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Abstract. This paper deals with automatic human action recognition
in videos. Rather than considering traditional hand-craft features such as
HOG, HOF and MBH, we explore how to learn both static and motion
features from CNNs trained on large-scale datasets such as ImagNet and
UCF101. We propose a novel method named multi-resolution latent con-
cept descriptor (mLCD) to encode two-stream CNNs. Entensive exper-
iments are conducted to demonstrate the performance of the proposed
model. By combining our mLCD features with the improved dense tra-
jectory features, we can achieve comparable performance with state-of-
the-art algorithms on both Hollywood2 and Olympic Sports datasets.
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1 Introduction

Automatic action recognition is an important problem in computer vision and
surveillance systems and has drawn significant attention in recent years. Recent
research focuses on realistic datasets from movies, web videos such as Hollywood2
[6], UCF101 [11], and Olympic Sports [7]. The state-of-the-art performance of
action recognition is given by a bag-of-words (BoW) representation of local fea-
tures like HOG, HOF and MBH [12]. Recently, Convolutional neural networks
(CNNs) are also introduced into action recognition task [10]. In some challenging
datasets like UCF101, CNNs [10] have reported better performance than tradi-
tional local features [12]. However, CNNs require a huge amount of annotated
training data. For some small size datasets such as Hollywood2 and Olympic
Sports, we lack of sufficient training samples to train CNNs adequately. There-
fore, there are a large number of works [5,13] exploring how to utilize CNNs
trained on ImageNet to extract visual features.

In this work, we propose a novel algorithm to better employ the ImageNet
trained CNNs. Motivated by the popularity of spatial pyramids in image classi-
fication [9], we propose multi-resolution latent concept descriptor (mLCD) fea-
tures. By encoding the LCD features from multiple scales, the final video fea-
ture is able to give a better representation. On the other hand, when transfer
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ImageNet trained CNNs, mLCD is only used to encode last convolution layer
features of spatial networks. We extend our mLCD to temporal networks to cap-
ture motion features. The main contributions of this paper are summarized as
follows:

1. We propose a multi-resolution extension to LCD [13] named mLCD, which
extracts visual features from video frames at multiple scales.

2. We combine our mLCD with the two-stream CNNs [10], that is, using mLCD
to encode features from temporal networks. As we know, this is the first work
which encodes the features from last convolution layer of temporal networks.

3. We combine our mLCD features with the traditional improved dense tra-
jectory [12] features, and conduct experiments on Hollywood2 and Olympic
Sports datasets. The experimental results of the proposed algorithm achieves
state-of-the-art performance.

2 Method

In this section, we first provide a description of our action recognition frame-
work. Then the details of the proposed mLCD method are further elaborated.
A discussion of the Fisher Vector and VLAD is given at the end of the section.

2.1 Action Recognition Pipeline

Our action recognition framework is shown in Fig. 1, it mainly consists of three
parts: feature extraction, feature encoding and classification. Our proposed
framework combines the hand-craft local features and the learned deep local
features, encoding them with different methods and finally combining them with
late fusion.

HOG HOF MBH

Dense trajectory

VLAD

Fisher vector

CNN feature

SVM classifier

Fig. 1. Action recognition pipeline
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For the hand-craft local descriptors, we adopt the improved dense trajec-
tory features [12]. The densely sampled corner points are tracked to form dense
trajectories. For each trajectory, different low-level features are computed in its
spatial-temporal volume. In our framework, we compute histogram-based fea-
tures including HOG, HOF and MBH. Normalization and PCA are applied to
the local descriptors as mentioned in [12].

For the learned deep features, to capture both the semantic high-level fea-
tures and motion features, we utilize the two-stream CNNs [10] to extract video
features. In our framework, we combine LCD [13] (latent concept descriptor) and
two-stream CNNs. We also extend LCD to its multi-resolution version, which is
described in Sect. 2.2.

Once the improved dense trajectory features and multi-resolution LCD fea-
tures are extracted, we encode the improved dense trajectory features with Fisher
Vector and encode mLCD features with VLAD. The choice of encoding methods
is discussed in Sects. 2.3 and 3.3. The two kinds of encoded features are com-
bined using late fusion, and the concatenated video-level features are feed to
SVM classifier to obtain the final classification result.

2.2 Multi-resolution LCD

LCD [13] (latent concept descriptor) is a method to encode the CNN extracted
features by traditional BoW methods. LCD extracts the pooling layer fea-
ture rather than the full-connected layers, which contains spatial information.
Specifically, for VGG16 architecture, the dimension of last convolution layer is
7 × 7 × 512, which can be viewed as 49 local features of dimension 512. These
local descriptors can be encoded by any BoW methods including Fisher Vector
and VLAD. We propose two major improvements of the original LCD method.

Firstly, we combine LCD with the two-stream CNNs. Traditional LCD only
utilizes the feature from the spatial network, thus, it can merely capture the
static semantic information. To capture the motion feature, we propose to embed
LCD into the temporal network, that is, the last convolution layer of temporal
network is also viewed as local features and encoded by the same way as spatial
network. The local descriptors from the two networks are encoded independently
and combined with late fusion.

fine-grained stream

coarse-grained stream

224× 224

112× 112

56× 56
28× 28 14× 14

7× 7

fine-grained local descriptors

coarse-grained local descriptors VLAD

Fig. 2. Multi-resolution latent concept descriptor
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The second important improvement of LCD is that we extend the LCD to
its multi-resolution version, which is named mLCD. Our intuition is motivated
by the success of spatial pyramid in both image classification [9] and action
recognition [12]. For both the spatial network and temporal network, as shown
in Fig. 2, we provide two kinds of input to the networks. The entire images (or
optical flow) are feed into the network to gain the coarse-grained local descrip-
tors. Fine-grained local descriptors are obtained by feeding the central crop of
image into the same network. We call the two procedure coarse-grained stream
and fine-grained stream respectively. We encoding the coarse-grained local fea-
tures and fine-grained local features together to generate the feature of a video.

2.3 Fisher Vector or VLAD

Once the multi-resolution local descriptors are extracted by our networks, we
can employ Fisher Vector [9] or VLAD [1] to encode the local descriptors into a
video descriptor. Either Fisher Vector or VLAD can be viewed as an alternative
of bag-of-words encoding, but both of them have shown better performance
than traditional BoW encoding methods in image classification [9] and action
recognition [8].

Fisher Vector [9] encoding, derived from Fisher Kernel, is the gradient of
the log-likelihood with respect to a parameter. Generally, we fit the data with
a Gaussian Mixture Model (GMM) with diagonal covariance matrix, so given
a single local descriptor x, the gradient vector of log-likelihood respect to the
model parameter is as follows:

Gx
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γk

(
x − μk

σk

)
(1)
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σ,k =

1
2
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)2
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]
(2)

where γk is the weight of local descriptor x to the k-th gaussian component, and
is calculated by γk = πkN (x;μk,Σk)∑K

k=1 πkN (x;μk,Σk)

The Fisher Vector of one descriptor x is the concatenation of these gradients,
Sx = [Gx

μ,1,Gx
σ,1, ...,Gx

σ,K ,Gx
σ,K ]. The final Fisher Vector of one video is the sum

of the Fisher Vectors of local features, S =
∑

Sx.
VLAD [1] can be viewed as a simplified version of Fisher Vector. VLAD

employs k-means algorithm to obtain the codebook rather than fit data with
GMM. Once the codebook {di : i = 1, 2, ...,K} is calculated, for each local
descriptor x, its VLAD encoding can be calculated as Sx = [ω1(x − d1), ω2(x −
d2), ..., ωK(x − dk)].

For our mLCD local descriptors, we make some quantitative analyses to
decide which encoding method should be adopted. In Fig. 3, we plot the value
distribution of Fisher Vector and VLAD, both of which have been normalized. It
is shown that for Fisher Vector, most of the values are positive but the values of
VLAD are distributed more uniform. Therefore, it is natural to assume VLAD is
a better choice, and the experimental result in Sect. 3 validates our assumption.
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Fig. 3. The value distribution of Fisher Vector and VLAD

3 Experiments

In this section, we first introduce the datasets used in our experiments. Then we
present the implement details of our algorithms. Some quantitative analyses are
made to show the effectiveness of our method. Finally, a comparison with the
state-of-the-art methods is given.

3.1 Datasets

Hollywood2. The Hollywood2 dataset [6] has been collected from 69 different
Hollywood movies and includes 12 action classes. It contains 1,707 videos split
into a training set (823 videos) and a test set (884 videos). The performance is
measured by mean average precision (mAP) over all classes, as in [6].

Olympic Sports. The Olympic Sports dataset [7] consists of athletes practicing
different sports collecting from YouTube. There are totally 16 sports actions
(such as clean and jerk, bowling, basketball lay-up, discus throw), represented
by a total of 783 video sequences. We use 649 sequences for training and 134
sequences for testing as recommended. mAP over all classes is reported as in [7].

3.2 Implement Details

In our experiments, HOG, HOG and MBH descriptors form a 396-dimension
vector (96+108+96+96), dimension of which is reduced to half with PCA. The
dense trajectory feature are encoded by Fisher Vector and square root normal-
ization and L2 normalization are both applied. For the learned deep feature,
we adopt VGG16 for both spatial network and temporal network. The spatial
network is trained on the ImageNet and the temporal network is pre-trained
on ImageNet and is finetuned on UCF101. The mLCD features are encoded by
VLAD. For each local feature, we search 5 nearest neighbors in the codebook to
encode it. Square root and L2 normalization is also applied at last. For multi-
class SVM, we adopt the one-vs-all method. The hyperparameters of each SVM
is decided via cross validation.
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3.3 Quantitative Analysis

We conduct rich quantitative analyses to demonstrate the effectiveness of our
algorithm. In this section, all the experiments are conducted on the Hollywood2
dataset. First, we make an analysis of the choice of some hyperparameters in our
method. In Fig. 4(a), we encoding mLCD local descriptors with Fisher Vector and
VLAD separately. It is showed that VLAD can gain a slightly better performance
than Fisher Vector, which is consistent with the analyses in Sect. 2.3.

Figure 4(b) shows the impact of PCA dimension reduction to our method. In
this experiment, we fix the encoding method as VLAD, and apply PCA to mLCD
and LCD local space-time features to show the impact of PCA. As presented in
Fig. 4(b), the performance of both mLCD and LCD is largely damaged by PCA
dimension reduction. It is also clear that our mLCD method is more sensitive
to PCA. For the temporal network, when the local discriptors keep the original
dimension (512), mLCD reports a mAP of 45.41 %, while LCD gains 45.32 %.
When PCA dimension is smaller, LCD obtains a better performance compared
with mLCD. Therefore, in the following experiments, we do not apply PCA to
mLCD local features.

Fig. 4. Quantitative analysis of hyperparameters choice. (a) The mAP of mLCD when
encoded by Fisher Vector and VLAD. (b) The mAP of LCD and mLCD when applied
PCA dimension reduction

Table 1 compares our mLCD with LCD [13] under different settings. We
can draw mainly two conclusions from this table. First, it is clear that mLCD
outperforms LCD on both Hollywood2 and Olympic Sports under different con-
figurations. Second, spatial network performs better than temporal network on
both datasets. There are several possible reasons leading to this result: it may
be decided by the scenes of two datasets, which indicate that on Hollywood2
dataset and Olympic Sports dataset, motion feature is less import than static
feature. Another reason is that temporal network is trained on UCF101, which
is relative small compared with ImageNet, therefore, temporal network tends to
be overfitting on UCF101.
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Table 1. The mAP of our method with different configurations

Methods Hollywood2 Olympic sports

LCD 0.3915 0.7739

mLCD 0.4133 0.8003

LCD (flow) 0.4532 0.7429

mLCD (flow) 0.4541 0.7554

LCD + LCD (flow) 0.5101 0.8296

mLCD + mLCD (flow) 0.5163 0.8530

3.4 Comparison with the State of the Art

Table 2 compares our method with the most recent results reported in literature
of th two datasets. On Hollywood2 dataset, trajectory based methods [2,4,12]
achieve great success. Wang et al. [12] report 64.3 % by combining dense tra-
jectories, motion features and human detectors. Jain et al. [3] report 66.6 % by
introduce a large scale of concept detector. Our method improves the state-of-
the-art result by around 0.1 % by combining shallow and deep features.

Olympic Sports is a collection of sports videos. This dataset contains rich
structure information and significant camera motion. Therefore, traditional tra-
jectory based methods [2,4] does not perform well on this dataset. Wang et al.
[12] introduce human detectors to remove the background trajectories and gain
a mAP of 91.1 %. Our experiments show that without computational expensive
detectors, we can also obtain a slightly better result of 91.4 %.

Table 2. The mAP of our method with different settings

Methods Hollywood2 Olympic Sports

Jiang et al. [4] 0.595 0.806

Manan Jain et al. [2] 0.625 0.832

Wang et al. [12] 0.643 0.911

Mihir Jain et al. [3] 0.666 –

IDT + mLCD (Ours) 0.669 0.914

4 Conclusion

In this paper, we explore how to effectively utilize CNNs trained on ImageNet
and UCF101 to improve the performance of action recognition. We introduce
multi-resolution latent concept descriptors (mLCD) to encode both spatial and
temporal network, and conduct experiment on Hollywood2 and Olympic Sports
datasets. We report a better result compared with the current state-of-the-art
methods.
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