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Abstract. Image quality assessment (IQA) is crucial in large-scale pop-
ulation imaging so that high-throughput image analysis can extract
meaningful imaging biomarkers at scale. Specifically, in this paper, we
address a seemingly basic yet unmet need: the automatic detection of
missing (apical and basal) slices in Cardiac Magnetic Resonance Imag-
ing (CMRI) scans, which is currently performed by tedious visual assess-
ment. We cast the problem as classification tasks, where the bottom and
top slices are tested for the presence of typical basal and apical pat-
terns. Inspired by the success of deep learning methods, we train Con-
volutional Neural Networks (CNN) to construct a set of discriminative
features. We evaluated our approach on a subset of the UK Biobank
datasets. Precision and Recall figures for detecting missing apical slice
(MAS) (81.61 % and 88.73 %) and missing basal slice (MBS) (74.10 %
and 88.75 %) are superior to other state-of-the-art deep learning archi-
tectures. Cross-dataset experiments show the generalization ability of
our approach.

1 Introduction

Cardiac Magnetic Resonance Imaging (CMRI) can not only reflect anatomic
information of the heart but also provide physiological information associated
with cardiovascular diseases. Although low image quality can be minimized by
careful design of the imaging acquisition protocols, it cannot be fully avoided;
particularly in large-scale imaging studies, where data is acquired at different
imaging sites, across subjects with a diverse constitution and at a big pace [5].

On the other hand, few objective guidelines exist, clinical or otherwise, that
establish what constitutes, in general, a good image and, in particular, a good
CMRI study [6]. To ensure that the quality of data collected in such imaging
studies is maintained, Image Quality Assessment (IQA) is crucial. Surprisingly,
IQA is still usually carried out by visual inspection of the images which can be
exhaustive, costly, subjective, error prone, and time consuming [1]. Thus, Auto-
matic IQA (AIQA) methods are required to detect deviations from the desired
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quality, intervene to correct problems in data collection as soon as possible, and
discard low-quality images, whose analysis would otherwise impair any aggre-
gated statistics over the cohort. Additionally, a priori and objective knowledge
on image quality of a given dataset (and possibly the type of artifact affecting
it) could assist in choosing the most appropriate image analysis method to be
used. This paves the way to “quality-aware image analysis” [16].

In multimedia, AIQA is a mature research field and usually concerned with
detecting specific image distortions [15,17]. Unfortunately, most of these meth-
ods cannot be directly translated to medical imaging due to different properties
in image statistics and the more complex nature of image artifacts [9]. Thus,
AIQA remains as a relatively unexplored research area in medical imaging. It is
acknowledged that lack of basal and/or apical slices is probably the most com-
mon problem affecting image quality in CMRI and has a major impact on the
accuracy of quantitative parameters of cardiac performance [7]. In this paper,
we mainly focus on short axis (SA) cine MRI. More specifically, we aim to iden-
tify missing apical slice (MAS) or missing basal slice (MBS). To address this
problem, we are motivated by the success of deep learning techniques and, in
particular, Convolutional Neural Network (CNN) [2,4]. They can achieve effec-
tive generalization properties, when applied to complex classification problems
such identifying missing SA slices.

To the best of our knowledge, this is the first paper tackling the problem of
detecting the missing slices in CMRI. Apart from introducing a new application
for the CNN’s, and addressing a pressing need, we propose an effective strat-
egy for their training. In practice, the lack of sufficient number of CMR data
sets with MBS/MAS deficiencies imposes a severe class imbalance problem. To
alleviate this issue, only the bottom and top SA slices are examined to ensure
the full coverage of the heart. This allows us to use the middle slices as non
BS/AS training samples. We present results for various depth of the networks,
and identify the optimal number of the layers. We also compare our framework
with an array of other deep learning methods such as Deep Boltzman Machines
(DBM) and Stack Auto Encoders (SAE), and show its better performance. In
the next section, we briefly introduce the architecture of our networks and pro-
vide the specification of our data sets. We then present our classification results
and conclude the paper in the final section.

2 Methodology

2.1 Convolutional Neural Network for Feature Learning

As mentioned, we are interested in detecting missing apical and basal slices in
CMRI data sets. To this end, for each cardiac subject, the top and bottom SA
slices in the scan are classified using two CNNs, each particularly trained for
detecting missing slices in basal or apical positions. Each CNN is composed of
alternating convolutional and sampling layers, and one fully-connected output
layer. Figure 1 shows the configuration of CNNs with total number of 5 layers
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Fig. 1. Overview of our proposed deep learning model for cardiac MRI quality assess-
ment. The CNNs are composed of 5 layers: four multi perceptron convolutional layers
plus one fully-connected layer. The bottom and top SA slices are examined individually.

(showing overall the best classification performance). Here, we briefly review the
various components in the proposed CNNs with a further detail.

Convolutional Feature Layers: Convolutional layers implement kernels that
are used to detect discriminative features from input images [11]. During the
training, these kernels are optimized to compute some salient features (such as
edges, corners, etc.) that are relevant for discrimination of the observed categor-
ical variables. We define Xl−1

i and Xl
i as input and output ith feature map of

the lth layer. Let m×n and k ×k be the size of input maps and the convolution
kernel for layer l. With this setting of parameters, we can get N output maps
with the size (m − k + 1) × (n − k + 1). The output of a convolutional layer l is
given by

Xl
j = f

⎛
⎝ ∑

i∈Mj

Xl−1
i ∗ kl

ij + blj

⎞
⎠ , (1)

where kl
ij denotes the convolution kernel linking the ith input to the jth output

map; blj is the bias vector for the jth output-feature-map of lth layer; f is the
activating function 1/(1 + e−x), and Mj is the input feature map in the former
layer.

Sampling Layers: These layers are designed to reduce the number of ker-
nel parameters, minimize the computational complexity, and make the features
robust to zoom, shift and rotation. The output of convolution layers are divided
into sub-regions having the size of w × h pixels. Then, each output pixel of
a sampling layer is defined as the maximum value in the corresponding input



Automated Quality Assessment of Cardiac MR Images 141

sub-region. These operations can be formulated using the following relationship

Xl
j = f

(
βl
jdown

(
Xl−1

j

)
+ blj

)
, (2)

where down(·) symbolizes the down sampling function; j, l, β and b denote the
feature map index, the layer number, the weighting coefficients, and the bias
vector, respectively.

Softmax classifiers: To predict the final labels, the CNN detected low-
dimensional features are used to train softmax classifiers. Given the feature
vector x(i), we computed the posterior probabilities for k = 1, 2, ...,K classes
using

p(y(i) = k|x(i)) =
eθT

j x(i)

∑K
l=1 eθT

l x(i)
, (3)

where θ denotes the parameters of the softmax classifier, obtained from the
pre-trained CNN network. The neural network was trained over 3 days for 100
epochs with a fixed learning rate 0.01. In the framwork, Rectified Linear Unit
(ReLU) [8] was used as a activation function, and back-propagation technique
[14] was used for adjusting weights of connections in the network. To test a single
image with size 100 × 100, it only took approximate 0.2 s.

3 Results

3.1 Pre-processing and Data Description

To minimize the influence from the background region, a global mask covering
the heart and its vicinity was employed prior to training. We define three classes
of qualities in this paper: MAS, MBS, and no missing slices (normal). The last
label is obtained by logical combination of the results from the MAS and MBS
classifiers. The criterion used to determine a correct basal slice position is to
verify if the left ventricular outflow tract (LVOT) is observable at the end-systolic
phase [7].

Table 1. The average precision and recall rates of each type of missing slices using
different deep learning models.

Precision rate Recall rate

MAS MBS Normal MAS MBS Normal

SAE 79.08 % 68.63 % 78.54 % 88.48 % 88.72 % 88.15 %

DBM 66.67 % 70.09 % 71.47 % 88.38 % 88.71 % 88.32 %

3-CNNs 80.77 % 70.92 % 78.43 % 88.52 % 88.75 % 87.85 %

5-CNNs 81.61% 74.10% 79.42% 88.73% 88.75% 88.01%

7-CNNs 82.19 % 69.43 % 75.06 % 88.62 % 88.76 % 87.01 %
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Fig. 2. The learned convolution kernels on basal and mid-slices of the first (a), and the
second (b) layers of the trained CNN.

We apply our framework to 100 UK Biobank (UKB) cardiac MRI pilot data
sets. These data sets are obtained by 1.5T MR scanners [12,13] and show overall
good quality and no missing slices. Therefore, to generate synthetic deficiencies
in the data, we manually removed basal slices from 50 subjects and apical slices
from another 50 subjects. For each kind of the considered defect, we randomly
selected 80 % of generated data sets as training sets and the left the rest as the
testing sets. In order to evaluate our proposed framework’s performance, we use
the Precision Rate = TP/(TP + FP ), and the Recall Rate = TP/(TP + FN),
where TP , FP , and FN denote the number of true positive, false positive, and
false negative samples, respectively.

3.2 Evaluation and Comparison to Other Deep Learning Models

We systematically compared our proposed CNNs framework with different types
of CNNs architectures and traditional deep learning methods. Table 1 lists the
results for different CNNs architectures and other state-of-the-art deep learning
methods. As seen, the CNNs with a total number of 5 layers shows the best
precision rate and recall rates.

Fig. 3. The distributions of the error, precision, and recall rates over 100 training
epochs, showing a superior performance of the CNNs with 5 layers.
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Fig. 4. Sample test slices and their probability values of being apical (top row) or
basal slice (bottom row) are shown. ‘PA’ means the Probability value of being Apical
slice; ‘PB’ means the Probability value of being Basal slice. The ‘correct’ and ‘wrong’
subscripts indicates the classification results.

We also visually examined the learned convolution kernels, and found only
a few kernels present structure related appearances. Figure 2 shows the kernels
learned for classifying missing basal slices. It is not surprising that some of these
kernels show noisy, rather than strong structural and interpretable patterns. This
is because our features are trained to be discriminative. In fact, to obtain user
interpretable features, generative models such as those outlined in [10] is usually
considered.

Furthermore, to demonstrate the convergence behaviour of the compared
methods, in Fig. 3 we show the distributions of the error, precision, and recall
rates over 100 training epochs. It can be seen the CNNs with 5 layers outperforms
other CNN architectures and learning models.

Fig. 5. The error, precision, and recall rates in cross dataset test.
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In Fig. 4, a few apical (top row) and basal (bottom row) slices in the test
datasets along with their corresponding posterior probability values are shown.
We can observe that our framework correctly classifies a few challenging basal
slices, but also fails in a few other cases. Furthermore, the basal slices with
existing LVOT’s indicate higher probability values of being correctly classified.
This shows that the training has been successful in capturing the LVOT as a
prominent feature in the correctly positioned basal slices.

We also designed a validation experiment with a second collection of CMR
data sets to show the generalization ability of our method. To this end, we
trained the proposed model using the UK Biobank datasets and tested it using
the data sets available from Data Science Bowl Cardiac Challenge data sets [3].
This experiment was repeated for 100 training epochs and the values for error,
precision and recall rates are shown in Fig. 5. These results show that our trained
convolutional neural network achieves a good generalization efficacy.

4 Conclusion

In this paper, we tackled the problem of identifying the missing apical and basal
slices in large imaging databases. We illustrated the concept by applying the
method to CMRI studies from the UK Biobank pilot datasets. We designed slice
classifiers and learned a set of discriminative features directly by training Convo-
lutional Neural Networks. Casting this problem as a slice classification task, we
were able to alleviate the class imbalance issue and effectively train the CNNs
using the available data. Different numbers of network layers were examined
and compared to other deep learning models (such as Stacked Auto-Encoder
and Deep Boltzmann Machines). We showed that a CNN model with 5 layers
outperforms the other models. We also validated our model by training the 5-
CNNs using UKB pilot datasets and applying them to CMR data sets from Data
Science Bowl Cardiac Challenge. The proposed model shows a high consistency
with human perception and becomes superior compared to the state-of-the-art
methods, showing its high potential. In this paper, the kernel sizes in the con-
volutional layers of the network were selected somehow arbitrarily. However, in
principle these parameters can be optimized by performing exhaustive cross val-
idation experiments. In future, we will further refine the current structure of our
model by tuning such parameters.
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