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Abstract. Multi-sequence MRI protocols are used in comprehensive exami-
nations of various pathologies in both clinical diagnosis and medical research.
Various MRI techniques provide complementary information about living tis-
sue. However, a comprehensive examination covering all modalities is rarely
achieved due to considerations of cost, patient comfort, and scanner time
availability. This may lead to incomplete records owing to image artifacts or
corrupted or lost data. In this paper, we explore the problem of synthesizing
images for one MRI modality from an image of another MRI modality of the
same subject using a novel geometry regularized joint dictionary learning
framework for non-local patch reconstruction. Firstly, we learn a cross-modality
joint dictionary from a multi-modality image database. Training image pairs are
first co-registered. A cross-modality dictionary pair is then jointly learned by
minimizing the cross-modality divergence via a Maximum Mean Discrepancy
term in the objective function of the learning scheme. This guarantees that the
distribution of both image modalities is taken jointly into account when building
the resulting sparse representation. In addition, in order to preserve intrinsic
geometrical structure of the synthesized image patches, we further introduced a
graph Laplacian regularization term into the objective function. Finally, we
present a patch-based non-local reconstruction scheme, providing further fidelity
of the synthesized images. Experimental results demonstrate that our method
achieves significant performance gains over previously published techniques.

1 Introduction

Magnetic Resonance Imaging (MRI) is a versatile and noninvasive imaging technique
extensively used in neuroimaging studies. MRI comes in many different flavors (viz.
MRI sequences, or henceforth also referred as MRI modalities1), each providing
diverse and complementary image contrast mechanisms unraveling structural and

1 Here, we use the word modality in the sense of a specific kind of MRI sequence. Note that the
proposed technique would equally be applicable when the protocol involves different imaging
modalities in a more classical sense (e.g. MRI, CT, US, SPECT, and PET).
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functional information about brain tissue. Multi-modality MRI are nowadays very
common in many pharmaceutical clinical trials, in research studies of neurosciences, or
in population imaging cohorts targeted to understand neurodegeneration and cognitive
decline. The acquisitions of a full battery of all these MR images can face constraints
associated with their cost, limited availability of scanning time, patient comfort or
safety considerations. Moreover, in large scale studies it is not uncommon to face
incomplete datasets due to the presence of imaging artifacts, acquisition errors or
corrupted data. While many such studies use imputation techniques to compensate for
these latter issues, this is usually only at the level of the derived imaging biomarkers
and not of the data itself. Finally, in longitudinal imaging studies where image data is
collected over several years, evolution of imaging technology may lead to the
appearance of new MRI sequences that are added to an existing imaging protocol at
some point in time but for which are not available as part of the imaging battery
acquired at earlier time points. In these and other applications, it would be desirable to
have a methodology that is able to synthesize the unavailable data from the available
MRI studies. The assumption here is that the synthesis ability comes from the
cross-modality correspondences of sparse codes obtained during training, and can be
used to encoding missing MRI. The degree to which this hypothesis is valid will have
to be scrutinized in each application but is worth exploring.

To cope with this problem, several methods were proposed through either trans-
forming MRI intensities or reconstructing tissue contrasts to obtain the missing MRI
data. Histogram matching is the most common approach within this group. Although
this technique is widely used in neuroimaging, it has been pointed out its inefficacy for
multi-modality image synthesis due to the lack of specificity for certain ratios of tissue
types [1]. On the other hand, techniques based on sparse representations have been
presented, which separately learn two corresponding dictionaries from co-registered
image pairs and synthesize a desired MRI modality data from the patches of the
available MRI modality [1]. These approaches, however, boil down to an
example-based synthesis strategy, which does not fully exploit the available training
data to its fullest. In contrast, here, we establish fundamental connections with transfer
learning (a.k.a. domain adaptation) used in many fields, e.g. [2, 3]. Such methods can
successfully solve the above problem by learning a paired dictionary from both
modalities while assuming each co-registered image pair with a nearly identical dis-
tribution [1]. However, this assumption cannot be fully satisfied in practice since
cross-modality data may have very different feature distributions in different spaces.

In this paper, we propose a novel geometry regularized joint dictionary learning
method for synthesizing any unavailable MRI from available MRI data. This paper
offers the following three contributions: (1) We address cross-modality MRI synthesis
by jointly learning a cross-modality dictionary that penalizes differences in the statis-
tical distribution of the sparse codes in both domains rather than directly imposing the
same code to both domains as done before. This is achieved by incorporating a new
term in the computation of the joint sparse codes using the Maximum Mean Dis-
crepancy measure; (2) We exploit the geometrical information underlying the input
data and incorporate this new term into the cross-modality joint dictionary learning
optimization; (3) A non-local reconstruction framework that provides a more expres-
sive and compact patch representation is adopted to synthesize the corresponding patch
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from a different MRI protocol. To the best of our knowledge, this is the first time that
joint dictionary learning is computed by minimizing the discrepancy between the
statistical distributions of the codes of the involved MRI modalities while preserving
the intrinsic geometrical structure of the image. In the remainder of this paper, we first
define the cross-modality synthesis problem, and then introduce our proposed method
in Sect. 2. The experimental results are demonstrated in Sect. 3. Finally, we discuss the
results and conclude the paper in Sect. 4.

2 Method

In this section, we propose cross-modality image synthesis via geometry regularized
joint dictionary learning for effectively minimizing the cross-modality discrepancy.
This consists in an extension of the conventional dictionary learning by jointly learning
from the data of two modalities at the same time while minimizing the sparse codes
divergence between the different modalities.

2.1 Problem Definition

Let LMK ¼ IMk
i

� �m

i�1 be a library ofm subjects imaged with kmodalities each (k = 1 or 2),
with Ii being the training image of the i-th sample. Each pair of images in both libraries,
i.e. IM1

i ; IM2
i

� �
is assumed co-registered. Further, images are treated as the combination of

many patches and denoted as XMk ¼ xMk
i

� �n

i�12 R
s�n where s is the size of a vectorized

patch, and n represents the number of training patches for both modalities. We denote the
test image in the same way by a matrix Y ¼ y1f gcl¼12 R

s�c, where c is the number of
patches in the test image. All of the elements in Y are considered with either modalityM1

or modality M2. A summary of the notation used throughout this paper is presented in
Table 1.

Table 1. Summary of notations and their meanings as used in this paper

Notation Description Notation Description

L1; L2; Lt Training library of modality 1
or 2, testing library

M;G MMD matrix, graph Laplacian
matrix

XM1 ;XM2 ; Y Training matrix of modality 1
or 2, testing matrix

U;W ;N Diagonal degree/weight
matrix, nearest-neighbor
graph

DM1 ;DM2 Dictionary matrix of modality
1 or 2

k; b; c Sparsity, balance parameter of
MMD/graph Laplacian

aM1 ; aM2 Sparse codes matrix of
modality 1 or 2 in training
set

X; l Similar patch set/weight matrix
in testing domain

at; ât; au, (Optimal) sparse codes matrix
in testing/unified space

C; h Normalization constant, scalar
parameter
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Problem: Given XM1 and XM2 , our goal is to learn a pair of dictionaries DM1 ;DM2f g
and the unified sparse codes au minimizing the cross-modality discrepancy of aM1 and
aM2 , where aMk is the sparse codes matrix of XMk

2.2 Dictionary Learning

Let X ¼ xif gni�12 R
s�n be a training data matrix with n input items sampled in the s-

dimensional space, D ¼ dif gKi�12 R
s�K be a projection dictionary with K atoms, where

K[ s to make the dictionary overcomplete. Learning D from a sparse representation of
X can be formulated as:

minD;a X � Da
2
F
þ k

����
����a

����
����
0
; ð1Þ

where a ¼ aif gni�12 R
K�n is a set of n K-dimensional sparse codes of X, �k kF is the

Frobenius norm, �k k0 is l0-norm, which fixes the number of non-zero elements of a, and
k denotes a regularization parameter to trade off the sparsity and the reconstruction
error. As shown in [4], the minimization problem as stated in (1) is an NP-hard problem
under the l0-norm constraint. An alternative solution is to relax the l0-norm constraint
with the l1-norm constraint to obtain a near-optimum result [5].

2.3 Geometry Regularized Joint Dictionary Learning

Following the dictionary learning procedure described in Sect. 2.2, instead of trans-
ferring the estimated sparse codes from the first domain to the other [1, 6], we can learn
the dictionaries of both domains independently:

minDM1 ;aM1 XM1 � DM1aM1
2

F
þ k1

����
����aM1

����
����
1

;

minDM2 ;aM2 XM2 � DM2aM2
2

F
þ k2

����
����aM2

����
����
1

:

ð2Þ

However, such a strategy is time-consuming and results in two sets of independent
sparse codes that do not necessarily satisfy the assumption of high-correlation between
both modalities to reconstruct M2-like images from M1-like ones. To solve a similar
problem, Yang et al. [6] proposed an image super-resolution approach that uses coupled
dictionary learning. Their method maps image pairs (e.g. low and high resolution or,
here, two different modalities) into a common space, which enforces the sparse codes of
paired data possess the same values. Instead of directly imposing the same sparse codes
across each pair, our work allows the codes to be different for each modality, and fosters
the most similar distributions across them. This is done by measuring the distribution
divergence for the co-registered image pairs over the empirical Maximum Mean Dis-
crepancy (MMD), which is then minimized and incorporated into the dictionary learning
problem.
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Maximum Mean Discrepancy Regularization: We seek that the probability distri-
butions of the codes associated to cross-modality patch pairs is identical when com-
puting the optimal sparse representation. To this effect, the MMD [7] is used.
The MMD is a nonparametric statistic utilized to assess whether two samples are drawn
from the same distribution. In our case, the two samples correspond to the sparse codes
of the training set for the two modalities involved. The MMD is calculated as the
largest difference in the expected mean value of the K-dimensional codes for both
modalities. To compute the MMD, we follow [7–9] to estimate the largest difference in
expectations over functions in the unit ball of a reproducing kernel Hilbert space:

MMD ¼ 1
n

Xn

i�1
ai � 1

n

X2n

j¼nþ 1
aj

����
����
2

H

¼ Tr auMau
T

� �
; ð3Þ

where au represents the unified sparse codes, au
T
is the transposed matrix of au, and M

denotes the MMD matrix defined as:

Mi;j ¼ 1=n2; xi; xj 2 XM1 or xi; xj 2 XM2

�1=n2; otherwise

�
: ð4Þ

Graph Laplacian Regularization: During dictionary learning, high-level patch
semantics are captured in each dictionary atom. However, this process fails to introduce
any prior knowledge on the geometrical structure within patches. Instead, by intro-
ducing a graph Laplacian (GL) term [10], we can preserve the local manifold structure
of the sparse graph and better capture the intrinsic geometrical properties of the entire
data space. Given XM1 ;XM2f g 2 R

s�2n, a q-nearest neighbor graph G with 2n vertices
can be constructed. The weight matrix of G is W 2 R

2n�2n, defined as the matrix with
elements Wi;j ¼ 1 if and only if for any two data points xi; xj; xi, xi is among the q-
nearest neighbors of xj or vice versa (wi;j = 0, otherwise). Let / ¼ diag /1; � � � ;/2nð Þ
be the diagonal degree matrix with elements /i ¼

P2n
j¼1 Wi;j. The GL term, incorpo-

rated into the sparse representation as a regularization criterion [10], imposes that the
obtained sparse codes vary smoothly along the geodesics of the manifold that is cap-
tured by the graph. The GL matrix is then defined as G ¼ /�W . In order to preserve
the geometrical structure in G, we map G to the unified coefficients au by:

1
2

X2n

i;j¼1
ai � aj

�� ��2
2Wi;j ¼

X2n

i¼1
aia

T
i /ii�

X2n

i;j¼1
aja

T
i Wii ¼ Tr auGau

T
� �

: ð5Þ

Objective Function: To maximize the correlation between patch pairs in both
modalities, we map them into a common higher-dimensional space that meets two
complementary objectives to those of Eq. (2), viz. the MMD and GL terms. Therefore,
our geometry regularized joint dictionary learning objective function becomes:
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minDM1 ;aM1 ;au
1
2

XM1 � DM1au
2

F
þ 1

2
k2

����
����XM2 � DM2au

����
���� 2

F

þTr au cMþ dGð ÞauT
� �

þ k auk k1�
ð6Þ

where c and d are the regularization parameters for trading off the effect of the MMD
and GL terms, respectively.

2.4 Image Synthesis via Nonlocal Reconstruction

Once the cross-modality dictionary pairs have been computed by solving Eq. 6, we
seek to reconstruct a test image Y 2 R

s�c by, first, sparsely representing Y with respect
to DM1 2 R

s�K by solving Eq. (1) with l1-norm as:

at ¼ arg min
at

Y � DM1at 2
F þ k

�� ��at�� ��
1; ð7Þ

where at 2 R
K�c denotes the sparse codes of Y . The estimated coefficients can be

directly used (or “transferred”) to synthesize the image Ŷ of our target modality M2 by
a linear combination of elements in the dictionary DM2 , namely, Ŷ ¼ DM2at.

To achieve richer synthesis ability, in this paper, we improve the sparse represen-
tation performance through an optimized nonlocal reconstruction model. To faithfully
synthesize the desired image, we enforce the sparse coefficients at as close as possible to
the target codes. That is, by groups of similar patches being encoded onto subsets of the
dictionary that are similar, the estimated sparse codes vary smoothly as the patches
themselves vary. This makes the whole reconstruction scheme more robust to the
influence of patch noise and more accurate. To this end, we adopt the representative
non-local means [11] in the sparse representation model by modifying Eq. (7) as

ât ¼ argmin
bt

Y � DM1bt
�� ��2

F þ k btk k1; ð8Þ

where bt ¼ PP
p2Xi

li;pa
t
i;p, and ati indicates the sparse codes of yi. For each yi, we

express its similar patch set as Xi, and define p as a random element within Xi. Also,
we define li;p as the weight for computing the level of similarity between yi and yq,

where li;p ¼ 1
C exp � yi�yi;pk k2

2
h2

� �
, with C being the normalization constant and h being a

scalar (note that li;p satisfies 0� li;p � 1 and
P
p2Xi

li;p ¼ 1). Then, we can update the

synthesized image via ~Y ¼ DM2 ât.
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3 Experiments

In this section, we show extensive experiments for the MRI cross-modality synthesis
problem to verify the effectiveness of our proposed method.

Experiment Setup: We evaluated our method in two different scenarios. Firstly, we
used the IXI dataset [12] for synthesizing the T2-w image considering the proton
density (PD) acquisition from the same subject. We randomly selected 12 subjects from
IXI containing both T2-w and corresponding PD-w images. We trained the dictionaries
from 5 subjects including both modalities, and the other 7 subjects were used for
testing. In the second experiment, we considered the generation of
magnetization-prepared rapid gradient-echo (MPRAGE) images based on spoiled
gradient recalled (SPGR) acquisitions, allowing us to compare our method with an
existing approach [1]. In each experiment, for each co-registered image pair in the
training set, we randomly selected 100,000 patch pairs of 5 � 5 � 5 voxels size to
train our dictionaries. We also took the factor of dictionary size and sparsity into
consideration, and fixed the dictionary size as 1024 and k ¼ 0:15 based on our
experiments trading off cost and synthesis quality. For other parameters, we used the
following settings according to our extensive experiments: q ¼ 5, c ¼ 105, d ¼ 1, and
the searching window for nonlocal reconstruction equals 10. Finally, we adopted Root
Mean Square Error (RMSE), Peak Signal to Noise Ratio (PSNR) in decibels (dB),
Structural Similarity Index (SSIM) and voxelwise relative error (RE) as evaluation
metrics.

Compared Methods: To show the performance of our approach, we compared our
results of the following state-of-the-art methods: (a) Joint Dictionary Learning (JDL);
(b) MRI example-based contrast synthesis (MIMECS) [1]; (c) Geometry Regularized
Joint Dictionary Learning (GRiDLE) with only MMD term; (d) The proposed
GRiDLE. Note that JDL is a special case of GRiDLE with c ¼ d ¼ 0, and GRiDLE
with only MMD term is another special case with d ¼ 0.

Experimental Results: Table 2 shows the error measures of the synthesized T2

images using JDL, GRiDLE (d ¼ 0) and GRiDLE. We did not compare our GRiDLE
with MIMECS in this case, because there is no available dictionary within this algo-
rithm to generate arbitrary results. We can see that the proposed method outperforms
the other two, obtaining the lowest RMSEs and the highest PSNRs and SSIMs for all 7
subjects. In the second example we compared the performance of the proposed method
with that of the state-of-the-art MIMECS. The clear advantage of our approach over the
MIMECS and JDL is shown in Fig. 1, which can be seen in overall tissue contrast, as
well as in the lowest voxelwise RE. Table 3 compares the average error measures of all
the methods for MPRAGE synthesizing from SPGR images. As shown, the proposed
method achieves the best results.

124 Y. Huang et al.



Table 2. Error measures of the synthetic images using JDL, GRiDLE, and GRiDLE.

RMSE PSNR (dB) SSIM
JDL GRiDLE

(d ¼ 0)
GRiDLE JDL GRiDLE

(d ¼ 0)
GRiDLE JDL GRiDLE

(d ¼ 0)
GRiDLE

Sub .1 9.43 8.53 8.29 36.72 39.93 41.73 0.9025 0.9069 0.9075
Sub .2 9.42 8.53 8.27 37.15 39.92 42.05 0.9021 0.9054 0.9062
Sub .3 10.42 9.73 9.49 39.35 38.23 40.35 0.8997 0.9018 0.9029
Sub .4 10.53 9.26 9.01 36.17 37.61 41.34 0.8669 0.8999 0.9016
Sub .5 12.03 11.07 10.94 34.12 36.01 39.17 0.8990 0.8962 0.8970
Sub .6 10.21 9.30 9.06 36.73 38.66 41.02 0.9002 0.9049 0.9062
Sub .7 10.98 9.87 9.63 36.18 38.18 41.01 0.8964 0.9028 0.9034
Avg. 10.43 9.47 9.24 36.63 38.36 40.95 0.8953 0.9026 0.9035

           Input             Ground Truth        MIMECS [1]               JDL              GRiDLE  = 0          GRiDLE 
          SPGR               MPRAGE           RMSE: 15.85       RMSE: 11.79       RMSE: 10.52        RMSE:10.63 

                                                         PSNR: 33.19        PSNR: 35.12        PSNR: 35.94         PSNR: 40.14 
                                                         SSIM: 0.9336      SSIM: 0.9342      SSIM: 0.9384        SSIM: 0.9391 

RE 

Fig. 1. Comparison of the synthesized results with ground truth.

Table 3. Comparison of methods used for synthesizing MPRAGE based on SPGR.

MIMECS [1] JDL GRiDLE ðd ¼ 0Þ GRiDLE

RMSE 14.55 12.58 11.03 10.89
PSNR (dB) 32.76 34.51 35.52 39.35
SSIM 0.9303 0.9368 0.9403 0.9500
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4 Conclusion

In this paper, we proposed a novel geometry regularized joint dictionary learning
(GRiDLE) approach for MRI cross-modality synthesis. The distribution divergence is
effectively reduced by including the MMD term for both modalities and a mapping
function in the sparse domain. The learned dictionary pair can not only minimize the
distance between each coupled coefficients but also preserve the geometrical structure
in the data while spanning both spaces for stable mapping of image details. Extensive
experiments have demonstrated that GRiDLE can achieve superior performance over
the state-of-the-art methods. Future work will focus on the simultaneous generation of
multimodality images.
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