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Abstract. This work is part of an ongoing project aimed to generate
synthetic retinal fundus images. This paper concentrates on the gen-
eration of synthetic vascular networks with realistic shape and texture
characteristics. An example-based method, the Active Shape Model, is
used to synthesize reliable vessels’ shapes. An approach based on Kalman
Filtering combined with an extension of a Multiresolution Hermite vascu-
lar cross-section model has been developed for the simulation of vessels’
textures. The proposed method is able to generate realistic synthetic vas-
cular networks with morphological properties that guarantee the correct
flow of the blood and the oxygenation of the retinal surface as observed
with fundus cameras. The validity of our synthetic retinal images is
demonstrated by qualitative assessment and quantitative analysis.
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1 Introduction

Retinal Image Analysis (RIA) aims to develop computational and mathemati-
cal techniques for helping clinicians with the diagnosis of diseases such as dia-
betes, glaucoma and cardiovascular conditions, that may cause changes in retinal
blood vessel patterns like tortuosity, bifurcations, variation of vessel width and
colour [1,18]. RIA algorithms have to be validated to avoid obtaining misleading
results. Validation can be defined as the process of showing that an algorithm
performs correctly by comparing its output with a reference standard [16]. A
common practice for validation of medical image algorithms is to use Ground
Truth (GT) provided by medical experts. Obtaining manually GT images anno-
tated by clinicians is an expensive and laborious task which motivates the cre-
ation of synthetic datasets providing GT of adequate quality for algorithm valida-
tion. Medical phantoms are used extensively in medical imaging [3,9]. However,
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to our best knowledge, there are no publicly available databases of synthetic
retinal fundus images, and providing annotations for large image repositories
remains impractical (e.g. UK Biobank alone stores fundus images for 68,000
patients). Synthesized high-resolution fundus images, along with GT free from
inter-/intra-observer variability, would allow an efficient validation of algorithms
for segmentation and analysis of retinal anatomical structures: by tuning mor-
phological and textural characteristics of these images, we can represent the
hallmarks of several diseases or different populations. This work focuses on the
generation of retinal vessels and their integration with non-vessel regions, i.e.
retinal background, fovea and Optic Disc (OD), previously reported by Fiorini
et al. [5], to yield complete fundus camera images. The resulting synthetic reti-
nal fundus images include explicit GT for vessels binary maps, bifurcation point
locations, vessel widths and artery/vein classification.

This paper is organized as follows. In Sect. 2 we describe the proposed method
for the generation of the morphological properties (Subsect. 2.2) and the textural
features (Subsect. 2.3) of the vasculature. In Sect. 3 we report results and sum-
marize and discuss our experiments to evaluate them. Finally in Sect. 4 we give
concluding remarks and hints for future work.

2 Method

2.1 Overview

The proposed approach consists of a learning phase and a generation phase.
In the former phase, data describing vascular morphology and texture are col-
lected from annotations of real images. Models are specified and their parameters
learned from the training data. In the latter phase, the models obtained are used
to create synthetic vascular networks. Arteries (A) and Veins (V) are created sep-
arately with the same protocol, and then combined together. This work is based
on the publicly available High-Resolution Fundus1 (HRF) images database [13],
and on a subset of retinal images of the GoDARTS bioresource2.

2.2 Vascular Morphology

The generation of synthetic vessel morphology has been achieved using the well-
known Active Shape Model (ASM) [4]. This model provides a statistical rep-
resentation of shape represented by a set of points, called landmark points. By
analysing the variations in shape over the training set, a PCA model is built.
The training samples (vessel centerlines in our case) are aligned into a common
coordinate frame and the deviations from the mean shape are analysed. Each
training shape is represented as a fixed number n of landmark points placed
along a vessel and equally spaced. These landmarks form a 2n vector x, the

1 The HRF database can be free downloaded at http://www5.cs.fau.de/research/data/
fundus-images/.

2 The GoDARTS resource is described at http://medicine.dundee.ac.uk/godarts.

http://www5.cs.fau.de/research/data/fundus-images/
http://www5.cs.fau.de/research/data/fundus-images/
http://medicine.dundee.ac.uk/godarts
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dimensionality of which is reduced using PCA, assuming that the most inter-
esting feature is the one with the largest variance. Hence, each shape can be
approximated as:

xi ≈ x̄ + Pbi (1)

where x̄ is the mean shape of the aligned data, P contains the first t eigenvectors
corresponding to the largest t eigenvalues of the covariance matrix of the training
shapes, and bi is a t dimensional vector of parameters of a deformable shape
model. We choose t, so that the model represents 98 % of the total variance of
our training data. By varying the element in bi, randomly choosing them from
a multivatiate normal distribution learned across the training set shapes, we
generate a new synthetic vessel using Eq. (1).

The data describing the shape of the vessels of each type (A and V) for
the main arcades, nasal and temporal (n = 81 landmarks), and their branches
(n = 31 landmarks) up to three levels of branching have been previously collected
from 50 GoDARTS retinal fundus images. We used polar coordinates centred in
the OD and with the main axis in the direction of the OD-Fovea axis (i.e. the line
connecting the OD centre and the fovea), adopted by the VAMPIRE software
suite [15]. Vessel shapes are represented into this system using a transforma-
tion that includes a rigid translation and rotation. Similarly the shapes of the
branches have been aligned using a rigid transformation that shifts their starting
point to the origin of the same coordinate system. Fig. 1 shows the aligned set of
shapes and the mean shape for the temporal arcade (a) and a vessel branch (b).

(a) (b)

Fig. 1. Vessels aligned shapes (green) and their mean shape (red) for the temporal
arcades (a) a vessel branch (b). (Color figure online)

Individually generated synthetic vessels are then connected to create the
vascular network skeleton. The location of vessel bifurcations is estimated from
real images as follows. First we calculate the spatial density distribution map
(Fig. 2(a)) of all bifurcation points annotated on real images. Then we map our
synthetic vessel onto it, obtaining a probability score for each point of the vessel
to become a bifurcation point (Fig. 2(b)). We select one of the points having
maximum score as the first bifurcation point of the main arcades. We select the
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following bifurcation point as one of the points having maximum score located at
a distance d ∈ [l/2n, l/n] from the previous one, where l is the length of the vessel
and n is the desired number of bifurcations. These bounds are required to obtain
a biologically plausible structure. We continue to select points until the desired
number of bifurcation points is achieved. This number is chosen empirically,
based on accurate analysis of the number of bifurcations in real images.

(a) (b)

Fig. 2. (a) Density Map distribution of artery bifurcation points in the image plane.
(b) A synthetic vessel with the probability score of each point to be a bifurcation point.

We compute orientation and calibre for each branch vessel originating at
a bifurcation point using Murray’s bifurcation model [12], linking branching
angles with vessel calibres. Newly generated synthetic branches need to fit with
the context of the vascular tree already generated: all vessels should be inside
the Field of View (FOV), but outside the foveal region, avoiding intersections
between vessels of the same type, and converging toward the fovea.

The binary map of the vascular tree (see example in Fig. 3) is obtained by
adding calibre information using mathematical morphological dilation of the
skeleton. The initial calibre of the main arcades is sampled from the estimate
distribution of the largest vessel calibre of real images. The initial calibre of the
branches is obtained from the parent vessel calibre following Murray’s Law.

2.3 Vascular Texture

To generate synthetic vessel textures we collected examples of intensity values
along vessels and of textural features of the surrounding area (background). We
then created a model combining both information, capturing the transition of
intensities between vessels and background.

Data Collection. Cross-sections of the vessel of interest were defined, spaced
by 5 pixels along the vessel centerline. We extracted the intensity RGB profile
on lines perpendicular to the direction of the vessel as depicted in Fig. 4(a).
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Fig. 3. Example of synthetic vascular tree (arteries in red and veins in blue for display
purpose). (Color figure online)

(a) (b)

Fig. 4. (a) Cross-sections perpendicular to vessel direction, background regions and
RGB intensity profile along one of the cross-sections. (b) Green channel fitting profile
using the Extended Multiresolution Hermite Model. (Color figure online)

The green channel intensities are fitted (Fig. 4(b)) with a weighted NonLinear
Least Squares model using a 6-parameters Extended Multiresolution Hermite
Model [11] (EMHM) to fit the cross-sectional intensity profiles. The EMHM
accounts for non-symmetric and symmetric profiles, with or without central
reflex, expressed by the formula:

H(a,m, δ, σ, p, q, x) = −p{1 + a[(x − m − δ)2 − 1]}e− (x−m)2

2σ2 + q (2)

where a ∈ [−1, 1] models the depth of the central reflection; m ∈
[1, length(profile)] is the mean of the Gaussian and allows shifts along the x-axis
and length(profile) is the length of the vessel region around the target location;
δ ∈ [−2, 2] accounts for asymmetry; σ ∈ [1, 15] is the standard deviation of the
Gaussian; q ∈ [0, 255] shifts the function along y-axis, avoiding negative pixels
values; p ∈ [0, 150] guarantees that vessels are darker than the background; x is
a vector of the same length of the cross-section of the vessel. The initial condi-
tions are a = 0, m = length(profile)/2, δ = 0.2, σ = length(profile)/std(profile),
q = max(profile), p = max(profile) − min(profile).

At the endpoints of each cross-section (green circles in Fig. 4(a)) we computed
five statistical texture descriptors [7,14] (Mean, Std, Skewness, Kurtosis and
Entropy) on two near-circular windows of 6 pixel radii.
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The ensemble of these data, 6 EMHM parameters (Xn×6) and 5 × 2 back-
ground texture descriptors (Yn×10) for each profile, for a total of 975 artery
and 1593 vein profiles, collected from the 15 healthy subjects of HRF dataset,
constitute the measurements for the procedure proposed below.

Generation of Vessel Textures. The procedure for creating reliable synthetic
vessel texture takes into account both the continuity of intensity profiles along
the vessel and their consistence with background intensities. We apply a Kalman
Filter [8], casting our problem as a state space system:{

xk = Fxk−1 + wk−1 System model
yk = Hxk + vk Measurement model

(3)

where xk is the state vector containing the 6 parameters describing the intensity
profile, F is the state transition matrix (set to identity matrix), yk is the vector
of measurements given by 10 textural descriptors of the synthetic background
and the two vectors wk−1 and vk are unrelated realizations of white zero-mean
Gaussian noise. The measurement matrix H has been obtained, using Multivari-
ate Multiple Linear Regression, solving the system:⎡

⎢⎣
y1,1 . . . y1,10
...

. . .
...

yn,1 . . . yn,10

⎤
⎥⎦ =

⎡
⎢⎣

x1,1 . . . x1,6

...
. . .

...
xn,1 . . . xn,6

⎤
⎥⎦

⎡
⎢⎣

h1,1 . . . h1,10

...
. . .

...
h6,1 . . . h6,10

⎤
⎥⎦ +

⎡
⎢⎣

ε1,1 . . . ε1,10
...

. . .
...

εn,1 . . . εn,10

⎤
⎥⎦ (4)

where the matrices Xn×6 and Yn×10 are the measurements calculated as
described in Sect. 2.3 and ε represents the system error.

Equation (3) recursively estimate, through a predictor-corrector method, the
state xk and its covariance Pk. The initial estimate of the state x̂0 (first profile)
is assumed to be known and its covariance matrix P0 is initialized to zero. The
first profile for the major arcades is the profile having background descriptors
more similar to the current synthetic ones. The first profile for the branches is
the profile of the parent vessel at the bifurcation point from which they originate.

Iterating this procedure, each new intensity profile of the green channel is
generated taking into account the previous one and the surrounding background.
A similar procedure was applied to the red and blue channels. However, based
on experimental results, we later decided to simply use the average intensity
profile of the training ones for the latter two channels. The red component is
weighted with underlying background red intensity level, in order to take into
account the spatial colour distribution of the whole image. Finally, the RGB
intensity profile is cut with the full-width-at-half-maximum algorithm [10] to
keep the mere component of the vessel, and re-sampled using the Bresenham
line-drawing algorithm [2]. Experiments showed that the quality of the synthetic
images generated would not improve using the full Kalman estimator in the red
and blue channels.

The two vascular trees obtained (arteries and veins) are combined and super-
imposed on synthetic backgrounds, reported elsewhere [5], to create complete
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synthetic fundus camera images. Gaussian filtering is finally applied to smooth
vessel edges and in general unrealistically sharp intensity changes.

The image size of the final synthetic is 3,125 × 2,336 pixels with FOV diame-
ter of 2,662 pixels, in line with the resolution of state-of-the-art fundus cameras.
The whole method and an user-friendly GUI of the simulation tool have been
implemented in Matlab R©2014b. An extended dataset of synthetic images and
the simulation tool will be publicly available after publication.

3 Results

In Fig. 5 we visually compare real images (a, b) with synthetic images (c, d).
We notice that the synthetic vessels are characterized by a realistic morphology,
including typical tortuosity. The temporal segments of the arcades go toward
and around the macula, and the nasal segments radiate radially from the nerve
head. The vessels colouring is always darker than the background, following real
images: vessels appear brighter around the OD and darker towards the fovea and
the extremities of the FOV. The arteries appear, as in real images, brighter and
narrower than veins. Because of the changes in intensity profile along the tree,
the central reflex (a central, thin, bright reflection appearing sometimes along
the centerline of large vessels, especially arteries) is automatically provided.

(a) (b)

(c) (d)

Fig. 5. Comparison between real fundus images from the GoDARTS dataset (a, b) and
two complete synthetic retinal fundus images generated by our method (c, d).
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(a) (b)

Fig. 6. Density Map distribution of bifurcation points in synthetic images for artery
(a) and vein (b).

As can be seen in Fig. 6, the bifurcation probability maps of our synthetic
images are plausible and similar to the one of the real images.

Our method is fully capable of modelling any biological plausible patterns
and outliers given examples of such patterns in the training images. Moreover,
the proposed method is potentially capable of dealing with pathologies without
increasing its complexity. Indeed, our models can learn their parameters from
training set of pathological images.

In absence of quantitative quality criteria, we performed a simple qualita-
tive assessment by asking 7 experts (ophthalmologists and researchers in retinal
image analysis) to score the degree of realism of 12 synthetic retinal fundus
images, using a scale from 1 to 4, where 1 = not realistic at all, 2 = slightly real-
istic, 3 = nearly realistic, 4 = very realistic. Scores are summarized in Table 1.

Table 1. Qualitative assessment: scores given by the experts for each image

Image #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

mean 2.14 1.36 2.00 2.43 2.14 1.71 2.79 2.50 2.29 2.36 2.00 1.86

±std ±0.64 ±0.44 ±0.93 ±1.05 ±0.99 ±0.70 ±1.06 ±0.89 ±1.03 ±0.87 ±0.53 ±0.64

The best image obtained a score of 2.79, while the average score over all the
images is 2.13. We did not ask the experts to make any allowance for the fact that
many characteristics of fundus images are not modelled (e.g. small capillaries,
the vascular network inside the OD). Considering this, the scores suggest that
our synthetic images are plausible, as far as the only features generated go.
The experts also suggested some improvements: the density of the vessels in
some zone is too high, the largest vessels occasionally end abruptly, some first
level branches appear too straight and the direction of growth sometimes recoils.
These aspects will be considered in our future work. The comments given by the
experts will be analysed systematically and properly addressed. A qualitative
evaluation on a larger dataset will be used for this scope.

The main purpose of this project was to generate a synthetic dataset pro-
viding GT for validation of retinal image analysis algorithms, e.g. vasculature
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Table 2. Performance comparison of VAMPIRE segmentation algorithm on real (HRF)
and synthetic images: True Positive Rate (TPR), False Positive Rate (FPR), Specificity
(Sp), Accuracy (Acc) (mean± standard deviation).

TPR FPR Sp Acc

Real images 0.9874± 0.0015 0.0058± 0.0070 0.9942± 0.0070 0.9936± 0.0063

Synthetic images 0.9703± 0.0185 0.0151± 0.0125 0.9849± 0.0125 0.9835± 0.0122

and landmark detection. To demonstrate the suitability of our dataset for this
purpose, we compared the performance of a retinal vessel segmentation soft-
ware, VAMPIRE [17], when run on our synthetic images and on real images.
We used 10 images of healthy eyes with manual GT from the HRF dataset, and
10 of our synthetic images including their synthetic binary maps. Segmentation
results are evaluated in term of the standard statistical criteria [16]. The com-
parison of these 2 experiments, summarized in Table 2, shows that our synthetic
images behave comparably with real ones in term of vasculature segmentation
and certainly in line with the performance of algorithms reported recently in the
literature [6]. We note generally small differences between all values.

4 Conclusions

This paper has presented a novel technique to generate a reliable synthetic retinal
vasculature, as part of an ongoing project aimed to generate full, realistic, syn-
thetic fundus camera images. The results are promising for both the morphology
and the texture of the vessel networks. To our best knowledge no similar method
has been reported in literature. The encouraging quality of our initial results is
supported, so far, by small-scale visual inspection and quantitative experiments.
Further improvements to this preliminary work will take into account further
properties of real fundus images, including the geometric interaction between
arteries and veins, the way vessels radiate from the OD, the vascular network
inside the OD, and the appearance of further structures like small capillaries
and the retinal nerve fibre layer. Another future direction will be the simulation
of lesions.
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