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Abstract. White matter hyperintensities (WMH) seen on FLAIR
images are established as a key indicator of Vascular Dementia (VD) and
other pathologies. We propose a novel modality transformation technique
to generate a subject-specific pathology-free synthetic FLAIR image from
a T1 -weighted image. WMH are then accurately segmented by compar-
ing this synthesized FLAIR image to the actually acquired FLAIR image.
We term this method Pseudo-Healthy Image Synthesis (PHI-Syn). The
method is evaluated on data from 42 stroke patients where we compare its
performance to two commonly used methods from the Lesion Segmen-
tation Toolbox. We show that the proposed method achieves superior
performance for a number of metrics. Finally, we show that the features
extracted from the WMH segmentations can be used to predict a Fazekas
lesion score that supports the identification of VD in a dataset of 468
dementia patients. In this application the automatically calculated fea-
tures perform comparably to clinically derived Fazekas scores.

1 Introduction

White matter hyperintensities (WMH) are commonly found in brain fluid atten-
uated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Their
aetiology is diverse but they are known to be associated with an increased risk
of stroke, dementia and death [1]. WMH are usually clearly visible as hyperin-
tense regions in FLAIR images, and potentially appear as hypointense regions
in T1 -weighted images (Fig. 1).
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Fig. 1. An example pair of T1 -weighted (left) and FLAIR (right) images. The FLAIR
image exhibits clear WMH. The corresponding locations in the T1 -weighted image
show little change, apart from the circled region which is slightly hypointense.

The accurate annotation of WMH from FLAIR images is a laborious task
that requires a high level of expertise and is subject to both inter- and intra-
rater variability. To enable effective image analysis in large scale studies or the
reproducible quantification of lesion load in the clinic without expert knowledge
(e.g. in the context of a comprehensive decision support system) an accurate and
fully automatic method for lesion segmentation is desirable.

In this paper, we present a novel method of segmenting WMH from FLAIR
images using modality transformation. Modality transformation is the task of
generating a synthetic image with the appearance characteristics of a specific
imaging modality (or protocol) by using information from images acquired from
one or more other modalities. The accurate generation of these images can be
critical in the context of, for example, non-linear multi-modality registration [2]
where the problem can be reduced to a mono-modality problem when one modal-
ity is synthesised from the other. Additionally, many segmentation or classifica-
tion algorithms require an input image from a certain modality. The ability to
synthesise these modalities from another modality could substantially expand
the applicability of these algorithms [3].

This paper investigates the principle of synthesising an image with healthy
appearance in order to identify pathology in a real scan. Similar to previous
work [4,5], we aim to produce a “pseudo-healthy” version of a particular modality
without any signs of pathology. The synthetic image is then compared with the
potentially pathological real image and the differences are identified.

Existing modality transformation algorithms can be divided into model and
data driven approaches. In the former, intrinsic physical properties of the tissue
being imaged are estimated from the available modalities [6]. Once known, a
new modality can be synthesised by simulating the image acquisition protocol.
However, accurate estimation of these tissue properties requires particular acqui-
sition protocols, which are not routinely carried out. The more commonly used
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algorithms therefore rely on a data driven approach where the synthesised image
is derived directly from the intensities of the source image(s). Most state of the
art algorithms employ a patch based, dictionary learning approach [2,3,5]. A
dictionary of source-target patch pairs is stored with synthesis being performed
by using the target patch with the corresponding source patch which most
closely matches a given patch in source image. Approaches using a restricted
nearest neighbour search [5], compressed sensing [3] and sparse coding [2] are
among those proposed for searching and combining patches from the dictionary.
Recently, deep learning approaches have also received attention [7] with good
results. Another data driven approach, to which our proposed method is more
closely related, uses local joint histograms to find the target image intensity with
which a given source image intensity most commonly co-occurs [8].

The problem when employing these existing methods for the synthesis of
pseudo-healthy images is that WMH are often synthesised. This is because the
relationship between WMH intensities in T1 -weighted and FLAIR images can
be similar to that of gray matter (GM) [9]. Existing methods will learn this
WMH-GM similarity and synthesise WMH as hyperintense. Whilst this ability
has been exploited for better T1 -weighted image segmentations [10], it is not
desirable for the production of pseudo-healthy images.

In this paper we present a novel modality transformation method, which can
be used effectively to generate pseudo-healthy images. The proposed approach
exploits only information from small neighbourhoods around a given voxel to
predict a synthetic intensity, and will therefore not be influenced by the WMH-
GM relationship described above, which would be learnt in other regions of
the brain. We employ this method to address the problem of WMH segmenta-
tion with results that compare favourably with two established reference meth-
ods from the Lesion Segmentation Toolbox (LST). Finally, we demonstrate the
clinical potential of the proposed automatic lesion segmentation method when
applied to the identification of VD in a clinical dataset, and show performance
comparable to identification using manually assessed Fazeka scores, a clinical
measure of WMH.

2 Method

In the following, we describe the two essential components of the proposed PHI-
Syn method. A pseudo-healthy FLAIR image is first synthesised from a patient’s
T1 -weighted image. The estimated FLAIR image is then compared to the real
FLAIR image of the patient and abnormally hyperintense regions are identified.

2.1 Image Synthesis

To synthesise a subject’s FLAIR image that does not exhibit WMH (if present
in the T1 weighted image), we propose a method that relies on voxel-wise kernel
regression to learn local relationships between intensities in T1 -weighted and
FLAIR image pairs of healthy subjects. The regression model is then used to
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synthesise pseudo-healthy FLAIR images from T1 -weighted images. There are
three factors that enable the synthesis of a pseudo-healthy image: (a) the pathol-
ogy is in general not prominent in T1 -weighted images; (b) the model is trained
on image pairs of healthy subjects without WMH and does therefore not learn
how to synthesise pathology; (c) the method uses only information from small
local regions from the training data to synthesise each voxel, meaning intensity
relationships learnt from other regions of the brain will not be applied.

Preprocessing. As voxel directly between scans it is important that all images
of a respective modality are on the same intensity scale. We employ the following
steps to ensure that the distributions of intensities within tissue classes are the
same across all images of that modality.

Each T1 -weighted image is bias field corrected [11], skull stripped [12] and
anatomically segmented [13]. GM and white matter (WM) masks are generated
from these segmentations and a transformation from native to MNI space using
free form deformations (FFD) [14] is computed.

Intensity normalisation is a key step that is particularly challenging in the
presence of pathology, as it needs to be ensured that varying levels of pathology
have no impact on intensity mappings. To do this we use the method employed
in [15] using the previously computed WM and GM masks. This approach estab-
lishes a robust fixed point as the mean of the average intensities of the WM and
GM which is then set to a common value. This method has the advantage of
only using information from regions in which we are highly confident the tissue
type is either healthy WM or GM and is therefore unaffected by WMH.

FLAIR images are also bias corrected and masked using the brain mask
derived from the T1 -weighted image, rigidly transformed into the native space
of the FLAIR image. The GM and WM masks are also transformed into FLAIR
space and used for intensity normalisation.

Synthesis Training. The training set consists of pairs of T1 -weighted and
FLAIR images, Ttrain and Ftrain respectively. All images are aligned to MNI
space and re-sampled on a 1 mm3 voxel lattice using linear interpolation. The
T1 -weighted image intensities are rescaled to the range [0; m], where m is the
number of points the model will be evaluated at. The value of m will ultimately
control the size and training time of the model, with a larger value leading to
more accurate results. A kernel regression model with bandwidth h is generated
at each voxel x relating the T1 -weighted and FLAIR intensities in an s-by-s-
by-s patch around x. The result of evaluating the model at each k in the range
[1,m] is stored in vector Mx (1) using the regression model outlined below.

Mx(k) = R(nT
x , nF

x , k), nT
x = N(x;Ttrain, s), nF

x = N(x;Ftrain, s), (1)

R(a,b, k) =
∑

i(K((k − ai)/h)bi)∑
i K((k − ai)/h)

, K(p) =
1√
2π

e− 1
2p

2
, (2)

where N(x;T, s) and N(x;F, s) return a vector containing the voxels in a patch
around voxel x of size s-by-s-by-s from each image in T and F respectively.
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Synthesis Testing. To estimate the synthetic FLAIR image, the intensities of
the T1 -weighted image, T, are rescaled to be between 0 and m and transformed
into the native space of the FLAIR image along with mapping M. The synthetic
image S at voxel x is then calculated,

Sx = Mx′′(�Tx′�),x′ = LFT(x), x′′ = LFM(x), L : R3 → R
3, (3)

where LFT denotes the rigid transformation between FLAIR and T1 -weighted
image spaces and LFM the FFD transformation between FLAIR and MNI spaces.

2.2 Lesion Segmentation

We identify lesions by detecting regions which are hyperintense in the FLAIR
image relative to the synthetic image. A consequence of using kernel regression is
a tendency for synthesised image intensities to be closer to the mean intensity in
the respective regions, resulting in reduced image contrast. The method used for
intensity normalisation determines two values corresponding to the mean inten-
sities of healthy GM and WM. To correct tissue contrast we scale the synthetic
image such that these two values match those of the acquired FLAIR images.

The confidence Σ in the intensity-normalised synthesised images is computed
by calculating the standard deviation of the errors achieved on the training
images in MNI space. This yields a spatial variance map, which is used to assign
a relative confidence to the synthesised intensities at each voxel. A z-score cor-
responding to the likelihood of the intensity of a voxel x falling outside of what
is expected is then computed, ZS

x = (Fx − Sx)/Σx′ where x′ = LFM(x), which
is turned into a p-value, PS

x. Another set of p-values PF are computed to reflect
areas of hyperintensity in the FLAIR image. An individual image based z-score
will be affected by the volume of hyperintense regions in the image. Therefore,
the mean and standard deviation required to compute PF are estimated from
intensity histograms of the normalised training images.

We combine the previously computed anatomical segmentations to create a
binary mask B to constrain the search for WMH to areas of the brain where
they are expected to be present. This mask includes the WM and a number
of cortical and deep GM structures which are close to areas where WMH is
commonly found. The final WMH likelihood L at voxel x was thus computed by
the multiplication of the three likelihood maps at x, Lx = PF

xPS
xBx.

There are two main types of WMH. Small punctate lesions such as those
visible in Fig. 2, and larger, lower intensity regions, such as those seen in Fig. 3.
To account for both types, a low threshold tl is first used to binarize L and only
large (>200 mm3) areas are kept. A higher threshold th is then used and the
initial segmentation taken to be the union of these two segmentations.

A refinement step is then carried out in which segmentations are repeat-
edly grown into neighbouring voxels with an intensity which lies above the low-
est intensity in the original segmentation. A 5 mm limit is imposed to prevent
the growth of incorrect “lesions”. Finally, small (<20 mm3) segmentations are
removed as these are often visually indistinguishable from noise.
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Fig. 2. The intermediate steps for segmentation. Left to right: FLAIR image, synthetic
image, likelihood map PS, likelihood map PF, likelihood map L. Note how the brightest
areas in the L correspond to the WMH in the FLAIR image.

3 Experiments and Results

Experiments were carried out to evaluate PHI-Syn against two widely used seg-
mentation methods, and to investigate its applicability in a clinical setting.

3.1 Data

In the first experiment, we used a stroke dataset of 42 patients (mean age
64.9 years (SD 10)) from a study of mild stroke [16], obtained as described
in [17]. Images were acquired with an in plane resolution of 0.94-by-0.94 mm
and slice thickness 4 mm. Reference WMH segmentations were obtained semi-
automatically. In a second experiment we used a dementia dataset of 468 subjects
from VUMC, Amsterdam, which were provided for the PredictND study1. This
clinical dataset contains MRI scans of varying resolutions and field strengths
along with clinical scores for patients with a diagnosis of either subjective mem-
ory complaints (110), Alzheimer’s Disease (204), Frontotemporal Dementia (88),
Lewy Body Dementia (47) and Vascular Dementia (19). Clinical Fazekas scores
were visually assessed. Of the 468 subjects, 173 had a Fazekas score of 0, 205
(score 1), 61 (2) and 29 (3). Images were acquired at 3T (295), 1.5T (91) and
1T (82).

For both experiments, the synthesis model was trained on 31 subjects selected
from the dementia dataset as the visually least pathological. However, a conse-
quence of training on subjects from an elderly dataset is that most subjects have
a small degree of periventricular WMH due to their age. These were, undesir-
ably, reproduced in the synthetic images. An additional post-processing step on
the synthetic images was added to address this: Voxels located up to 15 mm
from the ventricular wall were capped at a maximum intensity value equal to
the average between the mean FLAIR intensities of GM and WM. A special
case must then be made for the region around posterior prolongations of the
ventricles where non-pathological low level hyperintense streaks are often seen.
A squaring of the probabilities in these regions was sufficient to ensure that true
lesions would still be segmented, whilst the probabilities corresponding to low

1 http://www.predictnd.eu/.

http://www.predictnd.eu/
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level hyperintensities would be suppressed. This additional step would not be
required if a set of pathology free subjects were available for a particular appli-
cation. Free parameters for synthesis were chosen empirically for all experiments
as: m = 100, s = 7, h = 5 as they balanced model size and computational speed
with visually appealing synthesised images.

3.2 Evaluation Against Reference Segmentations

In this experiment we employ the stroke dataset to compare the proposed method
against two standard methods from the Lesion Segmentation Toolbox v.2.0.122 -
the Lesion Growth Algorithm (LST-LGA) [18] and the Lesion Prediction Algo-
rithm (LST-LPA). The former requires a T1 -weighted image as well as a FLAIR
image. White matter, grey matter and CSF segmentations are obtained from the
T1 -weighted image and used to create a lesion belief map from the FLAIR image.
This is first thresholded at a value κ and the resulting segmentations are grown
along hyperintense voxels. LST-LPA is a supervised method for which a logistic
regression model was trained on 53 Multiple Sclerosis patients with severe white
matter lesion loads. Both methods output a lesion probability map, which the
documentation suggests should be thresholded at 0.5. For LST-LGA, a κ of 0.3 is
the default but it is strongly suggested that this is optimised. For each method,
we provide results for both the suggested parameters and parameters selected
through a grid search which maximised Dice Similarity Coefficient (DSC).
These were found to be: LST-LGA*, κ = 0.07, threshold = 0.10. LST-LPA*,
threshold = 0.10. PHI-Syn*, tl = 0.76, th = 0.85.

Segmentations were compared across a set of quantitative measures used
previously in the ISLES 2015 segmentation challenge3: Average Symmetric Sur-
face Distance (ASSD, mm), DSC, Hausdorff Distance (HD, mm), Precision
and Recall. A further metric, Load Correlation (LC) defined as the correla-
tion between automatic and reference segmentation volumes over all subjects
was also used with results shown in Table 1.

Table 1. Comparisons of segmentation results. * indicates results for optimised para-
meters. 1,2,3,4,5 indicate improvement on LST-LGA, LST-LPA, LST-LGA*, LST-LPA*
and PHI-Syn* respectively using a Wilcoxon signed rank test at a 5 % significance level.

Method ASSD DSC HD Precision Recall LC

LST-LGA 7.84 0.294 50.4 0.6193 0.225 0.790

LST-LPA 3.681,3 0.4771,3 37.31 0.6831,3,4,5 0.4171 0.779

LST-LGA* 5.891 0.3671 40.31 0.467 0.3591 0.760

LST-LPA* 2.581,2,3 0.5991,2,3 33.21,2,3 0.5933 0.7131,2,3 0.711

PHI-Syn* 2.391,2,3 0.6031,2,3 30.11,2,3,4 0.6103 0.6691,2,3 0.849

2 http://www.statistical-modelling.de/lst.
3 http://www.isles-challenge.org.

http://www.statistical-modelling.de/lst
http://www.isles-challenge.org
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3.3 Relation to Clinical Scores

The Fazekas score is a commonly used four point clinical score derived from
FLAIR images relating to the presence and degree of WMH [19]. It has particular
use in the diagnosis of VD as it relates to the most significant pathological
changes in the patient’s brain.

In this experiment we predicted synthetic Fazekas scores from the segmen-
tations given by PHI-Syn and compared them to clinical Fazekas scores. The
experiment was carried out using 1000 runs of 10-fold cross validation. Three
features were extracted from the PHI-Syn segmentations: volume of lesions as a
percentage of WM, volume of lesions greater than 15 mm from the ventricles as
a percentage of WM, and volume of the largest lesion. At each fold, the training
set was balanced by oversampling under-represented Fazekas scores classes. A
set of support vector machine (SVM) classifiers using an error-correcting output
code schema for multi-class classification (classifier A) were trained on the train-
ing set to predict a synthetic Fazekas score. A further binary SVM (classifier B)
was trained on data balanced with respect to disease to predict a diagnosis of
VD or not-VD from the clinical Fazekas scores. Synthetic Fazekas scores were
then calculated for subjects in the test set using classifier A and diagnoses were
predicted from both the true and synthetic Fazekas scores using classifier B.

The balanced accuracy for predicting a synthetic Fazekas score using classi-
fier A was 61.5 %, with only 4 %/0.25 % being predicted a score of more than
1/2 points from their respective true clinical score. The balanced accuracy for
predicting a diagnosis was 83.3 % from the true Fazekas scores and 83.9 % from
the synthetic Fazekas scores with standard deviations of 1.2 % and 3.3 % respec-
tively.

4 Discussion

The conducted experiments show that PHI-Syn achieves the highest or statisti-
cally joint highest scores in ASSD, DSC, HD, Recall and LC. Figure 3 shows three
sample segmentations. Visual examination confirms superior ability of PHI-Syn,
as compared to LST-LPA*, to locate smaller lesions distant from the ventricles
(A and C). A lower HD score supports this observation. Instances in which PHI-
Syn tends to be outperformed by LST-LPA* include cases of large areas of low
intensity (B). Objective measurements and visual inspection both suggest PHI-
Syn performs well in the majority of situations. A limitation of this experiment
is that only WMH are included in the reference segmentation, and other hyper-
intense appearing pathologies such as stroke lesions, are not. All methods tested
will identify all hyperintensities and as such the results of these experiments can
only be used to compare methods relative to each other, and should not be used
as an indicator of expected performance on another dataset.

The balanced accuracy of predicted diagnoses from the synthetic Fazekas
scores is comparable to those predicted when using the clinically assessed Fazekas
scores, however the data is highly imbalanced and as such the balanced accuracy
can be unstable and susceptible to noise. Future work involves using more VD
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Fig. 3. A sample of two FLAIR images (bottom) and segmentations (top). Reference
(blue), LST-LPA* (green) and PHI-Syn (red) segmentations are shown. Colours are
additively mixed where segmentations overlap. e.g. purple indicates overlap between
PHI-Syn and the reference, cyan: LST-LPA* and reference, yellow: LST-LPA* and
PHI-Syn, white: all methods. Arrows draw attention to regions of particular interest.
(Color figure online)

cases to further investigate using synthetic over true Fazekas scores. However,
these initial results suggest that a synthesised score is a valuable marker in cases
where a clinical Fazekas score is not available.

We have shown that effective synthesis of pseudo-healthy images can be car-
ried out using voxel-wise kernel regression, and that these images can be used to
reliably identify WMH. We have also shown that the resulting segmentations can
predict a Fazekas score which discriminates between vascular and non-vascular
cases of dementia comparably to labour-intensive clinical scores.
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