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Abstract. Traditional graph-based semi-supervised learning can not capture both
the global and local structures of the data exactly. In this paper, we propose a novel
low rank andweighted sparse graph. First, we utilize exact low rank representation
by the nuclear norm and Forbenius norm to capture the global subspace structure.
Meanwhile, we build the weighted sparse regularization term with shape inter-
action information to capture the local linear structure. Then, we employ the
linearized alternating directionmethodwith adaptive penalty to solve the objective
function. Finally, the graph is constructed by an effective post-processing method.
We evaluate the proposed method by performing semi-supervised classification
experiments on ORL, Extended Yale B and AR face database. The experimental
results show that our approach improves the accuracy of semi-supervised learning
and achieves the state-of-the-art performance.
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1 Introduction

For many machine learning and pattern recognition applications, it is difficult to get
enough labeled samples, while a large number of unlabeled samples are widely
available over the Internet. Semi-supervised learning (SSL) can utilize both limited
labeled samples and abundant unlabeled samples, which has become a research focus
in learning tasks. In the current method, graph-based SSL has attracted much attention
because it can effectively capture the structure information hidden in the data and
obtain a better performance in the practical application [1].

Graph-based SSL employs a graph to represent data structures, where the set of
vertices corresponds to the samples, and the set of edges is associated with an adja-
cency matrix which measures the pairwise weights between vertices. Label information
of the labeled samples can be propagated to the unlabeled samples over the graph by
label propagation algorithm, such as local and global consistency (LGC) [2] and
Gaussian random field and harmonic function (GHFH) [3]. How to construct a good
graph is the difficulty of the algorithms, and it is still an open problem. Liu et al. [4]
propose low rank representation (LRR), which constructs a low rank graph by solving
the nuclear norm minimization problem. LRR can capture the global structure of the
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data and performs well on the subspace clustering problem. Zhuang et al. [5] extend
LRR and propose non-negative low rank and sparse graph (NNLRS). Compared with
LRR, NNLRS adds a sparse constraint in the objective function, and it can capture the
global and local structure of the data. In [6, 7], based on NNLRS, the authors propose
weighted sparse constraint, where the sparse regularization term is weighted by dif-
ferent weight matrix and it can effectively protect the local structure of the data.

We observe that the above algorithms use the nuclear norm to estimate the rank of
the matrix. Nevertheless, the nuclear norm is a convex relaxation of the rank function,
and it can not estimate the rank accurately. Choosing a suitable function to estimate the
rank can improve the performance of algorithms. Kang et al. [8] propose a rank
approximation based on Logarithm-Determinant and it improves the accuracy of
subspace clustering. Inspired by elastic net [9] in learning theory, we use both the
nuclear norm and Forbenius norm as a replacement function. The rank can be estimated
effectively and we can get a more exact LRR. On the other hand, in order to improve
the ability to capture the local structure of the data, we also add a weighted sparse
regularization term into the objective function. Different from [6, 7], we utilize the
shape interaction information to construct weight matrix, which makes the graph
contain more information.

The remainder of this paper is organized as follows. We give an overview of the
LRR algorithm in Sect. 2. In Sect. 3, we present the proposed low rank and weighted
sparse graph (LRWSG) and its optimization by linearized alternating direction method
with adaptive penalty (LADMAP) [10]. The experimental results on three widely used
face database are presented in Sect. 4. Finally, we conclude this paper in Sect. 5.

2 Related Work

This section briefly introduces LRR. Let X ¼ ½x1; x2; . . .; xn� 2 R
d�n be a matrix whose

columns are n data samples in the d dimensional space. LRR seeks the coefficient
matrix Z ¼ ½z1; z2; . . .; zn� 2 R

n�n which is the lowest rank representation that can
represent X as a linear combination of itself. The LRR problem is defined as follows:

min
Z

jjZjj� þ kjjEjj2;1; s:t:X ¼ XZþE: ð1Þ

where jj � jj� is the nuclear norm of a matrix (the sum of the singular values of a matrix).

jjEjj2;1 ¼
Pn

j¼1ð
Pd

i¼1 E
2
ijÞ1=2 is 2,1-norm and it is used to represent noise. The

parameter k is used to balance the effect of noise. The inexact augmented Lagrange
multiplier (IALM) [11] method is employed to solve the problem (1), and we can get
the optimal solution ðZ�;E�Þ. The adjacency matrix of the low rank graph can be
calculated as follows:

G ¼ ðjZ�j þ jZ�jTÞ=2 ð2Þ

After we get the adjacency matrix, LGC or GHFH algorithm is used to propagate
label information and obtain the results of semi-supervised classification.
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3 The Proposed Method

3.1 Problem Formulation

Elastic net which utilizes both the 1-norm and 2-norm as penalty function is an
effective model in statistical learning [9]. The 1-norm guarantees the sparsity of the
solution, while the 2-norm guarantees the stability of the solution. And the model
performs well on the low rank matrix completion problem [12].

We observe that jjZjj� in Eq. (1) can be represented as
Pr

i¼1 jrij, where ri is the ith
singular value of Z, r is the rank of Z. Obviously,

Pr
i¼1 jrij is the 1-norm penalty of the

singular value of Z. To improve the stability of the algorithm, we introduce
Pr

i¼1 jrij2
as a 2-norm penalty of the singular value of Z. Actually,
jjZjj2F ¼ TrðVKUTUKVTÞ ¼ TrðK2Þ ¼ Pr

i¼1 jrij2, where Z ¼ UKVT is SVD of Z. By
combining the 1-norm penalty and 2-norm penalty, we can rewrite Eq. (1) as follows:

min
Z

jjZjj� þ ajjZjj2F þ kjjEjj2;1; s:t:X ¼ XZ þE: ð3Þ

where the parameter a is used to trade off the effect of 1-norm penalty and 2-norm
penalty. Compared with Eqs. (1), (3) is a stable model which can estimate the rank of Z
and capture the global subspace structure more exactly.

In order to capture the local linear structure, jjZjj1 is added into Eq. (1) [5]. Later
on, [6, 7] propose weighted sparse constraint jjW � Zjj1, where � denotes the Hada-
mard product, if M ¼ A� B, then Mij ¼ Aij � Bij. Constructing a weight matrix W
with more information can protect the local structure of the data. Inspired by [13], we
utilize shape interaction information to construct W . Let X ¼ UrKrVT

r be the skinny
SVD of X, where r is the rank of X. The shape interaction representation of each data
sample xi is Ri ¼ K�1

r UT
r xi. Normalize all column vectors of Ri by R�

i ¼ Ri=jjRijj2, and
the shape interaction weight matrix can be defined as follows:

ð4Þ
In summary, we formulate the objective function of LRWSG as follows:

ð5Þ

3.2 Optimization

Similar to [5], we utilize LADMAP to solve problem (5). We first introduce an aux-
iliary variable J to separate the variable in the objective function. Thus Eq. (5) can be
rewritten as follows:

A Semi-Supervised Learning Algorithm 123



ð6Þ

The augmented Lagrange function of Eq. (6) is

ð7Þ

where Y1 and Y2 are Lagrange multipliers, l[ 0 is a penalty parameter.
Update Zkþ 1 with Zk , Jk , Ek fixed.

Zkþ 1 ¼ argmin
Z

1
glk

jjZjj� þ
1
2
jjZ � ðZk þðXTðX � XZk � Eþ Y1;k=lkÞ

� ðZk � Jk þ Y2;k=lkÞ � ð2a=lÞZkÞ=gÞjj2F
ð8Þ

where g ¼ jjXjj22, Eq. (8) can be solved by singular value thresholding operator [14].
We set A ¼ ðZk þðXTðX � XZk � Eþ Y1;k=lkÞ � ðZk � Jk þ Y2;k=lkÞ � ð2a=lÞZkÞ=g,
A ¼ UKVT is the SVD of A, the solution of Eq. (8) is Zkþ 1 ¼ US1=b Kð ÞVT , where S is
soft thresholding operator [11], defined as Se½x� ¼ maxðx� e; 0Þþminðxþ e; 0Þ.

Update Jkþ 1 with Zkþ 1, Jk, Ek fixed.

ð9Þ

Equation (9) can be solved by soft thresholding operator and the solution is

ðJkþ 1Þij ¼ maxðSeij ½ðZkþ 1Þij þðY2;kÞij=lk�; 0Þ ð10Þ

where .

Update Ekþ 1 with Zkþ 1, Jkþ 1, Ek fixed.

Ekþ 1 ¼ argmin
E

k
lk

jjEjj2;1 þ
1
2
jjE � ðX � XZkþ 1 þ Y1;k=lkÞjj2F ð11Þ

The solution of Eq. (11) is

Ekþ 1 ¼ Xk=lk ðX � XZkþ 1 þ Y1;k=lkÞ ð12Þ

where X is 2,1-norm minimization operator [4]. If Y ¼ XeðXÞ, then the ith column of Y
is
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Yð:; iÞ ¼
jjXð:;iÞjj2�e
jjXð:;iÞjj2 Xð:; iÞ; e\jjXð:; iÞjj2

0; e� jjXð:; iÞjj2

(
ð13Þ

The complete optimization to LRWSG is summarized in Algorithm 1.

3.3 Graph Construction

Once problem (5) is solved, we can obtain an optimal Z�. Different from the traditional
graph-based SSL construct the adjacency matrix by Eq. (2), we utilize the method
which is used on the subspace clustering problem [4]. Let Z� ¼ U�K� V�ð ÞT be the

skinny SVD of Z�, we define P ¼ U� K�ð Þ1=2, the adjacency matrix of LRWSG is
calculated as follows:

ðGÞij ¼ ðPPTÞ2ij ð14Þ

After we obtain the adjacency matrix G, LGC algorithm is employed to solve the
semi-supervised classification problem.

4 Experiment

In this section, we evaluate the effectiveness of LRWSG on semi-supervised classifi-
cation experiments. LRWSG is compared with several LRR related graphs including
LRR [4], NNLRS [5], LRRLC [6], SCLRR [7] and CLAR [8]. The classification

A Semi-Supervised Learning Algorithm 125



accuracy is used to evaluate the semi-supervised classification performance, which is
defined to be the percentage of correctly classified samples versus the test samples. The
parameters of the compared algorithms are tuned to achieve the best performance.
In LRWSG, the parameter a balances the effect of nuclear norm and Forbenius norm.
According to a large number of experiments, the classification accuracy is better when
we set a ¼ 1. The parameter k is used to describe the noise of data, we set k ¼ 10 for
our experiments. The parameter b controls the effect of sparse regularization term, we
set b ¼ 0:3 on ORL database and EYaleB database and we set b ¼ 0:1 on AR data-
base. The experiments are implemented on Intel Core i7 4710MQ CPU with 8 G
memory.

4.1 Databases

We select three face databases for our experiments: ORL, Extended Yale B (EYaleB)
and AR. The ORL database contains 40 distinct subjects, and each subject has 10
different images. The images were taken at different times, varying the lighting, facial
expressions and facial details. There are 64 face images under different illuminations of
each of 38 individuals in the EYaleB database. In our experiments, we use the first 20
subjects and each subject chooses the first 50 images. The AR database contains 3120
images of 120 subjects with different facial expressions, lighting conditions and
occlusions. The first 50 subjects are chosen for our experiments, and each subject
chooses the first 20 images. All the images are resized to 32� 32. Several sample
images of the three face databases are shown in Fig. 1.

4.2 Experimental Results and Analysis

For each database, we randomly choose 10 % to 60 % samples from each class as
labeled samples, and the rest samples are used for testing. For each percentage of labeled
samples, we repeat the experiment 20 trials for each algorithm. Tables 1, 2 and 3 report
the classification accuracies and standard deviations of each algorithm on ORL, EYaleB
and AR.

(a) (b) (c)

Fig. 1. Some sample images from three databases: (a) ORL, (b) EYaleB, (c) AR

126 T. Zhang et al.



From the results, we can observe that:
(1) LRWSG achieves the highest accuracies on both databases. LRWSG utilizes the

nuclear norm and Forbenius norm to estimate the rank function. Meanwhile, the
weighted sparse regularization term with shape interaction information is joined into
the objective function. Therefore, LRWSG can capture both the global subspace
structure and local linear structure exactly. And the standard deviations of LRWSG are
often small, which shows the stability of LRWSG.

(2) CLAR uses the logarithm determinant function to estimate the rank function,
which improves the performance of LRR. But compared with the algorithms which
consider both low rank and sparse property, CLAR performs worse. Depend on LRR,
NNLRS, LRRLC and SCLRR propose different sparsity constraint. Although the
weight matrices of sparse regularization term are different, the performance of these

Table 1. The classification accuracies and standard deviations (%) on ORL

Label LRR CLAR NNLRS LRRLC SCLRR LRWSG

10 % 63.83 ± 2.21 68.53 ± 1.88 72.76 ± 2.03 69.78 ± 1.86 75.93 ± 2.22 82.10 – 2.32
20 % 73.19 ± 2.54 80.45 ± 2.48 82.78 ± 2.69 80.98 ± 2.25 84.31 ± 2.77 87.63 – 2.22
30 % 78.00 ± 2.19 86.23 ± 2.71 87.96 ± 1.94 86.41 ± 2.55 88.89 ± 2.00 91.04 – 2.10
40 % 80.56 ± 2.42 89.96 ± 1.69 91.04 ± 1.87 89.98 ± 1.77 92.35 ± 1.64 93.17 – 1.98
50 % 82.03 ± 2.06 91.18 ± 1.47 92.55 ± 1.42 91.53 ± 1.49 93.50 ± 1.47 94.20 – 1.66
60 % 83.75 ± 2.94 93.06 ± 1.89 93.78 ± 1.65 93.28 ± 1.69 94.22 ± 1.61 94.75 – 2.08

Table 2. The classification accuracies and standard deviations (%) on EYaleB

Label LRR CLAR NNLRS LRRLC SCLRR LRWSG

10 % 86.43 ± 1.56 87.57 ± 1.47 92.64 ± 1.02 87.17 ± 1.41 88.90 ± 1.21 92.99 – 1.02
20 % 91.76 ± 1.37 93.01 ± 1.39 95.00 ± 0.79 92.65 ± 1.31 93.21 ± 1.31 95.36 – 0.73
30 % 93.13 ± 0.98 94.69 ± 0.79 96.02 ± 0.61 94.53 ± 0.72 94.98 ± 0.72 96.45 – 0.60
40 % 94.56 ± 0.88 96.25 ± 0.92 96.99 ± 0.61 96.13 ± 0.78 96.43 ± 0.67 97.32 – 0.60
50 % 95.14 ± 1.17 96.85 ± 0.79 97.28 ± 0.59 97.09 ± 0.57 97.41 ± 0.62 97.69 – 0.56
60 % 95.39 ± 0.83 97.50 ± 0.59 97.61 ± 0.70 97.60 ± 0.67 97.60 ± 0.67 97.96 – 0.63

Table 3. The classification accuracies and standard deviations (%) on AR

Label LRR CLAR NNLRS LRRLC SCLRR LRWSG

10 % 85.70 ± 1.78 84.06 ± 2.09 83.68 ± 1.81 85.83 ± 1.88 85.07 ± 1.88 93.53 – 1.40
20 % 92.34 ± 0.89 93.17 ± 1.02 91.63 ± 1.11 93.26 ± 1.01 93.24 ± 1.06 95.96 – 0.91
30 % 94.82 ± 1.04 96.01 ± 0.98 94.96 ± 1.14 95.84 ± 0.97 95.96 ± 0.90 97.19 – 0.99
40 % 95.88 ± 0.72 97.41 ± 0.63 96.99 ± 0.75 97.07 ± 0.58 97.48 ± 0.68 98.23 – 0.58
50 % 96.12 ± 0.88 97.63 ± 0.67 97.37 ± 0.80 97.18 ± 0.83 97.68 ± 0.77 98.35 – 0.64
60 % 96.81 ± 0.64 98.11 ± 0.71 98.24 ± 0.83 97.84 ± 0.80 98.31 ± 0.77 98.70 – 0.70
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three algorithms are similar. With exact rank estimation and informational weighted
sparse matrix, LRWSG performs better than these three algorithms.

(3) With the increase of the number of labeled samples, the classification accuracies
of each algorithm are also increased. When given more labeled samples, the label
information is more abundant, and each algorithm performs well. When given less
labeled samples, the classification becomes more difficult, but LRWSG can still get a
higher classification accuracies. For example, with 10 % labeled samples, the accuracy
of LRWSG is 82.10 % on ORL database, which is 6.17 % higher than the best result
obtained from other algorithms

5 Conclusion

This paper proposes a novel semi-supervised learning algorithm based on low rank and
weighted sparse graph (LRWSG), and applies it to face recognition. In order to capture
the data structure exactly, LRWSG makes use of the nuclear norm and Forbenius norm
to estimate the rank function, and adds a weighted sparse constraint with shape
interaction information into the object function. LADMAP is employed to solve the
optimization problem. And with an effective post-processing method, the graph is
constructed and used for semi-supervised classification. Experimental results on ORL,
EYaleB and AR databases show that the proposed approach achieves better classifi-
cation performance.
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