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Abstract. The Generalized Hidden Markov Model (GHMM) has been proved
to be an excellently general probabilistic model of the gene structure of human
genomic sequences. It can simultaneously incorporate different signal descrip‐
tions like splicing sites and content descriptions, for instance, compositional
features of exons and introns. Enjoying its flexibility and convincing probabilistic
underpinnings, we integrate some other modification of submodels and then
implement a prediction program of Human Genes in DNA. The program has the
capacity to predict multiple genes in a sequence, to deal with partial as well as
complete genes, and to predict consistent sets of genes occurring on either or both
DNA strands. More importantly, it also can perform well for longer sequences
with an unknown number of genes in them. In the experiments, the results show
that the proposed method has better performance in prediction accuracy than some
existing methods, and over 70 % of exons can be identified exactly.

Keywords: Gene prediction · WWAM · IMM · GHMM · The prefix sum
arrays · The method based on similarity weighting of sequence patterns

1 Introduction

In recent years, with the development and gradual promotion of the third-generation
gene sequencing technology [1], its sequencing cost becomes lower while each
sequencing length becomes much longer and sequencing accuracy much higher, we have
been accumulating the higher quality of genome sequences for all kinds of organisms
at a faster rate. In order to tap the potential value of these data, a good many gene-finding
programs, which identify gene in genomic DNA sequences by computational methods,
are routinely used by gene annotation project members to help identify genes in that
newly sequenced regions [2].

A complete gene structure in eukaryotes generally consists of some different func‐
tional elements which are divided into signal sensors and content sensors [3]. Signal
sensors are regarded as the basic method of finding the presence of functional sites with
fixed length, such as promoters, start and stop codons, splice sites, branch points, etc. As
for content sensors, they are measures that try to classify a DNA region into coding and
noncoding. The measures are mainly based on extrinsic similarity with a biologically char‐
acterized sequence, e.g., protein sequence, cDNA or expressed sequence tag (EST)

© Springer International Publishing AG 2016
Z. You et al. (Eds.): CCBR 2016, LNCS 9967, pp. 747–755, 2016.
DOI: 10.1007/978-3-319-46654-5_82



sequence, and intrinsic statistical properties such as codon usage(a triplet of DNA bases),
hexamer frequency, nucleotide composition, GC content and base occurrence periodicity.

Many early approaches only focused on those signal sensors to roughly locate the
position of gene in genomic DNA sequences. Subsequently, in order to predict entire
gene structures precisely, the approaches have been developed by integrating multiple
types of information which include splice signal sensors, compositional properties of
coding and non-coding DNA, and database homology searching in some cases. Some
typical programs show: GENEID [4], Genie [5], GENSCAN [2] and AUGUSTUS [6].
However, early available programs have two important limitations [7]: one is that their
algorithms assume that the input sequence contains exactly one complete gene. If the
sequence contains a partial or multiple genes, the results they provide do not make sense.
The other is that due to evaluating by independent control sets, the accuracy is usually
worse than originally thought. Fortunately, some methods emerging afterwards supply
these gaps, such as GENSCAN and AUGUSTUS. They use an explicitly double-
stranded genomic sequence model to simultaneously analyze potential genes occurring
on both DNA strands. Additionally, the model treats the general case in which the
sequence can contain a partial gene, a complete gene, multiple complete genes, or no
gene at all. The combination of double-stranded nature of model and the capacity to deal
with variable numbers of genes may prove useful for long human genomic segments,
e.g. those of a hundred kilobases or more, which usually contain more than a gene on
one or both strands. We follow the model design, integrate some other different inno‐
vations of submodels and implement a prediction system of Human Genes in DNA. The
system has functional advantages mentioned above and a high performance in accuracy.

Finally, regardless of benefits of function and performance in our model, the difficul‐
ties of handling overlapping transcription units and explicitly addressing alternative splicing
are still presence. As both of them are still challenging problems and short board of all gene
prediction programs, we will try to further exploit it individually in future work.

2 Method

2.1 Algorithmic Issues of the GHMM

Hidden Markov Models (HMM) has been used in pattern recognition for decades and
its applicability to computational biology has also been widely recognized. But as we
know, a standard Hidden Markov model is just a state-based generative model which
transitions stochastically from state to state and emits a single symbol from each state
[8]. Although it can produce a certain effect in gene prediction, the recognition accuracy
is still far from satisfactory. The GHMM have a better performance by allowing an
individual state to emit a string of symbols rather than only one symbol at a time. The
model is generally parameterized by its transition probabilities, state duration (i.e.,
feature length) probabilities, and state emission probabilities. These probabilities influ‐
ence the output of the model by determining which sequences are more likely to be
emitted and which series of states are more likely to be visited by it.

Eukaryotic gene prediction with a GHMM means to decode an input sequence
into a most probable set of putative functional segments having a specific biological

748 R. Guo et al.



significance [9]. Suppose that X denotes an input DNA sequence with a length n,
xi(1 ≤ i ≪ k) denotes a subsequence of X,and its length is di(1 ≤ di ≤ n), we can get
that X = x1x2 ⋯ xk (the concatenation of subsequences), and define ∅ is a
correct parse corresponding to the input sequence, having that
∅ =

{(
q1, x1

)
,⋯ ,

(
qi, xi

)
,⋯

(
qk, xk

)}
(1 ≤ i ≤ k), and qi denotes a hidden state which

signifies a specific functional segment mentioned above. But in general, we still need
to supplement two additional states producing no output, as start and end flags of
decoding operation of a program. And then, how to set the optimal value of ∅ is what
we concern and difficult to gain. In the case of standard Hidden Markov Models, the
well-known Viterbi algorithm [10], a dynamic programming algorithm with running
time linear to the sequence length for a fixed number of states, is the most classic
means to solve with this problem, similarly, it is also applicable to the case of
GHMM. However, since each state can emit more than one symbol at a time, the
algorithm needs to be modified to result in the following optimization problem [11]:

Φoptimal = arg maxp(Φ|X)

= arg max
p(Φ, X)

p(X)

≃ arg maxp(Φ, X)

= arg maxp(X|Φ)p(Φ)

= arg max
k∐

i=1

pe(xi|qi, di)pt(qi|qi−1)pd(di|qi)

(1)

where Pe
(
xi|qi, di

)
 means the probability that state qi emits the subsequence xi, given

duration di, Pt
(
qi|qi−1

)
 denotes the probability that the GHMM translates from qi−1

state to state qi; and Pd
(
di|qi

)
 is the probability that state qi has the duration di, the

arg max is to select the best one from all parses of the DNA sequence into well-
formed exon-intron structures.

We introduce a common approach, named the Prefix Sum Arrays (PSA), to evaluate
Eq. 1. According to a dynamic programming algorithm, the method needs to allocate
several arrays for one per variable-length feature state and assess them left-to-right along
the length of the input sequence. It can also conclude that the values in the aforemen‐
tioned arrays represent cumulative scores for prefixes of the sequence only in term of
the surface meaning of its name. Here, we show its recursive expressions of the GHMM
in log space as follows:

RI(qj, rj) = arg max
qi

(RI(qi, ri) + RT (qi, qj) + RD(qi, qj) + RC(qi, qj, rj))

qi, qj ∈ Q
(2)

In Eq. 2, Q denotes the set of states in GHMM, RI(qi, ri) denotes the logarithmic
inductive score for signal qi in phase ri, and the next three expressions respectively mean
the logarithmic scores of state translation from qi to qj, state duration of content region
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delimited by signals qi and qj, and sequence emission between current signal qj and
predecessor qi in phase ri, additionally, it is still necessary to emphasize that rj = ri or
rj = (ri ± Δ) mod 3 (Δ denotes the sequence length of special putative state), depending
on the different situations.

2.2 Modeling Gene Structure

To expound completely the process of gene prediction based on a GHMM, Fig. 1 shows
the states of the Hidden Markov Models in the system and some certain probabilities of
possible transitions between them (as to others that cannot be depicted explicitly at the
arrows, their values are always 1). In Fig. 1, Esng denotes a single exon gene; EI, E and
EF respectively denote the first, internal and last exon of a multi exon gene (the exon
only referred to the coding part of exons); I is the intron, IR is the intergenic region
between genes, DSS and ASS separately are the donor and acceptor splice sites including
branch point, as for the states S and T, they are the start codon emitting the string ATG
with probability 1 and stop codon generally only including TAG, TGA and TAA whose
emission probabilities are respectively 24 %, 48 % and 28 %. Furthermore, the states
with names beginning with r mean to be on the reverse strand, and the exponents (0, 1,
2) stand for the phase of the reading frame, and for an exon it denotes the position of
the last coding nucleotide of the exon in its codon.

In the GHMM, each state emits a random DNA string with random length, and their
emission probabilities mainly depends on the annotated sequences which correspond to
the respective biometrics in training set. In order to seize the feature information of this
distribution for each state, we mainly made use of five established models, a Markov
chain, a higher order windowed weight array model (WWAM), a weight array model
(WAM) [12], simple interpolated Markov Models (IMM) [13] and the method based on
similarity weighting of sequence patterns [6], whose good results have been verified by
other gene finders.

In term of the details of the Markov Chain, WAM and WWAM, there is no need to
elaborate too much again, since that they have been widely used in bioinformatics for
many years, and here, we briefly illustrate our usage on them. We adopt a Markov model
of order 5 to the model of non-coding region such as I, rI and IR as mentioned above
meanwhile using a WAM of order 2 and a WWAM of order 2 and of window size 5 in
other related states. As for the IMM, it’s a special case in our coding models, in which
only the transition probabilities of order 5 and 4 are considered and the respective inter‐
polation weights are either 0 or 1 with the frequency threshold of occurrence of the given
string in training set 400. Finally, we focus on the method of similarity-based weighting
of sequence patterns, which is solely applied in the DSS model. Given a fixed sequence
pattern size, training patterns q1, q2 ⋯ , qm and a similarity scoring function s, weighting
pairs of patterns, we estimate the probability that a random pattern equals a given pattern
q as

p(q) = c
m∑

i=1

s(q, qi) (3)
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where c is a modulus keeping that the sum of all p(q) is 1. Regarding the similarity
scoring function s, we follow the definition in AUGUSTUS as

s(r, q) =

⎧
⎪
⎨
⎪
⎩

1
0.001

0

if r=q

if r and q differ at exactly one pos
otherwise

, (4)

and the resulting distribution obtained by this way is the discretely smoothed empirical
distribution which respects the complicated statistical dependencies that exist between
the nucleotide positions.

Figure 2 shows detailed model distribution of human gene structure with single and
multiple exons in our system. According to it, we once more simply describe the emis‐
sion distribution for those states which are not mentioned above. The models of fixed
length, translation initiation motif and ASS model respectively emitting 20 and 23
nucleotides per time, are trained by the WWAM of order 2 and window size 5, while
the model of translation end motif emitting 30 nucleotides per time introduces the WAM
of order 2 to evaluate.

Fig. 1. The GHMM topology of our system
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Fig. 2. My model distribution of gene structure with single and multiple exons

2.3 Intron Length Model

In the GHMM, length distribution of states with variable length, such as intron and
exon, is also significant information which can determine the prediction accuracy.
We adopt a typical smoothing technique using a kernel estimator with discrete Gaus‐
sian kernel function and variable bandwidth to evaluate them. And because of
compact length density of coding exons (only 0.3 % of the human exons were longer
than 3000 nucleotides), the evaluation effect is fairly satisfactory. However, to a long
biological intron, for example, the human neurexin-3 gene on chromosome 14 has
an intron of length 479 Kb, results in a large range of length span, and it is practi‐
cally infeasible to explicitly model the whole length distribution in a HMM. In order
to deal with this problem, we have combined the method mentioned above with a
simple geometric distribution to model it. Define a length threshold d, a probability
parameter p for determining to choose a short intron, and parameter q which is only
used by the geometric distribution function, the concrete formula expression as
follows:

P(M = l) =

{
pP(L = l)∕P(L ≤ d)

(1 − p)(1 − q)l−d−1q

l ≤ d

l > d
(5)

where M denotes a model variable to be evaluated and L denotes the variable based
on the discrete Gaussian kernel function and variable bandwidth. Firstly, to keep the
continuity of functions, we can get an equation that P−(M = d + 1) = P+(M = d),
stating that there is no jump in the distribution of M between positions d and d + 1.
Secondly, we need to set q so that the expectations of M and L are equivalent, when
M > d, L > d, for instance, d + 1∕q = E[L|L > d]. Thirdly, to better take into account
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both of accuracy (large d) and speed (small d), we choose the smallest d so that parameter
p approximately equal to P(L ≤ d). Finally, combining all of the three points, we have
obtained a group of evaluation values using my training set that
q ≈ 1∕1764, p ≈ 0.47, d = 592.

2.4 Training Data Set

The training set was retrieved from 22 autosomal sequences of human genome, which
is in the light of the corresponding version of the gene annotation files issued in Genbank.
After getting rid of the case in which sequences are overlapping with another sequence
by our self-made checking procedure, we luckily extract most of gene sequences with
single transcription as the master training sets, about 941 sequences, and randomly select
a certain number of genes with multiple transcriptions, e.g. approximately 400, as the
addition of our training set (naturally, the genes of test sets provided by AUGUSTUS,
h178 and sag178, have been removed from it). Then, making most use of the two data
sets, we train the each relevant state model in our GHMM.

3 Results and Discussion

We tested our program on two data sets, called h178 and sag178, which can be down‐
loaded from the official website of AUGUSTUS. The h178 is a set of 178 human
genomic sequences which are from EMBL and have been used by the author of
GENSCAN for evaluation; each sequence only contains one complete gene and their
mean sequence length is 7169 bases, shortest 622 and longest 86640 bases. The sag178
has the same 178 human genes in which 40 genes are single exon genes, but all of them
are included in a set of 43 sequences on both strands. These sequences are taken from
Guigo et al. (2000) as like the h178 and have been done some necessary special process,
their mean length is 177 kilo bases (shortest 70, longest 282) and the average number
of genes is 4.1.

Table 1. Accuracy results on human data sets h178

base exon gene
GENEID sn 89 66 14

sp 91 75 13
GENSCAN sn 97 83 40

sp 86 75 36
AUGUSTUS sn 93 80 46

sp 90 80 45
OUR SYSTEM sn 92 74 31

sp 89 72 27

In order to evaluate the gene prediction performance, we also adopted the usual
measures, sensitivity and specificity, for a feature such as base, exon and gene. The
sensitivity is defined as the number of correctly predicted features divided by the number
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of annotated features. The specificity is the ratio of the number of correctly predicted
features to the number of predicted features. A predicted exon is considered to be correct
if both splice sites are at the annotated position of an exon. A gene is considered to be
predicted correctly if all the exons are correctly predicted and no additional exons are
not in the annotation. Predicted partial genes were counted as predicted genes. The
testing results on both of test sets are depicted in the following tables (Tables 1 and 2).

Table 2. Accuracy results on human data set sag178

base exon gene
GENEID sn 89 67 17

sp 78 60 17
GENSCAN sn 94 68 18

sp 64 45 14
AUGUSTUS sn 93 78 40

sp 81 71 35
OUR SYSTEM sn 90 73 23

sp 76 61 19

Comparing the above two tables carefully, we can analyze that my system can have
similar prediction accuracy with AUGUSTUS and GENSCAN in term of the mean of
sensitivity and specificity on the base and exon level. GENSCAN is more sensitive,
AUGUSTUS is more specific, and our program is indeed worse a little in both aspects
but superior than GENEID. Whether on long or short gene set, our model predicted
exactly more genes than GENEID and GENESCAN, stating that the design combining
main model structures of the AUGUSTUS and GENSCAN with the more precise eval‐
uation of length distribution in intron is effective. However, the number of genes
predicted correctly is only slightly higher than GENSCAN’s while far lower than
AUGUSUTS’, we guess, which is likely due to ignoring the influence of the GC-content
in genes. Besides, comparatively speaking, our model tends to produce many more genes
in which only partly exons are evaluated correctly and is therefore less specific than
others. To solve with this problem, it is necessary to introduce some further follow-up
design and optimization.

4 Conclusion

In our paper, with the integration and modification of some mainly related submodels,
we personally implemented a GHMM-based gene prediction system. Despite a certain
degree of performance promotion, there is still a lot of space to further improve by
considering the influence of the GC-content in genes and training a better classification
model of spite sites with other superior machine learning methods like SVM. In the
future, we will continue to deepen our research from two above-mentioned aspects.
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