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Abstract. This paper proposes an approach to improve atlas-to-image
registration accuracy with large pathologies. Instead of directly register-
ing an atlas to a pathological image, the method learns a mapping from
the pathological image to a quasi-normal image, for which more accurate
registration is possible. Specifically, the method uses a deep variational
convolutional encoder-decoder network to learn the mapping. Further-
more, the method estimates local mapping uncertainty through network
inference statistics and uses those estimates to down-weight the image
registration similarity measure in areas of high uncertainty. The perfor-
mance of the method is quantified using synthetic brain tumor images
and images from the brain tumor segmentation challenge (BRATS 2015).

1 Introduction

Atlas-to-image registration provides spatial information to map anatomical loca-
tions from an atlas to a patient. This procedure is crucial for atlas-based seg-
mentation which is used in lesion detection and treatment planning for trau-
matic brain injury, tumor and stroke cases [7]. However, large brain pathologies
often produce appearance changes which may result in large misregistrations,
if appearance-mismatch is falsely accounted for by image deformation. This is
especially acute for deformable image registration methods, which are needed to
capture subtle deformations and, for example, mass effects of tumors.

Several approaches have been proposed for atlas-to-image registration1 with
large pathologies. The most straight-forward method is cost function masking,
where the lesion area is not considered during image similarity computation [1].
However, this method could be problematic if the lesion area contains important
brain structure information. Other methods include joint segmentation and regis-
tration that mitigates missing correspondences [3], explicit tumor growth mod-
eling [5], geometric metamorphosis that separates the deformation of healthy

1 Such approaches, as well as our proposed approach, are of course also applicable
to general image-to-image registration. We use atlas-to-image registration as our
motivating application here.
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brain areas from lesion changes [14], and registration methods accounting for
deformation and intensity changes [21].

While effective, these methods require either explicit lesion segmentation,
knowledge of lesion location, or the modeling of tumor growth. Two alternatives
exist: (1) using a robust cost-function [17] or a mutual saliency map [15] to mit-
igate the effect of outliers or, instead, (2) learning desired mappings between
image types from large-scale image databases. We follow this second approach.
A learned mapping then allows synthesizing one image type from another. Image
synthesis has been extensively explored to synthesize MR imaging sequences [8],
to facilitate multi-modality registration [2,19] and to segment lesions [18]. Our
goal is to synthesize quasi-normal images from images with lesions to simplify
atlas-to-lesion-image registration. Using image synthesis rather than a robust
cost-function or a mutual saliency map allows reconstructing structural informa-
tion to guide registration even in highly pathological areas.

Liu et al. [10] proposed a low-rank-plus-sparse (LRS) technique to synthe-
size quasi-normal brain images from pathological images and to simultaneously
estimate a quasi-normal atlas. This approach decomposes images into normal
(low-rank) and lesion (sparse) parts. The low-rank part then constitutes the
synthesized quasi-normal images, effectively removing lesion effects. By learning
from data, no prior lesion information is required. However, the LRS decomposi-
tion itself requires good image alignment, hence decomposition and registration
have to be interleaved to obtain good results.

Contributions. Our contributions to improve atlas-to-image registration can
be summarized as follows: First, similar to [10], we propose a method to directly
map a pathology image to a synthesized quasi-normal image to simplify the
registration problem. No registration is needed in this process. Second, we use
a deep variational encoder-decoder network to learn this mapping and train it
using stochastic gradient variational Bayes [9]. Third, since the normal appear-
ance of pathological tissue is unknown per se, we propose loss-function mask-
ing and pathology-like “structured noise” to train our model. These strategies
ignore mappings between image regions without known correspondence, and
artificially create areas with known correspondence which can be used for train-
ing, respectively. Fourth, based on the variational formulation, we estimate the
reconstruction uncertainty of the predicted quasi-normal image and use it to
adjust/improve the image similarity measure so that it focuses more on match-
ing areas of low uncertainty. Fifth, we validate our approach on synthetic tumor2

images and data from the BRATS 2015 challenge. Our framework requires no
prior knowledge of lesion location (at test time; lesion segmentations are required
during training only) and provides comparable or, in many cases, better regis-
tration accuracy than the LRS method and cost function masking.

Organization. Section 2 discusses variational Bayes for autoencoders, as well as
its denoising criterion. Section 3 introduces our methods to remove brain lesions

2 In this paper we use brain tumors as example pathologies; however, our approach is
applicable to other pathologies.
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from images and to compute uncertainty estimates for the prediction of quasi-
normal images. Section 4 presents experimental results (for 2D synthetic and real
data), discusses extensions to 3D, and possible improvements.

2 Denoising Variational Autoencoding

The problem of mapping a pathology image to a quasi-normal image is similar to
the objective of a denoising autoencoder, which aims to transform a noisy image
into a noise-free image. Next, we introduce variational inference for autoencoders,
followed by an explanation of inference for a denoising autoencoder.

Given a clean brain image x and the latent variable z, we want to find
the posterior distribution p(z|x). Since p(z|x) is intractable, we approximate
it with a tractable distribution qφ(z|x), where φ is the parameter of the varia-
tional approximation. For a variational autoencoder, the posterior distribution
is pθ(z|x) ∝ pθ(x|z)p(z), where the prior p(z) is usually an isotropic Gaussian,
and θ are the parameters of the observation model pθ(x|z). When mapping
these parameters to an autoencoder, z corresponds to the hidden layer, qφ(z|x)
refers to the encoding operation and pθ(x|z) refers to decoding. Thus, φ and θ
correspond to the weights in the encoder and decoder.

To approximate the true posterior with the variational posterior, we minimize
the Kullback-Leibler (KL) divergence between these two distributions.

DKL(qφ(z|x)||pθ(z|x)) = Eqφ(z|x)

[
log

qφ(z|x)
pθ(z|x)

]

= log pθ(x) − Eqφ(z|x)

[
log

pθ(z,x)
qφ(z|x)

]
.

(1)

Since the data x is independent of the latent variable z, log pθ(x) in Eq. (1)
is constant. Thus, minimizing the KL-divergence is equivalent to maximizing
the term Eqφ(z|x)(log pθ(z,x) − log qφ(z|x)). Since the KL-divergence is non-
negative, we have Eqφ(z|x)[log pθ(z,x) − log qφ(z|x)] ≤ log pθ(x), and we call
this term the variational lower bound of the data likelihood LVAE, i.e.,

LVAE = Eqφ(z|x)

[
log

pθ(z,x)
qφ(z|x)

]

= −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)[log pθ(x|z)],
(2)

where the first term can be regarded as the regularizer, matching the variational
posterior to the prior of the latent variable, and the second term is the expected
network output likelihood w.r.t. the variational posterior qφ(z|x). During train-
ing, the optimization algorithm maximizes this variational lower bound.

Our goal is a denoising autoencoder for pathology-removal. In other words,
we regard lesions as a special structured noise. Removing lesion appearance is
then equivalent to removing noise in the denoising autoencoder theory. To do
this, we introduce the input noise (lesion) corruption distribution as p(x̃|x).
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The variational posterior distribution is then q̃φ(z|x) =
∫

qφ(z|x̃)p(x̃|x)dx̃. If
the original variational posterior distribution is a Gaussian, this new posterior
can be regarded as a mixture of Gaussians, which has better representation
power. As shown in [6], the variational lower bound for a denoising autoencoder is

LDVAE = Eq̃φ(z|x)

[
log

pθ(z,x)
qφ(z|x̃)

]
≥ LVAE = Eq̃φ(z|x)

[
log

pθ(z,x)
q̃φ(z|x)

]
. (3)

This means that the denoising variational lower bound is higher than the original
one, leading to a smaller KL-divergence between the true and the approximated
posterior. In the following section, we discuss our implementation of the encoder-
decoder network and how to maximize the denoising variational lower bound.

3 Network Model and Registration with Uncertainty

Figure 1 shows the structure of our denoising variational encoder-decoder net-
work. The input is a brain image x with intensities normalized to [0, 1].
The encoder network consists of convolution followed by max-pooling layers
(ConvPool), and the decoder has max-unpooling layers followed by convolution
(UnpoolConv). We choose max-unpooling instead of upsampling as the unpool-
ing operation, because upsampling ignores the pooling location for each pool-
ing patch, which results in severe image degradation. The encoder and decoder
are connected by fully connected layers (FC) and the re-parameterization layer
(Reparam) [9]. This layer takes the parameters for the variational posterior as
input, which in our case is the mean μ and standard deviation Σ of the Gaussian
distribution, and generates a sampled value from the variational posterior. This
enables us to compute the gradient of the regularizer −DKL(qφ(z|x)||pθ(z)) for
φ using the variational parameters instead of the sampled value, which is not
differentiable for φ. Below we discuss specific techniques implemented for our
task.

Training Normal Brain Appearance Using Pathology Images. A model
of normal brain appearance would ideally be learned from a large number of
healthy brain images with a consistent imaging protocol. Our goal, instead, is to
learn a mapping from a pathological image to a quasi-normal image, i.e., train a
denoising autoencoder for the lesion ‘noise’, and maximize the denoising varia-
tional lower bound. This poses two challenges: first, in general, we do not know
what the normal appearance in a pathological area should be; second, patho-
logical images may exhibit spatial deformations not seen in a normal subject
population (such as the mass effect for brain tumors). To mitigate these prob-
lems, we learn the brain appearance from the normal areas of the pathological
brain images only. This can be accomplished by (1) introducing lesion-like struc-
tured noise (i.e., circles filled with the mean intensity of the normal brain area
for brain tumor cases) via the QuasiLesion layer in Fig. 1, and (2) loss function
masking, i.e., ignoring lesion-areas during learning. Suppose we have the lesion
segmentation for the training data. For loss-function masking, we first change the



Registration of Pathological Images 101

Q
u
a
s
i
-
L
e
s
i
o
n

C
o
n
v
P
o
o
l

98
×

11
6
×

48

C
o
n
v
P
o
o
l

49
×

58
×

24

U
n
p
o
o
l
C
o
n
v

98
×

11
6
×

48

U
n
p
o
o
l
C
o
n
v

19
2
×

23
2

F
C

Σ

R
e
p
a
r
a
m

F
C
µ

x

19
6
×

23
2

60
60

60

F
C

49
×

58
×

24

xoutput

S
i
g
m
o
i
dx̃

Fig. 1. Network structure (numbers indicate the data size).

input with structured noise x̃ to x̃normal using the following rule: if x̃ ∈ Normal,
then x̃normal = x̃; otherwise, (i.e., x̃ ∈ Lesion) x̃normal = a + N (0, σ). This pre-
vents the network from using tumor-appearance. Experiments show only small
differences for different settings of a and σ. However, performance suffers when
σ is too high, and setting a = 0 increases the mean intensity error for the whole
image. In our model, we set a to the mean intensity value of the normal area
and σ = 0.03. Second, we set our network output likelihood for xoutput to

log pθ(xoutput|z)normal =

{
|xoutput − x|, xoutput ∈ Normal
0, xoutput ∈ Lesion.

(4)

Hence, we disregard any errors in the lesion area during backpropagation. We
refer to this two-step strategy as loss-function masking.

The overall training procedure for our network is: (1) sample one corrupted
input x̃ from p(x̃|x), (2) mask out the lesion area to get x̃normal, (3) sample one
z from qφ(z|x̃normal) and obtain a reconstructed image xoutput from the network,
(4) calculate the denoising lower bound LDVAE with the change in Eq. (4) and
(5) perform stochastic gradient descent backpropagation to update the network.

Reconstruction Uncertainty for Atlas Registration. During testing, due
to the small amount of data available and the possibly large appearance differ-
ences among training cases, it is useful to utilize the uncertainty of the recon-
structed image to guide registration. In our case, we sample z from the approxi-
mated posterior qφ(z|x) to generate multiple reconstruction images xoutput with
different z. Then, we choose the mean of the sampled images μxoutput as the
reconstruction result, and the (local) standard deviation σxoutput as uncertainty
measure. We define areas of high uncertainty as those areas with large variance,
and, for registration, our method down-weights the contribution of those areas to
the image similarity measure. We simply use w(xoutput) = exp(−σ2

xoutput
×2000)

as a local weight for the image similarity measure in our experiments3. This
function ensures that the weight drops to near 0 for a large standard deviation.
Note that this is different from cost function/pathology masking. Cost function
masking uses a simple binary mask, which is equivalent to setting the weight
of the lesion area to zero. Our uncertainty-based weighting, on the other hand,
downweights ambiguous areas in the reconstruction process which may not be

3 Other, potentially better choices are of course possible.
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highly reliable for registration. Our uncertainty weight is in [0, 1]. Hence, struc-
tural information is rarely discarded completely as in cost-function masking. Our
experimental results in Sect. 4 show that this is indeed desirable.

4 Experiments and Discussion

We evaluate our model in two experiments: one using 2D synthetic images, and
one with real BRATS tumor images. The image intensity range is [0, 1]. We
implement the network with Torch and use the rmsprop [20] optimization algo-
rithm; we set the learning rate to 0.0001, the momentum decay to 0.1 and the
update decay to 0.01. Further, we use a batch size of 16, and for a training dataset
with 500 images of size 196 × 232, training 1000 epochs takes about 10 h on a
2012 Nvidia Titan GPU. For data augmentation, we apply random shifting up to
10 pixels in both directions for a training image and add zero-mean Gaussian
noise with standard deviation of 0.01. During testing, we sample 100 images
for each test case, and calculate their mean and standard deviation. All images
for training and testing are extracted from the same slice of their original 3D
images, which are pre-aligned to a 3D ICBM T1 atlas [4] using affine registration
and judged to be limited to having in-plane deformations. We use NiftyReg [13]
(with standard settings) together with normalized cross correlation (NCC) to
register the 2D ICBM atlas slice to the reconstructed result. Note that we mod-
ified NiftyReg to integrate image uncertainty into the cost function. We used a
large number of B-spline control points (19 × 23 for a 196 × 232 image). This
ensures that displacements large enough to capture the mass effect observed in
the BRATS data can be expressed. B-spline registration approaches similar to
NiftyReg have successfully been used for registrations of various difficulty [16];
and given sufficient degrees of freedom poor registration performance is likely
due to an unsuitable similarity measure, which should be investigated in future
work. To capture even larger deformations, NiftyReg could easily be replaced by
a fluid-based registration approach. The focus here is to synthesize quasi-normal
images and to exploit them and their associated reconstruction uncertainty for
registration. For our images, 1 pixel corresponds to 1mm × 1mm.

For comparison, we use the LRS method, which is an alternative approach
to image synthesis for tumor images. We select the parameters maximizing
2 × NCCtumor + NCCnormal for the training data. Due to high computational
cost of current LRS approaches [10], we use 50 training images for each case.
Furthermore, to demonstrate that using synthesized images in fact improves reg-
istration accuracy, we also compare our method against using the reconstruction
uncertainty map in combination with the original tumor image for registration.

Synthetic Tumor Experiment. We use 436 brain images from the OASIS [11]
cross-sectional dataset as base images. This chosen dataset is a mix of 43 %
Alzheimer’s and 57 % control subjects. We create a synthetic tumor dataset
by registering random OASIS images to random BRATS 2015 T1c images (to
account for the mass effect of tumors) with tumor area masking, followed by past-
ing the BRATS’ tumor regions into the OASIS images. We generate 500 training
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Fig. 2.Mean deformation error of all synthetic tumor test cases for various models. Our
model is highlighted in red. Masking tumor area = MT. Add structured noise = ASN.
Use uncertainty for registration = UR. (A): affine registration; (B): register to tumor
image; (C): low-rank-sparse (LRS) with registration; (D): LRS w/o registration; (E):
MT, no ASN, no UR; (F): MT, ASN, no UR; (G): MT, ASN, UR; (H): network
trained with clean images, ASN; (I): Use uncertainty on tumor image directly; (J):
cost function masking. (Color figure online)

Original Original + tumor LRS reconstruction Our reconstruction (+ std. deviation)

Ground-truth
registration

Result of cost
function masking

LRS result Our result
(without uncertainty)

Our result
(with uncertainty)

Fig. 3. Exemplary synthetic tumor test case reconstruction and checkerboard compar-
ison with ground truth registration. Best viewed zoomed-in.

and 50 testing images using separate OASIS and BRATS images. Figure 2 shows
boxplots of mean deformation errors of different areas per test case, with respect
to the ground truth deformation obtained by registering the atlas to the normal
image (i.e., without added tumor). The highlighted boxplot is the network model
trained with tumor images, added quasi-tumor (i.e., structured noise) and using
uncertainty weighting for the registration. We evaluate the deformation error for
three areas: (1) the tumor areas, (2) normal areas within 10 mm from the tumor
boundary (near tumor) and (3) normal areas more than 10 mm away from the
boundary (far from tumor). By evaluating all three areas we can assess how
well the mass effect is captured. This is generally only meaningful for our syn-
thetic experiment. Landmarks (outside the tumor area) are more suitable for real
data. For the tumor areas, our method (MT+ASN+UR) outperforms most other
methods. For the normal areas, the registration difference between our method
and directly registering to the original tumor image is very small, especially
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compared with the LRS method which tends to remove fine details. Compared
to using the tumor image directly for registration, our model decreases the 99.7%
upper limit of the mean of the tumor area deformation error from 14.43 mm to
7.83 mm, the mean error from 5.62 mm to 3.60 mm, and the standard deviation
from 3.49 mm to 2.16 mm. The significantly decreased deformation error only
causes a small increase of mean deformation error for the normal area, from
1.36 mm to 1.49 mm. The only method performing better than our model for
this synthetic test is cost function masking, which requires tumor segmentation.
Figure 3 shows one example test case. Notice that the LRS method erroneously
reconstructs the upper lateral ventricle, resulting in a wrong deformation.

BRATS Experiment. We also evaluate our network using the BRATS 2015
training dataset [12], which contains 274 images. This is a very challenging
dataset due to moderate sample size and high variations in image appearance and
acquisition. We use cross-validation, and partition the dataset into 4 sets of 244
training images and 30 testing images, resulting in a total of 120 test cases. For
preprocessing, we standardize image appearance using adaptive histogram equal-
ization. For evaluation, we manually label, on average, 10 landmarks per case
around the tumor area and at major anatomical structures for the test images.
We report the target registration error for the landmarks in Table 1. Our method
still outperforms most methods, including LRS without registration. Although,
the difference of our model and LRS+registration is not statistically significant,
the figures in combination with our synthetic results suggest that our method
is overall preferable. Note also that LRS requires image registrations for each
decomposition iteration and introduces blurring to the brain’s normal area (see
Fig. 4), while our method does not suffer from these problems. Moreover, it is
interesting to see that cost function masking performs worse than our method.
This could be explained by the observation that in cases where the tumor is very
large, cost function masking hides too much of the brain structure, making regis-
tration inaccurate. Figure 4 shows one exemplary BRATS test case. Because the
tumor covers the majority of the white matter in the left hemisphere, cost func-
tion masking removes too much information from the registration. As a result,
the left lateral ventricle is misregistered. Combining our network reconstructed
image and uncertainty information, our registration result is much better.

Modeling Quasi-tumor Appearance. One interesting problem is the choice
of quasi-tumor appearance. In our work we use the mean normal brain area
intensity as the appearance, while other choices, such as using simulated4 tumor
appearance or random noise, are also sensible. To show the effect of quasi-tumor
appearance choice on the registration result, we conduct additional experiments
using 4 textures to create quasi-tumors: (1) real tumors of the BRATS dataset,
(2) mean intensity (our approach), (3) random constant intensities and (4) ran-
dom noise. Registration performance for all 4 methods is similar, with (2) having
lower registration error in normal areas (e.g. median of 1.07/2.78 mm compared
to 1.28/2.84 mm using (1) for synthetic/BRATS data). A possible reason why

4 Real tumor appearance is not known in such areas.
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Table 1. Statistics for landmark errors over the BRATS test cases. The best results
in each category are marked in bold.

Mean error [mm] Max. error [mm]

Data Percentile 99.7% 75% 50% 25% 0.3% 99.7% 75% 50% 25% 0.3%

Affine (baseline) 11.29 6.90 5.06 3.72 2.28 19.25 12.61 9.83 7.04 3.52

Use tumor image directly 6.32 4.20 3.29 2.77 1.54 20.48 12.47 7.52 5.22 1.95

Cost function masking 6.12 4.22 3.12 2.65 1.89 21.00 11.75 6.98 4.97 2.65

LRS+registration 5.26 3.77 3.06 2.74 1.88 12.04 8.20 6.30 5.45 3.54

LRS, no registration 6.15 4.30 3.25 2.79 2.12 14.62 9.61 6.83 5.72 4.05

Tumor image+uncertainty 5.52 3.79 3.08 2.65 1.81 13.91 8.76 6.24 4.95 2.63

Our model (no uncertainty) 5.08 3.63 2.98 2.64 1.66 12.79 8.12 6.21 4.96 2.82

Our model (with uncertainty) 4.74 3.52 3.02 2.61 1.83 11.77 7.99 5.93 5.08 2.48

using tumor appearance is not superior is the limited training data available
(∼200 images). For a larger dataset with more tumor appearance examples to
learn from, using tumor appearance could potentially be a better choice.

Discussion. One interesting finding in our work is that while a high-quality
lesion area reconstruction is desirable, it is not necessary to improve atlas reg-
istration. Lesion reconstruction may be affected by many factors (limited data,
large image appearance variance, etc.), but the atlas registration result depends
on the quasi-normal reconstruction of the lesion and the faithful reconstruction
of the normal tissue. For example, in some cases the LRS method achieves visu-
ally pleasing results in the lesion area. However, at the same time it smoothes
out the normal area losing important details for image registration. Our method
on the other hand preserves details in the normal areas more consistently and
hence results in overall better registration accuracy. Moreover, for tightly con-
trolled data (e.g., a synthetic dataset) our method generates better reconstruc-
tions for the lesion area. Thus, future experiments using more controlled data
(e.g. BRATS 2012 synthetic images) would be interesting. Besides, synthesiz-
ing a quasi-normal image generates useful structural information that can help
guide the registration, and reconstruction uncertainty can be used to focus the
registration on regions of high confidence.

Another interesting question is how to extend our approach to 3D images.
In initial experiments, we implemented a 2.5D network which reconstructs 14
slices at once. Training the network on 500 2.5D training cases takes 3 days,
which, while not fast, is feasible. One possible approach is to learn mappings for
3D patches using patch location as additional feature, which would enable us to
train on a much larger dataset (patches) at a reasonable computational cost.

Finally, designing a more “lesion-like” noise model and exploring the impact
of training data size on the predictions are interesting directions to explore.

Support. This research is supported by NIH R42 NS081792-03A1, NIH R41
NS086295-01 and NSF ECCS-1148870.
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Tumor image LRS result Our result (+ std. deviation)

Cost function masking LRS registration result Our registration result
(without uncertainty)

Our registration result
(with uncertainty)

Fig. 4. Exemplary BRATS test case with landmarks for test image (top row) and
warped atlas (bottom row).
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