One PEO with period 4 and
one fixed point. α = 59/64, β = 17/64. (b) wij in Table 2 and Ti = 0. One PEO period
4. α = 60/64, β = 44/64

Table 1. Connection matrix
example 1

j 1 2 3 4 5 6

w1j −1 +1 0 −1 0 +1

w2j −1 0 −1 +1 +1 0

w3j +1 −1 0 −1 0 +1

w4j +1 −1 0 +1 0 −1

w5j +1 0 +1 −1 −1 0

w6j −1 +1 0 +1 0 −1

Table 2. Connection matrix
example 2

j 1 2 3 4 5 6

w1j +1 +1 −1 0 0 0

w2j −1 +1 +1 0 0 0

w3j +1 0 −1 0 +1 0

w4j −1 −1 +1 0 0 0

w5j +1 −1 −1 0 0 0

w6j −1 0 −1 0 −1 0

Figure 2(a) shows the first example of Dmap from the DBNN with connection
parameters in Table 1. The connection matrix includes two “0” elements in each
row where the “0” element means cutting connection. The Dmap has one PEO
with period 4 and one fixed point hence α = 59/64. The number of DEPPs
is not so large and β = 17/64. Figure 2(a) shows the second example of Dmap
from the DBNN with connection parameters in Table 2. The connection matrix
includes three “0” elements in each row. The Dmap has one PEO with period 4
and α = 60/64. The number of DEPPs is larger than the first example and β =
44/64. These results suggest that the PEO approaches to be superstable as the
number of “0” elements (cutting connection) increases appropriately.
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Fig. 3. The histogram of MaxPEOs. (a) For 729000 Dmaps in Case 1. (b) For 1728000
Dmaps in Case 2.

Table 3. RPEO6 for control signal of a dc/ac inverter.

z1 (+1,−1,−1,−1,+1,+1)

z2 (+1,+1,−1,−1,−1,+1)

z3 (+1,+1,+1,−1,−1,−1)

z4 (−1,+1,+1,+1,−1,−1)

z5 (−1,−1,+1,+1,+1,−1)

z6 (−1,−1,−1,+1,+1,+1)

z7 = z1 (+1,−1,−1,−1,+1,+1)

4 Numerical Experiments

Since the DBNN has many parameters and can generate a variety of PEOs and
EPPs, general analysis of the dynamics is extremely hard. In this paper, we
analyze a simple class of DBNNs. For simplicity, we fix the dimension of the
binary vectors and the threshold parameters: N = 6, Ti = 0. We then consider
the two cases of connection parameters.

Case 1: Each row of the connection matrix consists of two “+1”, two “−1”, and
two “0” elements as shown in Table 1. The first 3 rows are inverse pattern of the
second 3 rows: wij = −w(i+3)j for i = 1 ∼ 3. The number of connection matrices
(the number of the objective DBNNs) is

(6C2 ×4 C2)3 = 903 = 729, 000.

Case 2: Each row of the connection matrix includes three 0 elements as shown
in Table 2. The others are two “+1” and one “−1” elements, or one “+1” and
two “−1” elements. The first 3 rows are inverse pattern of the second 3 rows:
wij = −w(i+3)j for i = 1 ∼ 3. The number of connection matrices (the number
of the objective DBNNs) is

(6C3 ×3 C2)3 = 1203 = 1, 728, 000.
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Table 4. Connection matrix
example 3

j 1 2 3 4 5 6

w1j +1 −1 −1 0 0 +1

w2j +1 0 0 −1 −1 +1

w3j +1 +1 0 0 −1 −1

w4j −1 +1 +1 0 0 −1

w5j −1 0 0 +1 +1 −1

w6j −1 −1 0 0 +1 +1

Table 5. Connection matrix
example 4

j 1 2 3 4 5 6

w1j 0 +1 −1 0 −1 +1

w2j 0 −1 −1 −1 0 +1

w3j −1 +1 0 +1 0 −1

w4j 0 −1 +1 0 +1 −1

w5j 0 +1 +1 +1 0 −1

w6j +1 −1 0 −1 0 +1

Table 6. Connection matrix
example 5

j 1 2 3 4 5 6

w1j +1 0 −1 0 0 +1

w2j +1 0 0 0 −1 +1

w3j 0 +1 +1 0 −1 0

w4j −1 0 +1 0 0 −1

w5j −1 0 0 0 +1 −1

w6j 0 −1 −1 0 +1 0

Table 7. Connection matrix
example 6

j 1 2 3 4 5 6

w1j +1 −1 −1 0 0 0

w2j +1 +1 −1 0 0 0

w3j 0 +1 +1 0 −1 0

w4j −1 +1 +1 0 0 0

w5j −1 −1 +1 0 0 0

w6j 0 −1 −1 0 +1 0

Since it is hard to consider all the BPOs of each Dmap, we consider one
PEO with the longest period for each Dmap and refer the representative PEO
as MaxPEO. We construct a histogram of the MaxPEOs in Case 1 and Case 2.
as shown in Fig. 3. In Case 1, the DBNN can generates a variety of MaxPEOs.
In Case 2, kinds of MaxPEOs are reduced, however, stability of the MaxPEOs
seems to be reinforced as suggested in examples in Fig. 2.

Using the feature plane, we consider stability of one typical PEO: a PEO
with period 6 as shown in Table 3. This PEO corresponds to a control signal of
a dc-ac inverter that is one of the most important switching power converters
[5]. We refer to this PEO as RPEO6 hereafter. If the stability of the RPEO6 is
reinforced, robustness can be reinforced in operation of the inverter.

Figure 4 shows two examples of Dmaps in Case 1 that can generate the
RPEO6. The Dmaps have several PEOs except for the RPEO6 and stability
is not so strong. In Case 1, 42,248 Dmaps can generate the RPEO6 and Fig. 6
shows their feature quantities on the feature plane. We can see that the two
feature quantities distribute in relatively wider region in the feature plane.

Figure 5 shows two typical examples of Dmaps in Case 2 that can generate the
RPEO6. Except for the RPEO6, they have no PEO and stability of RPEO6 is
stronger than the Dmaps in Case 1. Especially, RPEO6 in Fig. 5(a) is superstable.
In Case 2, 99,312 Dmaps can generate the RPEO6 and Fig. 6 shows their feature
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Fig. 4. Dmap examples in Case 1. Blue orbit denotes RPEO6 (a PEO with period 6).
(a) wij in Table 4. α = 51/64, β = 27/64 (b) wij in Table 5. α = 51/64, β = 31/64
(Color figure online)

Fig. 5. Dmap examples in Case 2. Blue orbit denotes RPEO6. (a) wij in Table 6. α =
58/64, β = 58/64 (b) wij in Table 7. α = 58/64, β = 50/64 (Color figure online)

quantities on the feature plane. We can see that the plots concentrate onto the
line α = (64 − 6)/64 and the stability is strong. Each connection matrix in
Case 2 includes six “0” elements more than Case 1 and the stability is much
stronger than the Case 1. We have confirmed that a number of DBNNs can have
superstable RPEO6 in Case 2 but no DBNN has superstable RPSO6 in Case 1.



428 K. Makita et al.

Fig. 6. Feature quantity plane. Case 1 for 42,248 RPEO6. Case 2 for 99,312 RPEO6.

5 Conclusions

In order to analyze stability of the PEO, two feature quantities are presented in
this paper. The first and second quantities can characterize plentifulness of tran-
sient phenomena and superstability, respectively. Calculating the feature quan-
tities of a simple class of DBNNs, stability of PEOs is investigated. Especially,
superstable RPEO6s are confirmed in Case 2.

Future problems include more detailed stability analysis of various PEOs and
engineering applications including control of various switching circuits.
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Abstract. Fluctuating activities in the deterministic chaos cause a phe-
nomenon that is similar to stochastic resonance (SR) whereby the pres-
ence of noise helps a non-linear system to amplify a weak (under-barrier)
signal. In this phenomenon, called chaotic resonance (CR), the system
responds to the weak input signal by the effect of intrinsic chaotic activi-
ties under the condition where no additive noise exists. Recently, we have
revealed that the signal response of the CR in the spiking neuron model
has an unimodal maximum with respect to the degree of stability for
chaotic orbits quantified by maximum Lyapunov exponent. In response
to this situation, in this study, focusing on CR in the systems with chaos-
chaos intermittency, we examine the signal response in a cubic map and
a chaotic neural network embedded two symmetric patterns by cross cor-
relation and Lyapunov exponent (or maximum Lyapunov exponent). As
the results, it is confirmed that the efficiency of the signal response has
a peak at the appropriate instability of chaotic orbit in both systems.
That is, the instability of chaotic orbits in CR can play a role the noise
strength of SR in not only spiking neural systems but also the systems
with chaos-chaos intermittency.

Keywords: Cubic map · Chaotic neural network · Chaos · Chaos-chaos
intermittency · Lyapunov exponent · Chaotic resonance

1 Introduction

Fluctuating activities in the deterministic chaos cause a phenomenon that is sim-
ilar to stochastic resonance (SR) whereby the presence of noise helps a non-linear
system to amplify a weak (under-barrier) signal [3,7–11]. In this phenomenon,
called chaotic resonance (CR), the system responds to the weak input signal by
the effect of intrinsic chaotic activities under the condition where no additive
noise exists.

At first, CR has been investigated in one-dimensional cubic map and Chua’s
circuit [4–6,12,21]. Furthermore, the study of CR has been proceeding in the
neural systems [13,14,16,19,20,22]. Recently, we have revealed that the signal
c© Springer International Publishing AG 2016
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response of CR in a spiking neural system has an unimodal maximum with
respect to the degree of stability for chaotic orbits quantified by maximum Lya-
punov exponent [15,17]. That is, the appropriate chaotic behavior leads to the
generation of spikes (exceeding the threshold) not at specific times, but at vary-
ing scatter times for each trial as input signals. This frequency distribution of
these spike timings against the input signal becomes congruent with the shape
of the input signal. Thus, it can be interpreted that the instability of the chaotic
orbit in CR plays a role of the noise strength in SR.

On the other hand, in the systems having a chaotic attractor with chaos-
chaos intermittency as typified by one-dimensional cubic map and Chua’s circuit,
CR is produced by synchronization of chaos-chaos switching to the weak input
signal [2]. However, at this stage, the relationship between the signal response
and the instability of the orbit has not been revealed yet in this type of CR.
Thus, in this paper, we focus on an one-dimensional cubic map and a chaotic
neural network with two stored patterns and evaluate their signal response by
Lyapunov exponents.

2 Cubic Map

In this study, to evaluate the signal response in CR by chaos-chaos intermittency,
we utilize a cubic map driven by a periodic signal S(t) = A sin πΩt (t = 1, 2, · · · )
as follows:

x(t + 1) = (ax(t) − x3(t)) exp(−x2(t)/b) + S(t). (1)

Here, the exponential term is inserted to prevent x(t) from diverging. In our
simulation, we set the parameter b to 10.

At first, we investigate the structure of attractor in cubic map under signal-
free (A = 0) condition. To evaluate chaos and the instability of the orbit in the
system, we use the Lyapunov exponent [18]:

λ =
1

τM

M∑
k=1

ln(
dk(tl = τ)
dk(tl = 0)

). (2)

Here, dk(tl = 0) = d0 (k = 1, 2, · · · ,M) are M perturbed initial conditions to
x(t) applied at t = t0 + (k − 1)τ . Their time evolutions for tl ∈ [0 : τ ] are
dk(tl = τ) = (x(t)−x′(t))|t=t0+kτ . x′(t) indicates an orbit applied perturbation.
Figure 1 shows dependence of bifurcation diagram for x(t) ((a)) and λ ((b)) on
parameter a. In a < acr = 2.839 · · · , this system has two symmetric chaotic
attractors (λ > 0) divided by x(t) = 0. The trajectory is trapped inside one
attractor depending on the initial condition for x(0). Note that this bifurcation
diagram is constructed by positive and negative initial conditions of x(0). Then,
both attractors merge in a > acr, and x(t) moves between these attractors,
intermittently.
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Fig. 1. Dependence of system behavior on parameter a in cubic map. (a) Bifurcation
diagram for x(t). (b) Lyapunov exponent λ. (b = 10, A = 0)

Next, we investigate the response of x(t) against the weak signal (A =
0.005, Ω = 0.005). To quantify this signal response, we used the mutual cor-
relation C(τ) between the time series of x(t) and the signal S(t) is given by

C(τ) =
Csx(τ)√
CssCxx

, (3)

Csx(τ) =< (S(t + τ)− < S(t) >)(x(t)− < x(t) >) >, (4)

Css =< (S(t)− < S(t) >)2 >, (5)

Cxx =< (x(t)− < x(t) >)2 > . (6)

For the time delay factor τ , we check maxτ C(τ) (i.e., the largest C(τ) between
0 ≤ τ ≤ T0 = 1/Ω). Figure 2 shows the scatter plot of λ and maxτ C(τ).
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Fig. 2. Scatter plot of λ and maxτ C(τ) in cubic map. (b = 10, A = 0.005, Ω = 0.005)

In 0.2 ≤ λ � 0.21, the signal response efficiency is low (maxτ C(τ) ≈ 0.02),
but increases accompanied with λ, and maxτ C(τ) has the peak at λ ≈ 0.215.
However, further enhancing the instability of the chaotic orbit (λ � 0.215),
maxτ C(τ) decreases.

3 Chaotic Neural Network

In the chaotic neural network [1] consisting of N neurons, the output of neuron
i (i = 1, 2, · · · , N) driven by external signal Si(t) is described by

xi(t + 1) = f(yi(t) + Si(t)), (7)

where f and yi indicate the output function defined by f(x) = tanh x
2ε with the

steepness parameter ε and the internal potential, respectively. The state of the
network is exhibited by {xi}. The internal potential is given by

yi(t) = ηi(t) + ζi(t), (8)

ηi(t) = kfηi(t − 1) +
N∑

j=1

wijxj(t − 1), (9)

ζi(t) = krζi(t − 1) − αxi(t − 1) + a, (10)

where kf (kr): decay factor the feedback (refractoriness) (0 ≤ kf < 1,0 ≤ kr < 1),
α: refractory scaling parameter (α ≥ 0), wij : synaptic weight from neuron j to
neuron i, a: threshold of neuron i.

We store two patterns:

{ξ1i } = (1, · · · , 1,−1, · · · ,−1)T , (11)

{ξ2i } = (−1, · · · ,−1, 1, · · · , 1)T . (12)
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to the chaotic neural network. For storing the patterns, the synaptic weight wij

is formed by Hebb’s rule as follows:

wij =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (i = j)
2
N (1 ≤ i ≤ N/2 and 1 ≤ j ≤ N/2)
2
N (N/2 + 1 ≤ i ≤ N and N/2 + 1 ≤ j ≤ N)
− 2

N (1 ≤ i ≤ N/2 and N/2 + 1 ≤ j ≤ N)
− 2

N (N/2 + 1 ≤ i ≤ N and 1 ≤ j ≤ N/2)

(13)

In our simulation, we set the parameters to (kf = 0.7, kr = 0.8, α = 0.85, ε =
0.015, N = 4). Corresponding to the stored patterns, we adopt the input signal
Si(t) = A sin πΩt (1 ≤ i ≤ N/2), −A sin πΩt (N/2 + 1 ≤ i ≤ N).

To measure the network state {xi}, we utilize the relative overlap with pat-
tern {ξ1i }:

m(t) =
1
N

N∑
i=1

ξ1i xi(t). (14)

To evaluate chaos in the system, we use the maximum Lyapunov expo-
nent [18]:

λ1 =
1

τM

M∑
k=1

ln(
|dk(tl = τ)|
|dk(tl = 0)| ). (15)

Here, dk(tl = 0) (k = 1, 2, · · · ,M) are M perturbed initial conditions for
{ηi(t), ζi(t)} applied at t = t0 + (k − 1)τ , which are given by dk+1(tl = 0) =
dk(tl = τ)/|dk(tl = τ)| (d1(tl = 0) = d0, d0: an initial vector). Their time
evolutions for tl ∈ [0 : τ ] are calculated by dk(tl = τ) = ({ηi(t), ζi(t)} −
{η′

i(t), ζ
′
i(t)})|t=t0+kτ , where {η′

i(t), ζ
′
i(t)} indicates an orbit applied perturba-

tion.
As shown in Fig. 3(a), the chaotic neural network embedded the patterns with

the inversion relation has two symmetric chaotic attractors (λ1 > 0 (Fig. 3(b))
against m(t) = 0 similar to cubic map under the signal-free condition (A = 0).
In 0.26 ≤ a � 0.27, m(t) is trapped inside one chaotic attractor depending on
the initial condition. However, by merging these attractors in a � 0.27, m(t)
hops between both attractors.

Furthermore, we investigate the signal response of this network by maxτ C(τ)
and λ1. Figure 4 shows the scatter plot of λ1 and maxτ C(τ) under the additive
weak signal (A = 0.01, Ω = 0.01). In 0 ≤ λ1 � 0.3, the signal response efficiency
is low (maxτ C(τ) � 0.2), but increases accompanied with λ1, and maxτ C(τ)
has the peak at the appropriate instability of chaotic orbit (λ1 ≈ 0.35), as is the
case with cubic map.
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Fig. 3. Dependence of system behavior on parameter a in chaotic neural network. (a)
Bifurcation diagram. (b) maximum Lyapunov exponent λ1. (kf = 0.7, kr = 0.8, α =
1.12, ε = 0.015)

Fig. 4. Scatter plot of λ1 and maxτ C(τ) in chaotic neural network. (kf = 0.7, kr =
0.8, α = 1.12, ε = 0.015, A = 0.01, Ω = 0.01)
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4 Conclusion

In this study, in order to reveal the relationship between the signal response of
CR by chaos-chaos switching and the instability of chaotic orbit, we examined the
signal response in the cubic map and the chaotic neural network embedded two
symmetric patterns, using cross correlation maxτ C(τ) and Lyapunov exponent
λ (or maximum Lyapunov exponent λ1). As the results, it was confirmed that
the efficiency of the signal response exhibits the unimodal maximum at the
appropriate the values of λ (λ1) in both systems. That is, the instability of
chaotic orbits in CR can play a role of the noise strength in SR in not only
spiking neural systems but also the systems with chaos-chaos intermittency.

Further research based on this study would be to evaluate CR in large scale
chaotic neural networks, using the Lyapunov spectrum.

Acknowledgment. This work is supported by Grant-in-Aid for Young Scientists (B),
grant number (15K21471).
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Abstract. Extreme Learning Machine (ELM) is a universal approxi-
mation method that is extremely fast and easy to implement, but the
weights of the model are normally randomly selected so they can lead to
poor prediction performance. In this work, we applied Weighted Similar-
ity Extreme Learning Machine in combination with Jaccard/Tanimoto
(WELM-JT) and cluster analysis (namely, k-means clustering and Sup-
port Vector Clustering) on similarity and distance measures (i.e., Jac-
card/Tanimoto and Euclidean) in order to predict which compounds
with not-so-different chemical structures have an activity for treating a
certain symptom or disease. The proposed method was experimented on
one of the most challenging datasets named Maximum Unbiased Valida-
tion (MUV) dataset with 4 different types of fingerprints (i.e. ECFP 4,
ECFP 6, FCFP 4 and FCFP 6). The experimental results show that
WELM-JT in combination with k-means-ED gave the best performance.
It retrieved the highest number of active molecules and used the lowest
number of nodes. Meanwhile, WELM-JT with k-means-JT and ECFP 6
encoding proved to be a robust contender for most of the activity classes.

1 Introduction

Drug discovery is a process of finding best new candidate compounds that have
a certain targeted biological activity from a large library of compounds whose
biological activity are not known. Chemoinformatics is a technique for improving
the efficiency of drug discovery process. It utilizes computing and information
theory to solve drug screening problems.

Recently, computers have played an increasingly importance role in medical
and pharmaceutical research and development. Historically, chemists had to test
many different compounds one at a time and find by trial and error which ones
had the potential to be an effective drug for a certain symptom or disease. This
process can take a decade to complete and waste a lot of money on testing yet-
to-be-known ineffective compounds. The probability of success is also generally
low. Therefore, a new technique, in silico drug screening (also known as virtual
screening), has become popular. This technique improves the performance of

c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 441–450, 2016.
DOI: 10.1007/978-3-319-46687-3 49
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discovery process in many aspects, e.g., speeding up the process and increasing
the percentage of successful finds of new biologically active compounds.

The traditional virtual screening technique is similarity searching. It is a
ligand-based method that measures the degree of similarity of the structure of
a molecule in a database to a reference molecular structure. Chemists then only
have to assay the similar molecules that are in the top rank. Recently, machine
learning algorithms have been popular in the area of chemoinformatics. Proven
successful techniques are Support Vector Machine (SVM) [1] and Binary Ker-
nel Analysis (BKD) [2]. Currently, one efficient method is Extreme Learning
Machine (ELM). It is very fast and easy to code. Its architecture is based on a
single-layer feedforward neural network with no iterative process. Recently, Czar-
necki (2015) has introduced a Tanimoto Extreme Learning Machine (TELM) [3].
It replaced the kernel function with Jaccard/Tanimoto (JT) coefficients in weight
calculation process. His experimental results showed that the performance of
TELM was much better than conventional ELM. Later, Kudisthalert and Pasupa
(2016) introduced a Weighted Extreme Learning Machine (WELM) operat-
ing on 17 difference similarity measures and on one of the most challenging
datasets named Maximum Unbiased Validation (MUV) [4]. The experimental
results showed that WELM in combination with Jaccard/Tanimoto (WELM-
JT) yielded the best performance.

However, the performance of ELM is not robust because its weights or hidden
nodes are randomly selected from a set of training data. Hence, we aimed to
improve the performance of ELM by methodically selecting the sample. This
can be done by applying a clustering method. We proposed two approaches:
(i) using k -means clustering to obtain a sample near the centroid of each cluster,
and (ii) using Support Vector Clustering (SVC) to return a set of support vectors
that bound each cluster. The proposed technique was investigated on the MUV
dataset.

This paper is organized as follows: The next section briefly review methods
used in this work namely, ELM, WELM, k -means clustering and Support Vec-
tor Clustering. We explain our experimental framework including fingerprint,
dataset and the parameter settings in Sect. 3. Then, experimental results are
shown in Sect. 4 followed by the conclusion in Sect. 5.

2 Methodology

2.1 Weighted Similarity Extreme Learning Machine (WELM)

WELM is originally based on Extreme Learning Machine (ELM), which was
introduced by Huang et al. (2004) [5]. ELM was extended from single hidden-
layer feedforward neural network (SLFN). It solved the bottleneck of SLFN.
It was extremely simple and much faster than backpropagation neural network
(BEP). Since the hidden layer does not need to iteratively tuned [6].
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The number of hidden neurons and of input nodes are denoted as L and D,
respectively, where L ≤ D. The output function could describes as follow,

fL(x) =
L∑

i=1

βihi(x) = h(x)β, (1)

where h(x) = [h1(x), . . . , hL(x)] are outputs of hidden layer for input X where
X ∈ R

N×D, N is a number of samples and β = [β1, . . . , βL]T is the output
weights that are between the hidden layer and output layer. The design matrix
corresponds to target labels T = [t1, . . . , tN ]T . The matrix can be calculated as
follows,

β = (HTH)−1HTT, (2)

where H is the hidden-layer output matrix that is derived from a similarity
function S from input X, a set of weights W and biases b,

H =

⎡
⎢⎣

h(x1)
...

h(xN )

⎤
⎥⎦ =

⎡
⎢⎣

S(x1,w1, b1) . . . S(x1,wL, bL)
...

. . .
...

S(xN ,w1, b1) . . . S(xN ,wL, bL)

⎤
⎥⎦ (3)

The weights of the model were not continuous probability distribution. They
are randomly selected from a set of training data to ensure that the achieved
weights are binary, sparse and has identical dimension span, thus W ⊂ X.
WELM accommodate another similarity coefficient in weight calculation process.
It was found that WELM with Jaccard/Tanimoto (WELM-JT) performance is
the most robust for all biological activities [4]. The Jaccard/Tanimoto’s equation
can be described as follows,

SJT (X,W) =
a

(a + b + c)
, (4)

where a is a number of bits that are set to 1 in both X and W. b and c are
number of bits that are set to 1 only in X and W, respectively. The WELM
algorithm is shown in Algorithm1.

2.2 Clustering-Based WELM

Cluster analysis is an algorithm for grouping object. Its process is to partition
a set of objects into k groups (or cluster) such that the objects in each group
are more similar to the prototype (also known as centroid) of its group than
prototypes of other groups; thus, objects in the same group are homogeneous.

We need automatic algorithms on high-dimensional data for finding char-
acterized fingerprint of known molecules that are used as the weights of the
model. The nodes of conventional WELM are randomly selected leading to non-
robust performance, hence we methodically selected samples by utilizing clus-
tering methods to organize and summarize data through group prototypes [7].
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Algorithm 1. WELM
1: function WELM Train(X,T)
2: Initialisation: Randomly select W in X. n−1 = Number of sample with label of −1,

and n1 = Number of sample with label of 1.
3: b =

√
max(n−1, n+1)/nyi for i = 1, . . . , N

4: Ĥ = b · S(X,W)

5: β = (I/C + Ĥ
T
Ĥ)−1(Ĥ

T
b ·T)

6: return W,β
7: end function

8: function WELM Predict(W,β,Xtest)
9: H = S(Xtest,W)

10: T̂ = Hβ
11: return T̂
12: end function

Many clustering algorithms have been introduced and re-introduced but, here, we
used k -means clustering and SVC algorithms. The rationale behind the selection
of both algorithms were the following: (i) k -means clustering is a conventional
clustering algorithm; the algorithm will give a sample that represents the which
is, in our framework, the sample that is closest to the centroid; and (ii) SVC
returns a set of support vectors that represents a bound of the cluster. More
details on both algorithms are described below:
k-means Clustering: Conventionally, this method aims to minimize the Euclid-
ean distance between the centroid and each point in the cluster. However, we
utilized Jaccard/Tanimoto coefficient as a similarity measure instead of Euclid-
ean distance by maximizing a similarity between the centroid and each point in
the cluster instead. The algorithm converges when all of centroids are stable. The
procedures of k -means are the following [8]: (i) Randomly select k data points
as initial centroids of k cluster. (ii) Assign data points to the cluster by con-
sidering the similarity/dissimilarity between each data point and the centroids;
(iii) Update new cluster centroids. (iv) Stop if all of the centroids are not moved.
Otherwise branch back to step (ii).

Incidentally, there are many concern issue regarding using k -means: first,
performance depends on the initial cluster centroids chosen; second, the number
of cluster k must be known; and finally, k -means is very sensitive to outlier data
that can cause the poor results.

Support Vector Clustering (SVC): SVC is a clustering algorithm based on
Support Vector Machine (SVM) [9]. It utilizes support vectors to characterize
the support of a high dimensional distribution. The algorithm yields a set of
contours that enclose the data points in each cluster as cluster boundaries and
deal with outliers by using a soft margin constant that allows sphere not to
enclose all data points in the feature space [10].
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In our SVC implementation, data points are mapped from a data space to
a high dimensional feature space by using Jaccard/Tanimoto distance to find
a sphere where are smallest radius that encloses most of the data points. The
Jaccard/Tanimoto distance is the inverse of Jaccard/Tanimoto similarity coeffi-
cient (It should be noted that we investigated using the conventional Euclidean
distance as well). When this sphere is mapped back to the data space, these
contours are interpreted as cluster boundaries.

3 Experimental Framework

3.1 Fingerprint

The most commonly used computer-aided molecular representation is molecular
fingerprint. It involves transforming a molecule structure into a sequence of bit-
string in which the value of each bit can be only either a “1” or a “0” representing
the presence or absence of a substructure defined by encoding algorithm. There
are several types of encoding algorithms of molecular fingerprints but circular
fingerprints are the most widely used for full structure similarity searching [11].
Type of circular fingerprints are such as Molprint2D, Extended-Connectivity
Fingerprints (ECFPs), Functional-Class Fingerprints (FCFPs).

In this paper, we used ECFPs and FCFPs with diameters of 4 and 6, which
is referred as ECFP 4, ECFP 6, FCFP 4 and FCFP 6 respectively, since they
give the best performance for similarity searching [12].

Several bioactivity datasets for virtual screening are analogue bias, low com-
pound diversity, that leads to artificially high enrichment except this one, Max-
imum Unbiased Validation (MUV) dataset [13] that was derived from Pub-
Chem [14]. MUV is one of the most challenging datasets because its active
molecules have been carefully chosen to be structurally diverse. This dataset
consists of 17 activities. Each activity consists of 30 active and 15,000 decoy
molecules, labeled as 1 and 0 respectively. A biological activity is the effect that
a molecule has on humans or animals which inactive molecules do not have.

3.2 Experimental Settings

We constructed a training sets similar to the one reported in [12]. Ten repre-
sentative reference structures from each activity class were randomly chosen to
obtain 170 representative compounds as a training set.

In this experiment, each method WELM-JT, k -means-based WELM and
SVC-based WELM needed to be tuned in order to get an optimal model. WELM-
JT required 2 parameters to be tuned which are the number of hidden node h
and regularization parameter C. The range of h was [1, . . . , 170] and of C was
[10−6, 10−5, . . . , 105, 106]. For clustering-based WELM, a regularization parame-
ter for WELM needed to be tuned. In addition to a regularization parameter,
the number of cluster for k -means-based WELM is considered to be tuned, while
SVC-based WELM is a regularization constant for SVC. Regularization constant
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for SVC ranges from 0.1 to 1.0 [15]. We then used five-fold cross validation to find
the best parameters for each training sets based on the area under the Receiver
Operating Characteristic curve.

As for the input and output characteristics of WELM-JT, the input layer
consists of 1024 nodes. Each node represented 1 bit of a fingerprint. The output
layer consisted of 1 node which was a similarity score. In this work, we evaluated
and compared the performance of the proposed methods to the WELM-JT.

To evaluate the performance, we sorted the output values in a descending
order in order to compare the hit rates between methods (a hit rate is the
number of active compounds retrieved in percentage to the total number of
active compounds; only the top 1 % were used). For each method, we repeated
the experiment 10 times with different random seeds and reported the average
result of 10 runs.

4 Result Discussion

We compared our proposed methods on 4 different types of fingerprints i.e.
ECFP 4, ECFP 6, FCFP 4 and FCFP 6. We also embedded and evaluated two
different coefficients i.e. ED and JT on k-means clustering and SVC. The com-
binations of the algorithms and fingerprints were indexed as shown in Table 1.
We reported the average performances across 17 activities of MUV dataset and
across 10 runs.

Figure 1 shows the average of hit rates and the average number of nodes
in each model in a descending order on hit rate. It can be seen that the first
five methods i.e. A10, A2, A14, A18 and A6 perform equally well and were
considering to yield best performance. They retrieved more active molecules than
the other methods of which worst were A11, A3 and A19 in that order. However,
the numbers of nodes used were not correlated to the hit rate performance.

Tables 2 and 3 show overall performance of each algorithm across four fin-
gerprints and the overall performance of each fingerprint, respectively. The best
results are in bold typeface. Table 2 shows that WELM-JT in a conjunction
with k -means-ED was able to retrieve the highest number of active molecules
and used smallest number of nodes. Meanwhile, WELM-JT with random weights
(conventional) was the worst in accuracy. Considering the case of using the same
similarity coefficient, utilizing centroids from k-mean clustering as node represen-
tatives achieve better performance than using support vectors that bounded the
cluster from SVC. Table 3 shows that encoding fingerprint as ECFP 6 obviously
yield the highest hit rates and used a highest number of nodes in the meantime.
On the other hand, ECFP 4 only used only the smallest number of nodes. It is
clearly seen that FCFP 4 was the worst of retrieving active molecules.

Table 4 shows ranks of the combinations given in Table 1 for each activity
class. The ranks was based on the hit rates achieved by each contender on the
MUV dataset. The sum of the ranks of each combination determined the overall
rank of all activity classes.
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Table 1. WELM-JT with different weight selection methods correspond to fingerprints.

Index Weight selection methods Fingerprints

A1 Random ECFP 4

A2 Random ECFP 6

A3 Random FCFP 4

A4 Random FCFP 6

A5 k -means (Euclidean) ECFP 4

A6 k -means (Euclidean) ECFP 6

A7 k -means (Euclidean) FCFP 4

A8 k -means (Euclidean) FCFP 6

A9 k -means (Jaccard/Tanimoto) ECFP 4

A10 k -means (Jaccard/Tanimoto) ECFP 6

A11 k -means (Jaccard/Tanimoto) FCFP 4

A12 k -means (Jaccard/Tanimoto) FCFP 6

A13 SVC (Euclidean) ECFP 4

A14 SVC (Euclidean) ECFP 6

A15 SVC (Euclidean) FCFP 4

A16 SVC (Euclidean) FCFP 6

A17 SVC (Jaccard/Tanimoto) ECFP 4

A18 SVC (Jaccard/Tanimoto) ECFP 6

A19 SVC (Jaccard/Tanimoto) FCFP 4

A20 SVC (Jaccard/Tanimoto) FCFP 6

Fig. 1. Active molecules retrieved at top 1% ranked databased (left y-axis) and per-
centage of number of nodes used in a model (right y-axis) with respect to indices given
in Table 1.
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Table 2. Performance of WELM-
JT in each weight selection
method.

Methods Hit rates (%) Number
of nodes
(%)

k -means-ED 12.1691 50.3754

SVC-ED 12.0294 52.545

k -means-JT 11.6838 50.9542

SVC-JT 11.5368 52.9862

Random 11.3824 52.0087

Table 3. Performance of WELM-
JT on each fingerprint.

Fingerprints Hit rates (%) Number
of nodes
(%)

ECFP 6 14.2794 58.1981

ECFP 4 11.8824 44.2967

FCFP 6 11.3162 52.7768

FCFP 4 9.7647 53.8227

Furthermore, we evaluated the significance of the results by using the
Kendall’s Coefficient of Concordance (W ) that expresses the degree of agree-
ment among judges in ranking N objects [16]. We calculate the value of W for
the data in Table 4 as follow,

W =
12

∑N
i=1 R̄2

i − 3N(N + 1)2

N(N2 − 1)
, (5)

where R̄ is the average of the ranks assigned to the i-th object. In this work, N
was 20 (the number of indices in Table 1.) and k was 17 (the number of activity
classes in the MUV dataset), thus W = 0.33. However, if N > 7, the significance
value has to be obtained from chi-square distribution. W can be transformed
into χ2 as follows,

χ2 = k(N − 1)W (6)

We then acquired χ2 = 70.86, which is statistically significant at a level of
p < 0.001. Hence, the rank order is suggested by following:

A10 > A2 > A18 > A14 > A6 > A16 > A8 > A13 > A9 > A5 >

A12 > A17 > A20 > A4 > A15 > A1 > A7 > A3 > A19 > A11

5 Conclusion

WELM-JT was the core method of this study. We improved the performance of
WELM-JT by using clustering techniques for selecting weights instead of random
selection in ELM. We compared the performance between WELM-JT with our
proposed clustering-based WELM. The clustering algorithms used in this work
were k -means clustering and SVC. Usage of a similarity measure and a distance
measure i.e. Jaccard/Tanimoto and Euclidean respectively, was investigated on
one of the most challenging datasets for virtual screening, the MUV dataset.
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We encoded molecules using several types of fingerprints i.e. ECFP 4, ECFP 6,
FCFP 4, FCFP 6. The experimental results show that WELM-JT with k -means-
JT in combination with ECFP 6 fingerprint was the best method for screening
biologically active molecules that performed robustly on most of the activity
classes.
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Abstract. Since labor intensive and time consuming issue, manual cura-
tion in metabolic information extraction currently was replaced by text
mining (TM). While TM in metabolic domain has been attempted pre-
viously, it is still challenging due to variety of specific terms and their
meanings in different contexts. Named Entity Recognition (NER) gener-
ally used to identify interested keyword (protein and metabolite terms)
in sentence, this preliminary task therefore highly influences the perfor-
mance of metabolic TM framework. Conditional Random Fields (CRFs)
NER has been actively used during a last decade, because it explicitly
outperforms other approaches. However, an efficient CRFs-based NER
depends purely on a quality of corpus which is a nontrivial task to pro-
duce. This paper introduced a hybrid solution which combines CRFs-
based NER, dictionary usage, and complementary modules (constructed
from existing corpus) in order to improve the performance of metabolic
NER and another similar domain.

Keywords: Text Mining ·Metabolic interaction · Named Entity Recog-
nition · Hybrid NER

1 Introduction

Biologists need to perform gene and functional assignments towards metabolic
interaction network using manual curation, which could be both a labor inten-
sive and time consuming task [1,2]. Text Mining (TM) is currently used as an
assisting tool for quickly scanning the entire documents with an essential goal to
extract specific terms and concepts from free texts in biological literatures. This
task is known as Named Entity Recognition (NER). Typically, most of NER
tasks in biomedical domain mainly focused on protein or gene name, metabolic
in contrast has received much less attention, especially the interaction between
protein (enzyme) and metabolite that reside in cell. The challenges of NER in
metabolic domain can be described as follows: the diversity of naming conven-
tions, traditions for such entity, context or position of entity in sentence. These
principal factors directly effect on wrong labeling between metabolite and other
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 451–460, 2016.
DOI: 10.1007/978-3-319-46687-3 50
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entity type. Moreover, there is a considerable amount of possible synonyms of
entity, term sharing, cascaded entity, abbreviations as well as errors during tok-
enization or sentence splitting [3].

A Conditional Random Fields (CRFs)-based technique has been widely used
in NER task, and provides several advantages. For example, it performs better
in the case of spelling variations in entity names, thus it can recognize the new
or unseen entity. CRFs-based NER outperforms other techniques for identifying
long and variant entity such as L-threo-dihydroneopterin. However, CRFs-based
often miss and provides wrong label for tagging (vitamin)-B2 entity. This is the
fact that CRFs-based performance depends on a quality of training corpus which
very difficult to cover all possible entity in interested domain. In particular, as
can be seen in [4] as well as from our previous work [5], CRFs-based usually
provides a recall lower than the precision metric.

The previous work [4] proposed an integration of various TM tools in order
to tackle above circumstances. They constructed a corpus of metabolic entity
and metabolic events (i.e., events with a mechanical description of the enzyme
and metabolite interaction). Firstly, a corpus used to train a classifier of CRFs-
based NER in order to extract metabolic entity. After that, a metabolic event
was automatically detected by Support Vector Machine-based event extraction
tool. Finally, enzyme-metabolite interaction pairs are merged together, and then
mapped into a metabolic interaction network. Although this TM framework and
their corpus have been successfully used for simplified detection of metabolic
events, some of limitations are NER step as well as a diversity of metabolic
corpus. In other words, when they test the corpus with the real metabolic super
pathways, the result of NER which detects enzyme and metabolite entity is not
satisfactory; especially the recall of metabolite entity is quite low.

Typically, NER is one of the key factors in TM framework, because this
preliminary task directly effects on overall accuracy of information extraction
system. As [4] mentioned that their NER module has a weakness in detecting
metabolite entity. In this paper, we concern with the text preprocessing and
performance of metabolic NER. One way to improve the performance of CRFs-
based NER module is to improve a quality of training corpus. However, this
process is laborious task for domain expert. Moreover an appropriate size of
a corpus is still controversial. We therefore try to against the performance of
previous NER module with a new approach under existing resources.

This paper proposes a hybrid NER to improve the performance of stand-
alone CRFs-based NER. Our framework firstly combines a CRF-based NER
together with a dictionary matching technique. In addition, a small number
of post-processing rules are also introduced to make the annotation results as
consistence as possible. Both dictionary and post-processing rules are directly
constructed from existing corpus. Finally, we apply Edit Distance algorithm [6]
in order to conduct a variant matching. In general, CRFs-based NER provides
the precision higher than recall, we consequently emphasis on an improvement
of recall metric. The experiment with the metabolic super pathways articles will
be used to demonstrate the effectiveness of our proposed method. Furthermore,
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we adapt this framework to work with another domain to represent a portability
of our hybrid NER.

This paper is structured as follows. In the next section, we briefly explain the
existing materials, together with the execution of proposed system. After that,
we show and discuss the evaluation results on testing dataset. Lastly, in Sect. 4
we conclude the paper and reveal the future works.

2 Materials and Method

The main aim of this work is to improve a performance of NER step in metabolic
event extraction module proposed in [4], especially the recall of identifying
metabolite entity. Additionally, after we construct a hybrid NER, we try to adapt
it to work with another domain. In this section, we firstly introduce the existing
materials used in this work i.e. (1) Metabolic Entity (ME) corpus used for train-
ing a CRFs-based classifier, and (2) testing corpus of metabolic super pathways.
(3) Training and testing corpus of thyroid cancer intervention entity [5]. (4) List
of metabolite terms used for dictionary matching. We then explain the step by
step of proposed method to construct a hybrid NER system in two domains,
illustrated in detail of Fig. 1. The evaluation plan will be mentioned in the last
subsection to support the hypothesis that a combination between CRFs-based
NER, dictionary matching, as well as complementary modules should provide
better performance than the individual CRFs-based system.

2.1 Materials

The ME training corpus1 is developed by [4]. It is a collection of 271 abstracts
and titles (2,288 sentences) from different databases that have been manually
annotated for metabolic events by two domain experts who are biologists with
different backgrounds. The original version of ME corpus consists of 2,513 gene
and protein entities and 1,898 metabolite entities as well as 480 metabolic events
(i.e., metabolic production, metabolic consumption, metabolic reaction, and pos-
itive regulation). In addition, the ME testing corpus was used for the experiment
purpose publicly available at the same source. The ME testing corpus was con-
structed from a collection of 24 introduction and 27 abstract sections within two
super pathways articles in the EcoCyc and PubMed databases, i.e., the super
pathway of leucine, valine, and isoleucine biosynthesis (ME testing corpus 1)
and the super pathway of pyridoxal 5’-phosphate biosynthesis and salvage (ME
testing corpus 2). These articles contain 747 metabolite entities and 675 protein
entities.

Another material in this work is the thyroid cancer intervention corpus [5].
This is because we tried to adapt our proposed method to work with another
domain. This corpus consists of 143 abstracts of thyroid cancer articles. There
are three label classes i.e. intervention, disease, and other class which not refer to

1 www.sbi.kmutt.ac.th/∼preecha/metrecon.

www.sbi.kmutt.ac.th/~preecha/metrecon
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both interested types. The intervention means a treatment and preventive care
object or action that performed by doctor or other clinician targeted at a thyroid
cancer patient. The disease means a disorder in which the cells of the thyroid
gland become abnormal, grow uncontrollably, and form a mass of cells called a
tumor. Disease entity includes common name and tumors name, group names,
sub types or other forms of thyroid cancer. The training corpus contains 2,473
intervention (564 unique tokens), and 1,996 disease (94 unique tokens). For the
testing corpus, we selected 50 abstracts of thyroid cancer article proposed in [5].
It contains 1,079 intervention tokens and 727 disease tokens.

As mentioned earlier, a hybrid NER utilizes a dictionary matching, we there-
fore need list of metabolite name. In this work, the list of metabolite name from
[7] was used as a metabolite dictionary. It consists of 1,853 metabolite entities.
Two domain experts (annotator A and B) annotated metabolite expressions
in the MEDLINE (2007) abstracts. The target documents are 296 MEDLINE
abstracts included in the yeast metabolic network reconstruction [8]. The annota-
tions were restricted to only those names that appear in the context of metabolic
super pathways. In contrast to the metabolic domain, adaptation experiment
with thyroid cancer intervention domain did not use external dictionary. This is
because we not only to demonstrate adaptability of our proposed method but
also we aim to indicate that the hybrid NER can work well under existing corpus.

2.2 Proposed Method

This subsection, the step by step of proposed method will be explained according
to a tag number that is illustrated in detail of Fig. 1. Note that this framework
includes a preprocessing of materials and a testing process as well.

1. Entity extraction: ME corpus is in .ann annotation files format, which con-
tain metabolic sentences. ME corpus includes entity, event, and relation.
Each metabolic sentence composes of gene/protein entity and metabolite
entity, connected by trigger word. We therefore need to extract only entity
terms from the original version of corpus in order to construct a metabolic
entity corpus.

2. Training a classifier: In this work, Stanford NER [9], a Java implementation
of linear chain Conditional Random Field (CRF) sequence models, is used
as a CRFs-based NER tool. We train a model or classifier by metabolic
entity corpus obtained from step 1.

3-4. Sentence splitting and Tokenization: Stanford NER provides a set of natural
language analysis tools; it relies on period and space for identifying sentence
boundary. After that, tokenizer will split a sentence into the constituent
meaningful units, called tokens.

5. Automatic annotation: We then use the NER classifier obtained from step
2 to label the testing documents automatically. Each token in article can
be labeled as protein, metabolite, and other class.

6. Generate metabolite dictionary: This step is similar to step 1, however only
metabolite entity is used to generate metabolite dictionary. This metabolite
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Fig. 1. The overview of proposed framework

list then was combined with metabolite dictionary from [7]. In particular,
a number of conditions from annotation guideline [4] and sharing patterns
of metabolite entities were used for preparing the dictionary. (1) Keep only
character (abbreviation) length more than two. (2) Token which consists of
only real number will be removed. (3) Special character should not be at
the end of annotation. (4) Pronoun must be excluded. (5) Preposition and
determiner are excluded from annotation, if it is at the beginning and at
the end of annotation. (6) The interested entity has to be able to resolve
itself without any additional or external information.

7. Dictionary matching: We use variantMatcher, simple matching method of
dictionary-matching tool, LINNAEUS [10]. This process works with our
dictionary from previous step for tagging metabolite entity, any matching
tool consequently provide the same results.

8. Edit distance matching: After dictionary-matching step, we obtain metabo-
lite entities of each document which exactly match to metabolite in the
dictionary. We then use these metabolites for tagging metabolite entity in
the same document again. In this step, we set a threshold in range [0 to 1]
of operations required to transform one string into the other in order to get
other similar words. This method known as edit distance algorithm, a way
of quantifying how dissimilar between two strings.

9. Rule extraction: Some of metabolite entities in dictionary have a sharing
pattern or are similar context, thus it can be used to extract a rule.
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10. Merging results: We keep the union of all entities extracted by the
dictionary-based or the CRFs-based NER. However, in such cases, there
are many conflicts between two approaches; we resolve these overlaps by
favoring a result of the CRFs-based over one from the dictionary-based. We
decided to use this solution, because we observed that in most cases of a
conflict the CRFs-based entity tagging is higher accurate than dictionary-
based. This is also similar to the resolve method of [11].

11. Rule-based post processing: In fact, there are many rules or pattern
of metabolite entity. However, these post-processing rules are directly
extracted from the ME corpus, which is used as a case study in the exper-
iments.

(a) If current token is labeled as a protein and next token equal enzyme or
protein or gene or clusters or family or homodimer or transcripts or product,
then the next token will be labeled as a protein.

(b) If current token is labeled as a metabolite and next token equal to ion or
analogue or acid or acids or nucleotide or nucleotides or carbohydrate or
carbohydrates or precursor, then the next token will be labeled as a metabo-
lite.

(c) If current token ends with ase or ases and it is labeled as a protein and its
length more than ten character, then a previous token will be labeled as a
protein.

(d) If current token contains dine, it will be labeled as a metabolite.
(e) If current token contains -keto or -methyl or -dihydroxy, then a current token

and previous token will be labeled as a metabolite.

2.3 A Hybrid NER of Thyroid Cancer Intervention

The adaptation of our proposed method which works with thyroid cancer inter-
vention domain was described as follows. The process starts from step 2 by
replacing metabolic entity corpus by thyroid cancer intervention corpus. Step
3 to step 5 are similar to the metabolic domain. For step 6, metabolite dictio-
nary was replaced by intervention dictionary, and metabolite dictionary [7] was
excluded. Step 7 to step 11 are similar to the first domain, except the last step
which we replaced metabolic rules by a number of intervention rules. In particu-
lar, we focus on only the intervention entity. A number of post-processing rules
in thyroid cancer intervention domain are described below.

(f) If a current token equals to inhibitor or inhibitors or inhibition or ablation,
and it is not labeled as a disease or intervention. Then the current token
and previous token will be labeled as intervention.

(g) An intervention token which has less than three characters, must be consists
of only the letter (without a number). Otherwise it will be labeled as other.

(h) If an intervention token, previous token, and next token begin with upper-
case, they will then labeled as other. This is because it might be a proper
noun.
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2.4 Evaluation Process

As an assessment of the proposed integrated hybrid NER system, two testing
corpus of metabolic super pathway and testing corpus of thyroid cancer inter-
vention were used for performance evaluation. We conducted the experiment
under the hypothesis that our proposed method is able to compare against the
standalone CRF-based approach. In order to evaluate the performance of the
systems, standard precision, recall, and F1-score metrics were calculated based
on a token criterion by comparing automatic annotating results with the ones
provided by manual curators. In the experiments, we focused on only metabolite
class in first domain and intervention class in second domain. The experiments
were designed as follows: First, we calculated the performance of CRFs-based
approach by using standard configurations of Stanford NER (steps 1–5 in Fig. 1),
Approach A. This is a base case of the experiment. We then evaluated the per-
formance of CRFs-based NER and dictionary matching (steps 1–7), Approach
B. In addition, we put a number of post-processing rules to demonstrate that
it has a positive impact to the overall performance (steps 1–11, except step 8),
Approach C. Finally, the edit distance module was integrated into the system
(steps 1–11), Approach D.

3 Results and Discussions

First of all, we evaluated a metabolic entity corpus by using standard configura-
tions of Stanford NER, CRFs-based approach. This is a base case of the exper-
iment that we were trying to compete with. As shown in Table 1, the precision
and F1-score of the entity tagger for metabolite was quite high, more than 80 %.
This is not surprising because the CRFs-based technique is usually provides high
precision. However, the recall of the metabolite entity tagger was lower than our
expectations for the first ME testing corpus. The recall showed about 70 %, this
result seems to indicate that the entity tagger (i.e., Stanford NER) has a weak-
ness in detecting metabolite entities in an abbreviated form (e.g., Pyridoxine
(PN), Pyridoxal (PL), and 4-hydroxy-l-threonine phosphate (HTP)). This is the
fact that a corpus contains only a small number of metabolite entities which
might not well to deal with an unseen entity.

We then evaluated the performance of a combination result of CRFs-based
NER and dictionary matching. This technique provides higher recall than stand-
alone CRFs-based NER, this means that it can be used to reduce false nega-
tive rate significantly. In particular, dictionary approach can detect many miss-
ing label in an abbreviated form. This demonstrates that the additional list of
metabolite entity can fulfill the weakness of CRFs-based NER. However, when
the number of detected instances increased, it is more likely to increase more
mistakes. This is because not all of metabolite terms are tagged as an interested
entity in this corpus. As a result, although list of metabolite can boost recall
metric, some of these metabolites still provide precision lower than standalone
CRFs-based NER. The conflict label between CRFs-based NER and dictionary-
matching will be therefore managed by keeping a result of the first approach.
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Table 1. Performance of a hybrid NER on ME testing corpus and thyroid cancer
intervention corpus

ME testing corpus 1 Approach A Approach B Approach C Approach D

Recall (%) 70.95 80.93 84.92 87.80

Precision (%) 94.39 87.32 87.24 85.34

F-score (%) 81.01 84.00 86.06 86.55

ME testing corpus 2

Recall (%) 76.82 83.13 83.28 83.89

Precision (%) 90.03 87.24 87.12 86.79

F-score (%) 83.03 85.13 85.15 85.31

Intervention corpus

Recall (%) 80.49 83.13 84.90 86.47

Precision (%) 91.83 87.60 87.65 86.21

F-score (%) 85.78 85.31 86.25 86.34

After that, we introduced a number of post-processing rules, as mentioned
in Sect. 2. The statistics of post-processing rules is shown in the Table 2. The
definitions of the two basic measurement metrics are described follows: Support :
denotes the frequency of rule. A high value means that the rule involves a great
part of dataset. Confidence: denotes the percentage of correctness of rule. It is
an estimation of conditioned probability.

A performance improvement of rule-based post-processing module is slightly
better than without it, look at Table 1. This is the fact that, in some documents,
such rules are not meaningful in entity recognition. For example, rule (e): If
current token contains -keto, -methyl or -dihydroxy, then a current token and
previous token will be labeled as a metabolite. Rule (e) is very meaningful,
because it provides a high number of support and confidence score at 62.5 % and
80 % respectively. This means that there are many metabolite entities which can
be detected by using this rule in super pathway of leucine, valine, and isoleucine
biosynthesis. On the other hand, rule (d) not intertwines with this testing corpus.

Table 2. Confidence and support of post-processing rules

Corpus Rule (a) (b) (c) (d) (e) (f) (g) (h)

ME testing corpus 1 Support 0.042 0.29 0.042 0 0.625 - - -

Confidence 1 0.85 1 0 0.8 - - -

ME testing corpus 2 Support 0.25 0 0.125 0.5 0.125 - - -

Confidence 1 0 1 0.5 1 - - -

Intervention corpus Support - - - - - 0.45 0.4 0.15

Confidence - - - - - 0.69 1 1
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The last experiment is a hybrid NER which works with a complementary
module; the edit distance module was combined into the system. We use list
of metabolite entities obtained from dictionary matching process to conduct a
re-matching. We apply edit distance algorithm with threshold equal to 0 or 1,
this refer to exactly match and differ only one character respectively. In last
column of Table 1, re-matching module for dictionary entries is useful to expand
variant matching of metabolite entities. For example, testing corpus contains PM
token, nevertheless this abbreviation form not appears in the original version of
corpus and dictionary. The above three experiments cannot be used to detect
PM metabolite entity. Fortunately, the dictionary has PL and PN metabolite
entity, which we can apply edit distance with threshold equal to 1 to capture
this entity. In the same way, Co2+ and Co2 can take this advantage.

The experiment of thyroid cancer intervention domain is similar to the first
domain. The highest precision is the result of standalone CRFs-based, while
highest recall and F1-score are the performance of the full option hybrid NER.
Typically, a tradeoff between recall and precision is unavoidable. Although the
dictionary-matching can increase a number of instances that are relevant and ful-
fill the gap of CRFs-based approach, there are many mislabeled or error tokens.
Based on these experiments, we might conclude that CRFs-based is the most
suitable NER model for identifying entity in term of precision. Alternatively,
if the purpose of NER is to cast a wider net in order to cover more possible
specific keywords of interest, our hybrid method is a reasonable model which
outstanding the CRFs-based in terms of recall and F1-score.

Further analysis on confusion matrix, false positive and false negative tokens
of metabolite entity reveal that our NER framework classifies metabolite entity
as other class more than protein class, in both testing corpus. From these mis-
takes, we found that most errors between metabolite and other class fall into a
case of such metabolite entities are not in dictionary, (e.g., Zn2+, 4PHT, and
isoleucine-valine-requiring). A tokenization is another reason of mislabeling, for
example with default configuration of tokenizer; it splits Vitamin B into Vitamin
and B which could not be detected by NER classifier. While most errors between
metabolite and protein class fall into a case of entity’s boundary. For instance,
L-serine and L-threonine should be labeled as metabolite, however when the
next token is deaminases, they must be labeled as protein. Another cause of
wrong labeled entities is the challenging of entity meaning in different contexts.

4 Conclusion and Future Work

A quality of corpus is one of the most significant factors in efficiency NER.
A construction and improvement of a corpus is a time-consuming process, and
require much effort of domain expert. We have introduced a hybrid NER for
extracting metabolite entity from natural language texts by using existing cor-
pus. Our NER system is a combination of well-known CRFs-based NER and
dictionary-matching, together with complementary modules. The edit distance
algorithm was used to detect similar words in the same document. In addition, a
number of post-processing rules were extracted from sharing patterns of metabo-
lite entities in order to encourage the consistency of NER system. Through this
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study, we conclude that our hybrid NER produces competitive performance and
a broad coverage of metabolite entities compared to the outputs of those sys-
tems alone. The further experiments, we adapted our proposed framework to
work with thyroid cancer intervention domain. The two steps were changed i.e.
intervention dictionary usage and post-processing rules module, our framework
can boost performance of the new domain NER as well.

For the future work, we plan to improve the performance of our framework in
several ways. For example, applying different tokenization may be particularly
appropriate for interested entity. We also might explore the impact of using
dictionary terms as features for training CRF model. Furthermore, we may focus
on the normalization of entities to know identifiers which facilitates extraction
rules as well. Ultimately, we aim at integrating our proposed method with event
extraction in TM framework which could be achieved a relationship between
entities.
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Abstract. Revealing the underlying complex architecture of human diseases has
received considerable attention since the exploration of genotype-phenotype rela‐
tionships in genetic epidemiology. Identification of these relationships becomes
more challenging due to multiple factors acting together or independently. A deep
neural network was trained in the previous work to identify two-locus interacting
single nucleotide polymorphisms (SNPs) related to a complex disease. The model
was assessed for all two-locus combinations under various simulated scenarios.
The results showed significant improvements in predicting SNP-SNP interactions
over the existing conventional machine learning techniques. Furthermore, the
findings are confirmed on a published dataset. However, the performance of the
proposed method in the higher-order interactions was unknown. The objective of
this study is to validate the model for the higher-order interactions in high-dimen‐
sional data. The proposed method is further extended for unsupervised learning.
A number of experiments were performed on the simulated datasets under same
scenarios as well as a real dataset to show the performance of the extended model.
On an average, the results illustrate improved performance over the previous
methods. The model is further evaluated on a sporadic breast cancer dataset to
identify higher-order interactions between SNPs. The results rank top 20 higher-
order SNP interactions responsible for sporadic breast cancer.

Keywords: Deep feedforward neural network · Higher-order interactions · High-
dimensional genome data · SNP-interactions · And multi-locus analysis

1 Introduction

Genome-wide association studies (GWAS) focuses on locating single-locus SNPs
that may be responsible for complex diseases. In reality, the underlying cause of
disease susceptibility is influenced by a number of factors acting together or inde‐
pendently. Identifying these interacting factors can provide insights into biological
mechanisms and pathways of complex diseases. As a step forward in GWAS, a
number of interaction studies brought great hope to identify multi-locus SNP inter‐
actions responsible for complex diseases [1]. However, detecting these interactions
remains a biggest challenge to be considered in GWAS due to curse-of-dimension‐
ality, and missing heritability [1–3]. Some of these critical issues have been parti‐
ally addressed by a number of statistical and computational techniques.
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Conventionally, regression based approaches are most widely used parametric
approaches, which search exhaustively for all the combinations of SNPs in genome-
wide data [4]. PLINK [5], Logic Feature Selection (LogicFS) [6], and Park [7] are some
of the logistic regression based models used to detect SNP-SNP interactions. Smoothly
Clipped Absolute Deviation (SCAD), and Least Absolute Shrinkage and Selection
Operator (LASSO) gained some popularity in penalized regression models [8]. Multi‐
factor Dimensionality Reduction (MDR) [9], Combinatorial Partitioning Method (CPM)
[10] and Restricted Partitioning Method (RPM) [11] are some of the data reduction
approaches. Some of the pioneering works in tree based approaches are Stratified
sampling RF (SRF) [12], EpiForest [13], Random Jungle (RJ) [14], and SNPInterForest
[15]. Pattern recognition methods such as Support Vector Machines (SVM) and Neural
Networks (NNs) have also gained some popularity in identifying interactions in GWAS
[3]. Bayesian Epistasis Association Mapping (BEAM) [16], and Bayesian Network
Based Epistatic Association studies (bNEAT) [17] are some of the Bayesian methods
used to discover interacting SNPs.

However, identifying these interacting SNPs in high-dimensional genome-wide data
is still a challenging problem (search space increases as number of combinations
increases) [18]. Flexible optimal methods with efficient computational algorithms can
play an important role in revealing the complex architecture behind human diseases [3].
Deep learning is an emerging field that allows systems to learn representations of data
at multiple levels of abstraction [19]. They allow the computational models to be fed
with raw data and discover the representations needed for the classification automati‐
cally using general-purpose learning procedures [19]. Their applications in bioinfor‐
matics includes biomedical imaging and biomedical signal processing [20]. However,
none of the studies progressed towards predicting multi-locus SNP-SNP interactions are
responsible for complex diseases. In the previous research [21, 22], a deep learning
model was trained to detect two-locus interactions between SNPs. The proposed model
was trained and validated to predict the performance of the model in terms of accuracy
and execution time. A number of experiments are performed on simulated datasets under
different scenarios and a real dataset. The results showed remarkable improvements in
predicting SNP interactions over some of the existing methods, such as MDR, RF, SVM,
NN, Naïve Bayes’, classification based on predictive association rules (CPAR), logistic
regression (LR), and Gradient Boosted Machines (GBM). However, the performance
of the trained model to identify three or more higher-order interactions is unknown.
Hence, in this paper, the method is evaluated for three to ten loci SNP interactions in
high-dimensional data. It reduces the high-dimensional genome-wide data to low-
dimensional data using principal components analysis (PCA). The method is further
extended for unsupervised learning. The extended model is evaluated on a sporadic
breast cancer dataset to identify higher-order interactions between SNPs. The experi‐
mental results demonstrated improved performance over the previous methods. The
results ranked top 20 higher-order interactions among 10 SNPs, which are included in
5 different estrogen-metabolism genes.

Rest of this paper is organised in the following sections as below. The workflow of
the extended deep learning approach is introduced in Sect. 2. Further, the general steps
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of the core algorithm are summarised in this section. Section 3 illustrates the results with
discussion. Finally, Sect. 4 presents conclusion and future works.

2 Methods

2.1 A Deep Learning Network

Figure 1 illustrates the extended deep learning method. This method is studied in detail
in the previous work [21, 22]. The trained model is based on multi-layered feedforward
neural networks [23].The general steps of the deep learning method (proposed in the
previous work) are summarised briefly in this section. The trained deep learning network
comprises of an input layer, multiple hidden layers and an output layer [19]. The basic
computational units of the network are neurons which are biologically inspired from the
human brain. The neurons in the input layer serves as the input to the hidden layers;
whereas, the output of the hidden layers serves as input to the output layer. The compu‐
tation in each layer transforms the representation of data into more abstract manner. In
each computational unit, the weighted combinations of the inputs are combined together
with a bias. The generalised parametric linear equation is expressed as: ,
where b is bias, and w is the weight vector of the input x. The weighted sum transfer
function of ith neuron in a layer is , and is represented as follows [19]:

(1)

Case-Control Data

Multifactor combinations Dimensionality 
Reduction Deep Learning Algorithm Evaluation

Cross-Validation

High 
Dimensional 

data

Low 
Dimensional 

data

High 
Dimensional 

data

Fig. 1. Overview of the deep learning method (extension of [21, 22])

The non-linear activation function such as binary, rectifier, hyperbolic tangent, or
sigmoid is applied to the weighted input sum to compute the output values of the layer.
In the proposed model, the hyperbolic tangent activation function (a re-scaled and shifted
logistic function whose range is ) is used to transmit the classification
output by the connected neurons. This function provides the algorithm to converge
faster, and is proposed by [23]:
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(2)

More suitable representation of the data is learnt to adapt the weights by minimising
the loss by using backpropagation. The output error is calculated by using cross entropy
cost function and weights are trained by backpropagation. For training sample j, the
cross entropy objective function is provided by [24]:

(3)

(4)

where, t and y represents the predicted and actual outputs respectively. The sum is the
overall training input x. The weights are trained by backpropagation along with
stochastic gradient decent (SGD) optimisation algorithm. This reduces the network error
by adjusting the weights between two neurons. In addition, a lock-free approach is used
to parallelise SGD to improve the efficiency of memory and execution time of the algo‐
rithm [24, 25].

2.2 Multifactor Combinations and Dimensionality Reduction

A SNP is the variation of a nucleotide at a specific location of DNA in the chromosome.
SNPs are biallelic markers that contain two alleles (one with majority allele (A) and
other with minority allele (a)). Due to duplication of DNA in each cell, the genotype
combinations of biallelic SNPs are common homozygous (AA), heterozygous (Aa/aA),
and variant homozygous (aa). Numerically, AA represented by ‘0’, Aa/aA by ‘1’, and
aa represented by ‘2’. The input data are case-control based data with genotype combi‐
nations of SNPs along with their class labels. The class labels are represented by ‘0’ for
controls and ‘1’ for cases. Consider k genetic factors are selected from k-dimensional
space, where,  levels, and , number of locus chosen from N
factors in total. Within the current training set, all the factors are combined together in
k-dimensional space, whose combination function is represented by:

(5)

The multifactor genotype combinations at different loci are combined together to
improve the prediction accuracy of the model.

Evaluating multi-locus combinations of SNPs in genome-wide data increase expo‐
nentially. Finding an optimal combination among an unusually large number of combi‐
nations is not feasible within the existing computational techniques. That is, for a study
of 300,000 SNPs in GWA, there will be 4.5*1010 two-way interactions and 4.5*1015

three-way interactions to be examined [18, 26]. This computational challenge has been
addressed in this method by using Principal Component Analysis (PCA) [27]. PCA is

464 S. Uppu and A. Krishna



used to reduce high-dimensional genome-wide data into a low-dimensional data, and
applied to the proposed deep learning network [22] to detect higher-order SNP interac‐
tions associated with a disease. Further, the extended model is trained for unsupervised
feature learning, and to detect anomalies in the data by using deep autoencoder [24]. It
learns nonlinearly from the reduced representation of the actual data. The model is
trained on a training data by ignoring class labels. Reconstruction error is computed
between the output and input layers with anomaly detection to determine the outliers
for higher-order interacting SNP test data.

3 Experimental Results

Multiple experiments were conducted over the proposed model using simulated datasets
under two scenarios and breast cancer dataset. The detailed study on simulated datasets
and real dataset for two-locus interactions are represented in the previous work [21,
22]. The objective of this study is to evaluate the model for detecting higher-order inter‐
actions (three-locus to ten-locus interactions) responsible for complex diseases. The
deep feedforward neural network is trained and analysed in R using H2o package [24].
The model comprises of an input layer, three hidden layers and an output layer. Each
hidden layer is trained with 50 computational units. The model processes 1000 epochs
per 1000 iterations on 10 compute nodes. By default, entire data is processed on every
node locally by shuffling the training samples in individual iteration.

The model is validated and analysed by passing various non-linear activation func‐
tions such as rectifier, tanh, maxout, rectifier with dropout, tanh with dropout, and
maxout with dropout [22]. Among all, tanh with dropout has high prediction accuracy
and low classification error. Hence, tanh with dropout is chosen as an appropriate acti‐
vation function to achieve better approximation. The input drop out ratio is set to 0.2
and hidden dropout ratios for three hidden layers are set to 0.5 respectively [22]. The
extended model is evaluated for one-locus to ten-locus SNP interactions individually on

Fig. 2. True positives and false positives for one-locus to ten-locus interactions
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sporadic breast cancer data [9]. Figure 2 plots true positives vs. false positives from one-
locus to ten-locus SNP interactions. True positive rate constantly rises as false positive
rate increases. Furthermore, the method is evaluated by binding all higher-order combi‐
nations together and predicted on test data for identifying interacting SNPs responsible
for breast cancer. Top 20 highly ranked higher-order SNP interactions are shown in
Fig. 3. Results show that two-locus SNP interaction (CypIAIm2_Cyp1B1.119) being
highly associated with the breast cancer. Figure 4(a) and 4(b) shows the performance of
the model on higher-order interactions during training and validation respectively.

Fig. 3. Top 20 higher-order SNP-interactions for sporadic breast cancer data

Fig. 4. Performance of higher-order model (a) AUC for training data (b) AUC for validation data

The model is further evaluated for unsupervised learning tasks such as dimension‐
ality reduction and feature learning [24]. High dimensional data (888-dimensional data)
is reduced to low dimensional data (50-dimensional data) using PCA. PCA computes
principal components of breast cancer data and whose deviations are computed.
Figure 5 shows the standard deviations and cumulative variances of first 50 principal
components. It is observed that first 10 or 20 components cover the majority of variance
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of the breast cancer dataset. Deep autoencoder is used for unsupervised feature learning
by discovering the anomalies in the reduced representation of the original data. Cate‐
gorical offsets and reconstruction error between output layer and input layer are plotted
in Fig. 6.

Fig. 5. (a) Deviation plot and (b) Cumulative variance plot of PCA

Fig. 6. (a) Catoffset plot (b) Reconstruction error plot for unsupervised learning

4 Conclusion and Future Work

In this paper, previously trained deep learning network is further extended and trained
for detecting higher-order SNP interactions responsible for complex diseases. The
approach is validated and analysed on a sporadic breast cancer dataset. The experimental
results showed remarkable improvements in predicting three or more loci interactions
over some of the existing machine learning approaches. Top 20 highly ranked interacting
SNPs are illustrated for future studies and their role in the disease manifestation. The
method is further evaluated for unsupervised learning tasks such as dimensionality
reduction and feature learning. High dimensional data is reduced to low dimensional
data using PCA. Deep autoencoder is used for unsupervised feature learning by discov‐
ering the anomalies in the reduced representation of the original data. Future studies will
investigate the performance of the model in the presence of noise and family-based
datasets. Parallel computational techniques and current optimisation algorithms will be
explored and incorporated into the model to reduce the execution time.
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Abstract. Treebanks for clinical text are not enough for supervised
dependency parsing no matter in their scale or diversity, leading to still
unsatisfactory performance. Many unlabeled text from web can make
up for the scarceness of treebanks in some extent. In this paper, we
propose to gain syntactic knowledge from web text as syntactic cluster
features to improve dependency parsing on clinical text. We parse the
web text and compute the distributed representation of each words base
on their contexts in dependency trees. Then we cluster words according to
their distributed representation, and use these syntactic cluster features
to solve the data sparseness problem. Experiments on Genia show that
syntactic cluster features improve the LAS (Labled Attachment Score) of
dependency parser on clinical text by 1.62 %. And when we use syntactic
clusters combining with brown clusters, the performance gains by 1.93 %
on LAS.

1 Introduction

Dependency parsing is a main NLP (Natural Language Processing) task of ana-
lyzing dependency relations (head → dependent) between words in one sentence,
as shown in Fig. 1. It is widely applied in entity disambiguation, information
extraction, question answering, negation detection and so on.

The state-of-the-art dependency parsers [11,16], take English dependency
parsing as an example, perform well on news data. With the large annotated
treebanks, it is easy to train a dependency parser with high performance via
supervised learning method. But the treebanks for clinical text are rather rare.
And due to the particularity and diversity of words in clinical text, containing
many long sequence of digits, complex noun phrases and appositives [2], the
lexical sparseness problem in dependency parsing for clinical text is very serious.

Many researchers have devoted to consider clusters which is at a coarser
level than word themselves. Koo et al. [7] demonstrates the effectiveness of
brown clusters derived from large unannotated corpus in dependency parsing.
Hogenhout et al. [5] studies the word clusters on the basis of their syntactic
behaviour using Treebank data. Sagae and Gordon [18] derive syntactic word
clusters from phrase-structured parsing trees. The scale and domain of Tree-
bank data are limited, but the scale and diversity of unlabeled web text are very
huge. More important, web text is free.
c© Springer International Publishing AG 2016
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Recently, word embedding has been very popular and applied in many NLP
tasks [14,20]. It is a kind of distributed representation for word which represent
a word by a dense low-dimensional and continuous vector according to the co-
occurrence of words [13]. Word embedding can also be computed according to the
context in dependency trees [1,8]. Dependency-based word embedding exhibit
more functional similarity than original word embedding. We derive syntactic
clusters according to the dependency-based word embedding. If two words always
have the similar head or children in dependency trees, they belong to the same
syntactic cluster.

Receptors were measured by radioreceptor assay
root vmod

pmod
vc vmod nmod

Fig. 1. An example of dependency tree.

First, we parse web sentences and extract dependency contexts for each word
according to the dependency trees. According to the dependency contexts, we
represent the words by a vector. Then we derive the syntactic cluster of each word
according to its distributed representation. Finally, syntactic cluster features are
added to the dependency parser. After adding the syntactic cluster feature, the
performance of MSTParser on Genia test set is improved by 1.62 %, showing that
the syntactic clusters can tackle the data sparseness in bio dependency parsing.
We make three contributions in this paper:

– We derive syntactic clusters from dependency-based word embeddings gained
from web data.

– We augment the bio dependency parser with syntactic clusters as external
knowledge.

– We also combine syntactic clusters with brown clusters to tackle the data
sparseness in bio parsing more fully.

2 Graph-Based Parsing Model

Given a sentence x, dependency parsing is to produce its dependency tree y,
assigning head-dependent relations between all the words in x. The score of a
tree y is the sum of its subgraph scores [11]. The score of a subgraph is computed
according to its high-dimensional feature vector f(x, g) and the feature weights
in the weight vector w.

s(x, y) =
∑
g∈y

s(x, g) =
∑
g∈y

w · f(x, g) (1)
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The decoding process is to find the max spanning tree y∗, that maximize the
score s(x, y) in the set of all the possible trees Y (x).

y∗ = arg max
y∈Y (x)

∑
s(x, y) (2)

The feature weight vector w is learned during training using the Margin
Infused Relaxed Algorithm (MIRA) [11]. MIRA attempts to keep the norm of
the change to the parameter vector as small as possible, subject to correctly
classifying the instance under consideration with a margin at least as large as
the loss of the incorrect classifications.

3 Syntactic Clusters

In this section, we will introduce how to gain syntactic clusters from unlabeled
text and apply in dependency parsing.

3.1 Definition of Syntactic Clusters

According to the Distributional Hypothesis, words that occur in the same con-
texts tend to have similar semantics [4]. The underlying idea that a word is
characterized by the company it keeps was popularized by Firth [3]. Then we
believe that if two words have similar syntactic contexts in dependency trees,
then they have functional similarities.

The syntactic cluster represents that a series of words have similar syntactic
functions. For example, in two phrases of “drink a bottle of juice” and “drink a
bottle of potion”, juice and potion have the same syntactic role. But they are
dissimilar in semantics.

If potion does not occur in the training data and juice occurs, but they share
the same syntactic cluster, then we can derive the similar dependency structure
for potion as juice. For dependency parsing, a syntactic analysis task, syntactic
clusters are more meaningful than semantic clusters and experiments show that
it is true.

3.2 Dependency Based Word Embedding

Recently, distributed representation of words has been applied in many NLP
tasks [14,20]. Google released word2vec1, a toolkit that represent a word by
a vector according to its context. During training, word2vec has two models of
CBOW and Skip-gram, which all use a simple neural network [13]. The difference
is that Skip-gram uses current word to predict its contexts and its performance
is better for low-frequency words, and CBOW uses contexts to predict current
words and its speed is faster. There are many low-frequency words in biomedical

1 http://code.google.com/p/word2vec/.

http://code.google.com/p/word2vec/
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text, so we use Skip-gram model. Figure 2 shows the structure of skip-gram
model.

Given a word sequence w1, w2, .., wT , the goal of Skip-gram model is to max-
imize the objective function:

1
T

T∑
t=1

∑
−c≤j≤c,j �=0

logP (wt+j |wt), (3)

in which c is the size of window, the inside sum is the log probability of predicting
the word wt+j correctly, and the outside sum represents traversing all words of
training data. Each word w has two parameterized vectors uw and vw. uw is the
input vector for w and vw is the output vector for w. Given wi, the probability
of predicting wj correctly is the softmax function:

P (wi|wj) =
exp(vTwi

uwj
)∑W

t=1 exp(v
T
t uwi

)
, (4)

where W is the length of vocabulary list.
Given a dependency parsing tree T , if the word w that has k modifiers

m1,m2, ...,mk and the head h, then the contexts of w are (m1, lable1) ,...,
(mk, lablek) and (h, lableIh). lablek is the label of dependency relation for w
and mk. And lableIh represents that w is the modifier and h is the head in this
dependency relation.

3.3 Clustering Method

After representing each word as a dense, low-dimensional and real-value vector,
we derive syntactic clusters according to the value of each dimension. The goal
of clustering is to find the set C of cluster centers c ∈ Rm and |C| = k. The
objective is to minimize the following function over all examples x in the word
set of X:

min
∑
x∈X

‖f(C, x) − x‖2 (5)

According to the vectors of cluster center c and x, we can compute their Euclid-
ean distance. Then f(C, x) returns the nearest cluster center c ∈ C to the word x.

The classic k-means algorithm is very expensive for large web data, so we
use mini batch k-means as our clustering method [19]. Mini-batch k-means uses
stochastic gradient descent (SGD) which converges quickly on large data sets.
The input of mini-batch k-means algorithm are the number of clusters k, the
batch size b, the iteration number t and the data set X.

3.4 Application of Syntactic Clusters

When we parse a sentence and there is a word that never occurs in the treebank,
we cannot judge which word it will depend on. But if there are many words
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Fig. 2. The Skip-gram model.

Table 1. Feature set

Base features h−pos, d−pos h−word,

d−word h−word, d−pos

h−pos, d−word ...

Syntactic cluster features h−cluster, d−cluster

h−word, d−cluster

h−cluster, h−word

h−pos, d−cluster...

that belong to the same syntactic cluster with this word, we can easily decide
which word it will depend on. For example, in the sentences of “He drinks a
bottle of juice” and “She drinks a bottle of potion”, He and She are in same
syntactic cluster, juice and potion are dissimilar in semantics but in the same
syntactic cluster. If the second sentence does not occur in the training set, then
we can derive its dependency structure according to that of the first sentence.
We integrate syntactic clusters as external features into graph-based dependency
model.

The feature templates of baseline parser [12] and ours parser are shown in
Table 1. h is the head of a dependency relation and d is the child. h−pos is the
POS tag of h and h−word is the lexical of h. h−cluster is the syntactic cluster
of h and these symbols also apply to d. We combine syntactic cluster features
with word and POS tag features.

4 Experiment and Results

4.1 Experimental Settings

In order to show the effectiveness of syntactic cluster features, we conduct depen-
dency parsing experiments on Genia [6], which is a semantically annotated cor-
pus for bio-textmining. We follow the division of McClosky and Charniak [10].
The data we use to gain word syntactic clusters is the word embedding data
provided by Levy and Goldberg [8], containing about 175000 words. These word
embeddings are trained on English Wikipedia. Each word embedding contains
300 dimensions. According to the vectors, we derive 200 syntactic clusters. The
discriminative dependency parser we use is MSTParser [11] which uses first order
features.

4.2 Results

We evaluate the parser by UAS, UCAS, LAS and LCAS. As the standard prac-
tice, we exclude punctuation tokens of each sentence. UAS (unlabeled attach-
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ment score) is the ratio of words that have right heads. UCAS (unlabeled com-
plete attachment score) is the ratio of sentences whose words all have the right
heads. LAS (labeled attachment score) and LCAS (labeled complete attachment
score) are based on UAS and UCAS respectively, and they look at both heads
and dependency relation labels.

Table 2 shows the performance of different configurations. Base Parser repre-
sents the MSTParser with first order features [12]. We also conduct the experi-
ment that uses the Genia training set and WSJ training set to train the MST-
Parser and test on Genia test set and it is denoted by Base+WSJ. Base+Brown
is the MSTParser augmented with brown cluster features and the clusters are
drawn from BLLIP corpus using Brown clustering algorithm [7]. Base+Syn is
our system that using base features and syntactic cluster features. Finally, we
also combine base features, brown cluster and syntactic cluster features and this
configuration is denoted as Base+Syn+Brown.

From Table 2, we can see that our parser wins the Base Parser by 0.51 %
in UCAS, 1.62 % in LAS and 6.62 % in LCAS. Base+Brown performs better
than base parser in UAS, LAS and LCAS. But our system performs better than
Base+Brown in UCAS and LCAS. The parser combined brown clusters and
syntactic clusters performs the best. We can conclude that knowledge can be
mined from different view and we should use different kinds of knowledge to
improve dependency parsing for bio text.

The performance of Base+WSJ shows that it does not help if we add the
newswire treebanks into the training data directly because of the domain differ-
ence between news and clinical text. Instead, we can use these newswire treebank
to train a parser and get useful knowledge from unlabeled web data. Web data
is very rich in scale and diversity, so it contains much useful knowledge to be
mined.

We also compare the performance of our systems with other domain adap-
tation works. Plank et al. [17] uses topic models (Plank[2011] topic) and words
(Plank[2011] words) as the similarity measures to select the relevant data for a
target article from unknown domains. Ma[2013] is a kind of feature augmenta-
tion approach in which the features are acquired from subtrees of auto-parsed
target domain data [9] (Table 3).

In more detail, we compare the result of the baseline parser Base Parser and
our parser Base+Syn in each kind of dependency relation. Table 4 shows the
number of errors and error reduction ratio for each dependency relation. We can
see that the syntactic clusters notably works on vc, obj, vmod and amod.

4.3 Analysis

As observed in the results of syntactic clusters, the performance is rather sat-
isfactory. It is much more distinguishable than POS tags. For one example,
their, her, his, our, its are in the same cluster and their POS tags are same too.
merit and interval have the same POS tag NN(noun), but their syntactic clus-
ters are different. interval is likely to be a child of a preposition such as during,
for and at, while merit seems to depend on present tense verb such as is, are.
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Table 2. Results of different systems.

System UAS UCAS LAS LCAS

Base Parser 88.08 25.37 86.05 18.82

Base+WSJ 87.80 25.44 83.64 12.06

Base+Brown 88.26 25.37 87.88 24.93

Base+Syn 88.06 25.88 87.67 25.44

Base+Syn+Brown 88.38 26.4 87.98 25.59

Plank[2011] topic - - 86.77 -

Plank[2011] words - - 86.44 -

Ma[2013] 88.4 - 87.1 -

Table 3. Examples of some words in
the same syntactic clusters.

Word Similar words

Interval contact, line, precursor

Merit note, thought

Measured detected, assayed,observed

Co-operative autonomous,provisional

Bloodstream groove,axis,nucleus

Lipase silica, serum,sucrose

Table 4. Error reductions of two systems in different dependency relations.

Relation Explanation Count Baseline Ours Reduction

nmod noun modifier 16509 2198 2176 1%

vmod verb modifier 5625 941 726 22.85

pmod preposition modifier 4611 408 388 4.9 %

obj object 1239 225 131 41.78 %

root root of the sentence 1360 82 76 7.32 %

vc auxiliary verb - main verb 904 44 9 79.55 %

amod adjective modifier 854 417 314 24.7 %

sbar complementizer - verb 655 83 67 19.28 %

dep default classification 123 48 43 10.42 %

What’s more, measured and observed are very different in semantic, but they
are in the same syntactic cluster. Above all, the syntactic clusters carry different
information from POS tags.

5 Related Work

Many researchers have focused on dependency parsing for biomedical text.
McClosky and Charniak [10] use self-training to adapt the dependency parser
from news domain to bio domain. Plank et al. [17] selects the most relevant
data from Treebank for the article of target domain according to topic models
or words frequency. Ma and Xia [9] acquire features from subtrees extracted in
the auto-parsed dependency trees and retrain the target parser with the union
of training data in the source and target domain.

In our parser for bio, the training data is clinical Treebank combining with
web raw text. Clinical data has many various proper words, so the parser suffers
from data sparseness. Additional knowledge has been explored to make up data
sparseness in dependency parsing, such as brown clusters [7]. The brown cluster is
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computed according to the contextual words within one sentence. Our syntactic
clusters are gained according to corresponding dependency trees of a sentence.
Hogenhout et al. [5] studies the word clusters on the basis of their syntactic
behaviour using Treebank data. Sagae and Gordon [18] derive syntactic word
clusters from phrase-structured parsing trees, while we use dependency trees.
Bansal and Curran [15] get the continuous representation of dependency links
from dependency trees and apply them in dependency parsing for web text.
Bansal et al. [1] and Levy and Goldberg [8] get the distributed representation
of each word according to the dependency context. These studies inspire us to
acquire syntactic knowledge from unlabeled web text to improve bio dependency
parsing.

6 Conclusions

In this paper, we presented a simple yet effective method to improve dependency
parsing for clinical text. We mined syntactic cluster knowledge from dependency-
based word embedding to ease data sparseness in discriminative dependency
parsing. We presented significant improvements on the dependency parsing for
clinical text and also analyzed the performance of each kind of dependency
relation.

In the future, we will try to derive soft syntactic clusters, because a word may
belong to different syntactic roles. And we will gain more syntactic knowledge
from web data to help dependency parsing for biomedical text.
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Science Foundation of China (No. 91520204, No. 61572154) and the project of National
High Technology Research and Development Program of China (863 Program) (No.
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Abstract. Inferring gene regulatory networks (GRN) from microarray
gene expression data is a highly challenging problem in computational
and systems biology. To make GRN reconstruction process more accu-
rate and faster, in this paper, we develop a technique to identify the gene
having maximum in-degree in the network using the temporal correla-
tion of gene expression profiles. The in-degree of the identified gene is
estimated applying evolutionary optimization algorithm on a decoupled
S-system GRN model. The value of in-degree thus obtained is set as the
maximum in-degree for inference of the regulations in other genes. The
simulations are carried out on in silico networks of small and medium
sizes. The results show that both the prediction accuracy in terms of well
known performance metrics and the computational time of the optimiza-
tion process have been improved when compared with the traditional
S-system model based inference.

Keywords: Gene regulatory network · S-system · Temporal correla-
tion · Discrete cosine transform · Differential evolution

1 Introduction

Microarray data sets have not only been used extensively in multiclass gene
classification [1], but also applied for reconstruction of Gene Regulatory Network
(GRN) which represents the genes and their regulatory interactions. Identifying
the regulatory network existing at the genetic level is significant in understanding
the cellular processes in a biological system.

Various models have been proposed for the reconstruction of GRNs from
microarray data. These can be widely classified into linear and nonlinear models.
The dynamic Bayesian network (DBN) model, as a linear model, is often used
in GRN inference [2] and utilizes the temporal information to be able to model
feedback loops. Linear state space models have also been extensively used in
GRN modeling [3,4]. Since the biological systems are nonlinear in nature, it
limits the biological relevance of these linear models.
c© Springer International Publishing AG 2016
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Nonlinear state space models have also been proposed for modeling GRNs
[5]. Among the other commonly used nonlinear models, S-system approach is
widely accepted and considered to be a biologically relevant and generalized in
nature. S-system is represented by a set of coupled nonlinear first-order ordinary
differential equations. The reconstruction of a GRN of N genes using S-system
model is essentially estimation of 2N(N +1) parameters with several approaches
having been proposed for an accurate and fast estimation of these parameters.
The idea of decoupling [6] for parameter estimation has been a big step towards
reducing the computational cost. However, the number of parameters increases
significantly with increase in number of genes and the modeling using S-system
remains challenging for real-life networks.

In this paper, we have implemented a strategy of extracting information
from a different perspective to complement an existing modeling approach. We
have identified the genes having the higher in-degrees by exploiting the temporal
correlations of expression profiles of genes. This information is then added as a
prior knowledge to the existing traditional S-system model for inference. We
have implemented the proposed method on two in silico data sets of small and
medium sizes. The results show that this method is more accurate and faster
than a traditional algorithm of S-system based inference of GRNs.

The rest of the paper is organized as follows: Sect. 2 details the background
of the S-system model. The proposed method and the parameter estimation
process are described in Sect. 3. In Sect. 4, we discuss the experimental results.
The conclusions and future scope of the work are presented in Sect. 5.

2 Background

The traditional S-system model for the inference of GRNs is described next.

2.1 S-System Model

A set of coupled non-linear ordinary differential equations capable of modeling
biochemical networks represents S-system Model.

ẋi =
dxi

dt
= αi

N∏
j=1

x
gij
j − βi

N∏
j=1

x
hij

j i = 1, 2, . . . , N (1)

In the above model, N represents the total number of genes, xi represents the
expression of gene-i, αi and βi are the rate constants of synthesis and degrada-
tion of mRNA, respectively and gi,j and hi,j gives the direction and weight of
regulation from gene-j to gene-i in formation and degradation phases, respec-
tively.

The estimation of parameters from the given microarray data is usually
achieved by minimizing the deviation of the data from the model predictions
using evolutionary optimization algorithms. One of the most computationally
expensive step in the process is finding the solutions of equations (e.g., Eq. (1)).
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The decoupling or decomposition method of solving one equation at a time,
instead of solving all the coupled equations together, reduces the computational
cost to a great extent. The data for the time points missing in the original data
are estimated using an interpolation technique. The decoupled set of equations
can be expressed as follows:

dxi

dt
= αix

gii
i

N∏
j=1
j �=i

x̂
gij
j − βix

hii
i

N∏
j=1
j �=i

x̂
hij

j i = 1, 2, . . . , N (2)

where x̂j is the expressions value of gene-j, given in the data or estimated by
the interpolation.

2.2 Fitness Function

A commonly employed fitness function during parameter optimization is squared
relative error (SRE). In addition to the estimation error which corresponds to the
deviation of the model predictions from the expected values, a complexity error
has been included in the fitness function to account for the scale-free topology
of the network. This penalization restricts the algorithms from adapting highly
complex structures. One of the recently proposed penalty terms is included in
adaptive squared relative error (ASRE) [7] as follows:

ASRE =
T∑

t=1

(
xcal
i (t) − xexp

i (t)
xexp
i (t)

)2

+ BiCi
2N

2N − ri
(3)

where, ri is the number of regulations for gene-i, Bi is the balancing factor which
balances the two terms, SRE and penalty, on the R.H.S. of (3) and Ci is the
penalty factor.

3 The Method

3.1 Preprocessing

The idea of this preprocessing was inspired by the temporal correlation among
electroencephalogram (EEG) signals which have been effective in feature approx-
imation and hence used in the classification of different medical conditions, e.g.,
the classification of EEG signals into ictal and interictal groups. The features
of EEG signals derived by the two-dimensional discrete cosine transform (2D-
DCT) have been shown to be more effective than those derived by 1D-DCT [8].
DCT coefficients can represent the instantaneous variations of EEG signals well.
For this reason, to capture the temporal variations among the expression data of
a gene profile due to activations or inhibitions from its regulatory genes, for this
research, we have used the gene expression temporal correlation. The superim-
position of the signals from regulatory genes enforces the expression value of a



482 A.S.K. Youseph et al.

gene to vary proportionately to the number of its regulatory genes. This enables
us to make an assumption “the gene which is regulated by the highest number
of regulatory genes should have maximum energy value derived based on the
temporal correlation among its expression data.

To validate this, we used a synthetic network of 10 genes, shown in Fig. 1 hav-
ing 15 inter-regulatory arcs and 10 self-regulatory arcs. Data was generated using
(1) assigning random weights and types for the arcs. The time-series data of a
gene expression profile obtained after a perturbation, being non-stationary, was
divided into a number of segments as in [8], before applying DCT. The samples
in each segment of the profile were arranged in a two-dimensional matrix. Then,
we applied the 2D-DCT and the coefficient matrix (F ) was transformed into 1D
using the zig-zg form. Since the high-frequency DCT coefficients represent the
higher variations of a gene expression data, as with [8], the energies were cal-
culated for each segment considering the 25 % of the high-frequency coefficients
using the following equation:

Ei =
n∑

i=1

|Fi(t)|2 (4)

where, n indicates the number of the 25 % of the high-frequency coefficients and
Fi is their ith frequency coefficient. The average energies are calculated over all
segments for all genes and are shown in Fig. 2.

Fig. 1. Ten-gene regulatory network.
Solid lines: regulations in the produc-
tion phase. Dashed lines: the regula-
tions in the degradation phase. Bar
ended line indicates inhibition and cir-
cular end indicates activation or inhi-
bition.

Fig. 2. Average energy and in-degree
of genes



Exploiting Temporal Genetic Correlations 483

As expected, the gene having the highest in-degree showed the maximum
energy, shown in Fig. 2. It can be noted that the gene-9 which has the maxi-
mum in-degree in the network shows the maximum energy. This observation has
vindicated our earlier assumption “the gene having maximum in-degree can be
identified as the gene having maximum average energy. This maximum in-degree
based on temporal correlation (MITC) method can be briefly outlined as follows:

1. The time-series data of one gene is divided into segments of specific number
of samples.

2. The samples in each segment are arranged in a 2-D matrix.
3. The discrete cosine transform (DCT) is applied on the matrix of all samples

of each segment and a 1D vector is formed using zigzag manner.
4. A fixed percentage (in our case 25 %) of the high-frequency DCT coefficients

are considered to calculate the energy using the equation defined in (4).
5. For each segment, the above three steps are repeated and the average energy

is calculated.
6. For each gene, all the above steps are performed.
7. The gene with highest energy is identified as the gene with maximum in-

degree.

3.2 Parameter Estimation

We used the S-system model for GRN inference. The decoupled equation
described in (2) is used as they are computationally faster. In the process of
parameter estimation, we first estimate the parameters involved in the equa-
tion for the gene identified as the one with maximum in-degree. The maximum
and minimum in-degrees, Ii and Ji, respectively, are to be provided to the opti-
mization. A random fixing could be twice the total number of genes for Ii and
zero for Ji. Chowdhury et al. [7] made these parameters adaptive during the
optimization. After every l iterations, the smallest and largest in-degrees of the
population are examined and set as the new values for Ji and Ii, respectively.

The fitness function, ASRE defined in (3) is minimized during the optimiza-
tion. The penalty factor Ci is fixed as in [9], according to the maximum and min-
imum in-degrees set during the optimization. As the same transcription factor
usually does not regulate expression of a gene in both formation and degradation
phases, a maximum in-degree less than N is set prior to the optimization. Once
the equation (2) is solved, the parameters g and h provide the in-degree of gene-
m which is then set as the maximum in-degree for parameter estimation of all
other genes. Trigonometric differential evolution (TDE) is used for optimization.
The hill-climbing local search (HCLS) [9] is also included in the algorithm. For
the medium-scale network, the multi-refinement algorithm (MRA) used in [9] is
applied for post-processing after completion of the given number of iterations.

4 Results and Discussion

We coded the inference algorithm in Matlab and the simulations were carried
out for two in silico networks of small and medium sizes using the data sets



484 A.S.K. Youseph et al.

generated by the S-system model. The parameters of evolutionary optimization
were set as: the mutation factor, Mf = 0.5, the cross over ratio, CR = 0.8
and the trigonometric mutation ratio, Mt = 0.05. The population size was set
to 50 for the small scale network and 100 for the medium scale network. The
in-degree of the gene whose expression profile showed maximum temporal corre-
lation is estimated by running the evolutionary optimization for 850 iterations
which is then considered as the maximum-in-degree of the network. To compare
the performance of the optimization algorithm using the temporal correlation
information with that not using any correlation information, the simulations are
carried out for 400 iterations using the same settings in both the algorithms.
The inferred networks are assessed by calculating the four commonly used per-
formance metrics: sensitivity (Sn), specificity (Sp), precision (Pr) and F-score
(F ). The computational complexity is assessed by estimating the number of
function evaluations required per gene (Nf ).

4.1 Small-Scale-Network

A small network of five genes and twelve regulations, including self-regulations,
is considered. The gene which has maximum in-degree in the network is gene-4,
having an in-degree of four. Gene-2 has an in-degree of three, gene-3 and gene-5
have an in-degree of two and gene-1 has an in-degree of one. Ten datasets having
21 samples in each are generated using S-system model. The MITC algorithm is
performed first on the datasets. The average energies over various segments of
the time-series data are calculated for different data sets. Gene-5, which has the
maximum in-degree showed the maximum average energy.

The optimization algorithm is run for gene-5, setting the initial values of I5
and J5 to be 6 and 1, respectively. Once the optimization is completed, we get the
in-degree as 4 including the self degradation. The network being small, the post-
processing is excluded. For all other genes, Ii values are set as 4 at the beginning
of the optimization which is adaptively changed during the optimization process.

Another set of simulations were run with the same optimization settings with
the initial values of I and J set as 6 and 1, respectively, for all genes, i.e. without
MITC. Five sets of simulations were carried out for both methods. The average
values of the results obtained are shown in Table 1.

Table 1. The average values of the experimental results for small-scale in silico network

Sn Sp Pr F Nf

Without MITC 0.8167 0.8842 0.7032 0.7521 3.651 × 104

With MITC 0.8667 0.9158 0.7718 0.8150 3.615 × 104

Table 1 shows that the method using MITC (our proposed method) produces
better values for all performance metrics and computational complexity compar-
ing with their corresponding counterparts of the method without using MITC.
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The less average number of function evaluations required per gene for our pro-
posed method indicates our method is computationally faster than that without
MITC.

The values of the parameters inferred for the proposed method were more
closer to the target values than for the method without MITC. The paired
t-test is carried out for comparing the estimated parameters in both the methods
with the original parameters expected. The p-values obtained for our proposed
method and the method without MITC are 0.70 and 0.66, respectively. The
larger p-value for our proposed method confirms the higher similitude to the
target values.

4.2 Medium-Scale-Network

A twenty-gene network [9], widely been reconstructed using S-system model, is
considered. The network consists of 20 self regulations in degradation phase and
26 inter-regulatory arcs in the production phase.

The energies based on temporal correlation were calculated for all genes using
all data sets. The highest energy was shown by gene-15, one of the two genes
that have the maximum in-degree. This gene is considered to be the gene with
maximum in-degree. The optimization algorithm was run for gene-15, setting the
initial values of I15 and J15 to be 8 and 1, respectively. Once the optimization
and post-processing was completed, we obtained the in-degree as 4 including the
self degradation. For all other genes, Ii values are set as 4 at the beginning of
the optimization which is adaptively changed during the optimization process.
For comparison purposes, another set of simulations were run with the same
optimization settings with the initial values of I and J set as 8 and 1, respectively,
for all genes, i.e. without MITC.

As the network is bigger in size, a post-processing is also necessary to achieve
better optimal solutions. To study the influence of the proposed method at vari-
ous stages of the inference algorithm, we have analyzed the results of simulations
before as well as after applying the post-processing technique, multiple refine-
ment algorithm (MRA). The average of values of the results over five sets of
simulations before and after applying MRA are shown in Table 2 for the pro-
posed method and those without applying MITC.

Similar to the previous dataset, for this 20-gene network dataset, all the
performance metrics for our proposed method are better than those for the
method without MITC. Also, the average number of evaluations required per
gene for our proposed method is less than that for the method without MITC
at both the stages of inference. It may be noted that the proposed method is
computationally faster and concomitantly, has improved the prediction accuracy
in terms of all performance metrics.

5 Conclusions

Reconstruction of GRNs remains a challenging problem in computational biol-
ogy. In this paper, we have proposed a method of retrieving a useful information,
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Table 2. The average values of the experimental results for medium-scale in silico
network.

Before applying MRA After applying MRA

Without MITC With MITC Without MITC With MITC

Sn 0.5088 0.5826 0.6255 0.6359

Sp 0.9340 0.9732 0.9120 0.9732

Pr 0.3220 0.5784 0.3032 0.5944

F 0.3934 0.5777 0.4074 0.6125

Nf 9.300 × 104 7.584 × 104 1.944 × 105 1.368 × 105

maximum in-degree of the given network, from the time-series data by compar-
ing the temporal correlations of expression profiles of different genes. Input of
this information to the inference algorithm makes the algorithm perform bet-
ter in accuracy and speed. The results of simulations run on in silico networks
confirm the superiority of the method.
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Abstract. In this paper, a sleep stage prediction method using respi-
ration and body-movement based on probabilistic classifier is proposed.
A pressure sensor is employed to capture respiratory signal. We propose
to use least-squares probabilistic classifier (LSPC), a computationally
effective probabilistic classifier, for four-class sleep stage classification
(wakefulness, rapid-eye movement sleep, light sleep, deep sleep). Thanks
to output of posterior probability of each class by LSPC, we can directly
handle the confidence of predicted sleep stages. In addition, we intro-
duce a method to handle imbalanced data problem which arises in sleep
data collection. The experimental results demonstrate the effectiveness
of sleep stage prediction by LSPC.

Keywords: Sleep stage prediction · Respiration · Body-movement ·
Probabilistic classifier

1 Introduction

Sleep is a fundamental and important state in daily life. Thanks to wide and
rapid spread of sensor technologies, the collection of personal sleep data has
entered the spotlight. These days, people who have health awareness use various
sensors such as wristband sensors to measure their long-term sleep data and to
check the trends. However, these data are predicted values, since the golden stan-
dard of sleep stage is determined by polysomnography (PSG) and manual scoring
by experts. Sleep stage is basically categorized into six stages, that is, wakefulness
(wake), rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep classi-
fied to stage 1 to 4, based on Rechtschaffen and Kales’ method [1]. These stages
are mainly defined by brain wave measured by PSG. Most of previous studies
using accelerometer and physiological sensors such as heart rate and respiration
focused on two-stage (wake/sleep(REM+NREM)) or three-stage classification
(wake/REM/NREM). However, deep sleep is an important factor of sleep qual-
ity. Therefore, we attempt to predict four-stage (wake/REM/light(stage 1 + 2)/
deep(stage 3 + 4)) by using respiration and body-movement information.
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 491–500, 2016.
DOI: 10.1007/978-3-319-46687-3 54
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When a predictor using physiological information is developed, the following
two problems have to be considered. One is the uncertainty of sensor signals.
The measurement performance of low cost sensors is generally less than PSG,
because the electrodes of PSG are securely attached with tape and paste. Sleep
stages might be misclassified due to noisy physiological signals. Hence, address-
ing the reliability of prediction is required. The other is the imbalance of training
samples. This problem naturally occurs in sleep data collection and deteriorates
the performance of predictor. For instance, light sleep occupies the majority of
total sleep time. To cope with aforementioned difficulties, we employ a proba-
bilistic classifier, which can handle the confidence of prediction as the posterior
probability.

This paper is organized as follows: Previous studies are introduced at first.
Next, the detail of sleep data collection and preprocessing are described. More-
over, we introduce brief summary of least-squares probabilistic classifier (LSPC)
[2] as a probabilistic classifier and indicate the effectiveness of LSPC for sleep
stage prediction through experiments.

2 Related Work

Accelerometer based method which captures body movement during sleep is a
typical approach to classify wake and sleep (REM+NREM) state [3]. Kawamoto
et al. have demonstrated that accelerometer signal contains the fragments of
respiratory information and have attempted to detect REM sleep by using sup-
port vector machine (SVM) [4]. Since cardiovascular system strongly correlates
with autonomic nervous system (ASN), heart beat is a promising information to
predict sleep stages. Various heart rate variability (HRV) based methods have
been reported [5,6]. Watanabe and Watanabe used an air-filled cushion that
can capture heart beat and body-movement, and proposed a predictor using the
combination of those features [7].

On the other hand, respiration is also a promising physiological signal for
the prediction. Chung et al. have proposed REM sleep estimation using res-
piration rate and variability, and they evaluated the discriminant performance
between REM and NREM sleep [8]. Tataraidze et al. have proposed a respira-
tory based method using respiratory inductive plethysmography (RIP) [9]. They
used features extracted from RIP of thorax and indicated good performance in
three-stage classification (Wake/REM/NREM) by using bagging classifier.

As classification methods, various machine learning methods such as SVM,
bagging, etc. have been adopted. However, the handling of imbalanced data and
the confidence of sleep stage based on probabilistic classifier such as LSPC was
scarcely mentioned in previous studies.

3 Data Collection

3.1 Experimental Setting

Ten healthy males in their 20 s participated in this experiment. The design of the
experiment was approved and conducted according to the “Ethical Guidelines for
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Research Involving with Human Subject” of Toyota Motor Corporation. Before
the experiment, we explained the detail of the experiment and obtained their
informed consents. We employed our prototype module which includes a pres-
sure sensor and a three-axis accelerometer to measure the subjects’ respiration
and body-movement, respectively. The sensor module, of which size is about
5 × 5 × 2 cm, was inserted between the front side of abdomen and bottoms.

Because the pressure sensor can detect the periodic movement of abdomen
caused by breathing, we treated this signal as the surrogate of respiratory wave-
form. The sampling rate was 20 Hz. In addition, a physiological amplifier (Poly-
mate AP1132, TEAC Corp.) with the sampling rate of 1 kHz was used to record
their electroencephalogram (EEG) at central and occipital areas of the scalp,
electrooculogram (EOG) and electromyogram (EMG) to determine the ground
truth of sleep stages. Figure 1 shows the schematic diagram of the experiment
system.

Physiological
Amplifier

Prototype 
Sensor Module

Electrodes

Fig. 1. The schematic diagram of experiment system

The measurement was executed at a quiet experiment room. In order to
avoid first-night effect [10], which is caused by an unfamiliar environment, we
measured the sleep data for two consecutive nights from all the subjects. All
the subjects went to bed at 11:00 PM and waked up at 7:00 AM. The first night
was treated as an adaptation session. We employed the data of second night for
the analysis described below. Sleep scoring based on Rechtschaffen and Kales’
method was executed each 30 s epoch by experts. As a result, the collected data
was totally about 9,600 epochs (4,800 min).

3.2 Data Processing

In this paper, we used five respiratory features and a body-movement feature
described below. All the features were calculated at 30-s intervals with 60-s
sliding windows and were subtracted by the median to reduce the influence of
individual difference.

Respiratory Feature. First of all, to extract respiratory waveform, the signal
of pressure sensor was filtered with fourth-order Butterworth band-pass filter of
which passband is from 0.5 to 1.0 Hz. Then following five features were computed
from the respiratory waveform.

Mean respiration rate: Mean of respiration rate derived from the peak-to-
peak interval of respiratory waveform.
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Standard deviation of respiration rate: Standard deviation of respiration
rate mentioned above.

Coefficient of variation of respiration rate: Mean respiration rate divided
by standard deviation of respiration rate.

Coefficient of variation of respiration amplitude: Coefficient of variation
of amplitude derived from the difference between a peak and a bottom of
respiratory waveform.

Normalized autocorrelation coefficient: The first peak of normalized auto-
correlation coefficient.

Body-Movement Feature. Following one feature was calculated by using raw
accelerometer signal.

Difference norm of acceleration: Maximum value of log(‖at−at−1‖), where
at = (ax

t , ay
t , a

z
t )

� is tth output of three-axis accelerometer with the sampling
rate of 20 Hz.

Figure 2 depicts a conceptual diagram of peak-to-peak interval and amplitude
of a respiratory waveform. Through the experiment, there were epochs that
respiratory waveform did not indicate sufficient amplitude because of lack of
pressure. Thus, we discarded such epochs from our training samples and finally
obtained about 8,800 epochs. The rate of sleep stages was as follows: wake:8.0 %,
REM:20.6 %, light(stage 1 + 2): 65.3 %, and deep(stage 3 + 4): 6.1 %.
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Fig. 2. The transition of respiratory waveform.

4 Sleep Stage Prediction

4.1 Least Square Probabilistic Classifier

Thanks to learning posterior probability directly, probabilistic classifiers can nat-
urally handle multi-class classification problems. In addition, since the posterior
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probability represents the confidence of class prediction, the prediction output
with low confidence can be rejected unlike deterministic classifiers such as SVM
which only learn the decision boundary.

In this paper, we employed a computationally effective probabilistic classifier
called least-squares probabilistic classifier (LSPC) proposed by Sugiyama et al.
[2]. Let us consider training samples {(xi, yi)}ni=1. In this study, xi is a feature
vector, and yi ∈ {wake,REM, light,deep} is a sleep stage of the ground truth. In
LSPC, the posterior probability p(y|x) of class y = 1, . . . , c is modeled by linear
model. In this paper, we use Gaussian kernel model:

q(y|x;θy) = θy�φ(x) =
∑

j:yj=y

θyj K(x,xj), (1)

K(x,x′) = exp
(

−‖x − x′‖2
2h2

)
, (2)

where θy and φ(x) are the parameter and basis function vector, respectively.∑
j:yj=y is the sum of jth parameter which satisfies yj = y. LSPC minimizes the

following criterion to learn the parameters:

Ĵ(θy) =
1
2n

n∑
i=1

q(y|xi;θy)2 − 1
n

∑
i:yi=y

q(y|xi;θy) +
λ

2n
‖θy‖2

=
1
2n

θy�Φ�Φθy − 1
n

θy�Φ�πy +
λ

2n
‖θy‖2, (3)

where Φ = (φ(x1), . . . ,φ(xn))�, λ ≥ 0 is the regularization parameter, and

πy = (πy
1 , . . . , πy

n)�, πy
i =

{
1 (yi = y)
0 (yi �= y).

Then the minimizer θ̂
y

of the learning criterion Ĵ can be analytically computed
as

θ̂
y

=
(
Φ�Φ + λI

)−1
Φ�πy. (4)

Finally, the posterior probability is calculated as follows:

p̂(y|x) =
max(0, θ̂

y�
φ(x))

∑c
y′=1 max(0, θ̂

y′�
φ(x))

. (5)

Because the sleep measurement is executed in the course of nature, the rate
of obtained sleep stages is biased. For example, the number of deep sleep epochs
is less than one tenth of that of light sleep epoch in the training samples. Such a
dataset is called imbalanced data, and it leads a difficulty to proper estimation
of model parameters [11]. To cope with imbalanced data problem, we apply
random selection to equate the number of training samples of each class. Here,
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the number is determined by the number of deep sleep epochs. The impact of
imbalanced data problem is lightened by this procedure, but deep sleep might
be overpredicted because the prior probability becomes equivalent to the others.
Therefore, we add weight parameter wy to Eq. (6) as follows and optimize it
through cross-validation in order to correct the probabilities.

p̂(y|x) =
max(0, wyθ̂

y�
φ(x))

∑c
y′=1 max(0, wy′ θ̂

(y′)�
φ(x))

. (6)

4.2 Performance Evaluation

We compare the performance of classification methods as follows:

SVM: Normal SVM with Gaussian kernel. We used LIBSVM [12] as the imple-
mentation of SVM. Optimized hyper parameters are C and γ.

SVM-RS: SVM with random selection procedure. Optimized hyper parameters
are C and γ.

LSPC: Normal LSPC. Optimized hyper parameters are λ in Eq. (4) and h in
Gaussian kernel.

LSPC-RS: LSPC with random selection procedure. Optimized hyper parame-
ters are λ and h.

LSPC-WO: LSPC-RS with weight parameter optimization. Weight parame-
ters wREM and wlight in Eq. (6) are optimized. To avoid the huge number
of combinations, we fix wwake = wdeep = 1. In addition, we use λ = 1 and
h = 0.5, which were the most commonly chosen in LSPC-RS.

All the training samples are used in the normal condition. On the other
hand, the training samples are thinned out in the random selection and the
weight optimization conditions. In this experiment, we employ median filter
to the output of all the classification methods to suppress the fluctuation of
prediction outputs. We use nine epochs as the window size of median filter. The
following performance criteria are investigated [13].

Accuracy: The rate of test samples that are correctly predicted by a classifier.
Mean F-measure: The mean of F-measure in each class.

mean F-measure =
1
c

c∑
i=1

2 · Precisioni · Recalli
Precisioni + Recalli

Because of the imbalance of sleep stages, mean F-measure is the significant
criterion.

To evaluate the generalized performances of the classification methods, we
employ leave one subject out cross-validation (LOSO-CV). In LOSO-CV, the
training set is constructed from nine subjects, and the samples of the remaining
subject are used as the test set. For hyper-parameter optimization and prediction
performance evaluation, we employed the nested LOSO-CV procedure, where



Sleep Stage Prediction Using Respiration and Body-Movement 497

the outer loop computes prediction performance and the inner loop executes
hyper-parameter optimization by using grid search.

In addition, we confirm the relation between the performance and the con-
fidence. The rejection of outputs which are below a confidence threshold is a
straightforward approach to deal with the uncertainty of physiological measure-
ment, though the number of accepted outputs will be decreased when the con-
fidence threshold is high. In this experiment, the confidence threshold TC of
LSPC-WO is changed in the range of 0.25–0.6 at 0.05 intervals.

4.3 Result and Discussion

Table 1 shows the evaluation results of five classification methods. LSPC-WO
outperformed the others in terms of mean F-measure. In both of normal and
random selection conditions, LSPCs indicated better performances than SVMs.
Moreover, both LSPC-RS and SVM-RS exceeded normal LSPC and SVM due
to the resolution of imbalanced data problem.

Table 1. Comparison of the performance of classification methods.

Subject Accuracy Mean F-measure

SVM SVM-RS LSPC LSPC-RS LSPC-WO SVM SVM-RS LSPC LSPC-RS LSPC-WO

1 0.716 0.435 0.743 0.465 0.624 0.391 0.442 0.448 0.444 0.518

2 0.673 0.420 0.691 0.452 0.615 0.378 0.323 0.423 0.340 0.453

3 0.824 0.388 0.819 0.480 0.665 0.531 0.360 0.524 0.395 0.477

4 0.726 0.477 0.750 0.471 0.586 0.323 0.455 0.374 0.460 0.487

5 0.660 0.574 0.716 0.631 0.717 0.411 0.583 0.514 0.623 0.664

6 0.659 0.371 0.675 0.377 0.514 0.219 0.383 0.270 0.361 0.335

7 0.528 0.435 0.530 0.558 0.622 0.252 0.357 0.285 0.432 0.437

8 0.644 0.340 0.644 0.413 0.506 0.251 0.305 0.278 0.320 0.298

9 0.600 0.240 0.579 0.360 0.447 0.264 0.223 0.256 0.298 0.324

10 0.668 0.346 0.654 0.451 0.519 0.330 0.325 0.318 0.433 0.416

Mean 0.670 0.403 0.680 0.466 0.581 0.335 0.376 0.369 0.411 0.441

Figures 3, 4 and 5 show the transitions of sleep stages of subject 5. Solid
and dotted line indicate the ground truth and prediction output, respectively.
As indicated in the top of Fig. 5, we can confirm that the prediction of LSPC-
WO captured the transition of ground truth. Even though deep sleep was not
predicted, the prediction result of normal LSPC in the top of Fig. 4 seems ade-
quately in the viewpoint of three-stage classification (wake/REM/NREM). This
fact suggests that the influence of imbalanced data problem might be unremark-
able in the three-stage classification scenario, because NREM sleep does not
distinguish light and deep sleep. On the other hand, as shown in the bottom of
Fig. 4, the deep sleep of LSPC-RS was overpredicted at 500–600 epochs. These
results indicate that tuning weight parameters via cross-validation can lead to
the intermediate performance of LSPC and LSPC-RS, and suppress the over-
prediction of deep sleep.

The transition of posterior probabilities is shown in the bottom of Fig. 5.
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Fig. 3. The transitions of sleep stage of SVM and SVM-RS.
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The probability of wake was quite high in the early stage of sleep, and was
suddenly diminished around 100 epochs. Then, the probabilities of REM and
NREM (light+deep) were periodically fluctuated at intervals of about 200 epochs
(100 min), and the light sleep gradually occupied the NREM sleep in the late
stage of sleep.

Although the tuning procedure is able to apply to other classification methods
such as SVM, the evaluation of confidence is a feature of probabilistic classifiers.
Figure 6 presents the obvious trade-off between the mean F-measure and the
number of accepted outputs. When TC = 0.25, all the outputs were accepted
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due to the chance rate of four-class classification. On the other hand, when
the threshold became high, the mean F-measure was made better though the
accepted outputs were decreased. Through the experiments, we conclude that
LSPC-WO is a promising classification method to handle imbalanced data prob-
lem and can address the uncertainty of physiological measurement.
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Fig. 6. The trade-off between mean F-measure and the number of accepted outputs.

5 Conclusion

We introduced a probabilistic classifier based sleep stage prediction using res-
piration and body-movement information. We indicated a method for least-
squares probabilistic classifier (LSPC) to handle imbalanced data problem, which
commonly arises in sleep data collection. Moreover, we confirmed the relation
between the performance and the confidence. Through the experiments, the effec-
tiveness of LSPC for sleep stage prediction was demonstrated. It can be expected
that the proposed method is widely applied to various type of respiration sensors
and accelerometer. In future works, in order to improve the limitations of this
paper, we have plans to add the number of subjects including females, and to
confirm the performance via long term evaluation in daily living.
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Abstract. Removing ring artifacts in Cone Beam Computed Tomogra-
phy (CBCT) images without impairing the image quality is critical for
the application of CBCT. In this paper, we propose a novel method for
the removal of ring artifacts in CBCT Images using an image smoothing
based on relative total variation (RTV). After transforming the CBCT
image into polar coordinates, we introduce a single-direction smoothing
to separate the small scale textures, which include the artifacts, from
the image structures. Then the artifact template is generated by median
value extraction. Finally, the artifact template is transformed back into
Cartesian coordinates and is subtracted from the original CBCT image.
Experiments on different CBCT images show that the proposed method
can obtain satisfactory results.

Keywords: CBCT image · Ring artifacts · Image smoothing · Relative
total variation

1 Introduction

In recent years, Cone Beam Computed Tomography (CBCT) has been widely
used in the medical fields, such as clinical diagnosis, 3D implants. However, due
to the limitations of imaging system, CBCT images often have ring artifacts,
which have the same center with the reconstructed image and different gray levels
with the surrounding pixels [1]. Ring artifacts have great effect on the quality and
authenticity of CBCT images. Many methods based on image processing have
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been proposed to remove ring artifacts. They can be roughly divided into two
categories [2]: pre-processing approaches [3–7] based on the projection sinogram,
and post-processing approaches [8–11] based on the reconstructed image.

Pre-processing approaches are performed on the projection sinogram [12],
in which artifacts appear as parallel vertical lines. C. Raven et al. [3] adopted
Fourier transform on the projection sinogram and used low-pass filter to remove
artifacts. M. Boin et al. [4] used the average filter to eliminate artifacts dur-
ing the reconstruction. B. Münch et al. [5] combined wavelet decomposition
and Fourier low-pass filter to remove artifacts. Post-processing approaches are
directly applied to the reconstructed images to reduce artifacts. J. Sijbers et al.
[8] corrected ring artifacts based on the morphological operations. In [10], inde-
pendent component analysis (ICA) was used to decompose the image into multi-
ple independent components and the components containing streak artifact were
selected for further filtering. In [11], a polar wavelet Gaussian filtering algorithm
was applied to remove artifacts from the reconstructed image.

Although the exiting methods have certain correction effects, they still have
some disadvantages. Most of them remove artifacts by different filters, which
cause blurred edges and loss of details in the image. Furthermore, in pre-
processing methods, the large memory space is required by the projection sino-
grams. While in most post-processing methods, the reconstructed image is cor-
rected in polar coordinates. During the coordinate transformation, interpolation
is often used to compensate the transformed image, and it is inevitable to pro-
duce the loss of edges and details. To avoid these problems, we propose a new
artifact removing method in this paper. Inspired by the structure extraction
algorithm [13], an effective image smoothing algorithm is introduced into our
proposed method. Because the artifacts can be regarded as regular texture, we
perform a single-direction smoothing to separate low-amplitude textures with
artifacts, from main structures of the CBCT image. After that, artifacts are fur-
ther extracted from these textures, and are subtracted from the original recon-
structed image. Like most post-processing methods, we separate and extract
artifacts in polar coordinates. However, different from them, we only convert the
obtained artifacts back into Cartesian coordinates and directly subtract arti-
facts from the original CBCT image in Cartesian coordinates. Therefore, the
meaningful information of the original image is ensured to be preserved largely.
Experimental results show that this method can effectively remove ring artifacts
and well preserve the details and edges of CBCT images.

The paper is organized as follows. The structure extraction algorithm is
reviewed in Sect. 2. The proposed method is shown in Sect. 3. Experimental
results are given in Sect. 4 and the last section concludes this paper.

2 Smoothing via Structure Extraction

Let S denote the smoothed result of an input image I. A pixel-wise windowed
total variation measure is written as
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Dx(p) =
∑

q∈R(p)

gp,q| (∂xS)q |,

Dy(p) =
∑

q∈R(p)

gp,q|(∂yS)q|,
(1)

where p and q index 2D pixels, and R(p) is the rectangular region centered at
pixel p. Dx(p) and Dy(p) are windowed total variations in the x and y directions,
respectively, for pixel p, and they count the absolute spatial differences within
the window R(p). gp,q is a weight defined by a Gaussian function according to
spatial affinity, expressed as

gp,q ∝ exp(− (xp − xq)2 + (yp − yq)2

2σ2
), (2)

where σ controls the spatial scale of the window. D is responsive for visual
saliency. In an image with salient textures, both the detail and structure pixels
yield large D.

To distinguish prominent structures from the texture details, windowed inher-
ent variation is defined as

Lx(p) =

∣∣∣∣∣∣
∑

q∈R(p)

gp,q(∂xS)q

∣∣∣∣∣∣
,

Ly(p) =

∣∣∣∣∣∣
∑

q∈R(p)

gp,q(∂yS)q

∣∣∣∣∣∣
.

(3)

Different from D, L does not incorporate the modulus for each difference.
Because spatial difference for a given pixel is possibly either positive or negative,
the sum depends on whether or not the gradients in a window are coincident in
terms of their directions. Usually, a major edge in a local window contributes
more similar-direction gradients than near-regular textures. Thus, L in a window
that only contains textures is generally smaller than that in a window that also
includes structural edges.

Combining L with D, an even more effective regularizer Dx(p)/(Lx(p)+ε)+
Dy(p)/(Ly(p)+ε) is formed to further enhance the contrast between texture and
structure. It is called relative total variation (RTV), where ε is a small positive
real number to avoid divided by zero. After the regularizer RTV is added, the
objective function of smoothing for structure-texture decomposition becomes

min
s

∑
p

(
(Sp − Ip)2 + λ(

Dx(p)
Lx(p) + ε

+
Dy(p)

Ly(p) + ε
)
)

, (4)

where the term (Sp − Ip)2 makes the smoothed image S similar to the original
image I as much as possible. The regularizer RTV is used to remove image
textures, and the smoothing parameter λ controls the smoothness of the result.
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Texture and main structure exhibit completely different properties on RTV
and thus they can be easily distinguished. Regarding the artifacts as the part
of regular texture details, we can separate the texture details including artifacts
from the main image structures.

3 Removing Ring Artifacts by Single-Direction
Smoothing

The whole procedure of removing ring artifacts is described as follows.

3.1 Transformation into Polar Coordinates

In most existing post-processing methods, the reconstructed image is processed
in polar coordinates, in which the artifacts appear as vertical stripes. Compared
with concentric rings in Cartesian coordinates, stripe artifacts in polar coordi-
nates are easier to be detected and eliminated [14].

Similarly, we transform the CBCT image into polar coordinates as described
by [8] firstly. Figure 1 shows an example of the polar coordinate transformation.
To better observe the details, we magnified a portion of image and expanded its
image contrast, as shown in bottom right corner of figures.

Fig. 1. Polar coordinate transformation. (a) An original brain CBCT image in Carte-
sian coordinates; (b) the transformed image in polar coordinates. A magnified portion
is shown on bottom right corner.

3.2 Image Decomposition by Smoothing

As shown in Fig. 1(b), the artifacts appear as vertical stripes in polar coordinates.
To preserve the original image information as much as possible, we only take the
smoothing in horizontal direction into consideration for the tranformed image.
By Eq. (4), the objective function is modified as

min
s

∑
p

(
(Sp − Ip)2 + λ(

Dx(p)
Lx(p) + ε

)
)

. (5)
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Fig. 2. Image smoothing. (a) A smoothed image, a magnified portion is shown on
bottom right corner; (b) Texture image including artifacts and other details.

where the regularization term only includes RTV in the x directon. This is non-
convex problem and the reference [13] provides an efficient solving strategy.

After smoothing, image textures that include artifacts and some original
image details can be obtained by subtracting the smoothed result from the orig-
inal image. The smoothed image and texture image of the example are shown in
Fig. 2.

3.3 Artifact Template Extraction

In this subsection, we further extract artifacts from the texture image. The
artifact pixels caused by the same detector basically have the same gray level in
the image. Thus, we extract median values as artifacts. On the texture image,
the median of each vertical column is computed as the value of corresponding
column of the artifact template. Each column of the artifact template has the
same value and the whole artifact template has the same size as the texture
image.

Figure 3(a) shows the generated artifact template of the example. By sub-
tracting the artifact template from the texture image, we can see that the remains
are the original image details and need to be preserved, as shown in Fig. 3(b).

Fig. 3. Artifacts extraction. (a) Artifact template; (b) Other texture details.
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3.4 Artifacts Subtraction

Finally, we transform the artifact template back into Cartesian coordinates and
subtract it from the original CBCT image. Thus, the CBCT image without ring
artifacts is obtained.

Figure 4(a) shows the artifact template in Cartesian coordinates, which has
the same size as the original CBCT image. Figure 4(b) shows the result image,
in which ring artifacts are removed effectively while the original information is
well preserved.

Fig. 4. Artifacts subtraction. (a) The artifact template in Cartesian coordinates;
(b) The result without artifacts, a magnified portion is shown on bottom right
corner.

4 Experiments

The proposed method was implemented in Matlab on real CBCT images of
human tissues. We normalized all pixel values of the original CBCT image to the
interval [0,1]. The size of image in Cartesian coordinates and in polar coordinates
is set as 512 * 512 and 360 * 360, respectively. In the coordinate transformation,
the bilinear interpolation method [15] was used to compensate the transformed
image. ε in Eq. 5 was fixed to 1e-3, and the smoothing parameter λ was set to
0.005 and can be adjusted within (0, 0.05] according to the smoothing effect.
The spatial parameter σ in Eq. 2 was set to 3 and is tunable for different images
within a range (0,6].

To verify the effectiveness of the proposed method, we compared the pro-
posed method with an existing post-processing method in [11],which applied the
wavelet-Fourier filter [5] to the reconstructed images in polar coordinates. This
technique performs Fourier filtering on the coefficients of 2-D wavelet decom-
posed vertical detail band of the image. Figure 5 shows the experimental results
on three CBCT images including a brain CBCT image, a neck CBCT image
and a skull CBCT image. Each subfigure is related to a CBCT image. From the
left of each subfigure, the first one is the original CBCT image whose contrast
was expanded properly to make ring artifacts distinct. The second one shows
the whole result image processed by the proposed method. It can be seen that



Removing Ring Artifacts in CBCT Images Using Smoothing 507

the ring artifacts are almost perfectly removed. The third one depicts a mag-
nified portion of the original image, in which some ring artifacts can be found
clearly. The last two images show the corresponding magnified portion of the
corrected results. The former is the result processed by the wavelet-Fourier fil-
ter, in which ring artifacts at the center of images are corrected well, but some
residual ring artifacts exist away from the central location. In the latter, the
results obtained by our proposed method are presented. There is no significant
residual ring artifacts, and the edges and details are remained.

Fig. 5. Experimental results. (a) The brain CBCT image; (b) The neck CBCT image;
(c) The skull CBCT image. From left to right, they are the original CBCT image,
the result image by the proposed method, the magnified region of the original image,
the magnified region of result by the wavelet-Fourier filter and the magnified region of
result by the proposed method, respectively.

Additionally, the total energy of a signal is a well-known objective measure
in signal processing for quantitative evaluation [5]. The loss of the energy can be
expressed by the energy of the difference between the original image so and the
corrected image sr, relative to the original one, resulting in the relative mean
square error (RMSE):

RMSE =
∑ |so − sr|2∑ |so|2

. (6)
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The combination of visual rating with a minimal relative change between
the original and the processed image is supposed to be a robust technique for
the assessment of the corrected performance. The smaller the value of RMSE is,
the better the quality of the result is. The resulting RMSE of the two methods
are listed in Table 1. Compared with the wavelet-Fourier filtering, the proposed
method produces much smaller energy changes.

Table 1. Quantitative comparison on two methods based on the resulting RMSE.

The brain image The neck image The skull image

The wavelet-Fourier filtering 0.0016 0.0040 0.0022

The proposed method 3.2893E–05 3.6032E–05 6.0362E–05

5 Conclusions

This paper presents is a simple but effective method to remove ring artifacts
in CBCT image. The core of the method is the proposed single-direction image
smoothing via an effective optimization, which separates the regular artifacts
from the image. Experiments were performed on the CBCT images captured by
a real imaging system and the results are satisfactory.
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Abstract. Heartbeat signal detection and/or monitoring is very important in the
rescue of human beings existing under debris after disasters such as earthquakes
as well as in the monitoring of patients in hospital. In this paper, we propose a
human heartbeat detection/monitoring system employing chirp Z-transform and
a time-sequential prediction neural network. The system is an adaptive radar using
2.5 GHz continuous microwave. The CZT realizes high resolution peak search in
the frequency domain. We use a neural network to track adaptively the heartbeat
signal which often has frequency fluctuation. The network learns the time-
sequential peak frequency online in parallel to the detection and tracking. Even
when the heartbeat frequency drifts, the network finds and tracks the heartbeat.
Experiments demonstrate that the proposed system has high effectiveness in
distinction between person-exist and person-non-exist observations, resulting in
successful detection of persons.

Keywords: Heartbeat · Respiration · Drifting signal tracking

1 Introduction

Heartbeat and/or respiration signals are very useful and critical in detection of human
beings existing under debris after disasters such as earthquakes as well as in monitoring
of patients in hospital. Microwave/millimeter-wave radar detection systems are just
under development by various research groups [1–5]. Heartbeat detection and/or moni‐
toring is relatively more difficult than respiration detection because of its smaller move‐
ment. In particular, when the target person is far from the detection/monitor system or
the location is unknown, the decision whether the system catches a person or not is
highly affected by noise and fluctuation of heartbeat frequency.

To increase the signal-to-noise ratio (SNR) in heartbeat detection, we may adopt
longer observation time, namely, larger window size for Fourier transform to catch the
power peak in the frequency domain. However, the heartbeat frequency often fluctuates,
leading to ambiguity in its frequency peak. Shorter window size results in lower reso‐
lution in frequency. This is an intrinsic trade-off.

In this paper, we propose a human heartbeat detection/monitoring system employing
chirp Z-transform and time-sequential neural prediction. The CZT realizes an apparent
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enhancement of frequency resolution even for a small-size transform window in compar‐
ison with conventional Fourier transform by reducing the harmful discreteness in the
frequency domain. It is very effective in locating the spectral peak precisely by utilizing
this pseudo high resolution [6]. Then we run a neural network to track adaptively the
heartbeat signal having fluctuating frequency, which is a modification of adaptive
channel prediction network [7–10]. At every time point, the neural network predicts the
heartbeat frequency in the next discrete time step. If the actual CZT peak frequency falls
within a predicted frequency range, we decide that the network detects and tracks the
heartbeat, indicating a detection of a human being with the information of heartbeat
frequency. The network learns the time-sequential peak frequency online in parallel to
the detection and tracking. Even when the heartbeat frequency changes, the network
finds and tracks the signal. Contrarily, it cannot track noise data having white-noise like
distribution. We also report the front-end and total construction of the microwave
continuous-wave (CW) detection system that we constructed. Since we do not use
pulses, we can realize a high SNR also in electronics.

2 Heartbeat Tracker Based on Chirp Z-Transform and Time-
Sequential Neural Prediction

2.1 Microwave System Construction

Figure 1 illustrates the microwave measurement system. It transmits CW 2.5-GHz
frequency electromagnetic wave and receives scattered and/or reflected wave to obtain
time-sequential amplitude and phase information by using a vector network analyzer
(VNA). The VNA may work as a so-called stepped-frequency transmission mode for
ranging purpose. However, here we use the CW mode to focus on the slow movement
of human body for detection of victims under debris and/or monitoring of his/her heart‐
beat.

Fig. 1. Measurement system with an
experiment photo.

Fig. 2. Patch antenna

Figure 2 shows the compact patch antenna that we fabricated for the use in this
system. It works at 2.5 GHz. We chose the frequency to realize a sufficient phase sensi‐
tivity to the movement related to heartbeat as well to avoid excessively sharp beam
forming.
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2.2 Chirp Z-Transform and Neural Prediction for Tracking

Figure 3 is the flowchart showing the signal processing employing CZT and time-
sequential neural prediction for detection of heartbeat. To obtain a low-discreteness
frequency spectrum, we use the chirp Z-transform, instead of conventional fast Fourier
transform (FFT), to zoom into the heartbeat frequency range. We obtain a short-time
spectrum time-sequentially. Then we pick up an instantaneous maximum power
frequency in each time bin. When the VNA yields only noise output, the peak frequency
will show a random sequence or unstable changes. When it receives a heartbeat signal,
we expect that the peak frequency point appears at around 1.3 Hz. However, in general,
the heartbeat frequency changes gradually depending on the body-state variation. Simple
averaging does not work effectively but, instead, smears the peak information. It also
depends on individuals.

Fig. 3. Signal processing flowchart Fig. 4. Construction of the neural network

Then we utilize the prediction ability of neural networks. The network construction
is shown in Fig. 4. The inputs x(t), x(t − 1), … are the peak-power frequency in the
recent T time period, whereas the output x(t + 1) is the predicted frequency in the next
time step. When we examine the frequency spectrum data, which is to be shown below,
we notice that we, the human beings, can catch the peak continuity in the frequency-
time diagram to notice the heartbeat signal. We expect the neural network to do the same.
That is, we run the network in an online learning mode and, if the prediction output is
near to the actual peak frequency observed in the next time slot, then we decide that we
find the continuity, meaning a heartbeat signal.

The periodicity learning will also result in meaningful and stable connections for the
input terminals within an averaged coherence time length of the heartbeat after the
learning. For noise-only input data, the network connections will get unstable because
of the abrupt changes and low correlations between the desired output signal and the
input past signals. This characteristic will also be an important index for decision
whether a heartbeat is detected or not. Here in this paper, however, we focus on the
prediction error mentioned above.
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3 Experiments and Results

In the present experiment, the observation time step is T = 0.1 s. The input terminal
number is 10, resulting in a total input data of 1 s, and the hidden neuron number is 10.

(a) (b)

(c) (d)

(e)                             (f)

Fig. 5. (a) Raw waveform for person observation, (b) raw waveform for noise-only observation,
(c) person FFT spectrum, (d) noise-only FFT spectrum, (e) person CZT spectrum, and (f) noise-
only CZT spectrum.
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The learning process employs error backpropagation algorithm. For each set of input-
output teachers (=0.1 s time step), the weights are updated 10 times.

Figure 5 shows the raw data example obtained for person measurement (distance
d ~ 40 cm) as well as a measurement without a person (noise only). Figures 5(a) and (b)
present the waveform shown as the real and imaginary parts in time domain. The person
observation in (a) represents somewhat periodic evolution. Contrarily, the noise-only
observation in (b) shows very small amplitude with less periodicity. The FFT spectra,
calculated for a moving window of 20 s, reveals this characteristic. That is, (c) person
measurement shows a curved ridge of high-power frequency pints, while in (d) noise-
only data does not have such a continuous high-power curve. The FFT frequency reso‐
lution is not so high, which is limited by the window size.

By using the CZT, however, we can mitigate the discreteness in the frequency
domain to generate a pseudo high-resolution spectrum. As shown in Fig. 6, this property
is significantly effective for precise peak search both in Fig. 6. (a) person data and (b)
noise-only data. Figure 5(e) presents the CZT spectrum obtained for heartbeat. We can
find a fine structure in the heartbeat frequency even though the peak ridge is clearly
observed. In contrast, in the noise-only case shown in Fig. 5(f), there is no continuous
peak, suggesting no heartbeat included. By observing such textural difference, we can
think intuitively that the former data catches a person’s heartbeat signal, but the latter
does not. We aim to realize such decision in a manner robust to gradual frequency
variation automatically by using the neural network.

Fig. 6. Comparisons of FFT and CZT spectra for (a) person and (b) noise-only observations.

Figure 7 presents the decision results obtained by using the neural network. In the
proposed system, we decide that “the system catches a person’s heartbeat” when the
neural network prediction is very near to the actual peak frequency in the next future
bin because such a result implies a continuous peak frequency even if the peak gradually
changes. Figure 7(a) shows the raw peak frequency curve (dashed), neural prediction
curve (solid) for person observation, while those in (b) shows those for noise-only
observation. Figure 7(a) includes also an indication of a contact-type device measuring
at a subject’s finger in parallel to the proposed electromagnetic-wave observation.
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Figure 7(c) presents the prediction error and the automatic decision (light-green thick
line segments) for person observation, and (d) those for noise-only observation. In the
above decision in (a) and (b), we prepared a threshold for “successful prediction” at
relative error of around 10−1. We also observed the neural weight changes in time. We
found for person observation that the weights often become stable quickly. However,
for noise-only data, they are always varying unstably. It is consistent with the signal/
noise characteristics as mentioned above.

Indication of the contact-type device included in a compact oximeter is also shown
in Fig. 7(a) as a reference obtained by another equipment. In the experiment, the device
touches the subject person at one of the fingers. Though the result shows a slight shift
in the frequency value, we find that the trend is similar to the microwave measurement.

Accordingly, the system we proposed has found highly effective to distinguish
heartbeat from noise-only observation. We are going to clarify the decision dependence
on SNR as well as the usability in relation to how far a person can be away from the
antennas in field experiments.

Fig. 7. (a) Raw peak frequency curve (dashed), neural prediction curve (solid) and “heartbeat
found”-decision period for person observation (thick line), (b) those for non-person observation,
(c) prediction error for person observation, and (d) prediction error for non-person observation
where we have a threshold for “successful prediction” at relative error of 10−1. Note that (a)
includes also an indication of a contact-type device measuring at a subject’s finger in parallel to
the proposed electromagnetic-wave observation.
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4 Summary

We proposed a human heartbeat detection/monitoring system with 2.5 GHz CW phase-
sensitive microwave electronics. It employs chirp Z-transform and time-sequential
neural prediction. The CZT realizes high resolution peak search in the frequency domain.
We use a neural network to track adaptively the heartbeat signal which often has
frequency fluctuation. The network learns the time-sequential peak frequency online in
parallel to the detection and tracking. Even when the heartbeat frequency changes, the
network finds and tracks the signal. The proposed system has high effectiveness in
distinction between heartbeat and noise-only observations. It is useful in detection of
human beings existing under debris after disasters such as earthquakes as well as in
monitoring of patients in hospital.
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Abstract. We presented new reconstruction algorithms for compressed sensing
magnetic resonance imaging (CS-MRI) based on the combination of the fast
composite splitting algorithm (FCSA) and complex dual-tree wavelet transform
(DT-CWT) and on the combination of FCSA and double density dual-tree
wavelet transform (DDDT-DWT), respectively. We applied the bivariate
thresholding to these two combinations. The proposed methods not only inherit
the effectiveness and fast convergence of FCSA but also improve the sparse
representation of both point-like and curve-like features. Experimental results
validate the effectiveness and efficiency of the proposed methods.

Keywords: Compressed sensing � MRI � Composite splitting � Dual-tree
wavelet � Double density dual-tree wavelet

1 Introduction

Magnetic resonance imaging (MRI) is an essential medical imaging modality with
advantages of no harmful radiation and high soft tissue contrast. However, MRI is
susceptible to motion artifacts because of its slow acquisition process or long data
acquisition time. Recently developed compressed sensing (CS) [1, 2] technique shows
that a signal with sparse representation can be reconstructed from significantly
incomplete dataset sampled at rates or density lower than the Nyquist criterion. The
emerging CS theory has been successfully applied to MRI and provided significant
acceleration of acquisition process [3, 4].

Current research on compressed sensing MRI (CS-MRI) involves two attractive
topics: One is the sparsifying transform, which aims at providing an efficient and
sufficient sparse representation of MR images. Different sparse transforms have dif-
ferent characteristics in sparse representation. The wavelet can provide a good repre-
sentation of point-like features but fail to represent curves because the conventional
discrete wavelet transform (DWT) has shift sensitivity [5] and poor directionality [6].
Some efforts have been made to mitigate these disadvantages and the dual-tree complex
wavelet (DT-CWT) was first used for compressed sensing in [7]. Though DT-CWT has
approximate shift-invariance and better directional selectivity, it still may not be able to
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represent geometric regularity along the singularities well because it only has wavelets
oriented in six directions which are not enough for clinical MR images [8]. Thus, the
contourlet, an effective representation of curve-like features with low redundancy, has
been proposed for CS-MRI [9]. However, the contourlet cannot represent point-like
features well [10]. Thus, double-density dual-tree wavelet transform [11], which can
provide effective sparse representation of both points and curves in MR images, was
developed as a sparsifying transform for CS-MRI [8].

The other topic is the reconstruction algorithm aiming at providing an efficient
method to solve the optimization problems in CS-MRI with expected reconstruction
accuracy. In the pioneering study of CS-MRI [3], the conjugate gradient (CG) method
was employed to solve an L1 optimization. However, the CG has its bottleneck in
computation. An improved CG with iterative algorithm was investigated for CS-MRI
and better reconstruction quality was obtained [8]. Besides, other iteration method such
as the iterative shrinkage-thresholding algorithm (ISTA) and its modified versions,
such as the two-step ISTA [12] and the fast ISTA (FISTA) [13], were also applied to
CS-MRI in succession. Though FISTA can provide faster convergence speed and better
results, it can only work for simple optimization problem [14]. Since noise suppression
tools such as total variation (TV) are usually used in CS-MRI [2], some methods are
designed to solve the composite optimization problem that involves both L1 norm term
and TV term. In [14], a fast composite splitting algorithm (FCSA) for CS-MRI was
proposed to solve the composite problem with powerful capability.

Many studies on these two topics have developed new approaches to the recon-
struction of CS-MRI and have demonstrated their superiority in reconstruction quality
and speed. Recently, a fast iterative contourlet thresholding algorithm (FICOTA)
combining FISTA and contourlet transform, was proposed to improve the curve rep-
resentation of MR images with fast computation [15]. However, FICOTA inherits the
shortcomings of contourlet and FISTA mentioned above. Additionally, a method based
on a 2D complex double-density dual-tree wavelet (CDDDT-DWT) has been proposed
for CS-MRI to remedy the defects of wavelet [8], but its accuracy and efficiency are
limited by the reconstruction algorithm it used.

Herein, we propose a new approach for the reconstruction of CS-MRI, using
DT-CWT and DDDT-DWT, respectively, as sparsifying transforms of FCSA. We
anticipate that the combinations, dubbed as DT-FCSA and DDDT-FCSA, may improve
the sparse representation and reconstruction quality and speed the reconstruction.

2 CS-MRI with Dual-Tree Wavelet

We first briefly review basic CS-MRI model and then introduce the sparse transforms
and reconstruction algorithm.

Suppose that x is an MR image, and Fu is an undersampled Fourier transform, then
the undersampled measurement y of x can be defined as y ¼ Fux. Since MR images are
naturally compressible, x can be reconstructed from the measurement y based on the
compressed sensing theory. Let W denote a transform operator that can represent x in a
sparse domain. The reconstruction model can be formulated as an unconstrained
problem [3]:
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argmin
x

F ux� yk k22 þ k1 xk kTV þ k2 Wxk k1 ð1Þ

where k1 and k2 are positive parameters for the total variation (TV) and L1 regular-
ization, respectively.

In this paper, we used DT-CWT and CDDDT-DWT as the sparse transform to
provide better representation of both contours and points. We then implemented FCSA
to solve the model in (1).

2.1 Sparse Transform

The conventional 2D discrete wavelet transform (DWT) has wavelets oriented at only 3
directions and its diagonal direction has no orientation, thus 2D DWT fails to sparsely
represent curves and contours. The 2D dual-tree complex wavelet (DT-CWT) can
provide 6 directions that support approximate shift-invariance and good orientation.
Similarly, the double-density DWT (DD-DWT) improves shift-invariance by increas-
ing redundancy. We hypothesize that a combination transform of DD-DWT and
DT-CWT (CDDDT-DWT) would inherit the superiority of both DT-CWT and
DD-DWT [8].

The CDDDT-DWT, implemented by parallel using four 2D DD-DWT, has 32
wavelets oriented at 16 directions and is capable of representing curves, contours and
points simultaneously. Therefore, the CDDDT-DWT has higher redundancy.

We combined DT-CWT and CDDDT-DWT, respectively, with FCSA recon-
struction algorithm to evaluate their performances.

2.2 FCSA Reconstruction

The FCSA was implemented by combining composite splitting denoising
(CSD) method and FISTA [14]. The CSD method splits the reconstruction model into
two sub-problems: L1 term and TV term, solves each sub-problem, and then combines
the sub-solutions linearly to obtain the final reconstruction. Besides, FCSA inherits the
fast convergence and effective reconstruction of FISTA and thus can effectively solve
the model (1).

3 Algorithm

We combined the aforementioned sparse representations with FCSA for the CS
reconstruction and modified the shrink-thresholding process to fit the structure of the
chosen sparse transform.
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3.1 CS Reconstruction

The proposed combination was implemented in Algorithm 1 to solve the CS-MRI

model (1). In Algorithm 1, f rk
� � ¼ 1

2 F urk � y
�� ��2

2 is the data consistency function,

rf rk
� � ¼ F�

u F urk � y
� �

is the gradient of f at rk , ρ and Lf are two positive parameters
defined in [14], x has the same size as y and is initialized as zero. The L1 and TV
regularization problem was solved by a proximal map, which is defined as follows [13]:

proxq gð Þ xð Þ ¼ argminu g uð Þþ 1
2q

u� xk k2
� �

ð2Þ

where g xð Þ a continuous convex function. Specifically, in solving L1 term, we adopted
the proxq gð Þ xð Þ process to the chosen sparse transform and implement Thresholding �ð Þ
with different shrink-thresholding methods.

3.2 Soft Thresholding

There are two frequently used thresholding methods: One is the hard thresholding,
which is defined as:

hardThre xð Þ ¼ x � xj j[ Tð Þ ð3Þ

where T is the threshold parameter. The other is the soft thresholding (HT), which is
defined as:

softThre xð Þ ¼ sgnðxÞ � max xj j � T ; 0ð Þ ð4Þ

The soft thresholding (ST) has better performance than the hard thresholding
because the latter is discontinuous and yields abrupt artifacts in reconstruction [16, 17].
In [14], FCSA also implemented soft thresholding rather than the hard one. Therefore,
we applied soft thresholding to all methods in this paper.

3.3 Bivariate Thresholding

The bivariate thresholding (BiT) is an effective and low-complexity denoising method
and has better performance than the soft thresholding because it uses the joint statistics
of the wavelet coefficients [18]. Hence, we further adopted the bivariate thresholding in
our proposed method. The thresholding function can be described as follows:

biThre xð Þ ¼ w �
max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þw2

p

q
�

ffiffi
3

p
r2

r2
; 0

� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þw2

p

q ð5Þ
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where w is a sparse transform coefficient and wp is its parent coefficient in the next
coarser scale. σ2 is the estimation of noise variance calculated by coefficients of the
finest scale using robust median estimator:

r ¼ Median wHHj jð Þ
06745

; wHH 2 subband HH ð6Þ

r22 is the marginal variance of coefficient w in a M �M neighborhood surrounding
window [18]:

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max
1
M2

Xn

i;j
w2
ij � r2; 0


 �s

ð7Þ
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4 Experiments

We performed experiments based on two 256� 256 MR images (Fig. 1). The pro-
posed methods, DT-FCSA and DDDT-FCSA, were compared to the original FCSA [9]
and FICOTA [15]. A 2D DT-CWT [19] with 6 scales and a 2D CDDDT-DWT [20]
with 2 scales were used as sparse transforms.

We implemented DT-FCSA and DDDT-FCSA with bivariate thresholding (BiT).
For FCSA and FICOTA, we set the same regularization parameters as the original
values [10]. For DT-FCSA and DDDT-FCSA, The regularization parameters ðk1; k2Þ
were set as ð0:01; 0:2Þ for DT-FCSA, and ð0:006; 0:1Þ for DDDT-FCSA. Besides, we
chose the ‘hi-lo’ subband for dual-tree structure and ‘hi1-hi1’ subband for double
density dual-tree to estimate r. For each method, Gaussian white noise with standard
deviation 0.01 was added to the k-space measurement y. Experiments were run on a
3.4-GHz Multi-core processor.

We used signal-to-noise ratio (SNR), peak SNR (PSNR), transferred edge infor-
mation (TEI) [10] and L2 norm error as criteria to assess the performance of the
proposed methods.

We did experiments using different sampling ratios. Figures 2 and 3 show the brain
and shoulder images reconstructed from 20 % sampling using different methods.

Fig. 1. Original MR Images

Fig. 2. Reconstruction of the brain image (sampling ratio = 20 %)
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Figure 4 shows the plots of PSNR and TEI versus sampling ratios. Tables 1 and 2
summarize the comparisons of different methods.

According to Figs. 2 and 3, both DT-FCSA and DDDT-FCSA improve the rep-
resentation of curves. Meanwhile, they have better performance on denoising in
reconstructed images than the FCSA method.

According to Fig. 4, both DT-FCSA and DDDT-FCSA show better results in TEI,
which means better performance on edge strength and orientation preservation. When
sampling ratio is lower than about 15 % for brain or 20 % for shoulder, the proposed

Fig. 3. Reconstruction of the shoulder image (sampling ratio = 20 %)

Fig. 4. PSNR and TEI versus sampling ratio for brain and shoulder
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methods may not meet expected performance for denoising. The way of choosing the
subband for r cannot work well when the sampling rate is low because the lower the
sampling ratio is, the larger the variance of the DT or DDDT coefficients is.

Furthermore, according to Tables 1 and 2, the proposed methods outperform the
FCSA and FICOTA in term of five criteria with fast convergence speed.

5 Conclusion

This paper proposes to combine FCSA with the complex dual-tree DWT or double
density dual-tree DWT to enforce both the points and curves sparse representation with
fast computation. Experimental results show our proposed methods can improve both
precision and efficiency. Further significant improvement can be obtained when the
proposed methods use bivariate thresholding.

The subbands in this work were chosen simply by experimental experience. Since
the dual-tree or double density dual-tree wavelet structure has different variance in each
subband, further effort is needed to investigate a more advanced thresholding to
improve reconstruction effectiveness.

Table 1. Comparisons of different methods based on brain (sampling ratio = 20 %)

Criterion
Algorithm

SNR PSNR TEI L2 Error Time(s)

FCSA 20.22 32.15 0.816 0.067 2.09

FICOTA 22.52 34.45 0.866 0.051 13.23

DT-FCSA 24.01 35.94 0.885 0.043 8.50

DDDT-FCSA 23.87 35.80 0.879 0.044 15.21

DT-FCSA with BiT 24.69 36.62 0.895 0.040 9.12

DDDT-FCSA with BiT 24.86 36.80 0.895 0.039 16.54

Table 2. Comparisons of different methods based on shoulder (sampling ratio = 20 %)

Criterion
Algorithm

SNR PSNR TEI L2 Error Time(s)

FCSA 21.91 40.71 0.6965 0.062 2.04

FICOTA 24.75 43.56 0.769 0.044 13.56

DT-FCSA 26.54 45.37 0.781 0.036 8.33

DDDT-FCSA 27.07 45.88 0.792 0.034 15.86

DT-FCSA with BiT 25.82 44.63 0.801 0.039 8.95

DDDT-FCSA with BiT 24.27 43.08 0.775 0.047 16.72
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Abstract. In this paper we aim for the replication of a state of the
art architecture for recognition of human actions using skeleton poses
obtained from a depth sensor. We review the usefulness of accurate
human action recognition in the field of robotic elderly care, focusing
on fall detection. We attempt fall recognition using a chained Growing
When Required neural gas classifier that is fed only skeleton joints data.
We test this architecture against Recurrent SOMs (RSOMs) to classify
the TST Fall detection database ver. 2, a specialised dataset for fall
sequences. We also introduce a simplified mathematical model of falls
for easier and faster bench-testing of classification algorithms for fall
detection.

The outcome of classifying falls from our mathematical model was
successful with an accuracy of 97.12 ± 1.65 % and from the TST Fall
detection database ver. 2 with an accuracy of 90.2± 2.68 % when a filter
was added.

Keywords: Action recognition · Falls · Neural networks · Neural gas ·
Topological classifiers · Socially assistive robotics

1 Introduction

In the field of robotics, activity detection [11] is a fundamental concept if the
robots are used in a setting where they are expected to cooperate with humans.
The initial approaches to the detection of human actions involved the processing
of RGB images, and as such were proven to be a hard problem due to the
difficulty in segmenting the human body from the background and accurately
processing pose information. Recently however this task was made considerably
easier with the introduction of skeleton tracking based on depth-sensing cameras
as implemented by the Microsoft Kinect and as it steadily improves, it also allows
for more serious tasks that depend on activity recognition to be tackled, such
as activity detection. We will focus on its use in the context of socially assistive
robotics for social elderly care.
c© Springer International Publishing AG 2016
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1.1 Ageing Population

With the ageing of populations around the world, elderly care is a field of grow-
ing concern. Many different technological aids [3] are being developed specifically
for this population and robotics has emerged as a possible solution as the mobil-
isation of human caretakers for such a large amount of persons seems infeasible.
While robots in regards to human-robot-interaction are yet to find a particular
field in which it is undeniably useful, an interesting approach [18] to their use is
finding newer areas in which they can nothing but excel, simply because there
are no persons nor other technology available to perform that task. One of such
tasks is around the clock health monitoring for independent living.

1.2 Our Task of Interest: Fall Detection

It is medical fact [9] that diseases that can present themselves as a loss of con-
sciousness, such as strokes and heart infarctions - those two, the leading causes
of death world wide - can have excellent prognosis if treated within 3 h. Particu-
larly cardiac arrests present a survival rate of about one in each three subjects,
if CPR and defibrillation are initiated in less than 5 min, whereas the probabil-
ity of survival without any help is virtually zero [19]. Also other diseases such
as pneumonia or COPD exacerbations do tend to have better prognosis [20] if
treated promptly. One must take care as to not make bold assumptions, even
more under the light that major reviews [5] are yet to reveal clear benefits of
telemedicine, but some interesting recent results [4,8] demonstrate COPD as a
likely candidate to benefit from remote monitoring.

The specific task of fall detection has recently attracted a lot of research, with
a primary focus on smart home environments. In fact most fall detection sys-
tems [21] involve wearing special sensors device with accelerometers or detectors
built on the floor or a combination of video and wearable devices with a sen-
sor fusion approach in order to increase the accuracy of detection even further.
These approaches although more simple (and therefore robust) have however the
limitation of needing either a sensor to be worn at all times, or that the person’s
house to be adapted for this, which in practice will vastly limit its adherence. We
see coding fall detection into some sort of a multi-functional robotic companion-
that could have as one of its many functionalities: fall detection-as a reasonable
solution to this problem. A robot can follow the user in different environment,
position itself in order to prevent image occlusion and we avoid the need to
renovate someone’s house or remember always to wear a sensor.

1.3 Our Approach: Use the Parisi’s Multilayer GWR Classifier

Using an unsupervised method for topological description [6] of tasks is not
a new idea, since these methods have many possible advantages such as the
ability to “operate autonomously, on-line or life-long, and in a non-stationary
environment”. We chose to replicate the infrastructure implemented by [15] for
it’s overall performance in the CAD60 database and the theoretical generality of
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the method. In this paper we describe our implementation of a classifier based
on an unsupervised Growing When Required Neural Gas with a sliding window
scheme for time integration and chained in multiple layers to implement noise
removal.

Source code (available in www.github.com/frederico-klein/ICONIP2016) of
the Growing When Required Neural Gas implementation (in Matlab and Julia) is
provided, as well as the full classification architecture and the inverted pendulum
model (only in Matlab).

2 Materials and Methods

2.1 Justification for the Chosen Architecture: A Chained GWR
Sliding Window Topological Classifier

A detailed discussion of different types of neural gases is outside of the scope
of this text. For a more in depth understanding one should probably first refer
to Martinetz’s paper [12] that implemented the first neural gas and later to
Marsland’s paper [13], that implemented the Growing When Required neural gas
(GWR). The justification of using multiple chained gases (as opposed to one)
is, first the biological plausibility reviewed extensively by Parisi but secondly
probably due to necessity regarding the way too long execution time of a gas
with a high number of dimensions. Finally one must add that, although neural
gases, due to their nature, adjust to data that changes over time, this feature
does not seem useful in tracking movement. For this function a sliding window
scheme was used.

The dataset we chose to test our implementation was the TST v2 dataset
contains skeleton positions Microsoft Kinect v2 and IMU data for 11 subjects
performing either ADLs (activities daily living) and simulated falls. The sub-
jects were between 22 and 39 years old, with different height (1.62–1.97 m) and
build. Each of the two main groups (ADLs or Falls) contains 4 activities that
are repeated three times by each subject [7]. For our present study only the
skeleton joints in depth and skeleton space and time information were used. The
accelerometer, as well as other data, were not used for our algorithm.

In addition to the real dataset a simplified stick model was developed to test
the ability of a Growing When Required multilayer with a sliding window classi-
fier to discriminate between action sequences that included a fall. We modelled
2 different activities, a fall and a walk as the movement of a stick in a 3D space
and then simply substituted the stick for a typical skeleton.

Fall. We simulated fall of a person by a free falling inverted pendulum rod
with a random initial pitch angular velocity θ and perfect slippage. It can be
shown [16] that the kinematics differential equations that describe angle and
position changes for a rod are:

− mg
L

2
cosθ =

(
Ic +

mL2

4
cos2θ

)
θ̈ − mL2

4
cosθsinθ̇2 (1)

www.github.com/frederico-klein/ICONIP2016
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(a) (b) (c) (d)

Fig. 1. (a) A typical fall from TST v2 dataset. (b) one of the ADLs from the TST v2
dataset, a walk. (c) a typical fall from our model. (d) a “walk” from our model.

0 = mẍc (2)

And, approximating a person by a slender rod, one has Ic = mL2

3 . The model
also was given simulation parameters to add random noise in the variables of
height (1.6–1.9 m), initial position (within a square area) and any initial yaw
angle.

Walk. The simulation of a person’s walk was done by simply doing a linear
space of displacements inside the area that would be covered by the Kinect
sensor, with random initial positions and walking angle (Fig. 1).

2.2 Skeleton Data

The algorithm presented uses skeleton data and not RGB-D raw images. A more
thorough descriptions [17] of the data obtained from the depth sensor should be
referenced, but in short it is a set of J points (where J is the number of joints) with
x, y and z coordinates, each representing a landmark on the body in time [10] in
a 3D space. We represent thus a particular pose as the concatenation of these J
points, such as that for each time frame k we have a pose p represented by the
matrix:

p(k) =

⎡
⎢⎢⎣

j1x(k) j1y(k) j1z(k)
j2x(k) j2y(k) j2z(k)

. . .
jJx(k) jJy(k) jJz(k)

⎤
⎥⎥⎦ (3)

An action sequence represented on discrete time steps 1...K could therefore rep-
resented as the multidimensional array resulting of the sequential concatenation
of the k-th pose matrices. To use the pose information with a gas we change the
representation of the pose matrix p(k) into a vector size 3 ∗ J and the action
sequence is the horizontal concatenation of the all the k-th, p(k) matrices. One
may thus understand the pose vector as a single point in a high dimensional space
and an action sequence as a necessarily continuous trajectory in that space.
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2.3 Construction and Randomisation of Training and Validation
Sets

The dataset was separated into training and validation sets containing 80 % and
20 % of data respectively, before each training similarly to a repeated learning-
testing method [1,2]. They were separated by subject, so that each subject had
all of its actions belonging exclusively to one set. This was done to describe a
more realistic testing scenario, in which the subject performing the activities is
completely new having no activity data of himself in the training set, preventing
bias in accuracy estimation due to overfitting the training set.

2.4 Preconditioning

The GWR algorithm is not translation invariant, so the first action performed
on the data was to select a joint - based on our reference algorithm we used the
hips and subtracted the offset from the hips joint in both the z and x coordinates
from all other joint vectors. Secondly, we normalised (scaled) the data so that
after scaling variance of the data would be equal to 1. The final step was to
implement a centroid generating function, so to generate a smaller dimensionality
representation of the skeleton poses, in a similar fashion to the function tested
by Parisi. We created a model of 3 centroids that were the average position of
the skeleton points such that the upper centroid was composed by the joints:
head, neck, left shoulder, right shoulder, left elbow, right elbow; middle centroid
corresponded to torso and lower centroid: left knee, right knee, left hip, right
hip. Many other preconditioning functions are available on the supplied code
and maybe be tried by the interested reader.

2.5 Classifier Architecture

The classifier was implemented as a serial chaining of gas subunits. This was done
to enable different structures to be tried with minimal effort. All classification
attempts in this text were done using 5 gas subunits linked in manner as to
implement the architecture in Parisi’s [15] paper (see Fig. 2), that is, 2 parallel
sets of 2 gas subunits in series, each stream dealing with either pose positions
or pose velocities and a last gas that integrates both.

Fig. 2. Diagram of the classifier architecture.
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For each gas subunit there are 5 main chained elements that are responsible
for implementation estimation and classification:

– Sliding Window: implements the temporal concatenation of sample (also
implements concatenation of multiple streams in case they exist).

– Gas Creator: receives data samples p(k) or concatenated poses Wl(k) and
implements the learning algorithm for either the Growing When Required
neural gas or the Growing Neural Gas.

– Mapping: finds the best matching pose from the nodes matrix A corresponding
to each sample from the dataset.

– Labeller: simple labelling function that assigns the label of estimated concate-
nated pose as the same as the label of the pose to which it best matches.

– Activation checker: during training, checks to see if points are able to be well
represented by the gas, and if not removes them from the sample.

3 Results and Discussion

For all the results here presented, the simulation parameters for the GWR neural
gas are the same as in our reference paper [15].

3.1 Cornell CAD60 Dataset

As a means of comparing our implementation with that of Parisi, we also tested
our architecture on the CAD60 dataset. Apparently our implementation does
a lot of overfitting, as it reaches 99.6 % accuracy on the training set (average:
99.38 ± 0.2% for 8 trials) but only reaches 71.7 % on the validation set. We
noticed however that misclassifications were limited to some specific actions,
with most having the same accuracy (greater than 90 %) in both sets. It is our
conjecture that this difference reflects that the CAD60 dataset is too small to
allow our stricter cross-validation method to produce generalization.

3.2 Falling Stick Model

Our algorithm, even with a much smaller network (100 nodes), seems to be quite
consistently capable of classifying our faux fall/walk model. We simulated 20
subjects performing either a fall or a walk. The peak accuracy on the validation
set of our implementation was 98.33 % (average: 97.12 ± 1.65 % for 8 trials).

3.3 TST Fall Detection ver.2 Dataset

Learning Across Layers. In order to understand how learning happens across
layers we analyse the output classification from 5 gases with 1000 nodes run over
10 epochs (see Table 1) the results reflect what we would expect: there is a steady
increase as we progress through the layers and there is a gain in accuracy.
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Table 1. Progression of classification accuracy within different layers for chained GWR
Neural Gas classifier with 1000 nodes and run over 10 epochs (for 8 trials).

Gas element Validation set Training set

GWR gas 1 Pos 67.69 ± 0.73 % 93.04 ± 0.12 %

GWR gas 2 Vel 64.80 ± 0.93 % 69.43 ± 0.66 %

GWR gas 3 Pos 66.93 ± 1.02 % 90.45 ± 0.18 %

GWR gas 4 Vel 65.14 ± 0.77 % 70.66 ± 0.65 %

GWR gas 5 STS 73.99 ± 1.16 % 88.35 ± 0.41 %

Mode Filter. With the intention of performing some sort of temporal filtering,
we implemented a moving mode filter. The moving mode filter had an important
positive effect on the classification results of the TST v2 database (see Table 2).
Highest classification accuracy achieved (See Table 3) was 94.2 % on the valida-
tion set by 3rd gas with 1000 nodes and 10 epochs with mode filter length of 35
data samples. One must note that adding a moving mode filter of size 35 means
a delay of 11.67 s (since we need (9 + 1) ∗ 35 samples @30 Hz) much more than
the 0.6 s Parisi reported.

Table 2. Accuracies (in %) after applying the moving mode filter on classification
results of the final gas unit of the classifier (for 8, 8 and 1 trials respectively).

Epochs 10 20 30

Filter length Val Train Val Train Val Train

5 81.25 ± 1.44 95.05 ± 0.69 79.72 ± 2.09 79.72 ± 2.09 82.7 94.9

10 85.95 ± 2.13 95.74 ± 0.54 83.87 ± 2.93 96.00 ± 0.38 86.9 95.5

15 88.57 ± 2.48 95.31 ± 0.36 85.91 ± 2.93 95.46 ± 0.30 88.6 97.0

20 89.95 ± 2.36 95.34 ± 0.23 86.70 ± 4.08 95.26 ± 0.31 88.6 95.0

25 90.16 ± 2.28 94.32 ± 0.27 87.37 ± 3.79 94.47 ± 0.25 89.2 95.4

35 90.20 ± 2.68 92.29 ± 0.37 88.49 ± 3.83 92.44 ± 0.38 91.5 93.3

40 89.28 ± 2.68 91.23 ± 0.32 87.75 ± 3.82 91.33 ± 0.35 91.5 92.2

50 87.39 ± 2.06 88.84 ± 0.33 85.35 ± 3.39 88.80 ± 0.49 91.3 89.9

Comparison with RSOM. As a means of comparing the performance of our
implementation, we also classified the TST v2 dataset using an RSOM imple-
mentation. The RSOM used the same preconditioning as we did for the chained
gas classifier and a set of 3 consecutive poses (p(k), p(k − 1), p(k − 2)). The sim-
ulation parameters were: 900 nodes, 30 epochs, method ‘RSOMHebbV01’. The
peak accuracy on the validation set of the RSOM with these parameters was
78.76 % (average: 77.67 ± 0.77% for 5 trials).
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Table 3. Confusion matrix for our most accurate gas classifier. The calculated accuracy
for the validation set is 94.2 %, higher than the 92.0 % training set.

Validation set Target Training set Target

1 2 1 2

Output 1 1532 36 Output 1 4006 258

2 124 1054 2 328 2746

4 Conclusion

The resulting classification scheme does the task which we want, that is, dis-
criminate falls within the TST v2 dataset, it does it better than the RSOM and
it does it consistently with around 90.2 ± 2.68% accuracy while using the mode
filter. We believed we achieved our goal and we have now a classifier of falls
with openly accessible code that will hopefully encourage persons into designing
experiments using fall detection or using neural gases for classification of hard
to classify data.
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Abstract. A botnet detection method using the graphical lasso is stud-
ied. Hamasaki et al. proposed a botnet detection method based on graph-
ical lasso applied on darknet traffic, which captures change points of
outputs of graphical lasso caused by a botnet activity. In their method,
they estimate cooperative relationship of bots using graphical lasso. If
the regularization coefficient of graphical lasso is appropriately tuned, it
can remove false cooperative relationships to some extent. Though they
represent the cooperative relationships of bots as a graph, they didn’t
use its graphical properties. We propose a new method of botnet detec-
tion based on ‘graph density’, for which we introduce a new method to
set the regularization coefficient automatically. The effectiveness of the
proposed method is illustrated by experiments on darknet data.

Keywords: Botnet · Darknet · Graphical lasso · Graph density

1 Introduction

In recent years, damage caused by cyber crime is a serious problem and technol-
ogy of cyber security has become important. Anti-virus softwares using pattern
matching and packet monitoring can detect only known attacks. In contrast, a
large number of unknown attacks have been significantly increasing these days.
According to this issue, there is a limit to detect botnet on usual method. Because
of these facts, new detection methods based on machine learning which can auto-
mate detection and cope with unknown attacks have been attracting attention.

In this study, we focus on the problems caused by botnets in cyber crime. A
group of infected computers with bots are called a botnet, that operates as part of
a huge network. Bots are computer viruses for remotely controlling computers.
In a botnet, infected hosts cooperate with other computers and attack other
computers.

Hamasaki et al. [8] proposed a detection method based on the cooperative
property of botnet traffic (the most hosts in botnet works cooperatively by syn-
chronization [1]). In their method, they estimate the cooperative relationship
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 537–545, 2016.
DOI: 10.1007/978-3-319-46687-3 59
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of hosts and represent it as a Gaussian graphical model (GGM) by using the
graphical lasso [3,7]. A remarkable property of graphical lasso is that it uses
a sparse regularization. If the degree of sparse regularization is appropriately
tuned, then the graphical lasso can detect and remove false cooperative rela-
tionships to some extent. Moreover, it scored a degree of changes of cooperative
relationships using the Kullback-Leibler divergence between the obtained GGMs.
If the score exceeds a threshold, it issues an alert. Although this method can
detect botnets, it also shows false alerts a lot. To overcome this problem, Mukai
et al. [9] modified the score calculation by using moving average of scores, which
stabilizes behavior of score and reduces false alerts [4].

However, in the method of Hamasaki et al., though they represent the esti-
mated cooperative relationships as a graph, they didn’t exploit any graphical
property of GGMs. In this paper, we propose a new method for botnet detection
based on graph density of GGM. The graph density is an indicator to measure
the ratio of the number of edges to the number of possible edges. Regulariza-
tion coefficient must be tuned manually in the graphical lasso, but we propose a
new method to select it automatically and appropriately by exploiting the graph
density. Finally, we illustrate effectiveness of the proposed method via numeri-
cal experiments with real darknet data which are provided by PRACTICE [11].
We think our method is successful in automating adjustment of the value of
regularization coefficient.

2 Darknet

A darknet is an accessible and unused IP address space on the Internet. Hence,
received packets by darknet are almost caused by malwares, it is expected that
the signal-noise ratio is very high. In this study, we used darknet data that are
provided by the international collaboration darknet data. Which are provided
by Proactive Response Against Cyber-Attacks Through International Collab-
orative Exchange (PRACTICE) [11]. PRACTICE is a project by Ministry of
Internal Affairs and Communications (MIC) of Japan. Each record of darknet
data contains information about received packets such as packet transmission
time, source IP address, source port, destination IP address, destination port,
protocol, etc. PRACTICE’s darknets are installed in 10 countries. Among these,
we used 3 countries’ darknet data for experiments, sensorA, sensorB and sensorC
(in country A, B and C). The number of IP addresses of sensorA, sensorB and
sensorC is 128, 124 and 125, respectively.

3 Sparse Structure Learning Using the Graphical Lasso

In the method of Hamasaki et al. [8], botnets are detected by capturing changes
in cooperative relationships between source hosts of darknet data. These coop-
erative relationships are expressed as a graph representing the dependencies
between random variables (hosts) by using the graphical lasso [3,7], which learns
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dependencies between Gaussian random variables using �1-regularization and
represents it as a Graphical Gaussian model (GGM) [2].

Let x denote an N -dimensional random variable according to a multivariate
Gaussian distribution

N(x|µ, Σ) =
|Σ−1|1/2
(2π)n/2

exp
(

−1
2
(x − µ)TΣ−1(x − µ)

)
, (1)

where x = (x1, x2, ..., xN ) ∈ R
N , μ ∈ R

N , and Σ ∈ R
N×N . The μ is a vector

which represents the expectation of the random variable x, and Σ is a covariance
matrix, which is non-negative definite. Under the assumption of the multivariate
normal distribution, if (Σ−1)i,j = 0, then xi and xj are conditionally indepen-
dent given the other variables [5]. The matrix Σ−1 is referred to as the precision
matrix.

To estimate Σ−1, we employ the graphical lasso algorithm to learn the coop-
erative relationship between variables from the given data. Let x(m) ∈ R

N

denote the observed data at the mth time period. For each i ∈ {1, 2, ..., N},
let x

(m)
i (m = 1, ...,M), let x

(1)
i , x

(2)
i , ..., x

(M)
i a time series of the number of

packets sent by the ith source host in a unit time interval. Let

D = {x(m)|m = 1, ...,M}, (2)

which is a data set of a time period. The following is the log likelihood function
for the multivariate Gaussian model (1) given data D :

ln
M∏

m=1

N(x(m)|μ̂, Σ) = const. +
M

2

{
ln |Σ−1| − Tr(ŜΣ−1)

}
, (3)

where μ̂ is the sample mean of x(m)s that is the maximum likelihood estimation
of μ and |A| denotes the determinant of a square matrix A. Here Ŝ is the sample
covariance matrix defined by

Ŝij =
1
M

M∑
m=1

(x(m)
i − μ̂i)(x

(m)
j − μ̂j). (4)

As for the graphical lasso, it maximizes log likelihood function with �1-
regularization term in the form

ln |Σ−1| − Tr(ŜΣ−1) − r||Σ−1||1, (5)

where ‖Σ−1‖1 is a �1-norm of Σ−1 defined as

‖Σ−1‖1 =
N∑
ij

|(Σ−1)ij |. (6)

The graphical lasso is an algorithm to solve the equation (5) in high accuracy
and high speed. By the effect of �1-regularization term, Σ−1 is likely to be sparse,
where the sparsity of the estimate depends on the value of r.
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The method of Hamasaki et al. is a procedure as follows. It divides input
data to time periods of a certain length, and obtains a time series of GGMs by
the graphical lasso, each of which corresponds to a time period. Then it scores
a degree of change in the time series of GGMs using the Kullback-Leibler diver-
gence between them. If the score exceeds a threshold, it issues an alert. Although
this method can detect botnets, it also shows false alerts a lot. To overcome this
problem, Mukai et al. [9] modified the score calculation by introducing moving
average, which stabilizes behavior of scores and reduces false alerts [4].

4 Proposed Method

4.1 Issue of the Alert Using the Graph Density

In the graphical lasso algorithm, by adjusting the value of regularization coef-
ficient r of (4) appropriately, it is possible to estimate the precision matrix to
be sparse. The appropriate value of r depends on properties of the data. Mukai
et al. [10] proposed a method to issue an alert by exploiting the graph density.
Let the number of nodes of a graph represented by precision matrix be N , and
let the number of edges of the graph be E, the graph density defined as

E

N2
, (7)

which is almost the ratio of the number of edges and the number of possible
edges. The usual definition is E/N(N − 1), but we employ (7) for simplicity.
Accordingly, when the graph density is high, it is estimated that there are coop-
erative relationships between a large number of hosts. However, in the method
of Mukai et al., there was no way to adjust the value of regularization coefficient
appropriately.

To illustrate this problem, we show line graphs of time series of graph den-
sities with different values of r in Figs. 1, 2 and 3. The line graphs are obtained
for international collaboration darknet data of October 23 to 25, 2015 of sen-
sorA. The values of r in Figs. 1, 2 and 3 are 0.1, 0.8, and 2, respectively. When
r = 0.1, overall graph densities turn out to be high (Fig. 1). In contrast, when
r = 2 overall graph densities turn out to be low (Fig. 3). Compared to the cases
of Figs. 1 and 3, in Fig. 2 it is easy to know the time period for which the graph
density is significantly high. Hence, if we establish a method to select r = 0.8
automatically, then we can use graph density as a measure to detect the time
periods when many hosts have stronger connection to each other than other
time, which can be used for detection of botnet activity.

Below, we show our proposal to solve this issue. Assume that we have n time
periods in a given darknet data for a certain time interval, and we calculate a
graph density for each time period by using the graphical lasso algorithm with a
certain fixed r. Let D = (d1, d2, ..., dn) be a sequence of graph densities observed
in the time interval, arranged in descending order. Take a natural number i,
let Di = (di, di+1, ..., dn), and let σ2

i denote the variance of the elements of Di.
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Also, let D′
i = (di+1, di+2, ..., dn), and let σ′2

i denote the variance of the elements
of D′

i. Let the imax be the maximum of i which satisfies σ′2
i /σ2

i < 0.95, issue
an alert when the time period corresponds to d1, d2, ..., dimax

. Also, regard as
botnet only host group which send packets to a port 30% or more of the host of
the time period.

Moreover, we attempt to automate the adjustment of the value of regulariza-
tion coefficient r. Let σ denote the standard deviation of dimax+1, dimax+2, ..., dn,
and let μ denote the mean of dimax+1, dimax+2, ..., dn. We illustrate it in Fig. 2.
Then, we perform this procedure for various values of r and employ the value of
r which maximizes (d1 − μ)/σ.

4.2 Application of Proposed Method to Recent Real Data

In this section, we illustrate a part of our experiments on the real darknet data,
which shows the effectiveness of the proposed method. We used sensorA, B and
C which are provided by PRACTICE. At the same time, the method of Mukai
et al. which used a moving average also be applied.

We set the time period be 10 min and the time interval be 1 min, i.e. we set
M = 10 in Eq. (2). As pre-processing, we removed the packets with RST flag
or SYN/ACK. In addition, concentrated high frequent packets were removed by
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Fig. 4. sensorA, October 29 to 31, 2015

screening [6]. All the time shown in the experimental results in this paper is
Japanese Standard Time (JST).
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Fig. 5. Relationship of r and
(d1 − μ)/σ

Figure 4 shows the line graph of graph
densities for the data of sensorA October
29 to 31, 2015. The value of r is deter-
mined to be 0.9 by the proposed method.
Figure 5 shows (d1 − μ)/σ versus r, and
we can confirm it is maximized at r =
0.9. We have alerts at [04:40–04:50], 30
Oct. and [11:10–11:20], 30 Oct., where we
found host groups that are thought to
be botnets which have the following fea-
tures.

[04:40–04:50, 30 Oct.]

– The destination IP addresses are dispersed,
57% of host of this time period, sends the
packets to TCP port 502.

– The source IP addresses are dispersed, it con-
sists of 55 hosts.
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[11:10–11:20, 30 Oct.]

– The destination IP addresses are dispersed, 57% of host of this time period,
sends the packets to TCP port 80.

– The source IP addresses are dispersed, it consists of 59 hosts.

Also, Fig. 2 shows the result for the data of sensorA October 23 to 25, 2015.
The value of r is determined to be 0.8 by the proposed method. We have alerts
at [02:00–02:10], 25 Oct., where we found a host group that is thought to be a
botnet which has the following features.

[02:00–02:10, 25 Oct.]

– The destination IP addresses are dispersed, 49% of host of this time period,
sends the packets to TCP port 631.

– The source IP addresses are dispersed, it consists of 54 hosts.
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Fig. 6. sensorB, October 25 to November 1, 2015

Otherwise, Fig. 6 shows the result for the data of sensorB October 25 to
November 1, 2015. The value of r is determined to be 1.0 by the proposed
method. We have alerts at [08:40−08:50], 27 Oct., where we found a host group
that is thought to be a botnet which has the following features.

[08:40–08:50, 27 Oct.]

– The destination IP addresses are dispersed, 59% of host of this time period,
sends the packets to TCP port 161.

– The source IP addresses are dispersed, it consists of 55 hosts.

Another result, Fig. 7 shows the result for the data of sensorC October 21
to 26, 2015. The value of r is determined to be 0.9 by the proposed method.
We have alerts at [01:50–02:00], 25 Oct., where we found a host group that is
thought to be a botnet which has the following features.
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Fig. 7. sensorC, October 21 to 26, 2015

[01:50–02:00, 25 Oct.]

– The destination IP addresses are dispersed, 60% of host of this time period,
sends the packets to TCP port 102.

– The source IP addresses are dispersed, it consists of 53 hosts.

Since we can clearly know the time period with high graph densities from
Figs. 2, 4, 6 and 7, it is thought to be successful in automating adjustment of the
value of regularization coefficient. Also, it is found that the proposed method was
effective in different countries’ darknet data, and automation of issuing alerts by
the graph density was successful. In addition, though in the preceding work,
there was no way to adjust the value of regularization coefficient appropriately,
the propose method can select it automatically and appropriately by exploiting
the graph density.

5 Conclusion

In this paper, we propose a new method for botnet detection using the graphical
lasso and ‘graph density’, for which we establish a solution to determine the
value of regularization coefficient, and show its effectiveness by experiments using
darknet data.

However, the proposed method cannot work in an online manner, since we
have to determine the value of regularization coefficient using the given data in
advance. To solve this issue is our future work.
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Abstract. The number of security incidents faced by Android users is
growing, along with the surge in malware targeting Android terminals.
Such malware arrives at the Android terminals in the form of Android
Packages (APKs). Assorted techniques for protecting Android users from
such malware have been reported, but most of them focus on the APK
files themselves. Different from these approaches, we use metadata, such
as web information obtained from the online APK markets, to improve
the accuracy of malware identification. In this paper, we introduce mal-
ware detection schemes using metadata, which includes categories and
descriptions of APKs. We introduce two types of schemes: statistical
scheme and support vector machine-based scheme. Finally, we analyze
and discuss the performance and usability of the schemes, and confirm
the usability of web information for the purpose of identifying malware.

Keywords: Android · Malware · APK · Risk analysis · Machine
learning

1 Introduction

The number of Android malware is increasing. Malware arrives at the Android
terminals in the form of Android Packages (APKs). APK analysis techniques are
needed to identify malware. Especially, automated ones are needed to facilitate
the malware analysis operations. DroidRisk [15] determines whether an APK
file contains malware based on the permissions requested by an APK. It cal-
culates the numerical value of the risk associated with a permission request by
multiplying the percentage of APKs that use that permission maliciously and
the impact of the abuse of the permission. DroidRisk then sums up the values
for all the permissions required by an APK to produce the final numerical value
of APK risk. Sarma et al. [9] also proposed a scheme that determines whether
an APK file is malware by introducing Category-based Rare Critical Permission
(CRCP). A CRCP is a permission that should not usually be required for the
category of application. When any of the CRCPs are called, the APK is regarded
as malware. Various related studies on APK analysis have been reported, many
of which need optimization and refinement before putting into practical use.
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 546–554, 2016.
DOI: 10.1007/978-3-319-46687-3 60
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Contribution. This paper analyzes the usability of metadata for APK analysis.
Unlike conventional schemes, we use an APK’s metadata obtained from the
web, in addition to the characteristics derived from the APK file. Two types
of APK analysis approaches are examined: statistical and machine learning-
based. DroidRisk, which quantifies the risk of an APK file, is an example of the
statistical approach. It uses permission information as its input, but we extend
the scheme by using metadata, i.e., category and application description obtained
from the web to improve the quality of risk quantification. Regarding the machine
learning-based approach, we examine the use of support vector machine (SVM)
[10,13] by using the same metadata. We also analyze the usability of API calls
instead of permission requests. Through these analyses, we clarify the usability
of metadata and API calls for APK analysis.

Differences from Our Earlier Work. This paper advances our preliminary
work [11], which addressed the usability of metadata for risk quantification
schemes. Section 3 newly introduces the use of metadata for malware detection
schemes using SVM, and Sect. 4 evaluates the usability of metadata for that
purpose. Different from our earlier work, this paper evaluates performance of
schemes in terms of accuracy instead of area under the curve (AUC). Moreover,
this paper compares the (un)usefulness of API calls and permission requests.

2 Risk Quantification (Statistical Analysis)

This section introduces risk quantification schemes. It begins with reviewing
DroidRisk and proposes two extended schemes using APKs’ metadata. Note
that supplementary information is available in our earlier work [11].

DroidRisk. DroidRisk quantifies the risk of an APK file based on its permission
request patterns. It first quantifies the security risk of each permission, and then
quantifies the security risk of an APK file by summing up the quantified security
risk of all permissions used by the APK file. The quantified risk value, denoted
as r is derived from Eq. (1), where L(p) denotes the likelihood of permission
p being used by malware, and I(p) denotes the impact of permission p being
misused by malware. The risk value can be used to determine whether an APK
file is malware by setting an appropriate threshold value.

r =
∑
i

{L(pi) × I(pi)} (1)

Category-Based DroidRisk. We introduce a new scheme, referred to as
DR(p, ct). It extends DroidRisk to quantify security risks based on applica-
tion categories of APK files. DroidRisk determines L(p) and I(p) by study-
ing the whole dataset, but the optimal values should be different depending on
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the type of application. For instance, many applications within the category of
“Travel&Maps” request permission for using GPS, whereas few within the “Mul-
timedia” category request this permission. Thus, DR(p, ct) sets different values
for L(p) and I(p) for each application category by studying the data in each
category, as in Eq. (2), where ct denotes the application category.

r =
∑
i

{L(pi, ct) × I(pi, ct)} (2)

Cluster-Based DroidRisk. We introduce another scheme, referred to as
DR(p, cl), by extending DroidRisk. It uses automatically-generated application
clusters instead of application categories. The clusters are generated from the
application descriptions available on the web. DR(p, cl) runs the following four
processes to quantify the risk of APKs: data preprocessing, topic model gen-
eration, cluster generation, and risk quantification. Note that the first three
processes are based on CHABADA [3], which was adjusted for our purposes. The
data preprocessing process uses the application descriptions and produces words
usable for Latent Dirichlet Allocation (LDA) [1]. First, we check the description
language and discard non-English descriptions. We also discard non-text items,
i.e., numbers, HTML tags, web links, and email addresses. Second, we extract
stems from the descriptions and truncate stop words. Third, we count the num-
ber of words in the resultant descriptions. We discard a description if it contains
less than 10 words1. The topic model generation process processes the words in
the descriptions with LDA. We import the words in the descriptions and train
a number of topics. We consider a total of 300 topics, with 0.05 as the threshold
value of topic proportion and a maximum of four topics per entry. As a result,
this process outputs several pairs of {topic number, proportion value} (maxi-
mum number of four pairs)2. The cluster generation process clusters the APKs
according to the {topic number, proportion value} pairs for each description.
The number of categories was set to 12, which is the same as the number of
categories used in the Opera Mobile Store3. The risk quantification process, as
with the category-based scheme, calculates the risk value r, following the Eq.
(3), where cl denotes application cluster.

r =
∑
i

{L(pi, cl) × I(pi, cl)} (3)

1 We used the language-detection library [2] to detect the language, stemmify [7] for
the stemming operation, and stoplist/en.txt of MALLET [5] as the list of stop words.

2 We used MALLET for running LDA and considered 300 topics because the MALLET
documentation states that “The number of topics should depend to some degree on
the size of the collection, but 200 to 400 will produce reasonably fine-grained results.”

3 We used the “kmeans” [4] function of Ruby gem [8].
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3 Malware Detection (Machine Learning-Based Analysis)

This section introduces malware detection schemes based on machine learning.
SVM is known to be effective for detecting malware, thus this section begins
with reviewing SVM and proposes its extended uses with APK’s metadata.

3.1 Support Vector Machine

The idea of a two-class SVM is described as follows. From a set of training
samples D = {(xi, yi)|xi ∈ Rd, yi ∈ {−1,+1}, i = 1, ..., l}, SVM learns a norm 1
linear function, suppose its existence,

f(x) = 〈w, x〉 + b, (4)

determined by a weight vector w and threshold b that realizes the maximum
margin, where margin is defined as the distance from the hyperplane to the
nearest training data point of either class. According to Vapnik’s VC dimension
theory, margin maximization in the training set is equivalent to minimization
of the generalization error of the classifier. In case that the training set is non-
separable by a linear hyperplane, the so-called kernel trick and slack variables
are often employed to produce the following equation:

f(x) =
l∑

i=1

α∗
i yiK(x, xi) + b (5)

This equation is a kernelized version of Eq. (4). If f(x) > 0, then x is assigned
to the positive class, otherwise it is assigned to the negative class.

3.2 SVM-Based APK Analysis

We use SVM to detect malware among APK files. We also use APK’s meta-
data, i.e., application categories and clusters, for improving the performance of
the malware detection. Different from the risk quantification approaches intro-
duced in Sect. 2, SVM does not output the quantified value of risk level but the
binary value on whether an APK is a malware. Note that we use application
clusters instead of application descriptions. More rich information, such as the
stems of application descriptions can be used, but it increases dimensionality of
characteristics. For simplicity, we use the same cluster as DR(p, cl) does.

We define four types of schemes that run SVM with different parameters, i.e.,
SVM(p), SVM(p, ct), SVM(p, cl), and SVM(p, ct, cl). SVM(p) runs SVM using
only permission requests, SVM(p, ct) using permission requests and application
categories, SVM(p, cl) using permission requests and application clusters, and
SVM(p, ct, cl) using permission requests, application categories, and application
clusters. Each of the schemes calculates the value f(x) of Eq. (5) and judges
positive if f(x) > 0.
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Table 1. Dataset by category

Category Benign Malicious Total

Business&Finance 2784 479 3263

Communication 3779 268 4047

eBooks 327 132 459

Entertainment 14138 2453 16591

Games 2545 445 2990

Health 2114 323 2437

Languages translators 1300 87 1387

Multimedia 2422 567 2989

Organizers 1536 228 1764

Ringtone 734 41 775

Theme Skins 12090 2603 14693

Travel&Maps 5276 5059 10335

Total 49045 12685 61730

Table 2. Dataset by cluster

Cluster Benign Malicious Total

Cluster1 3574 934 4508

Cluster2 3883 889 4772

Cluster3 3945 976 4921

Cluster4 5247 1206 6453

Cluster5 4317 1174 5491

Cluster6 3820 1077 4897

Cluster7 3474 919 4393

Cluster8 5337 2091 7428

Cluster9 4104 811 4915

Cluster10 4346 832 5178

Cluster11 3496 818 4314

Cluster12 3502 958 4460

Total 49045 12685 61730

4 Numerical Results

This section evaluates the usability of metadata from the standpoint of risk
quantification and malware detection by using our own dataset.

4.1 Dataset

We collected 87,182 APK files from the Opera Mobile Store [6] over the period
of January–September 2014. Files from which we could not extract permission
requests were excluded, as permission requests are a necessary input for our
risk quantification schemes. The files were then checked by VirusTotal [14] to
determine whether they were malware. VirusTotal analyzes the risk of an APK
file using multiple evaluation engines from different vendors. If one or more of
the results indicated that the file was malicious, we considered the APK file as
malware. Note that adware was not counted as malware, and the APK files that
VirusTotal could not handle were excluded from the dataset in advance. As a
result, we obtained a dataset of 78,649 APK files, consisting of 52,251 benign
files and 26,398 malicious ones.

We also collected metadata of the APK files over the same period from the
Opera Mobile Store. The metadata includes the application category, descrip-
tion, and the number of downloads, though we use only the application category
and description in this paper. We stored the metadata in XML, following the
data structure mentioned in [12]. The breakdowns of the dataset by the cate-
gories and clusters are shown in Tables 1 and 2, respectively.
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4.2 Usability of Metadata for Risk Quantification Techniques

Table 3 shows the performance comparison of the risk quantification schemes
introduced in Sect. 2 in terms of accuracy, precision, recall, and false positive rate
(FPR). Note that DroidRisk is represented as DR. The values are the averages of
10 times 10-cross validation results. As can be seen, the performance of DR(p) is
improved by the use of application categories and clusters. Compared to appli-
cation clusters, application categories improves the performance more, though
the contribution of application clusters could be improved further by fine-tuning
the cluster generation algorithms. However, the performance improvement is not
significant. We believe this is because both DR(p, ct) and DR(p, cl) suffer from
overfitting caused by the dataset division for contextual-based analysis.

Table 3. Performance of DroidRisk-based schemes

Accuracy[%] Precision[%] Recall[%] FPR[%]

DR(p) 83.59±0.14 67.02±0.61 39.65±1.29 5.05±0.25

DR(p, ct) 85.63±0.20 59.68±2.19 29.85±1.69 4.93±0.48

DR(p, cl) 83.88±0.17 65.78±0.88 42.35±1.75 6.05±0.40

DR(api) 79.50±0.04 51.77±18.47 0.93±0.34 0.18±0.06

DR(api, ct) 82.41±0.12 45.82±9.01 14.07±0.70 6.75±0.86

DR(api, cl) 79.53±0.04 53.84±9.17 0.85±0.26 0.13±0.04

One may argue that API calls should be used instead of permission requests
for more accurate analysis. To verify that, we have measured the performance
of these schemes using API calls instead of permission requests. More than
30,000 types of API calls, including Android Framework APIs, JAVA APIs,
and third party APIs, are analyzed to calculate parameters L and I. For sim-
plicity, the value of the L was optimized for the top 10 % of API calls used by
malware, while the value was set to 1 for the rest. Table 3 shows the perfor-
mances of DR(api), DR(api, ct), and DR(api, cl), where api denotes api calls.
As can be seen, the performance of these api-based schemes are largely behind
the permission-based schemes. We believe this is because the api-based schemes
suffer from more overfitting problem than the permission-based ones. The degree
of overfitting problem is determined by the number of dataset and the dimen-
sionality of characteristics. Since the dataset is the same, the api-based schemes
that use larger dimensionality of characteristics suffer from overfitting more than
the permission-based schemes. When using API-calls and metadata, we need to
consider the degree of overfitting problem.

4.3 Usability of Metadata for Malware Detection Techniques

Table 4 shows the performances of SVM(p), SVM(p, ct), SVM(p, cl), and
SVM(p, ct, cl) in terms of accuracy, precision, recall, and false positive rate
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(FPR). The values are the averages of 10 times 10-cross validation results. As
with Sect. 4.2, the use of metadata improves the performance of SVM(p), and
application categories improves the performance more than application clusters,
though the contribution of application clusters could be improved further by
fine-tuning the cluster generation algorithms.

We have also measured the performance of theses schemes using API calls
instead of permission requests, as with Sect. 4.2. The performance of SVM(api),
SVM(api, ct), SVM(api, cl), and SVM(api, ct, cl) are also shown in Table 4. Con-
trary to the DroidRisk-based schemes, the use of API calls improves the perfor-
mance of SVM-based schemes. We believe this is because the use of API calls
does not incur overfitting issues by using metadata. Moreover, as with SVM(p),
the use of metadata improves the performance of SVM(p), though the perfor-
mance contribution of application clusters is rather inferior to that of application
categories.

The use of metadata improves the performance, but it incurs non-trivial
amount of extra calculation costs. Moreover, the improvement is insignificant.
Therefore, the use of metadata is not always recommended. Meanwhile, the
use of API call significantly improves performance, as can be seen by compar-
ing SVM(p) to SVM(api). The performance improvement gained by the use of
metadata is small compared to the improvement gained by the use of API calls.

Table 4. Performance of SVM-based schemes

Accuracy[%] Precision[%] Recall[%] FPR[%]

SVM(p) 88.87±0.12 81.19±0.65 59.67±0.41 3.58±0.16

SVM(p, ct) 89.45±0.15 83.87±0.60 60.27±0.80 3.00±0.15

SVM(p, cl) 89.38±0.10 83.48±0.67 60.25±0.38 3.08±0.16

SVM(p, ct, cl) 89.45±0.09 83.76±0.53 60.35±0.59 3.03±0.14

SVM(api) 94.07±0.16 87.23±0.45 83.34±1.00 3.16±0.15

SVM(api, ct) 94.09±0.17 87.37±0.49 83.26±0.73 3.11±0.14

SVM(api, cl) 94.08±0.17 87.37±0.53 83.40±0.79 3.16±0.16

SVM(api, ct, cl) 94.07±0.15 87.20±0.38 83.36±0.89 3.16±0.12

One may be interested in the effectiveness of the use of DroidRisk for the
purpose of malware detection. By comparing Tables 3 and 4, we can see that
SVM-based schemes provide better performance than DroidRisk-based ones. All
of the DroidRisk-based schemes provide better performance than a random clas-
sifier, but they could be regarded as weak classifiers. It is natural since DroidRisk
is designed for quantifying risks and not for a classifier, while SVM is designed
to be an efficient classifier.

When applying these schemes for practical environment, some fine-tuning per
individual use cases should be considered. For instance, applications that provide
security alerts to the users may wish to implement a scheme that minimizes
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false negative rate (FNR), which is equivalent to (1− recall), while applications
that provide automated countermeasures may wish to implement a scheme that
minimizes FPR. When measuring the performance shown in Table 4, each of the
schemes are tuned so that they can maximize accuracy, but it can be tuned so
that the other parameters, such as recall or FPR, can be optimized.

5 Conclusion

This paper showed the usefulness of APK metadata for APK analysis. The use
of APK metadata improves the performance of risk level quantification schemes,
but it also causes overfitting and cancel some of the improvement. Likewise, it
improves the performance of malware detection using SVM. It does not suffer
from overfitting, but the improvement is rather marginal. Apart from that, this
paper also showed the usefulness of API calls for APK analysis. The use of API
calls worsened the performance of risk level quantification since it causes sig-
nificant overfitting. On the contrary, it was very effective for malware detection
using SVM. Though the use of metadata can improve performance of risk analy-
sis, the improvement is not that large, and non-trivial amount of calculation
costs will be imposed. Indeed, the performance could be improved further by
taking other means, such as the use of API calls. Therefore, the use of metadata
is not always the best approach for APK analysis, and we need to decide whether
to use metadata, API calls and the other parameters depending on individual
use cases.
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Abstract. Reinforcement learning (RL) is one of the artificial intelli-
gence approaches that has been deployed effectively to improve perfor-
mance of distributed cognitive radio networks (DCRNs). However, in
existing proposals that involve multi-agents, perceptions of the agents
are shared in plain in order to calculate optimal actions. This raises pri-
vacy concern where an agent learns private information (e.g. Q-values)
of the others, which can then be used to infer, for instance, the actions of
these other agents. In this paper, we provide a preliminary investigation
and a privacy-preserving protocol on multi-agent RL in DCRNs. The
proposed protocol provides RL computations without revealing agents’
private information. We also discuss the security and performance of the
protocol.

1 Introduction

Cognitive Radio Networks (CRNs) [1,10] are next generation wireless networks
that exploit underutilized spectrum (or white spaces) in licensed spectrum whilst
minimizing interference to licensed users (or Primary Users, PUs). It allows unli-
censed users (or Secondary Users, SUs) to use this spectrum in an opportunistic
manner. Distributed Cognitive Radio Networks (DCRNs) are distributed version
of CRNs, in which a number of SUs interact with one another without a fixed
infrastructure, such as a base station. One of the approaches that was applied to
enhance performance of CRNs and DCRNs is Reinforcement Learning (RL) [16].
It has been used in a wide range of schemes, such as for network performance
enhancement [19], dynamic channel selection [18] and routing [12].

However in existing proposals for DCRNs, information are shared between
agents in plain (e.g. Q-values). This raises privacy concern, where a corrupt
agent may use it to learn actions of a certain agent(s) or to skew the actions of
the agent(s) to its advantage.

Contributions. We propose a privacy-preserving protocol that performs multi-
agent RL operations in DCRNs in a private manner. As far as we know, this
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 555–562, 2016.
DOI: 10.1007/978-3-319-46687-3 61
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is the first instance of privacy-preserving RL for CRNs. We utilise the concept
of privacy-preserving RL [15] and homomorphic encryption scheme for privately
computing the sum of Q-values. We also suggest the use of efficient multi-party
computation (MPC) schemes [17] as an alternative approach. We further discuss
security and performance of our protocol.

2 Related Works

As was previously stated, RL was used to provide various operational enhance-
ments on CRNs in [12,18,19]. Ling et al. [9] further discussed how RL can be
applied on CRNs for security enhancements, but did not examine agents’ pri-
vacy. On the other hand, privacy-preserving mechanisms were well-established
and have been deployed for various applications, including RL [15] and facial
expression recognition [14]. More recent proposals include schemes on smart
grids [7] and extreme learning machine algorithm [5]. Most schemes, however,
are confined to two-party computation. We require mechanisms, as in Çatak’s
scheme [5], for multiple parties since we anticipate more than two agents in
our setting. Also, formalism for privacy-preserving data mining using MPC is
provided by Lindell and Pinkas in [8]. Practical multi-party version includes
FairPlayMP [2] and ShareMind [3]. Real-world applications using these schemes
were described in [4]. In terms of privacy-preserving works on CRNs, Qin
et al. [13] proposed a method to preserve SU privacy, in the scenario where
PU requires information from SU in order to calculate payments. The applica-
tion and goal of Qin et al. are different from ours, as Qin et al.’s scheme does
not involve RL and focus on secure two-party computation between a SU and
a PU.

3 Multi-agent RL in DCRNs

In this section we define informally what is RL and describe how multi-agent RL
(MARL) are applied in DCRNs. According to Sutton and Barto [16], RL involves
learning what and how to map situations to actions so as to gain maximum
reward. It is an unsupervised technique where the learner (or agent) is not given
directive on what action to take but instead must explore and discover through
online learning. Our MARL model and description are based on [19], which
allows payoff message exchanges between agents as shown in Fig. 1.

The important representations in the model are state, action and reward.
A state represents the factors affecting how an agent makes decisions, and it
is observed through the operating environment. Action is taken by an agent
to maximise its reward. The reward is a performance metric that is either to
be maximized or minimized. Underlying the model is an online learning algo-
rithm for RL known as Q-learning. It enables an agent to learn in an interactive
manner in the operating environment, through estimating the Q-values of the
state-action pairs Qt(st, at), where t denotes a specific decision epoch. For every
Qt(st, at), an agent calculates its short-term rewards and subsequently its future
rewards as time progress.
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Fig. 1. A RL model with payoff message exchange [19]

A MARL setting involves embedding the above RL model in every SU. The
main idea then is to define a payoff message mechanism in which an agent in a
SU shares its perceptions with others. Each agent i maintains a Q-table of size
|A|, where A is the set of actions. Since Q-values are used to estimate the level
of local reward of an action, changes in Q-values result in changes in an agent’s
action. It is updated as follow:

Qi
t+1(a

i
t) ← (1 − α)Qi

t(a
i
t) + αri

t+1(a
i
t), (1)

where 0 ≤ α ≤ 1 is the learning rate. A higher value of α means recent
local reward is of more importance compared to the past knowledge. Over-
time, an optimal value can be achieved by searching for the maximum value
as max

a∈A
(Qi

t(a)).

Each agent i also additionally maintains a μ-table of size |Γ (i)| × |A| to
store the payoff messages from neighbouring agents, where Γ (i) represents all
neighbours of i. Given the two tables, agent i computes its action ai

t ∈ A using its
local Q-value Qi

t(a
i
t) from Q-table and its neighbours’ Q-values from the μ-table.

Each agent exchanges payoff message μiψ(aψ
t ) constantly among the agents until

a fixed optimal point is obtained. In this case μiψ(aψ
t ) denotes the local Q-values

of the agent’s current action as follow:

μiψ(aψ
t ) = [Qi

t(a
i
t)]. (2)

When an agent j receives μiψ(aψ
t ) while it is taking action aj

t , we denote
μiψ(aψ

t ) = μij(a
j
t ) as the local reward of agent i. Given the local reward, every

agent calculates its optimal action to maximise local payoff as follow:

gi
t(a

i
t) = max

a∈A

⎡
⎣Qi

t(a) +
∑

j∈Γ (i)

μji(a)

⎤
⎦ , (3)

and agent i then determines its optimal action as follow:

ai
t = arg max

a∈A
gi

t(a). (4)
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The above processes compute the global payoff of an agent. The MARL steps
are executed until the agent converges to an optimal local action. This occurs
when changes in Q-values and payoff values between epoches are insignificant.

4 Privacy Preserving RL Computation in DCRNs

We first examine operations that are to be executed in a private manner. Based
on the processes described in the previous section, Q-value update (Eq. 1) is
calculated by the agent itself. This means Eq. 1 can be computed in plain. How-
ever, these Q-values (in the form of μji(a)) are shared as payoff messages among
agents and stored in μ-tables, hence it must be encrypted before sharing in order
to preserve privacy. For every agent i, calculation of Eq. 3 involves the encrypted
μji(a) in the μ-tables. It means the summation part of Eq. 3 requires addition in
the encrypted domain, which is the main focus of our protocol. Once an agent i
obtained the result of the summation, max and arg max (Eqs. 3 and 4) can be
computed in plain since these are performed by agent i locally.

In summary, our scenario involves an agent i collecting payoff messages from
all its neighbouring agents, where these messages should be in private and not
known by agent i, yet allowing agent i to compute its global payoff value based
on summing the values in these messages. This means we require an encryption
scheme that has the additive homomorphic property, caters for multi-agents and,
decryption can be performed on the resulting encrypted sum value by authorised
agent(s). We note that this scenario is somewhat similar to the problem of elec-
tronic voting and thus we adopt the generalised Paillier encryption scheme [6]
that has been used for this purpose. Also, we assume all agents are honest-but-
curious, in that they will not provide invalid encryption of their messages.

Generalised Paillier Encryption Scheme [6]. We require the threshold variant of
this scheme. It defines a common public key pk and a set of private key shares
(sk1, . . . , skv). It is based on computations of modulo ns+1 where n is an RSA
modulus and s a natural number. Given its additive homomorphic property,
there is an operation · whereby for two messages m1 and m2, Epk(m1 + m2) =
Epk(m1) · Epk(m2), where Epk(x) = (n + 1)xrns

denotes the encryption function,
pk = (n, s) and r ∈ Z∗

n a random value. Threshold decryption can then be
performed, in which a (u, v)-threshold setting means that at least u out of v
agents are required for decrypting a ciphertext. Share decryption D is performed
using a polynomial-based recovery algorithm together with the public key pk
and the private keys shares sk1, . . . , sku. The scheme is provably secure under
the decisional composite residuosity assumption introduced by Paillier [11].

Scaling. The cryptographic primitives for our constructions required values to
be represented in integers. As such all values involved in the calculations must
be scaled with an integer scaling factor S, which can be performed through the
approach proposed in [14, Sect. 3.2.1].
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4.1 A Basic Approach with a Trusted Third Party

We remark that a straightforward protocol can be constructed by introduc-
ing a fully trusted third party (TTP). Firstly, the TTP initiates by generat-
ing its public-private key pair (pkttp, skttp) based on an additive homomor-
phic encryption scheme (e.g. Paillier [11]). The public key pkttp is shared to
all participating agents. Each agent i for every decision epoch t encrypts its
Q-values as Epkttp

(Sμji(a)), using the public key of the TTP, where S is the
scaling factor. This value is sent to all the other neighbouring agents. Once
an agent i collected all encrypted Q-values from its neighbours, it is able to
compute the encrypted sum of the collected values using the · operator where
Epkttp

(Sμji(a)) · Epkttp
(Sμji(a)) · . . . · Epkttp

(Sμji(a)) = Epkttp

(∑
j(Sμji(a))

)
for

all j ∈ Γ (i). Agent i then sends the encrypted sum to the TTP, who decrypts
using its private key skttp and returns the sum value to agent i. Based on the
sum value (divided with the scaling factor S), computations for optimised action
of agent i (Eqs. 3 and 4) can be performed straightforwardly in plain.

While this approach is simple, a drawback is that the introduction of a TTP
defeats the main purpose of the multi-agent DCRN setting, which is to do away
with any centralised entity. Next, we propose a construction without TTP.

4.2 A Privacy-Preserving Protocol for RL in DCRNs

We propose and describe our protocol to compute an agent i optimal action
in a private manner, without a TTP, using a threshold-based additive homo-
morphic encryption scheme (i.e. generalised Paillier scheme). Figure 2 gives the
steps of the protocols. It contains three phases, which are initial setup, private
computation and calculating optiaml action.

During setup, we assume there is a trusted controller who generates the public
key pk and a set of private key shares for agent i and its neighbouring agents
(sk1, . . . , skv). This means using the generalised Paillier encryption scheme based
on (u, v)-threshold, where if all agents must be involved to decrypt a value then
u = v. While requiring a controller might be a limitation, it is required only
during setup to generate the key pairs, which differs from the basic approach
where the TTP must always be online. The public key pk is broadcast to all
agents and every agent receives its respective key share.

In the private computation phase, each agent computes and encrypts its
Q-values using pk that its received. The encrypted Q-values is shared among
all neighbouring agents. Once an agent collected all its neighbours’ encrypted
Q-values, it sums them in the private manner, as shown in Fig. 2 (this step is
similar to the previous approach that utilises the TTP). After that the agent
requests the assistance from u neighbouring agents to decrypt the encrypted
sum based on their private key share. Once the agent receives the decrypted
sum value, it proceeds with the calculation of Eq. 3 and chooses its optimal
action based on Eq. 4. We remark that alternatively secure multi-party com-
putation (MPC) scheme such as FairPlayMP [2], a system based on garbled
circuit with constant number of communication rounds or Sharemind [3] based
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Initial Setup:

1. Trusted controller: Generates a common public key pk and a set of private key
shares (sk1, . . . , skv) for a (u, v)-threshold additive homomorphic scheme (i.e.
generalised Paillier scheme).

2. Trusted controller: Broadcasts pk to all participating agents.
3. Trusted controller: Sends ski to agent i under a secure channel, for i = 1 to v.

Private Computation:

1. For every decision epoch t and i = 1 to v:

(a) Agent i: Encrypts all Q-values Qi
t(a

i
t) as Epk(Sμij(a)).

(b) Agent i: Broadcasts Epk(Sμij(a)) to all other v − 1 neighbouring agents.
(c) Agent i: Receives Epk(Sμji(a)) for j ∈ Γ (i) of all neighbouring agents, where

|Γ (i)| = v − 1.
(d) Agent i: Calculates sum in the encrypted domain for all j ∈ Γ (i):

Epk
j

(Sμji(a)) = Epk(Sμji(a)) · Epk(Sμji(a)) · . . . · Epk(Sμji(a))

(e) Agent i: Requests u neighbouring agents to assist in decrypting the encrypted
sum using their private key share:

j

(Sμji(a)) = D(skj)
u
j∈Γ (i)

Epk
j

(Sμji(a))

Calculating Optimal Action:

1. For every decision epoch t and i = 1 to v:

(a) Agent i: Given j(Sμji(a)), divides it with S and finds maximum gi
t(a

i
t)

based on eq. 3. Then given gi
t(a

i
t), finds optimal action based on eq. 4.

Fig. 2. A privacy-preserving protocol for RL in DCRNs

on secret sharing schemes can also be utilised. These systems involve more inten-
sive computations but provide operations beyond private addition. For example,
if finding the maximum must be private, these systems can be deployed.

5 Discussions

Security. The main objective of our proposed protocol is to preserve privacy
of agents’ Q-values. The use of the provably secure threshold-based generalised
Paillier scheme to encrypt these values achieves this objective. This is because
any of the agents is not able to learn the content the encrypted values provided by
other neighbouring agents. Similarly, the addition in the encrypted domain does
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not leak the content of these values as well. However, the agents who participate
in assisting an agent i for decryption does learn the sum value, as can be observed
from Step 1(c) in Fig. 2. We note that learning the sum does not allow an agent
j involved in decryption to calculate the payoff and optimal action of the agent
i since agent j does not know agent i’s Q-value.

Performance. The main trade-off of our proposed protocol is the performance
overhead compared to a plain RL computations, which is inevitable in any
privacy-preserving setup. However, the privacy-preserving computation is kept to
the minimum on computing the sum only and all other computations remain as
they are. In terms of bandwidth there is message expansion since the encrypted
values are of the size of the encryption scheme’s modulus (i.e. n).

6 Conclusions and Future Works

We introduced privacy-preserving RL on DCRNs for addressing potential privacy
threats against shared agents’ information in a multi-agent environment. A high-
level privacy-preserving protocol was proposed based on provably secure cryp-
tographic primitives that cater for secure multi-party computation. As future
works, we intend to provide concrete constructions by simulating the environ-
ment with implementation of our protocol, in order to study the performance
(especially the issue of timing constraints of DCRNs that may limit the usage
of privacy preserving mechanisms) using three different approaches: (1) basic
construction with a TTP, (2) using threshold cryptosystems such as generalised
Paillier and (3) using MPC systems.
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Abstract. Wireless LAN (WLAN) service has been provided in many
companies, universities, hotels, coffee shops and even on the street,
which supports the growing number of users with mobile devices. Kyoto
Women’s University has offered WLAN service with many access points
in centralized control style since 2011, which allows mobile users to access
the network at any location covered by its access points while on campus.
It is useful for evacuation planning to figure out when and where people
gather, and therefore, it is worth understanding the trends of WLAN
usage in each organization at all times. In this paper, we analysed the
trends of WLAN usage in the university and described some applications.

Keywords: Information and communication infrastructure · Campus
network · Network usage trends · Wireless LAN

1 Introduction

Nowadays, mobile devices including smart phones and laptop computers have
become a common part of our daily lives. Wireless LAN (WLAN) access points
(APs) are installed to various buildings such as companies, universities, hotels,
coffee shops and even on the street, which allows mobile users to access the
network at any location covered by its APs [1].

The information and communication systems (ICS) of Kyoto Women’s Uni-
versity (KWU) was formed in 2000 and restructured several times. The WLAN
service of KWU has begun in 2001. Ever since then the information systems at
KWU have been considered to play a fundamental role as the infrastructure for
ICS in research and education while keeping up with the revolution in computer
and network technologies [2].

There is a lot of information about the connected devices/users in the WLAN
system log. This information used to be preserved in each AP of WLAN system
and the administrator can gather a lot of information about WLAN devices. In
recent years it is in centralized controller, thus the administrator can gather it
more easily.

Since the user always carries her/his WLAN devices, the information of
WLAN devices is closely linked up with the information of user who carries
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 563–569, 2016.
DOI: 10.1007/978-3-319-46687-3 62
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Fig. 1. Campus Map

them. It is worth analysing the trends of WLAN usage on the university campus
to grasp where staffs and students move around and arrange the APs in the
campus [3–7].

In this paper, we report the WLAN usage trends in KWU, and describe some
applications. This work is based on the continuous investigation from [8] to [10].
In [8–10] we had WLAN logs for only a few month. We have kept the logs since
July 2013 and we analyse the logs for approximately two years and 10 months
in this paper.

2 The WLAN System

KWU has its main campus which consists of about 30 buildings basically marked
with letters A through Y. WLAN is available in the buildings B, C, F, R, S, U and
Y (Fig. 1)1. The buildings C and S have both seminar room and computer room,
and the buildings B, F and Y have seminar room. The buildings R and U are a
counseling and nutrition center and a preschool education center, respectively.

Aruba Networks’ APs2, which support IEEE 802.11a/b/g/n WLAN, are
installed in each building (Table 1). These APs are controlled by the central
controllers in the building S and have the same SSID in this system, which
enables users to move around the campus without losing their connections. The
topology of KWU network system is shown in Fig. 2.

Access authentication ensures network security. WLAN supports IEEE
802.1X authentication, pre-shared key (PSK) authentication, captive portal

1 http://www.kyoto-wu.ac.jp/student/campus/map/ (translated by the authors).
2 http://www.arubanetworks.com/.

http://www.kyoto-wu.ac.jp/student/campus/map/
http://www.arubanetworks.com/
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Fig. 2. Network Topology

Table 1. Number of access points

Building # of APs

B 7

C 28

F 25

R 2

S 10

U 47

Y 28

Total 147

authentication, and MAC address authentication. Almost all users of KWU con-
nect to the wireless network with IEEE 802.1X authentication. A user who wants
to connect her/his device to this WLAN must be authenticated by the authen-
tication server with a user name and password. Manual authentication prompts
users for a user name and password the first time they access the Internet through
a browser. Her/his device keeps the digital certificate of 802.1X, the user name
and password, thus the connection to WLAN is automatically done after the sec-
ond time. People in campus always carry WLAN devices such as smart phone,
tablet PC or laptop PC and thus the WLAN usage is closely related with the
users’ behaviour.
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3 WLAN Usage Trends

The central controller of WLAN system always collects the detailed information
about the devices which connect to WLAN, including IP address of each device,
MAC address, AP’s name where the device connects, the duration of each con-
nection and user name. The information has been collected every 10 min from
the central controllers by SNMP query. We clarify the trends of WLAN usage
by the information.

The number of unique devices which connected to WLAN and the number
of unique users have almost doubled from 2014 to 2015. There were 3490 unique
devices and 2061 unique users connected to WLAN in 2014, and the numbers
were 6710 and 3818 respectively in 2015. The numbers of users who connects a
device, two devices and three devices are about 73 %, 20 % and 4 % respectively
in 2014 (the left-hand of Fig. 3), and they are 66 %, 23 % and 8 % respectively
in 2015 (the right-hand of Fig. 3). It is evident that the proportion of users who
connects more than one device to ones who connects only a device has grown.

2014 2015

1 device
1498 users

2 devices
429 users

3 devices
84 users

1 device
2512 users

2 devices
882 users

3 devices
292 users

Fig. 3. Number of devices per user

Figure 4 shows hourly distribution of users and Fig. 5 shows it by building.
Both figures describe a growth in users. Between 8 a.m. and 8 p.m., there are
more users than the average in the university. This is a reasonable result because
the classes begin at 8:50 and end at 19:40, and it confirms most WLAN devices
automatically connect to WLAN.

From Fig. 5, there are most of the users in the buildings C, S and Y. It is
due to these buildings consist of lecture rooms, computer rooms and laboratories
while the other buildings consist of mainly laboratories and a few lecture rooms.
Therefore, most students are in the buildings C, S and Y in the daytime to
participate in classes.
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Fig. 4. Number of unique users (hourly, cumulative)
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Fig. 5. Number of unique users by building (hourly, cumulative)

It is interesting to know user’s movement in campus. In Fig. 6, the number
of users who connects to WLAN in two buildings is the most large proportion in
2014 and the sum of the number of users who connects in one and two buildings
is in a majority. In 2015, the number of users who connects to WLAN in three
buildings is the most large proportion and the sum of the number of users who
connects in three and four buildings is in a majority. This shows that WLAN
become popular among university students in recent years.
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Fig. 6. Number of buildings per user

4 Applications of WLAN Usage Trends

Kyoto Women’s University is at the foot of Higashiyama mountains which are
formed by activities of some faults including Hanaori Fault, as a result, it is
feared the earthquake may occur.

When an earthquake occurs, it is important to notify the people in campus of
the latest and correct information. They must decide whether they really should
stay in the building or get out immediately.

Thanks to 802.1X authentication, the device which has connected to WLAN
once can connect to it automatically. Thus the information that a device is con-
necting to an AP means the user who owns it is around there. The network
administrators know the number of people in each building and who is in speci-
fied building with WLAN usage trends we have described above.

Of course the information about the user location is sensitive and should be
kept secure. It is required that the information has some anonymities to utilize
as statistical data. At this time, a user must be distinguished from each other
but not be specified. WLAN logs can be converted into the information which
has such anonymities [10], and it is useful information for even users.

5 Conclusion

In this paper, the authors analyse WLAN logs to clarify usage trends in KWU. It
is worth knowing such as the population distribution of WLAN users and hourly
distribution. These information about WLAN devices includes physical presence
of the users, thus it is very useful for daily life in campus even for evacuation
plan.
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The authors continue the survey of WLAN usage and analyze it in more
detail. There are some related works such as [3–7] that survey WLAN usage on
the university campus to understand its trends. When the standardized method
to investigate WLAN trends is established, the knowledge of each university can
be integrated and thus such survey is applicable to evacuation plan and/or crisis
management.
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Abstract. A method for botnet detection from traffic data of the Inter-
net by the Non-negative Matrix Factorization (NMF) was proposed by
(Yamauchi et al. 2012). This method assumes that traffic data is com-
posed by several types of communications, and estimates the number
of types in the data by the minimum description length (MDL) crite-
rion. However, consideration on the MDL criterion was not sufficient
and validity has not been guaranteed. In this paper, we refine the MDL
criterion for NMF and report results of experiments for the new MDL
criterion on synthetic and real data.

Keywords: Botnet · NMF · MDL principle

1 Introduction

We detect unknown botnets by focusing on the cooperative relationship on hosts.
We discuss the method for botnet detection from traffic data of the Internet pro-
posed by Yamauchi et al. [7], which is based on the Non-negative Matrix Factor-
ization (NMF) [1]. NMF is a method to decompose an n×m matrix into product
of n× r matrix and r ×m matrix approximately, where r is an input parameter.
It is known to be useful for many applications including pattern recognition,
text mining, document clustering, signal processing, and cyber security.

Yamauchi et al. treated determination of the optimal r in NMF as a statis-
tical model selection problem, and proposed a method based on the minimum
description length (MDL) criterion [3]. They derived the MDL criterion for NMF
by assuming a statistical model corresponding to NMF and evaluating the num-
ber of free parameters. However, consideration on the assumed statistical model
was insufficient and the proposed criterion is not sound in view of description
length.

In this paper, we discuss properties of the assumed statistical model based
on the notion of non-negative rank of non-negative matrices and derive a new
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form of MDL criterion for NMF. Finally, we report the results of experiments
on the new MDL criterion using synthetic and recent real data.

2 A Method for Botnet Detection by NMF

We review the botnet detection method by Yamauchi et al. based on [7]. The
problem setting of NMF is as follows:

[Problem Setting]
Given a data matrix V ∈ �n×m, solve the following optimization problem, where
r is a positive integer not greater than min{n,m}, W ∈ �n×r, and H ∈ �r×m.

min
W,H

||V − WH||2 (Frobenius norm),

subject to W ≥ 0,H ≥ 0.

Fig. 1. The role of each matrix of NMF

This problem is not tractable.
Then, several algorithms to obtain
local optimal solutions have been pro-
posed. Among them, we employ the
multiplicative update algorithm by
Lee and Seung [6]. Using NMF, we
analyze vector valued time series data
as follows. For each μ (μ = 1, · · · ,m),
let v1μ, v2μ, · · · , vnμ a time series of
the number of packets sent by the μth
source host in a unit time interval and
vμ be a vector (v1μ, v2μ, · · · , vnμ)T . Let V ∈ �n×m be a matrix such that vμ is
the μth column vector. Given a data matrix V , we are to find two non-negative
matrices W ∈ �n×r and H ∈ �r×m so that V ≈ WH using NMF. Here, r
corresponds to the number of activity patterns which are contained in the data
matrix V .

The role of each matrix is shown in Fig. 1. As we observe the column vectors
of W , we can see the temporal behavior of the number of packets of each potential
pattern. We refer to it as a “temporal pattern”. Similarly, as we observe the row
vectors of H, we can see the distribution of the number of packets released by
each host in the potential pattern. We refer to it as a “spatial pattern”.

3 MDL Principle

We review the MDL criterion for NMF proposed in [7]. The MDL criterion is an
information criterion introduced by Rissanen [3]. The MDL principle says that,
when the data is compressed with the help from a statistical model, the model
with shortest description length is optimal. For a data set xN = x1x2 . . . xN and
a k-dimensional model q(xN |θ) (θ ∈ �k), the MDL criterion is generally known
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as MDL = − ln f + (k/2) ln N . Here, f = maxθ q(xN |θ) is the maximum likeli-
hood. To apply MDL to NMF, we introduce a statistical model corresponding
to NMF as

V = WH + ε. (1)

Here, each element of ε is an independent normal random variable with mean
0. Let p(V |θ) (θ = (W,H)) denote the density function of the model (1). Using
this model, the formula of MDL criterion in [7] was given as

MDLNMF = − ln f +
nr + rm − r2

2
ln

nm

2π
, (2)

where the maximum log likelihood ln f is

ln f = −nm

2
ln 2πσ2 − 1

2σ2

n∑
i=1

m∑
μ=1

(Viμ − (Ŵ Ĥ)iμ)2.

Here, (Ŵ , Ĥ) is the maximum likelihood estimate, but it is not efficiently
computable. Hence, we use the output of NMF instead, that is, we assume
that (Ŵ , Ĥ) is an output of NMF algorithm, σ2 = (nm)−1

∑n
i=1

∑m
μ=1(Viμ −

(Ŵ Ĥ)iμ)2, and the factor nr + rm − r2 in (2) is the dimension (degree of free-
dom) of the model defined by (1). Note that the dimension is less than the sum
of the numbers of entries of W and H, since they contain r2 redundant entries.
Let r̂ denote the r which minimizes (2). We refer to r̂ as the MDL estimate of r.

To derive (2), Yamauchi et al. make use of an asymptotic expression of sto-
chastic complexity (SC) [4], which is the strict value of MDL. For a regular
model, SC is evaluated as

SC = − log q(xN |θ̂) +
k

2
log

N

2π
+ log

∫ √
|J(θ)|dθ + o(1), (3)

where θ̂ is the maximum likelihood estimate given xN and J(θ) is the Fisher
information matrix. Regard the data matrix V as a single nm-dimensional vector
valued datum. Then, (3) can be transformed to

SCNMF = − log f +
nr + rm − r2

2
log

1
2π

+ log
∫ √

|J(θ)|dθ + o(1).

The third term can be evaluated by noting that the following holds for each
element of J(θ).

Jij(θ) = −Eθ
∂2 log p(V |θ)

∂θi∂θj

= −Eθ

[
∂2

∂θi∂θj

(
1
2
(xN − μ)Σ−1(xN − μ)T +

1
2

ln |Σ|
)]
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= −Eθ

[
∂2

∂θi∂θj

(
1
2
(xN − μ)Σ−1(xN − μ)T

)]

= −Eθ

[
∂2

∂θi∂θj

1
2
Tr(Σ−1(xN − μ)(xN − μ)T )

]

= nmAij(θ) + O(1). (4)

Here, Aij(θ) is a quantity independent of nm. The factor nm in (4) appears
because the dimension of the datum V is nm. Therefore, we have

∫ √
|J(θ)|dθ = (nm(1 + o(1)))

nr+rm−r2
2 C,

where C is a certain constant. Neglecting a term of o(nr+rm−r2

2 ), we obtain (2).
From the above, Yamauchi et al. calculated MDL criterion for NMF. How-

ever, there were obscure points in the number of free parameters and the region
of integral in (2), which influence the main term of the MDL criterion.

4 Non-negative Rank

Yamauchi et al. calculated the degree of freedom of the matrices whose rank is r
in (2), but this only holds for few limited situations. We have to use the notion
of non-negative rank, which we explain below.

We review the notion of non-negative rank following [2] and discuss the degree
of freedom of the space of WH. Let �+ stand for the set of non-negative real
numbers. Non-negative rank rank+(A) for ∀A ∈ �n×m

+ is defined as

rank+(A) = min

⎧
⎨
⎩q

∣∣∣∣∣∣
q∑

j=1

Rj = A, rank(Rj) = 1, Rj ∈ �n×m
+

⎫
⎬
⎭ .

Note that we can write

WH =
r∑

i=1

⎛
⎜⎝

wi1

...
win

⎞
⎟⎠

(
hi1 · · · him

)
=

r∑
i=1

wT
i hi.

Since wT
i hi is a rank 1 non-negative matrix, we can think that the space of WH

is the space of matrices of non-negative rank r. Therefore, we should consider
the degree of freedom in the model of NMF as that of the space of fixed non-
negative rank. Apparently, non-negative rank is not less than rank, and there is
a possibility that previous MDL criterion for NMF is incorrect.

Define the scaling factor σ(A) by σ(A) := diag{‖a1‖1, · · · , ‖am‖1} where
A = [a1, · · · ,am] and, ‖·‖1 stands for the 1-norm of a vector. Define the pullback
map V(A) by V(A) := Aσ(A)−1 Each column of V(A) can be regarded as a
point on the (n − 1)-dimensional probability simplex Dn defined by Dn := {a ∈
�n

+|1T
na = 1} where 1n stands for the vector of all 1’s in �n
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For a given matrix A ∈ �n×m
+ , denote its non-negative matrix factorization

A = UV , where U ∈ �n×p
+ , V ∈ �p×m

+ , UV = (UD)(D−1V ) for any invertible
diagonal matrix D ∈ �p×p

+ . We may assume without loss of generality that U is
already a pullback so that σ(U) = Im. It follows that

A = V(A)σ(A) = UV = V(U)V(V )σ(V ).

Since the columns of the product V(U)V(V ) and the pullback map V(A) are all
on the simplex Dn, we have

V(A) = V(U)V(V ),
σ(A) = σ(V ).

It thus suffices to consider the geometric meaning of rank+(V(A)) on the simplex
Dn. The following lemma holds [2].

Lemma 1. Given a non-negative matrix A ∈ �n×m
+ , rank+(A) =

rank+(V(A)).

Proof. Assuming rank+(A) = r, we can denote that A =
∑r

i=1 wih
T
i . Then,

V(A) = Aσ(A)−1 =
r∑

i=1

wih
T
i σ(A)−1 =

r∑
i=1

wih
′
i

T

Thus, rank+(V(A)) ≤ r = rank+(A). Similarly, assuming rank+(V(A)) = r, we
can derive rank+(A) ≤ r = rank+(V(A)). Therefore, A ∈ �n×m

+ , rank+(A) =
rank+(V(A)).

Note that the relationship V(A) = V(U)V(V ) implies that the columns in
the pullback V(A) are convex combination of columns of V(U). The following
interesting geometrical interpretation of non-negative rank is shown in [2].

Lemma 2. The non-negative rank rank+(A) stands for the minimal number of
vertices on Dn so that the resulting convex polytope encloses all columns of the
pullback V(A).

In [2], the conditional probabilities P (rank+(A) = 3|rank(A) = 3) and
P (rank(A) = 3|rank+(A) = 3) are evaluated, assuming that each column vector
of A follows absolutely continuous probability density over the three-dimensional
space in the unit tetrahedron. As noted in [2], the former depends on the assumed
probability density. On the other hand, the following theorem holds for the case
of general about the latter.

Theorem 1. The following holds on the condition that r < min{m,n}
P (rank(A) = r|rank+(A) = r) = 1

That is, in the set of matrices whose non-negative rank is r, the set of matrices
whose non-negative rank is less than r − 1 is measure zero. Therefore, it is
concluded that the degree of freedom of the set of matrices whose non-negative
rank is r is equal to the degree of freedom of the set of matrices whose rank is
r. Then it follows that, the degree of freedom in (2) is correct.
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5 Discussion on Main Term of MDL Criterion for NMF

Yamauchi et al. derived the MDL criterion ignoring following 2 conditions.
1. There exists non-negative value constraints in the set of data series
2. Integration that depends on degree of freedom of parameter

We reconsider the above second condition and calculate the upper bound of
MDL criterion.

5.1 Modification About
∫ |J(θ)|1/2dθ

In Chap. 3, Yamauchi et al. calculated ln
∫ |J(θ)|1/2dθ as follows.

∫
|J(θ)|1/2dθ =

k

2
ln nm + O(1).

They integrated in θ in the derivation process of this formula. However θ is a
k-dimensional vector and the integration result should depend on k. Considering
this point, we calculate the upper bound of

∫ |J(θ)|1/2dθ as

ln

∫

|J(θ)|1/2dθ = ln

{∫

|A(θ)|1/2(nm(1 + o(1)))k/2dθ

}

= ln

{

(nm(1 + o(1)))k/2
∫

|A(θ)|1/2dθ

}

≤ ln

{

(nm(1 + o(1)))k/2C

∫

dθ

}

≤ ln

{

(nm(1+o(1)))k/2C ·
r+1∏

i=1

(
Mn−1

i

(n − 1)!

)

·
m∏

j=r+2

(
Mr−1

j

(r − 1)!

)}

(5)

where M1,M2, ...,Mm are the 1-norm of column vectors, assuming they are in
ascending order of 1-norm and |A(θ)|1/2 ≤ C. Then, we assume that the ith
column vectors for i ≤ r + 1 are elements of (n − 1)-dimensional simplex of size
Mi and that the jth column vectors for j > r + 1 is an element of the affine
space defined by the first r +1 column vectors. Note that the volume of (n− 1)-
dimensional simplex of size Mi is Mn−1

i /(n − 1)!, and that the volume of the
above affine space restricted in positive region is bounded by Mr−1

j /(r − 1)!. By
this inference, we have obtained the evaluation (5).

6 Simulation

Here we show the results of numerical experiments with various sizes of input
matrices.
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Fig. 2. Comparison by the difference of the main term

6.1 Numerical Experiments

We verify the difference between MDL4(new MDL) and MDL2(old MDL). We
make W ∈ �200×7,H ∈ �7×1000 where true r = 7. Each element of the matrices
takes the value from 1 to 5 which follows the uniform distribution. We make
the data matrix V = WH + ε, where the each elements of ε follows the normal
distribution with mean 0 and variance 1. We decompose V by NMF, and estimate
r by the above two MDL criteria.

6.2 Results

In the graphs in Fig. 2, horizontal axis shows r of NMF and vertical axis shows
value of the main terms of MDL2 and MDL4.

6.3 Influence on MDL4 by the Size of Matrices

When the size of data matrix V is 200 × 1000 (the center of Fig. 2), both MDL2
and MDL4 select the true model. The left side of Fig. 2 is the graph on the
condition that the size of data matrix V is 60 × 1000. MDL2 select the true
model but MDL4 select r = 1. However, if the size of V is enlarged to 900×1000,
the value of MDL4 becomes almost equal to MDL2 (The right side of Fig. 2).

7 Application to Botnet Detection

We apply our method to botnet detection using darknet data.

7.1 Detection Method for Botnet Activity Pattern

We assume that the hosts of botnets send packets synchronously. So, we issue
an alert when some hosts in a spatial pattern of a cluster send packets synchro-
nously. Specifically, we pay attention to a cluster in which the number of the
synchronized hosts is more than 5.
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Since the number of packets sent by each bot is small, it is usually difficult to
detect anomaly from the Internet traffic. To overcome this problem, it is effective
to use the data of darknets. A darknet is an accessible and unused IP address
space. Since the packets which reach a darknet are due to infection activities by
malwares or misconfiguration of networks, darknets are more useful to detect
the behavior of botnets than real networks. We use several data sets observed
by a part of the darknet managed by National Institute of Information and
Communications Technology (NICT), which consists of over 30000 IP addresses.

7.2 Results

We apply our method to the 2014 and 2015 darknet data. The following is some
results of our experiments. Based on the data of April 30, 2014 from February 1,
2014, we got alerts to 53/UDP, 123/UDP and 161/UDP that are DRDoS related
ports. About this event, it reported that there is an increase of scan to DRDoS
related port around April 2014 [5]. It would be highly possible that we detected
scan activities to evaluate vulnerability to the target ports.

Figure 3 is a temporal pattern and a spatial pattern of one alert (the upper
side cluster) of DRDoS related port. In the temporal pattern, there is a peak in
the time series of the number of packets. In the spatial pattern, there is a syn-
chronism in the number of packets of each host. Therefore, the hosts in the upper
side cluster act synchronously, and we judged that this cluster corresponded to
botnet.

Fig. 3. Temporal pattern and spatial pattern of an alert (2014/04/13)
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However, as a result of the investigation of the hosts of the cluster, they
turned out to be hosts of research institutes that evaluate vulnerability to the
target ports. It would be highly possible that we detected coordinated activities
of their hosts.

We also evaluate the difference in the number of alert between MDL2 and
MDL4 during April 2014. In MDL2, 179 alerts is detected and in MDL4, 84
alerts is detected. The DRDoS related alerts reported above were detected by
both MDL2 and MDL4. Therefore, there is a possibility that MDL4 can reduce
the number of false alerts.

8 Conclusion

We verified the MDL criterion for NMF introduced by Yamauchi et al. It was
found that their derivation about degree of freedom is correct. We also consider
the main term of MDL criterion and evaluated its upper bound. A future issue is
that we need to experiment on more data and verify the validity of this technique.

Acknowledgment. We thank everyone of Cybersecurity Laboratory, NICT, who pro-
vides the darknet data, and the members of Proactive Response Against Cyber-attacks
Through International Collaborative Exchange (PRACTICE).
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Abstract. Spin-glass theory developed in statistical mechanics has
found its usage in various information science problems. In this study,
we focus on the application of spin-glass models in unsupervised and
semi-supervised learning. Several key papers in this field are reviewed,
to answer the question that why and how spin-glass is adopted. The
question can be answered from two aspects.

Firstly, adopting spin-glass models enables the vast knowledge base
developed in statistical mechanics to be used, such as the self-organizing
grains at the superparamagnetic phase has a natural connection to clus-
tering. Secondly, spin-glass model can serve as a bridge for model devel-
opment, i.e., one can map existing model into spin-glass manner, facili-
tate it with new features and finally map it back.

1 Introduction

Spin-glass is a family of theories studying the disordered magnetic system, using
statistical mechanics tools, which interprets the macroscopic properties of many-
body systems starting from the knowledge of interactions between microscopic
elements [1]. Since late 1980’s, spin-glass models and statistical mechanics find
their usage in many information science fields, such as error-correcting code [2],
image restoration [3], associative memory [4] etc.

This paper focuses on the usage of spin-glass in unsupervised and semi-
supervised learning. Several key works in this field is reviewed, trying to sketch
a big picture of why spin-glass is preferred and how it is adopted in unsupervised
and semi-supervised learning.

In the next section, we will start by introducing the widely adopted Potts
spin-glass model and its characteristics related to our topic.

2 Potts Spin-Glass Model

Potts spin-glass model [5] has a long history in statistical mechanics. The spin
s can take one of q states in Potts model, s = 1, 2, . . . , q. Spins on sites i and
j are coupled by an interaction of strength Jij > 0. Let S = {si}Ni=1 be the
c© Springer International Publishing AG 2016
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configuration of a system with N sites, the total energy of such system is given
by the Hamiltonian

H(S) =
∑
〈i,j〉

Jij(1 − δ(si, sj)) si = 1, 2, . . . , q, (1)

where 〈i, j〉 denotes neighboring sites i and j, δ(si, sj) is the Kronecker delta
function which equals to 1 if si = sj and 0 otherwise.

Ground state of a system refers to the spin configuration S that minimizes
energy H(S). There are various methods available for finding the ground state of
a given Hamiltonian, from approximation to exact solution [1]. Thus modeling a
problem into a spin-glass system to find the ground state serves as alternatives
of direct optimization, which we will see later.

To calculate the thermodynamic average of a physical quantity A at a given
temperature T , one has to calculate

〈A〉 =
∑
S

A(S)P (S), P (S) =
1
Z

exp(−H(S)
T

) (2)

where the probability density P (S) gives the statistical weight of each spin con-
figuration in thermal equilibrium and Z =

∑
S exp(−H(S)/T ) is a normaliza-

tion constant. Since the number of configurations increases exponentially with
the system size N , analytically computing (2) is simply impractical for large
system. In practice, 〈A〉 is always calculated through Monte Carlo simulation
methods [6].

Next we introduce some important quantities that will be used later. The
order parameter 〈m〉 of the system is the thermodynamic average of magnetiza-
tion m(S), m(S) is defined as

m(S) =
qNmax(S) − N

(q − 1)N
, Nmax(S) = max{N1(S), N2(S), . . . , Nq(S)}, (3)

where Nµ(S) is the number of spins in state μ. The thermal average of δ(si, sj) is
called spin-spin correlation Gij = 〈δ(si, sj)〉, which denots the probability that
spins si and sj being aligned.

3 Clustering and Semi-supervised Classification

The papers discussed in this section share a major idea in common: the natural
cluster structure in input data is revealed by the self-organization phenomena
at superparamagnetic phase. This self-organization is a physical property found
in inhomogeneous ferromagnetic materials.

3.1 From Phase Transition to Clustering

In the work of Blatt et al. [7], each data point is assigned as a Potts spin, and
the spin state denotes the cluster identity of that data point. The interaction
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between neighboring points (i.e. Jij in (1)) is defined as a decreasing function of
the distance between the points, such as the localized interaction setting

Jij = 1
K̄

exp(− d2
ij

2a2 ) if i and j are neighbors
0 otherwise

(4)

where a is a scale to define high-density regions, dij is the distance, and K̄ is
the average number of neighbors. Using such interaction setup, there are strong
interactions in high-density regions and weak interactions in low-density regions,
and the system is modeled as strongly inhomogeneous granular magnet.

For strongly inhomogeneous Potts systems (in which the spins form magnetic
grains, with very strong couplings between neighbors that belong to the same
grain and very weak interactions between all other pairs), such as the ones build
as above on data with natural cluster structure, there are three phases with
respect of the temperature change [8]. At very low temperatures, it is completely
ordered, one spin state dominates, namely ferromagnetic phase. At ferromagnetic
phase, most data points belongs to the same cluster. At very high temperatures,
the system does not exhibit any ordering, all spins are randomly oriented, namely
paramagnetic phase. In between these two phase, there is a superparamagnetic
phase. In this phase strongly coupled grains are aligned (that is, are in their
respective ferromagnetic phases), while there is no relative ordering of different
grains.

Clearly, data clusters can be identified by the internal alignment within grains
at the superparamagnetic phase. In order to locate superparamagnetic phase,
susceptibility X , the variance of the magnetization, is computed at all temper-
atures

X =
N

T
(〈m2〉 − 〈m〉2). (5)

At low temperatures, fluctuations of the magnetizations are negligible, thus
X is small in the ferromagnetic phase. At the transition from the ferromagnetic
to superparamagnetic phase a pronounced peak of X is observed [9], because in
the superparamagnetic phase fluctuations of the state taken by grains acting as a
whole (as giant superspins) produce large fluctuations in the magnetization. As
the temperature is raised further, each grain disorders and X decreases abruptly.
So by observing the change of X over temperatures, superparamagnetic phase
can be located.

At the superparamagnetic phase, the spin-spin correlation Gij is computed
for any pair of spins (data points). If the correlation is higher than the expected
value on a null model, the pair of points are clustered as the same group.

Similar to above approach, Clement et al. [10] also take advantage of self-
organizing property of close related spins at superparamagnetic phase. After fist
round clustering like [7], they treat each cluster as a Ising spin, then cteat a
Hamiltonian to study the relation between clusters obtained. The characteristic
of this scaled Hamiltonian reveals the structure among clusters.
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Recently, Qin et al. [11] present a set of numerical methods to determine
critical temperature at which phase transition occurs. With the help of their
methods, one can directly target the superparamagnetic phase rather than locate
superparamagnetic phase via costly simulation and observation.

3.2 Incorporating Labelled Data Points

The work of Getz et al. [12] can be seen as an extension of above work [7]. With
the presence of labelled data, the Potts spin system can no longer be described
as (1). Assume the first M data points are labelled, the system is represented as

H(S) =
∑
〈i,j〉

Jij(1 − δ(si, sj)) +
M∑
k=1

hk(1 − δ(sk, ck)), (6)

where ck is the known class label for point k. The second term in (6) serves as
penalty in case that sk violates the assigned class ck. In their work, hk is set to
be infinity, which means violation is not allowed.

Have the system defined, the rest of work in [12] is similar to that in [7].
Firstly locating the superparamagnetic phase by observing X . And then cluster-
ing data points at superparamagnetic phase by evaluating spin-spin correlation
Gij . The cluster has points with given class label is classified into corresponding
class. Clusters without labelled points are the hints for new classes. And the
data points not associated with any cluster is considered as unknown points.

The major difference between [7,12] appears in the Monte Carlo simulation
step. The introduction of labelled points changes the Hamiltonian meanwhile
inherently changes the properties of the system. The energy landscape for (6) is
more ragged, thus standard MCMC methods may be confined to certain energy
‘valley’ and give highly biased estimation. Getz et al. suggest using extended
MCMC methods like [13] to solve the such problem by allowing the system to
‘jump’ between ‘valleys’.

Next section we will review the family of community detection, which is
closely related to clustering.

4 Unsupervised and Semi-supervised Community
Detection

Given a relational network over a set of entities, community detection methods
seek to identify ‘Communities’ which are sets of nodes such that nodes within
each community are more densely connected than between communities. As an
unsupervised learning task, fully automated community detection can be seen
as clustering upon graphs.

The input for community detection is an undirected weighted graph G =
(V,A). The node set V = {v1, v2 . . . , vn} represents entities, and the adjacency
matrix A represents the relation between entities. Aij ∈ (0, 1]) specifies that
there is an edge eij between vi and vj with weight Aij (vi and vj have a relation
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with strength Aij), and Aij = 0 otherwise (vi and vj have no relation). The
degree of node vi is defined as the summation of the weights it relates to, di =∑

j Aij . And the total weight on graph G is given by m = 1
2

∑
i,j Aij . The

objective of community detection is to determine a community partition C such
that nodes from the same community are densely interconnected and different
communities are sparsely connected.

Newman-Girvan graph modularity [14] is arguably the most widely used
model in community detection. Community structure of the graph is measured
from a global perspective, as the difference of the graph’s structure from an
expected null model presumed to have no community structure. The modularity
Q of a community partioning C is given by

Q(C) =
1

2m

∑
i,j

(Aij − Pij)δ(Ci, Cj), (7)

where Pij represents the probability of an edge between vi and vj in the null
model, Ck states the community that vk belongs to, and δ(Ci, Cj) is the Kro-
necker delta function which equals to 1 if Ci = Cj (vi and vj belongs to the
same community) and 0 otherwise. Newman-Girvan graph modularity employs
a null model that randomly rewrites the given graph while maintaining the total
number of edges and the degree distribution of the nodes, which follows that

Pij =
didj
2m

. (8)

Thus high modularity Q value indicates strong community structure in the
graph. Newman and Girvan present several methods for community identifi-
cation using spectral clustering over the modularity matrix (A − P ) [14]. Since
then, large number of other community detection methods employ modularity
as their foundation [15].

4.1 Potts Spin-Glass Modeling for Community Detection

Reichardt and Bornholdt [16] interpret the relational network and community
using a Potts spin-glass system, in which any community partitioning is consid-
ered as a corresponding spin configuration and community detection problem
falls into finding the ground state of the Potts spin-glass system. This work
also shows that by certain parameter setting, their Potts Spin-glass model is
equivalent to Newman-Girvan modularity. Thus it bridges various community
detection methods to statistical mechanics tools.

Reichardt and Bornholdt’s work starts from a Potts Hamiltonian to be min-
imized

H(C) = −
∑
i�=j

aijAijδ(Ci, Cj) +
∑
i�=j

bij(1 − Aij)δ(Ci, Cj)

+
∑
i�=j

cijAij(1 − δ(Ci, Cj)) −
∑
i�=j

dij(1 − Aij)(1 − δ(Ci, Cj)).
(9)
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In (9), (i) internal links between nodes of the same community and (ii) non-
links between different community are rewarded, meanwhile (iii) missing links
between nodes of the same community and (iv) existing links between different
community are penalized. These (i)–(iv) objectives are balanced by aij , dij , bij
and cij , respectively. Then they consider weighting links and nonlinks equally,
no matter they are external or internal, i.e. aij = cij and bij = dij . Using γ to
balance aij and bij , set aij = 1 − γpij and bij = γpij , where pij represents the
probability that there is a link between node vi and vj , when normalized, have∑

i�=j pij = 2m. Adopt all these settings, Hamiltonian (9) is simplified into

H(C) = −
∑
i�=j

(Aij − γpij)δ(Ci, Cj) (10)

As can see, (11) and (9) are closely related. Actually, having γ set to be 1
and define pij as Pij following (8), minimizing H(C) in (11) is equivalent to
maximizing Q(C) in (9). Detailed proof of this equivalence can be found in [16].
And the γ = 1 here leads to natural situation that the total energy that can
possibly be contributed by links and nonlinks is equal, having

∑
i�=j

Aijaij =
∑

(1 − Aij)bij . (11)

4.2 Incorporating Guidance into Community Detection

When extra guidance information rather than only the relational network is
available, the community detection task changes from unsupervised into semi-
supervised. Base on the work [16] introduced in last section, Eaton and Mansbach
adopt Potts spin-glass model into semi-supervised community detection scenario
[17]. Eaton and Mansbach’s model is also closely connected to Newman-Girvan
graph modularity model, thus various existing community detection methods
can take advantage of.

In context of community detection, the guidance can only be in form of two
cases: (a) vi and vj come from the same community, or (b) vi and vj belong to
different communities. To incorporate such external guidance, [17] constructs an
energy function penalizing community structures that violate the guidance, the
function is given by

U(C) =
∑
i�=j

(uij(1 − δ(Ci, Cj)) + ūijδ(Ci, Cj)), (12)

where uij and ūij are the penalty for violating above guidance (a) and (b) respec-
tively. Rewrite(12) and incorporate it into the community detection Hamiltonian,
have

H′(C) = H(C) + μ
∑
i�=j

(uij − (uij − ūij)δ(Ci, Cj)), (13)
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where μ ≥ 0 balances the inherent community structure and the external guid-
ance. μ is suggested to be set proportionally to the expected quality of the
guidance. (13) can be further expressed as

H′(C) = −
∑
i�=j

(Aij − γpij)δ(Ci, Cj) + μ
∑
i�=j

(uij − (uij − ūij)δ(Ci, Cj))

= −
∑
i�=j

((Aij − γpij)δ(Ci, Cj) + μ(uij − ūij)δ(Ci, Cj)) + μ
∑
i�=j

uij

= −
∑
i�=j

(Aij − γ(Pij − μ

γ
(uij − ūij)))δ(Ci, Cj) + μ

∑
i�=j

uij ,

(14)

where Pij is the probability of edge eij in the original null model (without
external guidance). Since

∑
i�=j uij in (14) is a constant for any community

partitioning C, it can be discarded in optimization of H′(C). Then modified
(14) is of the same form as (11), and the modified null model is given by

P ′
ij = Pij − μ

γ
(uij − ūij). (15)

Here, the guidance reduces the null probability of edges between nodes that
should be in the same community and increases the null probability of edges for
nodes pairs that should be in different communities.

Another major contribution of [17] is that it presents a new form of Newman-
Girvan modularity which incorporates external guidance. From Hamiltonian
(14), setting Pij as (8), choosing γ to be 1 and then normalizing, just as [16] has
done, the new modularity is given by

Q′(C) =
1

2m

∑
i�=j

(Aij − (
didj
2m

− μ(uij − ūij)))δ(Ci, Cj) − μ

2m

∑
i�=j

uij . (16)

It worth noting that when external guidance is ignored (i.e. μ = 0) or absent (i.e.
∀i, j uij = ūij = 0), (16) falls back to (7). In the other words, Newman-Girvan
graph modularity is a special case of (16).

5 Conclusion

In summary, we can see at least two reasons for spin-glass models being preferred.
Firstly, adopting spin-glass models enables the vast knowledge base developed
in statistical mechanics to be used, such as the self-organizing grains at the
superparamagnetic phase for clustering, and ground state finding methods for
optimization. Secondly, as seen in Sect. 4, spin-glass model can serve as a bridge
for model development, i.e., one can map existing model into spin-glass manner,
facilitate it with new features and then map it back.
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Abstract. Non-negative Matrix Factorization (NMF) has been widely
exploited to learn latent features from data. However, previous NMF
models often assume a fixed number of features, say p features, where p
is simply searched by experiments. Moreover, it is even difficult to learn
binary features, since binary matrix involves more challenging optimiza-
tion problems. In this paper, we propose a new Bayesian model called
infinite non-negative binary matrix tri-factorizations model (iNBMT),
capable of learning automatically the latent binary features as well as
feature number based on Indian Buffet Process (IBP). Moreover, iNBMT
engages a tri-factorization process that decomposes a nonnegative matrix
into the product of three components including two binary matrices and
a non-negative real matrix. Compared with traditional bi-factorization,
the tri-factorization can better reveal the latent structures among items
(samples) and attributes (features). Specifically, we impose an IBP prior
on the two infinite binary matrices while a truncated Gaussian distri-
bution is assumed on the weight matrix. To optimize the model, we
develop an efficient modified maximization-expectation algorithm (ME-
algorithm), with the iteration complexity one order lower than another
recently-proposed Maximization-Expectation-IBP model [9]. We present
the model definition, detail the optimization, and finally conduct a series
of experiments. Experimental results demonstrate that our proposed
iNBMT model significantly outperforms the other comparison algorithms
in both synthetic and real data.

Keywords: Infinite non-negative binary matrix tri-factorization · Infi-
nite latent feature model · Indian Buffet Process prior

1 Introduction

Non-negative matrix factorization (NMF), a popular matrix decomposition tech-
nique, has been widely applied in data analysis and machine learning [8]. Typi-
cally, NMF can be exploited to reveal from observations the latent features and
consequently be used in semantic recognition or clustering. However, previous
c© Springer International Publishing AG 2016
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NMF models usually assume the number of features as a constant parameter,
which is generally tuned or searched by trial and error. Such algorithms include
the methods proposed in [1,2,10]. Moreover, when the factor matrix is assumed
as binary, NMF is even challenging, since binary matrices usually lead to more
difficult optimization.

To tackle the above problems, we extend standard NMF to learn binary fea-
tures with a novel Bayesian model called infinite non-negative binary matrix
tri-factorization (iNBMT) in this paper. Different from traditional NMF, the
novel iNBMT model can select automatically from infinite latent features an
optimal set by applying Indian Buffet Process (IBP) prior to the factor matri-
ces. In addition, we manage to decompose the input sample matrix Y into triple
matrix factors i.e., Y = ZWXT , where Z and X are two binary matrices, and
non-negative matrix W can be considered as a weight matrix. Compared from
bi-factorization typically involved in NMF, tri-factorization can better capture
latent features and reveal hidden structures underlying the samples [2]. Impor-
tantly, although two binary matrices are involved, we further propose an effi-
cient modified maximization-expectation algorithm (ME-algorithm), which can
be even fast used in very large matrix decomposition. In particular, the time
complexity of our proposed ME-algorithm proves one order lower than another
competitive model called Maximization-Expectation-IBP (ME-IBP) [9].

In the literature, there have been several proposals of NMF for binary matrix
decomposition. However, all of them have certain drawbacks. Binary Matrix
Factorization (BMF) proposed in [10] limits the input data to be binary; this
is however too strong in real cases. On the other hand, the correlated IBP-
IBP model enforces a product of two binary matrices to be still binary; such
assumption is in general invalid unfortunately. Despite of its good properties, the
recently-proposed Maximization-Expectation-IBP (ME-IBP) model [9] is slow in
optimization. In particular, the iteration complexity for the ME-IBP model is
O(γND), which is significantly higher than O(αN + βD), the iteration com-
plexity of our iNBMT model. Here, N and D, usually two big numbers, denote
respectively the number of observations and the dimensionality. α, β, and γ are
three coefficients.

2 Notation and Background

2.1 Indian Buffet Process

IBP can be considered as a prior defined on models with infinite binary matrices.
It is typically used to infer how many latent features each observation processes.
Suppose Y ∈ R

N×D be generated by linear combination with K-dimensional
vector of latent factors W ∈ R

K×D and the assignment matrix Z ∈ R
N×K . The

observed data Y is then modeled as Y = ZW + ε. ε is noise term of distributed
independently over N (0, σI).

Let Z be a binary matrix where znk = 1 presents the latent feature k belongs
to the observation n. The following IBP prior on binary feature matrix Z is
derived by placing independent beta priors on Bernoulli. πk’s are generated
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independently for each column following a Beta prior. And then each object
possessing feature k are generated independently from a Bernoulli with mean πk.

πk | (α) ∼ Beta(α/K, 1), Z | πk ∼ Bernoulli(πk),

p([Z]) =
αK

∏
h>0 Kh!

e{−αHN}
K∏

k=1

(N − mk)!(mk − 1)!
N !

,
(1)

where Kh is the number of rows corresponding to the non-zero number h, mk =∑N
i=1 zik is the number of objects possessing feature k, and HN =

∑N
j=1

1
j is the

N th harmonic number.
The IBP inspired several infinite-limit versions of classic matrix factorization

models, e.g. infinite ICA models [6]. In infinite limit, Grinffiths et al. take the IBP
prior into the infinite limit by defining equivalence classes on binary matrices [5].
The equivalence classes are matrices permutating the order of columns through
eliminating all the null columns. Therefore, let K be unbounded and assume
that we allow the number of active features K+ to be learned from the data
while remaining finite with probability one. By defining a scheme to re-order the
non-zero columns of Z we can take K → ∞ and find

p([Z]) =
αK+∏

h>0 Kh!
e{−αHN}

K+∏
k=1

(N − mk)!(mk − 1)!
N !

. (2)

2.2 Maximization-Expectation Algorithm

The ME algorithm just reverses the roles of two steps in the classical EM algo-
rithm by maximization over hidden variables and marginalization over random
parameters [7]. Given a dataset Y, p(Y,Z,W) is a probabilistic model where
Z and W are all hidden random variables. To perform approximate MAP infer-
ence, it is necessary to compute posterior or marginal probabilities such as
p(Z|Y), p(W|Y) or p(Y ). It can be viewed as a special case of a Mean-Field
Variational Bayes (MFVB) approximation to a posterior that cannot be com-
puted analytically. p(Z,W|Y) is approximated by q(Z)q(W) [4] if we assume
independent variational distributions.

In MFVB, the variational Bayesian approximation alternatively estimates
these distributions by minimizing the KL-divergence between the approximation
and the exact distribution: KL[q(Z)q(W)‖p(Z,W|Y)]. The results are close-
formed with the updates,

q(Z) ∝ exp(E[ln p(Y | Z,W)q(Z)]), q(W) ∝ exp(E[ln p(Y | Z,W)q(W)]). (3)

3 Infinite Non-negative Binary Matrix Tri-factorization

3.1 Model Description

The iNBMT model is applied on a real-valued observation data Y ∈ RN×D

where the rows and columns could be exchangeable. For a latent feature model,
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we use the matrix F to indicate the latent feature values. Then our focus will be
on a distribution over observations conditioned on features p(Y|F), where p(F)
is the prior over features. F can be expressed as the element-wise product of
these three components, F = Z

⊗
W

⊗
X, where a latent feature binary vector

xj is associated with each attribute, each item has a potential binary vector zi,
and a matrix W represents the interaction weights parameter. Furthermore, the
prior of the features is also defined by p(F) = p(Z)p(W)p(X).

In effect, we factorized Y into the linear inner product of the features and
weight, ZWXT, generated by a fixed observation process f (· ), as illustrated in
Fig. 1. This process is equivalent to factorization or approximation of the data:

Y | Z,W,X ∼ f (ZWXT , θ),

where θ are hyperparameters specific to the model variant.

Fig. 1. Representation of the iNBMT model. The process f (· ) applied to the linear
inner product of the three components. Here Z,X are infinite binary matrices, W
present non-negative matrix.

We now develop our iNBMT model using Bayesian non-parametric priors.
Specifically, IBP priors are imposed over binary matrices Z and X, while any
non-negative prior F (e.g. exponential and truncated Gaussian) is assumed on
the weight matrix W :

Z ∼ IBP(α), X ∼ IBP(λ), W ∼ F(W;μ, σ2
W ).

We assumed the hyperparameters were estimated from the data. By placing
conjugate gamma hyperpriors on these parameters, we can have a straightfor-
ward extension to infer their values. Formally,

Y | Z,W,X, θ ∼ p(Y | θ), θ = {α, λ, σY σW } ∼ Gamma(a, b).

3.2 Linear-Gaussian iNBMT Model

To illustrate the iNBMT model for capturing the latent features, we set the
linear-Gaussian model as the observation distribution with mean ZWXT and
covariance (1/θ)I throughout this paper. This can be thought of a two-sided
version of the linear-Gaussian model.

The marginal probabilities of the linear-Gaussian iNBMT model, is shown
as below:

p(Y|Z,W,X, σ2
X) =

1
(2πσ2

Y )ND/2
exp− 1

2σ2
Y

tr((Y − ZWXT )T (Y − ZWXT )).
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The weight matrix W uses the truncated Gaussian priors with a zero-mean i.i.d.

p(W|0, σ2
W ) =

K∏
k=1

L∏
l=1

TN(akl; 0, σ2
W ).

The marginal probabilities p([Z]) and p([X]) are specified with infinite IBP prior
(given in Eq. (2)):

p(Z|α) =
αK+

K+!

K∏
k=1

(N − mk)!(mk − 1)!
N !

,

p(X|λ) =
λL+

L+!

L∏
l=1

[
(D − ml)!(ml − 1)!

D!
].

From the Bayesian theorem, the posterior can be write as follows:

p(Y,Z,W,X|θ) = p(Y|Z,W,X, σ2
Y )p(W|0, σ2

W )p(Z|α)p(X|λ),

where the hyperparameters θ conjugate gamma priors on inference parameters.

3.3 Evidence of iNBMT

In this part, we will present the approximate MAP inference, derived from the
ME algorithm, for the linear-Gaussian iNBMT model.

Given the MFVB constraint, we determine the variational distributions by
minimizing the KL-divergence, D(q‖p), between the variational distribution and
the true posterior; this is equivalent to maximizing a lower bound on the evi-
dence:

ln p(Y|θ) = Eq[ln p(Y,Z,W,X|θ)] + H[q] + D(q‖p) (4)
≥ Eq[ln p(Y,Z,W,X|θ)] + H[q] (5)
≡ T , (6)

where H[q] is the entropy of q. The lower bound of evidence, T , for the linear-
Gaussian iNBMT model is:

T ≡ 1
σ2

Y

[−1
2
(ZE[W ]XT )(ZE[W ]XT )T + Z(E[W ]YT + Zγ)XT ]

+
K∑

k=1

[ln
(N − mk)!(mk − 1)!

N !
] +

L∑
l=1

[ln
(D − ml)!(ml − 1)!

D!
]

− ln K+! − ln L+! +
K∑

k=1

L∑
l=1

ϕkl + const;

γ =
1
2

K∑
k=1

L∑
l=1

[E[wkl]2 − E[w2
kl]]

T ,

ϕkl = − KL

2
ln(

πσ2
W

2
) − E[w2

kl]
2σ2

W

+ H(q(wkl)).

(7)
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Here E[W] is a matrix with each element defined as E[wkl].

3.4 Parameter Updates

The updates for the variational parameters of the non-negative W over the
truncate Gaussian distribution are shown as follows:

q(W) =
K∏

k=1

L∏
l=1

TN(wkl;μkl, σ
2
kl) =

K∏
k=1

L∏
l=1

N(μkl, σ
2
kl)

Φ(∞) − Φ(0)
,

where t = − μkl√
2σkl

,Φ(a) = 1
2 (1 + erf(a−μkl√

2σkl
)), Φ(∞) = 1, erf(·) is the Gaussian

error function. According to the upper tail truncation, the parameters are
updated as follows:

E[wkl] = μkl + σklλ(t), E[w2
kl] = μklE[wkl] + σ2

kl,

λ(t) =
√
2√

πet2 (1−erf(t))
.

Meanwhile, the mean and variance of truncated Gaussian distributions can be
updated as follows:

μkl =

{
τ2

∑N
n=1 zT

nk(ynd − ∑
k′/k znk′E[wk′lx

T
dl])xdl,K → ∞;

τ2
∑D

d=1 xdl(yT
nd − ∑

l′/l x
T
dlE[wkl′znk′ ])zT

nk, L → ∞.
(8)

σkd = τσY , (9)

where τ = (mT
k ml+

σ2
Y

σ2
W

)− 1
2 . Then the entropy of truncated Gaussian distribution

is given as

H(q(wkl)) =
1

2σ2
kl

{E[wkl]2 − E[w2
kl] − (E[wkl] − μkl)2

−[
1
2

ln
2

πσ2
kl

− ln(1 − erf(t))]}.

The updates on Z and X are relatively straightforward by computing Eq. (3).
Given q(W), we compute MAP estimates of X,Z by maximizing the evidence
Eq. (7). Similar to variational IBP methods, we must split the expectation in
Eq. (6) into terms depending on each of the latent variables [3], with the ben-
efit that the binary variables updates are not affected by inactive features.
Therefore, we decompose the relevant terms of X in Eq. (7). Similarly, we also
decompose the terms depending on Z during updating. First, to decompose
ln (D−ml)!(ml−1)!

D! , we define a quadratic pseudo-Boolean function:

f(xdl) =
{

0, if ml\d = 0 and xdl = 0;
ln (D−ml\d−xdl)!(ml\d+xdl−1)!

D! , otherwise.
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Here the subscript “.” indicates that the given variable is determined after remov-
ing the dth row from L. Therefore the terms

∑K+ [ln (D−ml)!(ml−1)!
D! ] is changed

to:
∑L+

l=1 f(xdl) =
∑L+

l=1 xdl(f(xdl = 1) − f(xdl = 0)) + f(xdl = 0). Moreover, lnL!
becomes ln L+! = ln(L+\n +

∑L+
l=1 [1{ml\d=0}xdl])!, where 1{·} is the indicator

function. Here we show that the evidence lower bound Eq. (7) is well-defined in
the limit L → ∞.

T (Xd·) = − 1
2σ2

Y
(An·Xd·T )(An·Xd·T )T + ωn·Xd·

+
K∑

k=1

[
(N − mk)!(mk − 1)!

N !
+ 1{ml\d=0}xdlϕkl]

+[xdl(f(xdl = 1) − f(xdl = 0)) + f(xdl = 0)]

− lnK! − ln(L+\l +
L+∑
l=1

[1{ml\d=0}ldl])! + const,

where ωnk = − 1
σ2
Y

(An·YT
nd + γ) and An· = ZE[W ].

3.5 Complexity Analysis

In this part, we show that, under a linear-Gaussian likelihood model, the per-
iteration complexity of our model outperforms another recently-proposed latent
feature model via IBP [9]. The iNBMT model reduces many operations when
updating the parameters of non-negative matrix. q(W) is updated twice per iter-
ation from Eq. (9). O(K2L) operations are involved when updating ZW, while
O(L2K) operations are needed in updating WXT . Hence it yields a per-iteration
complexity of O(N(K2L) + D(L2K)) for the p(W) updates. The latent feature
model via IBP proposed in [9] uses similar ME inference over the latent factors.
Its per-iteration complexity on q(W) is easily checked as O(NK2D). Updating
p(Y |Z) and p(Y |X) are independent of the remaining observations and only
require the computation of T (·). We can update T (Z) in O(N(K2 ln K)) oper-
ations and O(D(L2 ln L)) operations when updating X. The total per-iteration
complexity of iNBMF is then O(NK2(L + lnK) + DL2(K + lnL)). The tra-
ditional model just has an infinite variable Z, therefore its total per-iteration
complexity is O(NK2(D + ln K)). In practice, N and D are usually sufficiently
larger than K and L, hence, the per-iteration complexity of iNBMF can be writ-
ten as a simple form: O(αN +βD), while that of ME-IBP model is simplified as
O(γND), where α, β, and γ are small coefficients. Clearly, our proposed iNBMF
has the per-iteration complexity one order lower than that of the ME-IBP model.

4 Experiments

In this section, we conduct experimental analysis of our proposed iNBMT. We
study the latent features on a synthetic and a real digit dataset. We also compare
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the performance of iNBMT with two competitive algorithms: Maximization-
Expectation-IBP (ME-IBP) and Correlated IBP-IBP (IBP-IBP).

4.1 Synthetic Dataset

The synthetic dataset has 4, 500 samples consisting of 6×6 grey images. Different
from the dataset used in Griffiths [5], our dataset is added combination of three
different luminance, illustrating as Fig. 3(b). Each row of the observations Y
was a 36-dimension vector, which is generated by using Z to linearly combine
a subset of the four binary factors X. And W is loading different luminance
combination (see Fig. 2(a)). The input datasets are shown in Fig. 3(a) by adding
Gaussian noise σ = 0.8.

The first demonstration shown in Fig. 2 is used to evaluate various algorithms’
ability to extract the latent features from the generated data. Figure 2(c) shows
the inferred features are closely match the truth features, however, each feature
is repeated twice and have some noise. Compared with ME-IBP, the learning
features of IBP-IBP shown in Fig. 2(c) also repeated and learning more noise.
It is obvious that iNBMT outperforms other competitors by perfectly matching
the truth features as well as identifying the feature number automatically.
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Fig. 2. Comparison of iNBMT, ME-IBP and IBP-IBP on synthetic dataset. iNBMT
perfectly matches the truth features.

We also show the reconstruction power of our iNBMT model in Fig. 3.1

4.2 Digit Dataset

In this experiment, we further demonstrate the power of our iNBMT model
on handwritten digit images. The digit dataset contains 2, 000 64 × 64 samples
which are randomly combined with the digits 0, 1, 2, 3 from the USPS dataset.
We then corrupted the images with Gaussian noise σ = 0.8. Some examples of
the randomly generated images and their corrupted version are shown in Fig. 4(a)
and (b).

1 Since IBP-IBP is mainly for clustering, we do not show its (almost messy) recon-
struction results for fairness.
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(d) The reconstruc-

tion by ME-IBP

Fig. 3. Comparison of sample reconstruction on synthetic data. iNBMT best matches
the groundtruth than ME-IBP.

It is interesting to see from Fig. 4(e), our proposed iNBMT not only captures
the latent features, i.e., each of the clear digits, but also their image contours.
Moreover, from the framework of iNBMT, W × XT can be thought of as a
set of basis images which can be added together with binary coefficients Z to
recover images. In particular, Fig. 4(g) shows the basis images which are captured
by iNBMT. It is apparent that all digit combinations are detected. In terms
of reconstruction, iNBMT almost perfectly recovers the images, as shown in
Fig. 4(c). In comparison, ME-IBP extracts almost every different digit as the
latent features, and their reconstruction results are also worse than our method.
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Fig. 4. Comparison of iNBMT and ME-IBP on Digits dataset. iNBMT clearly shows
the best performance. We did not report IBP-IBP, since it is difficult to obtain reason-
able results in this data set.
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5 Conclusion

This paper proposes a new Bayesian model called infinite non-negative binary
matrix tri-factorizations model (iNBMT), capable of learning automatically the
latent binary features as well as feature number based on Indian Buffet Process
(IBP). iNBMT engages a tri-factorization process that decomposes a nonnegative
matrix into the product of three components including two binary matrices and
a non-negative real matrix; this is also different from bi-factorization exploited
by many other NMF models. A series of experiments show that our proposed
model outperforms the other competitive algorithms.
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Abstract. In this paper, we propose a novel manifold regularized
online semi-supervised learning (OS2L) model in an Reproducing Kernel
Hilbert Space (RK-HS). The proposed algorithm, named Model-Based
Online Manifold Regularization (MOMR), is derived by solving a con-
strained optimization problem, which is different from the stochastic gra-
dient algorithm used for solving the online version of the primal problem
of Laplacian support vector machine (LapSVM). Taking advantage of the
convex property of the proposed model, an exact solution can be obtained
iteratively by solving its Lagrange dual problem. Furthermore, a buffer-
ing strategy is introduced to improve the computational efficiency of the
algorithm. Finally, the proposed algorithm is experimentally shown to
have a comparable performance to the standard batch manifold regular-
ization algorithm.

Keywords: Manifold regularization · Online semi-supervised learning ·
Lagrange dual problem

1 Introduction

Cognitive science has drawn a lot of attentions for its significance in under-
standing human categorization in recent years [5]. In human learning, learners
can incrementally learn the classes of various objects from the surrounding envi-
ronment, where only a few objects are labeled by a knowledgeable source. This
scenario can be regarded as online semi-supervised learning, that is, the label of
a new arrived sample is unavailable or presented very sporadically in the online
process.

In this paper, we focus on the online semi-supervised learning (OS2L) prob-
lems. Several online semi-supervised learning algorithms have been proposed in
the past several years. By using a heuristic method to greedily label the unla-
beled examples, Babenko et al. [1] and Grabner et al. [9] tried to solve the OS2L
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 597–605, 2016.
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problems in an online supervised learning framework. Dyer et al. [3] presented
a semi-supervised learning (SSL) framework called COMPOSE (COMPacted
Object Sample Extraction), where a few labeled samples are given initially, and
then a SSL problem is solved based on the currently labeled samples and new
unlabeled samples, which are from a drift distribution. To reduce the computa-
tional complexity of manifold construction in the online training process, Kveton
et al. [11] and Farajtabar et al. [4] proposed the harmonic solution for manifold
regularization on an approximate graph. By using online convex programming,
Goldberg et al. [6] proposed an online manifold learning framework for SSL in a
kernel space with stochastic gradient descent. In addition, they extended their
method to online active learning by adding an optional component to select
which instances to label [8]. Sun et al. [7,14] exploited the property of Fenchel
conjugate of hinge loss and gradient ascend method to solve the dual problem
of their online manifold learning model. These algorithms in [6,7,14] are derived
by using online gradient methods, implying that these methods can be regarded
as solving the off-line semi-supervised learning models by stochastic gradient
methods. However, none of these stochastic gradient methods can obtain exact
solution because they do not directly solve the constrained optimization problem
involved.

Note that an algorithm with an exact solution can obtain better performance.
Therefore, to exploit the internal geometry information of the unlabeled data and
take advantage of the kernel methods, in this paper we propose a novel online
manifold regularization learning model in an Reproducing Kernel Hilbert Space
(RKHS). In each iteration of online training, by considering the new arrived
sample and the previous samples, an online model based on a constrained opti-
mization problem is presented. Unlike the stochastic gradient method for solving
the off-line model, the exact solution of the proposed model can be obtained by
exploiting the Lagrange dual problem. In addition, the regularization parameter
of the proposed model can be regarded as a forgetting factor, which can be used
to control the number of support vectors by considering a buffering strategy in
the online leaning process. By such merit, the proposed online predictor experi-
mentally exhibits a high accuracy comparable to batch algorithm LapSVM.

The rest of this paper is organized as follows. Section 2 presents the proposed
model and algorithm. Experimental results on several data sets are shown in
Sect. 3. Some concluding remarks are given in Sect. 4.

2 Online Manifold Learning

In this section, the proposed model is presented in detail. In Sect. 2.1, a new
model is proposed for online manifold regularization learning in an RKHS. In
Sect. 2.2, the proposed model is solved by exploiting the property of Lagrange
dual problem.
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2.1 Online Model Based on Manifold Regularization

Assume that the current learning data for semi-supervised learning are
(x1, y1, δ1), (x2, y2, δ2), . . ., (xt, yt, δt) where xi ∈ X is a point, yi ∈ Y = {−1, 1}
is its label and δi is a flag to determine whether the label yi is available (yi is avail-
able if and only if δi = 1). At round t, the current predictor is ht(x) = sign(ft(x))
and f0 is set as f0 = 0 in our algorithm. In online semi-supervised learning, when
a new sample (xt+1, yt+1, δt+1) is available, the function ft+1 is updated based on
the current decision function ft and the implicit feedback, that is, the manifold
structure of the samples.

Suppose that K(·, ·) is a chosen Kernel function over the training samples and
H is the corresponding RKHS. Therefore, according to the Representer Theory
[13], ft and ft+1 can be written as:

ft(·) =
t∑

i=1

αt
iK(xi, ·), ft+1(·) =

t∑
i=1

αt+1
i K(xi, ·) + αt+1

t+1K(xt+1, ·). (1)

In the online learning process, our aim is to update {αt+1
i }t+1

i=1 from {αt
i}t

i=1

based on a proper algorithm. Considering the trade-off between the amount
of progress made on each round and the amount of information retained from
previous rounds, and compromise the classification error, the manifold constraint
and the complexity of f as LapSVM, our online semi-supervised learning model
with manifold regularization is presented as:

min
f,ξt+1

1
2
‖f − ft‖2H+

λ1

2
‖f‖2H + Cδt+1ξt+1 +

1
2
λ2

t∑
i=1

(f(xi) − f(xt+1))2wit+1

s.t. yt+1f(xt+1) ≥ 1 − ξt+1, ξt+1 ≥ 0

(2)

where 1
2‖f − ft‖2H measures the difference between f and the previous ft,

the term ‖f‖2H controls the complexity of the decision function f ,
∑

(f(xi) −
f(xt+1))2wit+1 is the manifold regularizer which depends on the edge weight
wit+1, f and xi, and ξt+1 is the slack variable denoting a possible error for the
newly arrived data(xt+1, yt+1, δt+1) after f is determined, λ1, λ2 and C are para-
meters reflecting the weights compromising complexity, the manifold regularizer
and the classification error.

In the objective function of (2), the manifold structure of the samples is
reflected in the term

∑t
i=1(f(xi)− f(xt+1))2wit+1, which can be regarded as an

implicit feedback. This regularization term makes the new sample gain a similar
decision value to its close sample in the manifold. Therefore, the proposed model
can take advantage of the implicit feedback and the kernel methods. The solution
of the proposed model is presented in the next section.

2.2 Online Algorithm of the Proposed Model

In this section, we give a detailed solution of the proposed model by exploiting
the property of Lagrange dual problem. Assuming that δt+1 = 1 (if δt+1 = 0, the
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solution of (2) can be obtained by the similar process as below), the Lagrange
dual problem of (2) is

max
γt+1

min
f,ξt+1

L(f, ξt+1, γt+1, βt+1)

s.t. γt+1 ≥ 0, βt+1 ≥ 0
(3)

where γt+1 and βt+1 are the Lagrange multipliers corresponding to the con-
straints yt+1f(xt+1) ≥ 1 − ξt+1 and ξt+1 ≥ 0, respectively.

For simplicity, we define D and W as

Dij =

⎧
⎨
⎩

wij if 0 < i = j < t + 1∑t
i=1 wit+1 if i = j = t + 1

0 otherwise
(4)

Wij =

⎧
⎨
⎩

wij if 0 < i < t + 1, j = t + 1
wij if i = t + 1, 0 < j < t + 1
0 otherwise

(5)

Substituting (1), (4), (5) into (3) and let L = D − W , we have

L(α, ξt+1, γt+1, βt+1) =
1
2
αT (K + λ1K + λ2KLK)α

− γt+1(yt+1α
T J − 1 + ξt+1) + c0

− αT Kα̃t − βt+1ξt+1 + Cξt+1

(6)

where α = [α1, . . ., αt+1]T , α̃t = [αt
1, . . ., α

t
t, 0]T , K is a (t + 1) × (t + 1) Gram

Matrix with Kij = K(xi, xj), J = Ke, e = [0, . . ., 0, 1]T is a (t + 1)-dimensional
vector and c0 is a constant.

Note that L(α, ξt+1, γt+1, βt+1) attains its minimum with respect to α and
ξt+1, if and only if the following conditions are satisfied:

∇αL(α, ξt+1, γt+1, βt+1) = 0, (7)

∇ξt+1L(α, ξt+1, γt+1, βt+1) = 0. (8)

Therefore, we formulate a reduced Lagrangian:

LR(α, γt+1) =
1
2
αT (K + λ1K + λ2KLK)α + c0

− γt+1(yt+1α
T J − 1) − αT Kα̃t.

(9)

Taking derivative of the reduced Lagrangian with respect to α, we have:

α = (K + λ1K + λ2KLK)−1(Kα̃t + Jyt+1γt+1). (10)
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Substituting back in the reduced Lagrangian we get:

max
γt+1

− 1
2
(Kα̃t + Jyt+1γt+1)T A−1(Kα̃t + Jyt+1γt+1) + γt+1

s.t. 0 ≤ γt+1 ≤ C,

(11)

where A = K + λ1K + λ2KLK.
Let γt+1 be the stationary point of the object function of (11).
Therefore

γt+1 =
1 − yt+1J

T A−1Kα̃t

JT A−1J
. (12)

Assume that optimal solution of (11) is γ∗
t+1. Note that the object function

(11) is quadratic, so the optimal solution γ∗
t+1 in the interval [0, C] is at either

0, C or γt+1. Hence

γ∗
t+1 =

⎧
⎨
⎩

0, if γt+1 ≤ 0
C, if γt+1 ≥ 0
γt+1, otherwise

(13)

Furthermore, if δt+1 = 0, we can obtain the solution of the proposed model
by the similar process as above. Thus, the online manifold regularization for
classification is presented as

ft+1(x) =
t+1∑
i=1

αt+1
i K(xt+1, x),

ht+1 = sign(ft+1(x)),

(14)

where

αt+1 = A−1(Kα̃t + δt+1yt+1γ
∗
t+1J)

The above process of solving the proposed model is denoted by MOMR. In
practice, the parameter λ1 can be regard as a forgetting factor. Suppose λ2 is very
small and λ1 > 0. According to (10), we have α � (1+λ1)−1(α̃t+yt+1eγt+1), that
is, αt+1

i � αt
i/(1 + λ1) for i = 1, . . ., t, which means that the absolute value of αt

i

will continually decrease in the online process. Thus, if the absolute value of a
coefficient is small in the current decision function, the corresponding sample can
be deleted safely from the current support vectors set. Based on this, a buffering
strategy is introduced to make the online training feasible in the RKHS. The
detailed process of the buffering strategy is presented in Sect. 3.

3 Experiments

To verify the effectiveness, we compare the proposed algorithm with two online
manifold regularization algorithms and a batch algorithm on two data sets. In
Sect. 3.1, the experimental setups are introduced in detail. In Sect. 3.2, several
experiments are processed and the results are summarized and analyzed in detail.
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3.1 Experimental Setup

Two data sets are used in our experiments. The first data set is the MNIST [12].
We focus on the binary classification task of separating ‘6’ from ‘8’ (MNIST6VS8)
in our experiment. The sizes of the training set and test set are 11769 and 1932
respectively. The second data set is the FACEMIT [10] which contains 361-
dimensional images of faces and non-faces. A balanced subset from FACEMIT
(size 5000) is sampled and divided into two sets: the training set and the test set
with a proportion 1:1 for our experiment. Similar to the experimental settings
in [6,7], the labeled rate of the training samples is set to be 2% in all the
experiments.

In our experiments, we focus on online manifold regularization algorithms
derived from the dual problem. Therefore, We compare the performance of our
algorithm MOMR with an online manifold regularization algorithm based on
Example-Associate Update (denoted by OMR-EA), an online manifold regular-
ization algorithm based on Overall Update (denoted by OMR-Overall) [7] and
a batch manifold regularization algorithm LapSVM [2].

To reduce the storage for online learning in an RKHS, we use a buffering
strategy for all the online algorithms: Let the buffer size be B. If the buffer is
full, the sample with the smallest absolute coefficient in the buffer is replaced
by the new arrived sample. We evaluate the three online algorithms separately
with different buffer sizes (B ∈ {50, 200}) in our experiments.

In all the experiments, the RBF kernel k(xi, xj) = exp(−‖xi − xj‖2/(2σ2
K))

is used for classification and the edge weights are Gaussian weights k(xi, xj) =
exp (−‖xi − xj‖2/(2σ2

W )) which define a fully connected graph. The parameter
values σK , σW , λ1 and λ2 are selected by using 5-fold cross validation on the first
500 samples of the training data, where σK , σW ∈ {2−3, 2−2, 2−1, 20, 21, 22, 23}
and λ1, λ2 ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102}. In addition, as sug-
gested in [7], the step sizes of the OMR-EA and OMR-Overall are set to be a
small value 0.01. The value of parameter C is set to be 1 for the proposed algo-
rithm MOMR. The computational efficiencies of all the algorithms are evaluated
in terms of their CPU running time (in seconds). All the experiments are imple-
mented in Matlab over a desktop PC with Inter(R) Core(TM) 3.2 GHz CPU,
4G RAM and Windows 7 operating system.

3.2 Online Processing and Performance Evaluation

In this subsection, we give out a detailed process of the experiments and evaluate
the performance of the proposed algorithm for online manifold regularization
learning.

All the three online algorithms are performed in the same way which are
divided into two steps: (1) Online processing. Train a classifier with a new arrived
sample; (2) Test. Test the final model on a test set. In each learning round, the
batch algorithm LapSVM is trained with all the visible samples. We repeat all
the experiments 10 times (each with an independent random permutation of the
training samples) and the results presented below are all average over 10 trials.
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Table 1. The accuracy of different algorithms on the data set MNIST6VS8 and
FACEMIT with different buffer sizes. The best classification results are marked in
boldface.

Date set B MOMR OMR-EA OMR-Overall LapSVM

MNIST6VS8 50 98.012± 0.442 96.491± 1.775 97.495± 0.714 98.861± 0

MNIST6VS8 200 99.048±0.078 98.954± 0.177 97.981± 0.543 98.861± 0

FACEMIT 50 78.024±3.411 77.992± 3.390 78.000± 3.478 77.600± 0

FACEMIT 200 78.552±3.360 77.948± 3.126 77.920± 3.237 77.600± 0

The test accuracies on the two data sets are summarized in Table 1. From
the results, the test accuracy of MOMR is comparable with the off-line algo-
rithm LapSVM on the two data sets and higher than those of the two online
algorithms OMR-EA and OMR-Overall. These are reasonable since that: (a)
in our algorithm, the exact solution is obtained from the proposed model; (b)
in OMR-EA and OMR-Overall, the approximate solutions of their models are
derived by online gradient method.
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Fig. 1. Cumulative running time of online updating the classifiers with different buffer
sizes on the data set MNIST6VS8 and FACEMIT.
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The online updating time of the four algorithms are presented in Fig. 1. With
respect to the running time, we can see that MOMR is comparable to the online
algorithms OMR-EA and OMR-Overall when the buffer size is small and much
faster than the off-line algorithm LapSVM. These can be explained by: (a) each
sample is only trained once by the online algorithms; (b) a buffering strategy is
used to reduce the repeated training process.

Considering above two results, it can be inferred that the proposed algorithm
is in the first grade among the four algorithms both on the test accuracy aspect
and on the running time aspect.

Additionally, in practice, the buffer size can be used to trade-off the accuracy
and the time cost of online classifiers. The appropriate buffer size can be derived
by using cross validation on the first N arrived samples, where N is a predefined
number.

4 Conclusion

In this paper, the proposed model offers a new method to solve the OS2L prob-
lem. Experiment results verify the effectiveness of the proposed algorithm. In
addition, the proposed method enriches the research fields of cognitive compu-
tation and LapSVM.
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Abstract. Neural Networks (NN) have achieved great success in pattern
recognition and machine learning. However, the success of NNs usually
relies on a sufficiently large number of samples. When fed with limited
data, NN’s performance may be degraded significantly. In this paper,
we introduce a novel neural network called Memory Network, which
can learn better from limited data. Taking advantages of the memory
from previous samples, the new model could achieve remarkable per-
formance improvement on limited data. We demonstrate the memory
network in Multi-Layer Perceptron (MLP). However, it keeps straight-
forward to extend our idea to other neural networks, e.g., Convolutional
Neural Networks (CNN). We detail the network structure, present the
training algorithm, and conduct a series of experiments to validate the
proposed framework. Experimental results show that our model outper-
forms the traditional MLP and other competitive algorithms in two real
data sets.

Keywords: Memory · Multi-layer perceptron

1 Introduction

Conventional Neural Networks (NN), e.g., Multi-Layer Perceptrons (MLP), are
widely used in pattern recognition, computer vision, and machine learning. To
succeed, NN usually requires to be trained with a sufficiently large number of
samples [4]. When only few data are available, NN’s performance may however
be significantly limited. Moreover, to facilitate the training of NN, input samples
are usually assumed identically and independently distributed (i.i.d.). With the
i.i.d. assumption, samples can be fed to NN sequentially; this hence enables a
stochastic gradient descent algorithm for training a NN conveniently and effi-
ciently. However, an i.i.d assumption may often be violated in practice; on the
other hand, the learning procedure of human is not independent, but rather relies
on previous knowledge. For example, if a child would like to learn running, his
previous experience of walking can provide him some relevant knowledge which
can help him learn running easier. Another example is that, if a British tries to
learn French, previous memory about English study would benefit greatly the
learning. Both examples above indicate that the memory and previous knowledge
are very important and might be used to improve the present learning.
c© Springer International Publishing AG 2016
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Motived from these examples, we propose a novel neural network framework
called Memory Network (MN). Enjoying the similar structure with traditional
neural networks (including input, hidden, and output layers), MN introduces
additional memory structures that can appropriately take advantages of previous
knowledge learned from previous samples for the present learning. When only
limited data are available, previous learned knowledge (stored in the memory
network) could significantly benefit the training for the present learning. More
specifically, we keep a memory of the network structures for previous N training
samples. Depending on if the present training sample share or not the same
category (class label), we enforce different constraints on two activations in each
layer of the present network and previous network. For example, if the previous
sample shares the same label with present sample, we then force similar the
two activations of the same layers between the present network and previous
network; otherwise, we try to enlarge their activations of the same layers between
the present and previous network. One appealing feature of our proposed MN is
that, despite a seemingly complicated network, an efficient stochastic gradient
descent algorithm can be readily applied to make the network easily optimized.

2 Notation and Background

In this section, we present the notation used throughout the paper and also
review the basic principles of conventional NN and Back Propagation (BP) algo-
rithm. Essentially, NN is a stack of parametric non-linear and linear transfor-
mations [7]. Suppose an NN (with L − 1 hidden layers) is trained to perform
predication in the scenario of classification. NN will map the M -dimension vector
to the D-dimension label space. The matrix X0 denotes the input data matrix
where each row of X0 represents a sample vector (X0,i is the ith sample vector
with M dimensions). Xl indicates the activation of the lth layer of NN (where
l = 1, 2, . . . , L−1) and XL denotes the output of the NN. Y represents the labels
each row of which is the label for corresponding sample with D dimensions. The
problem of NN can be formulated as the following optimization problem:

min
W1:L,b1:L

1
2
‖XL − Y ‖2 s. t.

Xl = σ(Xl−1Wl + bl), l = 1, ..., L − 1 (1)
XL = XL−1WL + bL

where σ(.) is the element-wise sigmoid function for a matrix. For each element
x of matrix, the sigmoid function is defined as σ(x) = 1

1+exp(−x) .
In NN, the sigmoid function is used to perform the non-linear transformation

and it can be also replaced by other functions such as max(0, x) and tanh(x).
We plot an illustrative example of a typical L-layer NN in Fig. 1, where Xl

(l = 1, 2, . . . , L − 1) represent the hidden layers. X0 denotes the input for the
NN, and XL indicates the output of the NN. The aim is to learn the optimum
parameters W1:L and b1:L. The common approach is BP and stochastic gradient
decent (SGD).
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Fig. 1. The structure of conventional Neural Network

Back Propagation is an abbreviation for “backward propagation of errors”
which is a common approach for training NNs with an optimization method
such as gradient descent. The method calculates the gradient of a loss function
with respect to all the parameters of the network. The gradient is used in the
optimization method which in turn uses it to update the parameters in order to
minimize the loss function.

BP requires the inputs with corresponding labels in order to calculate the loss
function gradient. Therefore, it is considered as a supervised learning method,
although it is also used in some unsupervised models such as auto encoders.
It is a generalization of the delta rule to multi-layered feed-forward networks,
made possible by using the chain rule to iteratively calculate the gradients for
each layer. Assuming that the activation function be differentiable, the whole
procedure is shown as below:

dE

dXL
= 2(XL − Y ) (2)

dE

dXl
= (

dE

dXl+1
◦ Xl+1 ◦ (1 − Xl+1))Wl+1 (3)

dE

dWl
= XT

l−1(
dE

dXl
◦ Xl ◦ (1 − Xl)) (4)

dE

dbl
= mean(

dE

dXl
◦ Xl ◦ (1 − Xl), 1) (5)

where E is the value of the loss function and we can compute the gradients using
the chain rule above. ◦ represents the element-wise product and l = 1, 2, ...L.
mean(., 1) denotes the average operation on matrices.

3 Memory Network

This section will introduce our proposed novel Memory Network (MN) in details.
We will first present the structure of MN and then introduce the corresponding
optimization algorithm.
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3.1 Network Structure

The structure of MN is plotted in Fig. 2. As can be seen, the structure of MN
consists of two parts, i.e., the present network and the memory part. We will
detail these two parts one by one.

Fig. 2. Structure of Memory Network

Present Network. The structure of present network is the same as the tradi-
tional NN (consisting of the input layer, hidden layers and the output layer).

Memory Part. The memory part contains N copies of present network. They
have totally the same parameters with present network. The difference is that
the past N samples are fed into the memory part. There are also additional
connections between each layer of memory part and present network. These con-
nections indicate the minus operations which are used to calculate the difference
of activations between memory and present part.

The purpose of using the memory part is to exploit past knowledge (obtained
from past samples) to help the present learning (present sample). There are two
different cases: (1) if the present sample has the same class label as the past
sample, we then try to make the activations of the same layers for present sample
and past sample more similar; (2) if the present sample shares a different class
from the past one, we should try to make the activations of top two layers for
present sample and past sample more different. Motivated from these two cases,
we then formulate the training of MN as follows.

3.2 Model Formulation

In order to exploit past knowledge (obtained from previous examples) for present
learning, we design the model of our proposed MN as follows:
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min
W1:L,b1:L

1
2
‖Xt

L − Y t‖2 +
1
2

p∑
j=1

N∑
i=1

ki
j‖Xt

L−j+1 − Xt−i
L−j+1‖2 s. t. (6)

Xt
l = σ(Xt

l−1Wl + bl), l = 1, ..., L − 1,

Xt
L = Xt

L−1WL + bL

where Xt
l represents the activation of layer l for the present sample at time t,

and Y t is its corresponding class label; Xt−i
l represents activation of the previous

ith sample in layer l at time t − i, while Y t−i describes the corresponding label
for this specific sample. The matrix k (of the size p × N) is a coefficient matrix.
Its element ki

j is defined as a positive value, if Y t = Y t−i (i.e., the previous ith

sample Xt−i
0 shares the same class label as the present sample Xt

0); otherwise
it is a negative value. In more details, a positive ki

j encourages more similarity
between activations (in the L−j+1 layer) of the present learning (at t time) and
the previous learning (at t− i time); this is reasonable, since the present sample,
Xt

0 shares the same label as the previous sample Xt−i
0 . Similarly, a negative ki

j

would enlarge the difference between the activations of the current learning and
the previous learning, since the present sample and the previous sample have a
different class label. We could also adapt the value of ki

j , depending on if how
deep the layer L − j + 1 is. Usually, a deeper or topper layer (i.e., smaller j) is
more important, leading that ki

j should be set to a bigger value.
In a short summary, on one hand, the optimization problem (6) would try

to minimize the loss at the current time t (when a sample Xt
0 is fed), i.e., the

first term in (6); on the other hand, the proposed MN would also try to reduce
(or enlarge) the difference of the activations up to the last p layers between the
present network and the previous networks, i.e., the memory loss in the second
term of (6), depending if the present sample shares the same class label as the
previous sample. By this process, knowledge trained from previous samples can
be transferred to the present learning, making the network possible to achieve
remarkable performance even if the training samples are limited.

3.3 Optimization

For solving the modified optimization problem above, we can still rely on the
BP algorithm, since the gradients with respect to the parameters can be easily
computed from Eq. (6). For example, when p is set to 2, we could calculate the
gradients for the output layer L as:

dE

dXL
= (Xt

L − Y t) +
N∑
i=1

ki
1(X

t
L − Xt−i

L )

dE

dXL−1
= (

dE

dXL
◦ XL ◦ (1 − XL))WL +

N∑
i=1

ki
2(X

t
L−1 − Xt−i

L−1)

dE

dXl
= (

dE

dXl+1
◦ Xl+1 ◦ (1 − Xl+1))Wl+1
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dE

dWl
= XT

l−1(
dE

dXl
◦ Xl ◦ (1 − Xl))

dE

dbl
= mean(

dE

dXl
◦ Xl ◦ (1 − Xl), 1)

It is straightforward to extend the above cases to bigger p’s. With the above
gradients, a BP can be easily conducted so that a local minimum can eventually
obtained for the memory network.

4 Experiments

In this section, we conduct a series of experiments on two small-size data sets
including face and handwriting data.

4.1 Experimental Setup

The face data set just contains 120 training samples [1] and the handwriting
data set is a small portion of MNIST data set [3]. In the face data, a training
and test set is respectively provided by following [8]. We hence train the different
models on the training set and then report their performance on the test set.
In the handwriting data, we randomly sampled 50, 100, and 500 digits from
MNIST training set. We then report the performance on the test set. For fairness,
we do the sampling five times and report the average classification accuracy.
In order to compare the performance of the proposed Memory Network, we
have implemented the conventional MLP, Linear and nonlinear Support Vector
Machine with the rbf kernel function (in short, linear-SVM, and rbf-SVM) on
these two data sets.

For these two data sets, the structure and parameters of the proposed network
are set up differently. For different data sets, the network share the same depth
with totally 5 layers, i.e., 1 input layer, 3 hidden layers, and 1 output layer. We
exploit the deep structure, since deep networks are more flexible. For face data
set, the input-hidden-output units are respectively set to 100−300−100−40−15,
and for handwriting data set, the input-hidden-output units are 100−200−300−
100−10. Both the structures are tuned in experiments. Again, p is set to 2, since
the top layers are usually more stable. The memory weights ki

j are tuned from
the set {0.0001, 0.001, 0.01, 0.1}. For SVM, the trade-off parameter C and the
width γ is tuned via cross validation.

4.2 Face Recognition with Different Pose

The face data set contains totally 195 images for 15 persons [1]. Each person has
13 horizontal poses from −90 to 90◦ with interval 15◦. We have done a series
of preprocessing including resizing the images to 48 × 36 and then reducing
the dimension to 100 with Principal Component Analysis (PCA). We divide
this data set into two parts, number 1–8 poses are used as the training set and
number 9–13 poses are used as the test set.
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Table 1. Recognition rates of different models on face data. The proposed Memory
Network and RBF-SVM significantly outperforms the other models. The other results
(except Memory Network and conventional Neural Network) were copied from the
associated papers due to the same setting.

Classifier Accuracy (%)

Bilinear (Field) [6] 60.00

Style mixture (Singlet) [5] 70.00

Style mixture (Field) [5] 73.33

Nearest class mean [8] 60.00

FDA [8] 69.33

FBM [8] 74.67

linear-SVM 84.00

rbf-SVM 85.33

MLP 81.33

Memory Network 85.33

Table 1 reports the performance (recognition rate) of different models. It can
be noted that the test set shares very different pose from the training set which
makes the problem very challenging. As observed, our novel Memory Network
and rbf-SVM achieves the best performance with 85.33%. More specifically, the
proposed MN significantly improves the performance of MLP from 81.33 to 85.33!
On the other hand, Fisher Discriminant Analysis (FDA) is the state-of-the-art
algorithm for face recognition, which only achieved the error rate of 69.33% [8].
Moreover, other approaches such as the bilinear model, the style mixture model,
the Field Bayesian Model and conventional Neural Network are obviously worse
than our proposed Memory Network.

4.3 Handwriting Classification

We also test our proposed model on very famous handwriting digits data set,
MNIST. MNIST is a large handwriting data set which has 60, 000 training sam-
ples and 10, 000 test samples. It is a portion of a larger data set NIST [2] and the
samples have been size-normalized and centered in a fixed-size image (28 × 28).
In this experiment, we focus on the small sample set. Therefore, we sample the
small portions from MNIST. In particular, 50, 100 and 500 samples are chosen
from 60000 samples of MNIST database randomly. Before training, for increas-
ing training speed, we reduce the dimension of samples from 28 × 28 to 10 × 10.
For testing, we use all test samples of MNIST database, totally 10, 000 samples.
We perform the experiments five times and then report the average accuracy.

We compare the performance of our proposed MN model with the conven-
tional MLP, linear-SVM, and rbf-SVM. Table 2 shows the performance (recogni-
tion rate). Our proposed MN demonstrates a distinct performance improvement
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Table 2. Recognition rates (%) of different models on hand-writing data.

# Training Samples 50 100 500

MLP 56.04 ± 1.60 67.76 ± 2.76 88.79 ± 0.87

Linear-SVM 63.10 ± 0.45 71.41 ± 2.96 86.69 ± 0.54

rbf-SVM 64.56 ± 2.30 73.78 ± 1.78 89.20 ± 0.84

Memory Network 75.65 ± 1.02 81.60 ± 1.92 91.35 ± 0.78

when the training samples are fewer. In particular, it can be noted that our pro-
posed model achieves much better performance over MLP on 50-sample set (from
56.04% to 75.65%) and 100-sample set (from 67.76% to 81.60%). There is just
a slight improvement on 500-sample set (from 88.79% to 91.35%). Our proposed
MN also outperform both linear-SVM and rbf-SVM significantly. This experi-
ment further validates the advantages of our proposed MN, especially when the
training samples are limited.

5 Conclusion

In this paper, we proposed a novel Memory Network which can appropriately
take advantages of past knowledge. Specifically, we built a novel network with two
parts: memory part and present part both of which share the same structures.
We proposed to connect the top p layers of memory part and present part,
which are exploited to deliver the past knowledge. We developed a modified
stochastic optimization algorithm, which can efficiently optimize the proposed
MN model. We conducted experiments on two small-size databases including face
and handwriting data. Experimental results showed that our proposed model
achieves the best performance on both the data sets compared with the other
competitive models.
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Program of China (2012CB316301), National Science Foundation of China
(NSFC 61473236), and Jiangsu University Natural Science Research Programme
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Abstract. Reinforcement learning aims at solving stochastic sequen-
tial decision making problems through direct trial-and-error interactions
with the learning environment. In this paper, we will develop generalized
compatible features to approximate value functions for reliable Rein-
forcement Learning. Further guided by an Actor-Critic Reinforcement
Learning paradigm, we will also develop a generalized updating rule for
policy gradient search in order to constantly improve learning perfor-
mance. Our new updating rule has been examined on several benchmark
learning problems. The experimental results on two problems will be
reported specifically in this paper. Our results show that, under suit-
able generalization of the updating rule, the learning performance and
reliability can be noticeably improved.

Keywords: Markov decision process · Reinforcement learning · Actor
critic · Policy gradient search · Function approximation · Generaliza-
tion · Compatible feature

1 Introduction

Stochastic sequential decision making problems frequently appear in diverse real-
world applications and are increasingly gaining attentions [8]. These problems
can be described through Markov Decision Processes (MDPs) [8]. To solve an
MDP, traditional techniques such as dynamic programming can be applied but
they often suffer from the issue of curse of dimensionality whenever the state
space is large. In this situation, an alternative technique, known as Reinforcement
Learning (RL), is widely considered to be more suitable for practical use [5].

In RL, to break the curse, a common approach is to adopt function approx-
imation for value functions (aka. critic) via parameterization, the dimension of
which is generally smaller than that of states [1,6]. Clearly the success of RL
depends on appropriate and generalized function approximators [1,6,7]. Based
on properly approximated value functions, we can further pursue the solutions
to MDPs in the form of parametric policies (aka. actor). Under this Actor-Critic
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 615–622, 2016.
DOI: 10.1007/978-3-319-46687-3 68
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(AC) framework, various policy gradient search methods can be implemented
[1,5]. In particular, through iterative updates to policy parameters, the learning
performance is expected to be constantly improved [5].

Guided by the AC framework, Sutton proved the first time that the gradient
of J with respect to policy parameters θ follows the formula below [6],

Δθ ∝ ∇θJπ(θ) =
∑

dπ(s)
∑

∇θπ(s, a)Qπ(s, a), (1)

where Jπ (see (4)) stands for the expected long term payoff obtainable by an
agent upon following policy π which is parameterized by θ (i.e. the policy para-
meters). In (1), s and a represent the state and action of an MDP respectively
(for more information on MDP, please refer to Sect. 2). Qπ(s, a) is the expected
total reward while initially taking action a at state s following policy π. To use
(1) for policy gradient search, a key issue is to approximate Qπ(s, a). In [6],
Sutton proposed an important method to estimate Qπ(s, a), i.e.

Qπ(s, a) ≈ Q̂π(s, a) = ωT Φ(s, a) = ωT ∇θ ln π(s, a), (2)

where ω is used to parameterize Q̂π, and Φ(s, a) = ∇θ ln π(s, a) is the so-called
compatible feature vector. Furthermore, Sutton proved that the approximation
of Qπ by Q̂π in (2) will still ensure precise evaluation of ∇θJπ in (1), i.e.

∇θJ(θ) ≡ ∑
dπ(s)

∑∇θπ(s, a)Q̂π(s, a)
=

∑
dπ(s)

∑∇θπ(s, a)ωT Φ(s, a)
(3)

Based on (3), many policy gradient search algorithms follow strictly (2) to
approximate Qπ [1]. However, we found that, under proper conditions (to be
detailed in a separate venue due to space limitation), when the compatible fea-
ture vector in (2) is represented as Φ(s, a) = ∇θG(π(s, a), ν) where G(·) is a
generalization of the logarithm function and ν controls the level of generaliza-
tion, the result in (3) will continue to hold. In the literature, G(·) has been utilized
to define Tsallis entropy with substantial practical applications in many disci-
plines [2]. Inspired by this understanding, we seek to take the first step towards
answering an important research question: when the generalized logarithm func-
tion G(·) is used to produce the compatible feature Φ in (2), will policy gradient
search algorithm become more effective and reliable for RL? To the utmost of
our knowledge, so far this research question hasn’t been studied sufficiently.

In this paper, based on an incremental regular-gradient actor-critic algorithm
(i.e. RAC) proposed by Bhatnagar et al. in [1], we will investigate experimen-
tally the usefulness of G(·) for building compatible features Φ and develop some
empirical answer to our research question. Several benchmark problems, includ-
ing Puddle World [5] and Cart-Pole [5], will be employed for this purpose. Our
experiment results clearly show that, under suitable generalization, the learning
performance can exhibit observable improvement.

2 Markov Decision Process

An MDP is described as an agent repetitively interacting with a stochastic envi-
ronment at discrete time intervals [5]. At any time t, the agent can observe its
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state st ∈ S in the environment and choose an action at ∈ A to execute, where
S and A (i.e., state and action spaces) represent countable sets of all possi-
ble states and actions, respectively. Meanwhile, the environment responds with
an arbitrary scalar reward r(st, at, st+1), depending partially on the next state
st+1 governed by the state transition probability P (st, at, st) [5]. The learning
objective in an MDP is to achieve the maximum long term payoff, which can be
modeled in several different ways [5]. In this paper, we focus specifically on the
discounted infinite horizon model. Accordingly, the expected long term payoff of
policy π can be formulated as,

Jπ = V π(s0) = Eπ[
∞∑

k=0

γkrt+k+1|st = s0]. (4)

where γ ∈ [0, 1) is the discount factor. Meanwhile rt+k+1 is the immediate reward
at time step k + 1 provided that the agent started from state st. Similarly,
function Qπ introduced in Sect. 1 can be defined as below,

Qπ(s, a) = Eπ[
∞∑

k=0

γkrt+k+1|st = s, at = a]. (5)

Based on (4) and (5), we can re-formulate the expected long term payoff starting
from any state s as

V π(s) =
∑
a∈A

π(s, a)Qπ(s, a). (6)

Hence, the ultimate goal of RL is to identify the optimal policy π∗ below,

π∗ = argmax
π

V π(s0). (7)

3 A Regular-Gradient Actor-Critic Algorithm

In this work, we decide to base our experimental study on an incremental regular-
gradient actor-critic algorithm (i.e. RAC) proposed in [1]. We choose RAC due
to its simplicity and proven effectiveness on many benchmark RL problems.
According to [1,6], Qπ is approximated by Q̂π in RAC by minimizing the Mean
Square Error (MSE),

επ(ω) =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a)[Qπ(s, a) − Q̂π(s, a)]2. (8)

The minimization can be achieved in theory by solving the equation below

∇ωεπ(ω) =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a)[Qπ(s, a) − Q̂(s, a)]∇ωQ̂π(s, a) = 0, (9)

Because of (2), ∇ωQ̂π(s, a) = Φ(s, a) in (9). Following (9), the temporal differ-
ence (TD) error δ is

δπ
t = r(st, at, st+1) + γt+1V π(st+1) − V π(st) (10)
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By defining vπT φ(s) as an unbiased estimation of the value function V π(s),
where vπ is the so-called value-function parameters and φ(s) is another set of
state features to be distinguished from Φ(s, a), the TD error can be further
described as,

δπ
t = r(st, at, st+1) + γt+1vπ

t+1
T φ(st+1) − vπ

t
T φ(st) (11)

Consequently, following (11) and (4), we can eventually determine the formula
in (12) for incremental update of vπ.

vπ
t+1 ← vπ

t + α · δπ
t · φ(st), (12)

where α is a learning rate. Subsequently, the updating formula in (13) for incre-
mentally updating the policy parameters θ can also be determined easily.

θt+1 ← θt + β · δπ
t · Φ(st, at), (13)

Similar to (12), β in (13) refers to a separate learning rate. To summarize
our discussion above, Algorithm 1 presents the pseudo-code for RAC. It is to
be noted that, for RAC, the compatible feature is computed from Φ(st, at) =

1
π(s,a)∇θπ(s, a). In the next section, we will generalize the calculation of Φ(st, at)
by using the generalized logarithm function G(·).

Algorithm 1. Regular-Gradient Actor-Critic Algorithm [1]
Input: an MDP 〈S, A, P (st, at, st+1), r(st, at, st+1), γ〉
Output: θ, vπ, φ(s)

Initialization:
1: θ ← θ0

2: vπ ← vπ
0

3: s ← s0

4: a ← a0

Learning Process:
5: for t = 0, 1, 2, ... do
6: δπ

t ← r(st, at, st+1) + γvπ
t+1

T φ(st+1) − vπ
t

T φ(st)
7: vπ

t+1 ← vπ
t + αδπ

t φ(st)
8: θt+1 ← θt + βδπ

t Φ(st, at)
9: end for
10: return θ, vπ

4 Generalized Compatible Function Approximation

In this research, we focus primarily on generalizing the computation of the com-
patible feature Φ(s, a). The learning procedure still follows closely Algorithm 1.
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As we explained in Sect. 1, we propose to use a generalized logarithm function
G(·) as shown below to determine the compatible feature Φ in (2),

G(π(s, a), ν) =
π(s, a)1−ν − 1

1 − ν
. (14)

Clearly, the level of generalization in G(·) is controlled by ν. Whenever ν = 1,
G(·) degrades to the standard logarithm function, i.e.

limν→1G(π(s, a), ν) = lnπ(s, a) . (15)

For simplicity, ν in (14) will be called the compatible generalization factor. In
consequence, we can obtain a new way to determine the compatible feature
below,

Φ̃(s, a) = ∇θG(π(s, a), ν)
= ∇θπ(s, a)π(s, a)1−ν ,

(16)

Given a Gaussion Distribution for policy π(s, a), we have,

π(s, a) =
1

σ
√

2π
e− (a−µ)2

2σ2 , (17)

where μ = θT φ(s) is the mean action output from policy π in state s, which can
be adjusted by changing policy parameters θ. On the other hand, the standard
deviation σ in (17) is pre-determined. Note that π in RHS of (17) refers to the
circumference ratio.

Based on the generalized compatible feature in (16), the updating rule shown
in (13) is now modified to become

θt+1 ← θt + β · η · δπ
t · Φ̃(st, at)

= θt + β · η · δπ
t ∇θπ(st, at)π(st, at)1−ν , (18)

where a new constant factor η is introduced in (18) to ensure that θ will be
updated at the same scale in Algorithm 1 regardless of using either updating
rule (13) or (18). For this purpose, we need to solve the following equation,

Ea[|∇θ ln π(s, a)|] = Ea[|η∇θG(π(s, a), ν))|]. (19)

From (19), we can directly determine the value for η below,

η =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(2π)
1−ν
2 (ν−2)σ1−ν

(

1−e
− (μ+t)2

2σ2

)

e
(ν−2)(t−μ)2

2σ2 +e
(ν−2)(μ+t)2

2σ2 −2

, 0 < ν < 2

√
2
π σ

(

1−e
− (μ+t)2

2σ2

)

(μ+t)2 , ν = 2

. (20)

Again π in (20) is the circumference ratio. Meanwhile t and −t give the upper
and lower bounds for the action output from any policy, respectively.



620 Y. Peng et al.

Table 1. Experiment general settings for one trial.

Problem Training Testing Evaluating ν values

Episodes Steps Episodes Steps

Puddle world 10000 1000 50 100 {0.5, 0.7, 0.9, 1.0, 1.1, 1.5, 2.0}
Cart pole 20000 50 50 1000 {0.5, 0.7, 0.9, 1.0, 1.1, 1.5, 2.0}

5 Experimental Results

To understand the efficacy of using generalized updating rule for learning policy
parameters in (18), we will evaluate the performance and reliability of RAC
on two benchmark problems. In order to obtain reliable results, 50 independent
trials will be performed on each benchmark problem and with respect to different
settings of the compatible generalization factor ν (note that when ν = 1, the
original updating rule in (13) is realized). A total of 8 different settings for ν
have been examined in our experiments (see Table 1). To simplify our discussion,
in this section, CASE-X will denote the experiments on RAC when ν = X.

Common settings that we follow on every trial have been summarized in
Table 1. As evidenced in this table, after every 20 training episodes during each
trial, the learned policy will be further tested on 50 independent testing episodes
to measure learning performance.

5.1 Experiments on the Puddle World Problem

To compare the performance differences among various settings of ν, we firstly
evaluate RAC on the classic Puddle World problem [3,5]. Figure 1 presents the
average steps to reach the goal region upon using the policies learned through
RAC. As seen from Fig. 1, near-optimal policies can be learned successfully when-
ever ν ∈ [0.9, 2.0]. On the other hand, CASE-0.5 and CASE-0.7 failed to solve
this problem satisfactorily. Among all the results presented in Fig. 1, CASE-1.5
appears to achieve the best performance by observation (i.e. on average 19.2
steps to reach the goal region). In comparison, for CASE-1.0 (i.e. normal RAC),
the average steps to reach the goal region is 46.4 after 10,000 learning episodes
have been completed. A t-test is performed in between CASE-1.0 and CASE-1.5
and it produces a p-value of 0.10, insufficient to prove that CASE-1.5 is sig-
nificantly better. However, we found that the problem is solved successfully by
CASE-1.5 100 % of the time. For CASE-1.0, the problem is solved on only 94 %
of the trials. This observation suggests that CASE-1.5 can solve the problem
more reliably.

5.2 Experiments on the Cart-Pole Problem

Next, we have compared the learning performances on the Cart-Pole problem
(aka. inverted pendulum problem) [5]. The performances in terms of the average
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ξ (i.e. the angle of the pole) and the average balancing steps (i.e. the duration for
the pole to be balanced continually) are presented in Fig. 2. It can be observed in
Fig. 2(a) that, in comparison to other cases, during a long learning period from
3000 training episodes to the end, CASE-1.5 can manage to bring the pole closer
to the upright position on average. For example, at 3000 training episodes, the
average ξ achieved by CASE-1.5 is −0.01. In comparison, CASE-1.0 can only
manage to achieve on average of −0.07 for ξ. However, this observed performance
difference is not verifiable through statistical tests (perhaps more repeated tests
are to be performed in order to reveal significant differences in between CASE-1.0
and CASE-1.5).

On the other hand, by checking the average balancing steps in Fig. 2(b), we
found that most of the cases can solve this problem reasonably well. The only
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Fig. 2. The performance evaluation for the Cart-Pole problem. Part (a) shows the
average ξ, and part (b) shows the average balancing steps.
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case that falls apart is when ν = 2.0, suggesting that the value for ν cannot
significantly differ from 1.0.

5.3 Experiment Summary

In summary, our experimental evaluation clearly shows that there exists a strong
correlation in between the degree of generalization in (18) and the learning per-
formance as well as reliability. Whenever we set ν in (18) to a proper value,
e.g. 1.5, observable improvement on learning performance and reliably can be
witnessed. However, when ν deviates significantly from the common setting of
1.0, the learning performance may degrade abruptly.

6 Conclusions

In this paper we studied the possibility of using generalized compatible features
for value function approximation. Guided by an Actor-Critic framework for RL, a
generalized rule for policy gradient search in RL algorithms has been developed
successfully. We have experimentally examined the usefulness of this rule on
two benchmark RL problems. We found that, under suitable generalization (e.g.
ν = 1.5), the learning performance and reliability can be noticeably improved.
We have therefore obtained some promising and empirical answer to the research
question highlighted in Sect. 1. Based on the research results reported in this
paper, we will further explore our research question in the future through in-
depth theoretical analysis and extensive experimental assessments.

Acknowledgments. Authors appreciate all the supports from NeSI [4], who provides
the High Performance Computing facility to ensure the success of our computationally
heavy experiments.
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Abstract. Conventional tracking methods are incapable of tracking
boats towed by vehicles on boat ramps because the relative geometry
of these combined objects changes as they move up and down the ramp.
In the context of maritime boat ramp surveillance, fishing trailer boat is
the object of interest for monitoring the amount of recreational fishing
activities over the time. Instead of tracking trailer boat as a single object,
this paper proposes a novel boat-vehicle combo object model, by which
each boat is tracked as a combination of a trailered boat and a towing
vehicle, and the relationship between these two components is modelled
in multi-feature space and traced across consecutive frames. Experimen-
tal results show that the proposed combo modelling tracks the object of
interest accurately and reliably in real-world boat traffic videos.

1 Introduction

Traffic surveillance at maritime boat ramps is a highly challenging problem in
the computer vision community, because object tracking in this scenario involves
severe unpredictability of the object and dynamic land water composition scene.
In particular, the object of interest is a combo object, which is a combination of
a trailered boat and a towing vehicle. A combo object is even more unpredictable
than that of a single object, because each component object of the combo (i.e.,
vehicle or boat) varies in scale, transformation, rotation and viewpoint. In this
sense, tracking methods require more accurate object modelling, and should
exploit more complex temporal matching approach and data association to deal
with all possible unpredictable variations of two objects.

In the track of fishing trailer boats, a launching boat is normally pushed by
a vehicle to approach toward the water area. After being put in the water, the
boat and the vehicle are separated from each other and disappear individually.
Similarly, a retrieving boat stays in the water to wait for a vehicle to pick it up.
After being taken out of the water, the boat is dragged by the vehicle and they
leave the ramp together. In general, we consider the following four scenarios for
boat ramp surveillance:
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part I, LNCS 9947, pp. 623–630, 2016.
DOI: 10.1007/978-3-319-46687-3 69
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(1) A single boat in water: a launching boat or a retrieving boat;
(2) A single vehicle on ground: on the way to pick up a retrieving boat or leave

the ramp after sending a launching boat;
(3) A boat-vehicle combo on ground: on the way to send a launching boat or

leave the ramp after picking up a retrieving boat;
(4) A boat-vehicle combo at the intersection of land and water with the boat in

water and the vehicle on ground.

Therefore, the object of interest is either in the status of single object (i.e.,
boat or vehicle) or a boat-vehicle combo. The philosophy of our method is to con-
duct boat-vehicle combo modelling to enhance tracking performance. By recog-
nizing the interactions between pairs of object and estimating their collective
activities, two correlated objects are tracked simultaneously under low frame
rate conditions.

2 Proposed Method

2.1 Modeling Boat-Vehicle Combo

In the operation of fishing trailer boat, the vehicle is active driving and the
boat is passive. The minimum distance between two objects is shown when the
boat front faces the rear of vehicle. This distance increases when the vehicle
turns to either left or right. This distance reaches a maximum when the passive
object (i.e., the trailer boat) starts to move in following the active object motion.
Figure 1 illustrates the scenario of combo object detection. Let us denote the
passive and active object by oi and oj with their centers identified as A and
B, respectively. As seen, when the oi front faces the rear of oj , the minimum
distance between two objects gives as the length of line segment AB. When the
active object oj turns direction until point A, D and E lie on a straight line, the
two objects distance reaches the maximum, which is the length of line segment
AB′.

Therefore, oi and oj form a boat-vehicle combo if the following rule is satis-
fied:

1
2wi + 1

2wj + ε ≤ dij

≤ 1
2

√
(wi

2 + hi
2) + (wj

2 + hj
2) + 2wj

√
wi

2 + hi
2 + ε,

(1)

where dij is the Euclidean distance between the center of oi and oj , (wi, hi) and
(wj , hj) are the width and height of bounding box of oi and oj , respectively, and
ε is the gap between two bounding boxes. Consider ε is negligible as compared
to the size of boat and vehicle. Then (1) can be simplified as

1
2wi + 1

2wj ≤ dij

≤ 1
2

√
(wi

2 + hi
2) + (wj

2 + hj
2) + 2wj

√
wi

2 + hi
2.

(2)

A straightforward solution to combo object tracking is to treat a combo as
a combined single object, which is represented as a bounding box containing
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Fig. 1. Illustration of combo object detection in terms of distance estimation between
two single objects in the combination.

both boat and vehicle, and conduct typical single object tracking. As we know,
object tracking very much relies on robust object feature description. A combo
object has normally bigger than single object bounding box, which more likely
to cause invalidity of feature for object tracking across frames, and which causes
eventually false negatives.

Consider the fact that the retrieving boat is always pulled by the vehicle
when they leave the boat ramp, and the launching boat is always pushed by the
vehicle and they move backwards to the shoreline. The boat should be always
closer to water area than the vehicle in a combo. Thus, we can have a safe
assumption that the object closer to the shoreline is the boat, and the remaining
object in the combo is the vehicle. Then we have the second solution to combo
object tracking: Two combos are considered to be matched only if their boats
and their vehicles are matched respectively.

The disadvantage of this method is, under low frame rate conditions, one
object may be more recognizable than the other. We can not treat them equally
without the consideration of unbalanced variations among different objects. To
cope with the unbalanced variations, we revise the above solution as follows:
two combos are considered to be matched if their boats or their vehicles are
matched. Apparently, the method does not make use of the distinctions provided
by the combined single objects in a combo. In practice, we consider reducing
false negatives by characterising both the combined single object and two single
objects in the combination, we have the proposed combo object tracking strategy
as: two combos are considered as the same if their combined single objects or
any category of single objects are the same.
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2.2 Combo Object Features

Let us denote boat-vehicle combos in frame t and t − 1 by zt and zt−1, respec-
tively. mt and mt−1 refer to the corresponding combined single object (i.e.,
one bounding box containing boat and vehicle). Vehicle object vt and boat
object bt are in combo zt, and vehicle object vt−1 and boat object bt−1 are
from combo zt−1. As matching objects, distance calculation is performed on
three pairs: {mt,mt−1}, {vt, vt−1} and {bt, bt−1}. The dissimilarity of two com-
bos is defined as the minimum of distance of these three pairs, according to the
strategy described in Sect. 2.1. To measure the similarity between two combos,
four features, namely histogram of intensity, average intensity of interest points,
texture feature and average intensity ratio of vehicle to boat, are investigated as
follows:

Let D(zt, zt−1) be the intensity distance of combo zt and zt−1. The intensity
histogram of mt, mt−1, vt, bt, vt−1 and bt−1 is given as φ(mt), φ(mt−1), φ(vt),
φ(bt), φ(vt−1) and φ(bt−1), respectively.

The difference between the intensity distribution of three pairs, {mt,mt−1},
{vt, vt−1} and {bt, bt−1}, can be computed by the vector cosine angle distance,

D(φ(mt), φ(mt−1)) =
∑M

i=1 φ(mt)φ(mt−1)√∑M
i=1 φ(mt)2

√∑M
i=1 φ(mt−1)2

, (3)

D(φ(vt), φ(vt−1)) =
∑M

i=1 φ(vt)φ(vt−1)√∑M
i=1 φ(vt)2

√∑M
i=1 φ(vt−1)2

, (4)

D(φ(bt), φ(bt−1)) =
∑M

i=1 φ(bt)φ(bt−1)√∑M
i=1 φ(bt)2

√∑M
i=1 φ(bt−1)2

, (5)

where i is the histogram bin index, and M is the number of bins. The same
as the case for single object matching, M is set as 16. Then the difference of
intensity distribution between zt and zt−1 is calculated as,

D(zt, zt−1) =min{D(φ(mt), φ(mt−1)), (6)
D(φ(vt), φ(vt−1)),D(φ(bt), φ(bt−1))}.

Based on (6), the likelihood of intensity distribution for combo matching between
zt and zt−1 is defined as,

pv(zt−1|zt) ∝ exp

(
−D2(zt, zt−1)

2σ2

)
, (7)

To characterize the relationship between two single objects (i.e., vehicle and
boat) in the combo, the ratio of vehicle to boat in terms of average intensity is
particularly considered for combo matching.
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Let us denote the average intensity ratio of zt and zt−1 by ζ(zt) and ζ(zt−1),
respectively. Then, the difference between ζ(zt) and ζ(zt−1) is calculated as

D(ζ(zt), ζ(zt−1)) = |ζ(zt) − ζ(zt−1)|. (8)

Accordingly based on (8), the likelihood of average intensity ratio for combo
matching is given as

pr(zt−1|zt) ∝ exp

(
−D2(ζ(zt), ζ(zt−1))

2σ2

)
, (9)

2.3 Combo Object Matching

In calculating matching score, we conduct the fusion of multiple features and
define the matching score separately for single and combo object.

For single object, we simply combine multiple features introduced above.
Then, the likelihood for single object matching can be calculated as

p(ot−1|ot) =
∏
i=1

pi(ot−1|ot), (10)

where i is the index of features. In our case, three different features are consid-
ered, which follows that pi(ot−1|ot) can be the likelihood of intensity distribution,
average intensity of interest points or texture feature.

The score for single object matching can be calculated as

δo(ot−1, ot) = ln p(ot−1|ot) =
∑
i=1

ln pi(ot−1|ot). (11)

For combo object, we combine multiple features, and compare frame t against
t − 1 detected objects, which include vehicle, boat, and their combined single
object. Then, the likelihood for combo object matching can be calculated as

p(zt−1|zt) =
∏
i=1

pi(zt−1|zt), (12)

where i is the index of features. In this case, four different features are used,
which follows that pi(zt−1|zt) can be the likelihood of intensity distribution (7),
average intensity of interest points, texture feature and average intensity ratio
(9), respectively. Note that each likelihood here involves three single objects (i.e.,
vehicle, boat and their combined single object) comparison.

The score for combo object matching can be calculated as

δz(zt−1, zt) = ln p(zt−1|zt). (13)



628 J. Zhao et al.

Table 1. Experimental data

Year No. of frames (No. of boats)

Waitangi Raglan Takapuna

2010 77,760 (1772) 79,200 (783) 86,400 (2844)

2011 83,520 (1422) 82,080 (908) 84,960 (2777)

2012 69,120 (1140) 80,640 (724) 77,760 (2174)

Total 230,400 (4334) 241,920 (2415) 249,120 (7795)

3 Experimental Results

The image data we used for our experiments was collected from a network of
web cameras overlooking key boat ramps in New Zealand. Table 1 describes
the experimental data, which includes 2010–2012 image sequences captured at
Waitangi, Takapuna and Raglan boat ramp, and which records the number of
frames, and the truth number of objects from manual count for each ramp and
each year. The frame size of the video is 720 × 576 pixels, and the frame rate is
1 frame/minute. The total number of frames tested for Waitangi, Takapuna and
Raglan is 230,400, 241,920 and 249,120, respectively.

In our experiment, the proposed tracking approach was compared with the
state-of-the-art approaches. The same initializations were set to all algorithms
for fair comparison. The parameters of all methods were tuned to achieve the
best performance, and the ground truth was manually labeled in advance for
comparisons. The proposed system was implemented in Matlab. It was run on
a Quad Core 3.4 GHZ CPU with 8 GByte memory. The whole process is fully
automatic and requires no manual intervention.

3.1 Performance of Boat Counting

In our boat counting experiments, the proposed method was evaluated and
compared with four conventional tracking methods, which include particle filter
(PF) [1], and extended mean shift (EMS) [2], cascade particle filter (CPF) [3]
and object tracking in stereo videos (STEREO) [4]. For performance evaluation,
we calculate the differences between the ground truth (i.e., daily boat number
from manual count), and daily boat number provided by different algorithms by
NRMSE, normalized root mean squared error

NRMSE =

√∑K
i=1(Ni − Ci)2

K

Nmax − Nmin
, (14)

where N denotes the ground truth of boat number from manual count, and C is
the number from one tracking method. K is the total number of days for boat
counting, and Nmax and Nmin represent the maximum and minimum number
of boat from manual count, respectively.



A Combo Object Model for Maritime Boat Ramps Traffic Monitoring 629

Fig. 2. boat counting performance (in terms of NRMSE) with and without considera-
tion of different factors.

Table 2 presents the NRMSE in percentage for five object tracking methods
boat counting at Witangi, Raglan, and Takapuna, respectively. As seen from the
table, PF fails to track over 80 % object of interest. EMS, CPF and STEREO
perform relatively better than PF, but their errors still above 40 %, which obvi-
ously does not satisfy our application requirement for monitoring recreational
fishing efforts over time. In contrast, the proposed method gives average less 10 %
counting error for all three maritime boat ramps. This demonstrates that our
approach successfully overcomes the extremely dynamic background and severe
unpredictability problems compared with the state-of-the-art methods.

For the proposed method, we further investigate its four key factors that
impact boat counting performance. This include (1) modeling separately land
and water scenes (denoted as Landwater factor), (2) modeling boat-vehicle
combo tracking (Combo), (3) increasing motion continuity of objects (Motion),
and (4) utilizing lifespan templates of launching and retrieving boat to improve
counting accuracy (Lifespan), in which factor (3) and (4) are not the focus
this paper. A sensitivity experiment on these factors is performed using the
same data for evaluating boat counting performance, one factor is unselected
each time. In this test, we suppose that object counting with all factors obtains
the best performance, and removing one of the factors leads to the decrease
of performance. The significance of each unselected factor is then indicated by
the decrease of counting performance measured in NRMSE. Figure 2 displays
the counting performance without different selected factor as well as that of
with all factors. As seen, the Landwater factor has the greatest influence on
the counting performance. If without consideration of the Landwater factor, the
counting accuracy is expected to reduce 22 % in average. This can be explained
that if lack of accurate background estimation, the accuracy of object detection
may deduct largely. The second important is the Combo factor, which causes
over 15 % counting accuracy loss. This indicates that for fishing trailer tracking,
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Table 2. Boat counting performance

Method PF [5] EMS [2] CPF [3] STEREO [4] Proposed

Waitangi 87.23 53.61 47.36 45.56 9.71

Raglan 84.49 51.58 45.57 42.31 9.62

Takapuna 89.62 59.32 51.43 48.47 9.83

Average 87.11 54.84 48.12 45.45 9.72

correlation between vehicle and boat contributes significantly to the success of
boat tracking and counting.

4 Conclusion

Tracking trailered boat at maritime boat ramp involves extra challenges on land-
water dynamic scene and unpredictable variations of boat-vehicle combination.
Based on a reliable multi-feature object matching mechanism, we propose in this
paper a combo object model for fishing trailered boat tracking. The proposed
method is capable of simultaneously tracking two combined objects and their
combination, monitoring the connection of two objects, and estimating their col-
lective activities. Experimental comparative tests and quantitative performance
evaluations on boat counting for three real world boat ramps demonstrate the
merits of the proposed approach. Note that severe unpredictability caused by the
extremely low 1 frame per minute rate is noticed, but not addressed in this work.
Our future work will therefore focus on how to improve appearance continuity
in the tracking environment of low frame rate.
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