
Weighted Evaluation Framework
for Cross-Platform App Development

Approaches

Christoph Rieger1 and Tim A. Majchrzak2(B)

1 ERCIS, University of Münster, Münster, Germany
christoph.rieger@ercis.de

2 ERCIS, University of Agder, Kristiansand, Norway
tima@ercis.de

Abstract. Cross-platform app development is very challenging,
although only two platforms with significant market share (iOS and
Android) remain. While device fragmentation – multiple, only partly
compatible versions of a platform – has been complicating matters
already, the need to target different device classes is a new emergence.
Smartphones and tablets are relatively similar but app-enabled devices
such as TVs and even cars typically have differing capabilities. To facil-
itate usage of cross-platform app development approaches, we present
work on an evaluation framework. Our framework provides a set of up-to-
date evaluation criteria. Unlike prior work on this topic, it offers weighted
assessment to cater for varieties in targeted device classes. Besides moti-
vating and explaining the evaluation criteria, we present an exemplary
application for one development approach and, as benchmarks, for native
apps and Webapps. Our findings suggest that the proliferation of app-
enabled devices amplifies the need for improved development support.

Keywords: App · Mobile computing · Mobile application · Cross-
platform · Multi-platform · Evaluation

1 Introduction

Only two platforms for smartphone and tablet devices with significant mar-
ket share remain [67]. Even developing applications only for Apple’s iOS and
Google’s Android is challenging (cf. e.g. [41]). Essentially, apps need to be real-
ized separately for both, doubling the effort and prolonging the time-to-market
[29]. Moreover, device fragmentation – the parallel usage of several versions and
possibly vendor-specific additions – complicates development, particularly for
Android [17]. Cross-platform development frameworks promise to relieve devel-
opers from the hardships of considering idiosyncrasies of several platforms and
versions by providing uniform development interfaces [28].

As an additional challenge for developers, an increasing number of devices
is app-enabled. Arguably, most apps in today’s sense target the smartphone but
c© Springer International Publishing AG 2016
S. Wrycza (Ed.): SIGSAND/PLAIS 2016, LNBIP 264, pp. 18–39, 2016.
DOI: 10.1007/978-3-319-46642-2 2



Weighted Evaluation Framework for Cross-Platform Approaches 19

soon they will be routinely used on a much wider variety of platforms. Modern
entertainment technology such as TVs, BluRay players and game consoles are
capable of running apps. Cars are seen as a major target of tomorrow’s apps [66].
Wearable devices such as smartwatches and augmented reality glasses introduce
novel usage scenarios [39]. Although it can be rightfully doubted that a fridge
will be the main unit to install new apps on, it is likely that with the advent of
the Internet of Things (IoT) many more devices will run apps. In consequence,
catering for all device-specific particularities will become much harder.

Extending the already well-understood general requirements for cross-
platform app development, we suggest taking into account the multitude of
potential devices. Heitkötter, Hanschke and Majchrzak have proposed an evalu-
ation framework for cross-platform approaches in 2012 [27]. The extension [28]
is still very useful and routinely cited in current papers on cross-platform devel-
opment. However, even though the set of criteria they proposed is based on a
thorough foundation, the rapid proliferation of the field mandates an overhaul. In
addition, the former focus on smartphone and tablet devices ignores the plethora
of novel devices reaching the consumer market.

We build on the existing work on cross-platform technology. In particularly,
we use the existing set of criteria [28] as the foundation to provide an extended,
revised catalogue of them. This allows matching the criteria with the status quo
of mobile computing. An approach that is best suited for smartphone apps might
fail if apps also target entertainment systems. However, selecting a “catch-all”
solution might be inferior to a specific one if only handheld devices should be
supported. Therefore, we not only extend criteria but also embed them in a
framework that includes a weighting scheme. The assessment of platforms can
thereby be employed to make a per-scenario choice.

This paper makes several contributions. Firstly, it provides an evaluation
framework for cross-platform development frameworks in the domain of mobile
consumer devices. Evaluation criteria are explained in detail and the rationale
for employing them is highlighted. Secondly, we provide the means to use our
framework in an individual – particularly in a device-class specific – way by
proposing the integration of balanced weights. Thirdly, we demonstrate the fea-
sibility of our work with an exemplary evaluation. Accordingly, in Sect. 2 we
discuss related work and in Sect. 3 we give the necessary background. Based on
this foundation, Sect. 4 provides our catalogue of evaluation criteria. The exem-
plary use of the criteria for evaluation follows in Sect. 5. The findings are then
discussed in Sect. 6, which leads to a conclusion in Sect. 7.

2 Related Work

Since cross-platform development of apps has been a topic for a few years now,
there is plenty of scientific work on the topic in general. However, most papers
tackle single frameworks or have an experimental nature. Consequently, there
are relatively few papers that provide an overview, and even less than offer an
evaluation. A comprehensive summary of related literature regarding covered



20 C. Rieger and T.A. Majchrzak

Table 1. Literature on cross-platform app development tool evaluations

Paper Year Evaluated tools Main categories (number of
criteria)

Focal areas

[47] 2012 RhoMobile,
PhoneGap,
DragonRad,
MoSync

Platform compatibility (2),
development features (4),
general features (4), device
APIs (17)

Qualitative tool
comparison

[13] 2013 PhoneGap, jQuery
Mobile, Sencha
Touch, Titanium

Platform support, rich user
interface, back-end
communication, security,
app extensions, power
consumption, device
features, open-source

Performance
evaluation
(memory, CPU,
power
consumption)

[61] 2013 Titanium, Rhodes,
PhoneGap, Sencha
Touch

Functionality (8), usability
(6), developer support (4),
reliability/performance (4),
deployment (8)

Criteria definition
and qualitative
tool comparison

[68] 2013 none (cross-platform
approaches in
general)

Distribution, programming
languages, hardware &
data access, user interface,
perceived performance

Criteria definition

[11] 2014 MoSync, Titanium,
jQuery Mobile,
PhoneGap

License, community, API,
tutorials, complexity, IDE,
devices, GUI, knowledge

Qualitative tool
comparison and
apps with
animations

[10] 2015 PhoneGap, Titanium Battery consumption, device
resource usage

Evaluation of
battery
consumption

[16] 2015 PhoneGap, Titanium,
Adobe Air, MoSync

Tool capabilities (9),
performance (5), developer
support (2)

Performance
benchmarks and
development
experience
discussion

[32] 2015 AngularJS, jQuery
Mobile,
HTML5/JS,
RhoMobile,
PhoneGap, Sencha
Touch

Platform support (4),
development support (7),
deployment factors (6)

Criteria definition
and qualitative
tool comparison

tools, criteria and focal areas of comparison is given in Table 1. In the following,
we only comment on particularly notable details.

The papers by Heitkötter et al. [27,28] have been used as basis for further
research on apps. Examples include the definition of quality criteria for HTML5
frameworks [60], quantitative performance evaluations [65], and the creation of
the cross-platform development frameworks ICPMD [21] and MD2 [31].

Early papers have typically taken into account few criteria only (if at all [7,
57]) – e.g. only seven [47], and only from a developer’s perspective [11]. Few works



Weighted Evaluation Framework for Cross-Platform Approaches 21

take a rather comprehensive approach. For example, Ohrt and Turau [46] have
analysed nine tools with taking a developer focus and assessing user expectations.
They e.g. have had a look at programming language, compilation without SDK,
code completion, GUI designer, debugger, emulator, and extensibility with native
code, as well as launch time, app package size, and memory usage.

Many papers focus on particular aspects, e.g. animations [11], perfor-
mance [13], and energy consumption [10]. Nonetheless, most authors at least
provide criteria grouped into common categories [32,46,61,68]. One problem
typically found is a shortage of explanations (c.f. e.g. [32]).

It can be summed up that many authors set out to conquer the field of cross-
platform app development systematically. Without doubt, the papers shown in
Table 1 provide substantial contributions. However, the rapid proliferation of the
field and the only slowly emerging theory-building mandate further work. This
is also illustrated by many papers being published recently that – more or less
isolated – address issues also discussed in this article. To conclude the study of
related work, we highlight such works that address novel mobile devices.

Several papers address smart TVs. Typically, a combination of HTML5 and
JavaScript is proposed to enable cross-platform development. Sub-topics are
interactive ads [48], serious games [55], and 3D content [49]. Work on wear-
ables is more scarce [34]. Some authors have proposed middleware approaches
to achieve a broader device-span [9], in one case even on the hardware layer [70].
Despite much blurriness, smart homes could be a future area of cross-platform
research [33].

Contrasting the hype around multimedia novelties for cars, few scientific
papers tackle in-vehicle apps. Current discussions revolve around general chal-
lenges and potential applications [66], the integration of non-automotive appli-
cations into the automotive environment [54], and usability [51]. A few papers
provide experimental implementations of novel concepts such as a route plan-
ning app for head-up (HUD) displays [45], an Open Service Cloud for cars [15],
and “remote” human machine interfaces (HMI) [20]. While these papers help to
understand the possibilities of cars as a potential target of apps, they are far
away from actually discussing cross-platform challenges and chances.

3 Background

As a prerequisite for a differentiated evaluation of mobile platforms, we need
to categorize the variety of devices. From our understanding, mobile consumer
devices are designed to be used in absence of stationary workstation hardware
by non-business users. While formerly it was possible to categorise by operation
system, this is not feasible anymore: e.g. Windows 10 spans device classes. As no
such classification exists in scientific literature, we propose a simple subdivision.

This list is not meant as a proven categorisation but as a working scheme
for this paper. Thus, we refrain from an elaborated explanation. Within each
of these device classes, a multitude of devices based on different platforms has
emerged. Whereas Android and iOS have divided most of the market share of



22 C. Rieger and T.A. Majchrzak

Traditional general-purpose devices Novel mobile devices

Smartphone Smart TVs and entertainment devicesa

Tablets, including hybrids such as
netbooks and (so called) ultrabooks

Wearables

Smart watches, e.g. iWatch, Pebble,
Samsung Gear
Sensing devices, e.g. fitness trackers,
GPS watches
Smart glasses for augmented reality,
e.g. Google glass, MS Hololens

Vehicles, e.g. from BMW, Tesla, Ford

Smart home applicationsb

a While such devises impose themselves as being included in a categorisation as such,
they arguably are not mobile in the sense of all other devices named here.

b This field is still very fuzzy but rapid proliferation mandates naming it here already.

smartphone platforms amongst themselves [67], competition among the novel
mobile device platforms is high and no clear winners are foreseeable. A short
overview of this field is provided next.

App-enabled smart TVs are already present in 35 % of U.S. households [62]
and two approaches of development exist: middleware and frameworks. Over
90 % of connected TVs sold in Germany support the HTML5-based HbbTV stan-
dard that has evolved from previous approaches such as CE-HTML and Open
IPTV [26,62]. In addition, many individual frameworks emerged, for example the
open-source media centre Kodi/XBMC with various forks, Android TV, Tizen
OS for TV, and webOS [2,38,63,69].

With smartwatches, Google and Apple again compete for dominance with
their respective Android Wear and watchOS platforms. Pebble OS, Tizen OS,
and webOS are further players in this domain [6]. Whereas several vendors open-
sourced their operating system, few vendor-agnostic platforms exist such as
AsteroidOS [53]. Other wearable devices such as fitness trackers usually ship
with proprietary platforms, e.g. Microsoft Band and Firefox OS for Wearables.
Those devices often support pairing with smartphones of multiple platforms;
however app development is still limited. Vendors such as Fitbit and Garmin do
not even produce devices with modifiable operating system [6].

Concerning the upcoming connected cars, there are four approaches for devel-
oping in-vehicle apps [59]. First, Android Auto, Blackberry QNX, and Windows
Embedded are technologies that are rebranded by car manufacturers and run
native apps on the car’s head unit. Second, some cars allow access and control
of features such as door locks through a remote API. Examples include General
Motors, Airbiquity, and an unofficial API for Tesla cars [18]. Third, platforms
including Apple CarPlay and the MirrorLink alliance use screen mirroring of
apps running on the smartphone and displayed on the car’s screen [20]. This
approach honours security concerns by car manufacturers. Fourth, Dash Labs,
Mojio, Carvoyant, or Automatic connect to the on-board diagnostics port to



Weighted Evaluation Framework for Cross-Platform Approaches 23

interact with the car. Although this requires a Bluetooth dongle as additional
hardware, many cars can be supported that are not designed to be app-enabled
in the first place. In addition to this variety of approaches, distribution of apps
is a challenge because of the underlying fight for dominance between car manu-
facturers “owning” the car platform [59].

This overview of technologies shows similar characteristics of fragmenta-
tion as the smartphone market several years ago [28]. However, few cross-
platform approaches currently exist in the domain of novel mobile consumer
devices. Interestingly from a cross-platform perspective, many smart TV plat-
forms natively support app development using Web technologies such as HTML5
and JavaScript, thus being well-suited for cross-platform approaches. Some plat-
forms such as Android and Tizen have branches that run on multiple devices
from TVs to smartwatches, potentially allowing for a future development across
device class borders. Samsung TOAST is an early initiative to simultaneously
develop for Samsung Smart TV, the new Tizen platform and browsers, based on
the established Apache Cordova framework [56].

The other way around, smartwatches can be paired with more than one plat-
form [19]. Such apps that act as a (smartphone) device extension are current
practice and thus cross-platform development approaches must consider and sup-
port each combination of host and watch platform. However, some smartwatch
platforms are announcing stand-alone capabilities [25].

Several platforms claim to be the adequate open platforms for smart home
and IoT applications. Qualcomm’s AllJoyn, Intel’s IoTivity, Apple HomeKit,
and Google Brillo are the most important players that try to establish their
middleware as comprehensive solution [8].

Finally, for in-vehicle apps, no widespread cross-platform frameworks exist
due to the novelty of devices and a lack of platform accessibility. Potentially,
a middleware approach [15] might be an option to provide an open ground for
developers and at the same time guarantee security.

4 Criteria

In the following, we propose our categorisation framework. We start by discussing
methodological considerations before explaining the criteria.

4.1 General Considerations

As argued in Sect. 2, we have been inspired by existing evaluation frameworks.
Facilitating the requirements arising from the broad scope intended for our
framework and catering for the progress in the field in the meantime, we propose
numerous extensions and revisions. Most notably, we do not distinguish criteria
by two perspectives (infrastructure and development originally [28]) but by four.

The infrastructure perspective describes the general background and prospect
of a cross-platform development approach. The development perspective takes



24 C. Rieger and T.A. Majchrzak

into account aspects of using an approach for carrying out the actual program-
ming activities. In addition to these, we introduce the app perspective and the
usage perspective. The former offers an assessment of the capabilities of apps
that can be realized with a given approach. This not only leads to more clarity
with regard to the distinction of actual development activities and the outcome of
development but also has multi-device class support in mind. While development
might not differ much for different classes of devices, the capabilities of an app
might vary significantly. The usage perspective considers usability, ergonomic,
and performance aspects that are essential factors for user acceptance.

The categorisation into four perspective allows focussing on relevant aspects
for particular needs. These needs might arise from the targeted device class(es)
but may as well come from other sources. An example could be a specific focus
on business apps [43]. In the following, we provide the rationale for each of our
criteria following the above proposed categorisation. Besides referencing sources
already discussed, we provide additional evidence where appropriate1.

4.2 Infrastructure Perspective

(I1) License: The license under which a framework is published is essential
for the type of product to develop. It needs to be assessed whether a developer
is free to create commercial apps, for example when using open source software
[11,13,47]. In addition, the pricing model needs to be considered. A framework
could be freely distributed, or require one-time or regular license payments with
regard to the number of developers, projects, or as a flat fee [32,61].

(I2) Supported Target Platforms: The number and importance of sup-
ported mobile platforms within a device class is a major concern for choosing
a cross-platform approach [11,47]. Furthermore, support varies regarding differ-
ent versions of each mobile operating system. The most recent version provides
the newest features and its support is important to reach early adopters of a
new technology [5]. However, the majority of users will use an old version of the
system due to hardware limitations or slow update behaviour by users or ven-
dors [17]. Finally, it needs to be considered whether multiple device classes have
to be bridged, for example a combination of smart TV and tablet application.

(I3) Supported Development Platforms: Flexibility regarding sup-
ported development platforms is beneficial for heterogeneous teams in which
developers are accustomed to specific hardware and software such as an devel-
opment environment [47] (see also criterion D1). Moreover, the role within a
team such as UI or UX design may require the approach to support multiple
platforms.

(I4) Distribution Channels: With proprietary platform- or vendor-specific
app stores typical for publication, the number of users who can be reached is
critical. It needs to be weighted against fixed and variable costs of app store
accounts and app publishing. The ease of the publication process itself also

1 However, we do not cite [28] for each single criterion originating from this work.



Weighted Evaluation Framework for Cross-Platform Approaches 25

needs to be considered, regarding e.g. the average duration for initial app place-
ment and update distribution as well as the strictness and detailedness of the
review process [68]. Cross-platform frameworks vary by the degree of compati-
bility with app store restrictions and submission guidelines [16,61]. Further app
store integrations include app rating to reach a better app store ranking as well
as automatic update notifications within the app for rolling out updates fast [32].

(I5) Monetisation: From a business perspective, the possibility and the
complexity of selling the app itself and subsequent in-app purchases need to be
considered as well as the availability of advertisement [16]. These features need
to be traded off against direct costs and commissions to the app store opera-
tor. Again, cross-platform development frameworks can support this aspect, for
example by providing interfaces to payment providers or advertising networks.

(I6) Global App Distribution: Typically, a global distribution of apps
is desired – unless specific reasons for restrictions exist. Approaches can offer
built-in support for internalisation and localisation to create and distribute app
versions targeted (and potentially restricted) to specific geographic regions. In
addition, translation capabilities allow for easy delivery of multi-language con-
tent and provide format conversions for dates, currencies and location particu-
larities [61].

(I7) Long-term Feasibility: Choosing an approach might be an impor-
tant strategic decision considering the significant initial investment for training
or hiring developers as well as the risk of technology lock-in, particularly for
smaller companies. The maturity and stability of a framework can be evaluated
concerning the historical and expected backwards incompatible changes of major
releases. Other indicators are short update cycles, regular bug-fixes, and security
updates. In an active community, developers exchange knowledge to solve issues.
Ideally, several commercial supporters back the project with financial resources
and steady contribution. Costs for professional support inquiries need also be
considered, potentially increasing the attractiveness of a promising open-source
project while safeguarding efficient solutions to development issues [32,61].

4.3 Development Perspective

(D1) Development Environment: The maturity and features of an inte-
grated development environment (IDE) heavily influence development produc-
tivity and speed. Tool support includes functionalities of the IDE such as auto-
completion, debugging tools, and an emulator to enable rapid app development
cycles [11,16,32,47,61]. In addition to the IDE typically associated with the
cross-platform approach, the freedom to use accustomed workflows, e.g. choose
a preferred IDE, lowers the initial set-up effort for additional dependencies such
as runtime environments or software development kits (SDK) [61].

(D2) Preparation Time: The learning curve, i.e. the subjective progress of
a developer while exploring the capabilities and best practices of the approach,
should foster rapid initial progress. To lower the entry barrier, the number and
type of required technology stack and programming languages need to be con-
sidered [11,47,61,68], e.g. using known paradigms to further reduce the initial



26 C. Rieger and T.A. Majchrzak

learning efforts [11]. With unique benefits and characteristics, the quality of
API documentation is also of major importance. “Getting started” guides, tuto-
rials, and code examples initially clarify the framework’s features and structure,
whereas a corpus of best practices, user-comments, and technical specifications
support in solving issues over the course of development [16,61].

(D3) Scalability: Scalability refers to the modularisation capabilities of the
framework and generated apps in larg-scale development projects. Partitioning
code in subcomponents and architectural design decisions such as the well-known
Model-View-Controller pattern has implications on the app structure. Thus, the
number of developers can be increased while extending the app’s functional-
ity [32,47]. However, a modular framework itself can guide and support this
division of labour. With specified interfaces and interactions between the com-
ponents, developers can specialize themselves on few relevant components.

(D4) Development Process Fit: Departing from the traditional approach
of implementing software from a fixed and comprehensive specification, a variety
of methods with agile characteristic exist today. For such projects, the cross-
platform approach can be evaluated regarding the effort to create the minimum
viable product, e.g. the amount of boilerplate code and initial configuration, as
well as the effort to subsequently modify its scope. This criterion also relates
to the organisational aspect of scalability in terms of developer specialisation.
In contrast to full-stack developers in small projects, modularizing development
using roles can be supported through tailored views or specialized tools [64].

(D5) UI Design Approach: UI development is a major concern for cross-
platform approaches. Graphical user interfaces are highly platform-specific and
often just covered by a default appearance defined by the framework [29]. In
addition, a separate WYSIWYG editor to develop appealing interfaces for mul-
tiple devices can be beneficial and increases the speed of development compared
to constantly deploying the full app to a device or an emulator.

(D6) Testing Support: App logic and user interfaces need to be tested
with established concepts such as system and unit tests [32,61]. To test context-
sensitive mobile scenarios more authentically, external influences (such as bad
connectivity) may be simulated [42]. Furthermore, possibilities of monitoring
the app at runtime improve the testability, e.g. providing a developer console,
meaningful error reporting, and logging functionalities for app-specific and sys-
tem events. Tool support may also include remote debugging on a connected
device rather than emulator environments, test coverage visualisation and met-
rics [32].

(D7) Deployment Support: Build toolchain support immensely simpli-
fies the deployment process, i.e. generating individual packages for all targeted
platforms. Approaches vary from requiring all native SDKs to external build
services and cloud-based techniques [32,61]. Sophisticated projects additionally
use continuous integration platforms to automate testing. Frameworks can be
explicitly designed to integrate with such toolchains. Regarding production, the
framework might also offer optimised build options (e.g. minified code) and app
store integrations to automatically publish updates [32].



Weighted Evaluation Framework for Cross-Platform Approaches 27

(D8) Maintainability: In contrast to (I7), maintainability deals with the
evolution of a code base over time [61] and difficult to quantify. Lines of code
(LOC) for a specified reference app may be used for comparison with the assump-
tion that less LOC are easier to support regarding readability of source code,
amount of training and familiarisation, etc. This concept is similar to program-
ming languages themselves, where so-called gearing factors try to compare the
amount of code per unit of functionality [23]. Advanced maintainability metrics
are hard to apply due to the heterogeneity and varying complexity of frame-
works, especially in case of apps composed of different programming languages.
Furthermore, the reusability of source code across development projects can be
evaluated, for instance concerning the portability to other software projects [61].

(D9) Extensibility: Special requirements may introduce the need for fea-
tures that go beyond the core of the framework. These might not be put into
practice with high priority. Therefore, the possibility to extend the framework
with custom components and third-party libraries should be evaluated. Exam-
ples for such extensions include additional UI elements, functionalities to access
device features, and solutions to common challenges such as data transfer [32,47].

(D10) Integrating Native Code: For some applications, running native
code within the application is a requirement. This seemingly invalidates the
idea of cross-platform development; nonetheless, it can be beneficial: Previously
existing code can be reused, e.g. when migrating apps to a cross-platform devel-
opment approach and replacing platform-specific code over time. Also, native
platform APIs might enable access to platform functionalities and device fea-
tures currently not available on the framework’s level of abstraction [47,61].

(D11) Speed of Development: Rapid development is influenced by the
amount of boilerplate code necessary for functional app skeletons (cf. [30]) and
the availability of typical app functions such as user authentication. Assum-
ing salaries to be independent of programming language proficiency, develop-
ment speed directly influences the variable costs and ultimately the return-on-
investment.

4.4 App Perspective

(A1) Access to Device-specific Hardware: For cross-platform
approaches, the coverage of platform- and device-specific hardware is of supreme
importance [11,13,16,32,61]. Especially regarding the capabilities of novel
mobile devices, a plethora of device hardware is present today. This includes sen-
sors such as camera, microphone, GPS, accelerometer, gyroscope, magnetometer,
temperature sensor, and heart rate monitor. In addition, cyberphysical systems
enable bidirectional interaction that can modify the environment through actu-
ators. The set of individual features is evaluated according to the framework’s
documentation.

(A2) Access to Platform-specific Functionality: Regarding the soft-
ware side of the various mobile platforms, functionalities include a persistence
layer such as the file system and access to a database on the device, contact lists,
information on the network connection, and battery status [16,32]. In addition,



28 C. Rieger and T.A. Majchrzak

in-app browser support may be desirable for fetching additional content from
the Internet without leaving the app [32]. Advanced features like monitoring or
push notifications can be realised using background services [61].

(A3) Support for Connected Devices: Current wearable devices and
also sensor/actuator networks of cyberphysical systems often require to be cou-
pled to a respective master device (e.g. a smartphone). This trend of “device
extensions” needs to be evaluated regarding viable device combinations. More
specific this includes the level of access to coupled device data and sensors as
well as additional user interfaces. This may be trivial if the platform provides
a layer of abstraction that exposes the coupled device similar to other device
components. Yet, in many cases the cross-platform approach needs to take care
of this additional complexity.

(A4) Input Device Heterogeneity: The input device criterion evaluates
the support of the approach with regard to the variety of input devices that
can be used to interact with the app. This includes traditional devices such as
keyboard and mouse as well as (multi-) touch screens, voice recognition, remote
controls, hardware buttons and more. Each of these devices can process many
interaction mechanisms, for example multi-touch screens reacting to gestures
such as different types of taps, swipes, pinches, pressure, orientation changes
etc., all of which the cross-platform tool needs to make available to the app
developer.

(A5) Output Device Heterogeneity: Mobile devices provide a huge vari-
ety of different output devices differing in device size, resolution, format (e.g.
round smartwatches), colour palette, frame rate (e.g. E-Ink screens), and opac-
ity (e.g. augmented reality projections). This poses challenges as adaptability is
already a major challenge for traditional devices [1]. In addition, the app has to
adapt to device class-specific context changes, thereby realizing well-understood
design ideals [58] such as day/night-mode appearances for in-vehicle apps.

(A6) Application Life Cycle: This criterion refers to how far a framework
supports the life-cycle inherent to an app. Platforms may differ in starting,
pausing, continuing, and exiting an app [61]. Additional differences arise from
the life cycle of individual views and view elements.

(A7) Business Integration: To integrate with the overall business, support
for data exchange protocols, serialisation, and multiple data formats are often
required [13]. Apps may communicate with existing Web service back-ends for
data storage and processing, or initiate inter-app communication. E.g., business
processes often require collaboration of different user roles. Business integration
also refers to customizability, e.g. being adaptable to a corporate identity [61].

(A8) Security: Frameworks can support the development of secure apps
on several levels. First, mobile platforms are usually restrictive regarding access
permissions. Requesting permissions on demand increases not only the perceived
security of an app. Second, data loss can be avoided by using data encryption
mechanisms on the device as well as secure data transfer protocols against eaves-
dropping [13,32]. Third, the framework may provide user input validation and
prevent cross-site forgery and code injection [32].



Weighted Evaluation Framework for Cross-Platform Approaches 29

(A9) Fallback Handling: Considering the device and platform heterogene-
ity of (A1)–(A5), intelligent fallback mechanisms aid in case individual features
are unsupported or restricted. As a näıve approach, the user may be redirected to
a Web page. Sophisticated actions include graceful degradation techniques with
simpler representations [22], or alternative functions to fulfil the user’s task.

4.5 Usage Perspective

(U1) Look and Feel: This criterion considers whether available UI elements
have a native look & feel or rather behave like a Web site [61]. The set of
elements can be evaluated according to the human interface guidelines of the
respective platform. Particularly, rich user interfaces with 2D/3D animation and
multimedia features are challenging for cross-platform tools [13]. In addition, it
should be considered to which degree a framework supports the platform-specific
usage philosophy, e.g. the position of navigation bars, scrolling, and gestures [61].

(U2) Performance: Application speed, stability, and responsiveness of the
app on user interaction are essential performance aspects. Apart from the subjec-
tive user experience, the speed at start-up, after interruptions and for shut-down
can be measured [16]. Moreover, resource usage can be assessed, e.g. CPU, RAM
and battery utilisation at runtime, or download size [10,11,13,61].

(U3) Usage Patterns: Apps are frequently used for a short amount of
time and are likely to be interrupted. Users want an “instant on” experience
and continue where they left the app. To match usage patterns, apps have to
integrate into personal workflows for information processing such as sharing
with other apps or saving to persistent storage, and community interactions
such as messaging, e-mail, and social media. For some use cases, support for
synchronisation of app data across multiple devices of the user for seamless
context switching is beneficial. In addition, notification centres of the platform
are gaining importance for app interaction.

(U4) User Management: Cross-platform frameworks may support dif-
ferent types of user handling, reaching from purely local apps to user accounts
across multiple devices and role-based authentication. Authentication may there-
fore be performed in-app or server-based, and potentially connected to session
management. In addition, mobile devices may provide various login mechanisms,
including traditional passwords, gestures, and biometric information such as fin-
gerprints, voice recognition, or other characteristics [40].

5 Evaluation

Due to their recent emergence, cross-platform approaches barely exist for novel
mobile device classes (cf. Sect. 2). Therefore, the following evaluation compares
PhoneGap to Web apps and native applications with regard to traditional smart-
phone mobile devices. PhoneGap was chosen due to its perennial popularity as
leading cross-platform development tool [12]. The evaluation is by no means
a comprehensive survey of the cross-platform framework itself (as provided



30 C. Rieger and T.A. Majchrzak

by [16,32]) but should serve as exemplary comparison in order to discuss our
approach of weighted criteria evaluation. Thereby, this evaluation particularly
serves as a benchmark for our evaluation framework.

5.1 Weight Profiles

To cater for differences across heterogeneous and evolving mobile device classes,
our approach to cross-platform tool evaluation applies a weighting mechanism.
Each of the 31 criteria receives between 1 and 7 points with a total of 100 points
assigned (not necessarily distributed equally across the categories), constituting
the so-called weight profile. Each criterion is evaluated on a scale from 0 (criterion
unsatisfied) to 5 (optimally fulfilled). The weighting points directly translate to
percental values used in calculating the weighted score. A weight profile reflects
the requirements of a specific device class regarding cross-platform development.
It can be individually adapted to the future evolution of the mobile ecosystems,
as well as changed to reflect particular needs, e.g. regarding the background
of developers. The proposed weight profiles for the device classes presented in
Sect. 3 are depicted in Table 2 along with an exemplary evaluation.

In the following, we focus on the smartphone device class, which can be
backed with empirical and theoretical work. Studies have shown that cross-
platform approaches are often developer-oriented [12,52]. From an infrastructure
perspective, this means that free and open approaches are considered particularly
important. Long-term feasibility benefits from a stabilized smartphone ecosys-
tem with Android and iOS as main players [67]. Distribution channels are mostly
limited to platform-specific app stores with a broad set of features.

App developers want to use existing standards and previous knowledge for
fast-paced development [12,52]. In contrast, the current practice of smartphone
apps apparently does not cover large development teams. As a result, organ-
isational aspects such as scalability, maintainability, and development process
integration are not requested by practitioners [52]. UI design seems to be an
ongoing challenge for cross-platform frameworks and may even become more
important for “standing out from the mass of apps” [1].

On the application side, access to a broad rage of device functionalities is
requested, while support for smartphone screens as both input and output device
has matured [12]. Apps are still rather developed for social and communication
purposes [37], thus business integration and security issues are not prioritized.

With mobile usage soon surpassing desktop usage [37], performance and
native look and feel remain important topics for smartphone development.
Finally, user management and usage patterns play an inferior role on smart-
phones as these are mainly designed for single-person usage.

5.2 Web Apps

Web apps are mobile-optimized Web sites built with HTML5 and
JavaScript (JS), and executed within the smartphone’s browser. They rely on



Weighted Evaluation Framework for Cross-Platform Approaches 31

Table 2. Comparison of approaches and device class weight profiles

Smartphone comparison Category weights

Criterion W
ei

g
h
t

(%
)

W
eb

a
p
p
s

P
h
o
n
eG

a
p

N
a
ti

v
e

a
p
p
s

T
a
b
le

ts

E
n
te

rt
a
in

m
en

t

W
ea

ra
b
le

s

V
eh

ic
le

S
m

a
rt

h
o
m

e

I1: License 6 5 5 5 5 6 5 3 5

I2: Target platforms 7 5 5 1 5 6 7 4 7

I3: Development platforms 2 5 5 2 2 2 1 1 1

I4: Distribution channels 2 5 3 4 2 3 4 3 3

I5: Monetisation 2 0 3 5 2 1 1 2 2

I6: Global distribution 2 1 3 5 2 2 2 0 1

I7: Long-term feasibility 5 5 5 4 5 3 3 6 5

D1: Dev. environment 7 4 5 5 7 7 5 5 6

D2: Ramp-up time 7 5 4 3 7 7 5 1 5

D3: Scalability 2 3 3 3 2 3 2 3 2

D4: Development process fit 2 3 4 2 2 3 1 4 2

D5: UI design 4 3 3 4 4 5 5 6 3

D6: Test support 3 3 4 5 3 3 4 7 3

D7: Deployment support 3 5 5 3 3 3 4 5 2

D8: Maintainability 2 2 4 2 2 2 1 5 2

D9: Framework extensibility 2 5 5 0 2 2 2 1 2

D10: Native extensibility 2 0 3 5 2 2 1 0 0

D11: Speed of development 4 2 3 0 4 3 3 2 4

A1: Hardware access 5 2 4 5 3 1 6 4 7

A2: Platform functionality 5 2 4 5 5 3 2 3 3

A3: Connected devices 3 0 0 5 2 1 7 4 7

A4: Input heterogeneity 1 4 4 5 3 3 2 2 2

A5: Output heterogeneity 1 4 4 5 1 1 6 3 4

A6: App life cycle 3 0 4 5 3 3 3 3 2

A7: Business integration 2 3 3 5 3 3 1 2 1

A8: Security 3 0 0 1 4 1 3 7 5

A9: Fallback Handling 2 2 4 0 1 4 3 2 1

U1: Look and feel 4 1 3 5 4 2 4 5 3

U2: Performance 4 3 2 5 4 6 3 3 2

U3: Usage patterns 2 0 1 2 4 4 4 3 4

U4: User management 1 0 0 0 2 5 0 1 4

Weighted score 2.99 3.66 3.56



32 C. Rieger and T.A. Majchrzak

open standards and are highly cross-platform compatible while using Web devel-
opment tools (I1–I4). While profiting from an immense community of developers,
“app-like” behaviour needs to be implemented manually and distribution cannot
be controlled (I5–I6).

Only Web development skills are required; many tutorials and profound tool
support is available (D1–D2). The universality of the Web at the same time
limits the application to apps, e.g. requiring boilerplate code or providing no
guidance on the structure of source code and development (D3–D5). Testabil-
ity is problematic: desktop browsers emulate the respective mobile counterpart
inconsistently and mobile in-browser debugging is hardly supported (D6). Var-
ious libraries simplify development, yet native code is unsupported (D9–D10).
As a result, Web apps are rather easy to create and modify using established
toolchains. However, all aspects regarding app life cycle, integration, security,
and fallback have to be built manually without platform-specific abstraction
(D7–D8, D11, A6–A9).

Accessing device components is possible only via HTML5 APIs such as Media
Capture Stream, which are scarcely supported by mobile browsers (A1–A2) [44].
As the execution happens in the browser, keyboard and gesture support are well
established through JS events but limited to Web page behaviour and browser
controls (A3, U1). Furthermore, CSS can be used customise the design and
target different outputs devices, with the exception of connected devices (A4–
A5, A7). Finally, usage patterns and user management are completely up to the
developer, whereas the overall performance depends on the smartphone browser
and is likely be optimized by the platform provider (U2–U4).

5.3 PhoneGap

PhoneGap was initially developed around 2009 and is still the top-used cross-
platform development tool [12,14]. Freely available under the permissive Apache
License, PhoneGap targets all major smartphone platforms in various ver-
sions (I1). Technically, apps are developed using HTML5/JS/CSS and executed
within a Web view wrapper component without browser controls. This allows
installing the apps and providing API access to native functionality. Thus, the
framework does not adhere to specific platform guidelines but provides a general
mobile appearance that can be distributed through any app store but without
advanced features such as in-app purchases (I4–I6). Its long existence and sta-
ble API has created a large community that in turn supports the long-term
perspective (I7).

Similar to Web apps, developers can freely choose their preferred Web devel-
opment environment and profit from previous knowledge. The framework’s struc-
ture requires little knowledge and it is well documented (I3, D1–D2). PhoneGap
generates a running app skeleton and file structure but does not impose further
implications on the development process (D3–D5). All app functionality needs
to be implemented manually (A8–A9, U3–U4). Outstanding features are the
cloud deployment that requires no locally installed SDKs as well as the remote
debugging interface that connects to real devices (D6–D7). Maintainability is



Weighted Evaluation Framework for Cross-Platform Approaches 33

enabled through the extensive and stable API abstracting from platform differ-
ences and increasing the speed of development (D8, D11, A1–A2). In addition,
numerous plug-ins exist, extending the functionality and covering many of the
aforementioned drawbacks, also allowing the execution of native code (D9–D10).

Regarding native behaviour and appearance, the Event API provides access
to life cycle events and platform settings can be retrieved via the Device API
to target specific platforms (A6–A7, A9, U1). Support for input and output is
similar to Web apps and likewise restricted to the main device (A3–A5). The
app performance depends again on the smartphone’s browser capabilities with
additional framework overhead (U2) [4,50].

5.4 Native Apps

Any cross-platform development approach can be benchmarked against native
app development. While it naturally is closest to a platform’s capabilities, devel-
oping natively not necessarily is the most efficient or elegant option.

Platform SDKs are freely available and fully integrated into the respective
app stores. The latter provide a broad set of features for distribution and mon-
etisation (I1, I4–I6). Whereas development might be possible with several tech-
nologies, the target platforms are limited to one (I2–I3).

iOS and Android as prevailing platforms and can be treated as reliable on
long-term [67]. Platforms typically require specific programming language knowl-
edge, although extensive documentation and community support are available
(D2). Moreover, a full ecosystem with tool support for all phases of development
is usually provided, with varying degrees of alternatives (D1, D5–D7).

The flexibility of implementation comes at the cost of few guidelines on struc-
turing and subdividing development work (D3–D4). The platforms usually do
not provide support for recurring programming tasks (A8–A9, U3–U4). Obvi-
ously, the speed of developing multiple native apps is unmatched low (D11).

Native apps can access all possible features of a given platform (A1–A7). Ulti-
mately, a fully native appearance and behaviour as well as performance without
runtime overhead can only be reached with native apps (A1–A2).

6 Discussion

The framework presented in the prior sections should provide a step towards
a sound theory of cross-platform app development. However, it is by no means
static. In fact, we hope it can be the foundation for application and extension by
others. Thereby, the framework can stay at eye level with further developments
in the field. Specifically, depending on the emergence of novel device classes and
the possible proliferation of further kinds of devices, revisions can be applied.

In the following we reflect on our work, starting with a synthesis of findings.
Our criteria have proven to be useful and applicable in the exemplary use. Cat-
egorisation into four perspectives worked well, although it remains to be seen



34 C. Rieger and T.A. Majchrzak

whether an even finer scheme might be advisable to cater for future develop-
ments. While the weighting profiles will need further tweaking (see also below),
they lead to producible results. In particular, the smartphone profile has proven
to be feasible. As could be expected and is widely affirmed by related literature
(cf. Sects. 2 and 3), PhoneGap as the leading approach is better suited for cross-
platform development that targets smartphones than pure native or Web apps.
It should be noted that native development not simply satisfies all criteria but
cross-platform capabilities; working natively can have its own overhead.

The additional weight profiles for now have to be seen as proposals. They
should nonetheless be reasonable starting points. In particular, they are well-
suited to address idiosyncrasies of specific device classes, e.g. to put weight on
security for apps in cars or smart homes.

The tablet profile is rather similar to smartphones, particularly from the
infrastructure and the development perspective. Multi-user scenarios and busi-
ness integration need more attention, and additional means of input play a role.
Quite differently, the entertainment profile has less business implications and
is less focused on security, sensors and platform-features. Performance require-
ments might add complexity and support for multiple users is a prerequisite.

For the wearable profile, yet other specialities need to be taken into account.
Deploying to and testing on devices is quite hard. User interfaces differ much
from platform to platform. Apps typically are very small and must perform with
low resource utilisation. At the same time, usage scenarios are simpler and due
to high-fluctuation of devices a long-term focus needs to be less emphasized.

Security is of foremost concern in the vehicle profile. Due to the field’s fuzzi-
ness, it shares similarities with the wearable profile but has more focus on profes-
sional software development. Most blurry is the smart home profile, which needs
to address the heterogeneity of possible devices along with security concerns.

A number of open questions can be raised. While we deem the evaluation
framework to be readily usable, particularly due to its solid literature foundation,
the weighting remains open for revisions. Future research will scrutinize whether
the device classes have been chosen wisely. There is no easy answer to this since
new kinds of devices might be designed with a focus on app-enablement – or not.
For example, Tesla announced an own SDK but current work obviously has taken
another direction due to security concerns [36]. Moreover, it is hard to predict
market development. For example, Android Wear [3] might unify development
for Wearables or at least consolidate different streams.

It remains to be seen whether the success of Web technology (including frame-
works such as PhoneGap) will be repeated for new device classes. On the one
hand, devices with hardware that is not powerful enough to run a WebKit-Engine
such as some watches might require different approaches. Other devices, such as
arguably fitness trackers, do not even pose a platform that would be comparable
to Android or iOS. On the other hand, Web technology might be the bridging
element for heterogeneity. It is still very hard to image the proper abstraction
for devices that fall under the umbrella of smart home technology.



Weighted Evaluation Framework for Cross-Platform Approaches 35

Furthermore, it needs to be questioned whether for all device classes full
ecosystems as for smartphones will be established. A Cloud-based middleware,
mirroring, or other “remote” approaches could solve issues such as low perfor-
mance, hardware heterogeneity and security without even relying on devices
directly. Moreover, device classes might converge. Modern fitness trackers have
smartwatch functionality; a smartwatch was recently hacked to run applications
only imaginable on smartphones before [35]. So called instant apps can be run
without installation [24] and might also contribute to future changes.

Due to the breadth of our work and also due to the novelty of some of
the tackled topics, this paper is bound to limitations. While we built upon the
literature both for the derivation of criteria and for their exemplary usage, we
have not evaluated our work empirically. This is particularly an issue for the
weight profiles, which need to be assessed based on the input from practitioners.
Moreover, we have made assumptions about the future, most notably considering
device classes. It seems unlikely but it might turn out that e.g. app-enabled cars
will not gain importance. Even if they do, it is not given that cars (or other
device classes) will allow for reasonable cross-platform app development support.
Looking towards the future is part of our work but a boundary at the same time.

The limitations do not impede the value of our work, though. In fact, in
combination with the above discussed open questions they provide the founda-
tion for our future work. Writing this paper has been more than setting out to
refresh the view on the topic of mobile computing. It has brought up a host of
new ideas for us, particularly revolving around the differences in device classes.
We will strive to provide a unified understanding while honouring the particu-
lar strengths and possibilities offered by devices. A major source of our future
work will be the above mentioned limitations. As a next step, we will work on a
broader evaluation of current approaches based on our criteria. Moreover, we will
assess possibilities how to get practitioners’ feedback on the framework, ideally
leading to an empiric validation of our work. This will include a revision of the
weights and more concrete advice on approach choice. In particular, we would
like to provide recommendations in form of case study-like scenarios for future
applications. Finally, we will also seek to make further theory contributions,
especially concerning an abstraction from device classes.

7 Conclusion

In this paper, we have presented work on an extended cross-platform app devel-
opment evaluation framework. It extends existing papers and revised the criteria
formerly proposed. In particularly, it takes into account differences in the increas-
ing number of device classes and provides a weighted evaluation. We have not
only comprehensively introduced our framework but given an exemplary evalua-
tion. The findings suggest that the framework is well-suited. Nonetheless, much
work remains due to the novelty and breadth of the field.



36 C. Rieger and T.A. Majchrzak

References

1. Amatya, S., Kurti, A.: Cross-platform mobile development: challenges and oppor-
tunities. In: Trajkovik, V., Anastas, M. (eds.) ICT Innovations 2013. AISC, vol.
231, pp. 219–229. Springer, Heidelberg (2014). doi:10.1007/978-3-319-01466-1 21

2. Android TV. https://www.android.com/tv/
3. Android Wear 2.0 developer preview. https://developer.android.com/wear/

preview/index.html
4. Apache Cordova documentation (2016). https://cordova.apache.org/docs/en/
5. Beal, G.M., Bohlen, J.M.: The Diffusion Process. Agricultural Experiment Station.

Iowa State College, Ames (1957)
6. Bouhnick, G.: A list of all operating systems running on smart-

watches [wearables] (2015). http://www.mobilespoon.net/2015/03/
a-list-of-all-operating-systems-running.html

7. Rahul Raj, C.P., Tolety, S.B.: A study on approaches to build cross-platform mobile
applications and criteria to select appropriate approach. In: 2012 Annual IEEE
India Conference (INDICON), pp. 625–629 (2012)

8. Carter, J.: Which is the best internet of things platform? (2015). http://www.
techradar.com/news/-1302416

9. Chmielewski, J.: Towards an architecture for future internet applications. In: Galis,
A., Gavras, A. (eds.) FIA 2013. LNCS, vol. 7858, pp. 214–219. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38082-2 18

10. Ciman, M., Gaggi, O.: Measuring energy consumption of cross-platform frame-
works for mobile applications. In: Monfort, V., Krempels, K.-H. (eds.) WEBIST
2014. LNBIP, vol. 226, pp. 331–346. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-27030-2 21

11. Ciman, M., Gaggi, O., Gonzo, N.: Cross-platform mobile development: a study
on apps with animations. In: Proceedings of the ACM Symposium on Applied
Computing (2014)

12. Cross-platform tools 2015 (2015). http://www.visionmobile.com/product/
cross-platform-tools-2015/

13. Dalmasso, I., Datta, S.K., Bonnet, C., Nikaein, N.: Survey, comparison and eval-
uation of cross platform mobile application development tools. In: Proceedings of
the 9th IWCMC (2013)

14. Davis, L.: Phonegap: people’s choice winner at web 2.0 expo launch pad (2009).
http://readwrite.com/2009/04/02/phone gap

15. Deindl, M., Roscher, M., Birkmeier, M.: An architecture vision for an open service
cloud for the smart car. In: Filho, W.L., Kotter, R. (eds.) Mobility in Europe,
Green Energy and Technology, vol. 203, pp. 281–295. Springer, Heidelberg (2015)

16. Dhillon, S., Mahmoud, Q.H.: An evaluation framework for cross-platform mobile
application development tools. Softw. Prac. Exp. 45(10), 1331–1357 (2015)

17. Dobie, A.: Why you’ll never have the latest version of android (2012). http://www.
androidcentral.com/why-you-ll-never-have-latest-version-android

18. Dorr, T.: Tesla Model S JSON API (2016). http://docs.timdorr.apiary.io
19. Doud, A.: How important is cross-platform wearable support? (2015). http://

pocketnow.com/2015/05/10/cross-platform-wearable-support
20. Durach, S., Higgen, U., Huebler, M.: Smart automotive apps: an approach to

context-driven applications. In: SAE-China, FISITA (ed.) Proceedings of the
FISITA 2012 World Automotive Congress. LNEE 2012, vol. 200, pp. 187–195.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-33838-0 17

http://dx.doi.org/10.1007/978-3-319-01466-1_21
https://www.android.com/tv/
https://developer.android.com/wear/preview/index.html
https://developer.android.com/wear/preview/index.html
https://cordova.apache.org/docs/en/
http://www.mobilespoon.net/2015/03/a-list-of-all-operating-systems-running.html
http://www.mobilespoon.net/2015/03/a-list-of-all-operating-systems-running.html
http://www.techradar.com/news/-1302416
http://www.techradar.com/news/-1302416
http://dx.doi.org/10.1007/978-3-642-38082-2_18
http://dx.doi.org/10.1007/978-3-319-27030-2_21
http://dx.doi.org/10.1007/978-3-319-27030-2_21
http://www.visionmobile.com/product/cross-platform-tools-2015/
http://www.visionmobile.com/product/cross-platform-tools-2015/
http://readwrite.com/2009/04/02/phone_gap
http://www.androidcentral.com/why-you-ll-never-have-latest-version-android
http://www.androidcentral.com/why-you-ll-never-have-latest-version-android
http://docs.timdorr.apiary.io
http://pocketnow.com/2015/05/10/cross-platform-wearable-support
http://pocketnow.com/2015/05/10/cross-platform-wearable-support
http://dx.doi.org/10.1007/978-3-642-33838-0_17


Weighted Evaluation Framework for Cross-Platform Approaches 37

21. El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.: ICPMD: integrated
cross-platform mobile development solution. In: Proceedings of the 9th ICCES
(2014)

22. Ernsting, J., Rieger, C., Wrede, F., Majchrzak, T.A.: Refining a reference archi-
tecture for model-driven business apps. In: Proceedings of the 12th WEBIST, pp.
307–316. SciTePress (2016)

23. Function point languages table: Version 5.0 (2009). http://www.qsm.com/
resources/function-point-languages-table

24. Ganapathy, S.: Introducing android instant apps. http://android-developers.
blogspot.no/2016/05/android-instant-apps-evolving-apps.html

25. Google Inc.: Android wear 2.0 developer preview. https://developer.android.com/
wear/preview/index.html

26. HbbTV overview (2016). https://www.hbbtv.org/overview/
27. Heitkötter, H., Hanschke, S., Majchrzak, T.A.: Comparing cross-platform devel-

opment approaches for mobile applications. In: Proceedings 8th WEBIST, pp.
299–311. SciTePress (2012)

28. Heitkötter, H., Hanschke, S., Majchrzak, T.A.: Evaluating cross-platform devel-
opment approaches for mobile applications. In: Cordeiro, J., Krempels, K.-H.
(eds.) Web Information Systems and Technologies. LNBIP, vol. 140, pp. 120–138.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36608-6 8

29. Heitkötter, H., Majchrzak, T.A., Kuchen, H.: Cross-platform model-driven devel-
opment of mobile applications with MD2. In: Proceedings of the SAC 2013, pp.
526–533. ACM (2013)

30. Heitkötter, H., Majchrzak, T.A., Ruland, B., Weber, T.: Comparison of mobile
web frameworks. In: Krempels, K.-H., Stocker, A. (eds.) Web Information Systems
and Technologies. LNBIP, vol. 189, pp. 119–137. Springer, Heidelberg (2014)

31. Heitkötter, H., Kuchen, H., Majchrzak, T.A.: Extending a model-driven cross-
platform development approach for business apps. Sci. Comput. Program. 97(Part
1), 31–36 (2015)

32. Hudli, A., Hudli, S., Hudli, R.: An evaluation framework for selection of mobile
app development platform. In: Proceedings of the 3rd MobileDeLi (2015)

33. Jie, G., Bo, C., Shuai, Z., Junliang, C.: Cross-platform android/ios-based smart
switch control middleware in a digital home. Mobile Inform. Sys. (2015). http://
www.hindawi.com/journals/misy/2015/627859/

34. Kim, H., Ahn, M., Hong, S., Lee, S.: Wearable device control platform technology
for network application development. Mobile Inform. Syst. (2016). http://www.
hindawi.com/journals/misy/2016/3038515/

35. Krawczyk, K.: Hacker installs windows 95 and doom on a sam-
sung gear live smartwatch. http://www.digitaltrends.com/computing/
hacker-installs-windows-95-and-doom-on-a-samsung-gear-live-smartwatch/

36. Lambert, F.: Tesla is moving away from an SDK. http://9to5mac.com/2016/01/
28/tesla-sdk-iphone-apps-mirror/

37. Lella, A., Lipsman, A., Martin, B.: The 2015 U.S. mobile app report.
https://www.comscore.com/ger/Insights/Presentations-and-Whitepapers/2015/
The-2015-US-Mobile-App-Report

38. LG Electronics: WebOS for LG smart TVs (2016). http://www.lg.com/uk/
smarttv/webos

39. Liu, X., Vega, K., Maes, P., Paradiso, J.A.: Wearability factors for skin interfaces.
In: Proceedings of the 7th Augmented Human International Conference, pp. 21:1–
21:8. ACM (2016)

http://www.qsm.com/resources/function-point-languages-table
http://www.qsm.com/resources/function-point-languages-table
http://android-developers.blogspot.no/2016/05/android-instant-apps-evolving-apps.html
http://android-developers.blogspot.no/2016/05/android-instant-apps-evolving-apps.html
https://developer.android.com/wear/preview/index.html
https://developer.android.com/wear/preview/index.html
https://www.hbbtv.org/overview/
http://dx.doi.org/10.1007/978-3-642-36608-6_8
http://www.hindawi.com/journals/misy/2015/627859/
http://www.hindawi.com/journals/misy/2015/627859/
http://www.hindawi.com/journals/misy/2016/3038515/
http://www.hindawi.com/journals/misy/2016/3038515/
http://www.digitaltrends.com/computing/hacker-installs-windows-95-and-doom-on-a-samsung-gear-live-smartwatch/
http://www.digitaltrends.com/computing/hacker-installs-windows-95-and-doom-on-a-samsung-gear-live-smartwatch/
http://9to5mac.com/2016/01/28/tesla-sdk-iphone-apps-mirror/
http://9to5mac.com/2016/01/28/tesla-sdk-iphone-apps-mirror/
https://www.comscore.com/ger/Insights/Presentations-and-Whitepapers/2015/The-2015-US-Mobile-App-Report
https://www.comscore.com/ger/Insights/Presentations-and-Whitepapers/2015/The-2015-US-Mobile-App-Report
http://www.lg.com/uk/smarttv/webos
http://www.lg.com/uk/smarttv/webos


38 C. Rieger and T.A. Majchrzak

40. Luca, A.D., Lindqvist, J.: Is secure and usable smartphone authentication asking
too much? Computer 48(5), 64–68 (2015)

41. Majchrzak, T.A., Ernsting, J.: Reengineering an approach to model-driven devel-
opment of business apps. In: Wrycza, S. (ed.) SIGSAND/PLAIS 2015. LNBIP, vol.
232, pp. 15–31. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24366-5 2

42. Majchrzak, T.A., Schulte, M.: Context-dependent testing of applications for mobile
devices. Open J. Web Technol. (OJWT) 2(1), 27–39 (2015)

43. Majchrzak, T.A., Wolf, S., Abbassi, P.: Comparing the capabilities of mobile
platforms for business app development. In: Wrycza, S. (ed.) SIGSAND/PLAIS
2015. LNBIP, vol. 232, pp. 70–88. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24366-5 6

44. MobileHTML5: Mobile html5 compatibility (2015). http://mobilehtml5.org/
45. Noreikis, M., Butkus, P., Nurminen, J.K.: In-vehicle application for multimodal

route planning and analysis. In: Proceedings of the IEEE 3rd CloudNet (2014)
46. Ohrt, J., Turau, V.: Cross-platform development tools for smartphone applications.

Computer 45(9), 72–79 (2012)
47. Palmieri, M., Singh, I., Cicchetti, A.: Comparison of cross-platform mobile devel-

opment tools. In: Proceedings of the 16th ICIN, pp. 179–186. IEEE (2012)
48. Perakakis, E., Ghinea, G.: HTML5 technologies for effective cross-platform inter-

active/smart TV advertising. IEEE Trans. HMS 45(4), 534–539 (2015)
49. Perakakis, E., Ghinea, G.: A proposed model for cross-platform web 3D applica-

tions on smart TV systems. In: Proceedings of the 20th Web3D (2015)
50. Phonegap documentation (2015). http://docs.phonegap.com
51. Quaresma, M., Gonçalves, R.: Usability analysis of smartphone applications for

drivers. In: Marcus, A. (ed.) DUXU 2014. LNCS, vol. 8517, pp. 352–362. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-07668-3 34

52. Research2guidance: cross-platform tool benchmarking (2014). http://
research2guidance.com/product/cross-platform-tool-benchmarking-2014/

53. Revest, F.: Asteroidos (2016). http://asteroidos.org/
54. Rodriguez Garzon, S., Poguntke, M.: The personal adaptive in-car HMI: integration

of external applications for personalized use. In: Ardissono, L., Kuflik, T. (eds.)
UMAP 2011. LNCS, vol. 7138, pp. 35–46. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28509-7 5

55. Ryu, D., Krompiec, P.K., Lee, E., Park, K.: A serious game design for english
education on smart TV platform. In: Proceedings of the ISCE (2014)

56. Samsung Electronics Co. Ltd.: Let’s toast - samsung smart TV apps developer
forum. https://www.samsungdforum.com/Features/TOAST

57. Sansour, R.N., Kafri, N., Sabha, M.N.: A survey on mobile multimedia application
development frameworks. In: Proceedings of the ICMCS (2014)

58. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Pro-
ceedings of the 1994 1st WMCSA, pp. 85–90. IEEE CS (1994)

59. Schuermans, S., Vakulenko, M.: Apps for connected cars? Your mileage may vary
(2014). http://www.visionmobile.com/product/apps-for-cars-mileage-may-vary/

60. Sohn, H.J., Lee, M.G., Seong, B.M., Kim, J.B.: Quality evaluation criteria based
on open source mobile HTML5 UI framework for development of cross-platform.
IJSEIA 9(6), 1–12 (2015)

61. Sommer, A., Krusche, S.: Evaluation of cross-platform frameworks for mobile appli-
cations. LNI P-215 (2013)

62. Statista. http://www.statista.com/
63. Tizen (2016). https://www.tizen.org/

http://dx.doi.org/10.1007/978-3-319-24366-5_2
http://dx.doi.org/10.1007/978-3-319-24366-5_6
http://dx.doi.org/10.1007/978-3-319-24366-5_6
http://mobilehtml5.org/
http://docs.phonegap.com
http://dx.doi.org/10.1007/978-3-319-07668-3_34
http://research2guidance.com/product/cross-platform-tool-benchmarking-2014/
http://research2guidance.com/product/cross-platform-tool-benchmarking-2014/
http://asteroidos.org/
http://dx.doi.org/10.1007/978-3-642-28509-7_5
http://dx.doi.org/10.1007/978-3-642-28509-7_5
https://www.samsungdforum.com/Features/TOAST
http://www.visionmobile.com/product/apps-for-cars-mileage-may-vary/
http://www.statista.com/
https://www.tizen.org/


Weighted Evaluation Framework for Cross-Platform Approaches 39

64. Wasserman, A.I.: Software engineering issues for mobile application development.
In: Roman, G.C., Sullivan, K. (eds.) Proceedings of the FoSER 2010, p. 397 (2010)

65. Willocx, M., Vossaert, J., Naessens, V.: A quantitative assessment of performance
in mobile app development tools. In: Proceedings of the 3rd International Confer-
ence on Mobile Services (2015)

66. Wolf, F.: Will vehicles go the mobile way? Merits and challenges arising by car-
apps. In: Proceedings of the 10th ICINCO, vol. 2 (2013)

67. Woods, V., van der Meulen, R.: Gartner says worldwide smartphone sales grew 9.7
percent in fourth quarter of 2015 (2016). http://www.gartner.com/newsroom/id/
3215217

68. Xanthopoulos, S., Xinogalos, S.: A comparative analysis of cross-platform devel-
opment approaches for mobile applications. In: Proceedings of the 6th BCI, pp.
213–220. ACM (2013)

69. XBMC Foundation: Third-party forks and derivatives. http://kodi.wiki/view/
Third-party forks and derivatives

70. Zhang, J., Chen, C., Ma, J., He, N., Ren, Y.: Usink: smartphone-based moible sink
for wireless sensor networks. In: Proceedings of the CCNC 2011 (2011)

http://www.gartner.com/newsroom/id/3215217
http://www.gartner.com/newsroom/id/3215217
http://kodi.wiki/view/Third-party_forks_and_derivatives
http://kodi.wiki/view/Third-party_forks_and_derivatives

	Weighted Evaluation Framework for Cross-Platform App Development Approaches
	1 Introduction
	2 Related Work
	3 Background
	4 Criteria
	4.1 General Considerations
	4.2 Infrastructure Perspective
	4.3 Development Perspective
	4.4 App Perspective
	4.5 Usage Perspective

	5 Evaluation
	5.1 Weight Profiles
	5.2 Web Apps
	5.3 PhoneGap
	5.4 Native Apps

	6 Discussion
	7 Conclusion
	References


