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Abstract. We recently developed a retino-morphic hardware system
operating at a frame interval of 5 ms, that was short enough for sim-
ulating the graded voltage responses of neurons in the retinal circuit in
a quasi-continuous manner. In the present, we made a further progress,
by implementing the Izhikevich model so that spatial spike distributions
in a ganglion-cell layer can be simulated with millisecond-order timing
precision. This system is useful for examining the retinal spike encoding
of natural visual scenes.
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1 Introduction

In vertebrate retinas, incoming visual images are continuously transduced into
graded voltage changes in the photoreceptor-cell array, processed by the follow-
ing neuronal circuitries in a parallel manner, and then encoded into spike trains
in the ganglion-cell array. Basic synaptic connections among major classes of
neurons and fundamental properties of neuronal responses in the retinas were
revealed by previous anatomical and physiological studies [1,2]. However, lit-
tle was understood about the functions of the retinal neurons in response to
natural visual scenes, since most of conventional physiological experiments used
simplified or unrealistic images as visual stimuli, and considered less about the
influence of eye and/or head movements on the stimulus images. Although recent
studies have suggested new insights on information encoding by certain ganglion-
cell types by using more feasible visual stimuli [3–5], spatio-temporal responses
of the ganglion-cell array in an animal in vivo, in a natural environment are
still largely unknown. Simulating neuronal responses by using a retinal model in
silico is one of the powerful approaches to estimate and predict the functional
computations and the information encoding in the retinal circuit [6,7]. Recently,
we implemented a retinal model with combining the analog silicon retina [8] and
digital circuits in a field-programmable gate array (FPGA) so that the model
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structures and parameters can be modified, and yet the spatial response pat-
terns at each neuronal layer are visualized at a frame interval of 5 ms [9]. In the
present study, we have made a further progress in this system by implementing
the Izhikevich model [10] as a spike generation mechanism of the ganglion cells.
This model enables us to visualize spatial spike distributions in the ganglion-cell
array with millisecond-order timing precision without being affected by the clock
timing of the above-mentioned frame interval. We demonstrate a real-time sim-
ulation of the spike responses of cat X-type ganglion-cell array under a natural
visual condition.

2 Retino-Morphic Hardware System with Izhikevich
Spiking Modulus

2.1 Neural Circuit Structure

Figure 1 shows a schematic diagram of the retino-morphic hardware system we
developed in the present study. This system consists of the analog silicon retina
[8] (left box in the figure) and the digital circuits in FPGA (right box). The
figure depicts a single pixel of the retinal circuit and almost all the components
are the same as those described in the previous study [9], except for a spiking
module based on the Izhikevich model [10] (‘Izh1’ and ‘Izh2’). This model is
capable of reproducing various spiking patterns of neurons, and yet is compact
in computational cost enough for being implemented with the digital circuits in
FPGA. And also this enabled us to reproduce the adaptive nature of spiking
frequency in retinal ganglion cells [11], as in the real time emulation.

In the silicon retina, an active pixel photo-sensor (‘APS’) connecting to a
resistive network (‘1st RN layer’), and another resistive network (‘2nd RN layer’),

Fig. 1. Schematic diagram of the retino-morphic hardware system. The system is com-
posed of the analog silicon retina (left box), the interface (i.e. A/D converter, left
bottom), and the digital circuit modules in the FPGA (right box).
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reproduce spatial response profiles (i.e. spatial receptive fields) of a photorecep-
tor cell, and of a horizontal cell, respectively, that are coupled electrically with
their neighbor cells. In the FPGA, a temporal filter, ‘TF0’ represents the sig-
naling delay due to the synaptic transmission from a horizontal cell to a bipolar
cell. The difference between the inputs from the 1st and 2nd RN layers (‘Diff’)
reproduces a spatial, center-surround antagonistic receptive field of a bipolar
cell. And subsequent temporal filters, ‘TF1’ and ‘TF2’ account for temporal
response profiles of on-type and off-type bipolar cells, respectively (‘ONs-BC’
and ‘OFFs-BC’). A nonlinear gain function (‘NLG1’ or ‘NLG2’) is relevant to a
nonlinear synaptic transmission from a bipolar cell to a ganglion cell. And the
output of this block is fed to the Izhikevich spiking module (‘Izh1’ or ‘Izh2’) for
generating spikes as responses of an sustained on-type or off-type ganglion cell
(‘ONs-GC’ or ‘OFFs-GC’).

2.2 Approximation of the Izhikevich Model

The original Izhikevich model is governed by two differential equations and a
variables resetting via conditional branching, as follows [10]:

dv(t)
dt

= 0.04 v(t)2 + 5 v(t) + 140 − u(t) + I(t), (1)

du(t)
dt

= a · {b · v(t) − u(t)}, (2)

v(t) ← c, u(t) ← u(t) + d , if v(t) = + 30 [mV ]. (3)

Here, v(t) represents the membrane potential; u(t) represents the recovery vari-
able which controls the post-spike refractoriness; I(t) represents the input cur-
rent determined by the graded voltage response of a bipolar cell (i.e. the output
of ‘NLG1’ or ‘NLG2’ in Fig. 1); a , b, c and d are constant parameters which
define the membrane voltage dynamics. In the FPGA, the differential equations
(Eqs. 1 and 2) are approximatively solved by using the Euler method, namely
by using the corresponding finite-difference equations (Eqs. 4 and 5, see below)
with a calculation time step Δt:

v(t + Δt) = v(t) + Δt · {0.04 v(t)2 + 5 v(t) + 140 − u(t) + I(t)}, (4)
u(t + Δt) = u(t) + Δt · a · {b · v(t) − u(t)

}
, (5)

(t + Δt) ← c, u(t + Δt) ← u(t) + d , if v(t) = + 30 [mV ]. (6)

In this computation, there is obviously a trade-off between the accuracy and the
cost, depending especially on the bit length of v(t) and u(t). Figure 2 shows the
results of computer simulations in which the time courses of v(t) in response
to step-wise changes of I(t) were calculated with using different bit lengths of
v(t) and u(t). As shown in the figures, the time courses of v(t) were almost the
same when the bit length was fixed-point 16 bit or floating-point 64 bit, but not
fixed-point 8 or 12 bit. Thus in the present, the bit length of v(t) and u(t) was
set to fixed-point 16 bit for the spiking modules in the FPGA (i.e. ‘Izh1’ and
‘Izh2’ in Fig. 1).
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Fig. 2. Effects of the bit length of v(t) and u(t) on the accuracy of solving the finite-
difference equations derived from the Izhikevich model. I is input current to the Izhike-
vich model. The input start time to the membrane potential of a stable state was plotted
as 0 ms.

2.3 Operation of the Hardware System

As similar to our previous study [9], the silicon retina operates at 200 fps for the
128×128-pixel frame and the outputs in parallel are fed to the FPGA through
analog-to-digital conversion (‘ADC’ in Fig. 1) in the 5-ms-frame-based manner.
The FPGA operates at 40 MHz of clock rate, and the graded voltage response of
each neuronal module is computed every 5 ms. The timing of spiking in each gan-
glion cell module is determined by the time stamp of the conditional branching
followed by the variables resetting in Eq. 6. And the final spike outputs have a
timing tag of a 0.5-ms resolution(i.e. Δt in Eqs. 4–6). The data set of the voltage
distributions in the RN layers in the silicon retina, and of the voltage responses
of the neuronal arrays in the FPGA (e.g. ONs-/OFFs-BC and ONs-.OFFs-GC),
can be sent to a computer via the Universal Serial Bus (USB), to be visualized
as image streams in quasi-continuous, real-time manner. Figure 3 shows a pho-
tograph of the actual hardware equipment of our system. The components of
this hardware system are one printed circuit board (PCB) with silicon retina
and input-output (I/O) modules including the A/D converter, two PCBs with
interface connectors and buffer memories, and one PCB with the FPGA and
I/O modules including the USB terminal. As seen in the photograph, the whole
system is compact enough for being packed in a box so that a camera lens and
a tripod are attached directly to the box, and can be used as if an animal’s eye
gazes toward an object in a natural visual environment.
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Fig. 3. The retino-morphic hardware system used under a real visual environment. The
hardware components, i.e. PCBs with silicon retina, interface connectors, and FPGA,
are packed in a box, to which a camera lens and a tripod are directly attached.

3 Hardware Simulation of the Neuronal Arrays in
Response to a Natural Scene

Our hardware system enables us to visualize the spatial response patterns in each
of the retinal neuronal arrays in a real-time manner. For the present simulations,
the values of a , b, c and d in Eqs. 5–6, as well as other circuit parameters in the
silicon retina and in the FPGA, were tuned for reproducing the intrinsic spiking
properties of the cat beta-type ganglion cell [12] as well as the physiological light
responses of the cat X-type ganglion cell [13] as an example (data not shown:
a = 0.02, b = 0.25, c = −58, d = 3). Figure 4 A-C show the images of the
voltage distributions in the 1st RN layer (A), of the graded voltage responses in
the ONs-BC array (B), and of the spike distributions in the ONs-GC array (C)
while a white horizontal bar is vertically moved downward in front of a static
object (a stuffed doll) in a situation similar to one shown in Fig. 3. In Fig. 4A,
the image represents a blurred image of the visual scene captured by the APS
array, since no temporal filtering is applied in the 1st RN layer (Fig. 1). In the
images in Fig. 4B, spatial contrast edges in the visual scene were enhanced due to
the center-surround antagonistic receptive filed of bipolar cells (i.e. ‘ONs-BC’ in
Fig. 1). Moreover, the moving bar was blurred in shape, and shifted in position
to behind from the original position. And in turn, the static object appeared
not to be completely occluded by the bar. These were due to the temporal
filtering properties in the outer retinal circuit (i.e. ‘TF0’ and ‘TF1’ in Fig. 1). In
Fig. 4C, the red dots represent positions of the ganglion cells that fired a spike
during the last 5 ms. Since the spiking simulated here was the sustained on-type
response of the X(beta)-type ganglion cells, basically the spikes were induced in
relatively bright regions in the visual scene. In addition, spike firings were highly
synchronized among the cells near the leading edge of the moving bar. Figure 4D
superimposes the images in the panel A and C so that the location and timing
of the spike firings can be examined in combination with the incoming images.
For example, the leading edge of the moving bar (arrows in D) can be blurred
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Fig. 4. A real-time simulation of the spatio-temporal responses of the retinal neuronal
arrays in a real visual environment. (Color figure online)

at the stage of the bipolar cells (B), but can be sharpened at the stage of the
ganglion cells’ spikes with a certain temporal delay (arrowheads in D).

4 Discussion

In the present study, we adopted Izhikevich model as a spiking mechanism of the
retinal ganglion cell. Other than this model, for instance, conventional Integrate-
and-Fire(I-F) model has been widely used for computer simulations of neuronal
spiking. However with this model, when the membrane voltage approaches to
the pre-defined threshold value, the timing when a spike is fired can be largely
fluctuated dependently on the bit accuracy, and thus would be determined in
rather stochastic manner. Such a stochastic spiking behavior of the simple I-F
model is less suitable for modeling the ganglion cells spiking in which the spike
timing precision is thought to be in milliseconds order [14]. In contrast, the
Izhikevich model was suited better for realizing the millisecond-order precision
of spike timing (data not shown). Meanwhile, the generalized linear I-F model,
which can reproduce a variety of spiking behaviors, has been proposed [15]. How-
ever, compared with this I-F models, number of state variables in the Izhikevich
equations is less, and thus less of the memory in FPGA is required for the imple-
mentation. The adaptive exponential I-F model [16] can be another candidate
for emulating the spiking of retinal ganglion cells. And, although we selected
the Izhikevich model in the present study, our hardware system was designed to
have a capability of testing those other models, as long as the resource in FPGA
allows. This would be another benefit from our system configuration.

The visualization of ganglion cells’ spiking patterns at a frame interval of 5
ms should be possible also by other technologies, like GPU, multi-core CPUs,
or ASIC. On the other hand, the FPGA offers a program-based configurability
of the model circuit, as similar to a simulation with GPU or multi-core CPUs.
In addition, its compact size enabled us to build the whole system in a rela-
tively small box attached with an optical lens (Fig. 3). Hence, only this system
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in the box and a laptop/pocket computer is enough for the present visualiza-
tion. Besides, one can combine this system with a robotics device for the gaze
control, thereby enabling a real-time emulation of the binocular vision under eye
and head/body movements in a mobile environment. In addition, our system
architecture with FPGA is usable for one to create a distributed computation
platform of sensory information which may reduce the computational load in a
host GPU/multi-core CPUs, and in turn, lower the power consumption as total.

5 Conclusion

The present neuromorphic hardware system makes it possible to visualize and an-
alyze the relation between natural images of the real world and the corresponding
neuronal response images which encode significant information for the perception
of the real world. The virtual in-vivo experiment with using our system (Fig. 4)
facilitates the understanding of visual functions and essential circuit structures
of the retina.
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