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Abstract. Glioblastoma is the most aggressive tumor originated in
the central nervous system. Modeling its evolution is of great inter-
est for therapy planning and early response to treatment assessment.
Using a continuous multi-scale growth model, which considers the angio-
genic process, oxygen supply and different phenotype expressions, a new
method is proposed for setting the initial values of the celular variables,
based on a spatiotemporal characterization of their distribution in con-
trolled synthetic simulations. The method is applied to a real case show-
ing an improvement on the dynamic stability, compared to the usual
method.
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expression · in silico oncology

1 Introduction

Glioblastoma (GBM), also known as grade IV astrocytoma, is a brain neoplasm
involving glial cells. It represents around 12–15% of all intracranial tumors and
50–60% of all astrocytomas. The survival mean time is 14 months, and the
standar treatment involves surgery, chemotherapy and radiotherapy [1]. They
share a common morphology: presence of brain edema, irregular borders, and a
tumor ring surrounding a necrotic center [2].

Most of the works about tumor growth, deal with gliomas instead of GBM
[3–5]. However, because GBM is a high grade glioma, many aspects and consid-
erations of modeling proposed by these works are still valid when focusing only
in GBM. Also, many authors agree in the important role that phenotype expres-
sions, characterized as different cellular populations, play in the tumor growth
dynamics [3–7]. The ‘go-or-grow’ hypothesis is widely extended and accepted for
modeling. It states that phenotype expressions can be simplified into two groups:
enhanced proliferation when the environment is favorable, and enhanced mobility
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when the local availability of resources is low [8]. To model the local availabil-
ity of resources in the tumor microenvironment, many studies have focused on
modeling the angiogenesis cascade [3–5,9]. Although results are promising, the
objective of these studies usually consists on replicating the branching and mor-
phology of capillaries, rather than studying their effect on the growth dynamics.
Recent articles of GBM growth include simplified versions of angiogenesis models
to better characterize the supply of nutrients and its effect on phenotype change
[6,7,10,11].

However, a common limitation to many of the mentioned works, is the lack of
justification and methodology for the initialization of the variables of the model.
This is due to the difficulty of establishing a relationship between the consid-
ered variables and the accessible clinical information for a patient. Even though
anatomical images allow to segment the extension of the tumor, the informa-
tion provided is typically a binary mask without quantifiable information about
tumor cells or angiogenic variables. This problem becomes much more trou-
blesome when different phenotype expressions, modeled as cellular populations,
cohabit in the same segmented region.

In this work we use a continuous multi-scale GBM growth model, which con-
siders the key physiological aspects of tumor progression: angiogenesis, oxygen
supply and oxygen-mediated phenotype switch. Using this model we propose a
methodology to initialize the values of the celular variables based on the charac-
terization of their spatiotemporal distribution. We consider the hypothesis that,
in a controlled homogeneous environment, after a certain time, the modeled
physiological processes stabilize, and as a result, the spatial distributions of the
different phenotypes across the tumor reach a stationary morphology. Our pro-
posed method uses this knowledge in real cases, to assign an initial value to the
variables for each point of the anatomical segmentation.

2 Materials and Methods

2.1 GBM Growth Model

We propose a set of spatiotemporal, coupled, non-linear partial derivative equa-
tions (PDE), which represent the most relevant features of the GBM’s growth
dynamics:

∂g

∂t
= � · (Dg � g) + ρg g (1 − T ) + (θmg Hmg) m − (θgm Hgm) g (1)

∂m

∂t
= � · (Dm � m) + ρm m (1 − T ) + (θgm Hgm) g

− (θmg Hmg) m − (θmNHmN )m (2)
∂N

∂t
= (θmNHmN )m + (θvNHvN )v (3)

∂o

∂t
= (1 − o)ϕ v − o
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Km + o

)
(4)
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∂a

∂t
= � · (Da � a) + ρam m − γ v (5)

∂v

∂t
= � · (χv � a) + ρv v m (1 − N) − (θvNHvN )v (6)

Where g is the density of proliferative cells, m is the density of invasive cells, N
is the necrosis area of the tumor, o is the oxygen concentration, v is the density
of vascularization and a is the concentration of angiogenic factors. T is the total
tumor density, which is T = g + m + N . All variables are normalized by their
maximum possible value, and as a result they all ∈ [0, 1]. A complete list and
explanation of the parameters can be found in Table 1.

The basic assumptions of this model are:

– Cells diffuse through the extracellular matrix (ECM) with brownian move-
ment. We assume that invasive cells m are more able to move than proliferative
cells g, and thus we impose Dm > Dg.

– Cellular proliferation follows a logistic law. The total tumoral density T shall
not grow over the maximum carrying capacity of the tissue Kmax.

– Based on the modeling hypothesis ‘go-or-grow’ we consider two different phe-
notype expressions, separated into different cell populations: proliferative cells
g and invasive cells m. The change from one population to another is mediated
by the local availability of oxygen. We establish a hypoxia threshold O2hyp and
we define the functions Hmg and Hgm as step functions such as:

Hmg =

{
1, if o > O2hyp

0, otherwise
(7)

Hgm = 1 − Hmg (8)

– When hypoxia is too severe, cells die by necrosis. We set the severe hypoxia
threshold to O2death and, in the same way as before, we define the step func-
tions HmN and HvN as:

HmN = HvN =

{
1, if o < O2death

0, otherwise
(9)

– Oxygen consumption by cancer cells can be modeled in Eq. (4) using the
Michaelis-Menten law for enzyme kinetics. This law corresponds to an asymp-
totic curve, implying that no matter how much oxygen available there might
be, there is a maximum rate of consumption achievable.

– Oxygen supply from the capillaries to the ECM depends on the permeability
of the capillary wall, but mainly on the difference of partial pressure between
the vase and the exterior. We can consider the partial pressure of oxygen in
the capillaries [O2]a, in Eq. (4), to be a constant parameter.

– Invasive cells m produce angiogenic factors a, which attract endothelial cells
v by chemotaxis. As a consequence vascular density increases. To avoid intro-
ducing another non-linear term, we assume that the consumption of angio-
genic factors by endothelial cells occurs at a constant rate γ. Chemotaxis is
represented in Eq. (6) as a flux of v following the gradient of a.
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To solve the equations we use an implicit finite difference scheme based on
Backwards-Time-Centered-Space (BCTS) and an iterative predictor-corrector
algorithm that allow us to initially decouple the whole system into two coupled
subsystems to simplify the treatment of the non-linearities. The BCTS method
has first order convergence in time and second order convergence in space. Is
generally stable, so it is possible to use wide time-steps.

2.2 Parameters of the Model

A common limitation to all tumor growth models is the huge amount of free
parameters needed when coupling different effects. It is not feasible to devise
mathematical methods to optimize and identify the whole set of parameters,
and therefore the usual approach consists on identifying most values from the
existing literature. We consider a division of the parameters of the model into
two groups: patient-independent and patient-dependent. The patient-dependent
are the parameters which deal directly with the tumor cells and the physical
properties of the GBM. That is its invasive capability, given by the diffusivity
parameters, its proliferation rate, and the agility to switch from one pheno-
type to another. These characteristics may vary between patients. The patient-
independent parameters on the other hand, deal with the rest of the physiological
processes modeled, and is reasonable to assume that are quite less variable and
more constant through patients (Table 1).

In order to evaluate the impact of variating the patient-dependent parame-
ters, we conduct a parametric sweep with relative increments and decrements
of 50 % and 20 % over the reference value. The effect of these variations on the
outcome result is analyzed by measuring the temporal evolution of the tumor
mass, the tumor area and the tumor density.

2.3 Reference Synthetic Case

This case consists on a free growth simulation of a tumor spheroid of 0.2 cm
of radius for 20 days in a 15× 15 cm2 grid of homogeneous white matter. The
spatial step was set to Δx = 0.1 cm and the time-step to Δt = 0.05 days. The
initial spheroid is composed only by proliferative cells with g0 = 1/3 · Kmax

representing this way its young age and its growing phase. The initial oxygen
concentration is set constant for the whole grid. Because the brain is an organ
with a high oxygen consumption rate, we set the initial concentration to 60 % of
its maximum partial pressure. The density of vascularization is also initialized
as constant throughout the grid with v0 = 0.09 · Kmax. Because initially there
are no invasive cells m, the initial concentration for a is zero.

2.4 Characterization of the Temporal Evolution of Cell
Distributions

To validate our hypothesis of stabilization of the physiological processes that
leads to stationary distributions of cellular populations, we propose a method-
ology in which we compare the statistical distances between such distributions
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Table 1. List of parameters of the model

Patient-dependent parameters

Parameter Value Description Reference

Dg 3.6 · 10−8 cm2/s Diffusivity of g [10]

Dm Dg/10 Diffusivity of m

ρg 1.8 days−1 Proliferation rate of g

ρm ρg/2 Proliferation rate of m

θgm 1 days−1 Rate of change g to m

θmg 1/3 days−1 Rate of change m to g [12]

Patient-independent parameters

Parameter Value Description Reference

Da 1.0 · 10−5 cm2/s Diffusivity of a

ρam 1.0 · 10−9 mol/s Production of a

ρv ρg/10 Proliferation rate of v

θmN 1.2 days−1 Rate of death of m

θvN θmN/10 Rate of death of v

O2hyp 7 mmHg Hypoxia threshold [13]

O2death 0.7 mmHg Severe hypoxia threshold [14]

[O2]a 60 mmHg Arterial partial pressure of o [15]

αg 1.0 · 10−17 mol/cell · s Rate of consumption of o by g [16]

αm αg/5 Rate of consumption of o by m [16]

γ αg Rate of consumption of a by v

ϕ 0.3 Vascular supply parameter

χ 0.1 Chemotaxis mobility parameter [9]

Kmax 1.0 · 106 cell/cm2 Maximum carrying capacity of cells [17]

at different stages of the evolution of GBM growth, using simulations based on
the reference synthetic case.

We will use the Jensen-Shannon divergence (JS) to compare the similarities
of the distributions of m and g in each time-step against the distribution of the
last time-step. In order to do that we need to convert the curves to statistical
distributions and align them at the point of their maximal cross-correlation, as
we are only interested in comparing their morphology.

2.5 Initialization of g and m Cell Distributions for a Real Case

Our main objective in this study is to be able to initialize the variables of the
model in a real case tumor based on information of magnetic resonance images
(MRI). A correct estimation of the initial values of the variables is of the utmost
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importance for the success of the simulation and, therefore, for increasing the
predictive capability of the model.

In MRI there is not a direct correspondence between the intensity of the
voxel and tumor density. Some studies observed that the detection threshold for
GBM in a T1-weighted image (T1) is much greater than that of a T2-weighted
image [18]. Because active tumor segmentation masks are based mainly on T1,
it is safe to assume that there is tumoral tissue outside the segmented area.

In simple models in which there is only one type of cellular population,
the usual method of initialization is to consider the whole segmented ring to
be saturated at the carrying capacity and smooth it with a gaussian filter. The
same approach is used when two cellular populations are considered. However, to
assume an homogenous distribution of both variables across the segmented ring,
is too simple. Based on our hypothesis of the stabilization of the distributions
over time in controlled homogeneous cases, we propose a methodology for real
cases in which we assign a different density value to each point, depending on
their relative position inside the active tumor. We will compare our methodology
to the usual initialization method previously described.

Considering we have a distribution curve for g and m, we take into account
the threshold of detection of GBM for T1 in order to define the active tumor
region from these distribution curves. This threshold value is not given in the
literature as it is not possible to estimate accurately, but we can consider it
to be greater than 50 % of the maximum density based on the existing graphic
representations in the literature [18]. We then normalize the distributions for the
width of (g + m) that should be detected by the mentioned threshold, resulting
in x = 0 for the inner border and x = 1 for the outer border as can be seen in
Fig. 1, with x being the relative spatial position.
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Fig. 1. Example of normalized distribution of g and m by the width given by the T1
detection threshold

In order to apply these distribution functions to a real case we differentiate
between points belonging to the binary mask, points enclosed by the binary mask
and points outside of the binary mask. In the first case we compute the geodesic
distance of each point to the inner and outer boundary. We assume that the sum
of those values is a good estimator of the width. Dividing the distance to the
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inner border by the estimated width, we obtain the relative position inside the
segmentation. For the points enclosed by the mask we only need the geodesic
distance to the inner boundary, and similarly, for the exterior points, only the
distance to the outer boundary is needed. Those values are then used to get the
corresponding density value from the distribution curves g and m.

To test the proposed method we used GBM data from the MICCAI BRATS
Challenge 2013 training set. A detailed explanation of the method and parame-
ters of acquisition of the data set can be found in [19].

3 Results

3.1 Variation of Parameters

Variation of Diffusivity (Dg). When varying the diffusivity of cells, a direct
relationship is observed with the tumor mass and the tumor area: both vari-
ables increase when diffusivity increases, and decrease when diffusivity decreases.
The density increases as the diffusivity decreases, which seems logical, but also
increases when diffusivity increases. This may seem counterintuitive at first, how-
ever it can be explained by the fact that with higher mobility, tumor cells might
be able to access better oxygenated areas and sustain a proliferative profile for
a longer period of time.

Variation of Proliferation Rate (ρ). There is a direct relationship between
the parameter and all the measured variables. It is noticeable that our model is
very sensible to variations in this parameter: the relative variation of the outcome
is greater than the relative variation of the parameter value.

Variation of Phenotype Change Rates (θgm, θmg). The variation of theses
parameters has a minimum impact on the outcome of the simulations. Relative
mass and area variations are consistently under 10 %, and density stays under
1 %.

3.2 Characterization of the Temporal Evolution of Cell
Distributions

In Fig. 2a, we obtain a curve showing that the JS distance between each distri-
bution and the last one, convergences to zero. That means that from a certain
time-step onwards, the distribution of both cellular populations across the ring,
reaches a constant shape. That shape is represented in Fig. 2b.

3.3 Initialization of a Real Case

Having demonstrated that our model reaches stationary distributions for g and
m, we apply our initialization to a real tumor based on the segmentation of its
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m. (d) Total estimated density g + m
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Fig. 4. Comparison between our proposed initialization method and the previous one.
(a) Evolution of tumor density over time. (b) Number of cells over time. (c) Mean
radius over time.

active tumor ring (Fig. 3a). The enclosed area inside corresponds to necrosis,
and the peripheral edema is not represented. Figures 3b and c show the initial
distribution of each phenotype according to our method, and Fig. 3d represents
the total active tumor g + m.

Figure 4 compares the evolution of tumor density, number of cells and mean
radius over time between our proposed method and the current one. Although
both need some stabilization time at the beginning (Fig. 4a), it is much shorter
for our methodology and the inertia of growth is better kept. The usual method
needs to go through a transitory phase to reach the steady-state growth, and as
a consequence it lags behind and initially loses the growth inertia.

4 Discussion

In this study we have proposed a new multi-scale GBM growth model which
considers the angiogenic cascade, oxygen supply and its effect on the cellular
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population. The mathematical complexity is a problem, and as a consequence,
a huge number of free parameters are needed. Most of these parameters could
be assumed to be patient-independent which could be defined from the existing
literature, and select just a small group to estimate for each patient. In this
sense, our parametric study serves two purposes: first, we assess how the model
responds to variations of the selected parameters, to identify those with the
highest impact on the outcome. Then, with our sight set on evaluating real
cases, we personalize the estimation of the most relevant parameters to each
patient.

Our parametric sweep concluded that cellular diffusivity and proliferation
rates are the most relevant of the patient-dependent parameters in terms of total
mass, invaded area and density. Those results are consistent with the wave-front
propagation speed of the Fisher-Kolmogorov equation (v = 2

√
ρD). Due to the

different formulation of our equations, our model is more sensible to ρ than to
D, although both play a central role.

We have successfully demonstrated, using the JS divergence, that in an homo-
geneous controlled grid, after enough time-steps, our model yields a constant
distribution of g and m along the tumor ring. Using this knowledge, we devised
a method to successfully initialize a real tumor based on a binary segmentation
and showed a dynamic improvement over the usual method. We consider this to
be a good advance towards a more precise and more informed initialization of the
variables in real cases, as we are able to assign density values to nodes beyond
the binary mask. However, the current limitations of our method are: first the
assumption of stationary growth state at the acquisition time, and second, it
only has physiological sense for tumors with an enclosed necrotic center. There
is need for more validation with longitudinal cases, comparing time points, and
further characterization of the distributions, taking into account inhomogeneities
that may be found on real brains.

5 Conclusion

We have demonstrated that our controlled reference simulation arrives, after
certain time-steps, to a stationary growth state in which the distributions of g
and m remain constant in shape across the tumor ring. Using this knowledge
we have successfully initialized a real tumor from a binary segmentation mask.
Our methodology for initializing the variables of the tumor is both informed and
realistic, as it indicates the presence of cancer cells beyond the binary mask. It
also shows an improvement in the dynamic performance of the model, compared
to the usual method, as it takes less time-steps to stabilize and reach a stationary
growth state.
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