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Abstract. The goal of discovering topological order of skills is to gen-
erate a sequence of skills satisfying all prerequisite requirements. Very
few previous studies have examined this task from knowledge tracing
perspective. In this paper, we introduce a new task of discovering topo-
logical order of skills using students’ exercise performance and explore
the utility of Deep Knowledge Tracing (DKT) to solve this task. The
learned topological results can be used to improve students’ learning
efficiency by providing students with personalized learning paths and
predicting students’ future exercise performance. Experimental results
demonstrate that our method is effective to generate reasonable topo-
logical order of skills.

Keywords: Knowledge tracing · Topological order · Recurrent neural
networks

1 Introduction

Online education platforms have gained great popularity in recent years. Com-
panies like Coursera and edX have attracted millions of students to enroll diver-
sified online courses. However, these Massive Open Online Courses (MOOCs)
are contributed by different institutions without an integrated structure. More-
over, in these online environments students often lack personalized instruction
that helps them study more efficiently.

In order to give personalized instruction, we need to evaluate what a student
knows and does not know in advance. Knowledge Tracing (KT) is such a task
of modeling students’ latent skills over time based on past study performance,
where study performance is a sequence of exercises with correct or incorrect
responses. Usually, we model students’ mastery of skills as latent variables and
students’ performance as observed variables. As shown in Fig. 1, each exercise
requires an underlying skill to answer the exercise correctly. Different exercises
can map to the same skill, e.g., Ex.1 and Ex.2 both map to SkillA. If a stu-
dent answers an exercise correctly, then the probability of his mastery of the
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Fig. 1. Sequence of one student’s exercise performance. Green nodes represent exercises
with correct answers, while gray nodes represent exercises with incorrect answers. Blue
skills are in known state and gray ones are in unknown state. (Color figure online)

underlying skill will increase. Otherwise, the probability will decrease. The most
promising application of accurately evaluating students’ underlying skills is to
help determine which exercise is most suitable to give to students.

However, in previous KT studies, underlying skills are treated as isolated
and independent individuals, which is unrealistic in reality. For example, when
learning arithmetic operations, a student would not master subtraction before
this student mastered addition. Among skills, there always exists a topological
order which is an optimal sequence for students to learn skills one after another.
As shown in Fig. 2, SkillB is a prerequisite of SkillC. If a student has not mas-
tered SkillB, then the probability of correctly answering Ex.4, whose underlying
skill is SkillC, will decrease. This observation makes it possible to discover topo-
logical order of skills from students’ exercise performance. The challenge of this
task is that (1) the input data is only a sequence of binary responses to stu-
dent’s answers, (2) it is inherently difficult to represent human learning process
by numerical simulations, and (3) there is no explicit description of skills in the
observation data.

In this paper, we propose a rule-based method to discover topological order
of skills from limited students’ performance data with the aid of Deep Knowledge
Tracing (DKT). DKT is a newly proposed method [1] to solve the KT problem
using Recurrent Neural Networks (RNNs). One big advantage of deep learning
methods is their capability of learning feature representation from large-scale
datasets, where domain knowledge and structure can be discarded [2]. Since it

Fig. 2. Adding topological order of skills to predict students’ future performance. For
example, directed edge (A, B) indicates that SkillA must be completed before SkillB
may be attempted and the same as directed edge (B, C).
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is difficult to generate topological order of skills directly from students’ perfor-
mance data, we can use the order of students’ mastering of skills as a bridge. Our
method infers students’ mastery of skills from students’ exercise performance,
and then discovers prerequisite skill pairs from the order of students’ mastery
of skills, and finally generates the topological order of all skills. Experimental
results demonstrate the effectiveness of our approach.

We summarize three main contributions in our paper.

1. This is the first paper to introduce the task of discovering topological order
of skills from students’ exercise performance.

2. We propose a new method to discover topological order of skills utilizing Deep
Knowledge Tracing.

3. Experimental results demonstrate the effectiveness of our method.

2 Related Work

Knowledge Tracing (KT) has increasingly received attention both in the psy-
chology and computer science domain in the past two decades.

The dominant method of KT is Bayesian Knowledge Tracing (BKT), which
was first introduced in 1994 [3] to implement mastery learning. Mastery learn-
ing maintains that a level of mastery must be achieved in prerequisite knowledge
before proceeding to learn subsequent topics. BKT can be easily described with
two learning parameters and two performance parameters. Many following vari-
ations raised by integrating personalization study [4,5], exercise diversity [6] and
other information into Bayesian framework.

The BKT model and its extensions are the most popular models in Intelli-
gent Tutoring Systems due to their strong interpretation properties of evaluating
students latent knowledge state. However, several strong assumptions proposed
in the first paper [3] have not improved yet in the follow-up study. Assump-
tions such as bnginary knowledge state representation, no forgetting mechanism
and single skill modeling are all the causes that make BKT inflexibility and
unrealistic.

Recently, Chris Piech et al. proposed a Deep Knowledge Tracing (DKT) [1]
method that used Recurrent Neural Networks (RNNs) [7,8] to trace student’s
knowledge, which achieved great improvement on the prediction accuracy of
students’ performance over previous models.

Deep Learning has achieved great success in pattern recognition and machine
learning domains [2,9], such as computer vision, natural language processing
and speech recognition. However, deep neural networks have not attracted much
attention in educational data mining. DKT was the first model to integrate
deep learning models into knowledge tracing. The DKT model implemented the
simplest one-hidden-layer RNNs, but it demonstrated a stunning improvement
over the mainstay, i.e., BKT [10]. The prediction accuracy of students’ future
performance increased more than 15%.
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3 Topological Order Discovery Model

The goal of topological order discovery can be achieved by two main steps. The
first step is to obtain students’ mastery of skills from their exercise performance
using DKT. The second step is to discover topological relationship between skills
from students’ mastery order of skills by two predefined rules.

3.1 Deep Knowledge Tracing Model

The DKT model [1] was primarily designed to predict the probability of answer-
ing the next exercise correctly. However, the actual output of this model is the
probability of answering all the exercises correctly. From student’s current exer-
cise performance, we can easily find the exercise with the highest or lowest correct
probability in the next time stamp within this model.

Fig. 3. Deep knowledge tracing model

As shown in Fig. 3, the framework for DKT is Recurrent Neural Networks
(RNNs), where at each time t the input xt

k from student k is an exercise tuple,
i.e., xt

k = {qtk, a
t
k}. Exercises which require the same skill to answer correctly

are labeled with the same label index in the preprocessing. Suppose there are
N unique skills, the input qtk ∈ R

N is a one-hot encode presentation where only
the corresponding index equals to 1 and others are all 0s. Accordingly, at

k is also
∈ R

N and preprocessed to one-hot encoding with the corresponding exercise
index equals to 1 if answered correctly. The combined input for RNNs, i.e., xt

k,
is ∈ R

2N .
The output yt

k ∈ R
N is the probability that student k will answer each

exercise correctly in the next time stamp. Evaluation function is the negative
log likelihood. Let δ(qt+1

k ) denote which exercise to be answered at time stamp
t + 1 and � be cross entropy. The total loss for an exercise sequence is

Loss =
∑

t

�((yt
k)T δ(qt+1

k ), at+1
k ) (1)
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Then we can use standard backpropagation algorithm [11] to train the model by
computing gradient descents of the loss function.

3.2 Topological Order Discovery

After training the DKT model well, we can acquire the probability of answering
all exercises correctly in the next time stamp. The relationship between two
skills, e.g., skill A and B, can be divided into four different categories.

1. If B has been mastered, then A has also been mastered. ⇒ ‘master B →
master A’.

2. If B has not been mastered, then A has not been mastered either. ⇒ ‘¬ master
B → ¬ master A’.

3. If B has been mastered, but A has not been mastered yet. ⇒ ‘master B → ¬
master A’.

4. If B has not been mastered, but A has already been mastered. ⇒ ‘¬ master
B → master A’.

Among these four cases, case 1 and case 2 can help generate prerequisite pairs.
In other words, if the skill related to current exercise has been mastered, then
the skill whose exercise has the highest probability to be answered correctly in
the next time stamp can be regarded as a candidate prerequisite skill. Otherwise,
the skill whose exercise has the lowest probability can be regarded as a candidate
prerequisite skill.

Since each exercise is closely related to one underlying skill in the DKT
model, we can use its skill label as its exercise label. Thus, the probability of
answering an exercise correctly is the same as the probability of mastering its
latent skill. We propose the following method to discover topological order of
skills from students’ exercise performance.

Firstly, generate partial order pairs. Since students always answer exercises
with the same skill in sequence, we only need to care about whether this student
has mastered the underlying skill at the last time stamp. If the probability of
answering the input exercise is larger than 0.5, then it infers that the student has
mastered this skill and vice versa. We apply two rules to generate partial order
pairs: (1) if the current skill has been mastered, then the skill with the highest
output probability can be regarded as a prerequisite, and (2) if the current skill
has not been mastered, then the skill with the lowest output probability can be
considered as a prerequisite.

Secondly, remove redundant links between skills. The most useful rule is that
if ‘skillA → skillB’, ‘skillB → skillC’ and ‘skillA → skillC’, then ‘skillA →
skillB → skillC’ is enough. Pruning is an essential part for generating the final
topological order of skills.

Last, use topological sorting algorithm to generate one topological order of
skills. We apply Kahn’s algorithm [12] to generate a topological order from the
directed acyclic graph discovered in the previous step.



Topological Order Discovery via Deep Knowledge Tracing 117

4 Experiments

In this section, we conduct experiments on real-world datasets to evaluate the
effectiveness of our method.

4.1 Datasets

ASSISTment Dataset: This dataset was gathered in year 2009–2010 from the
ASSISTments platform.1 There are two partitions, one with labeled skills and
the other without labeled skills. In our experiments, we train the model using
the ‘skill builder’ one, which is a large, standard benchmark in KT topic. In
this dataset, there are more than 4,000 students having answered over 446,000
exercises along with 111 unique labeled skills. Two assumptions are imposed on
this dataset: (1) each exercise maps to only one skill, and (2) exercises with the
same skill are preprocessed to have the same exercise tags.

In order to evaluate the plausibility of extracted topological order of skills,
a hierarchical skill graph and its topological order in arithmetic subject was
created based on empirical knowledge. Figure 4 demonstrates the ground truth
among eight example skills.

4.2 DKT Model Results

First we train the DKT model on the ASSISTment dataset until the AUC value
attains 0.86. In the process of training DKT, all one-hot encoding exercises and

Fig. 4. A partial manually-labeled skill graph and its topological order in Arithmetic
subject from the ASSISTment dataset. Each node represents a specific skill. Each arrow
represents prerequisite relationship. Red nodes denote that the student has mastered
these skills and green nodes can be the next highly-recommended skills for this student
to learn. (Color figure online)

1 ASSISTment dataset: https://sites.google.com/site/assistmentsdata/home/
assistment-2009-2010-data.

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data
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Fig. 5. The AUC in testing time over
50 iterations

Fig. 6. Total training time over 50 iter-
ations

responses are mapped to a fixed-size dense space. We tried several values of the
space size and finally set it to be 100.

Furthermore, we consistently use hidden dimensionality of 100 and only one
hidden layer. More hidden layers can instead lead to overfitting issue and decrease
the AUC value.

Figure 5 gives the AUC value on the testing data within 50 iterations. We
can see that it converges very fast and reaches 0.86 after the 23rd iteration. The
time for training each iteration requires nearly 10 min, which is shown in Fig. 6.

4.3 Topological Order Discovery Result

The prediction accuracy on the ASSISTment dataset guarantees the feasibility
of using the topological order discovery model to obtain recommended learning
order of latent skills in the dataset. After replacing skill IDs with labeled skill
names, the skill graph reveals an interpretable ordering of skills within a certain
subject. Compared with the manually-described topological order of skills (see
Fig. 4), we can see that our model can accurately discover the topological rela-
tionship between skills (see Fig. 7). It only fails to find the relationship between

Fig. 7. Experimental results: example skill graph and topological order in ASSISTment
dataset
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two skills ‘Ordering Fractions’ and ‘Ordering Positive Decimals’, which actually
have no clear prerequisite relationship between these two skills in reality.

Another interesting observation is that strongly associated skills described
in the skill graph occurred far apart in the input exercise sequences. For exam-
ple, ‘Ordering Integers’ is a prerequisite of ‘Ordering Fractions’. However, even
though these two skills do not appear in a sequence, ‘Ordering Integers’ always
appears to be a prerequisite of ‘Ordering Fractions’ in our experiments.

5 Future Work

The method of topological order discovery at this stage is generated using some
predefined rules. In the next step, we desire to create an end-to-end training
model to learn topological order and integrate the topological information into
the RNNs framework to improve the prediction accuracy of student performance.
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