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Abstract. The challenge in feature selection for time series lies in
achieving similar prediction performance when compared with the orig-
inal dataset. The method has to ensure that important information has
not been lost by with feature selection for data reduction. We present a
chaotic feature selection and reconstruction method based on statistical
analysis for time series prediction. The method can also be viewed as a
way for reduction of data through selection of most relevant features with
the hope of reducing training time for learning algorithms. We employ
cooperative neuro-evolution as a machine learning tool to evaluate the
performance of the proposed method. The results show that our method
gives a data reduction of up to 42 % with a similar performance when
compared to the literature.

1 Introduction

Time series prediction can be cumbersome for big data related problems. The
volume of data and the associated computational complexity can yield higher
prediction inaccuracies due to learning irrelevant information [1]. The volume
of data and the associated computational complexity can make the application
very challenging and therefore, robust feature selection methods are important
for removing redundant features [2].

Feature selection methods identify features that are most relevant for a time
series in order to achieve faster training performance and with the hope of
improving prediction performance as noisy features can be eliminated [1]. The
major categories of feature selection methods include the wrapper [3], filter [4]
and embedded [4] methods. In a wrapper method, the selection criterion is depen-
dent on the learning algorithm as a part of the fitness function. The selection
criterion of filtering methods are independent of the learning algorithm and the
selection of feature relies on the relevance score of the feature. The embedded
method is specific to a learning algorithm and searches for an optimal subset
of features by estimating changes in the objective function value incurred by
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making moves in the variable subset. Although wrapper and filter methods are
the most commonly used methods for feature selection, their drawbacks initiate
a need for a simpler and less expensive method. Wrapper methods have reported
superior performance but it is computationally expensive when compared to filter
methods [5]. A drawback of filters is that they cannot scale for high dimensional
data [5]. Some commonly used feature extraction techniques include statistical
methods that feature mean and standard deviation [6], frequency count sum-
mations, KarhunenLoeve transformations, Fourier transformations and wavelet
transformations [7].

Recently, big data related problems have gained much attention that high-
lighted further challenges in learning algorithms as they have to deal with enor-
mous amounts of data. However, there has not been much focus on time series
problems. The increase in the implementation of technologies such as internet-
of-things [8] would result in enhanced data collection and time series analysis
will become more difficult as it would need to deal with big data challenges.
Hence, we aim to present an approach to address this for upcoming challenges
in big data related time series problems [9].

We present a chaotic feature selection and reconstruction method for time
series prediction with the hope to reduce the size of the original time series
while retaining important information. We employ cooperative neuro-evolution
to evaluate the performance of the proposed method. In principle, any machine
learning method could be used, however, we selected cooperative neuro-evolution
due to its promising performance for time series prediction in previous work [10].

The paper is organized as follows. Section 2 presents the proposed method and
Sect. 3 presents the experiments with results and discussion. Section 4 concludes
the paper with insights for future work.

2 Chaotic Feature Selection and Reconstruction

We present the details of chaotic feature selection and reconstruction (CFSR)
method for chaotic time series. It essentially eliminates the smooth regions of
the time series and selects the noisy and chaotic regions. We first divide the time
series into subsets known as feature windows and employ simple statistical eval-
uations to determine if the feature window contains smooth or noisy data points.
Note that statistical measurements such as the mean and the standard deviation
have been used in the past in feature extraction methods [6]. In our case, they
are used to identify the chaotic and noisy regions in the feature window.

In Algorithm 1, the length of the feature window define the subsets in the
time series. The feature window length must be determined experimentally to
find the optimal value for best prediction performance. In Step 1, feature window
is used to partition the entire time series (Step 2). For each feature window until
the entire time series has been considered, the upper boundary (Eq. 3) and lower
boundary (Eq. 4) is defined using the standard deviation (Eq. 1) and the mean
(Eq. 2). The values which falls between the boundaries are selected as the features
for reconstruction.
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Algorithm 1. Chaotic Feature Selection and Reconstruction
Step 1: Define chaotic feature window length
Step 2: Partition the time series into n feature windows according to its length
foreach feature window do

i. Calculate the Mean (Eq. 2)
ii. Calculate the Standard Deviation (Eq. 1)
iii. Identify the Upper-boundary (Eq. 3)
iv. Identify the Lower-boundary (Eq. 4)
v. Select features that fall within Upper and Lower boundaries

end
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We then apply Takens’ embedding theorem [11] to the selected chaotic
features in order to reconstruct the dataset for a one-step prediction. Given
an observed time series x(t), an embedded phase space Y (t) = [x(t), x(t −
T ), ..., x(t(D − 1)T )] can be generated. T is the time delay, D is the embed-
ding dimension and N is the actual length of the observed time series [11]. This
resulting dataset is then used as the input vector for training the model, which
in our case is the feedforward neural network.

2.1 Cooperative Neuro-Evolution

Cooperative coevolution(CC) that was initially proposed for function optimiza-
tion [12], has gained success in neuro-evolution for time series prediction [10].
CC decomposes a problem into subcomponents that are implemented as sub-
populations. Much work has been done in the past that focus on problem decom-
position that are based on architectural properties of the network [13].

We employ cooperative neuro-evolution (CNE) to demonstrate the effective-
ness of proposed feature selection method and it has shown promising results in
chaotic time series prediction [10]. CNE used for training feedforward neural net-
works is given in Algorithm 2. It employs neuron-level decomposition for decom-
posing the neural network into k subcomponents [13]. The number of subcom-
ponents k is determined by the total number of hidden and output neurons.

In the initialization stage, each sub-population is assigned random numbers
in a range and evaluated cooperatively. This is implemented by concatenating
the current individual that needs to be evaluated with the fittest individual from
the rest of the sub-populations. The concatenated individual is then encoded into
the neural network which returns the fitness defined by the root-mean-squared-
error.
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The main part of the algorithm begins by evolving each of the sub-
populations in a round-robin fashion for a certain number of generations called
the depth of search. Any evolutionary algorithm can be chosen for evolution
of the sub-populations that feature operations such as crossover, selection and
mutation. However, fitness evaluation of each individual of a sub-population is
evaluated cooperatively as implemented in the initialisation stage. The procedure
is repeated until the termination condition has been reached which is defined by
the maximum number of fitness evaluations or a fitness value.

Algorithm 2. Cooperative Coevolution
Step 1:Employ neuron level decomposition and attain k subcomponents
Step 2:Initialize and cooperatively evaluate each subcomponent implemented as a
sub-population
foreach until termination do

foreach each Sub-population do
foreach n Generations do

Select and create new off-springs
Cooperatively evaluate the new off-springs
Update sub-population

end

end

end

3 Experiments and Results

This section presents the experimental evaluation of the proposed chaotic fea-
ture selection and reconstruction (CFSR) method for time series problems. We
use cooperative neuro-evolution (CNE) as the designated learning algorithm for
feedforward neural network (FNN).

3.1 Problem Description

The benchmark time series data employed are Mackey-Glass times series [14] and
Lorenz time series [15], the two simulated time series while the real-world time
series are the Sunspot time series [16], Laser time series [17] and Astrophysics
time series [18]. Takens’ embedding theorem [11] is applied to the selected fea-
tures to reconstruct the data set. The values for the embedding dimension (D)
and the time delay (T ) has been set as follows. D = 5 and T = 3 for the Astro-
physics and Sunspot time series. D = 3 and T = 2 for Lorenz and Mackey Glass
time series. D = 7 and T = 2 for Laser time series.

These reconstructed vectors are then used to train the feedforward neural
network. The prediction performance of the feedforward neural network is mea-
sured using the root mean squared error(RMSE) (Eq. 5) and the normalized
mean squared error(NMSE) (Eq. 6)
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where yi, ŷi and ȳi are the observed data, predicted data and average of observed
data, respectively. N is the length of the observed data. These results are also
compared with related methods from the literature.

3.2 Experimental Design

We use a feedforward neural network with the sigmoid units in the hidden layer.
In the output layer, sigmoid unit is employed for the Mackey Glass, Sunspot and
Laser time series while a hyperbolic tangent unit is employed for the Lorenz and
Astrophysics time series. A set of 50 independent experimental runs are executed
for 3, 5 and 7 hidden neurons. Each sub-population in CNE is evolved a fixed
number of generations in a round-robin fashion. This depth of search was set to 1
generation as it has shown to be suitable for neuro-evolution [10]. The G3-PCX
algorithm was used to evolve all the sub-populations of CNE. A population size
of 300 is used. We used 15000 as the maximum number of function evaluations
for the termination condition for all the problems.

3.3 Results and Discussion

The results of 50 experimental runs with 95 % confidence interval for different
number of hidden neurons are given in Table 1. We evaluate the results by com-
paring the different feature windows with the number of hidden neurons (H).
The lowest values for the RMSE indicates the best performance.

In the Sunspot problem, the best performance was given by 5 hidden neurons
on feature window size of 100. In this case, the proposed method reduced the
original dataset by 42 % which has been the greatest reduction when compared
to other feature windows, while achieving the best performance. The Laser and
the Astrophysics problems achieved the best generalization performance. This
was through the dataset generated on feature window of 50, with 7 and 5 hidden
neurons, respectively. Hence, the proposed method reduced the original data set
by 25 % for Laser problem, and 34 % for the Astrophysics problem.

The proposed method has been able to cope up with noise in the real world
problems such as Sunspot, Astrophysics, and Laser. It can be observed from the
results that large data sets get reduced greatly and also yields very comparable
results. However, there is not a large reduction for smaller datasets of size 500.
It is also observed that for the simulated time series, the best generalisation
performance is consistently displayed by the same feature window that gives the
best results. As for the real world time series, the results were not as consistent
when we consider the generalization performance which could have been a result
of the presence of noise.
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Fig. 1. Typical prediction performance of the proposed method on the test data set of
Laser times series

In the Mackey-Glass and Lorenz problems, the best generalization perfor-
mance was given for the reduced dataset achieved on the feature window of size
10. The proposed method reduced the Mackey-Glass data set by 35 % and the
Lorenz dataset by 37 %. Figure 1 shows a typical prediction performance using
the proposed data reduction method for the Laser times series on the test set.

Table 2 shows that the proposed method has been successful in reducing the
training time for the featured training method when compared to the original
dataset. It can be seen that the training time taken has been greatly reduced by
the proposed method with the reduction in size of the original training dataset.
The maximum reduction in time is of 68.39 % for the Sunspot time series data
while the Astrophysics problem achieved a 61.69 % reduction, followed by Laser,
Lorenz and Mackey Glass problems.

Table 1. Training and generalization performance (RMSE)

Problem Feature window H Training Generalization Best

Sunspot 20 5 0.0243± 0.0005 0.0263± 0.0025 0.0141

100 7 0.0108± 0.0005 0.0439± 0.0067 0.0152

Laser 50 7 0.0501± 0.0012 0.1450± 0.0068 0.0972

100 7 0.0513± 0.0014 0.1555± 0.0043 0.1164

Astrophysics 50 5 0.0498± 0.0012 0.0656± 0.0032 0.0507

100 5 0.0459± 0.0012 0.0665± 0.0038 0.0530

Mackey-Glass 10 7 0.0251± 0.0001 0.0087± 0.0002 0.0071

100 5 0.0077± 0.0002 0.0130± 0.0012 0.0075

Lorenz 10 5 0.0462± 0.0059 0.0388± 0.0074 0.0103

100 5 0.0405± 0.0070 0.1047± 0.0144 0.0133
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Table 2. Training time and data reduction

Time series Feature window Reduced data set Original data set T-Test

H Best Time (sec) H Best Time (sec) p value

Sunspot 100 7 0.0117 370.11 5 0.0110 1170.87 2.86E-06

Mackey Glass 10 7 0.0071 561.48 5 0.0031 746.78 3.28E-17

Laser 50 3 0.0972 387.99 5 0.0321 760.23 1.34E-42

Lorenz 10 5 0.0103 298.12 5 0.0037 575.99 5.70E-03

Astrophysics 50 5 0.0507 788.46 5 0.0507 2058.11 4.99E-06

Table 3. Comparison with the literature

Time series Prediction method RMSE NMSE

Sunspot Wavelet packet multilayer perceptron [22] 1.25E-01

Co-evolutionary recurrent neural networks [10] 2.60E-02 3.62E-03

Competitive co-evolutionary recurrent neural networks [23] 1.57E-02 1.31E-03

Proposed CFSR 1.17E-02 8.15E-04

Lorenz Recurrent neural networks [24] 1.85E-03

Back-propagation and genetic algorithm with residual analysis [20] 2.96E-02

Co-evolutionary recurrent neural networks [10] 8.20E-03 1.28E-03

Competitive co-evolutionary recurrent neural networks [23] 3.55E-03 2.41E-04

Proposed CFSR 1.03E-02 5.58E-04

Mackey Neural fuzzy network and meta-heuristics [19] 8.45E-03

Back-propagation and genetic algorithm with residual analysis [20] 1.30E-03

Co-evolutionary recurrent neural networks [10] 8.28E-03 4.77E-04

Competitive co-evolutionary recurrent neural networks [23] 3.99E-03 1.11E-04

Proposed CFSR 7.05E-03 2.93E-04

Laser Multilayer Perceptron(MLP) [21] 1.72E-01

Elman [21] 3.40E-02

Non-linear Autoregressive model process with exogenous input (NARX) [21] 3.39E-02

Proposed CFSR 9.72E-02 1.18E-01

Table 3 provides a comparison between the best results from Table 1 with
related methods from literature. The RMSE and the NMSE for the best results is
used for comparison. We note that the Astrophysics problem has not been used
in literature. The proposed method has given better results when compared
to related methods in literature such as evolutionary algorithms for training
neural fuzzy networks [19] and co-evolutionary recurrent neural networks [10]
for Mackey-Glass and Sunspot time series.

The proposed method performs better than back-propagation and genetic
algorithm with residual analysis [20] for Lorenz time series. It also performs
better than and multilayer-perceptron [21] for Laser time series. The reduced and
reconstructed data set is able to eliminate irrelevant data, hence, reducing the
prediction error and improving the overall efficiency of the neural network. The
results also indicate that larger datasets are more favourable for the proposed
method as seen with the real world problems that include Sunspot, Laser and
Astrophysics time series.
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In the literature, the prediction methods used the entire dataset without any
feature selection. The goal for this paper was to achieve similar level of predic-
tion performance with reduced dataset that is computationally less expensive
for training. However, in some cases, the proposed method has achieved better
prediction performance. This indicates that feature selection has been able to
help further in generalisation performance of neural networks.

4 Conclusions and Future Work

We presented a chaotic feature selection and reconstruction method based on sta-
tistical analysis for time series prediction. It essentially implements data reduc-
tion by capturing most relevant features that are either noisy or chaotic in nature.
The results show that the proposed method has been able to retain the prediction
performance with a smaller dataset while reducing the training time. The results
further show that the proposed method performs similar to the selected methods
in the literature. Moreover, the proposed method has been able to reduce the
size of the original dataset up to 42 % and the prediction time by up to 68 %.

In future work, it would be interesting to evaluate the feature selection
method with other machine learning tools. The proposed method can also be
extended to multi-variate time series and applied to problems that deal with very
large time series datasets that include areas of astronomy and climate change.
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