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Preface

The MICCAI community needs data with known ground truth to develop, evaluate, and
validate image analysis and reconstruction algorithms. Since synthetic data are ideally
suited for this purpose, over the years, a full range of models underpinning image sim-
ulation and synthesis have been developed: (a) simplified mathematical models to test
segmentation and registration algorithms; (b) detailed mechanistic models (top–down),
which incorporate priors on the geometry and physics of image acquisition and formation
processes; and (c) complex spatiotemporal computational models of anatomical vari-
ability, organ physiology, or disease progression. Recently, cross-fertilization between
image computing and machine learning gave rise to data-driven, phenomenological
models (bottom–up) that stem from learning directly data associations across modalities,
resolutions, etc. With this, not only the application scope has been expanded but also the
underlying model assumptions have been refined to increasing levels of realism.

The goal of the Simulation and Synthesis in Medical Imaging (SASHIMI) Work-
shop aims to put all those interested in these problems in the same room, for the
purpose of invigorating research and stimulating new ideas on how to best proceed and
bring these two worlds together. The objectives were to: (a) hear from invited speakers
in the areas of transfer learning and mechanistic models and cross-fertilize across fields;
(b) bring together experts of synthesis (via phenomenological machine learning) and
simulation (via explicit mechanistic models) to raise the state of the art; and (c) identify
challenges and opportunities for further research. We also wanted to identify how we
can best evaluate synthetic data and if we could collect benchmark data that can help
the development of future algorithms.

The first workshop on “Simulation and Synthesis in Medical Imaging — SASHIMI
2016”1 was held in conjunction with the 19th International Conference on Medical
Image Computing and Computer-Assisted Intervention — MICCAI 2016 as a satellite
event in Athens, Greece, on October 21, 2016. Submissions were solicited via a call for
papers that was circulated by the MICCAI organizers, through known mailing lists (e.g.,
ImageWorld, MIUA) but also by directly e-mailing several colleagues and experts in the
area. Each submission underwent a double-blind review by at least two members
of the Program Committee consisting of researchers who actively contribute in the area.
At the conclusion of the review process, 17 papers were accepted. Overall, the contri-
butions span the following broad categories in alignment with the initial call for papers:
fundamental methods for image-based biophysical modeling and image synthesis,
biophysical and data-driven models of disease progression or organ development,
biophysical and data-driven models of organ motion and deformation, biophysical and
data-driven models of image formation and acquisition, segmentation/registration across
or within modalities to aid the learning of model parameters, cross-modality (PET/MR,
PET/CT, CT/MR, etc.) image synthesis, simulation and synthesis from large-scale

1 http://www.cistib.org/sashimi/.
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image databases, automated techniques for quality assessment of simulations and syn-
thetic images, and several applications of image synthesis and simulation in medical
imaging such as image registration and segmentation, image denoising and information
fusion, image reconstruction from sparse data or sparse views, and real-time simulation
of biophysical properties. The accepted papers were divided into two general topics of
“Simulation and Its Applications in Computational Medical Imaging” and “Synthesis
and Its Applications in Computational Medical Imaging” and presented during two oral
and one poster sessions, overall covering eight and nine papers, respectively.

Finally, we would like to thank everyone who contributed to this first workshop:
Serkan Cimen and Ilkay Oksuz, members of the Organizing Committee for their assis-
tance; the authors for their contributions, the members of the ProgramCommittee for their
review work, promotion of the workshop, and general support; the invited speaker for
sharing his expertise and knowledge; and the MICCAI society for the general support.

August 2016 Sotirios A. Tsaftaris
Ali Gooya

Alejandro F. Frangi
Jerry L. Prince
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Software Framework for Realistic MRI Simulations Using
the Polyhedral Fourier Transform

Shuo Han and Daniel A. Herzka(✉)

Department of Biomedical Engineering, Johns Hopkins University School of Medicine,
Baltimore, MD, USA

{shan50,daniel.herzka}@jhu.edu

Abstract. This work presents a freely available operating system-independent
Matlab software tool for simulation of magnetic resonance imaging (MRI)
acquisition and image reconstruction using polyhedral phantoms. The tool is
based on an efficient implementation of the closed form solution of the polyhedral
Fourier transform (FT). The software tool, named “PolyFT”, can be applied to
polyhedral surface and tetrahedral volume meshes. The tool enables the calcula‐
tion of the Fourier domain representation of physiologically relevant objects with
spatially varying intensities, permitting accurate simulation of slice selection and
parallel imaging techniques that require coil sensitivity profiles. Several examples
of applications are given. Though more computationally intense than the FT, the
polyhedral FT allows relevant simulation of both MRI sampling and reconstruc‐
tion processes. The freely-available software tool should be useful in the same
situations in which the standard Shepp-Logan phantom is used, and additionally
when analytical Fourier representations of objects with non-uniform intensities
are needed.

1 Introduction

Analytical phantoms that have closed-form Fourier Transform (FT) expressions are used
throughout magnetic resonance imaging (MRI) to simulate the process of image acquis‐
ition in Fourier space. Most existing phantoms in 2D and 3D are restricted to simple
shapes such as the ellipses or ellipsoids used in the various implementations of the
Shepp-Logan phantoms [1, 2]. Recently, analytical expressions for the FTs of additional
shapes such as polygons and spline and Bézier contours in 2D, and polyhedra in 3D
have been used in the simulation of the MRI data acquisition process [3, 4]. In 2D, the
incorporation of polynomial or sinusoidal coil sensitivity profiles has been demonstrated
for use in simulations of MRI reconstruction with parallel imaging [3].

Despite the attractiveness of digital phantoms for simulations, the availability of
tools that use more desirable yet complex shapes beyond ellipsoids used in the Shepp-
Logan phantom, is limited. Furthermore, to date, there is no freely-available tool for
simulation in 3D incorporating coil sensitivity profiles. In this work, we present a freely-
available software platform for simulation of both acquisition and reconstruction
processes in MRI. The software tool extends the original formulation in [4] to include
objects with non-uniform intensity which enables the use of non-ideal slice selection as
well as simulation of parallel imaging approaches that require coil sensitivity maps.

© Springer International Publishing AG 2016
S.A. Tsaftaris et al. (Eds.): SASHIMI 2016, LNCS 9968, pp. 3–12, 2016.
DOI: 10.1007/978-3-319-46630-9_1



2 Theory

The polyhedral FT was proposed by Komrska in the field of x-ray crystallography [5].
The closed form expressions of the polyhedral FT seen in Eqs. (1–4). Vector quantities
are displayed in bold, scalars in plain typeface. If both bold and plain symbols exist (k
and k) the former represents the vector, the latter the magnitude of the vector. In
Eqs. (1–4) we follow the representation in [4]. Table 1 defines the symbols in these
equations.

S3D(k) =

⎧⎪⎨⎪⎩
−

1
(2𝜋k)2

∑F

f=1 S∗

f
(k) k ≠ 𝟎,

1
3
∑F

f=1 r
(Vf ,1)

⋅ N̂f Pf k = 𝟎.
(1)

S∗

f
(k|k ≠ kN̂f ) =

k ⋅ N̂f

k2 − (k ⋅ N̂f )
2

Ef∑
e=1

(Lf ,ek ⋅ n̂′f ,esinc(𝜋k ⋅ Lf ,e)exp(−2𝜋ik ⋅ r
(Cf ,e))). (2)

S∗

f
(k| k = kN̂f ) = −2𝜋ik ⋅ N̂f exp(−2𝜋ik ⋅ r

(Vf ,1))Pf . (3)

Pf =
1
2

||||||
N̂f ⋅

Ef∑
e=1

(r(Vf ,e) × r
(Vf ,e+1))

||||||
. (4)

Table 1. Nomenclature used in Eqs. 1 through 9.

Symbol Definition
S3D ∈ ℂ MR signal in Fourier domain
S∗

f
∈ ℂ Contribution of the f th face to S3D

k ∈ ℝ
3 k-Space sample vector (3D)

k ∈ ℝ Norm of k
F ∈ ℕ Total number of faces in the surface or volume mesh
f , e ∈ ℕ Index of the f th face or eth edge
Ef ∈ ℕ Number of edges in the f th face
N̂f ∈ ℝ

3 Outward pointing normal vector of the f th face
r
(Vf ,e) ∈ ℝ

3 eth vertex of the f th face
Lf ,e ∈ ℝ

3 r
Vf ,e − r

Vf ,e+1, the vector of the eth edge of the f th face
r
(Cf ,e) ∈ ℝ

3 (rVf ,e + r
Vf ,e+1 )∕2, mid-point of the eth edge of the f th face

t̂f ,e ∈ ℝ
3

Lf ,e

/‖‖‖Lf ,e
‖‖‖2

, direction vector of the eth edge of the f th face

n̂f ,e ∈ ℝ
3 Normal vector of the eth edge of the f th face and in this face plane

Pf ∈ ℝ Area of the f th polygonal face
Δdf ∈ ℝ Intensity difference between inside and outside of fth polygonal face
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Equations (1) and (2) show that the signal at a given point in the 3-dimensional (3D)
FT or k-space of a polyhedron, S3D(k), includes a summation over the contribution of
each polygonal face of the polyhedron, S∗

f
(k). This term includes, for the majority of

faces, a summation over the contribution from each edge. Though an analytical solution
is achieved, it is computationally intensive particularly during the calculation of the
polyhedral FT of complex polyhedral meshes with the relatively large number of faces
that are required to represent physiologically relevant structures. Furthermore, evalua‐
tion of the polyhedral FT equations yields only a single point in k-space. This problem
is compounded when a large number of k-samples are used to represent objects with
high resolution. Nevertheless, by sampling data from the analytical k-space, errors that
result when using simulated data to solve a direct fitting or reconstruction problem when
the identical method used to generate the simulated data (i.e. generating image data in
a Cartesian coordinate system, upsampling and Fourier-transforming to k-space, and
sampling in a k-space Cartesian coordinate system, only to reconstructed via inverse
Fourier Transform, a.k.a the “inverse crime” or perfect data methods) are avoided. [3]
This type of error produces overly optimistic results.

2.1 Simulating Objects of Varying Spatial Intensity

The polyhedral FT assumes unit intensity within the polyhedron. To achieve simulations
with arbitrary uniform intensity, unit intensity is assumed and scaling of k-space is
applied after sampling. To simulate objects with non-uniform intensity, two relatively
simple approaches are available. Both options require conversion of the surface mesh
of the polyhedral shape to be simulated into a volumetric tetrahedral mesh using readily
available software libraries (i.e. iso2mesh, [6]) Each tetrahedron is then assumed to have
uniform intensity whose value is approximated by the desired intensity at the location
of the center of mass of the tetrahedron.

Fig. 1. Example of a simple polyhedral phantom composed of two tetrahedrons with a single
step in intensity. (A) The contribution of each tetrahedron to the polyhedral FT can be calculated
separately and summed using Eqs. (1-4). However, the contribution of the shared face is calculated
twice. (B) By rephrasing the equations of the polyhedral FT in terms of face contributions weighted
by intensity differences (Eqs. (5-9)), efficiency is improved. The intensity outside the polyhedron
is assumed to be zero.

Software Framework for Realistic MRI Simulations 5



With the first approach, the desired k-space samples can be approximated by the
summation of the k-space samples calculated each individual tetrahedron (Fig. 1A),
taking advantage to the linearity of the FT. Equations (1–4) can be modified to include
an additional summation for each tetrahedral element of the volume mesh. Increased
accuracy and smoother gradients in intensity can be achieved by increasing the number
of tetrahedrons in the volumetric tetrahedral mesh.

With the first option, the contribution to the signal of a face shared by two adjacent
tetrahedrons is calculated twice. However, if the shared faces are weighted by the inten‐
sity difference between the two sides of the faces, Δdf , duplicate calculation is avoided
(Fig. 1B). Equations (5–9), which are derived from Eqs. (1–4) can therefore be used to
achieve higher computational efficiency and were therefore implemented in the
presented software tool. Note that in these equations the face index F includes all faces
of all tetrahedrons in the volume mesh.

S3D(k) =

F∑
f=1

Δdf ⋅ S∗

f
(k). (5)

S∗

f

(
k|k ≠ kN̂f

)
=

−k ⋅ N̂f

(2𝜋k)
2
(

k2 −

(
k ⋅ N̂f

)2
) ⋅

Ef∑
e=1

Lf ,ek ⋅ n̂f ,esinc
(
𝜋k ⋅ Lf ,e

)
exp

(
−2𝜋ik ⋅ r

(Cf ,e)
). (6)

S∗

f

(
k|k = kN̂f , k ≠ 𝟎

)
=

i

2𝜋k2 k ⋅ N̂f exp
(
−2𝜋ik ⋅ r

(Vf ,1)
)
Pf . (7)

S∗

f
(k|k = 𝟎) =

1
3

Pf r
(Vf ,1)

⋅ N̂f . (8)

Pf =
1
2

||||||
N̂f ⋅

Ef∑
e=1

(
r
(Vf ,e) × r

(Vf ,e+1)
)||||||

. (9)

3 Methods

3.1 Platform-Independent Implementation in Matlab

The goals for the implementation of the software platform for MRI simulations based
on the polyhedral FT included: (1) operating system independence, (2) efficient compu‐
tation, and (3) integration of parallelization where possible. To maximize portability and
widespread usability of the software platform, the polyhedral Fourier transform was
implemented in Matlab (The Mathworks, Natick, MA) with both precompiled mex
functions and m-file-only implementations. By providing both alternatives, users can
opt for the approach that best suits their particular operating system.

For a given k-space point, the polyhedral FT is more computationally intense than
other digital phantoms and significantly more computationally intense than Fast Fourier
Transform (FFT) based methods (that incur errors at high frequency components [3]).

6 S. Han and D.A. Herzka



Also, Eqs. (1–4) and (5–9) need to be evaluated per k-point. Finally, for volumetric
meshes, which are required for simulations involving objects with non-uniform inten‐
sity, the number of effective polygonal faces in the mesh increases can increase drasti‐
cally, especially if smooth variations in intensity are desired. Therefore, efficient imple‐
mentation was a central goal in this work.

To increase computational efficiency, the software platform takes advantage of the
innate parallelization in Matlab. Depending on the task, computation of the polyhedral
FT could be parallelized along two dimensions: (1) the ‘k-point’ dimension: calculation
of the contribution of one face to all k-points in parallel and repeating for (looping)
through all faces, or (2) the ‘faces’ dimension: calculation of the contributions of all
faces to one k-point and repeating for (looping) for all k-points. For simple objects such
as an ellipsoid with a ~50 faces (Fig. 2) but requiring a full 2563 k-space matrix, it is
more computationally efficient to parallelize along k-points, and calculate the contribu‐
tion of each face via standard for-loop. However, for complex objects such as a brain
with ~350,000 faces (Fig. 3), it more efficient to parallelize the calculation of the contri‐
bution of each face, and loop per k-point. Both options were included in the software
platform, and the direction of parallelization is chosen automatically though manual
configuration is possible.

Fig. 2. Demonstration of the application of coil sensitivity profiles as used in parallel imaging
to a simple polyhedron.

Matlab provides the ability to interface with C or C++ libraries through its mex
application program interface (API). Using pre-compiled code can result in a significant
decrease in computational time, especially for looping structures that can be slower in
execution in scripted (non-compiled) languages. As an initial attempt, we incorporated
mex functionality that calculated the contribution of either one face or one k-point.
Though it is possible to implement the complete computation including all summations
(for-loops) within a mex function, the lack of support for operating system-independent
parallelization within the mex API hindered its implementation in this work.

To provide additional flexibility, the software platform includes functionality to
maintain computational efficiency when using both regular meshes with a constant
number of edges polygonal faces (e.g. triangular surface meshes and tetrahedral volume
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meshes), or when using irregular meshes. The software platform was tested in several
operating systems, though execution time is reported for one platform. The software
platform was named “PolyFT”.

3.2 Demonstrations of PolyFT

Several examples of the potential uses of the PolyFT software platform are presented.

Brain Mesh. To demonstrate the feasibility of using PolyFT to simulate the acquisition
of a physiologically-relevant complex structure, a set of MRI images of a brain were
downloaded from the OASIS dataset [7], segmented by TOADS algorithm [8], and
meshed by the CRUISE algorithm [9] to generate a triangular surface mesh composed
of 354,908 faces with uniform intensity (Fig. 3). This data was sampled using a Cartesian
2563 k-space matrix. The resulting matrix underwent 3D inverse FFT and an isointense
surface was volume rendered for display.

Slice Selection with Ideal and Non-ideal Slice Thickness. To demonstrate the feasi‐
bility of simulation complex acquisition, the process of non-ideal slice selection carried
out. A very thin (0.1 mm) and a thick (10 mm) plane were used, and these were inter‐
sected with the volume mesh. The kz = 0 plane of the analytical k-spaces of the 3D
polyhedra were then sampled using using 10242 k-points. Sampling this plane is equiv‐
alent to sampling the projection of the volume on the the kz-plane as is done during slice
selection in 2D MRI. [4] Images were reconstructed through inverse FFT.

Parallel Imaging with Sparsity-Driven Reconstruction. To demonstrate the feasi‐
bility of simulating both acquisition and reconstruction processes, a sparsity-driven

Fig. 3. Brain surface meshes with uniform intensities (A, C) and the volume rendered 3D inverse
FFT reconstruction of the k-space sampled data (B, D).
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parallel imaging experiment was performed using a simple polyhedral shape. Coil
sensitivity profiles derived from MRI of a homogeneous gel phantom using a standard
8-channel head coil were used. First, a tetrahedral volume mesh was generated (Fig. 2A).
Then, individual coil volume meshes were sampled with a Cartesian grid (1283 k-points)
and the k-space of each tetrahedral element was weighted by the relative intensity of the
coil sensitivity profile at that coordinate before summation into a single k-space (Fig. 2,
right). Complex zero-mean Gaussian noise with 𝜎 = 0.2 × 10−4 (0.55 % of the DC
signal) was added to the k-space data. The central horizontal slice (z = 0) of each coil
displaying intensity variation is shown. The volume rendered image for coil 1 is
displayed as as reference.

Next, the individual coils k-spaces were undersampled using a Poisson disk-derived
pattern well suited for sparsity-driven MRI reconstruction. [10] An undersampling rate
of ~6 was used. A freely-available software package (Berkley Advanced Reconstruction
Toolbox, BART, http://www.eecs.berkeley.edu/~mlustig/Software.html) was used for
sparsity-driven reconstruction of the undersampled k-space data.

4 Results

4.1 Computational Time

Computational times for the polyFT software platform for three different sized meshes
and three different k-space sampling resolutions are shown in Table 2. Both software
options (m-file + mex, m-file-only) were compared. Typically, over the range of number
of faces and number of k-points tested, an average of ~95 ns/k-point/triangular face was
achieved. The implementation involving mex functionality proved more consistent,
though not always fastest. The incorporation of mex files maintained performance with
larger more complex meshes as seen in Fig. 3.

Table 2. Computational times for the PolyFT software platform measured on a 4-core 2.7 GHz
Intel i7 CPU, 16 GB of RAM MacBook Pro laptop.
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4.2 Brain Mesh

The brain mesh and the volume rendering of IFFT reconstruction of the PolyFT-sampled
3D k-space can be seen in Fig. 2. The volume rendering was generated by thresholding
the resulting 3D Cartesian matrix and display an isointense surface. The computation
of this mesh took approximately 6.4 days on a standard laptop due to the large number
of faces in the mesh, and the large number of k-space samples.

4.3 Slice Selection with Ideal and Non-ideal Slice Thickness

Figure 4 shows the comparison of ideally thin slice and a 10 mm thick slice meshes and
image reconstructions. The effects of partial volume averaging typical with slice selec‐
tion are readily observed. Note that if the thicker slice mesh was turned into a volume
mesh, a non-ideal slice selection profile such as those obtained with sinc-shaped exci‐
tation pulses could be applied.

Fig. 4. Comparison of surface meshes (top) and reconstructions (bottom) that represents and the
volume rendered 3D inverse FFT reconstruction of the k-space sampled data.

4.4 Parallel Imaging with Sparsity-Driven Reconstruction

Figure 5 shows the feasibility of simulating parallel imaging reconstructions as used in
MRI. After undersampling of k-space data, the reconstruction is noisier, though since
the object is truly sparse and the SNR of the underlying data is relatively high, no residual
artifact is observed beyond the standard nose amplification.
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Fig. 5. (A) Poisson Disk undersampling pattern applied to analytical k-space data. (B) Reference
central place (z = 0) from 3D reconstruction using fully sampled data. (C) Central plane from 3D
reconstruction using undersampled k-space data. The ESPIRiT technique was used for
reconstruction.

5 Discussion

The software tol produced consistent results, with a typical speed of 95 ns/k-point/trian‐
gular face on a standard MacBook Pro laptop. Performance could be improved with a
larger number of CPU cores. Furthermore, the current implementation uses mex func‐
tionality for the calculation of the contribution of one face or one k-point. When placed
inside a parallelized for-loop, performance may have been compromised due to the need
to copy large data arrays containing the face and vertex information. Placing all looping
structures inside the mex functions could also result in significant computational
performance improvement, at a loss of parallelization since Matlab currently does not
have capability to execute parallelized mex functions in a platform-independent manner.

The software tool was able to use surface and volume meshes for realistic simulation
of typical MRI phenomena such as slice selection. Additionally, the platform enabled
the incorporation of objects with non-uniform intensity such as that induced by coil
sensitivity profiles. The behavior of the coil-weighted k-space data was equivalent to
that in standard scanning, responding to highly accelerated reconstruction in an expected
manner yielding noise amplification.

PolyFT is uses a closed-form analytical solution to find the exact value (within
numerical precision of the IEEE floating point representation, [4]) at a k-point and does
not rely on approximation as do methods that upsample digitized images before FT into
k-space. At the same time, PolyFT could be paired with a Bloch simulator to weight the
signal at a k- point and simulate modulation transfer and point spread functions.

5.1 Limitations

The current implementation of the polyhedral FT is unlikely to be the most efficient, as
using compiled language (e.g. C or C++) should improve performance. However, the
goal of PolyFT was to provide a software tool within the Matlab environment while
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maintaining operating-system independence. Due to the structure of the problem, where
k-points independent of each other, and the contribution of each face is independent
from that of all other faces, it is likely that GPU implementations could significantly
accelerate processing, albeit in a platform dependent manner. Further work is needed to
develop this approach.

6 Conclusion

The presented MATLAB software library allows for more realistic MRI simulations in
any scenario in which the Shepp-Logan phantom has been used in the past. Additionally,
it allows for the inclusion of non-uniform intensities. PolyFT provides a platform to
evaluate and compare both acquisition and reconstruction algorithms of complex phys‐
iologically relevant shapes. Though computationally intensive, effective parallelization
in MATLAB reduces computation time to ~95 ns/k-space point/triangular face for
surface meshes. This could be further reduced by more aggressive parallelization
involving GPUs. The presented library is now available to public.
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Abstract. We present a method to change the volume of organs or
tissues in computational anatomical models by simulating the human
body as a biomechanical solid with initial strains causing local volume
shrinkage or expansion. The non-linear hyperelastic material behavior is
solved with the finite element method. The bone positions are prescribed
and treated as rigid bodies surrounded by elastic soft tissue. A multi-
domain mesh defines individual bones and at least one soft tissue region.
Each region can have different material properties, volume growth rates
or mesh settings. The method can be used to deform complex anatomical
models, such as the Virtual Population models. The proposed strategy
has been used to parametrize models by different BMI levels, change the
volume of selected organs, and modify the posture of anatomical models.

Keywords: Anatomical model · Simulation · Population variability ·
Obesity · Parametrization · BMI

1 Introduction

Computational anatomical phantoms are increasingly important in academic
research and regulatory compliance certification processes. Virtual anatomical
models are used to study a variety of scenarios, including, for instance, magnetic
resonance imaging (MRI) exposure [9,17], active and passive implant safety,
electromagnetic (EM) field interactions with the peripheral nervous system [18],
or passive car safety [24]. Anatomical models have also been used for virtual
imaging, for instance to simulate the processes and hardware involved in MRI
for designing gradient and radio frequency (RF) coils or pulse sequences [8,
12]. Virtual positron emission tomography (PET) and single-photon emission
computed tomography (SPECT) imaging can be performed, e.g., with open-
source software and plays a key role in the design of new medical imaging devices,
acquisition algorithms, and protocols [20].
c© Springer International Publishing AG 2016
S.A. Tsaftaris et al. (Eds.): SASHIMI 2016, LNCS 9968, pp. 13–22, 2016.
DOI: 10.1007/978-3-319-46630-9 2
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The Virtual Population (ViP) [7,11] is a set of highly detailed computational
anatomical models based on MRI data from healthy volunteers segmented at a
resolution of 0.5 × 0.5 × 0.5 mm. High quality surface meshes enclosing each of
the more than 300 tissues and organs were generated from the segmented label
fields [11]. The ViP models already cover important parts of the population
variability, including children at different ages, adults, an elderly man, an obese
man, and a pregnant woman. However, certain applications require personalized
or parametrized models to investigate relationships between differences in mor-
phology or gross anatomical descriptors such as body mass index (BMI), weight,
height, or sex. The creation of additional models from new image data could fill
some gaps in the population coverage, but would require a significant amount of
work to develop. Therefore, strategies are needed to extrapolate from or morph
existing models.

Morphing of surface models by means of freeform deformation, e.g., with a
control grid, cage-based technique, or thin-plate splines, has been studied in the
computer graphics community [19]. Finite element method (FEM) deformable
models have been used in virtual reality surgery simulators [23]. Methods to
simulate as-rigid-as-possible deformation without a volumetric mesh have been
presented in [16,21] these models are based on assumed homogeneous (tissue)
deformation properties with no internal structures such as bones or organs inside
the skin surface. Skeleton-based techniques typically allow a human body model
to be animated by positioning individual bones that are linked in a hierarchical
structure, connected via joints. Bones can be transformed relative to their par-
ents, with their transformations propagated to all children [6], but typically allow
only posture to be changed with no alteration to tissue size and shape. Fonseca
et al. [10] used MakeHuman [3] and other tools to change the fat volume and
posture of a simple human body model consisting of an outer surface and two
internal organs for dosimetry evaluations. MakeHuman is open-source software
for modeling human characters for computer games and animations [3]. Simple
scaling and rigid transformation were used to scale organ surfaces to reference
sizes (weights) published by the International Commission on Radiological Pro-
tection (ICRP) [4,15], and similar approaches have been used by others [13].
Ali-Hamadi et al. [1] presented a method to register an anatomical model to a
target skin surface while prescribing a fat distribution. The approach is based
on registering the surface below the subcutaneous fat between characters using
a nonlinear iterative closest point algorithm. The thickness of the subcutaneous
fat layer in the target character is assumed to be approximately constant around
each bone. While these techniques allow generic deformation of surface models,
they deal with homogenous models that are relatively simple compared to the
ViP or do not provide strategies for changing, e.g., the volume of specific tissues
of anatomical surface meshes in a physiologically realistic way.

In this work, we describe an approach for extending the population coverage
of existing models. The method allows an anatomical model to be parameterized,
e.g., to high level descriptors such as BMI, weight, or the volume of individual
tissues. It is an extension of previous work to change the posture of anatomical
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models [6,14,22] in which a biomechanical finite element model is used to morph
the anatomy on the basis of a set of physically realistic constraints.

2 Methods

We have developed a technique to shrink or expand tissues locally, allowing
changes to be made in, e.g., the size of the liver or even the entire subcutaneous
fat layer by a specified percentage. The approach treats the body as a deformable
hyper-elastic material with rigid bones. Specific tissues can be parametrized
by locally prescribing initial strain [22,25] and thereby controlling the volume.
The tissue deformation is constrained by nearby rigid bones and regularized
by the surrounding soft elastic tissue. This method can be combined with an
approach to change the posture of anatomical models [14]. Bones are moved
by prescribing rotations around articulated joints. The bone hierarchy allows
relative transformations to be propagated from a parent bone to all children,
and the new bone positions are applied as constraints to the biomechanical
finite element simulation.

2.1 Hyperelastic Material

A hyperelastic material is defined by its elastic strain energy density W , which is
a function of the elastic strain state. It is usually referred to as the energy density
and determines the linear or non-linear stress-strain relation and geometric non-
linearities. The strain state is often formulated via the right Cauchy-Green defor-
mation tensor C. For isotropic materials, any state of strain can be described
by three independent variables - typically the invariants of the Cauchy-Green
tensor.

The strain tensor C is defined via the deformation gradient F. In the
Lagrangian formulation, the deformation gradient F can be computed as the
displacement vector u relative to the reference coordinates X

F =
∂x
∂X

= I +
∂u
∂X

(1)

where x is the deformed position, which can be formulated as x = X + u.
In general the total deformation gradient can be decomposed into elastic and
inelastic parts

F = FelFin (2)

where the inelastic part could be due to initial strain, thermal expansion, or,
e.g., plastic deformation. The elastic Cauch-Green tensor is defined as

Cel = FT
elFel (3)

We use this formulation to introduce a local change in volume, in analogy to
thermal expansion, by defining

Fin = Fvol = Iλ (4)
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resulting in a volume scale factor of

det(Fvol) = λ3 (5)

Accordingly, we can implement different material models with local volume
changes by inserting Eqs. 2 and 3 into the strain energy density function, which
now depends on an inhomogeneous distribution of λ(X), i.e. W (λ(X)).

2.2 Numerical Procedure

A variety of hyperelastic material models exist, and each defines a different
stress-strain relationship. Currently, we have implemented St. Venant-Kirchhoff,
Neo-Hookean, or Mooney-Rivlin material models. We solve for static equilibrium
by a non-linear finite element method. The main application of the presented
approach is to change the size and shape of individual organs or tissues, e.g., to
increase or decrease the amount of subcutaneous adipose tissue (SAT). In this
case, we can assume the bones undergo no deformation (the bones are rigid)
and define a Dirichlet boundary condition on the surface of the bones. In the
simplest case, the displacement of the bones can be set to zero. However, we
have developed a more powerful approach, which allows us to move the bones
to change the posture of the anatomical model while simultaneously morphing
(expanding or shrinking) specific tissue regions.

To solve the deformation on a regular workstation in a reasonable time, the
human body model is meshed as coarsely as possible. The use of a tetrahedral
mesh with approximately 500K–1.5M elements results in a computation time
in the range of 1–5 min. Larger meshes quickly increase the memory consump-
tion and take longer to solve. Obtaining a high quality coarse volumetric mesh
is challenging when dealing with complex anatomical models, such as the ViP
models [11]. As an example, the SAT surface of the obese model “Fats” contains
more than 300K triangles alone, and represents a complex geometry with fine
details and thin regions. Directly remeshing the SAT surface frequently intro-
duces self-intersections, which subsequently prevent the tetrahedral mesher from
generating a computational mesh. Our current implementation allows us to cre-
ate a multi-domain (multiple material) tetrahedral mesh by a combination of
the following strategies:

– reconstruct tissue surface [5] to remove small features
– simplify the geometry, e.g. replacing a bone surface by a cylinder
– repair self-intersections with heuristics [2] that involve iterative removal of

intersecting triangles and closing holes
– locally refine tetrahedral mesh and snapping or smoothing nodes to improve

geometric approximation of tissue region.

The displacement field calculated by the FEM on the coarse tetrahedral mesh is
interpolated to the vertices of the high resolution surface model. This interpola-
tion or projection step is reasonable, since it can be assumed that the deformation
is fairly smooth. The interpolation weights used to interpolate the coarse dis-
placement field on the vertices of the surface mesh are precomputed and stored
in the model to further improve the performance of the method.
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3 Results

3.1 Parametrization of Subcutaneous Tissue

The morphing method is demonstrated here with the obese ViP model “Fats”
(37 years old, 119.5 kg [11]). The body has been meshed with separate SAT,
soft (non-SAT) tissue, and rigid bones by means of an adaptive Delaunay mesh
generation method with approximately 1.5 million tetrahedral elements. Two
different initial strains are simulated, reducing the SAT volume by approximately
60 % (λ = 0.7) and increasing it by approximately 120 % (λ = 1.3). Figure 1
depicts “Fats” morphed to different obesity levels.

3.2 Scaling of Organ Sizes

As a second example of the approach, we parametrize an anatomical model by
organ volume. Specific organs of the ViP model “Duke” shown in Fig. 2 (34
years old, 70.2 kg) have been morphed to match the values for the adult male
referenced in the ICRP Publication 110 [15]. The volume of the heart muscle was
scaled by a factor of 1.45, the heart lumen by a factor of 0.5 and the lungs by a
factor of 1.27. Figure 3 shows the resulting deformation. Due to the confinement

(a) 96kg (b) 120kg (c) 163kg

Fig. 1. ViP model “Fats” morphed to different weights and BMI values. The standard
“Fats” model is depicted in (b) and weighs approximately 120 kg. The version in Figure
(c) was posed slightly to avoid self-intersection of groin and arm regions resulting from
the significant increase in adipose tissue. The subcutaneous adipose tissue and skin
layer is rendered transparently. The BMI from left to right is 29, 36 and 49
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(a) (b) (c)

Fig. 2. The ViP model “Duke”

(a) (b)

Fig. 3. The ViP model “Duke” with modified organ volumes. The model has been cut
to show tissue boundaries with displacement field vectors overlayed. A close-up of the
torso section (a) is shown in image (b).

of the rib-cage, the change in volume of the lungs pushes other organs and
tissues down. The overall shape of the heart does not change much, because the
volume reduction of the lumen is compensated by the increased volume of the
heart muscle tissue. The tetrahedral mesh contained approximately 1.2 million
elements and is shown in Fig. 4.



Covering Population Variability 19

Fig. 4. The adaptive tetrahedral mesh used to morph lung and heart tissues to weights
referenced in the ICRP Publication 110 [15].

Fig. 5. Image depicting ViP model “Fats” in sitting position. The biomechanical finite
element model was used to change the relative position of the bones and simulate the
resulting soft tissue deformation. The subcutaneous adipose tissue and skin layer is
rendered transparently to show internal structures.

3.3 Posing of Anatomical Model

The biomechanical formulation can also be used to change the posture of the
existing model, e.g., for applications in which the safety of humans sitting in a
car or at a work place (wireless power transfer, car crash safety, etc.) is investi-



20 B. Lloyd et al.

gated. Figure 5 shows “Fats” in a sitting position with arms reaching towards,
e.g., a driving wheel. In order to place “Fats” in the driving seet, rotations
where prescibed in the hip and knee joint. Similarly the arms and hands/fingers
where positioned on the steering wheel by user defined rotations of the humerus
and various joints in the hand and fingers. The whole skeleton was posed inter-
actively in a few minutes before the actual deformed model was computed in
approximately one minute.

4 Conclusions and Future Work

We have presented a method to parametrize existing detailed anatomical models
by treating the human body as being composed of rigid bones and soft elastic
tissue, with deformation to balance stresses caused by prescribed spatially vary-
ing and tissue-specific initial strains. The method can be used to shrink and
expand existing tissues, e.g., fat layers, in a physically realistic way. The various
examples described illustrate how the method can be applied to parametrize
BMI and the size of individual organs, and how to change the posture of Virtual
Population models.

For the BMI parametrization example, we assume isotropic homogenous
strains for the SAT, which is clearly a simplification. A detailed literature survey
or database of MRI data with good fat contrast is likely to provide more insight
into physiologically realistic population distributions of fat tissue, which could
be used to define a strain map. The BMI is not only influenced by the SAT dis-
tribution but also by the amount of visceral fat. Naturally, the presented method
can also scale visceral fat.

A limitation of the current method is that only existing tissue structures can
be morphed. For instance, in regions where the adipose tissue is so thin that it
was not included in the segmentation, the current approach does not provide a
way to create new adipose tissue. Inserting a very thin fat layer between skin
and adjacent tissues surfaces might allow us to resolve this issue.
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body models. Appl. Comput. Mech. 1, 63–76 (2007)

14. Lloyd, B., Cherubini, E., Chavannes, N., Kuster, N.: Realistic physics-based pos-
ing of anatomical models for safety evaluations and computational life science in
various configurations. In: BioEM 2016, June 2016

15. Menzel, H., Clement, C., DeLuca, P.: ICRP publication 110. Realistic reference
phantoms: an ICRP/ICRU joint effort. A report of adult reference computational
phantoms. Ann. ICRP 39(2), 1 (2009)

16. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based
on shape matching. ACM Trans. Graph. (TOG) 24, 471–478 (2005)

17. Murbach, M., Neufeld, E., Capstick, M., Kainz, W., Brunner, D.O., Samaras, T.,
Pruessmann, K.P., Kuster, N.: Thermal tissue damage model analyzed for different
whole-body SAR and scan durations for standard MR body coils. Magn. Reson.
Med. 71(1), 421–431 (2014)

18. Neufeld, E., Cassara, A., Montanaro, H., Kuster, N., Kainz, W.: Functional-
ized anatomical models for EM-neuron interaction modeling. Phys. Med. Biol.,
February 2016

19. Nieto, J.R., Susin, A.: Cage based deformations: a survey. In: Hidalgo, M.G.,
Torres, A.M., Gmez, J.V. (eds.) Deformation Models. Lecture Notes in Computa-
tional Vision and Biomechanics, vol. 7, pp. 75–99. Springer, Heidelberg (2013)



22 B. Lloyd et al.

20. Santin, G., Staelens, S., Taschereau, R., Descourt, P., Schmidtlein, C., Simon, L.,
Visvikis, D., Jan, S., Buvat, I.: Evolution of the GATE project: new results and
developments. Nucl. Phys. B Proc. Suppl. 172, 101–103 (2007)

21. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of
the Fifth Eurographics Symposium on Geometry Processing, SGP 2007, pp. 109–
116. Eurographics Association, Aire-la-Ville (2007)

22. Szczerba, D., Neufeld, E., Zefferer, M., Bhlmann, B., Kuster, N.: FEM based mor-
phing of whole body human models. In: 2011 XXXth URSI of General Assembly
and Scientific Symposium, pp. 1–3. IEEE (2011)

23. Szekely, G., Brechbhler, C., Dual, J., Enzler, R., Hug, J., Hutter, R., Ironmonger,
N., Kauer, M., Meier, V., Niederer, P., Rhomberg, A., Schmid, P., Schweitzer, G.,
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Abstract. A key aspect for virtual-reality based ultrasound training
is the plausible simulation of the characteristic noise pattern known as
ultrasonic speckle. The formation of ultrasonic speckle can be approx-
imated efficiently by convolving the ultrasound point-spread function
(PSF) with a distribution of point scatterers. Recent work extracts
the latter directly from ultrasound images for use in forward simula-
tion, assuming that the PSF can be known, e.g., from experiments. In
this paper, we investigate the problem of automatically estimating an
unknown PSF for the purpose of ultrasound simulation, such as to use
in convolution-based ultrasound image formation. Our method estimates
the PSF directly from an ultrasound image, based on homomorphic fil-
tering in the cepstrum domain. It robustly captures local changes in the
PSF as a function of depth, and hence is able to reproduce continuous
ultrasound beam profiles. We compare our method to numerical simula-
tions as the ground truth to study PSF estimation accuracy, achieving
small approximation errors of ≤15% FWHM. We also demonstrate sim-
ulated in-vivo images, with beam profiles estimated from real images.

1 Introduction

Ultrasound is a relatively low-cost and risk-free medical examination modality.
The existence of various ultrasound-specific artifacts necessitate extensive train-
ing of sonographers, since standard examination procedures like the assessment
of the gestational age of an embryo can lead to a life or death decision in the
face of a possible abortion. It was suggested that medical students have a chance
to learn only 80 % of the important pathologies after one year of education [17].
This shows the enormous untapped potential of virtual-reality based simulation
of ultrasound examination to boost the success rate of medical procedures, where
arbitrary scenes, pathologies, and embryo instances can be simulated.

One aspect of ultrasound (US) interaction with tissue is through its scatter-
ing by sub-wavelength tissue structures and particles, herein called scatterers.
This interaction creates the typical interference patterns known as ultrasonic
speckle. Speckles can be efficiently approximated by convolving a point-spread-
function (PSF) with said scatterers [2,5,13]. The interactions of the US beam
with macro-level surfaces (comparable or larger than wavelength) can be sim-
ulated, e.g., using fast ray-tracing methods at interactive rates [4]. An inverse-
problem approach of reconstructing scatterer parametrizations based on speckle
c© Springer International Publishing AG 2016
S.A. Tsaftaris et al. (Eds.): SASHIMI 2016, LNCS 9968, pp. 23–33, 2016.
DOI: 10.1007/978-3-319-46630-9 3
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observations was proposed [11], such that plausible images of the observed tissue
can be generated in simulations from its a-priori imaging examples. One of the
major standing issues with inverse-problem scatterer reconstruction, however, is
the point-spread-function (PSF) being unknown in general. The same is true for
convolution-based image simulation, where the knowledge of PSF is also required
as a fundamental input parameter.

While PSF estimation has been studied thoroughly in the context of blind
deconvolution for improving US image fidelity, to the best of our knowledge it
has not been investigated before in the context of ultrasound image simulation
for training. Currently, the state-of the-art [2,4,5,11,13] is to manually define
and hand-craft a PSF, which is tedious technique, also not generalizable for
changing imaging parameters. A PSF estimation method for the limited case of
1D deconvolution and minimum phase signals in the cepstrum domain has been
introduced for ultrasound by Jensen et al. [8] and applied to in-vivo data [7]. The
more general case of non-minimal signals typically require the solution of an ill-
posed phase unwrapping problem [18–20]. Luckily for these methods, locality is
not required for the purpose of deconvolution, and hence constant kernels suffice
as input for the Wiener filter [18].

For our purpose of 2D US simulation, however, these methods do not work
well. Convolution-based US simulation demands a smoothly-varying PSF to
achieve the realism of an actual ultrasound image, and to teach aspiring sonogra-
phers the subtleties and effects of ultrasound beamforming on the image forma-
tion. The PSF varies not only with transducer geometry and acquisition settings,
but it also changes locally as a function of depth (e.g., for a focused beam), and
on a point-per-point basis as an effect of the underlying tissue. Hence a globally
constant, or even a piece-wise constant PSF does not capture the complexity of
a real continuous PSF distribution as a function of position.

We herein introduce a novel cepstrum-domain algorithm to approximate the
PSF locally from an input US image to be used in simulations. Our goal is to
(robustly) estimate beam profiles from actual images in order to use those later
in common convolution-based (similarly, as well, in ray-tracing based) image
simulation for training. Assuming separability of the PSF, our algorithm avoids
the challenging problem of cepstrum-based estimation in 2D. Instead, we achieve
robustness by sampling and combining many 1D cepstrum measurements via
filtering in cepstrum domain. Our estimated PSF can be subsequently used for
simulation, without any manual modeling effort needed for this important aspect
of ultrasound imaging. We demonstrate this in simulated and in-vivo images.

2 PSF Estimation from Image Data

In the typical convolution model of ultrasound speckle [2,12,13], the reflective
image intensity r(x, y) results from the convolution of a tissue model g(x, y) with
PSF h(x, y) given noise n, i.e.,

r(x, y) = g(x, y) ∗ h(x, y) + n (1)
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where x denotes the lateral and y the axial transducer axes. Without loss of
generality we omit the additive noise term n in the following, assuming that it
can be handled using standard filtering techniques. Commonly, h(x, y) is approx-
imated by a periodic signal of acquisition center-frequency fc modulated by a
Gaussian [4,5]. The PSF is then of the form

h(x, y) = e
− x2

σ2
x

− y2

σ2
y cos(2πfc), (2)

which is a function separable to lateral and axial components. We use separability
to efficiently estimate the axial and lateral h components directly from an US
image, given as a spatial discretization r[x, y] of radio-frequency (RF) data.
Finding the PSF from an image of reflective intensities r requires the contribution
of PSF h to be separated from the reflected echo of the tissue g.

Homomorphic filtering is a signal processing technique [9] for separating
a Fourier domain signal into its components. Using this, the signals h and g in
Eq. 1 can be decoupled in Fourier space as follows:

log(F(h ∗ g)) = log(H · G) = log H + log G, (3)

where F denotes the Fourier transform and the capitals represent Fourier trans-
forms of signals. Since a given signal is not necessarily minimum phase, the
complex logarithm is employed [3], i.e. log H · G = log(R) = log(|R|ejφR) =
log |R| + jφ(R), where φ(R) denotes the unwrapped phase of the signal.

The main assumption of homomorphic filtering is that H is a relatively
smooth function in Fourier space, in comparison to the typically highly vary-
ing and discontinuous nature of tissue G. As such, the components of H can be
separated from the components of G by using lowpass filtering in the so-called
cepstrum domain. The cepstrum is defined as c = F−1(log R), and constitutes a
complex function c(n) of the so-called quefrencies. Ideally, the first few compo-
nents of c (up to a cutoff) contain only the PSF components of the input image.
Using inverse cepstrum transformation on this truncated cepstrum c′ then gives
an estimation of PSF, i.e.,

h ≈ F−1(exp(F(c′))). (4)

In practice, a perfect separation between components is often not achieved.
Several strategies have been proposed to improve robustness by increasing the
separation between H and G in the Fourier domain. We adopt the strategy of
exponential pixel weighting [9,23]. For each measurement location, each data
point within a surrounding window is multiplied by a factor w = αd, where
α < 1 and d is the distance from the upper left corner. This ensures a monoton-
ically lower influence of farther signal values to a measurement in Eq. 3. This
windowing technique is used herein to compute localized but spatially-smooth
cepstrum measurements.

For ultrasound, homomorphic filtering has been used in the context of US
deconvolution for image restoration in 1D, 2D, and 3D [6,18–20]. These methods
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Fig. 1. Our method for robust estimation of a smoothly varying PSF (Color figure
online)

face several challenges, however, since in-vivo tissue and clinical scans are cor-
rupted by noise and contain artifacts and strong specular reflections hindering
above approaches. For instance, a major challenge is due to the high sensitivity
of phase unwrapping to noise, even more so in higher dimensions [10,14,19,20].
Alternatives to phase unwrapping based on logarithmic derivatives exist [16,18],
but these are prone to severe aliasing artifacts. Instead, we propose the following.

3 Proposed Technique for Local PSF Estimation

As input to our method we use the raw radio-frequency (RF) data from a US
scan. From an RF image r[x, y], our algorithm computes a PSF h[y] as a function
of axial position y, while smaller lateral variations in x are ignored to employ
averaging to increase estimation SNR. We describe below the three steps of our
PSF estimation algorithm, which are also depicted in Fig. 1.

Robust cepstrum estimation. The purpose of Step 1 in Fig. 1 is to avoid
instability and improve the SNR of homomorphic filtering. Assuming a separa-
ble PSF, Eq. 3 is used twice per sample location to separately find the axial and
lateral components of the cepstrum, respectively. Phase unwrapping can then
be reduced to a 1D problem in either direction, which can be solved efficiently.
Noise-corrupted phase unwrapping in 1D can still cause a corrupted cepstrum
measurement, which would negatively influence the following steps. Fortunately,
a potentially corrupted measurement can be detected from cepstrum values c(n)
as follows: While c(1) encodes the overall image brightness similar to a DC com-
ponent [10], c(2) and c(3) influence the shape of the estimated pulse. Suggestions
for plausible cepstrum values and their interpretation are described in detail in
the cepstrum literature, e.g. for c(2) [20]. Based on these, we empirically defined
valid cepstrum measurements as 2 ≤ |c(2)| ≤ 6 and |c(2)| ≤ |c(3)|. We use these
constraints as an outlier test, such that only the cepstra c̄ that pass this test are
employed in the following steps.

For each axial index y we compute a set of local cepstrum measurements
c{[yi]}, separated by lateral sampling distance δ (in our implementation δ = 4
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RF lines/pixels), depicted as red dots in Fig. 1. We then compute both axial and
lateral cepstra for each such sample point yi, by giving importance only to local
neighborhood via exponentially weighted windowing.

Computing a globally constant or piecewise-constant PSF from cepstra was
proposed in previous works [6,18–20]. A global PSF is no viable option for simu-
lation, since real PSFs vary significantly w.r.t. image depth, and mimicking this
is essential for a plausible simulation. A piecewise-constant (PWC) PSF approx-
imation leads to discontinuities in the simulated image. Instead, we compute a
cepstrum value c[y] per axial position y as the arithmetic mean over valid cep-
stra c̄{[yi]} (those surrounded by a blue box in Fig. 1). By computing averaged
cepstra c[y] (depicted as blue dots in Fig. 1), we remove lateral PSF variation
for robustness while preserving and estimating its axial variation.

Axial filtering in cepstrum domain. In Step 2 of Fig. 1, the axial cepstra
c[y] have been averaged laterally, but may exhibit strong variations in axial
direction, leading to discontinuities in the corresponding PSF kernels. A simple
interpolation of discrete PSF kernels h[y] in the spatial domain would not give
a properly defined PSF, due to the frequency component of h. Varray et al. [21]
avoid image discontinuities due to discrete PSF kernels by running several simu-
lations using different PSFs and merging resulting images in a weighting schem.
Alternatively, we use a filtering of axial cepstra c[y] to obtain a smoothly varying
function in the cepstrum domain, which subsequently can be transformed into
a smoothly varying h[y]. A Gaussian window of standard deviation σ is applied
on c[y] (depicted as green box in Fig. 1), where σ corresponds to an empirically
set scale of expected PSF variation. Each value is then weighted by the number
of valid cepstra c̄{[yi]}. The filter width n was set to 256 samples in our imple-
mentation, corresponding to ≈5 mm for given sampling frequency. A σ = 80
RF samples (corresponding to a 3σ range of ≈4.6 mm) results in a successful
trade-off between smoothing and variations.

PSF estimation from cepstrum. In third step the PSF h[y] is computed from
c[y] as follows. For each h[a], we recover the lateral and axial pulse profiles by
applying the inverse transformation from Eq. 4 to the truncated cepstrum c′[a]
after cutoff. The separable 2D PSF for each y is computed from the 1D pulses
by convolution. A remaining problem is that Eq. 4 aligns h with the upper left
corner of the image and hence does not constitute a proper impulse response.
Assuming a pulse similar to Eq. 2, to get a centered PSF we first compute the
envelope E = max(|H(h)|) to remove the frequency component, and then center
the maximum intensity max(E) in the lateral and axial directions. Since the
envelope of an idealized PSF corresponds to a Gaussian, centering the maximum
intensity also corresponds to centering the mean of the signal.

4 Results and Discussion

To find the ideal value of the cepstrum cutoff, using 1/6th of the PSF Full-
Width at Half-Maximum (FWHM) was recommended as a rule of thumb in the
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(a) Input image. (b) PSF comparison for 3 axial positions.

Fig. 2. Comparison of FieldII-simulated PSF and estimated PSF for cyst phantom.
(a) Input image. (b) PSF comparison for 3 axial positions.

literature [18]. FWHM is the extent of a pulse where its intensity is half of its
maximum value. In our implementation, we permanently fixed the lateral and
axial cutoff to the first 4 and 5 quefrencies of c, respectively. The parameter
α for exponential weighting, typically in the range of [0.965, 0.995] [23], was
set to 0.975 for all experiments. Figure 2 demonstrates local PSF estimation
from a FieldII-simulated image (a) as input. For simulation, a 6.6 MHz linear
transducer with sampling frequency of 40 MHz and a width of 40 mm was used
with a single transmit focus. To illustrate axial PSF variation, fixed receive
focus points were used. A qualitative comparison of the FieldII PSF with the
PSF estimated by our method in Fig. 2(b) demonstrates an excellent agreement.
Table 1 gives a numerical comparison of FWHM from simulated and estimated
PSF at the illustrated three depths, which shows that the estimated values are
in good agreement with the FWHM of the FieldII PSF, with differences <15%.
Added Gaussian noise affects our method minimally; up to a noise level of 40 dB,
where significant errors are observed.

Table 1. FWHM of estimated and FieldII-simulated PSFs, and the normalized errors.

Depth [mm] 40.4 60.6 86.6 40.4 60.6 86.6 40.4 60.6 86.6 40.4 60.6 86.6

FWHM Lateral [mm] Axial [mm] Lat. error [%] Ax. error [%]

Noise-free 1.38 1.18 1.90 .262 .263 .258 0 7 0 6 11 5

70 dB noise 1.36 1.18 1.89 .263 .263 .257 1 7 0 1 11 4

50 dB noise 1.23 1.11 1.55 .244 .240 .210 21 1 13 1 2 19

40 dB noise 0.52 0.62 0.48 .194 .185 .142 167 79 291 26 27 73

Ground-truth 1.38 1.11 1.89 .246 .234 .246 0 0 0 0 0 0
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Figure 3(a) visually compares FWHM for different values of axial filtering
parameter σ. This illustrates our method in the case of PSF discontinuities in
the original beam profile, which are caused by using multiple receive focus points
equally-spaced with 20 mm separations. Despite the discontinuities, our method
can faithfully approximate the original FHWM values and the general shape of
the curve. While there is certain variation among the methods, they all converge
to similar values in the far field. The lateral spread of local PSF, obtained as
the aggregation of a fine discretization of local PSF envelopes placed along a
vertical line, is shown in Fig. 3(b) and called herein beam shape. It demonstrates
that the estimated PSF is a smoothly varying function and in good agreement
with FieldII simulation. Figure 3(c) and (d) show results for dynamic receive
focusing, where PSF variations are smaller. In this case, a better estimation
accuracy is indicated by our results.

(a) Multiple (20 mm separated) receive focus points. (b) Beam shape.

(c) Dynamic receive focusing. (d) Beam shape.

Fig. 3. Full-Width-at-Half-Maximum (FWHM) of PSF over entire axial range of cyst
phantom for 3 levels of axial filtering and two types of receive beam-forming; together
with corresponding (lateral) beam shapes. The transmit focus is fixed at 60 mm in
both cases. (a) Multiple (20 mm separated) receive focus points. (b) Beam shape.
(c) Dynamic receive focusing. (d) Beam shape.

Figure 4 uses the estimated PSF for convolution-based simulation. In this
example, the continuous set of 100K scatterers from a FieldII cyst phantom was
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discretized on a scatterer grid of 2701 × 1024 pixels (Fig. 4(a)). This map was
convolved with the PSF estimated from FieldII simulation, where the simulated
image should ideally be equivalent to the FieldII image. As baseline comparison,
we used a technique from deconvolution literature, in which PSF estimation has
most commonly been investigated. In particular, we approximate the PSF by
piecewise-constant (PWC) kernels; two in our case for the near and the far fields,
c.f. Fig. 4(b). The discontinuity between the two PSF kernels can be seen clearly
as artifacts in the speckle pattern around 60 mm depth, making this method a
poor choice for simulation. Conversely, the proposed PSF estimation method in
Fig. 4(c) exhibits a smoothly varying speckle appearance. Our method is visually
in good agreement with the original image in Fig. 4(d), with a focus sharper near
60 mm. For the anechoic cyst at 60 mm, we computed contrast-to-noise ratio
(CNR) as an indicator for visibility of pathology. Using CNR = |μI1−μI2 |

σI1+σI2
, where

I1 and I2 denote B-Mode pixel intensity values of the cyst and the surrounding
tissue, respectively, resulted in 1.05 dB for piecewise-constant PSF estimation
and 1.16 dB for our local PSF estimation, which is closer to the observed value
of 1.15 dB and indicates a contrast drop (and hence potential mis-training) in
the case of inadequate PSF.

(a) Scatterer map. (b) PWC PSF. (c) Local PSF. (d) Ground-truth.

Fig. 4. Convolution-based simulation for the cyst phantom: (a) Discretized scatterers,
100× downsampled; (b) using 2-part piecewise-constant PSF with near- and far-field
parts; (c) proposed local PSF estimation with σ = 80; (d) ground-truth FieldII image.
(a) Scatterer map. (b) PWC PSF. (c) Local PSF. (d) Ground-truth.

Figure 5 shows the example of an in-vivo liver scan. The input image (shown
as envelope image on the left without dynamic compression) was captured with
a SonixTouch 4DC7-3/40 convex probe operating at 4.5 MHz with 20 MHz sam-
pling frequency and a transmit focus placed at 80 mm. The middle image shows
the estimated PSF at four depths marked in the left image. Note that since the
estimation is performed in the pre-scan-converted RF data, convex images are
also handled easily. The rightmost image depicts the continuous beam shape. As
expected for a convex probe, it exhibits an almost linear increase of the beam
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(a) Input image (RF envelope). (b) Sample PSF. (c) Beam shape.

Fig. 5. (a) Liver scan acquired with a convex probe. (b) Samples of the estimated PSF
at 4 depths. (c) Beam shape as the smooth (lateral) variation of local PSFs.

width, where the focus is also discernible. The run time of the PSF estimation
for this image was 13 min, in MATLAB with an Intel i7-4900MQ 2.8 GHZ CPU
with 24GB memory.

Discussion. Compared to earlier PSF estimation works such as [14,18], our
3-stage approach has the most similarities to methods on separable deconvolu-
tion [1,22], with some important differences: In contrast to our method, these
methods make a single axial/lateral cepstrum measurement per axial/lateral
scanline. As a result, they can capture lateral variation of the PSF w.r.t. image
depth, but not the axial variation. Although the latter is potentially less pro-
nounced than the former, it nevertheless still influences speckle statistics [15].
Instead, our algorithm first employs averaging in lateral direction followed by
axial filtering, hence taking into account both lateral and axial components for
each axial position. This allows us to robustly capture variation in both lateral
and axial PSF components. For the actual deconvolution, these earlier works sim-
ply use a global PSF averaged over local measurements, whereas we make use of
the additional local information for the subsequent simulation task. A potential
limitation of our method is that RF images are not accessible on most commer-
cial ultrasound systems. Furthermore, to achieve simulation realism, not only
the PSF but also the (proprietary) image post-processing steps should match
those of a commercial system.

5 Conclusions

We have hereby presented a method to estimate PSF and its spatial variation
from ultrasound images. This is to be used in US training simulation of linear
and convex transducers. Despite several studies on both PSF estimation and
convolution-based simulation, these fields have not been fused yet. We believe
that both (convolution-based) US simulation and other potential uses of US PSF
are of significant interest to medical ultrasound community. As evaluation, we
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presented visual and numerical comparisons of the acquired PSF with the PSF
from numerical simulations. We also demonstrated an example of estimating
PSF and the beam shape from a 2D in-vivo image. A 3D extension is to be
studied in future work. This work was supported by the Swiss Commission for
Technology and Innovation (CTI).
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Andrada Ianuş(B), Daniel C. Alexander, and Ivana Drobnjak

Centre for Medical Image Computing, Department of Computer Science,
University College London, London, UK

a.inaus@ucl.ac.uk

Abstract. This work describes Microstructure Imaging Sequence Sim-
ulation Toolbox (MISST), a practical diffusion MRI simulator for devel-
opment, testing, and optimisation of novel MR pulse sequences for
microstructure imaging. Diffusion MRI measures molecular displacement
at microscopic level and provides a non-invasive tool for probing tissue
microstructure. The measured signal is determined by various cellular
features such as size, shape, intracellular volume fraction, orientation,
etc., as well as the acquisition parameters of the diffusion sequence.
Numerical simulations are a key step in understanding the effect of
various parameters on the measured signal, which is important when
developing new techniques for characterizing tissue microstructure using
diffusion MRI. Here we present MISST - a semi-analytical simulation
software, which is based on a matrix method approach and computes
diffusion signal for fully general, user specified pulse sequences and tis-
sue models. Its key purpose is to provide a deep understanding of the
restricted diffusion MRI signal for a wide range of realistic, fully flexible
scanner acquisition protocols, in practical computational time.

1 Introduction

Diffusion MRI (dMRI) has become one of the most important imaging modali-
ties to probe tissue microstructure with many applications in biomedical imaging
[1,2]. The dMRI signal measures the displacement of the water molecules inside
the tissue and is sensitive to the configuration of cellular membranes, there-
fore it provides relevant information for characterising tissue properties at the
micron level. By developing geometrical models of the tissue and relating them
to the acquired dMRI data, it is possible to estimate cellular features such as
size, shape, volume fraction, dominant orientation etc. Such estimates provide
valuable biomarkers for studying the brain structure or for diagnosing and mon-
itoring diseases. In order to develop fast and reliable acquisition protocols, a
good understanding of the most relevant tissue features which affect the dMRI
signal as well the influence of different acquisition parameters is very important.

Numerical simulations provide a cheap and powerful tool to investigate the
effect of various sequence parameters and tissue features on the measured signal.
With synthetic data, we can investigate the ability of various imaging techniques,
c© Springer International Publishing AG 2016
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such as AxCaliber [3], ActiveAx [4], VERDICT [5], to estimate microstructural
parameters from the data. We can also analyse the effect of including additional
tissue features in the model, e.g. fibre dispersion [6] or size distribution [7], of
varying acquisition parameters [8] or introducing novel diffusion sequences [9],
in a controlled way with known ground truth.

Diffusion MR data synthesis can be divided into three broad categories:
Analytical models have a closed form solution which approximate the diffu-

sion process in bounded geometries under various assumptions. Such approaches
include the Short Pulse Gradient (SGP) approximation [10] or the Gaussian
Phase Distribution (GPD) approximation [11–13]. The signal is fast to compute,
however it departs from ground truth values when the assumptions are broken
and cannot recover some signal features such as diffusion-diffraction patterns.

Semi-analytical models are based on matrix operators to calculate the time
evolution of the diffusion signal inside simple geometries. Such approaches
include the matrix formalism introduced by Callaghan [14] or the Multiple Cor-
relation Function (MCF) technique [15]. The diffusion signal can be computed
for arbitrary gradient waveforms, is accurate and relatively fast to compute,
however, these techniques can be used only for simple geometries with known
solutions of the diffusion equation (parallel planes, cylinders, spheres [11], spher-
ical shells [12], triangles [16]).

Numerical models simulate the diffusion process either by numerical solutions
of the diffusion equation in a known substrate (e.g. [17,18]) or using a Monte-
Carlo approach (e.g. [19,20]). Such techniques can represent more complex and
realistic diffusion substrates, however, they are computationally demanding and
do not provide the same level of mathematical insight as analytical models do.

Analytical approximations of the dMRI signal are fast to compute but not
very accurate, while numerical simulations have higher accuracy and can repre-
sent complicated geometries but require significantly more computational power.
In simple geometries, semi-analytical approaches represent the middle ground,
providing accurate signal calculations in a short computational time.

In this work we present the MISST software package, which is based on a
semi-analytical approach, namely the 3D extension [21] of the matrix method
proposed by Callaghan. MISST simulates the diffusion MRI signal for general-
ized, user defined, gradient waveforms and a variety of diffusion substrates. The
matrix method has been used so far in various research studies to help validate
the GPD approximation for oscillating gradients [13], to analyze the sensitivity
of pulsed and oscillating gradients to axon diameter [8] as well as to investigate
the properties of a newly introduced diffusion sequence, namely double oscillat-
ing diffusion encoding [9]. MISST combines a powerful method for simulating
diffusion MRI signal with a wide range of diffusion substrates in a flexible, user
friendly software package.

2 Theory

This section presents the theory behind the building blocks of MISST.
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2.1 Diffusion Contrast

Diffusion MRI contrast is obtained by applying a magnetic field gradient with
zero first moment at echo time, i.e.

∫ TE

0
G(t) · dt, where G denotes the effective

gradient after accounting for the effect of inversion pulses from the imaging
sequence. Thus, the phase acquired by each spin is φ(t) = γ

∫ t

0
G(t′) · r(t′)dt′

and the measured diffusion signal decay of the spin ensemble E = 〈exp(iφ)〉.
In case of free (Gaussian) diffusion and gradient with a fixed orientation for

each measurement, the signal has the well known form:

E = exp(−bD), where b = γ2

∫ TE

0

∣
∣
∣
∣

∫ t

0

G(t′)dt′
∣
∣
∣
∣

2

dt. (1)

For a generalized gradient waveform, Eq. 1 needs to be expanded to a tensor
form [22]:

E = exp(− < B,D >), where B = γ2

∫ TE

0

F(t)FT (t)dt, F(t) =
∫ t

0

G(t′)dt′,

(2)
<,> denotes the tensor inner product and D is the diffusion tensor.

In case of diffusion restricted within closed pores, the solution is not straight-
forward and the signal depends on the propagator P (r0, t0|r1, t1) which repre-
sents the probability that a particle moves from position r0 at time t0 to position
r1 at time t1 [23].

Matrix Formalism. To simulate restricted diffusion, MISST uses the 3D exten-
sion of the matrix method (MM) [14,24], which is based on a multiple propagator
approach [25]. MM provides a generic framework for evaluating the restricted
diffusion signal E in a closed form under generalised gradient waveforms. The
pulse sequence is divided into narrow intervals τ , as illustrated in Fig. 1 and the
gradient amplitude g0(kτ) is discretized into steps of size gstep. Thus, at time
kτ the amplitude of the diffusion vector is mkq where q = (2π)−1τgstep, and
mk = �(g0(kτ)/gstep)�.

The signal E is calculated as a product of matrix operators which describe
the phase evolution inside the boundaries:

E = S(q)R[A(q)]m2R...R[A(q)]mK−1RST (−q), (3)

where the elements of the matrices S, A and R have the following definitions

Sn(q) = V −1/2

∫
un(r) exp(i2πq · r)dr,

Rnn = exp(−λnDτ),

Ann′(q) =
∫

u∗
n(r)un′(r) exp(i2πq · r)dr; (4)
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Fig. 1. Schematic representation of a generalized waveform which is repeated before
and after the refocusing pulse in a spin-echo sequence. The gradient waveform along
each direction is discretized in K steps.

V is the pore volume, q = qĝ where ĝ is the unit gradient vector and un and
λn are the eigenfunctions and eigenvalues of the diffusion equation in the given
geometry.

The above method has recently been extended for gradients with time vary-
ing orientation [24]. In the case of fixed orientation, the vector q is the same
at every time point kτ which allows the precalculation of matrices A(q) and
S(q). However, when the gradient orientation is time-dependant, the vector q
is different at different time points and the matrices also depend on time. Thus
Eq. 3 becomes:

E = S(qĝ1)R[A(qĝ2)]m2R...R[A(qĝK−1)]mK−1RST (−qĝN), (5)

where ĝk denotes the gradient orientation at time kτ .
Calculating the matrices A(qĝk) element-by-element at each time point is

too computationally expensive. To decrease computational time, MISST uses an
efficient implementation based on the Taylor expansion of the matrices, which
has been proposed and validated in [24].

2.2 Tissue Models

MISST simulates the diffusion signal from a variety of multi-compartment tissue
models. Thus, the overall signal is computed as a weighted sum over different
compartments:

E =
n=N∑

n=1

fnEn, with
n=N∑

n=1

fn = 1, (6)

where En and fn are the signal and the volume fraction of the nth compartment
and N is the total number of compartments in the model. For compartments
exhibiting Gaussian diffusion, the signal is computed according to Eq. 2, while
for restricted compartments it is calculated according to Eq. 5.
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3 Software Implementation

3.1 General Overview

MISST is implemented in Matlab using a modular design and is schemat-
ically represented in Fig. 2. This implementation allows the user to choose
between various diffusion sequences which are widely used in the litera-
ture and/or to define their own sequences as well as to build a large vari-
ety of tissue models by easily combining the diffusion signal from basic
compartments. The package is open source and available for download
http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.MISST.

3.2 Implementation Details

In order to generate the diffusion signal, the user inputs the parameters of the
diffusion sequences and of the tissue model. The simulator outputs the diffusion
signal and, optionally, the Jacobian of the signal.

Input parameters

Diffusion sequences: The diffusion measurements are represented as a structure,
commonly denoted as “protocol”, which stores the information regarding the
effective diffusion gradient G and the time discretization τ . The 3D gradient
waveform is specified as a M x 3 K matrix, where M is the number of diffusion
measurements and K is the number of gradient points in one measurement along
each direction. The gradient does not necessarily need to be repeated after the
180 rf pulse, nevertheless, the gradient integral should be zero. We provide a set
of examples how to generate the discrete gradient waveforms for several diffu-
sion sequences which are widely used in the literature: pulsed gradient spin echo
sequences (PGSE), sinusoidal/square/trapezoidal oscillating gradients (OGSE),
double pulsed field gradients, stimulated echo sequences, etc. A detailed descrip-
tions for the parametrization of each sequence can be found in the software
documentation.

Tissue models: For the diffusion substrates, MISST provides a flexible design of
multi-compartment tissue models by combining basic building blocks which have
different diffusion characteristics. The different basic models are illustrated in
Fig. 2 and follow the nomenclature presented in [26]. Currently, there are several
multi-compartment white matter models available in MISST, nevertheless, other
substrates can be easily implemented by combining different compartments. The
information related to the diffusion substrate is represented as a structure com-
monly referred to as “model”. The user needs to specify the model name as well
as the model parameters such as diffusivity, radius (for cylinders and spheres),
volume fractions of different compartments, etc.

Output parameters

MISST outputs a vector of normalized diffusion signals corresponding to each
measurement in the protocol, for the diffusion substrate specified by the tissue

http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.MISST
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Fig. 2. Schematic representation of MISST, showing the input and output parameters
as well as the basic diffusion compartments.

model. Optionally, the simulator can output the signal Jacobian, i.e. the deriv-
atives of the signal with respect to the model parameters. For instance, if the
protocol has M measurements and the model has P parameters, the Jacobian is
an M × P matrix.

4 Simulations and Results

4.1 Signal Validation

The first set of experiments validate the restricted diffusion signal computed
from MISST against the Monte Carlo (MC) diffusion simulator in Camino [19]
in a substrate consisting of parallel cylinders with radius R = 3µm and intrinsic
diffusivity D = 2 ·10−9 m2/s, oriented along the z axis, as illustrated in Fig. 3(a).

To show the true potential of MISST, in the first simulation we test a protocol
with M = 50 fully generalized gradient waveforms, which are generated by
random numbers for gradients in x, y and z directions. To ensure a null gradient
integral, the waveforms with a duration of 20 ms are repeated before and after
the 180 rf pulse, as schematically illustrated in Fig. 3(b). We set the maximum
gradient strength to 500 mT/m and we use a time step τ = 0.1 ms. For the
MC simulations we used 200000 walkers and the same time step τ . The plot
in Fig. 3(c) presents the diffusion signal computed using the two methods. The
signal difference between MISST and MC is less than 0.16 % for all data points.
The computational time necessary for MISST to generate this data set was 5 s,
while the MC simulation took 10 min.

The second simulation investigates an acquisition protocol consisting of dou-
ble pulsed field gradient sequences (dPFG) which vary the angle between the
gradients in the plane perpendicular to the cylinder axis. A schematic represen-
tation of the sequence is illustrated in Fig. 3(d). The sequence parameters for
this simulation are: gradient strength G = 500 mT/m, pulse duration δ = 2 ms,
pulse separation Δ = 50 ms, mixing time τm = {0, 2, 10} ms and angle ϕ between
the gradient directions from 0 and 2π. The plots in Fig. 3(e) show the depen-
dence of the dPGSE signal as a function of the angle between the gradients for
three different mixing times, when the signal was generated either using MISST
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Fig. 3. (a) Schematic representation of the diffusion substrate; Schematic representa-
tion of (b) the random gradient waveform and (c) the corresponding diffusion signals
obtained using MISST (line) and MC simulations (symbol); Schematic representa-
tion of (d) the dPGSE sequence and (e) the corresponding diffusion signals obtained
using MISST (line) and MC simulations (symbol); Schematic representation of (f) the
PGSE sequence and (g) the corresponding diffusion-diffraction patterns obtained using
MISST.

or MC simulations. Similarly to the previous simulations, the signal difference
between the two methods is less than 0.3 % for all the data points. In this case,
MISST calculations were performed in 10 s, while the MC simulation took 1 h
20 min.

The third analysis shows that MISST can reproduce important features
of the restricted diffusion signal which cannot be accurately modelled with
simpler analytical approximations like GPD, such as diffusion-diffraction pat-
terns when the wave vector q = (2π)−1γGδ is increased [27,28]. In this sim-
ulation we use standard PGSE sequences with δ = 3 ms, Δ = 100 ms and
G = {0, 50, 100, ..., 2000} mT/m. The diffusion-diffraction patterns depend on
the restriction size, as illustrated in Fig. 3(g) for parallel cylinders with three
different radii R = {4, 5, 6} µm.
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Fig. 4. Sensitivity of PGSE (N = 1) and OGSE (N > 1) sequences to cylinder radius
for a wide range of sequence parameters. The star denotes the most sensitive sequence.

4.2 Application Example

MISST software can be used for a wide range of applications, from validating
analytical approximations [13], to analysing the sensitivity of various diffusion
measurements [8] or understanding the contrast of novel sequences [9]. Here
we illustrate an example of using MISST to compare the sensitivity of PGSE
and OGSE sequences to pore diameter in cylindrical restriction. We investigate
two situations: (1) the gradient is orthogonal to the cylinder axis and (2) the
gradient is not perfectly perpendicular, deviating by a small angle θ = 10◦. We
analyse a wide range of practical sequence parameters with gradient strength
G ∈ [0, 300] mT/m, δ ∈ [0, 60] ms, Δ = δ + 10 ms and N = {1, 2, ..., 5} gradient
lobes, as illustrated in Fig. 4(a). In this simulation we use a two-compartment
tissue model with parallel cylinders (R = 3 µm, D = 1.7 · 10−9 m2/s, volume
fraction f = 0.7) and hindered extracellular space in the tortuosity limit (D‖ =
1.7 · 10−9 m2/s, D⊥ = (1 − f) · D‖). We account for the effect of T2 decay with
a constant T2 = 70 ms. An in-depth analysis of PGSE vs. OGSE sensitivity to
pore diameter is presented in [8].

Figure 4(b) plots the sensitivity of PGSE (N = 1) and OGSE (N > 1)
sequences with a wide range of parameters. The results show that in the case
when the gradient direction is orthogonal to the cylinder orientation, PGSE
sequences have the highest sensitivity, however, if the gradient is no longer
perfectly perpendicular or there is fibre dispersion (not shown here), OGSE
sequences with low frequency yield the highest sensitivity. This analysis shows
the importance of numerical simulations for exploring optimal combinations of
sequence parameters in an intuitive way.

5 Discussion

This work introduces MISST, a software package that simulates the diffusion
MRI signal from a variety of pulses sequences and diffusion substrates. Being
open source, the user can easily tailor the software to explore their own research
question, allowing faster development in the field of diffusion MRI.
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MISST implements the 3D extension of the matrix method, which allows
the computation of restricted diffusion signal for flexible, user defined, gradient
waveforms. We provide details of the implementation, as well as examples of
tissue models and gradient waveforms. The signal calculation is accurate and
preserves important signal features such as diffusion-diffraction patterns, yet it
is orders of magnitude faster to compute compared to MC simulations, which
makes it practical for many applications.

One limitation of the matrix method is that it can be used to calculate the
restricted diffusion signal only for basic geometries with well known solution of
the diffusion equation such as parallel planes, cylinders, spheres, spherical shells
as well as triangles. Another limitation is the fact that diffusion in extracellular
space needs to be computed separately, thus the accuracy of the signal depends
on the complexity of the chosen model. Although boundary relaxation effects
can be accounted for in the matrix method formalism, the exchange between
intra and extracellular spaces cannot be readily incorporated.

Future work aims to provide the template for more diffusion sequences which
have been recently developed in the literature (double oscillating diffusion encod-
ing, q-mas and other sequences with isotropic encoding) as well as more diffusion
compartments such as cuboids and finite cylinders [7].

The novelty of MISST is that it simulates dMRI signal for any user-defined
diffusion gradient waveform, from a standard PGSE to more advanced sequences
which are of great interest to the research in this field. Moreover, due to its mod-
ular construction, the user can easily combine various diffusion compartments to
create models that are representative of various tissue types, such as grey mat-
ter, white matter or tumours. All these features are combined in a user-friendly,
open source software package.
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Abstract. Image data has been used to create the Virtual Popula-
tion models, a range of highly detailed anatomical models (male/female,
neonates/children/adults/elderly, average build/obese) which have been
found to be useful for a wide range of computational life sciences applica-
tions. They are at the core of the Sim4Life simulation platform. Different
image modalities provide a wealth of information enabling model func-
tionalization by facilitating anatomy parameterization and animation,
consideration of tissue inhomogeneity, imposition of realistic boundary
conditions, and integration of dynamic physiological models. Closing the
circle, these functionalized anatomical models have also been used to
generate virtual image data, particularly by simulating MR imaging.
Thus, image data can be produced under controlled conditions and with
known base-anatomy for different pulse sequences. Virtual imaging has
been used to study different imaging artefacts.

Keywords: Virtual Population · Anatomical phantoms · Image-based
modeling · Model functionalization · MRI simulation

1 Introduction

The human body, its anatomy and physiology, are at the center of life sciences
applications. Thus, computational life sciences frequently require virtual models
of the human anatomy and physiology. The Virtual Population (ViP) models
are a range of highly detailed human anatomical models, which have been seg-
mented from magnetic resonance images of volunteers (Fig. 1). Using different
image modalities and other sources of information they have been functional-
ized to go beyond static representations of the human anatomy, including tissue
material property distributions and dynamic behavior. The ViP models have
been employed to investigate a wide range of life sciences applications, includ-
ing issues related to magnetic resonance imaging (MRI). MRI modeling has
been used for imaging optimization and safety assessment. Imaging optimization
includes hardware modeling and optimization, as well as pulse sequence-related
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modeling and optimization of the imaging-process - virtual MRI imaging. Vir-
tual MR imaging is helpful in understanding the process of magnetic resonance
imaging, in creating new pulse sequences and scan types, in optimizing the imag-
ing hardware (e.g., coils), and in generating image data with known anatomical
correspondence, e.g., for the development or validation of image segmentation
or registration tools.

While the generation of the ViP models from medical image data has been
described previously [1,2], their parametrization and (image-based) functional-
ization has not been systematically presented. This paper aims at (i) providing
such an overview, (ii) discussing for the first time their application to virtual
MR imaging, and (iii) illustrating how the different components combine. For a
review of other existing computational anatomical phantoms, see [3]. More infor-
mation on virtual MR imaging using realistic electromagnetic field distributions
can be found in [4].

2 Materials and Methods

2.1 Image-Based Modeling - Model Generation

MRI data from currently ten healthy volunteers has been acquired, resampled at
a uniform 0.5 mm resolution, and segmented using a mixture of automatic and
(semi-)manual techniques [1,2]. More than 300 different tissues and organs have
been distinguished. The models are chosen to provide optimal population cov-
erage, with male and female models and an age range covering children, adults,
and elderly. Some models were selected to ideally represent average Caucasian
body height and weight, while an obese model helps to represent other pop-
ulation sectors. In addition neonate models are available, and segmented fetus
image data has been combined with a female model to generate pregnant women
models at different gestation stages.

High fidelity, smooth and water tight (closed) surface meshes with no gaps
or self-intersections are extracted from segmented images. Surfaces are created
by initially generating an optimized, adaptive tetrahedral mesh, then extracting
interface and outer surface triangle-meshes, which are further processed (smooth-
ing and simplification) while ascertaining that no intersections are introduced [2].

The Virtual Population model are an integrated part of the Sim4Life simu-
lation platform for computational life sciences [8]. Sim4Life provides a range of
physical and physiological simulators optimized for the modeling of interactions
with/inside living tissues within the complexity of the human body are available.

2.2 Image-Based Modeling - Model Functionalization

In addition to using image data as a source of static information about the
anatomical geometry, image data is also employed as part of the ’functionaliza-
tion’ of the Virtual Population models:
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Fig. 1. The Virtual Population model range.

Dynamic Anatomy. The basic Virtual Population models provide static
anatomical geometries. However, when processes are studied that occur on a
similar time scale as organ motion due to breathing or heart-beat, it can become
necessary to animate the anatomical models. For that purpose, breathing motion
data has been extracted for part of the abdomen from 4D MRI and used to create
a parameterized breathing motion model. The breathing model has been regis-
tered to the average adult male Virtual Population model and used to transiently
deform it, thus mimicking breathing in a personalized way [6,9].

Furthermore, near-interactive posture- and obesity level-parameterization
has been developed for the Virtual Population models [7]. It simulates the tissues
as biomechanical, hyperelastic materials, prescribing positions for rigid bones,
assigning body-forces to selected tissues and allowing soft tissues to deform pas-
sively.

Material Properties. The Virtual Population models are synchronized with
the ITIS Tissue Properties Database [5], a literature-based and on-line accessi-
ble resource of tissue properties information that includes suggested values (as
well as data about variability) for density, dielectric properties, low frequency
electrical conductivity, thermal properties, perfusion, acoustic properties, MRI
related tissue properties, and for fluids rheological properties. However, occasion-
ally material properties cannot be approximated as constant throughout a tis-
sue. In such cases, image data has been used to extract property distributions in
selected tissues that has then been associated with anatomical models. Examples
include MRI liver perfusion maps for thermal modeling, computed tomography
(CT) bone density maps for acoustic propagation modeling, or MRI diffusion
tensor imaging (DTI) as source of low frequency conductivity anisotropy and
inhomogeneity information.

Boundary Conditions. Simulations not only require geometry and material
property information, but also suitable boundary conditions. In some cases, med-
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ical imaging can provide a valuable source for realistic boundary conditions. For
example, 4D MRI velocimetry maps have been registered with the Virtual Pop-
ulation models to obtain realistic boundary conditions in blood fluid dynamics
simulations.

Physiology. Fiber tracking in MRI diffusion image data has been used to place
dynamic neurophysiology models that can be coupled to electromagnetic mod-
eling inside anatomical phantoms. Vessel network segmentation and extraction
from MRI angiography data can be used to facilitate reduced order vascular
blood flow modeling, e.g., to provide realistic boundary conditions for 4D com-
putational fluid dynamics modeling of blood flow at locations of interest.

2.3 Modeling Imaging

In the previous sections, the use of image data as source for anatomical modeling
and model functionalization has been discussed. However, the reverse process,
namely generating virtual image data from anatomical models, tissue properties,
and occasionally physiological information, has also been studied. The Virtual
Population has been used to simulate MR imaging by reproducing the electro-
magnetic (EM) and spin dynamics physics. MR imaging uses a static magnetic
field, a radiofrequency (RF) EM field (typically from a bird-cage coil; used to
control and record nuclear spin procession), and a gradient field (used to encode
position information) to manipulate nuclear spins (Fig. 2). Both the dielectric
properties, as well as parameters affecting spin dynamics, are tissue specific.
Values for many different tissues can be found in the ITIS database [5].

RF-Coil Modeling. An RF-coil designer has been implemented within
Sim4Life that can also place and tune the different capacitors, resistors and
inductances required for coil resonance at the right mode. The in situ EM fields
can then be computed using a finite-differences time-domain method solver and
the Virtual Population models ([11], Fig. 3).

Gradient Coil Modeling. A gradient coil design tool can be used to create
gradient coils that maximize field homogeneity, while minimizing power and
inductance, for arbitrarily shaped coils. For an existing coil design, the induced
low frequency fields within the Virtual Population models can be computed using
a magneto-quasistatic EM solver (Fig. 3).

Scan Sequence and Spin Dynamics Modeling. Once the different EM
fields, the anatomical tissue distribution, and its associated properties are known,
the MR images resulting from a specific pulse sequence can be computed. For
that purpose, Sim4Life simulates spin dynamics based on the Bloch equations,
and reproduces image reconstruction from the simulated signal (Figs. 2 and 4).
The presence of metallic implants can be considered by introducing correspond-
ing dipole sources.
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Fig. 2. Schematic representation of the data-flow and simulation modules involved in
virtual MR image generation.

3 Results

3.1 Virtual Population Models

The Virtual Population models have found widespread application, as evident
in more than 700 citations of the original paper [1]. Most applications have been
related to dosimetry in the area of EM exposure (e.g., MRI related), quantifying
energy deposition, but also induced effects such as heating or neurostimulation.
Other applications have been related to device design, investigation of novel
therapies, safety and efficacy assessment for regulatory purposes, and mechanis-
tic studies. Investigated physics have included EM (ionizing and nonionizing),
acoustics (e.g., ultrasound), flow, tissue growth and damage, biomechanics, and
others.

3.2 Image-Based Model Functionalization

Applications of image-based model functionalization include the following exam-
ples:

Dynamic Anatomy. The MRI-based breathing animation of a Virtual Popu-
lation model has been used to investigate the impact of breathing-related liver
motion on focused ultrasound ablation of hepatic tumor and to devise superior
targeting and focusing methodology [6,9].

Biomechanics-based morphing and posing has been used for diverse applica-
tions, including the assessment of MRI-safety of active implanted medical devices
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Fig. 3. MRI coils and induced fields: birdcage and surface coils (u.l.), gradient coil with
induced magnetic field (u.r.), head coil and related D-field (b.l.), tool for receive coil
array design and analysis (b.r.).

Fig. 4. Sequence definition (left) and simulated MR imaging (k-space and recon-
structed; right).



From Image-Based Modeling to the Modeling of Imaging 51

(pace-makers, deep brain stimulators), where comprehensive population and sit-
uation coverage is required to assess that the RF-energy pick-up through implant
leads, which act like antennas, does not result in inacceptable tissue heating near
critical implant locations [12].

Material Properties. Model functionalization with image-derived tissue inho-
mogeneity information has been used, e.g., to:

– improve the quality of patient-specific treatment planning in hyperthermic
oncology by consideration of MRI perfusion maps and related heat removal
[13]

– investigate and compensate the degrading impact of skull-related aberra-
tion and defocusing in transcranial therapeutic ultrasound applications (abla-
tion, reversible blood-brain-barrier disruption) by consideration of CT-derived
speed-of-sound and absorption maps

– quantify the influence of highly inhomogeneous and anisotropic electrical con-
ductivity in brain tissue on the penetration depth of transcranial electrical
and magnetic stimulation [14].

Boundary Conditions. Image-based flow boundary conditions have been
applied to simulate and validate realistic blood flow conditions, for the investi-
gation of the magneto-hemodynamic (MHD) effect on ECG (electrocardiogram)
measurements. When exposed to a strong magnetic field (e.g., inside an MRI
machine), the MHD effect leads to a distortion of the ECG signal which can
negatively affect heart-beat-synchronized triggering, but has been found to con-
tain information about blood flow features that could serve as bio-marker [10].

Physiology. The image-based anatomical model functionalization with electro-
physiological neuron models allows to study the mechanisms involved in deep
brain stimulation [15] and to further understanding of unintended nerve stimu-
lation by low frequency EM-field exposure. The latter has led to questioning a
range of assumptions underlying current MRI safety guidelines [16].

3.3 Modeling Imaging

Virtual MR images of the Virtual Population models have been generated by
combining the anatomical models, information about tissue properties, and cou-
pled multi-scale modeling of the in vivo EM-fields generated by the MRI coils
and the induced spin-dynamics. This permits to produce (under controlled con-
ditions and with known base-anatomy) different image modalities with varying
pulse sequences (e.g., T1- or T2-weighted, Fig. 6) and to investigate different
imaging artefacts (e.g., related to field inhomogeneity, k-space undersampling,
or the presence of metallic implants, Fig. 5). For example, the artefacts originat-
ing from the presence of different orthopedic screws and implants in different
locations and orientations have been simulated.
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Fig. 5. Modeling of MRI artifacts. Top row: field inhomogeneity (left) related image
artifact before (middle) and after correction (right). Bottom row: artifact (right) result-
ing from the presence of a metallic implant (left).

Fig. 6. Simulated image before and after optimizing contrast in a target volume (T1
vs. T2 contrast balancing).
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4 Conclusion

The Virtual Population models are used in a wide range of computational life
sciences applications, such as mechanistic research, clinical treatment planning,
medical device design and optimization, and regulatory purposes (safety and effi-
cacy assessment). The static anatomical models have been functionalized using
a variety of image modalities, e.g. providing inhomogeneous tissue property dis-
tributions, model dynamics such as 4D breathing motion, realistic boundary
conditions, and support in the integration of physiological models such as elec-
trophysiological neuron models. These functionalized anatomical models have
also been used for the reverse process of simulating magnetic resonance imaging
using a Bloch equation solver and a collection of tools allowing to study the
design of MR imaging hardware (RF and gradient coils) and pulse sequences.
Thus, image data can be produced under controlled conditions and with known
base-anatomy for different pulse sequences. Virtual imaging has been used to
study different imaging artefacts.

References

1. Christ, A., Kainz, W., Hahn, E.G., Honegger, K., Zefferer, M., Neufeld, E., Rascher,
W., Janka, R., Bautz, W., Chen, J., Kiefer, B., Schmitt, P., Hollenbach, H.-P., Shen,
J., Oberle, M., Szczerba, D., Kam, A., Guag, J.W., Kuster, N.: The Virtual Family
development of surface-based anatomical models of two adults and two children
for dosimetric simulations. Phys. Med. Biol. 55(2), N23 (2010)

2. Gosselin, M.-C., Neufeld, E., Moser, H., Huber, E., Farcito, S., Gerber, L., Jedensj,
M., Hilber, I., Di Gennaro, F., Lloyd, B., Cherubini, E., Szczerba, D., Kainz, W.,
Kuster, N.: Development of a new generation of high-resolution anatomical models
for medical device evaluation: the Virtual Population 3.0. Phys. Med. Biol. 59(18),
5287 (2014)

3. Xu, X.G., Eckerman, K.F.: Handbook of Anatomical Models for Radiation Dosime-
try. CRC Press, Boca Raton (2009)

4. Cao, Z., Sukhoon, O., Sica, C.T., McGarrity, J.M., Horan, T., Luo, W., Collins,
C.M.: Bloch-based MRI system simulator considering realistic electromagnetic
fields for calculation of signal, noise, and specific absorption rate. Magn. Reson.
Med. 72(1), 237–247 (2014)

5. Hasgall, P.A., Di Gennaro, F., Baumgartner, C., Neufeld, E., Gosselin, M.C.,
Payne, D., Klingenbck, A., Kuster, N.: IT’IS Database for thermal and electro-
magnetic parameters of biological tissues. Version 2.6, 13 January 2015

6. Kyriakou, A., Neufeld, E., Werner, B., Székely, G., Kuster, N.: Full-wave acoustic
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way for the investigation of complex wave propagation phenomena which cannot
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successive bone healing stages. Bone healing is simulated as a three stage process
and numerical models are established based on SAM images derived from week
3, week 6 and week 9 after the osteotomy. Callus is considered as a two-dimen‐
sional medium and its composite nature is integrated in the models via the combi‐
nation of SAM images and an iterative effective medium approximation. We use
a plane wave excitation at 1 MHz to investigate the interaction with cortical and
callus tissues. The scattering amplitude variation is calculated in the backward
and forward direction, as well. It was found that the scattering amplitude derived
from appropriate directions and excitation frequencies could convey significant
quantitative information for the evaluation of fracture healing.
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1 Introduction

In recent years several non-destructive testing approaches and techniques have been
proposed for the assessment of cortical and trabecular bone, especially in the cases of
pathologies such as osteoporosis and fracture healing. As far as bone healing is
concerned, the monitoring potential of low intensity quantitative ultrasound and its
positive effect on treatment acceleration have been investigated extensively using exper‐
imental, numerical and theoretical methods. Axial transmission measurements of the
first arriving signal (FAS) velocity have been mainly presented in the literature. The
FAS velocity is strongly correlated with bone microstructure reflecting the evolution of
fracture healing and osteoporosis. Specifically, it has been shown that the FAS velocity
decreases as the porosity increases in osteoporotic bones, while it decreases during the
first healing stages showing a constant increase at later healing stages.

The propagation of guided waves has also been studied as an advanced method for
the investigation of deeper layers of cortical bone using ultrasound. The use of this
method is significant when the wavelength is comparable to or smaller than the thickness
of the cortical bone as the FAS wave propagates as a lateral (or head) wave conveying
information for the upper cortical surface (periosteum). Also, it has been shown that
bone anisotropy and geometry irregularity, as well as the material and geometrical
changes of callus influence the propagation of guided modes, while the FAS velocity is
not influenced by the irregularity and anisotropy of bone [1]. However, even if the study
of guided waves provides valuable qualitative information, the results should be inter‐
preted in combination with traditional FAS velocity measurements [2].

The study of scattering phenomena has also gained significant interest and
several experimental and numerical methods have been presented [2–4]. Comparing
to the transverse and axial transmission techniques, backscattering methods are not
restricted to peripheral skeletal sites such as the heel or forearm and may provide
easier access to central skeletal sites such as the hip and spine where many osteo‐
porotic fractures occur [3]. Some studies have measured a parameter called broad‐
band ultrasonic backscatter, which is the frequency averaged backscatter coefficient
and has been shown to be sensitive to the density, mechanical properties, and micro‐
structure of cancellous bone [4]. Other ultrasonic parameters of interest are the appa‐
rent integrated backscatter as well as the frequency slope of apparent backscatter,
which are frequency dependent according to [3].

Measurements of ultrasonic backscattering have been mainly used for the evaluation
of trabecular bone microstructure, while fewer studies have been presented for cortical
bone. The ultrasound scattering phenomena induced by a composite object depend on
a complex manner on its structure and mechanical properties [5]. From a microstructural
point of view the two types of bone differ significantly. Cortical bone is more compact
and composes the external surface of all bones with porosity from 5–10 %. On the other
hand, trabecular bone is found in the inner parts of bones, it is less dense, softer and
weaker with porosity from 50–95 %.

The rapid development of technological infrastructure and the evolution of imaging
modalities such as micro-computed tomography and scanning acoustic microscopy
(SAM) have opened new perspectives for the numerical study of backscattering
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parameters. Numerical and theoretical scattering models have been established to study
the effect of frequency and microstructural characteristics on the backscatter coefficient.
Specifically, the Faran cylinder model simulated trabeculae as solid cylinders in fluid
and the dependence of the backscatter coefficient on frequency and thickness of the bone
was examined [6]. In [5], three dimensional microstructural models were presented to
investigate the ability of weak scattering statistical models to predict both the frequency-
dependence and the magnitude of the backscatter coefficient. According to this study,
the investigation of scattering by trabecular bone can be based on two approximations:
(a) derive the pressure field by solving the propagation equation inside and outside the
scatterers, and applying the proper boundary conditions at the interfaces, (b) assume
bone microstructure as a random continuum, which permits a more flexible description
of complex scattering geometry.

As far as cortical bone is concerned, fewer numerical studies have investigated the
potential of the backscattering method to evaluate bone microstructure. The main ultra‐
sonic parameters of interest are the backscattered amplitude integral and the attenuation
slope of apparent backscatter. More recent studies [7–9] use the backscattering method
to identify the occurrence of large pores called non-refilled basic multicellular unit. From
a biological perspective, the size of Haversian canals increases due to a partial refilling
in the course of tissue remodeling with ageing [7]. Thus, osteoporosis may provoke a
complete lack of refilling and an accumulation of non-refilled basic multicellular unit
in the cortex. It was shown in [8] that the scattering amplitudes and the calculated
displacements in the backward direction can reveal differences due to changes in cortical
porosity from 0–16 % as well as the occurrence of pores larger than the Haversian canals.
High-frequency waves were applied in [9], to correlate the Haversian canal size and the
occurrence of large pores with the backscatter characteristics. It was shown that the
frequency dependence of cortical backscatter is strongly related to the size distribution
of Haversian canals and the occurrence of large non-refilled basic multicellular unit can
be detected revealing osteoporosis at an early stage.

In this study, we use SAM images to present realistic numerical models of long bones
at different fracture healing stages to examine the monitoring potential of the backscat‐
tering method. Τo our knowledge this is the first numerical study of backscattering in
bone healing based on imaging data. Two-dimensional geometries are established which
incorporate the Gaussian-like curvature of callus tissue. The composite nature of callus
is considered using the iterative effective medium approximation of [2], in which the
material properties are derived from SAM data. Two series of simulations are performed
to account for: (a) changes in both the material and geometrical features during bone
healing (Series I), (b) changes only in the material properties keeping constant the callus
geometrical characteristics at different postoperative weeks (Series II). We use a plane
wave excitation at 1 MHz to investigate the interaction with cortical and callus tissues.
The scattering amplitude is calculated in the backward and forward direction. It was
found that the backscattering method could provide valuable information for the eval‐
uation of the fracture healing process.
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2 Materials and Methods

2.1 Model Geometry

In this section we present the developed two dimensional numerical models of long
bones at different healing stages. The cortical bone was modeled as a 2D plate with
length 40 mm and width 4 mm. The callus region was modeled by a Gaussian-like
curvature mimicking the periosteal and endosteal region, as well. The 2D cortical model
was assumed to be immersed in blood in order to account for the soft tissues surrounding
the bone and callus. The fracture healing process was modeled assuming three succes‐
sive stages for week 3, 6 and 9 after the osteotomy based on the SAM images of Fig. 1
[2]. Calibrated maps of the acoustic impedance Z were converted into maps of the elastic
coefficient c11 using a calibration method and empirical relations between impedance
and elastic coefficients, as described in [2, 10]. For comparison purposes, we have also
considered a model of intact bone. Two sets of simulations were performed to account
for: (a) changes in both the material and geometrical features of callus during fracture
healing (Series I), (b) changes only in the material properties keeping constant the
geometry of callus (Series II). In Fig. 2 the generalized model is presented and the
parameter hcallus depicts the maximum distance of the upper callus surface from the
cortical surface and was varying from 6 mm in week 3 to 5 mm in week 6 and to 3 mm

Fig. 1. Scanning acoustic microscopy images representing the: (a) third, (b) sixth and (c) ninth
postoperative week [2].

Fig. 2. Generalized computational model of a healing long bone including the callus periosteal
and endosteal region. Series I: In week 3 hcallus was 6 mm, in week 6 hcallus was 5 mm and in week
9 hcallus was 3 mm. Series II: hcallus was set to 3 mm for all the healing stages.
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in week 9 for Series I. On the other hand hcallus was constant for all the healing stages in
Series II (hcallus was set to 3 mm). In this way, we intend to account for the shrinking
of the callus size, increasing degree of mineralization and restoring of the intrinsic
material properties which occur during the healing process.

2.2 Determination of Fracture Callus Material Properties Through the Itertive
Effective Medium Approximation (IEMA)

The material properties of the callus were derived from SAM images representing
successive healing stages based on [2]. The acoustic impedance images of longitudinal
sections of osteotomies in the right tibia of female Merino sheep were obtained from a
previous experimental study [10]. Each acoustic impedance map correspond to a specific
healing stage after 3, 6 and 9 weeks of consolidation. From the imaging data, the original
material properties of callus were used as the input to the IEMA procedure. Callus was
considered as a composite medium consisting of a matrix with spherical inclusions to
account for the porous nature of the newly formed osseous tissues. Concerning the
numerical model of week 3, blood was assumed to compose the matrix of the medium
and osseous tissue as the material of the spherical scatterers. The opposite assumption
was made for the numerical models of weeks 6 and 9 as the presence of osseous tissue
is dominant according to the SAM data. Specifically, in order to derive the effective
material properties for each healing stage, the average scatterers’ diameter and volume
concentration were determined as: (a) 350 μm and 44.8 % in week 3, (b) 200 μm and
38.7 % in week 6, and (c) 120 μm and 22.7 % in week 9, respectively [2]. The effective
material properties are presented in Table 1. It should be mentioned that the material
properties of Table 1 were incorporated in the computational models of both Series I
and Series II implying that the two sets of simulations differ only as far as the geometry
of the callus is concerned.

Table 1. Callus effective material properties for Series I & II calculated using IEMA for the
excitation frequency 1 MHz

Healing stage Young’s modulus
(GPa)

λ (GPa) μ (GPa) Poisson’s ratio Density (Kg/m3) -

Week 3 1.9 * 10−6 3.8 645.7 * 10
−9

0.50 1201.0

Week 6 7.5 6.2 2.8 0.35 1867.0
Week 9 13.5 9.0 5.1 0.32 1880.8

The material properties of cortical bone were: Young’s modulus Ebone = 30.3 GPa,
density ρbone = 2016 kg/m3 and Poisson’s ratio νbone = 0.3 [2]. The material properties
of blood were: Young’s modulus Eblood = 3 MPa, density ρblood = 1055 kg/m3 and Pois‐
son’s ratio νblood = 0.49979 [2].
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2.3 Ultrasound Configuration

A 1 MHz-plane wave stimulation was used and its interaction with the numerical models
was studied. A plane wave has a constant frequncy and its wavefronts are infinite parallel
planes normal to the direction of propagation. Even if it is not possible in clinical practice
to have a real plane wave, however, many waves can be considered as plane waves in
a localized region of space.

2.4 Numerical Solution of the Scattering Problem Using the Boundary Element
Method

The Boundary Element Method (BEM) was used for the solution of the 2D wave prop‐
agation problem (ISoBEM, BEM S&S, Greece [11]). The numerical method has been
described in detail in our previous study [6] and this section summarizes the main equa‐
tions used for the calculation of the scattering amplitude.

Specifically, the propagation of sound waves in an unbounded homogeneous
acoustic medium is calculated as:

𝜕
2
i
p(𝐱, t) =

1
c2

𝜕
2p(𝐱, t)

𝜕t2 , (1)

where i = 1,2 for two dimensions, p(x,t) is the acoustic pressure, c is the sound velocity,
∂i denotes differentiation with respect to coordinate xi, x is the position vector and t
denotes the time.

Applying the Fourier transform or considering harmonic dependence in time, Eq. (1)
obtains the form (Helmholtz equation):

𝜕
2
i
P(𝐱,𝜔) + k2 P(𝐱,𝜔) = 0, (2)

where P(x,ω) denotes pressure in the frequency domain, ω is the frequency and
k = ω/c.

For a wave scattering problem involving an incident harmonic plane wave
P(i)(𝐱) = P0e−ik(

⌢

𝐤𝐱) propagating in the ⌢
𝐤

 direction, the pressure field P(x,ω) is calculated

as the sum of the incident and the scattered wave P(s) (x,ω) as:

P(𝐱,𝜔) = P(i)(𝐱,𝜔) + P(s)(𝐱,𝜔), (3)

The scattered field satisfies the far field radiation condition:

P(s) = P0e−ikR

ikR
g(�̂�, �̂�) R → ∞, (4)

where �̂� is unit position vector and g(�̂�, �̂�) the scattering amplitude, which gives a
measure of the scattering energy in the �̂� direction for an incident wave in the ̂𝐤 direction.
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3 Results

This section presents the calculated scattering amplitudes for the two sets of simulations
in the forward and backward direction, as well. The forward direction corresponds to
the negative direction of the y axis and the backward direction to the positive values of
y axis perpendicularly to the cortical cortex (Fig. 2). The results for intact bone are also
included in order to examine whether the scattering amplitude values are restored as
healing progresses and to what extent.

In Fig. 3, a decrease of the scattering amplitude in the forward direction is observed
for Series I in week 3 followed by a gradual increase in weeks 6 and 9. Specifically, the
scattering amplitude values were: (a) 0.21 for week 3, (b) 0.43 for week 6, (c) 0.55 for
week 9 and (d) 0.62 for intact bone.

Fig. 3. Scattering amplitude values in the forward direction for different healing stages and the
first set of simulations.

Similarly, Fig. 4 shows a decrease of the scattering amplitude calculations in the
backward direction for Series II in week 3 and a gradual increase at later healing stages.
The scattering amplitude values were: (a) 0.68 for week 3, (b) 1.04 for week 6, (c) 1.09
for week 9 and (d) 1.73 for intact bone. It can be observed that higher scattering ampli‐
tudes are calculated in the backward direction compared to the results in the forward
direction for the first set of simulations.

Fig. 4. Scattering amplitude values in the backward direction for different healing stages and the
first set of simulations.

Numerical Simulation of Ultrasonic Backscattering 61



Then, in Fig. 5 we observe a decrease of the scattering amplitude in the forward
direction for Series II in week 3 and a gradual increase at later healing stages which in
agreement with the tendency observed in Series I (Fig. 3). The scattering amplitudes
were: (a) 0.23 for week 3, (b) 0.44 for week 6, (c) 0.55 for week 9 and (d) 0.62 for intact
bone. It should be mentioned that the values of intact bone and week 9 coincide with
the corresponding values of Fig. 3 as the geometries are the same and hcallus varies only
in weeks 3, 6 among Series I and Series II.

Fig. 5. Scattering amplitude values in the forward direction for different healing stages and the
second set of simulations.

On the other hand, a different scattering amplitude tendency is presented in Fig. 6.

Fig. 6. Scattering amplitude values in the backward direction for different healing stages and the
second set of simulations.

Specifically, the scattering amplitude decreases during the first two healing stages
and increases only in week 9. The scattering amplitudes were: (a) 1.05 for week 3,
(b) 1.02 for week 6, (c) 1.09 for week 9 and (d) 1.73 for intact bone.

4 Discussion

In this study, we presented 2D computational models of healing long bones aiming to
investigate the evolution of the scattering amplitude during the bone healing process.
The results are derived from calculations in the backward and forward direction as well
corresponding to week 3, week 6, week 9 after the osteotomy. We consider the propa‐
gation of a 1 MHz plane wave and the interaction with osseous and callus tissue is
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examined. The Boundary Element Method was used for the solution of the 2D wave
propagation problem. The convergence of the results was examining and the element
size was set to 0.02 mm.

Comparing to our previous work [6], a more realistic geometry of callus was devel‐
oped as the Gaussian-like curvature was incorporated. Also, the callus shrinkage was
included via the parameter hcallus based on different healing stages from SAM images [9].
In vitro scanning acoustic microscopy is a microelastic imaging technique that provides
large scale (cm range) structural and elastic properties at the tissue level with spatial
resolution down to the μm-range [10]. Additionally, the porous nature of the callus was
considered using the iterative effective medium approximation described in [2]. The
accuracy of IEMA has been highlighted in [2] by comparing the outcome of the proposed
theoretical method with experimental and theoretical findings in cancellous bone
mimicking phantoms. The excitation frequency of 1 MHz is applied for the first time
while a lower frequency (100 kHz) was used in [6]. According to [12], at diagnostic
frequencies (around 500 kHz), the absorption is likely to be a larger component of
attenuation than scattering. Additionally it was shown in [13] that for trabecular bone
at frequencies ranging from 1 to 3.5 kHz, the ultrasound backscatter associated signif‐
icantly with the tissue mechanical and structural parameters. To this end, the use of a
1 MHz-plane wave is considered as a convenient frequency for the study of scattering
during fracture healing. However, further research is needed to examine the sensitivity
and dependency of the selected frequency on the porous nature of the callus considering
the pores’ size at different healing stages.

Concerning the parameters of interest, the acoustic pressure in the backward direc‐
tion was calculated in [6] as a quantitative indicator for the monitoring of fracture
healing, while in this work we investigate the variation of the scattering amplitude in
both the forward and the backward direction, as well. The scattering amplitude reflects
the scattered energy far away from the examined geometry. Higher scattering amplitude
values were calculated in the backward direction compared to the corresponding values
in the forward direction indicating that scattering in most prominent in the backward
direction which is in agreement with [12]. Also, the scattering amplitude was found to
decrease at week 3 and increase in weeks 6, 9 due to the fact that the scattered intensity
from soft tissues is generally considerably smaller than the reflected intensity from hard
tissues. Finally, it was observed that the scattering amplitude in the backward direction
is sensitive to the shrinkage of the callus at later healing stages and changes in structural
features have a significant impact on the calculated parameters as well as the evolution
of material properties. This is a significant advantage compared to traditional FAS
velocity measurements as according to [1] when the first-arriving signal at the receiver
corresponded to a nondispersive lateral wave, its propagation velocity was almost unaf‐
fected by the elastic symmetry and geometry of the bone and also could not characterize
the callus tissue throughout its thickness.

However, further numerical and experimental research is needed to examine the
effectiveness of the methodology and accuracy of the results. Our ongoing study inves‐
tigates ultrasound scattering using both axial and transverse geometries of healing long
bones.
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5 Conclusions

The Boundary Element Method was applied to conduct ultrasonic backscattering simu‐
lations at different healing stages using scanning acoustic microscopy images. It was
shown that the scattering amplitude derived in the forward and backward direction could
potentially provide significant quantitative information for the competent monitoring of
the fracture healing process.
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Abstract. Glioblastoma is the most aggressive tumor originated in
the central nervous system. Modeling its evolution is of great inter-
est for therapy planning and early response to treatment assessment.
Using a continuous multi-scale growth model, which considers the angio-
genic process, oxygen supply and different phenotype expressions, a new
method is proposed for setting the initial values of the celular variables,
based on a spatiotemporal characterization of their distribution in con-
trolled synthetic simulations. The method is applied to a real case show-
ing an improvement on the dynamic stability, compared to the usual
method.

Keywords: Glioblastoma growth · Mathematical model · Phenotype
expression · in silico oncology

1 Introduction

Glioblastoma (GBM), also known as grade IV astrocytoma, is a brain neoplasm
involving glial cells. It represents around 12–15% of all intracranial tumors and
50–60% of all astrocytomas. The survival mean time is 14 months, and the
standar treatment involves surgery, chemotherapy and radiotherapy [1]. They
share a common morphology: presence of brain edema, irregular borders, and a
tumor ring surrounding a necrotic center [2].

Most of the works about tumor growth, deal with gliomas instead of GBM
[3–5]. However, because GBM is a high grade glioma, many aspects and consid-
erations of modeling proposed by these works are still valid when focusing only
in GBM. Also, many authors agree in the important role that phenotype expres-
sions, characterized as different cellular populations, play in the tumor growth
dynamics [3–7]. The ‘go-or-grow’ hypothesis is widely extended and accepted for
modeling. It states that phenotype expressions can be simplified into two groups:
enhanced proliferation when the environment is favorable, and enhanced mobility
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when the local availability of resources is low [8]. To model the local availabil-
ity of resources in the tumor microenvironment, many studies have focused on
modeling the angiogenesis cascade [3–5,9]. Although results are promising, the
objective of these studies usually consists on replicating the branching and mor-
phology of capillaries, rather than studying their effect on the growth dynamics.
Recent articles of GBM growth include simplified versions of angiogenesis models
to better characterize the supply of nutrients and its effect on phenotype change
[6,7,10,11].

However, a common limitation to many of the mentioned works, is the lack of
justification and methodology for the initialization of the variables of the model.
This is due to the difficulty of establishing a relationship between the consid-
ered variables and the accessible clinical information for a patient. Even though
anatomical images allow to segment the extension of the tumor, the informa-
tion provided is typically a binary mask without quantifiable information about
tumor cells or angiogenic variables. This problem becomes much more trou-
blesome when different phenotype expressions, modeled as cellular populations,
cohabit in the same segmented region.

In this work we use a continuous multi-scale GBM growth model, which con-
siders the key physiological aspects of tumor progression: angiogenesis, oxygen
supply and oxygen-mediated phenotype switch. Using this model we propose a
methodology to initialize the values of the celular variables based on the charac-
terization of their spatiotemporal distribution. We consider the hypothesis that,
in a controlled homogeneous environment, after a certain time, the modeled
physiological processes stabilize, and as a result, the spatial distributions of the
different phenotypes across the tumor reach a stationary morphology. Our pro-
posed method uses this knowledge in real cases, to assign an initial value to the
variables for each point of the anatomical segmentation.

2 Materials and Methods

2.1 GBM Growth Model

We propose a set of spatiotemporal, coupled, non-linear partial derivative equa-
tions (PDE), which represent the most relevant features of the GBM’s growth
dynamics:

∂g

∂t
= � · (Dg � g) + ρg g (1 − T ) + (θmg Hmg) m − (θgm Hgm) g (1)

∂m

∂t
= � · (Dm � m) + ρm m (1 − T ) + (θgm Hgm) g

− (θmg Hmg) m − (θmNHmN )m (2)
∂N

∂t
= (θmNHmN )m + (θvNHvN )v (3)

∂o

∂t
= (1 − o)ϕ v − o

(αgg + αmm

Km + o

)
(4)
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∂a

∂t
= � · (Da � a) + ρam m − γ v (5)

∂v

∂t
= � · (χv � a) + ρv v m (1 − N) − (θvNHvN )v (6)

Where g is the density of proliferative cells, m is the density of invasive cells, N
is the necrosis area of the tumor, o is the oxygen concentration, v is the density
of vascularization and a is the concentration of angiogenic factors. T is the total
tumor density, which is T = g + m + N . All variables are normalized by their
maximum possible value, and as a result they all ∈ [0, 1]. A complete list and
explanation of the parameters can be found in Table 1.

The basic assumptions of this model are:

– Cells diffuse through the extracellular matrix (ECM) with brownian move-
ment. We assume that invasive cells m are more able to move than proliferative
cells g, and thus we impose Dm > Dg.

– Cellular proliferation follows a logistic law. The total tumoral density T shall
not grow over the maximum carrying capacity of the tissue Kmax.

– Based on the modeling hypothesis ‘go-or-grow’ we consider two different phe-
notype expressions, separated into different cell populations: proliferative cells
g and invasive cells m. The change from one population to another is mediated
by the local availability of oxygen. We establish a hypoxia threshold O2hyp and
we define the functions Hmg and Hgm as step functions such as:

Hmg =

{
1, if o > O2hyp

0, otherwise
(7)

Hgm = 1 − Hmg (8)

– When hypoxia is too severe, cells die by necrosis. We set the severe hypoxia
threshold to O2death and, in the same way as before, we define the step func-
tions HmN and HvN as:

HmN = HvN =

{
1, if o < O2death

0, otherwise
(9)

– Oxygen consumption by cancer cells can be modeled in Eq. (4) using the
Michaelis-Menten law for enzyme kinetics. This law corresponds to an asymp-
totic curve, implying that no matter how much oxygen available there might
be, there is a maximum rate of consumption achievable.

– Oxygen supply from the capillaries to the ECM depends on the permeability
of the capillary wall, but mainly on the difference of partial pressure between
the vase and the exterior. We can consider the partial pressure of oxygen in
the capillaries [O2]a, in Eq. (4), to be a constant parameter.

– Invasive cells m produce angiogenic factors a, which attract endothelial cells
v by chemotaxis. As a consequence vascular density increases. To avoid intro-
ducing another non-linear term, we assume that the consumption of angio-
genic factors by endothelial cells occurs at a constant rate γ. Chemotaxis is
represented in Eq. (6) as a flux of v following the gradient of a.



68 J. Ortiz-Pla et al.

To solve the equations we use an implicit finite difference scheme based on
Backwards-Time-Centered-Space (BCTS) and an iterative predictor-corrector
algorithm that allow us to initially decouple the whole system into two coupled
subsystems to simplify the treatment of the non-linearities. The BCTS method
has first order convergence in time and second order convergence in space. Is
generally stable, so it is possible to use wide time-steps.

2.2 Parameters of the Model

A common limitation to all tumor growth models is the huge amount of free
parameters needed when coupling different effects. It is not feasible to devise
mathematical methods to optimize and identify the whole set of parameters,
and therefore the usual approach consists on identifying most values from the
existing literature. We consider a division of the parameters of the model into
two groups: patient-independent and patient-dependent. The patient-dependent
are the parameters which deal directly with the tumor cells and the physical
properties of the GBM. That is its invasive capability, given by the diffusivity
parameters, its proliferation rate, and the agility to switch from one pheno-
type to another. These characteristics may vary between patients. The patient-
independent parameters on the other hand, deal with the rest of the physiological
processes modeled, and is reasonable to assume that are quite less variable and
more constant through patients (Table 1).

In order to evaluate the impact of variating the patient-dependent parame-
ters, we conduct a parametric sweep with relative increments and decrements
of 50 % and 20 % over the reference value. The effect of these variations on the
outcome result is analyzed by measuring the temporal evolution of the tumor
mass, the tumor area and the tumor density.

2.3 Reference Synthetic Case

This case consists on a free growth simulation of a tumor spheroid of 0.2 cm
of radius for 20 days in a 15× 15 cm2 grid of homogeneous white matter. The
spatial step was set to Δx = 0.1 cm and the time-step to Δt = 0.05 days. The
initial spheroid is composed only by proliferative cells with g0 = 1/3 · Kmax

representing this way its young age and its growing phase. The initial oxygen
concentration is set constant for the whole grid. Because the brain is an organ
with a high oxygen consumption rate, we set the initial concentration to 60 % of
its maximum partial pressure. The density of vascularization is also initialized
as constant throughout the grid with v0 = 0.09 · Kmax. Because initially there
are no invasive cells m, the initial concentration for a is zero.

2.4 Characterization of the Temporal Evolution of Cell
Distributions

To validate our hypothesis of stabilization of the physiological processes that
leads to stationary distributions of cellular populations, we propose a method-
ology in which we compare the statistical distances between such distributions
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Table 1. List of parameters of the model

Patient-dependent parameters

Parameter Value Description Reference

Dg 3.6 · 10−8 cm2/s Diffusivity of g [10]

Dm Dg/10 Diffusivity of m

ρg 1.8 days−1 Proliferation rate of g

ρm ρg/2 Proliferation rate of m

θgm 1 days−1 Rate of change g to m

θmg 1/3 days−1 Rate of change m to g [12]

Patient-independent parameters

Parameter Value Description Reference

Da 1.0 · 10−5 cm2/s Diffusivity of a

ρam 1.0 · 10−9 mol/s Production of a

ρv ρg/10 Proliferation rate of v

θmN 1.2 days−1 Rate of death of m

θvN θmN/10 Rate of death of v

O2hyp 7 mmHg Hypoxia threshold [13]

O2death 0.7 mmHg Severe hypoxia threshold [14]

[O2]a 60 mmHg Arterial partial pressure of o [15]

αg 1.0 · 10−17 mol/cell · s Rate of consumption of o by g [16]

αm αg/5 Rate of consumption of o by m [16]

γ αg Rate of consumption of a by v

ϕ 0.3 Vascular supply parameter

χ 0.1 Chemotaxis mobility parameter [9]

Kmax 1.0 · 106 cell/cm2 Maximum carrying capacity of cells [17]

at different stages of the evolution of GBM growth, using simulations based on
the reference synthetic case.

We will use the Jensen-Shannon divergence (JS) to compare the similarities
of the distributions of m and g in each time-step against the distribution of the
last time-step. In order to do that we need to convert the curves to statistical
distributions and align them at the point of their maximal cross-correlation, as
we are only interested in comparing their morphology.

2.5 Initialization of g and m Cell Distributions for a Real Case

Our main objective in this study is to be able to initialize the variables of the
model in a real case tumor based on information of magnetic resonance images
(MRI). A correct estimation of the initial values of the variables is of the utmost
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importance for the success of the simulation and, therefore, for increasing the
predictive capability of the model.

In MRI there is not a direct correspondence between the intensity of the
voxel and tumor density. Some studies observed that the detection threshold for
GBM in a T1-weighted image (T1) is much greater than that of a T2-weighted
image [18]. Because active tumor segmentation masks are based mainly on T1,
it is safe to assume that there is tumoral tissue outside the segmented area.

In simple models in which there is only one type of cellular population,
the usual method of initialization is to consider the whole segmented ring to
be saturated at the carrying capacity and smooth it with a gaussian filter. The
same approach is used when two cellular populations are considered. However, to
assume an homogenous distribution of both variables across the segmented ring,
is too simple. Based on our hypothesis of the stabilization of the distributions
over time in controlled homogeneous cases, we propose a methodology for real
cases in which we assign a different density value to each point, depending on
their relative position inside the active tumor. We will compare our methodology
to the usual initialization method previously described.

Considering we have a distribution curve for g and m, we take into account
the threshold of detection of GBM for T1 in order to define the active tumor
region from these distribution curves. This threshold value is not given in the
literature as it is not possible to estimate accurately, but we can consider it
to be greater than 50 % of the maximum density based on the existing graphic
representations in the literature [18]. We then normalize the distributions for the
width of (g + m) that should be detected by the mentioned threshold, resulting
in x = 0 for the inner border and x = 1 for the outer border as can be seen in
Fig. 1, with x being the relative spatial position.

Relative spatial position
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Fig. 1. Example of normalized distribution of g and m by the width given by the T1
detection threshold

In order to apply these distribution functions to a real case we differentiate
between points belonging to the binary mask, points enclosed by the binary mask
and points outside of the binary mask. In the first case we compute the geodesic
distance of each point to the inner and outer boundary. We assume that the sum
of those values is a good estimator of the width. Dividing the distance to the
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inner border by the estimated width, we obtain the relative position inside the
segmentation. For the points enclosed by the mask we only need the geodesic
distance to the inner boundary, and similarly, for the exterior points, only the
distance to the outer boundary is needed. Those values are then used to get the
corresponding density value from the distribution curves g and m.

To test the proposed method we used GBM data from the MICCAI BRATS
Challenge 2013 training set. A detailed explanation of the method and parame-
ters of acquisition of the data set can be found in [19].

3 Results

3.1 Variation of Parameters

Variation of Diffusivity (Dg). When varying the diffusivity of cells, a direct
relationship is observed with the tumor mass and the tumor area: both vari-
ables increase when diffusivity increases, and decrease when diffusivity decreases.
The density increases as the diffusivity decreases, which seems logical, but also
increases when diffusivity increases. This may seem counterintuitive at first, how-
ever it can be explained by the fact that with higher mobility, tumor cells might
be able to access better oxygenated areas and sustain a proliferative profile for
a longer period of time.

Variation of Proliferation Rate (ρ). There is a direct relationship between
the parameter and all the measured variables. It is noticeable that our model is
very sensible to variations in this parameter: the relative variation of the outcome
is greater than the relative variation of the parameter value.

Variation of Phenotype Change Rates (θgm, θmg). The variation of theses
parameters has a minimum impact on the outcome of the simulations. Relative
mass and area variations are consistently under 10 %, and density stays under
1 %.

3.2 Characterization of the Temporal Evolution of Cell
Distributions

In Fig. 2a, we obtain a curve showing that the JS distance between each distri-
bution and the last one, convergences to zero. That means that from a certain
time-step onwards, the distribution of both cellular populations across the ring,
reaches a constant shape. That shape is represented in Fig. 2b.

3.3 Initialization of a Real Case

Having demonstrated that our model reaches stationary distributions for g and
m, we apply our initialization to a real tumor based on the segmentation of its
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active tumor ring (Fig. 3a). The enclosed area inside corresponds to necrosis,
and the peripheral edema is not represented. Figures 3b and c show the initial
distribution of each phenotype according to our method, and Fig. 3d represents
the total active tumor g + m.

Figure 4 compares the evolution of tumor density, number of cells and mean
radius over time between our proposed method and the current one. Although
both need some stabilization time at the beginning (Fig. 4a), it is much shorter
for our methodology and the inertia of growth is better kept. The usual method
needs to go through a transitory phase to reach the steady-state growth, and as
a consequence it lags behind and initially loses the growth inertia.

4 Discussion

In this study we have proposed a new multi-scale GBM growth model which
considers the angiogenic cascade, oxygen supply and its effect on the cellular
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population. The mathematical complexity is a problem, and as a consequence,
a huge number of free parameters are needed. Most of these parameters could
be assumed to be patient-independent which could be defined from the existing
literature, and select just a small group to estimate for each patient. In this
sense, our parametric study serves two purposes: first, we assess how the model
responds to variations of the selected parameters, to identify those with the
highest impact on the outcome. Then, with our sight set on evaluating real
cases, we personalize the estimation of the most relevant parameters to each
patient.

Our parametric sweep concluded that cellular diffusivity and proliferation
rates are the most relevant of the patient-dependent parameters in terms of total
mass, invaded area and density. Those results are consistent with the wave-front
propagation speed of the Fisher-Kolmogorov equation (v = 2

√
ρD). Due to the

different formulation of our equations, our model is more sensible to ρ than to
D, although both play a central role.

We have successfully demonstrated, using the JS divergence, that in an homo-
geneous controlled grid, after enough time-steps, our model yields a constant
distribution of g and m along the tumor ring. Using this knowledge, we devised
a method to successfully initialize a real tumor based on a binary segmentation
and showed a dynamic improvement over the usual method. We consider this to
be a good advance towards a more precise and more informed initialization of the
variables in real cases, as we are able to assign density values to nodes beyond
the binary mask. However, the current limitations of our method are: first the
assumption of stationary growth state at the acquisition time, and second, it
only has physiological sense for tumors with an enclosed necrotic center. There
is need for more validation with longitudinal cases, comparing time points, and
further characterization of the distributions, taking into account inhomogeneities
that may be found on real brains.

5 Conclusion

We have demonstrated that our controlled reference simulation arrives, after
certain time-steps, to a stationary growth state in which the distributions of g
and m remain constant in shape across the tumor ring. Using this knowledge
we have successfully initialized a real tumor from a binary segmentation mask.
Our methodology for initializing the variables of the tumor is both informed and
realistic, as it indicates the presence of cancer cells beyond the binary mask. It
also shows an improvement in the dynamic performance of the model, compared
to the usual method, as it takes less time-steps to stabilize and reach a stationary
growth state.
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PURE: Panoramic Ultrasound Reconstruction
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Abstract. For training sonographers in navigating, acquiring, and inter-
preting ultrasound images, virtual-reality based simulation offers a safe,
flexible, and standardized environment. In data-based training simula-
tions, images from a-priori acquired volumes are displayed to the trainee.
To understand the relationship between organs, it is necessary to allow
for free exploration of the entire anatomy, which is often not possible
with the limited field-of-view (FOV) of a single ultrasound volume. Thus,
large FOV ultrasound volumes are of paramount importance. Combining
several volumes into one larger volume has also potential utility in many
other applications, such as diagnostic and operative guidance. In this
work, we propose a method for combining several ultrasound volumes
with tracked positions into a single large volume by stitching them in
a seamless fashion. For stitching, we determine an optimal cut interface
such that each pixel value comes from a single image; preserving the
inherent speckle texture and preventing any blurring and degradation
from common mean/median binning approaches to combining volumes.
The cut interface is found based on image content using graphical models
optimized by graph-cut. We show that our method produces panoramic
reconstructions with seamless transitions between individual 3D acqui-
sitions. Regarding standard deviation in homogeneous regions we get
1–19% loss of ultrasound texture compared to small 3D volumes while
mean value interpolation gives a loss of 15–68%. The histograms of our
reconstruction match the original histograms of the small 3D volumes
almost perfectly with a χ2-distance of less than 0.01.

1 Introduction

Ultrasound is a safe and low-cost imaging modality. However, acquisition and
interpretation of ultrasound images heavily rely on the experience and skill of the
clinician. For training these skills, volunteers, cadavers, and phantoms all have
associated ethical and realism issues. Virtual-reality based simulated training, on
the other hand, offers a safe, flexible, and repeatable environment for the training
of ultrasound imaging. Compared to ray-tracing based techniques, data-based
ultrasound simulations provides relatively high image realism, where image slices
are interpolated during simulation from a-priori acquired ultrasound volumes
[1,4,8,11], which can also accommodate interactive tissue deformations [7].

c© Springer International Publishing AG 2016
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With 3D transducers, it is relatively easy to acquire volumetric ultrasound
data. However, with the field-of-view (FOV) of a single 3D volume, it is not pos-
sible to freely explore within a large anatomical region (e.g., a third trimester
fetus), which is an essential skill to be learned for diagnosing patients. The
acquired simulation volume needs to ideally span, for example, the entire
abdomen to provide a realistic scene for training. Large-FOV ultrasound vol-
umes are also potentially beneficial for diagnostic applications. For instance,
standardized, large-FOV ultrasound volumes of the breast can now be acquired
using ABUS and ABVS platforms.

Gee et al. [6] proposed to use freehand 2D acquisition to reconstruct a 3D
large-FOV volume. Despite the simplicity of acquisitions, the reconstructions,
however, are often distorted and not up-to training standards due to the chal-
lenges in aligning several degrees of freedom for each frame without any out-of-
plane information. In contrast, image volumes acquired using 3D transducers are
inherently consistent. Accordingly, only continuity between such volumes needs
to be ensured. This latter approach was followed in [3,12,14,16]. These works
mainly investigate registration strategies to fine-tune the alignment of volumes,
while combining the images using simple binning (e.g., averaging) and interpo-
lation methods. Herein we focus on such combination strategy itself, for which
we propose the seamless stitching of ultrasound volumes based on graph-cuts.

For aligning the volumes, we use tracked transducer positions. We first apply
a pressure compensation step to eliminate any tissue deformation resulting from
probe pressure during acquisition. Then, one needs to determine which intensity
values to assign to voxels in the overlapping parts of acquired volumes. Sim-
ple approaches are setting the voxel intensity to mean or median value of any
overlapping voxels (binning) [15]. As one can imaging and we show later, such
simple methods lead to the loss of typical ultrasound speckle texture due to
blurring and emphasizes the overlap boundaries as artifacts in the resulting vol-
umes. One alternative approach could be to divide the overlapping region with a
plane, where on each side the ultrasound content is taken from the corresponding
input volume. Such stitching plane, however, becomes visible as an artifact in
the reconstructed volumes, since the speckle pattern is interrupted and will not
fit from both sides. We hereby propose a non-planar stitching interface (surface)
based on image information. To find the interface that will yield a seamless tran-
sition between the volumes, we devise a graphical model based on image content
from overlapping parts of volumes. We solve this using graph-cuts, resulting in
a 2D cut manifold that divides the overlap into two regions where image content
can be used from corresponding input volumes.

2 Methods

2.1 Position Tracking

For data acquisition we use a mechanically-swept transducer equipped with a
6-DOF electromagnetic tracking sensor, in order to get an initial position and
orientation of the volumes. Sensor-to-image calibration is done with an N-wire
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phantom using the method of [10]. The probe position pi is recorded at the time
of each individual ultrasound volume acquisition i. Following each acquisition of
probe position, another position ri is also recorded after having lifted the probe
normal to body surface until it is barely touching the skin. This latter position is
used in the pressure correction step. Neighboring volumes are collected to have
overlapping image regions and to leave minimal to no gap between them.

2.2 Pressure Correction

For stitching, the volumes have to reside a common coordinate frame and defor-
mation state. For good skin contact during acquisitions, pressure is applied on
the transducer, deforming anatomy differently for each volume. We thus chose
to bring the volumes to a nominal (undeformed) state, before stitching them,
using the model-based pressure correction procedure of [5]. For each image vol-
ume i, first, a box-shaped tetrahedral mesh covering the imaging field-of-view
is generated centered on top at the nominal position ri. A 3D probe model is
then translated from ri to pi to simulate the indentation by compressing the
FEM nodes falling inside this model onto the probe surface using displacement
constraints. The inverse of this deformation field is then applied on the acquired
volume i to “undeform” it to a nominal uncompressed state. We incorporate the
inverse transformation into the scan-conversion process to avoid interpolation
artifacts. The depth of the meshed volume is assumed to be sufficiently large
for stresses caused by the surface compression to be negligible near the bottom
surface, accordingly setting the nodes at the far end of the imaging volume fixed
in all axes. A homogeneous tissue content with linear isotropic material is used.
Note that we here use empirically-set boundary conditions to keep the level of
complexity low. With more sophisticated methods like [13] the results may even
improve. After the pressure correction above, the anatomical structures should
better align, especially near the surface. Finally one needs to define the orienta-
tion of a Cartesian coordinate frame for the final stitched volume from combining
several individual pressure-corrected volumes. We choose the orientation of the
most central volume assuming this volume contains image content of great inter-
est. To pick the most central volume, we first compute the center-of-mass ci for
all v volumes and then their centroid as c =

∑
i

ci
v . The global coordinate frame

is then chosen as the coordinate frame of the volume closest to this centroid,
i.e. i = arg mini |ci − c|. Before any stitching, all undeformed volumes are inter-
polated on a regular grid in this coordinate frame covering the bounding box of
all available image data.

2.3 Image Stitching

Consider the overlapping volume that include image voxels with values from
both of the two input volumes to be stitched as shown in Fig. 1. For the optimal
transition interface (surface) for a seamless transition, we define a graphical
model within the overlapping volume as a graph G(N,E) where each node n ∈ N
represents an overlapping voxel connected by edges e ∈ E to its six neighboring
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Fig. 1. Illustration of a graphical model in 2D showing two volumes. The green and blue
areas represent voxels with image values from one or the other volume. The overlapping
volume after interpolating both volumes on a regular grid in the common coordinate
frame, is marked with green and blue stripes. The boundary voxels, connected to the
source or the sink, are shown as thick lines. (Color figure online)

voxels in 3D. Each edge connecting two neighboring voxels x and y in overlapping
volumes V1 and V2 is assigned a capacity (potential) based on a transition quality
metric similarly to [9]. This edge potential P is based on neighbours image
intensity as well as the image gradient between them as

P (x,y) =
‖V1(x) − V2(x)‖ + ‖V1(y) − V2(y)‖

‖∇e
V1

(x)‖ + ‖∇e
V1

(y)‖ + ‖∇e
V2

(x)‖ + ‖∇e
V2

(y)‖ + ε
, (1)

where ∇e
Vi

(.) is the gradient in image volume Vi along the graph edge e. To
avoid division by zero, we add a small value ε = 10−5 to the denominator. If
the overlapping images match intensity-wise at both nodes x and y, then this
is an ideal place for stitching and it is permitted by the vanishing nominator.
In case images do not match, cuts along image edges are encouraged by the
denominator. Since intensity changes are already anticipated at natural edges,
even if mean intensities on either side do not match, such seams are not likely to
be visible. A graph is constructed only for the overlapping voxels, with source s
or sink t of the graph connected to all boundary voxels marked as thick blue and
green lines in Fig. 1. Note that since this is an undirected graph, i.e. P (x,y) =
P (y,x) for all neighboring voxels x and y, the transition interface (solution)
is independent of the order of input volumes (source and sink). Finally, the
minimum cost cut of this graph is found using [2], giving a partition of G such
that min

∑
x∈V1,y∈V2|e=(x,y)∈E P (x,y) with s ∈ V1 and t ∈ V2.

The solution labels for each voxel indicate whether its intensity is to be
assigned from volume V1 or volume V2. We noticed that even with optimal cuts,
there can still be artifacts along stitched interfaces where no suitable seams
exists, e.g. due to a quite small overlap and view-dependent artifacts like shad-
ows. We reduce these artifacts by blending the volumes across the seam using
a sigmoid function with a small kernel. For stitching more than two volumes
we start with the volume closest to the center-of-mass of all volumes and then
iteratively merge in the volumes in order of descending proximity.
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Fig. 2. A 2D stitching example showing the uterus (a) without and (c) with a speculum,
using a PURE mask (b). The bottom row shows 3 images with the blue areas from
(a) and the green areas from (c) and the middle yellow area been reconstructed using
(d) mean value, (e) merging “bluntly” at a cutting line in the middle, and (f) using
PURE. The cutting curve from graph-cut is depicted in (g). (Color figure online)

3 Results and Discussion

We first demonstrate a typical cut resulting from our method, Panoramic Ultra-
sound REconstruction (PURE), on a 2D sample in-vivo data in Fig. 2. This
shows two B-mode images of the uterus, once prior to speculum placement and
once afterward. These significantly deformed states present a challenging sce-
nario to showcase our algorithm. This task also demonstrates a potential use of
stitching for the seamless modification of ultrasound B-mode content, such as for
artificially introducing tools, anatomical alterations, and even pathology. Images
are considered spatially fully overlapping, where the blue (left) mask is taken
from the image without speculum and the green right mask from the image with
speculum. The middle yellow part is then reconstructed, using its borders with
blue and green areas as the sink and the source. In comparison to results using
mean value reconstruction and a simple transition exactly along the center line,
PURE is seen in Fig. 2(f) to present a realistic image free from reconstruction
artifacts, despite the relatively poor overlap of anatomy. In order to present the
almost-invisible PURE stitching interface, we also depict the seam in Fig. 2(g).

For evaluation we applied our reconstruction technique on both the CIRS
fetal ultrasound biometrics phantom (model 068) seen in Fig. 3 and the CIRS
female pelvic ultrasound training phantom (model 404A) using an Ultrasonix
SonixTouch machine with a convex 4D probe (4DC7-3/40). For both scans we
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Fig. 3. Fetal ultrasound phantom, 3D ultrasound volumes showing only parts of the
phantom, and 3D view of PURE covering the entire fetus.

recorded the positions tracked electromagnetically using an Ascension trakSTAR
system.

For comparing reconstructions, Figs. 4(a) and (b) present PURE as well as
alternative methods using mean and median value binning. With the latter meth-
ods, smoothing and deterioration of typical ultrasound speckle texture is appar-
ent, especially in the blown-up insets of the fetus reconstructions. In addition
to preserving speckle texture, view-dependent artifacts like shadows and reflec-
tions are also lost in the mean and median reconstructions, as marked by the
arrows in the sagittal pelvic images. PURE is seen to accurately preserve these
fundamental ultrasound artifacts, essential also for the training of image inter-
pretation. For the pelvic phantom the boundaries of the small volumes are very
obvious in mean and median result as pointed to by arrows in the top left image
of Fig. 4(b). In the PURE result the single volumes are not apparent at all which
means a really seamless transition.

To demonstrate the need for pressure correction, the right-most column of
Figs. 4(a) and (b) show the stitching results without pressure correction. Elastic-
ity parameters for pressure correction were set to a Young’s modulus of 10 KPa
and a Poisson’s ratio of 0.45 in line with the phantom material composition.
It is clearly visible that the surface of the non-corrected case is deteriorated
by several probe footprints as pointed out by arrows in the top right image of
Fig. 4(b). This hinders the alignment of the skin of a virtual or a physical model
when integrating the stitched volume into a image-based ultrasound simulator.
Note that the top part of the sagittal slice of the pelvic phantom shows a failure
case marked by a red circle. Since bladder is a highly deformable organ, the
corresponding volume is severely distorted and the pressure correction could not
align the volumes sufficiently.

The phantoms contain regions with homogeneous echogenecity, which we
used to assess the speckle appearance of the reconstructed volumes. We manu-
ally selected largest-possible 3D bounding boxes within homogeneous regions of
the reconstructed phantom volumes, and applied intensity statistics to compare
reconstructed volumes to original acquired images. This led to 7.6 K, 14.5 K and
41.3 K voxels, respectively, inside the abdomen of the fetus model, and inside and
outside the uterus of the pelvic model. For each bounding box we characterize
the texture for the original volumes Vi by computing the standard deviation σi.
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(a) fetal phantom

(b) pelvic phantom

Fig. 4. Comparison of large FOV reconstructions. Both phantom measurements has
6 volumes as input. The insets in the fetus phantom show the fine speckle pattern
preserved by our method PURE. (a) fetal phantom. (b) pelvic phantom. (Color figure
online)

We compared the standard deviation σ within the bounding box of the recon-
structed volumes to the groundtruth standard deviation, set as the mean value
of the standard deviations in the small volumes σGT =

∑
i

σi

v . Normalizing σ
to the ground-truth baseline, it is seen that the σ-error of the median approach
is 2.6 to 12 times poorer than that of PURE (which is merely 1 % difference to
our ground truth in fetus phantom). The large errors for the outside uterus part
of pelvis phantom can be attributed to the more significant directional shad-
owing and enhancement artifacts in those regions. Additionally, the histograms
of these homogeneous regions are compared by computing the χ2 distance. The
histograms of PURE match the histogram of the original images up to 100 %
(χ2 distance equal to zero) if all data is taken from one volume.
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Table 1. Comparison of changes in ultrasound texture by combining several volumes

σ (σGT − σ)/σGT χ2

GT Mean Med PURE Mean Med PURE Mean Med PURE

Fetus, corpus 13.3 11.3 11.7 13.2 15% 12% 1% 0.12 0.11 0.01

Pelvis, in-utero 7.5 5.4 6.2 7.2 28% 17% 4% 0.14 0.04 0.00

Pelvis, ex-utero 12.7 4.1 6.3 10.3 68% 50% 19% 0.29 0.13 0.00

For few image parts with poor overlap there may exist no obvious seamless
interface, e.g. the cut pointed by the arrow in Fig. 5. Nevertheless, the proposed
sigmoidal blending (with a kernel of 3 voxels) is seen to successfully remove such
“sharp” cuts locally. Note that, in contrast to mean-binning everywhere, such a
small sigmoid kernel acting locally affects only a tiny part of the entire volume,
preserving the overall quality of the volume. As can be seen from the results in
Figs. 2, 4(a) and (b), the effect of such local blending is indiscernible.

Fig. 5. Seamless stitching is improved by postprocessing by sigmoidal blending.

Finally we acquired in-vivo data of a volunteer’s abdomen in the gynecologi-
cal setting using a GE Voluson E8 machine with a convex 4D probe (RAB4-8-D).
Positions were tracked electromagnetically using an Ascension trakSTAR system
as for the phantom data. Figure 6 shows the promising results of stitching six
volumes into a large FOV reconstruction. Organs and structures match very
well and the seams are invisible compared to mean or median value interpola-
tion while the texture is preserved. As for the pelvic phantom, the boundaries
of the small volumes are again visible in mean and median results whereas they
are not distinguishable in the PURE result.

Stitching two volumes, each of size 240×210×250, needs 4 min with current
implementation on an Intel i7-4770 K processor, where roughly 98 % of com-
putation time is spent on the min-cut solution. In comparison, combining the
volumes by mean-binning needs 4 s.
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Fig. 6. Comparison of volumetric large FOV reconstructions of in-vivo data. The mea-
surement has 6 volumes as input.

4 Conclusions

We have introduced a method for generating panoramic ultrasound volumes
beneficial for training simulation and diagnostic purposes. Our method, called
PURE, is based on stitching 3D volumes at optimal cut interfaces determined
by graph-cut from image content. In contrast to conventional mean and median
value reconstruction, PURE prevents the deterioration of typical ultrasound
speckle texture in the overlapping regions. PURE necessitates more computa-
tion time compared to algebraic approaches such as median and mean, which
is acceptable for simulation purposes where the large-FOV reconstruction is
required offline only as a preprocessing step. A further application of our algo-
rithm in simulation framework is to edit image content as demonstrated by the
2D stitching example in Fig. 2, where image parts are shown to be replaced by
content from another image. This can simplify the generation of several patho-
logical cases, which is a major bottle-neck of data-based ultrasound simulation.
Similarly to algebraic reconstruction, PURE results may also suffer from stitch-
ing artifacts when organs are not aligned between given images, e.g. due to
tracking errors and deformation. An image registration stage (e.g. [3,12,14,16])
prior to stitching will be investigated next for improving reconstruction results.
This should improve the seamless transition especially in case of inaccurate
tracking data. Note that a major motivation for stitching is simulated training,
which does not require a fully unsupervised image reconstruction, but a clini-
cian can easily check the quality of reconstructions. For diagnostic application the
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transition surface along with a confidence value, e.g. cutting cost from graph-cut,
can be displayed to the clinician to prevent misleading diagnosis.
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Abstract. White matter hyperintensities (WMH) seen on FLAIR
images are established as a key indicator of Vascular Dementia (VD) and
other pathologies. We propose a novel modality transformation technique
to generate a subject-specific pathology-free synthetic FLAIR image from
a T1 -weighted image. WMH are then accurately segmented by compar-
ing this synthesized FLAIR image to the actually acquired FLAIR image.
We term this method Pseudo-Healthy Image Synthesis (PHI-Syn). The
method is evaluated on data from 42 stroke patients where we compare its
performance to two commonly used methods from the Lesion Segmen-
tation Toolbox. We show that the proposed method achieves superior
performance for a number of metrics. Finally, we show that the features
extracted from the WMH segmentations can be used to predict a Fazekas
lesion score that supports the identification of VD in a dataset of 468
dementia patients. In this application the automatically calculated fea-
tures perform comparably to clinically derived Fazekas scores.

1 Introduction

White matter hyperintensities (WMH) are commonly found in brain fluid atten-
uated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Their
aetiology is diverse but they are known to be associated with an increased risk
of stroke, dementia and death [1]. WMH are usually clearly visible as hyperin-
tense regions in FLAIR images, and potentially appear as hypointense regions
in T1 -weighted images (Fig. 1).
c© Springer International Publishing AG 2016
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Fig. 1. An example pair of T1 -weighted (left) and FLAIR (right) images. The FLAIR
image exhibits clear WMH. The corresponding locations in the T1 -weighted image
show little change, apart from the circled region which is slightly hypointense.

The accurate annotation of WMH from FLAIR images is a laborious task
that requires a high level of expertise and is subject to both inter- and intra-
rater variability. To enable effective image analysis in large scale studies or the
reproducible quantification of lesion load in the clinic without expert knowledge
(e.g. in the context of a comprehensive decision support system) an accurate and
fully automatic method for lesion segmentation is desirable.

In this paper, we present a novel method of segmenting WMH from FLAIR
images using modality transformation. Modality transformation is the task of
generating a synthetic image with the appearance characteristics of a specific
imaging modality (or protocol) by using information from images acquired from
one or more other modalities. The accurate generation of these images can be
critical in the context of, for example, non-linear multi-modality registration [2]
where the problem can be reduced to a mono-modality problem when one modal-
ity is synthesised from the other. Additionally, many segmentation or classifica-
tion algorithms require an input image from a certain modality. The ability to
synthesise these modalities from another modality could substantially expand
the applicability of these algorithms [3].

This paper investigates the principle of synthesising an image with healthy
appearance in order to identify pathology in a real scan. Similar to previous
work [4,5], we aim to produce a “pseudo-healthy” version of a particular modality
without any signs of pathology. The synthetic image is then compared with the
potentially pathological real image and the differences are identified.

Existing modality transformation algorithms can be divided into model and
data driven approaches. In the former, intrinsic physical properties of the tissue
being imaged are estimated from the available modalities [6]. Once known, a
new modality can be synthesised by simulating the image acquisition protocol.
However, accurate estimation of these tissue properties requires particular acqui-
sition protocols, which are not routinely carried out. The more commonly used
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algorithms therefore rely on a data driven approach where the synthesised image
is derived directly from the intensities of the source image(s). Most state of the
art algorithms employ a patch based, dictionary learning approach [2,3,5]. A
dictionary of source-target patch pairs is stored with synthesis being performed
by using the target patch with the corresponding source patch which most
closely matches a given patch in source image. Approaches using a restricted
nearest neighbour search [5], compressed sensing [3] and sparse coding [2] are
among those proposed for searching and combining patches from the dictionary.
Recently, deep learning approaches have also received attention [7] with good
results. Another data driven approach, to which our proposed method is more
closely related, uses local joint histograms to find the target image intensity with
which a given source image intensity most commonly co-occurs [8].

The problem when employing these existing methods for the synthesis of
pseudo-healthy images is that WMH are often synthesised. This is because the
relationship between WMH intensities in T1 -weighted and FLAIR images can
be similar to that of gray matter (GM) [9]. Existing methods will learn this
WMH-GM similarity and synthesise WMH as hyperintense. Whilst this ability
has been exploited for better T1 -weighted image segmentations [10], it is not
desirable for the production of pseudo-healthy images.

In this paper we present a novel modality transformation method, which can
be used effectively to generate pseudo-healthy images. The proposed approach
exploits only information from small neighbourhoods around a given voxel to
predict a synthetic intensity, and will therefore not be influenced by the WMH-
GM relationship described above, which would be learnt in other regions of
the brain. We employ this method to address the problem of WMH segmenta-
tion with results that compare favourably with two established reference meth-
ods from the Lesion Segmentation Toolbox (LST). Finally, we demonstrate the
clinical potential of the proposed automatic lesion segmentation method when
applied to the identification of VD in a clinical dataset, and show performance
comparable to identification using manually assessed Fazeka scores, a clinical
measure of WMH.

2 Method

In the following, we describe the two essential components of the proposed PHI-
Syn method. A pseudo-healthy FLAIR image is first synthesised from a patient’s
T1 -weighted image. The estimated FLAIR image is then compared to the real
FLAIR image of the patient and abnormally hyperintense regions are identified.

2.1 Image Synthesis

To synthesise a subject’s FLAIR image that does not exhibit WMH (if present
in the T1 weighted image), we propose a method that relies on voxel-wise kernel
regression to learn local relationships between intensities in T1 -weighted and
FLAIR image pairs of healthy subjects. The regression model is then used to
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synthesise pseudo-healthy FLAIR images from T1 -weighted images. There are
three factors that enable the synthesis of a pseudo-healthy image: (a) the pathol-
ogy is in general not prominent in T1 -weighted images; (b) the model is trained
on image pairs of healthy subjects without WMH and does therefore not learn
how to synthesise pathology; (c) the method uses only information from small
local regions from the training data to synthesise each voxel, meaning intensity
relationships learnt from other regions of the brain will not be applied.

Preprocessing. As voxel directly between scans it is important that all images
of a respective modality are on the same intensity scale. We employ the following
steps to ensure that the distributions of intensities within tissue classes are the
same across all images of that modality.

Each T1 -weighted image is bias field corrected [11], skull stripped [12] and
anatomically segmented [13]. GM and white matter (WM) masks are generated
from these segmentations and a transformation from native to MNI space using
free form deformations (FFD) [14] is computed.

Intensity normalisation is a key step that is particularly challenging in the
presence of pathology, as it needs to be ensured that varying levels of pathology
have no impact on intensity mappings. To do this we use the method employed
in [15] using the previously computed WM and GM masks. This approach estab-
lishes a robust fixed point as the mean of the average intensities of the WM and
GM which is then set to a common value. This method has the advantage of
only using information from regions in which we are highly confident the tissue
type is either healthy WM or GM and is therefore unaffected by WMH.

FLAIR images are also bias corrected and masked using the brain mask
derived from the T1 -weighted image, rigidly transformed into the native space
of the FLAIR image. The GM and WM masks are also transformed into FLAIR
space and used for intensity normalisation.

Synthesis Training. The training set consists of pairs of T1 -weighted and
FLAIR images, Ttrain and Ftrain respectively. All images are aligned to MNI
space and re-sampled on a 1 mm3 voxel lattice using linear interpolation. The
T1 -weighted image intensities are rescaled to the range [0; m], where m is the
number of points the model will be evaluated at. The value of m will ultimately
control the size and training time of the model, with a larger value leading to
more accurate results. A kernel regression model with bandwidth h is generated
at each voxel x relating the T1 -weighted and FLAIR intensities in an s-by-s-
by-s patch around x. The result of evaluating the model at each k in the range
[1,m] is stored in vector Mx (1) using the regression model outlined below.

Mx(k) = R(nT
x , nF

x , k), nT
x = N(x;Ttrain, s), nF

x = N(x;Ftrain, s), (1)

R(a,b, k) =
∑

i(K((k − ai)/h)bi)∑
i K((k − ai)/h)

, K(p) =
1√
2π

e− 1
2p

2
, (2)

where N(x;T, s) and N(x;F, s) return a vector containing the voxels in a patch
around voxel x of size s-by-s-by-s from each image in T and F respectively.
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Synthesis Testing. To estimate the synthetic FLAIR image, the intensities of
the T1 -weighted image, T, are rescaled to be between 0 and m and transformed
into the native space of the FLAIR image along with mapping M. The synthetic
image S at voxel x is then calculated,

Sx = Mx′′(�Tx′�),x′ = LFT(x), x′′ = LFM(x), L : R3 → R
3, (3)

where LFT denotes the rigid transformation between FLAIR and T1 -weighted
image spaces and LFM the FFD transformation between FLAIR and MNI spaces.

2.2 Lesion Segmentation

We identify lesions by detecting regions which are hyperintense in the FLAIR
image relative to the synthetic image. A consequence of using kernel regression is
a tendency for synthesised image intensities to be closer to the mean intensity in
the respective regions, resulting in reduced image contrast. The method used for
intensity normalisation determines two values corresponding to the mean inten-
sities of healthy GM and WM. To correct tissue contrast we scale the synthetic
image such that these two values match those of the acquired FLAIR images.

The confidence Σ in the intensity-normalised synthesised images is computed
by calculating the standard deviation of the errors achieved on the training
images in MNI space. This yields a spatial variance map, which is used to assign
a relative confidence to the synthesised intensities at each voxel. A z-score cor-
responding to the likelihood of the intensity of a voxel x falling outside of what
is expected is then computed, ZS

x = (Fx − Sx)/Σx′ where x′ = LFM(x), which
is turned into a p-value, PS

x. Another set of p-values PF are computed to reflect
areas of hyperintensity in the FLAIR image. An individual image based z-score
will be affected by the volume of hyperintense regions in the image. Therefore,
the mean and standard deviation required to compute PF are estimated from
intensity histograms of the normalised training images.

We combine the previously computed anatomical segmentations to create a
binary mask B to constrain the search for WMH to areas of the brain where
they are expected to be present. This mask includes the WM and a number
of cortical and deep GM structures which are close to areas where WMH is
commonly found. The final WMH likelihood L at voxel x was thus computed by
the multiplication of the three likelihood maps at x, Lx = PF

xPS
xBx.

There are two main types of WMH. Small punctate lesions such as those
visible in Fig. 2, and larger, lower intensity regions, such as those seen in Fig. 3.
To account for both types, a low threshold tl is first used to binarize L and only
large (>200 mm3) areas are kept. A higher threshold th is then used and the
initial segmentation taken to be the union of these two segmentations.

A refinement step is then carried out in which segmentations are repeat-
edly grown into neighbouring voxels with an intensity which lies above the low-
est intensity in the original segmentation. A 5 mm limit is imposed to prevent
the growth of incorrect “lesions”. Finally, small (<20 mm3) segmentations are
removed as these are often visually indistinguishable from noise.
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Fig. 2. The intermediate steps for segmentation. Left to right: FLAIR image, synthetic
image, likelihood map PS, likelihood map PF, likelihood map L. Note how the brightest
areas in the L correspond to the WMH in the FLAIR image.

3 Experiments and Results

Experiments were carried out to evaluate PHI-Syn against two widely used seg-
mentation methods, and to investigate its applicability in a clinical setting.

3.1 Data

In the first experiment, we used a stroke dataset of 42 patients (mean age
64.9 years (SD 10)) from a study of mild stroke [16], obtained as described
in [17]. Images were acquired with an in plane resolution of 0.94-by-0.94 mm
and slice thickness 4 mm. Reference WMH segmentations were obtained semi-
automatically. In a second experiment we used a dementia dataset of 468 subjects
from VUMC, Amsterdam, which were provided for the PredictND study1. This
clinical dataset contains MRI scans of varying resolutions and field strengths
along with clinical scores for patients with a diagnosis of either subjective mem-
ory complaints (110), Alzheimer’s Disease (204), Frontotemporal Dementia (88),
Lewy Body Dementia (47) and Vascular Dementia (19). Clinical Fazekas scores
were visually assessed. Of the 468 subjects, 173 had a Fazekas score of 0, 205
(score 1), 61 (2) and 29 (3). Images were acquired at 3T (295), 1.5T (91) and
1T (82).

For both experiments, the synthesis model was trained on 31 subjects selected
from the dementia dataset as the visually least pathological. However, a conse-
quence of training on subjects from an elderly dataset is that most subjects have
a small degree of periventricular WMH due to their age. These were, undesir-
ably, reproduced in the synthetic images. An additional post-processing step on
the synthetic images was added to address this: Voxels located up to 15 mm
from the ventricular wall were capped at a maximum intensity value equal to
the average between the mean FLAIR intensities of GM and WM. A special
case must then be made for the region around posterior prolongations of the
ventricles where non-pathological low level hyperintense streaks are often seen.
A squaring of the probabilities in these regions was sufficient to ensure that true
lesions would still be segmented, whilst the probabilities corresponding to low

1 http://www.predictnd.eu/.

http://www.predictnd.eu/
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level hyperintensities would be suppressed. This additional step would not be
required if a set of pathology free subjects were available for a particular appli-
cation. Free parameters for synthesis were chosen empirically for all experiments
as: m = 100, s = 7, h = 5 as they balanced model size and computational speed
with visually appealing synthesised images.

3.2 Evaluation Against Reference Segmentations

In this experiment we employ the stroke dataset to compare the proposed method
against two standard methods from the Lesion Segmentation Toolbox v.2.0.122 -
the Lesion Growth Algorithm (LST-LGA) [18] and the Lesion Prediction Algo-
rithm (LST-LPA). The former requires a T1 -weighted image as well as a FLAIR
image. White matter, grey matter and CSF segmentations are obtained from the
T1 -weighted image and used to create a lesion belief map from the FLAIR image.
This is first thresholded at a value κ and the resulting segmentations are grown
along hyperintense voxels. LST-LPA is a supervised method for which a logistic
regression model was trained on 53 Multiple Sclerosis patients with severe white
matter lesion loads. Both methods output a lesion probability map, which the
documentation suggests should be thresholded at 0.5. For LST-LGA, a κ of 0.3 is
the default but it is strongly suggested that this is optimised. For each method,
we provide results for both the suggested parameters and parameters selected
through a grid search which maximised Dice Similarity Coefficient (DSC).
These were found to be: LST-LGA*, κ = 0.07, threshold = 0.10. LST-LPA*,
threshold = 0.10. PHI-Syn*, tl = 0.76, th = 0.85.

Segmentations were compared across a set of quantitative measures used
previously in the ISLES 2015 segmentation challenge3: Average Symmetric Sur-
face Distance (ASSD, mm), DSC, Hausdorff Distance (HD, mm), Precision
and Recall. A further metric, Load Correlation (LC) defined as the correla-
tion between automatic and reference segmentation volumes over all subjects
was also used with results shown in Table 1.

Table 1. Comparisons of segmentation results. * indicates results for optimised para-
meters. 1,2,3,4,5 indicate improvement on LST-LGA, LST-LPA, LST-LGA*, LST-LPA*
and PHI-Syn* respectively using a Wilcoxon signed rank test at a 5% significance level.

Method ASSD DSC HD Precision Recall LC

LST-LGA 7.84 0.294 50.4 0.6193 0.225 0.790

LST-LPA 3.681,3 0.4771,3 37.31 0.6831,3,4,5 0.4171 0.779

LST-LGA* 5.891 0.3671 40.31 0.467 0.3591 0.760

LST-LPA* 2.581,2,3 0.5991,2,3 33.21,2,3 0.5933 0.7131,2,3 0.711

PHI-Syn* 2.391,2,3 0.6031,2,3 30.11,2,3,4 0.6103 0.6691,2,3 0.849

2 http://www.statistical-modelling.de/lst.
3 http://www.isles-challenge.org.

http://www.statistical-modelling.de/lst
http://www.isles-challenge.org
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3.3 Relation to Clinical Scores

The Fazekas score is a commonly used four point clinical score derived from
FLAIR images relating to the presence and degree of WMH [19]. It has particular
use in the diagnosis of VD as it relates to the most significant pathological
changes in the patient’s brain.

In this experiment we predicted synthetic Fazekas scores from the segmen-
tations given by PHI-Syn and compared them to clinical Fazekas scores. The
experiment was carried out using 1000 runs of 10-fold cross validation. Three
features were extracted from the PHI-Syn segmentations: volume of lesions as a
percentage of WM, volume of lesions greater than 15 mm from the ventricles as
a percentage of WM, and volume of the largest lesion. At each fold, the training
set was balanced by oversampling under-represented Fazekas scores classes. A
set of support vector machine (SVM) classifiers using an error-correcting output
code schema for multi-class classification (classifier A) were trained on the train-
ing set to predict a synthetic Fazekas score. A further binary SVM (classifier B)
was trained on data balanced with respect to disease to predict a diagnosis of
VD or not-VD from the clinical Fazekas scores. Synthetic Fazekas scores were
then calculated for subjects in the test set using classifier A and diagnoses were
predicted from both the true and synthetic Fazekas scores using classifier B.

The balanced accuracy for predicting a synthetic Fazekas score using classi-
fier A was 61.5 %, with only 4 %/0.25 % being predicted a score of more than
1/2 points from their respective true clinical score. The balanced accuracy for
predicting a diagnosis was 83.3 % from the true Fazekas scores and 83.9 % from
the synthetic Fazekas scores with standard deviations of 1.2 % and 3.3 % respec-
tively.

4 Discussion

The conducted experiments show that PHI-Syn achieves the highest or statisti-
cally joint highest scores in ASSD, DSC, HD, Recall and LC. Figure 3 shows three
sample segmentations. Visual examination confirms superior ability of PHI-Syn,
as compared to LST-LPA*, to locate smaller lesions distant from the ventricles
(A and C). A lower HD score supports this observation. Instances in which PHI-
Syn tends to be outperformed by LST-LPA* include cases of large areas of low
intensity (B). Objective measurements and visual inspection both suggest PHI-
Syn performs well in the majority of situations. A limitation of this experiment
is that only WMH are included in the reference segmentation, and other hyper-
intense appearing pathologies such as stroke lesions, are not. All methods tested
will identify all hyperintensities and as such the results of these experiments can
only be used to compare methods relative to each other, and should not be used
as an indicator of expected performance on another dataset.

The balanced accuracy of predicted diagnoses from the synthetic Fazekas
scores is comparable to those predicted when using the clinically assessed Fazekas
scores, however the data is highly imbalanced and as such the balanced accuracy
can be unstable and susceptible to noise. Future work involves using more VD
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Fig. 3. A sample of two FLAIR images (bottom) and segmentations (top). Reference
(blue), LST-LPA* (green) and PHI-Syn (red) segmentations are shown. Colours are
additively mixed where segmentations overlap. e.g. purple indicates overlap between
PHI-Syn and the reference, cyan: LST-LPA* and reference, yellow: LST-LPA* and
PHI-Syn, white: all methods. Arrows draw attention to regions of particular interest.
(Color figure online)

cases to further investigate using synthetic over true Fazekas scores. However,
these initial results suggest that a synthesised score is a valuable marker in cases
where a clinical Fazekas score is not available.

We have shown that effective synthesis of pseudo-healthy images can be car-
ried out using voxel-wise kernel regression, and that these images can be used to
reliably identify WMH. We have also shown that the resulting segmentations can
predict a Fazekas score which discriminates between vascular and non-vascular
cases of dementia comparably to labour-intensive clinical scores.
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Abstract. This paper proposes an approach to improve atlas-to-image
registration accuracy with large pathologies. Instead of directly register-
ing an atlas to a pathological image, the method learns a mapping from
the pathological image to a quasi-normal image, for which more accurate
registration is possible. Specifically, the method uses a deep variational
convolutional encoder-decoder network to learn the mapping. Further-
more, the method estimates local mapping uncertainty through network
inference statistics and uses those estimates to down-weight the image
registration similarity measure in areas of high uncertainty. The perfor-
mance of the method is quantified using synthetic brain tumor images
and images from the brain tumor segmentation challenge (BRATS 2015).

1 Introduction

Atlas-to-image registration provides spatial information to map anatomical loca-
tions from an atlas to a patient. This procedure is crucial for atlas-based seg-
mentation which is used in lesion detection and treatment planning for trau-
matic brain injury, tumor and stroke cases [7]. However, large brain pathologies
often produce appearance changes which may result in large misregistrations,
if appearance-mismatch is falsely accounted for by image deformation. This is
especially acute for deformable image registration methods, which are needed to
capture subtle deformations and, for example, mass effects of tumors.

Several approaches have been proposed for atlas-to-image registration1 with
large pathologies. The most straight-forward method is cost function masking,
where the lesion area is not considered during image similarity computation [1].
However, this method could be problematic if the lesion area contains important
brain structure information. Other methods include joint segmentation and regis-
tration that mitigates missing correspondences [3], explicit tumor growth mod-
eling [5], geometric metamorphosis that separates the deformation of healthy

1 Such approaches, as well as our proposed approach, are of course also applicable
to general image-to-image registration. We use atlas-to-image registration as our
motivating application here.

c© Springer International Publishing AG 2016
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brain areas from lesion changes [14], and registration methods accounting for
deformation and intensity changes [21].

While effective, these methods require either explicit lesion segmentation,
knowledge of lesion location, or the modeling of tumor growth. Two alternatives
exist: (1) using a robust cost-function [17] or a mutual saliency map [15] to mit-
igate the effect of outliers or, instead, (2) learning desired mappings between
image types from large-scale image databases. We follow this second approach.
A learned mapping then allows synthesizing one image type from another. Image
synthesis has been extensively explored to synthesize MR imaging sequences [8],
to facilitate multi-modality registration [2,19] and to segment lesions [18]. Our
goal is to synthesize quasi-normal images from images with lesions to simplify
atlas-to-lesion-image registration. Using image synthesis rather than a robust
cost-function or a mutual saliency map allows reconstructing structural informa-
tion to guide registration even in highly pathological areas.

Liu et al. [10] proposed a low-rank-plus-sparse (LRS) technique to synthe-
size quasi-normal brain images from pathological images and to simultaneously
estimate a quasi-normal atlas. This approach decomposes images into normal
(low-rank) and lesion (sparse) parts. The low-rank part then constitutes the
synthesized quasi-normal images, effectively removing lesion effects. By learning
from data, no prior lesion information is required. However, the LRS decomposi-
tion itself requires good image alignment, hence decomposition and registration
have to be interleaved to obtain good results.

Contributions. Our contributions to improve atlas-to-image registration can
be summarized as follows: First, similar to [10], we propose a method to directly
map a pathology image to a synthesized quasi-normal image to simplify the
registration problem. No registration is needed in this process. Second, we use
a deep variational encoder-decoder network to learn this mapping and train it
using stochastic gradient variational Bayes [9]. Third, since the normal appear-
ance of pathological tissue is unknown per se, we propose loss-function mask-
ing and pathology-like “structured noise” to train our model. These strategies
ignore mappings between image regions without known correspondence, and
artificially create areas with known correspondence which can be used for train-
ing, respectively. Fourth, based on the variational formulation, we estimate the
reconstruction uncertainty of the predicted quasi-normal image and use it to
adjust/improve the image similarity measure so that it focuses more on match-
ing areas of low uncertainty. Fifth, we validate our approach on synthetic tumor2

images and data from the BRATS 2015 challenge. Our framework requires no
prior knowledge of lesion location (at test time; lesion segmentations are required
during training only) and provides comparable or, in many cases, better regis-
tration accuracy than the LRS method and cost function masking.

Organization. Section 2 discusses variational Bayes for autoencoders, as well as
its denoising criterion. Section 3 introduces our methods to remove brain lesions

2 In this paper we use brain tumors as example pathologies; however, our approach is
applicable to other pathologies.
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from images and to compute uncertainty estimates for the prediction of quasi-
normal images. Section 4 presents experimental results (for 2D synthetic and real
data), discusses extensions to 3D, and possible improvements.

2 Denoising Variational Autoencoding

The problem of mapping a pathology image to a quasi-normal image is similar to
the objective of a denoising autoencoder, which aims to transform a noisy image
into a noise-free image. Next, we introduce variational inference for autoencoders,
followed by an explanation of inference for a denoising autoencoder.

Given a clean brain image x and the latent variable z, we want to find
the posterior distribution p(z|x). Since p(z|x) is intractable, we approximate
it with a tractable distribution qφ(z|x), where φ is the parameter of the varia-
tional approximation. For a variational autoencoder, the posterior distribution
is pθ(z|x) ∝ pθ(x|z)p(z), where the prior p(z) is usually an isotropic Gaussian,
and θ are the parameters of the observation model pθ(x|z). When mapping
these parameters to an autoencoder, z corresponds to the hidden layer, qφ(z|x)
refers to the encoding operation and pθ(x|z) refers to decoding. Thus, φ and θ
correspond to the weights in the encoder and decoder.

To approximate the true posterior with the variational posterior, we minimize
the Kullback-Leibler (KL) divergence between these two distributions.

DKL(qφ(z|x)||pθ(z|x)) = Eqφ(z|x)

[

log
qφ(z|x)
pθ(z|x)

]

= log pθ(x) − Eqφ(z|x)

[

log
pθ(z,x)
qφ(z|x)

]

.

(1)

Since the data x is independent of the latent variable z, log pθ(x) in Eq. (1)
is constant. Thus, minimizing the KL-divergence is equivalent to maximizing
the term Eqφ(z|x)(log pθ(z,x) − log qφ(z|x)). Since the KL-divergence is non-
negative, we have Eqφ(z|x)[log pθ(z,x) − log qφ(z|x)] ≤ log pθ(x), and we call
this term the variational lower bound of the data likelihood LVAE, i.e.,

LVAE = Eqφ(z|x)

[

log
pθ(z,x)
qφ(z|x)

]

= −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)[log pθ(x|z)],
(2)

where the first term can be regarded as the regularizer, matching the variational
posterior to the prior of the latent variable, and the second term is the expected
network output likelihood w.r.t. the variational posterior qφ(z|x). During train-
ing, the optimization algorithm maximizes this variational lower bound.

Our goal is a denoising autoencoder for pathology-removal. In other words,
we regard lesions as a special structured noise. Removing lesion appearance is
then equivalent to removing noise in the denoising autoencoder theory. To do
this, we introduce the input noise (lesion) corruption distribution as p(x̃|x).
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The variational posterior distribution is then q̃φ(z|x) =
∫

qφ(z|x̃)p(x̃|x)dx̃. If
the original variational posterior distribution is a Gaussian, this new posterior
can be regarded as a mixture of Gaussians, which has better representation
power. As shown in [6], the variational lower bound for a denoising autoencoder is

LDVAE = Eq̃φ(z|x)

[

log
pθ(z,x)
qφ(z|x̃)

]

≥ LVAE = Eq̃φ(z|x)

[

log
pθ(z,x)
q̃φ(z|x)

]

. (3)

This means that the denoising variational lower bound is higher than the original
one, leading to a smaller KL-divergence between the true and the approximated
posterior. In the following section, we discuss our implementation of the encoder-
decoder network and how to maximize the denoising variational lower bound.

3 Network Model and Registration with Uncertainty

Figure 1 shows the structure of our denoising variational encoder-decoder net-
work. The input is a brain image x with intensities normalized to [0, 1].
The encoder network consists of convolution followed by max-pooling layers
(ConvPool), and the decoder has max-unpooling layers followed by convolution
(UnpoolConv). We choose max-unpooling instead of upsampling as the unpool-
ing operation, because upsampling ignores the pooling location for each pool-
ing patch, which results in severe image degradation. The encoder and decoder
are connected by fully connected layers (FC) and the re-parameterization layer
(Reparam) [9]. This layer takes the parameters for the variational posterior as
input, which in our case is the mean μ and standard deviation Σ of the Gaussian
distribution, and generates a sampled value from the variational posterior. This
enables us to compute the gradient of the regularizer −DKL(qφ(z|x)||pθ(z)) for
φ using the variational parameters instead of the sampled value, which is not
differentiable for φ. Below we discuss specific techniques implemented for our
task.

Training Normal Brain Appearance Using Pathology Images. A model
of normal brain appearance would ideally be learned from a large number of
healthy brain images with a consistent imaging protocol. Our goal, instead, is to
learn a mapping from a pathological image to a quasi-normal image, i.e., train a
denoising autoencoder for the lesion ‘noise’, and maximize the denoising varia-
tional lower bound. This poses two challenges: first, in general, we do not know
what the normal appearance in a pathological area should be; second, patho-
logical images may exhibit spatial deformations not seen in a normal subject
population (such as the mass effect for brain tumors). To mitigate these prob-
lems, we learn the brain appearance from the normal areas of the pathological
brain images only. This can be accomplished by (1) introducing lesion-like struc-
tured noise (i.e., circles filled with the mean intensity of the normal brain area
for brain tumor cases) via the QuasiLesion layer in Fig. 1, and (2) loss function
masking, i.e., ignoring lesion-areas during learning. Suppose we have the lesion
segmentation for the training data. For loss-function masking, we first change the
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Fig. 1. Network structure (numbers indicate the data size).

input with structured noise x̃ to x̃normal using the following rule: if x̃ ∈ Normal,
then x̃normal = x̃; otherwise, (i.e., x̃ ∈ Lesion) x̃normal = a + N (0, σ). This pre-
vents the network from using tumor-appearance. Experiments show only small
differences for different settings of a and σ. However, performance suffers when
σ is too high, and setting a = 0 increases the mean intensity error for the whole
image. In our model, we set a to the mean intensity value of the normal area
and σ = 0.03. Second, we set our network output likelihood for xoutput to

log pθ(xoutput|z)normal =

{
|xoutput − x|, xoutput ∈ Normal
0, xoutput ∈ Lesion.

(4)

Hence, we disregard any errors in the lesion area during backpropagation. We
refer to this two-step strategy as loss-function masking.

The overall training procedure for our network is: (1) sample one corrupted
input x̃ from p(x̃|x), (2) mask out the lesion area to get x̃normal, (3) sample one
z from qφ(z|x̃normal) and obtain a reconstructed image xoutput from the network,
(4) calculate the denoising lower bound LDVAE with the change in Eq. (4) and
(5) perform stochastic gradient descent backpropagation to update the network.

Reconstruction Uncertainty for Atlas Registration. During testing, due
to the small amount of data available and the possibly large appearance differ-
ences among training cases, it is useful to utilize the uncertainty of the recon-
structed image to guide registration. In our case, we sample z from the approxi-
mated posterior qφ(z|x) to generate multiple reconstruction images xoutput with
different z. Then, we choose the mean of the sampled images μxoutput as the
reconstruction result, and the (local) standard deviation σxoutput as uncertainty
measure. We define areas of high uncertainty as those areas with large variance,
and, for registration, our method down-weights the contribution of those areas to
the image similarity measure. We simply use w(xoutput) = exp(−σ2

xoutput
×2000)

as a local weight for the image similarity measure in our experiments3. This
function ensures that the weight drops to near 0 for a large standard deviation.
Note that this is different from cost function/pathology masking. Cost function
masking uses a simple binary mask, which is equivalent to setting the weight
of the lesion area to zero. Our uncertainty-based weighting, on the other hand,
downweights ambiguous areas in the reconstruction process which may not be

3 Other, potentially better choices are of course possible.
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highly reliable for registration. Our uncertainty weight is in [0, 1]. Hence, struc-
tural information is rarely discarded completely as in cost-function masking. Our
experimental results in Sect. 4 show that this is indeed desirable.

4 Experiments and Discussion

We evaluate our model in two experiments: one using 2D synthetic images, and
one with real BRATS tumor images. The image intensity range is [0, 1]. We
implement the network with Torch and use the rmsprop [20] optimization algo-
rithm; we set the learning rate to 0.0001, the momentum decay to 0.1 and the
update decay to 0.01. Further, we use a batch size of 16, and for a training dataset
with 500 images of size 196 × 232, training 1000 epochs takes about 10 h on a
2012 Nvidia Titan GPU. For data augmentation, we apply random shifting up to
10 pixels in both directions for a training image and add zero-mean Gaussian
noise with standard deviation of 0.01. During testing, we sample 100 images
for each test case, and calculate their mean and standard deviation. All images
for training and testing are extracted from the same slice of their original 3D
images, which are pre-aligned to a 3D ICBM T1 atlas [4] using affine registration
and judged to be limited to having in-plane deformations. We use NiftyReg [13]
(with standard settings) together with normalized cross correlation (NCC) to
register the 2D ICBM atlas slice to the reconstructed result. Note that we mod-
ified NiftyReg to integrate image uncertainty into the cost function. We used a
large number of B-spline control points (19 × 23 for a 196 × 232 image). This
ensures that displacements large enough to capture the mass effect observed in
the BRATS data can be expressed. B-spline registration approaches similar to
NiftyReg have successfully been used for registrations of various difficulty [16];
and given sufficient degrees of freedom poor registration performance is likely
due to an unsuitable similarity measure, which should be investigated in future
work. To capture even larger deformations, NiftyReg could easily be replaced by
a fluid-based registration approach. The focus here is to synthesize quasi-normal
images and to exploit them and their associated reconstruction uncertainty for
registration. For our images, 1 pixel corresponds to 1mm × 1mm.

For comparison, we use the LRS method, which is an alternative approach
to image synthesis for tumor images. We select the parameters maximizing
2 × NCCtumor + NCCnormal for the training data. Due to high computational
cost of current LRS approaches [10], we use 50 training images for each case.
Furthermore, to demonstrate that using synthesized images in fact improves reg-
istration accuracy, we also compare our method against using the reconstruction
uncertainty map in combination with the original tumor image for registration.

Synthetic Tumor Experiment. We use 436 brain images from the OASIS [11]
cross-sectional dataset as base images. This chosen dataset is a mix of 43 %
Alzheimer’s and 57 % control subjects. We create a synthetic tumor dataset
by registering random OASIS images to random BRATS 2015 T1c images (to
account for the mass effect of tumors) with tumor area masking, followed by past-
ing the BRATS’ tumor regions into the OASIS images. We generate 500 training
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Fig. 2.Mean deformation error of all synthetic tumor test cases for various models. Our
model is highlighted in red. Masking tumor area = MT. Add structured noise = ASN.
Use uncertainty for registration = UR. (A): affine registration; (B): register to tumor
image; (C): low-rank-sparse (LRS) with registration; (D): LRS w/o registration; (E):
MT, no ASN, no UR; (F): MT, ASN, no UR; (G): MT, ASN, UR; (H): network
trained with clean images, ASN; (I): Use uncertainty on tumor image directly; (J):
cost function masking. (Color figure online)

Original Original + tumor LRS reconstruction Our reconstruction (+ std. deviation)

Ground-truth
registration

Result of cost
function masking

LRS result Our result
(without uncertainty)

Our result
(with uncertainty)

Fig. 3. Exemplary synthetic tumor test case reconstruction and checkerboard compar-
ison with ground truth registration. Best viewed zoomed-in.

and 50 testing images using separate OASIS and BRATS images. Figure 2 shows
boxplots of mean deformation errors of different areas per test case, with respect
to the ground truth deformation obtained by registering the atlas to the normal
image (i.e., without added tumor). The highlighted boxplot is the network model
trained with tumor images, added quasi-tumor (i.e., structured noise) and using
uncertainty weighting for the registration. We evaluate the deformation error for
three areas: (1) the tumor areas, (2) normal areas within 10 mm from the tumor
boundary (near tumor) and (3) normal areas more than 10 mm away from the
boundary (far from tumor). By evaluating all three areas we can assess how
well the mass effect is captured. This is generally only meaningful for our syn-
thetic experiment. Landmarks (outside the tumor area) are more suitable for real
data. For the tumor areas, our method (MT+ASN+UR) outperforms most other
methods. For the normal areas, the registration difference between our method
and directly registering to the original tumor image is very small, especially
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compared with the LRS method which tends to remove fine details. Compared
to using the tumor image directly for registration, our model decreases the 99.7%
upper limit of the mean of the tumor area deformation error from 14.43 mm to
7.83 mm, the mean error from 5.62 mm to 3.60 mm, and the standard deviation
from 3.49 mm to 2.16 mm. The significantly decreased deformation error only
causes a small increase of mean deformation error for the normal area, from
1.36 mm to 1.49 mm. The only method performing better than our model for
this synthetic test is cost function masking, which requires tumor segmentation.
Figure 3 shows one example test case. Notice that the LRS method erroneously
reconstructs the upper lateral ventricle, resulting in a wrong deformation.

BRATS Experiment. We also evaluate our network using the BRATS 2015
training dataset [12], which contains 274 images. This is a very challenging
dataset due to moderate sample size and high variations in image appearance and
acquisition. We use cross-validation, and partition the dataset into 4 sets of 244
training images and 30 testing images, resulting in a total of 120 test cases. For
preprocessing, we standardize image appearance using adaptive histogram equal-
ization. For evaluation, we manually label, on average, 10 landmarks per case
around the tumor area and at major anatomical structures for the test images.
We report the target registration error for the landmarks in Table 1. Our method
still outperforms most methods, including LRS without registration. Although,
the difference of our model and LRS+registration is not statistically significant,
the figures in combination with our synthetic results suggest that our method
is overall preferable. Note also that LRS requires image registrations for each
decomposition iteration and introduces blurring to the brain’s normal area (see
Fig. 4), while our method does not suffer from these problems. Moreover, it is
interesting to see that cost function masking performs worse than our method.
This could be explained by the observation that in cases where the tumor is very
large, cost function masking hides too much of the brain structure, making regis-
tration inaccurate. Figure 4 shows one exemplary BRATS test case. Because the
tumor covers the majority of the white matter in the left hemisphere, cost func-
tion masking removes too much information from the registration. As a result,
the left lateral ventricle is misregistered. Combining our network reconstructed
image and uncertainty information, our registration result is much better.

Modeling Quasi-tumor Appearance. One interesting problem is the choice
of quasi-tumor appearance. In our work we use the mean normal brain area
intensity as the appearance, while other choices, such as using simulated4 tumor
appearance or random noise, are also sensible. To show the effect of quasi-tumor
appearance choice on the registration result, we conduct additional experiments
using 4 textures to create quasi-tumors: (1) real tumors of the BRATS dataset,
(2) mean intensity (our approach), (3) random constant intensities and (4) ran-
dom noise. Registration performance for all 4 methods is similar, with (2) having
lower registration error in normal areas (e.g. median of 1.07/2.78 mm compared
to 1.28/2.84 mm using (1) for synthetic/BRATS data). A possible reason why

4 Real tumor appearance is not known in such areas.
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Table 1. Statistics for landmark errors over the BRATS test cases. The best results
in each category are marked in bold.

Mean error [mm] Max. error [mm]

Data Percentile 99.7% 75% 50% 25% 0.3% 99.7% 75% 50% 25% 0.3%

Affine (baseline) 11.29 6.90 5.06 3.72 2.28 19.25 12.61 9.83 7.04 3.52

Use tumor image directly 6.32 4.20 3.29 2.77 1.54 20.48 12.47 7.52 5.22 1.95

Cost function masking 6.12 4.22 3.12 2.65 1.89 21.00 11.75 6.98 4.97 2.65

LRS+registration 5.26 3.77 3.06 2.74 1.88 12.04 8.20 6.30 5.45 3.54

LRS, no registration 6.15 4.30 3.25 2.79 2.12 14.62 9.61 6.83 5.72 4.05

Tumor image+uncertainty 5.52 3.79 3.08 2.65 1.81 13.91 8.76 6.24 4.95 2.63

Our model (no uncertainty) 5.08 3.63 2.98 2.64 1.66 12.79 8.12 6.21 4.96 2.82

Our model (with uncertainty) 4.74 3.52 3.02 2.61 1.83 11.77 7.99 5.93 5.08 2.48

using tumor appearance is not superior is the limited training data available
(∼200 images). For a larger dataset with more tumor appearance examples to
learn from, using tumor appearance could potentially be a better choice.

Discussion. One interesting finding in our work is that while a high-quality
lesion area reconstruction is desirable, it is not necessary to improve atlas reg-
istration. Lesion reconstruction may be affected by many factors (limited data,
large image appearance variance, etc.), but the atlas registration result depends
on the quasi-normal reconstruction of the lesion and the faithful reconstruction
of the normal tissue. For example, in some cases the LRS method achieves visu-
ally pleasing results in the lesion area. However, at the same time it smoothes
out the normal area losing important details for image registration. Our method
on the other hand preserves details in the normal areas more consistently and
hence results in overall better registration accuracy. Moreover, for tightly con-
trolled data (e.g., a synthetic dataset) our method generates better reconstruc-
tions for the lesion area. Thus, future experiments using more controlled data
(e.g. BRATS 2012 synthetic images) would be interesting. Besides, synthesiz-
ing a quasi-normal image generates useful structural information that can help
guide the registration, and reconstruction uncertainty can be used to focus the
registration on regions of high confidence.

Another interesting question is how to extend our approach to 3D images.
In initial experiments, we implemented a 2.5D network which reconstructs 14
slices at once. Training the network on 500 2.5D training cases takes 3 days,
which, while not fast, is feasible. One possible approach is to learn mappings for
3D patches using patch location as additional feature, which would enable us to
train on a much larger dataset (patches) at a reasonable computational cost.

Finally, designing a more “lesion-like” noise model and exploring the impact
of training data size on the predictions are interesting directions to explore.

Support. This research is supported by NIH R42 NS081792-03A1, NIH R41
NS086295-01 and NSF ECCS-1148870.
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Tumor image LRS result Our result (+ std. deviation)

Cost function masking LRS registration result Our registration result
(without uncertainty)

Our registration result
(with uncertainty)

Fig. 4. Exemplary BRATS test case with landmarks for test image (top row) and
warped atlas (bottom row).
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Abstract. This paper introduces a novel pipeline for synthesizing real-
istic 3D+t CSPAMM cardiac tagged magnetic resonance (MR) images.
The proposed framework is based on the combination of an electro-
mechanical model for generating cardiac deformation fields and a tem-
plate tagging recording for assigning realistic voxel intensities. We devel-
oped a spatio-temporal alignment strategy for mapping voxel positions
in the simulation space to the template recording space. As a preliminary
result, we generated a synthetic dataset of a normal heart, and further
compared the performance of two state-of-the-art cardiac motion track-
ing algorithms using this synthetic data. In this study, we aim at show-
ing the capability of the proposed pipeline to simulate realistic cardiac
tagged MR images, and its extension to more synthetic cases especially
pathological ones are currently left to future work.

Keywords: Synthetic image · 3D cardiac tagged MR · CSPAMM ·
Benchmarking

1 Introduction

The diagnosis and follow up of cardiac diseases require a precise assessment
of the cardiac morphology and function. Cardiac magnetic resonance imaging
modalities, such as Cine or tagged MR, have shown to be able to provide accurate
evaluation of global and regional cardiac functions. However, the analysis of
cardiac deformation still largely relies on manually tracing the contours in Cine
images, which is a time-consuming process. Although tagged MR is considered
as the gold standard for quantifying local myocardial deformations, its use in
clinical practice is somewhat held back by the lack of reliable automatic post-
processing tools.

Recently, fast automatic or semi-automatic quantification algorithms in 3D
were proposed for processing tagged MR [1]. Obviously, the introduction of
c© Springer International Publishing AG 2016
S.A. Tsaftaris et al. (Eds.): SASHIMI 2016, LNCS 9968, pp. 108–117, 2016.
DOI: 10.1007/978-3-319-46630-9 11
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these new algorithms requires a solid validation process. One of the common
approaches is to use synthetic sequences with known ground truth. In such cases,
the exact motion and/or deformation of the myocardium is known and serves
as reference to assess the accuracy of semi/fully automatic algortihms. The use-
fulness of such tool is strongly linked to the degree of realism of the generated
sequence.

Several groups already worked on the in silico generation of synthetic car-
diac tagged MR sequences. Crum et al. [2] and Waks et al. [3] were among the
first to simulate tagged MR images. Both of them simulated the tagging pat-
tern by applying a sinusoidal modulation function in the spatial domain. Crum
et al. [2] simulated the left ventricle (LV) in short axis slices. They modeled
the corresponding anatomy using a simple ring shape. Using a motion directly
computed from a real Cine sequence, the authors then proposed to warp the
initial simulated image at end-diastole to the rest of the sequence. Later in
[4], Crum et al. improved the generation of tag intensity profiles by using a
frequency-domain model. Similarly, Waks et al. [3] used a prolate sphere to
define the LV geometry and a 13-parameter kinematic motion model. The model
parameters were determined by a least-squares fit to the displacements of the
implanted markers tracked from a Cine sequence of a dog heart. Sermesant et al.
[5] segmented myocardium from a real tagged MR image and further added
tag lines to the binary mask. Finally, this image was warped by cardiac defor-
mations generated by an electro-mechanical (E/M) model. Clarysse et al. [6]
warped a real short-axis tagged MR image at end-diastole by a simple kinematic
mode-based heart motion model. The use of real images ensures the realism
of myocardium/background intensities. However, the motion model is too sim-
plistic to represent the complexity of true heart motion and the integration of
pathological case is not straightforward.

Figure 1 shows typical simulated images obtained from the work described in
[2,3,5]. From these images one can see that in all cases only the intensity inside
the myocardium is simulated. The absence of any intensity or motion artifact
in the background considerably reduces the realism of the synthetized images.
Moreover, these methods make appear highly contrasted borders between the
myocardium and the background which is not realistic. Finally, it is worth point-
ing out that all the proposed tagged MR simulators generate synthetic data in
2D, nothing having been proposed for 3D yet.

In this study, we propose a pipeline for generating realistic 3D+t tagged
MR images. The proposed pipeline is inspired by the work presented in [7] and
[8] where realistic ultrasound/cine MR images were simulated. In particular,
we propose to combine a template tagging sequence acquired from a volunteer
(in order to derive realistic pixel intensity mapping) and an electro-mechanical
(E/M) model [9] (in order to apply realistic cardiac motion and deformation).
The template sequence we used come from 3D CSPAMM acquisitions [12] and
it consists of three sequences with orthogonal tagging directions.

Our contributions in this paper are two-fold: (1) the reference displacement
field involved in the simulation was generated by the E/M model. It is therefore
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(a) Crum et al. [2] (b) Waks et al. [3] (c) Sermesant et al. [5]

Fig. 1. Synthetic 2D short-axis tagged MR images presented in [2,3,5].

unbiased to any motion estimation algorithm. Another interest of using the E/M
model is the possibility to generate a wide range of synthetic deformation fields,
from normal to different pathological cases; and (2) we made full use of the
real tagging sequence in order to simulate realistic intensity information for the
myocardium and the surrounding structures. A background with artifacts, or
subject to a different motion field than the myocardium, represents a difficult
challenge for any tracking algorithm. It is therefore important to have such
challenges properly represented in the validation data.

2 Methodology

Figure 2 shows the pipeline of the proposed method. We first segment and track
the heart in the template sequence (named as the image space hereinafter). Next,
we use the E/M model to generate myocardial deformations (named as the sim-
ulation space hereinafter) corresponding to the heart geometry in the template
sequence. In this way, the obtained image and simulation spaces are naturally
aligned at the first frame. Further, as it will be described later in Sect. 2.3, we
defined a set of spatio-temporal transformations which allows making a direct
correspondence between a point in the simulated space and its equivalent in the
image space. As a result, one is able to assign for each voxel of the simulated
sequence a corresponding intensity value sampled from the real image sequence.
In the following, we will describe the proposed pipeline in more details.

2.1 Segmenting and Tracking the LV in the Template Sequence

The left ventricle (LV) needs to be segmented and tracked for two reasons:
(1) the E/M model requires a heart geometry at end-diastole as input; and
(2) the heart motion needs to be tracked in order to build the spatio-temporal
alignment that serves to assigning voxel intensities later.

Since with the template tagged MR sequence used, tissue and blood are both
tagged and cannot be distinguished at the first frame, we chose to perform the
segmentation at the last frame. A bandpass filter introduced in [1] was applied
to untag the last frame image of the template sequence. We then segmented
the LV manually as is described in [1]. This yields a surface mesh encompassing
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Section 2.1
Template sequence, segmenting & tracking

Section 2.2
E/M model, simulating myocardial deformations

End-diastole End-systole End-diastole

Section 2.4
Image generation

Section 2.5
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myocardium intensities

Section 2.3
Spatio-temporal

alignment

Fig. 2. The proposed pipeline for simulating tagged MR sequences. The three tagged
MR sequences with line tagging patterns were multiplied for better visualization.

both the endo- and epi- cardium. In order to have a dense representation of the
LV myocardium, we further resampled the surface into a volumetric mesh by
methods described in [1].

Finally, this mesh was tracked backward in time in order to obtain the LV
segmented shapes for each frame in the sequence [1]. In the sequel, Mt denotes
the LV volumetric mesh generated from the template sequence at time t.

2.2 Simulating Heart Deformations by the E/M Model

To launch the E/M model [9] for simulating myocardial deformations, a biventri-
cle heart geometry (tetrahedral mesh) with defined LV/RV electrical (activation)
and mechanical (fibers, contractilities) properties is required. Instead of redefin-
ing all those informations on the segmented LV mesh, we opted for mapping a
template heart geometry to the image space through a Thin Plate Spline (TPS)-
based transformation.

To achieve this goal, the LV AHA segments were defined manually for both
the tracked LV mesh M0 (Sect. 2.1) and the template geometry. The centers
of these 17 AHA segments were then taken as control points to build the TPS
transformation from the template geometry to M0. This transformation was
then applied to both the mesh nodes and the fiber orientation vectors, leading
to a well-defined biventricle geometry corresponding to the first frame of the
template sequence.
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We then simulated myocardial deformations by the E/M model taking the
transformed heart geometry as input. The output of the simulation was a
sequence of tetrahedral meshes denoted as St.

2.3 Spatio-Temporal Alignment

The simulated heart motion is completely independent of the template
sequence’s. Since we intend to sample image intensities from the real acquisi-
tion, a spatio-temporal alignment of the template sequence and the E/M model
is required. This enables us to sample intensities from the template image and
further assign them to voxels located in the simulation space.

Temporal Alignment. We propose to match each time point in the simulation
space to a continuous timing in the real space by linearly stretch/shrinking the
time axis. Both the template sequence and the E/M simulation consist of one
cardiac cycle, but with different numbers of frames (denoted as Nimg and Nsimu,
respectively). Besides, the end-systolic frame indexes (denoted as nes

img and nes
simu

respectively) vary. As a result, we opted for aligning the systolic and diastolic
time intervals respectively.

We aim to map a discrete time point tsimu of the simulation space to a
continuous timing timg in the real image space. We used linear mappings defined
as follows:

φ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

nes
img

nes
simu

t, if t ≤ nes
simu

Nimg−1−nes
img

Nsimu−1−nes
simu

(t − nes
simu) + nes

img, otherwise

(1)

Then the non-integer timing value in the image space corresponding to the
discrete time instant in the simulation is computed by timg = φ(tsimu).

Spatial Alignment. Once the simulation and the real recording are temporally
aligned, we need to compute the correspondences between the spatial locations
at these two time points.

In this section, we describe how to map a spatial position xsimu (at time tsimu

in the simulation space) to its corresponding position ximg (at time timg in the
real image space). This can be achieved by chaining two TPS transformations.

First, in the simulation space, it is easy to compute a TPS transformation
from the simulation meshes Stsimu

to S0 (Sect. 2.2). We denote this TPS as
TStsimu

→S0 . In the meantime, in the real recording sequence, we match time 0
and time timg using the two meshes M0 and Mtimg

(Sect. 2.2). A second TPS
transformation is computed and denoted as TM0→Mtimg

.
Thanks to these transformations, a point xsimu in the simulated sequence can

then be located in the template image space through the following expression:

ximg = TM0→Mtimg
◦ TStsimu

→S0(xsimu) (2)
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where Mtimg
(i.e. the tracking mesh at timg) was computed by a linear interpo-

lation between M�timg� and M�timg� (�� and �� are respectively the floor and
ceiling operators).

2.4 Image Generation

Our goal is to assign realistic image intensities for voxels located in the simulation
space. In this section, we will describe how to assign voxel intensities using the
spatio-temporal alignment technique we introduced previously in Sect. 2.3.

First of all, we need to define the voxel positions. Since the simulation and
image spaces are naturally aligned at the first frame as is described in Sect. 2.2,
we chose to follow the image information (origin, spacing, size and axis orienta-
tions) of the template recording used. This further defines the voxel positions.

Next, using the temporal alignment, we associated each time frame tsimu in
the simulation space to a continuous time timg in the template sequence. A new
image I(timg) was created by linearly interpolating images of the two closest
time frames �timg� and �timg�.

Finally, using the spatial alignment, each voxel position of frame tsimu in the
simulation space was mapped to a spatial location at time timg in the template
space. Spatially interpolating I(timg) at that position yields the intensity value
to be assigned.

2.5 Correcting the Intensities of Myocardium

By far, the cardiac motion represented in the simulated images corresponds actu-
ally to the TPS transformation TStsimu

→S0 described in Sect. 2.3. This transfor-
mation is computed from the simulation meshes Stsimu

and S0 but slightly differs
with the true displacements represented in the simulations, due mainly to the
use of spatial regularization when computing the TPS. As a result, it is nec-
essary to further correct the intensities of the myocardium so that the motion
corresponds exactly to that simulated by the E/M model.

We chose not to modify the image at the first frame, and further propagate
the corresponding myocardial intensities to all the other time instants through
the transformation contained in the simulation sequence St.

For each myocardial voxel xt at time t, we first find the tetrahedron cell of
the simulation mesh St that contains xt, and further compute the barycentric
coordinates of xt in that local tetrahedron cell. Since all the tetrahedrons are
indexed, we can find the tetrahedron with the same index at the first frame. By
combining the positions of this tetrahedron at time 0 and the previously eval-
uated barycentric coordinates of xt, we can compute the voxel’s corresponding
position at the first frame, denoted as x0. Finally, since the simulation and image
spaces are naturally aligned at the first frame, we computed the voxel intensity
by linearly interpolating intensities at position x0.

After refining all the myocardial voxels’ intensities by this way, the myocar-
dial motion underlying the synthetic images corresponds to the E/M model,
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making it reasonable to compare displacement field tracked by cardiac motion
tracking algorithms against the E/M model generated ground truth.

3 Result

3.1 Simulation of a Normal Heart

A healthy volunteer dataset from [11] was used as the template sequence. The
tagged MR images for a normal heart were simulated and shown in Fig. 3. Three
sequences with orthogonal line tagging directions were generated with line tag
spacing 7 mm. Each sequence consists of 17 slices. The inter-slice thickness is
7.71 mm, and the in-plane pixel resolution is 0.96mm × 0.96mm.

Compared to the previous work of several groups as shown in Fig. 1, the
images simulated by the proposed method show more realistic surrounding tis-
sue intensities instead of a whole-black background. Moreover, the appearance
of the myocardium is less binary-like. To faciliate the use of our simulated
images for benchmarking, we put this synthetic dataset (both the images and
the ground truth meshes) at http://bit.ly/1nnEIMl which is publicly available
to the research community.

Fig. 3. Synthetic tagged MR images for a normal heart using the proposed pipeline.
The intensities of the three line tagging sequences were multiplied for better visualiza-
tion.

3.2 Evaluation of State-of-the-Art Algorithms

In this section, we show the interest of using the simulated synthetic dataset for
evaluating the performance of two recent cardiac motion tracking algorithms:

http://bit.ly/1nnEIMl
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HarpAR [1] and Sparse Demons (with default parameters) [10]. They were com-
pared using the synthetized tagging sequence described in Sect. 3.1.

The LV of the first simulation mesh was tracked over the cardiac cycle by
both methods. The tracking results were compared against the ground truth
(i.e. the E/M simulations). Since the motion error reaches its maximum at end-
systole, we compare the two methods at that time point. In Fig. 4, we can observe
that HarpAR gave smaller median and variance of the tracking errors. This
result is further confirmed by two statistical tests. The Levene’s test returned
a p-value below 0.05, rejecting the hypothesis that their variances are equal.
Also, we applied the Wilcoxon signed-rank test to see if their median values are
equal. The returned p-value is below 0.05, rejecting the hypothesis that their
median values are equal. The results from the statistic tests are coherent with
what we observe in Fig. 4. Note that here our aim is to show the possibility of
using the simulated dataset for benchmarking different algorithms, rather than
determining which one is superior to the other, especially given that a thorough
parameter tuning task remains to be done for SparseDemons.
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Fig. 4. Comparison of HarpAR [1] and Sparse Demons [10] with respect to end-systolic
tracking errors using the synthesized 3D+t tagged MR sequence (each data point rep-
resents the motion error of certain mesh node).

4 Discussion

The proposed pipeline has several limitations. First, since the myocardial inten-
sities are corrected a posteriori as described in Sect. 2.5, the transitions between
the myocardium and the remaining parts are not smooth enough as revealed
by a careful visual inspection of the output image. This is due to the fact that
the warping fields applied to the myocardium and the surrounding tissues are
different: the myocardial motion corresponds to the E/M simulations while the
warping applied to other parts comes from the TPS transformation. Although
the two kinds of warping fields are close, it does result in intensity inconsistencies
that can be perceived by human eyes as shown in Fig. 3. This somehow reduces
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the degree of the realism of the simulated images and it should be specially dealt
with in the future.

Second, as described in Sect. 2.5, the intensities of the myocardium are all
assigned from the first frame, meaning that no tag fading over the cardiac cycle
is simulated. Obviously, tag fading has always been one of the key issues in
tagged MR. However, in CSPAMM acquisitions, tag fading effects are much less
apparent after the subtraction of two SPAMM acquisitions of inverse tagging
preparation patterns [12]. Indeed, in the kind of CSPAMM images we aim to
simulate, tag fading is rather limited, as can be seen in [13]. The absence of
tag fading in the myocardium seems to decrease the realism of the simulation,
but far from a significant level. Nonetheless, we expect to integrate additional
considerations about tag fading into the pipeline which remains parts of future
work as well.

A final aspect to be improved is the MR simulator. The proposed simula-
tion pipeline is principally based on warping image intensities. A physical MR
simulator taking tissue-specific properties (T1, T2 and proton density) as inputs
should be more reasonable and might yield better results. In the future, we wish
to integrate a MR simulator based on solving Bloch equations, which we think
would perform better than simply warping the image intensities.

5 Conclusion

In this paper, we proposed a novel pipeline for synthesizing realistic 3D+t cardiac
tagged MR images. We combined an electro-mechanical model and a template
tagged MR sequence of a healthy volunteer for achieving this goal. The E/M
model was used for simulating heart motions and the template sequence is used
for picking up realistic image intensities. A spatio-temporal alignment technique
was applied to help mapping the simulation and image spaces. One major advan-
tage brought by the E/M model is that the heart deformation results solely from
the model and is thus unbiased to any motion tracking algorithms.

As a preliminary result, we generated a synthetic dataset of a normal heart
despite that the E/M model used is quite flexible and can generate a range
of heart deformations corresponding to both normal and pathological cases. In
the future, we intend to extend the simulation to different levels of pathologi-
cal extents. The current work merely aims to show the feasibility of combining
the E/M model and a template sequence for simulating CSPAMM images that
represent a relatively good level of realism. Moreover, we show in this paper the
interest of using our simulated dataset for comparing the performance of two
recent cardiac motion tracking algorithms (HarpAR and Sparse Demons). This
comparison can be easily extended to more algorithms and can be done more
thoroughly while including more measurements such as myocardial strains. All
these are currently left to future work.
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Abstract. Multi-sequence MRI protocols are used in comprehensive exami-
nations of various pathologies in both clinical diagnosis and medical research.
Various MRI techniques provide complementary information about living tis-
sue. However, a comprehensive examination covering all modalities is rarely
achieved due to considerations of cost, patient comfort, and scanner time
availability. This may lead to incomplete records owing to image artifacts or
corrupted or lost data. In this paper, we explore the problem of synthesizing
images for one MRI modality from an image of another MRI modality of the
same subject using a novel geometry regularized joint dictionary learning
framework for non-local patch reconstruction. Firstly, we learn a cross-modality
joint dictionary from a multi-modality image database. Training image pairs are
first co-registered. A cross-modality dictionary pair is then jointly learned by
minimizing the cross-modality divergence via a Maximum Mean Discrepancy
term in the objective function of the learning scheme. This guarantees that the
distribution of both image modalities is taken jointly into account when building
the resulting sparse representation. In addition, in order to preserve intrinsic
geometrical structure of the synthesized image patches, we further introduced a
graph Laplacian regularization term into the objective function. Finally, we
present a patch-based non-local reconstruction scheme, providing further fidelity
of the synthesized images. Experimental results demonstrate that our method
achieves significant performance gains over previously published techniques.

1 Introduction

Magnetic Resonance Imaging (MRI) is a versatile and noninvasive imaging technique
extensively used in neuroimaging studies. MRI comes in many different flavors (viz.
MRI sequences, or henceforth also referred as MRI modalities1), each providing
diverse and complementary image contrast mechanisms unraveling structural and

1 Here, we use the word modality in the sense of a specific kind of MRI sequence. Note that the
proposed technique would equally be applicable when the protocol involves different imaging
modalities in a more classical sense (e.g. MRI, CT, US, SPECT, and PET).
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functional information about brain tissue. Multi-modality MRI are nowadays very
common in many pharmaceutical clinical trials, in research studies of neurosciences, or
in population imaging cohorts targeted to understand neurodegeneration and cognitive
decline. The acquisitions of a full battery of all these MR images can face constraints
associated with their cost, limited availability of scanning time, patient comfort or
safety considerations. Moreover, in large scale studies it is not uncommon to face
incomplete datasets due to the presence of imaging artifacts, acquisition errors or
corrupted data. While many such studies use imputation techniques to compensate for
these latter issues, this is usually only at the level of the derived imaging biomarkers
and not of the data itself. Finally, in longitudinal imaging studies where image data is
collected over several years, evolution of imaging technology may lead to the
appearance of new MRI sequences that are added to an existing imaging protocol at
some point in time but for which are not available as part of the imaging battery
acquired at earlier time points. In these and other applications, it would be desirable to
have a methodology that is able to synthesize the unavailable data from the available
MRI studies. The assumption here is that the synthesis ability comes from the
cross-modality correspondences of sparse codes obtained during training, and can be
used to encoding missing MRI. The degree to which this hypothesis is valid will have
to be scrutinized in each application but is worth exploring.

To cope with this problem, several methods were proposed through either trans-
forming MRI intensities or reconstructing tissue contrasts to obtain the missing MRI
data. Histogram matching is the most common approach within this group. Although
this technique is widely used in neuroimaging, it has been pointed out its inefficacy for
multi-modality image synthesis due to the lack of specificity for certain ratios of tissue
types [1]. On the other hand, techniques based on sparse representations have been
presented, which separately learn two corresponding dictionaries from co-registered
image pairs and synthesize a desired MRI modality data from the patches of the
available MRI modality [1]. These approaches, however, boil down to an
example-based synthesis strategy, which does not fully exploit the available training
data to its fullest. In contrast, here, we establish fundamental connections with transfer
learning (a.k.a. domain adaptation) used in many fields, e.g. [2, 3]. Such methods can
successfully solve the above problem by learning a paired dictionary from both
modalities while assuming each co-registered image pair with a nearly identical dis-
tribution [1]. However, this assumption cannot be fully satisfied in practice since
cross-modality data may have very different feature distributions in different spaces.

In this paper, we propose a novel geometry regularized joint dictionary learning
method for synthesizing any unavailable MRI from available MRI data. This paper
offers the following three contributions: (1) We address cross-modality MRI synthesis
by jointly learning a cross-modality dictionary that penalizes differences in the statis-
tical distribution of the sparse codes in both domains rather than directly imposing the
same code to both domains as done before. This is achieved by incorporating a new
term in the computation of the joint sparse codes using the Maximum Mean Dis-
crepancy measure; (2) We exploit the geometrical information underlying the input
data and incorporate this new term into the cross-modality joint dictionary learning
optimization; (3) A non-local reconstruction framework that provides a more expres-
sive and compact patch representation is adopted to synthesize the corresponding patch
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from a different MRI protocol. To the best of our knowledge, this is the first time that
joint dictionary learning is computed by minimizing the discrepancy between the
statistical distributions of the codes of the involved MRI modalities while preserving
the intrinsic geometrical structure of the image. In the remainder of this paper, we first
define the cross-modality synthesis problem, and then introduce our proposed method
in Sect. 2. The experimental results are demonstrated in Sect. 3. Finally, we discuss the
results and conclude the paper in Sect. 4.

2 Method

In this section, we propose cross-modality image synthesis via geometry regularized
joint dictionary learning for effectively minimizing the cross-modality discrepancy.
This consists in an extension of the conventional dictionary learning by jointly learning
from the data of two modalities at the same time while minimizing the sparse codes
divergence between the different modalities.

2.1 Problem Definition

Let LMK ¼ IMk
i

� �m

i�1 be a library ofm subjects imaged with kmodalities each (k = 1 or 2),
with Ii being the training image of the i-th sample. Each pair of images in both libraries,
i.e. IM1

i ; IM2
i

� �
is assumed co-registered. Further, images are treated as the combination of

many patches and denoted as XMk ¼ xMk
i

� �n

i�12 R
s�n where s is the size of a vectorized

patch, and n represents the number of training patches for both modalities. We denote the
test image in the same way by a matrix Y ¼ y1f gcl¼12 R

s�c, where c is the number of
patches in the test image. All of the elements in Y are considered with either modalityM1

or modality M2. A summary of the notation used throughout this paper is presented in
Table 1.

Table 1. Summary of notations and their meanings as used in this paper

Notation Description Notation Description

L1; L2; Lt Training library of modality 1
or 2, testing library

M;G MMD matrix, graph Laplacian
matrix

XM1 ;XM2 ; Y Training matrix of modality 1
or 2, testing matrix

U;W ;N Diagonal degree/weight
matrix, nearest-neighbor
graph

DM1 ;DM2 Dictionary matrix of modality
1 or 2

k; b; c Sparsity, balance parameter of
MMD/graph Laplacian

aM1 ; aM2 Sparse codes matrix of
modality 1 or 2 in training
set

X; l Similar patch set/weight matrix
in testing domain

at; ât; au, (Optimal) sparse codes matrix
in testing/unified space

C; h Normalization constant, scalar
parameter
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Problem: Given XM1 and XM2 , our goal is to learn a pair of dictionaries DM1 ;DM2f g
and the unified sparse codes au minimizing the cross-modality discrepancy of aM1 and
aM2 , where aMk is the sparse codes matrix of XMk

2.2 Dictionary Learning

Let X ¼ xif gni�12 R
s�n be a training data matrix with n input items sampled in the s-

dimensional space, D ¼ dif gKi�12 R
s�K be a projection dictionary with K atoms, where

K[ s to make the dictionary overcomplete. Learning D from a sparse representation of
X can be formulated as:

minD;a X � Da
2
F
þ k

����
����a

����
����
0
; ð1Þ

where a ¼ aif gni�12 R
K�n is a set of n K-dimensional sparse codes of X, �k kF is the

Frobenius norm, �k k0 is l0-norm, which fixes the number of non-zero elements of a, and
k denotes a regularization parameter to trade off the sparsity and the reconstruction
error. As shown in [4], the minimization problem as stated in (1) is an NP-hard problem
under the l0-norm constraint. An alternative solution is to relax the l0-norm constraint
with the l1-norm constraint to obtain a near-optimum result [5].

2.3 Geometry Regularized Joint Dictionary Learning

Following the dictionary learning procedure described in Sect. 2.2, instead of trans-
ferring the estimated sparse codes from the first domain to the other [1, 6], we can learn
the dictionaries of both domains independently:

minDM1 ;aM1 XM1 � DM1aM1
2

F
þ k1

����
����aM1

����
����
1

;

minDM2 ;aM2 XM2 � DM2aM2
2

F
þ k2

����
����aM2

����
����
1

:

ð2Þ

However, such a strategy is time-consuming and results in two sets of independent
sparse codes that do not necessarily satisfy the assumption of high-correlation between
both modalities to reconstruct M2-like images from M1-like ones. To solve a similar
problem, Yang et al. [6] proposed an image super-resolution approach that uses coupled
dictionary learning. Their method maps image pairs (e.g. low and high resolution or,
here, two different modalities) into a common space, which enforces the sparse codes of
paired data possess the same values. Instead of directly imposing the same sparse codes
across each pair, our work allows the codes to be different for each modality, and fosters
the most similar distributions across them. This is done by measuring the distribution
divergence for the co-registered image pairs over the empirical Maximum Mean Dis-
crepancy (MMD), which is then minimized and incorporated into the dictionary learning
problem.
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Maximum Mean Discrepancy Regularization: We seek that the probability distri-
butions of the codes associated to cross-modality patch pairs is identical when com-
puting the optimal sparse representation. To this effect, the MMD [7] is used.
The MMD is a nonparametric statistic utilized to assess whether two samples are drawn
from the same distribution. In our case, the two samples correspond to the sparse codes
of the training set for the two modalities involved. The MMD is calculated as the
largest difference in the expected mean value of the K-dimensional codes for both
modalities. To compute the MMD, we follow [7–9] to estimate the largest difference in
expectations over functions in the unit ball of a reproducing kernel Hilbert space:

MMD ¼ 1
n

Xn

i�1
ai � 1

n

X2n

j¼nþ 1
aj

����
����
2

H

¼ Tr auMau
T

� �
; ð3Þ

where au represents the unified sparse codes, au
T
is the transposed matrix of au, and M

denotes the MMD matrix defined as:

Mi;j ¼ 1=n2; xi; xj 2 XM1 or xi; xj 2 XM2

�1=n2; otherwise

�
: ð4Þ

Graph Laplacian Regularization: During dictionary learning, high-level patch
semantics are captured in each dictionary atom. However, this process fails to introduce
any prior knowledge on the geometrical structure within patches. Instead, by intro-
ducing a graph Laplacian (GL) term [10], we can preserve the local manifold structure
of the sparse graph and better capture the intrinsic geometrical properties of the entire
data space. Given XM1 ;XM2f g 2 R

s�2n, a q-nearest neighbor graph G with 2n vertices
can be constructed. The weight matrix of G is W 2 R

2n�2n, defined as the matrix with
elements Wi;j ¼ 1 if and only if for any two data points xi; xj; xi, xi is among the q-
nearest neighbors of xj or vice versa (wi;j = 0, otherwise). Let / ¼ diag /1; � � � ;/2nð Þ
be the diagonal degree matrix with elements /i ¼

P2n
j¼1 Wi;j. The GL term, incorpo-

rated into the sparse representation as a regularization criterion [10], imposes that the
obtained sparse codes vary smoothly along the geodesics of the manifold that is cap-
tured by the graph. The GL matrix is then defined as G ¼ /�W . In order to preserve
the geometrical structure in G, we map G to the unified coefficients au by:

1
2

X2n

i;j¼1
ai � aj

�� ��2
2Wi;j ¼

X2n

i¼1
aia

T
i /ii�

X2n

i;j¼1
aja

T
i Wii ¼ Tr auGau

T
� �

: ð5Þ

Objective Function: To maximize the correlation between patch pairs in both
modalities, we map them into a common higher-dimensional space that meets two
complementary objectives to those of Eq. (2), viz. the MMD and GL terms. Therefore,
our geometry regularized joint dictionary learning objective function becomes:
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minDM1 ;aM1 ;au
1
2

XM1 � DM1au
2

F
þ 1

2
k2

����
����XM2 � DM2au

����
���� 2

F

þTr au cMþ dGð ÞauT
� �

þ k auk k1�
ð6Þ

where c and d are the regularization parameters for trading off the effect of the MMD
and GL terms, respectively.

2.4 Image Synthesis via Nonlocal Reconstruction

Once the cross-modality dictionary pairs have been computed by solving Eq. 6, we
seek to reconstruct a test image Y 2 R

s�c by, first, sparsely representing Y with respect
to DM1 2 R

s�K by solving Eq. (1) with l1-norm as:

at ¼ arg min
at

Y � DM1at 2
F þ k

�� ��at�� ��
1; ð7Þ

where at 2 R
K�c denotes the sparse codes of Y . The estimated coefficients can be

directly used (or “transferred”) to synthesize the image Ŷ of our target modality M2 by
a linear combination of elements in the dictionary DM2 , namely, Ŷ ¼ DM2at.

To achieve richer synthesis ability, in this paper, we improve the sparse represen-
tation performance through an optimized nonlocal reconstruction model. To faithfully
synthesize the desired image, we enforce the sparse coefficients at as close as possible to
the target codes. That is, by groups of similar patches being encoded onto subsets of the
dictionary that are similar, the estimated sparse codes vary smoothly as the patches
themselves vary. This makes the whole reconstruction scheme more robust to the
influence of patch noise and more accurate. To this end, we adopt the representative
non-local means [11] in the sparse representation model by modifying Eq. (7) as

ât ¼ argmin
bt

Y � DM1bt
�� ��2

F þ k btk k1; ð8Þ

where bt ¼ PP
p2Xi

li;pa
t
i;p, and ati indicates the sparse codes of yi. For each yi, we

express its similar patch set as Xi, and define p as a random element within Xi. Also,
we define li;p as the weight for computing the level of similarity between yi and yq,

where li;p ¼ 1
C exp � yi�yi;pk k2

2
h2

� �
, with C being the normalization constant and h being a

scalar (note that li;p satisfies 0� li;p � 1 and
P
p2Xi

li;p ¼ 1). Then, we can update the

synthesized image via ~Y ¼ DM2 ât.
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3 Experiments

In this section, we show extensive experiments for the MRI cross-modality synthesis
problem to verify the effectiveness of our proposed method.

Experiment Setup: We evaluated our method in two different scenarios. Firstly, we
used the IXI dataset [12] for synthesizing the T2-w image considering the proton
density (PD) acquisition from the same subject. We randomly selected 12 subjects from
IXI containing both T2-w and corresponding PD-w images. We trained the dictionaries
from 5 subjects including both modalities, and the other 7 subjects were used for
testing. In the second experiment, we considered the generation of
magnetization-prepared rapid gradient-echo (MPRAGE) images based on spoiled
gradient recalled (SPGR) acquisitions, allowing us to compare our method with an
existing approach [1]. In each experiment, for each co-registered image pair in the
training set, we randomly selected 100,000 patch pairs of 5 � 5 � 5 voxels size to
train our dictionaries. We also took the factor of dictionary size and sparsity into
consideration, and fixed the dictionary size as 1024 and k ¼ 0:15 based on our
experiments trading off cost and synthesis quality. For other parameters, we used the
following settings according to our extensive experiments: q ¼ 5, c ¼ 105, d ¼ 1, and
the searching window for nonlocal reconstruction equals 10. Finally, we adopted Root
Mean Square Error (RMSE), Peak Signal to Noise Ratio (PSNR) in decibels (dB),
Structural Similarity Index (SSIM) and voxelwise relative error (RE) as evaluation
metrics.

Compared Methods: To show the performance of our approach, we compared our
results of the following state-of-the-art methods: (a) Joint Dictionary Learning (JDL);
(b) MRI example-based contrast synthesis (MIMECS) [1]; (c) Geometry Regularized
Joint Dictionary Learning (GRiDLE) with only MMD term; (d) The proposed
GRiDLE. Note that JDL is a special case of GRiDLE with c ¼ d ¼ 0, and GRiDLE
with only MMD term is another special case with d ¼ 0.

Experimental Results: Table 2 shows the error measures of the synthesized T2

images using JDL, GRiDLE (d ¼ 0) and GRiDLE. We did not compare our GRiDLE
with MIMECS in this case, because there is no available dictionary within this algo-
rithm to generate arbitrary results. We can see that the proposed method outperforms
the other two, obtaining the lowest RMSEs and the highest PSNRs and SSIMs for all 7
subjects. In the second example we compared the performance of the proposed method
with that of the state-of-the-art MIMECS. The clear advantage of our approach over the
MIMECS and JDL is shown in Fig. 1, which can be seen in overall tissue contrast, as
well as in the lowest voxelwise RE. Table 3 compares the average error measures of all
the methods for MPRAGE synthesizing from SPGR images. As shown, the proposed
method achieves the best results.
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Table 2. Error measures of the synthetic images using JDL, GRiDLE, and GRiDLE.

RMSE PSNR (dB) SSIM
JDL GRiDLE

(d ¼ 0)
GRiDLE JDL GRiDLE

(d ¼ 0)
GRiDLE JDL GRiDLE

(d ¼ 0)
GRiDLE

Sub .1 9.43 8.53 8.29 36.72 39.93 41.73 0.9025 0.9069 0.9075
Sub .2 9.42 8.53 8.27 37.15 39.92 42.05 0.9021 0.9054 0.9062
Sub .3 10.42 9.73 9.49 39.35 38.23 40.35 0.8997 0.9018 0.9029
Sub .4 10.53 9.26 9.01 36.17 37.61 41.34 0.8669 0.8999 0.9016
Sub .5 12.03 11.07 10.94 34.12 36.01 39.17 0.8990 0.8962 0.8970
Sub .6 10.21 9.30 9.06 36.73 38.66 41.02 0.9002 0.9049 0.9062
Sub .7 10.98 9.87 9.63 36.18 38.18 41.01 0.8964 0.9028 0.9034
Avg. 10.43 9.47 9.24 36.63 38.36 40.95 0.8953 0.9026 0.9035

           Input             Ground Truth        MIMECS [1]               JDL              GRiDLE  = 0          GRiDLE 
          SPGR               MPRAGE           RMSE: 15.85       RMSE: 11.79       RMSE: 10.52        RMSE:10.63 

                                                         PSNR: 33.19        PSNR: 35.12        PSNR: 35.94         PSNR: 40.14 
                                                         SSIM: 0.9336      SSIM: 0.9342      SSIM: 0.9384        SSIM: 0.9391 

RE 

Fig. 1. Comparison of the synthesized results with ground truth.

Table 3. Comparison of methods used for synthesizing MPRAGE based on SPGR.

MIMECS [1] JDL GRiDLE ðd ¼ 0Þ GRiDLE

RMSE 14.55 12.58 11.03 10.89
PSNR (dB) 32.76 34.51 35.52 39.35
SSIM 0.9303 0.9368 0.9403 0.9500
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4 Conclusion

In this paper, we proposed a novel geometry regularized joint dictionary learning
(GRiDLE) approach for MRI cross-modality synthesis. The distribution divergence is
effectively reduced by including the MMD term for both modalities and a mapping
function in the sparse domain. The learned dictionary pair can not only minimize the
distance between each coupled coefficients but also preserve the geometrical structure
in the data while spanning both spaces for stable mapping of image details. Extensive
experiments have demonstrated that GRiDLE can achieve superior performance over
the state-of-the-art methods. Future work will focus on the simultaneous generation of
multimodality images.
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Abstract. The synthesis of medical images is an intensity transforma-
tion of a given modality in a way that represents an acquisition with a
different modality (in the context of MRI this represents the synthesis
of images originating from different MR sequences). Most methods fol-
low a patch-based approach, which is computationally inefficient during
synthesis and requires some sort of ‘fusion’ to synthesize a whole image
from patch-level results. In this paper, we present a whole image synthesis
approach that relies on deep neural networks. Our architecture resem-
bles those of encoder-decoder networks, which aims to synthesize a source
MRI modality to an other target MRI modality. The proposed method
is computationally fast, it doesn’t require extensive amounts of memory,
and produces comparable results to recent patch-based approaches.

Keywords: Image synthesis · MRI · Stacked neural network ·
Autoencoder

1 Introduction

Image synthesis has attracted a lot of attention lately due to exciting potential
applications in medical imaging, since synthesized images for example may be
used to impute missing images (in a large database, e.g., as in [22]), to derive
images lacking a particular pathology, which is not present in the input modality
(for detection purposes, e.g., [29]), to increase the resolution of input data (e.g.,
[14]), to perform attenuation correction (e.g., [3]), and others.

Early works in image synthesis followed a physics driven approach [6,26],
using the physical models of the acquisition, they applied directly the trans-
formation on images. Polynomial mixture models like in [7] or non parametric
approaches like joint histogram [15] optimized a transformation map from a sin-
gle image into an other modality. The idea of using raw data directly within the
synthesis started with [20], which utilized non-local pair-wise interactions in a
super-resolution context. This idea, together with the pioneering work in image
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analogies [8], spawned several works in data driven synthesis. Typically this hap-
pens in a supervised fashion1, where pairs of images (or volumes) corresponding
to the same subject but of different modality are being used. Modality can refer
to different physical imaging schemes such as CT, MRI, US, PET but also within
an MRI context to distinguish images acquired by different sequences for example
T1 vs. T2. Typically, these approaches break the available training data in patches
and construct a database linking patches among each other. During inference,
the query image is used to find similar in appearance patches in the database and
the synthesized modality is generated by fusing the matched patches. For exam-
ple, similar to label propagation [2,19,28], the authors in [11,29] approached
the problem of synthesis with nearest neighbors patch-matching. Similarly, the
work in [4] used a generative model of image synthesis using a probabilistic
framework. These methods are simple but they require a lot of memory and
computational time during inference. Also, the process of how individual patch
results are fused together into a final image may have undesired effects. Blending
the patches by using simple averaging leads to smoothing, and approaches which
they use only the central pixel of the patches, only they may lead to noisy and
locally discontinuous outcomes.

One approach which at least reduces the computational cost at run-time dur-
ing inference, is treating the image synthesis as a regression [23]. A mapping is
learned to relate features around a local neighborhood from the input modality to
a pixel in the target modality, for example with the use of a neural network [23].
Another example is in [14], where they learn the joint probability between high
resolution and low resolution patches, for the purpose of super resolution. Sim-
ilarly, coupled sparse representation [21], and random forest approaches [1,12]
use patches from the source images for regression analysis, in order to perform
the synthesis of a target modality. These approaches are usually less computa-
tionally intensive, because they usually store only the mapping function. Also,
depending on the approach, inference can be simple, but still they operate at
the patch or pixel level.

In this paper, motivated by the above shortcomings, we introduce a new
deep learning approach which we term Deep Encoder-Decoder Image Synthe-
sizer (DEDIS). Compared to patch-based methods, DEDIS retains low compu-
tational/memory requirements, and it is capable of predicting the whole image
directly, and hence it provides homogeneous and sharp synthetic images. This
multi-output regression is achieved based on a deep encoder network which draws
inspiration from Stacked Denoising Autoencoders [16]. Essentially, DEDIS (with
its architecture shown in Fig. 1), given an input source image, provides as an
output a synthesized modality of the same size as the input. Our training input
consists of input-output pairs of imaging data. To prevent over-fitting, which
can occur when networks are deep, we use dataset augmentation and bottleneck
middle layers, which they compress and find useful representations [25]. To ini-
tialize the network with reasonable weights (filters), ensuring better convergence,

1 There is also the recent exciting unsupervised work by [24], however for ease of
introducing the reader to the topic this is not discussed here.
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we rely on layer-wise pre-training with Restricted Boltzmann Machine (RBM),
because it has been shown in the literature the relationship between RBM and
Autoencoders [13]. The fine tuning of the complete network is obtained via back-
propagation such that the filters are being updated, in order the reconstructed
(synthesized) modality to match the desired output.

To evaluate our method we used the SISS brain multimodal MR dataset
from the ISLES 2015 workshop [17] and we compared with a classical patch-
based approach [29]. Overall, our findings show that the proposed method is
capable of preserving anatomical details. and the quantitative analysis, which
has been measured with classical measures according to the literature, showed
similar performance amongst the two. DEDIS can synthesize a full volume in
∼0.63 s.

The rest of the paper is organized as follows. In Sect. 2, the proposed DEDIS
architecture is described alongside its pre-training and inference steps. Section 3
presents experimental results, while Sect. 4 offers conclusions.

Fig. 1. The proposed DEDIS network, which is able to synthesize a source image into
the target modality. Pre-training is performed using Restricted Boltzmann Machines.
The GB-RBM and the BB-RBM are being used greedily to initialize the weights
between L1, L2, and L3, using the source modality images. The same protocol is
followed for L5, L4, and L3, but instead with the use of the target modality.

2 Deep Encoder-Decoder Image Synthesizer (DEDIS)

Our image synthesis approach relies essentially on finding a mapping between
an input image IS and a desired IT, which they correspond to the source and
target modalities. Assuming that the sizes are identical, this is a multi-input
multi-output regression problem. To find this mapping we rely on a Deep Neural
Network architecture. We present sequentially its description, the pre-training
of the layer weights, the fine-tuning of the network parameters, and finally we
describe inference at test time.

2.1 The DEDIS Architecture

The architecture we devised is inspired by Stacked Autoencoders [16] and it is
shown in Fig. 1. It can be easily trained in supervised fashion to learn the non-
linear mapping, which relates two modalities.
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Our goal is to find the relationship which associates the representations of two
different modalities. Thus, we added an intermediate layer between the encod-
ing/decoding layers, in order to observe this latent relationship. Specifically, the
input layer L1 receives a full slice of a 2D image IS from the source modal-
ity’s volume acquisition. Then, L2 and L3 aim to “encode” the input. Observe
that, as depicted in Fig. 1, they have lower dimensions. This is deliberate, as by
adding this bottleneck improves regularization and reduces over-fitting [25]. The
subsequent layers L4 and L5 essentially “decode” the information coming from
previous layers, providing at the output the desired target modality.

The entire set of parameters in our network is Θ =
{
W(l),b(l)

}
, for all

1 ≤ l ≤ 4, where l denotes the number of the layer, W(l) is the weight matrix
that connects two consecutive layers l and l + 1, and b(l) denotes the bias term.
These parameters are being optimized using the back-propagation algorithm [27].

Particularly, we use back-propagation to optimize the whole network with
pre-trained weights, as described below, in order to improve the correspondence
between the source and target modality. Moreover, the back-propagation will
allow the layer to share information by capturing the non-linearity that the pre-
training could not characterize. In order to be compatible with the pre-training
phase, we used the sigmoid as activation function of the layers L2 -L4 (cf. Eq. (1))
namely,

al+1 = σ
(
W(l)a(l) + b(l)

)
, 1 ≤ l ≤ 3, (1)

whereas for the output L5 we adopted the linear activation function (cf. Eq. (2)),

ÎT = W(4)a(4) + b(4). (2)

Note that a(1) ≡ IS, specifically it is a slice of the source modality. These func-
tions are differentiable and their derivative is known and easy to compute. The
back-propagation error optimizes the parameters in Θ by minimizing the follow-
ing cost function

J(IS, IT;Θ) =
1
2
||̂IT − IT||22, (3)

where ÎT is a function of the parameters Θ (feed-forward step).

2.2 Pre-training

Learning the mapping of two different modalities is a complex task. To assist our
network architecture in optimizing the parameters, we initialize the weights with
pre-trained ones. For this purpose, we pre-train the weights per-layer relying on
the unsupervised learning power of Restricted Boltzmann Machine (RBM) [10],
leveraging the tight relationship between Autoencoders and RBM [13]. Specif-
ically, we adopted a Gaussian-Bernoulli RBM (GB-RBM) [5] to pre-train the
weights and the bias connecting L1 and L2. Then, the output of this network is
provided to a Bernoulli-Bernoulli RBM (BB-RBM) [9] that pre-trains the con-
nections between L2 and L3. The same process is being followed for the layers
L4 and L5, as well as for the layers L3 and L4, while here there are being used
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as training images the ones of the target modality instead. Once the parameters
in Θ are pre-trained, we perform the fine-tuning and we train the network with
back-propagation as discussed previously.

2.3 Inference

At test time, we provide an image from the source modality to the layer L1 and
we perform a single feed-forward step into the entire network. The activations
on the layer L5 are the output of the network and represent the actual synthetic
image in the target modality domain. This demonstrates the simplicity and
elegance of this holistic approach to synthesis.

Retaining this network requires less memory than retaining a patch database.
While training the network is computationally demanding this happens offline.
Performing a feed-forward step at inference is significantly more efficient than
the nearest neighbours being used in most patch-based approaches.

3 Experiments and Results

In this section, we evaluate the proposed deep neural network approach by gen-
erating T2 scans from T1 scans and DWI scans from T2. We follow evaluation
settings and metrics that there were recently had been used in [29]. Furthermore,
we compare with the patch-based method of [29].

Dataset: We used the SISS dataset from the ISLES 2015 workshop [17]. Specif-
ically, we used the training dataset, which includes 28 subjects. For every sub-
ject, there are images of four modalities: T1, T2, VFlair, and DWI, of dimension
approximately 230×230×150. We rely on this dataset since it has been already
preprocessed and the subjects are co-registered. If we had chosen another popu-
lar dataset. It would be necessary to perform various steps of pre-processing. The
pre-processing could vary according to the implementation and the tools might
had been used, eventually leading to potential bias and inability to compare
directly among papers in the same area.

Model of Comparison: Modality Propagation (MP) [29] is a patch-based
method for medical image synthesis, which is commonly used for comparisons,
even in the most recent papers which use neural networks [23,24]. This method
comprises of a database with paired images of different modalities. Assuming fine
alignment between the input image and those in the database, the synthesis of
the target image is being made through patch matching nearest neighbor search.
To reduce the search space within the database, the method uses techniques to
reduce both the population and the area searched around a specific point loca-
tion. Additionally, the method introduces an iterative regularization term that
takes advantage of the produced synthetic image. We implemented this method
de novo and we used the same parameters as the authors.

Preprocessing: The portion occupied by brain matter is less than the actual
size of the image and this does not affect our learning. For a more efficient com-
putation, we crop all the images using the biggest bounding box that encloses
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Fig. 2. Example of reconstruction with the proposed DEDIS network and Modality
Propagation (MP) [29]. In this picture, we have a training (first row) and testing
subject (second row). The first column shows the source modality images T1, the
second column shows the ground-truth image in the target modality. Then, the third
column shows the output of our DNN. The last column is the result from MP.

the area covered by the brain across all the subjects. Subsequently, plane slices
have been rescaled by half. Even though our method is computationally fast, our
implementation of Modality Propagation is not. Thus, to keep the comparison
fair we used the same image sizes for both methods. After these operations, all
the images have dimension 79×100. Then, each image is individually normalized,
by removing the mean and dividing by the standard deviation of the intensities
within the image. To increase the data to train on and add some bilateral invari-
ance, we augmented the dataset. The augmentation have been made by flipping
all training data across the horizontal line, since the brain is almost symmetric
for healthy subjects along the interhemispheric fissure, doubling the dataset size.

Experimental Setup: We selected the size of our network as multiples
of the input layers, which corresponds to the number of pixels within one
slice after preprocessing. The chosen architecture is summarized as follows:
[7900, 2250, 1125, 2250, 7900]. Other configurations, e.g. over-complete setup sce-
narios, that is the layers in between (L2 and L3 ) were bigger than the input
layer, induced redundant information and were prone to over-fitting. In the other
hand, when we reduced the dimensions of the inner layers, we observed that the
network had learned better representations.

We adopted 7-fold cross-validation, in which 24 subjects had been used for
training, and the remaining 4 had been used for testing. The training, included
only the slices containing brain matter. We iterated the pre-training of RBMs
with 200 epochs, whereas the fine-tuning had been performed with 300 iterations.
We built our network with the Deep Learning Toolbox 2 and thus our code had
been based mostly in Matlab. We ran our experiments on an Intel Xeon 3.5 GHz
CPU with a GeForce GTX Titan X GPU running in Debian.
2 Freely available at https://github.com/rasmusbergpalm/DeepLearnToolbox [18]. We

modified the current implementation to enable also GPU (CUDA) processing.

https://github.com/rasmusbergpalm/DeepLearnToolbox
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Table 1. Experimental results of our proposed method, when it is trained from modal-
ity T1 to VFlair, input and target modality respectively. We compared test results with
Modality Propagation [29]. Values are mean (std).

DEDIS Modality Propagation [29]

Training Testing Training Testing

M.A.E 0.1261 (0.0558) 0.2400 (0.0490) - 0.1196 (0.0467)

M.S.E 0.0696 (0.0863) 0.2212 (0.1226) - 0.1501 (0.1151)

Norm. X-Corr 0.9652 (0.0454) 0.8886 (0.0652) - 0.9292 (0.0559)

Table 2. Similar to Table 1 but synthesizing T2 from DWI.

DEDIS Modality Propagation [29]

Training Testing Training Testing

M.A.E 0.0544 (0.0123) 0.2697 (0.2898) - 0.1456 (0.0441)

M.S.E 0.0118 (0.0255) 0.2898 (0.1360) - 0.2008 (0.1897)

Norm. X-Corr 0.9940 (0.0145) 0.8573 (0.0750) - 0.9096 (0.0784)

Evaluation Metrics: As commonly done by other works in this area, we
adopted three different metrics to quantitatively evaluate our method: (i) mean
absolute error (M.A.E.), (ii) mean squared error (M.S.E.), and (iii) normalized
cross-correlation (Norm. X-Corr), where for the first two the lower the better
and for the third the higher the better.

Fig. 3. The first 8 filters from the weight matrix W (1) connecting L1 and L2 of DEDIS
after 300 iterations of fine-tuning.

Results and Discussion: In Fig. 2 we show a visual example of synthesized
images using DEDIS, where images of T1 were used as source modality and as
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target modality the corresponding VFlair contrast. In this example, we show
images from the training and also testing, where both approaches (DEDIS and
MP) have not seen the input image. In the last two columns we present esti-
mated instances of DNN and the MP respectively. The first and second row
show training and testing examples accordingly. The proposed method is able
to preserve anatomical details (e.g., cortical folds), both in training and testing
examples. This is particularly evident in the testing case: the MP was unable
to reconstruct fully the lateral ventricle, most likely attributed to the large cell
size we used. This demonstrates the benefit of using our whole image approach
to synthesis. In fact, as Fig. 3 shows, filters learned by DEDIS, preserve both
anatomical and contrast related information.

Quantitative results across the study population and the cross-validation are
reported in Table 1, for VFlair synthesis with T1 as input, and in Table 2 for
T2 synthesis given DWI as input. We show training and testing performance for
DEDIS, as well as the testing error of MP [29]. As done in [23] we do not report
the training performance of MP as it is not applicable. Whilst training results
are above MP, at testing we are slightly lower. Perhaps our network still over-fits
and strategies to mitigate that in the future could improve performance.

Critically though, we do gain in computational performance at inference.
DEDIS takes 0.004 seconds per slice at test time3, orders of magnitude less than
the 80 seconds required by MP. The implications of the k-NN search required
by MP within the image database and the local patch-based search are evident.
Note that the search time scales (albeit linearly) with the size of the database
(or the window) and as such the more the images in the database the more
the computational time is in demand. In contrast, our approach synthesizes the
whole image while at the same time, since it is independent of database size for
inference.

Similar argument holds for memory size requirements. Our network at these
settings occupies 300 MB in memory, whilst MP 800 MB, almost 3-fold more. As
database size increases, e.g. the number of training images increases, memory
requirements for MP increase, whereas ours remains the same.

4 Conclusion

In this paper, we introduced a Deep Neural Network that can learn to synthesise
a modality. Our network is optimized via back-propagation and it needs a set
of data belonging to the input and target modality, as it is illustrated in Fig. 1.
We pre-trained the network using Restricted Boltzmann Machines, which learned
the pair-wise weight matrices that there were fine-tuned at later stage. Example-
based methods are expensive both in time and memory resources. Instead our

3 We use only the CPU and not GPU to permit fair comparison with our MP imple-
mentation which does not use GPU.
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approach, which we termed DEDIS, synthesizes whole images treating the prob-
lem as a multi-output regression. Overall, we show that our method gives com-
parable results with a patch-based method (Modality Propagation) [29] when
trained on a preprocessed dataset. But our method is almost 1000 times faster.
Being fast is important when for example the synthesis method will be used
within a data imputation pipeline of a very large database (e.g., biobank).

Relying on the advantages of the proposed network, the future orientation
to explore is the one enabling DEDIS architecture to synthesize a whole volume
at once, instead of slice by slice.

Acknowledgement. We thank NVIDIA Inc. for providing us with a Titan X GPU
used for our experiments.
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Abstract. Image quality assessment (IQA) is crucial in large-scale pop-
ulation imaging so that high-throughput image analysis can extract
meaningful imaging biomarkers at scale. Specifically, in this paper, we
address a seemingly basic yet unmet need: the automatic detection of
missing (apical and basal) slices in Cardiac Magnetic Resonance Imag-
ing (CMRI) scans, which is currently performed by tedious visual assess-
ment. We cast the problem as classification tasks, where the bottom and
top slices are tested for the presence of typical basal and apical pat-
terns. Inspired by the success of deep learning methods, we train Con-
volutional Neural Networks (CNN) to construct a set of discriminative
features. We evaluated our approach on a subset of the UK Biobank
datasets. Precision and Recall figures for detecting missing apical slice
(MAS) (81.61 % and 88.73 %) and missing basal slice (MBS) (74.10 %
and 88.75 %) are superior to other state-of-the-art deep learning archi-
tectures. Cross-dataset experiments show the generalization ability of
our approach.

1 Introduction

Cardiac Magnetic Resonance Imaging (CMRI) can not only reflect anatomic
information of the heart but also provide physiological information associated
with cardiovascular diseases. Although low image quality can be minimized by
careful design of the imaging acquisition protocols, it cannot be fully avoided;
particularly in large-scale imaging studies, where data is acquired at different
imaging sites, across subjects with a diverse constitution and at a big pace [5].

On the other hand, few objective guidelines exist, clinical or otherwise, that
establish what constitutes, in general, a good image and, in particular, a good
CMRI study [6]. To ensure that the quality of data collected in such imaging
studies is maintained, Image Quality Assessment (IQA) is crucial. Surprisingly,
IQA is still usually carried out by visual inspection of the images which can be
exhaustive, costly, subjective, error prone, and time consuming [1]. Thus, Auto-
matic IQA (AIQA) methods are required to detect deviations from the desired
c© Springer International Publishing AG 2016
S.A. Tsaftaris et al. (Eds.): SASHIMI 2016, LNCS 9968, pp. 138–145, 2016.
DOI: 10.1007/978-3-319-46630-9 14
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quality, intervene to correct problems in data collection as soon as possible, and
discard low-quality images, whose analysis would otherwise impair any aggre-
gated statistics over the cohort. Additionally, a priori and objective knowledge
on image quality of a given dataset (and possibly the type of artifact affecting
it) could assist in choosing the most appropriate image analysis method to be
used. This paves the way to “quality-aware image analysis” [16].

In multimedia, AIQA is a mature research field and usually concerned with
detecting specific image distortions [15,17]. Unfortunately, most of these meth-
ods cannot be directly translated to medical imaging due to different properties
in image statistics and the more complex nature of image artifacts [9]. Thus,
AIQA remains as a relatively unexplored research area in medical imaging. It is
acknowledged that lack of basal and/or apical slices is probably the most com-
mon problem affecting image quality in CMRI and has a major impact on the
accuracy of quantitative parameters of cardiac performance [7]. In this paper,
we mainly focus on short axis (SA) cine MRI. More specifically, we aim to iden-
tify missing apical slice (MAS) or missing basal slice (MBS). To address this
problem, we are motivated by the success of deep learning techniques and, in
particular, Convolutional Neural Network (CNN) [2,4]. They can achieve effec-
tive generalization properties, when applied to complex classification problems
such identifying missing SA slices.

To the best of our knowledge, this is the first paper tackling the problem of
detecting the missing slices in CMRI. Apart from introducing a new application
for the CNN’s, and addressing a pressing need, we propose an effective strat-
egy for their training. In practice, the lack of sufficient number of CMR data
sets with MBS/MAS deficiencies imposes a severe class imbalance problem. To
alleviate this issue, only the bottom and top SA slices are examined to ensure
the full coverage of the heart. This allows us to use the middle slices as non
BS/AS training samples. We present results for various depth of the networks,
and identify the optimal number of the layers. We also compare our framework
with an array of other deep learning methods such as Deep Boltzman Machines
(DBM) and Stack Auto Encoders (SAE), and show its better performance. In
the next section, we briefly introduce the architecture of our networks and pro-
vide the specification of our data sets. We then present our classification results
and conclude the paper in the final section.

2 Methodology

2.1 Convolutional Neural Network for Feature Learning

As mentioned, we are interested in detecting missing apical and basal slices in
CMRI data sets. To this end, for each cardiac subject, the top and bottom SA
slices in the scan are classified using two CNNs, each particularly trained for
detecting missing slices in basal or apical positions. Each CNN is composed of
alternating convolutional and sampling layers, and one fully-connected output
layer. Figure 1 shows the configuration of CNNs with total number of 5 layers
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Fig. 1. Overview of our proposed deep learning model for cardiac MRI quality assess-
ment. The CNNs are composed of 5 layers: four multi perceptron convolutional layers
plus one fully-connected layer. The bottom and top SA slices are examined individually.

(showing overall the best classification performance). Here, we briefly review the
various components in the proposed CNNs with a further detail.

Convolutional Feature Layers: Convolutional layers implement kernels that
are used to detect discriminative features from input images [11]. During the
training, these kernels are optimized to compute some salient features (such as
edges, corners, etc.) that are relevant for discrimination of the observed categor-
ical variables. We define Xl−1

i and Xl
i as input and output ith feature map of

the lth layer. Let m×n and k ×k be the size of input maps and the convolution
kernel for layer l. With this setting of parameters, we can get N output maps
with the size (m − k + 1) × (n − k + 1). The output of a convolutional layer l is
given by

Xl
j = f

⎛

⎝
∑

i∈Mj

Xl−1
i ∗ kl

ij + blj

⎞

⎠ , (1)

where kl
ij denotes the convolution kernel linking the ith input to the jth output

map; blj is the bias vector for the jth output-feature-map of lth layer; f is the
activating function 1/(1 + e−x), and Mj is the input feature map in the former
layer.

Sampling Layers: These layers are designed to reduce the number of ker-
nel parameters, minimize the computational complexity, and make the features
robust to zoom, shift and rotation. The output of convolution layers are divided
into sub-regions having the size of w × h pixels. Then, each output pixel of
a sampling layer is defined as the maximum value in the corresponding input
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sub-region. These operations can be formulated using the following relationship

Xl
j = f

(
βl
jdown

(
Xl−1

j

)
+ blj

)
, (2)

where down(·) symbolizes the down sampling function; j, l, β and b denote the
feature map index, the layer number, the weighting coefficients, and the bias
vector, respectively.

Softmax classifiers: To predict the final labels, the CNN detected low-
dimensional features are used to train softmax classifiers. Given the feature
vector x(i), we computed the posterior probabilities for k = 1, 2, ...,K classes
using

p(y(i) = k|x(i)) =
eθT

j x(i)

∑K
l=1 eθT

l x(i)
, (3)

where θ denotes the parameters of the softmax classifier, obtained from the
pre-trained CNN network. The neural network was trained over 3 days for 100
epochs with a fixed learning rate 0.01. In the framwork, Rectified Linear Unit
(ReLU) [8] was used as a activation function, and back-propagation technique
[14] was used for adjusting weights of connections in the network. To test a single
image with size 100 × 100, it only took approximate 0.2 s.

3 Results

3.1 Pre-processing and Data Description

To minimize the influence from the background region, a global mask covering
the heart and its vicinity was employed prior to training. We define three classes
of qualities in this paper: MAS, MBS, and no missing slices (normal). The last
label is obtained by logical combination of the results from the MAS and MBS
classifiers. The criterion used to determine a correct basal slice position is to
verify if the left ventricular outflow tract (LVOT) is observable at the end-systolic
phase [7].

Table 1. The average precision and recall rates of each type of missing slices using
different deep learning models.

Precision rate Recall rate

MAS MBS Normal MAS MBS Normal

SAE 79.08 % 68.63 % 78.54 % 88.48 % 88.72 % 88.15 %

DBM 66.67 % 70.09 % 71.47 % 88.38 % 88.71 % 88.32 %

3-CNNs 80.77 % 70.92 % 78.43 % 88.52 % 88.75 % 87.85 %

5-CNNs 81.61% 74.10% 79.42% 88.73% 88.75% 88.01%

7-CNNs 82.19 % 69.43 % 75.06 % 88.62 % 88.76 % 87.01 %
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Fig. 2. The learned convolution kernels on basal and mid-slices of the first (a), and the
second (b) layers of the trained CNN.

We apply our framework to 100 UK Biobank (UKB) cardiac MRI pilot data
sets. These data sets are obtained by 1.5T MR scanners [12,13] and show overall
good quality and no missing slices. Therefore, to generate synthetic deficiencies
in the data, we manually removed basal slices from 50 subjects and apical slices
from another 50 subjects. For each kind of the considered defect, we randomly
selected 80 % of generated data sets as training sets and the left the rest as the
testing sets. In order to evaluate our proposed framework’s performance, we use
the Precision Rate = TP/(TP + FP ), and the Recall Rate = TP/(TP + FN),
where TP , FP , and FN denote the number of true positive, false positive, and
false negative samples, respectively.

3.2 Evaluation and Comparison to Other Deep Learning Models

We systematically compared our proposed CNNs framework with different types
of CNNs architectures and traditional deep learning methods. Table 1 lists the
results for different CNNs architectures and other state-of-the-art deep learning
methods. As seen, the CNNs with a total number of 5 layers shows the best
precision rate and recall rates.

Fig. 3. The distributions of the error, precision, and recall rates over 100 training
epochs, showing a superior performance of the CNNs with 5 layers.
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Fig. 4. Sample test slices and their probability values of being apical (top row) or
basal slice (bottom row) are shown. ‘PA’ means the Probability value of being Apical
slice; ‘PB’ means the Probability value of being Basal slice. The ‘correct’ and ‘wrong’
subscripts indicates the classification results.

We also visually examined the learned convolution kernels, and found only
a few kernels present structure related appearances. Figure 2 shows the kernels
learned for classifying missing basal slices. It is not surprising that some of these
kernels show noisy, rather than strong structural and interpretable patterns. This
is because our features are trained to be discriminative. In fact, to obtain user
interpretable features, generative models such as those outlined in [10] is usually
considered.

Furthermore, to demonstrate the convergence behaviour of the compared
methods, in Fig. 3 we show the distributions of the error, precision, and recall
rates over 100 training epochs. It can be seen the CNNs with 5 layers outperforms
other CNN architectures and learning models.

Fig. 5. The error, precision, and recall rates in cross dataset test.
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In Fig. 4, a few apical (top row) and basal (bottom row) slices in the test
datasets along with their corresponding posterior probability values are shown.
We can observe that our framework correctly classifies a few challenging basal
slices, but also fails in a few other cases. Furthermore, the basal slices with
existing LVOT’s indicate higher probability values of being correctly classified.
This shows that the training has been successful in capturing the LVOT as a
prominent feature in the correctly positioned basal slices.

We also designed a validation experiment with a second collection of CMR
data sets to show the generalization ability of our method. To this end, we
trained the proposed model using the UK Biobank datasets and tested it using
the data sets available from Data Science Bowl Cardiac Challenge data sets [3].
This experiment was repeated for 100 training epochs and the values for error,
precision and recall rates are shown in Fig. 5. These results show that our trained
convolutional neural network achieves a good generalization efficacy.

4 Conclusion

In this paper, we tackled the problem of identifying the missing apical and basal
slices in large imaging databases. We illustrated the concept by applying the
method to CMRI studies from the UK Biobank pilot datasets. We designed slice
classifiers and learned a set of discriminative features directly by training Convo-
lutional Neural Networks. Casting this problem as a slice classification task, we
were able to alleviate the class imbalance issue and effectively train the CNNs
using the available data. Different numbers of network layers were examined
and compared to other deep learning models (such as Stacked Auto-Encoder
and Deep Boltzmann Machines). We showed that a CNN model with 5 layers
outperforms the other models. We also validated our model by training the 5-
CNNs using UKB pilot datasets and applying them to CMR data sets from Data
Science Bowl Cardiac Challenge. The proposed model shows a high consistency
with human perception and becomes superior compared to the state-of-the-art
methods, showing its high potential. In this paper, the kernel sizes in the con-
volutional layers of the network were selected somehow arbitrarily. However, in
principle these parameters can be optimized by performing exhaustive cross val-
idation experiments. In future, we will further refine the current structure of our
model by tuning such parameters.
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Abstract. Different magnetic resonance imaging pulse sequences are
used to generate image contrasts based on physical properties of tis-
sues, which provide different and often complementary information about
them. Therefore multiple image contrasts are useful for multimodal
analysis of medical images. Often, medical image processing algorithms
are optimized for particular image contrasts. If a desirable contrast is
unavailable, contrast synthesis (or modality synthesis) methods try to
“synthesize” the unavailable constrasts from the available ones. Most
of the recent image synthesis methods generate synthetic brain images,
while whole head magnetic resonance (MR) images can also be useful
for many applications. We propose an atlas based patch matching algo-
rithm to synthesize T2−w whole head (including brain, skull, eyes etc.)
images from T1−w images for the purpose of distortion correction of dif-
fusion weighted MR images. The geometric distortion in diffusion MR
images due to inhomogeneous B0 magnetic field are often corrected by
non-linearly registering the corresponding b = 0 image with zero diffu-
sion gradient to an undistorted T2−w image. We show that our synthetic
T2−w images can be used as a template in absence of a real T2−w image.
Our patch based method requires multiple atlases with T1 and T2 to be
registered to a given target T1. Then for every patch on the target, mul-
tiple similar looking matching patches are found on the atlas T1 images
and corresponding patches on the atlas T2 images are combined to gener-
ate a synthetic T2 of the target. We experimented on image data obtained
from 44 patients with traumatic brain injury (TBI), and showed that our
synthesized T2 images produce more accurate distortion correction than
a state-of-the-art registration based image synthesis method.
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1 Introduction

Different contrasts of magnetic resonance (MR) images quantify different infor-
mation about the underlying tissues. For example, T1−w and T2−w images pro-
duce signal intensities and contrasts dependent upon the underlying longitudinal
(T1) and transverse (T2) relaxation times of protons. Therefore the complemen-
tary information about tissues observed in multiple MR acquisition sequences
can be exploited in multi-contrast image processing algorithms. If one or more
image sequences are not available due to limited scan times, artifacts, or poor
quality, image synthesis methods have been proposed to generate the missing
sequences from the available ones.

Since the MR properties of tissues can be inherently different between two
contrasts, it is not possible to exactly replicate a real MR scan (e.g. PD−w)
from other modalities (e.g. T1 and T2−w). Therefore the purpose of current
image synthesis methods is to facilitate the existing algorithms by providing a
close approximation to a real acquisition. Usually there is a high degree of cor-
relation between T1 and T2−w images. Hence one can think of a simple image
synthesis as histogram matching, where intensities between two modalities can
be transformed by a one-to-one mapping. This does not impart any additional
information to the synthesized image beyond what is available in the acquired
data. However, most of the current synthesis methods are atlas based. Therefore
the synthetic images contain rich information obtained from atlases, which are
used to explore the relationship between the available data and the missing con-
trasts. Synthesis has been shown to improve performance of existing algorithms
in the absence of real images [1].

Image synthesis methods are targeted toward various image processing appli-
cations. One such application is improving the consistency of acquired images
in longitudinal or multi-site studies [2,3]. Synthesizing images for large scale
image normalization has been proposed to improve the stability of segmentation
algorithms [4,5]. Image synthesis of pathological brains using atlases of normal
subjects has also been shown to provide good segmentations of the pathologies,
e.g., tumor [6] and lesion segmentation [7,8]. Inter-modality registration has also
been improved by enabling more reliable intra-modal registration algorithms via
an intermediate synthetic image (e.g., T1−w to T2−w [9], CT to ultrasound
[10], or MR to CT registration [11]). While registering an MR to a CT image,
registration metrics such as mutual information or cross correlation can possess
many local minima in the optimization, since the MR and CT intensities are not
directly comparable. Therefore first synthesizing a CT from MR, and then regis-
tering the synthetic CT to the original CT improves registration accuracy. The
idea of having an intermediate synthetic image for single channel registration
can be extended to multi-channel registrations [12]. While registering a source
T1 to a target T2, the accuracy can be improved by synthesizing both source T2

and target T1 modalities, and then converting the single channel registration to
a multi-channel one using the combination of real and synthetic images. Simi-
lar intermediate synthetic T2−w images can also be used for distortion correc-
tion in diffusion imaging [13]. For PET reconstruction from MR-PET scanners,
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synthetic CT images, generated from the MR, are used for attenuation correc-
tion of the PET [14,15]. Other applications of synthesis include super-resolution
and artifact correction [16].

In this paper, we propose a patch based synthesis method aimed toward
synthesizing whole head images, with the application to distortion correction
in diffusion weighted imaging (DWI). Diffusion imaging is based on obtaining
T2−w images using a rapid spatial encoding technique (eco-planar imaging EPI)
with and without application of diffusion sensitizing gradients. The strength of
the gradient is given by a b-value. Because of the EPI method, these images are
sensitive to changes in the B0 magnetic field which results in spatial distortion.
The b = 0 image has no diffusion gradient applied, and has contrast comparable
to that of a “structural” T2−w image. The structural image obtained by a spin
echo technique compensates for B0 inhomogeneity and is not distorted. Because
the image contrasts of the b = 0 and the structural T2−w are comparable, reg-
istration methods can be used to correct for the distortion. Diffusion sensitizing
gradients (e.g. b = 1000) are applied to generate diffusion weighted images sen-
sitized to diffusion along a particular direction. These images are subject to the
distortion due to B0 inhomogeneity as well as to the distortion resulting from
eddy current fields induced by the large diffusion gradients. The geometric dis-
tortion from susceptibility in the echoplanar imaging techniques used in DWI
are usually corrected by non-linearly registering the b = 0 images to a T2−w
structural images. However, in clinical and acute research settings, T2−w are
sometimes not acquired at all to reduce overall scan times. Also, T2−w images,
if available, may not have been generated with geometric parameters suitable for
the purposes of distortion correction. For example, thick (5 mm) slices are com-
monly sufficient in the clinical setting. In the absence of a real high-resolution
T2, synthetic T2−w images can be used [5,13]. Note that the method in [13] is
applicable only for stripped images, while our method can be used to synthesize
whole head images as well. Usually first step of distortion correction is a linear
registration of b = 0 images to a structural image, preferably T2−w, for a sub-
sequent skull stripping. Therefore synthesis of images with skull are important
for optimal registration. Similar to [14], our method also involves registration of
multiple atlases, consisting of both T1 and T2−w images, to a target T1. Then
we perform patch-matching between the target and the atlases as an additional
step. For every patch on the target T1, we define a neighborhood, and identify
multiple similar looking T1 atlas patches within that neighborhood. Similarity
metrics for the matching patches are computed and the corresponding atlas T2

patches are combined to produce a synthetic T2 of the subject. Similar ideas
of patch matching have been previously used for hippocampus segmentation
[17,18], while we extended it to image synthesis problem in this paper. We com-
pared the accuracy of distortion correction with the synthesis method described
in [14], called Fusion.
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2 Method

Our proposed method uses a combination of atlas registration and patch match-
ing to synthesize T2−w images from T1. A patch is defined as a p × q × r 3D
sub-image around a voxel. We used 3×3×3 patches in our experiments. An atlas
is a pair of images {a

(t)
1 , a

(t)
2 }, where a

(t)
1 s are the T1 of the tth atlas, and a

(t)
2 s

are the atlas T2−w images, t = 1, . . . , T , T being total number of atlases. All a
(t)
1

and a
(t)
2 are assumed to be coregistered. Similarly, a subject is a T1−w image

{s1}, while its synthetic T2−w image is denoted by ŝ2. The atlases a
(t)
1 are first

registered to the subject s1. Although optimal registration of each atlas to the
subject would ideally be performed with deformable registration methods, time
constraints typically have necessitated the use of affine registrations. However,
we used an “approximate” version of the ANTS deformable registration [19]
which takes similar time as an affine one. The parameters of the “approximate
ANTS” are given in Table 1. Essentially after the affine step, the deformable
registration algorithm SyN is applied on a subsampled (by a factor 4) version
of the images with a limited number of iterations. This serves three purposes,
(1) obvious speed enhancement is observed since the images are subsampled,
(2) having TBI subjects in our datasets, limited number of iterations on low res-
olution images prevent the algorithm from going into local minima in presence
of pathologies, (3) having better matching between target and atlases, fewer
atlases are required. This version of the deformable registration takes about
2 min between two 1 mm3 images on Intel Xeon 2.80 GHz 20-core processors. On
the same images, FLIRT [20] takes about 1.5 min. for an affine registration. We
have empirically found that the approximate ANTS provides better matching
than affine, while taking similar computation time as other popular affine regis-
tration tools. Once the a

(t)
1 s are registered to the s1, corresponding a

(t)
2 s are also

transformed using the same deformations. All images are intensity normalized
so that the modes of their white matter intensities are unity. The modes are
automatically found by a kernel density estimator [2].

Table 1. Approximate ANTS parameters are shown in this table.

Transform(-t) Metric(-m) Iterations(-m) Smoothing sigma(-s) Shrink Factor(-f)

Rigid Mattes 100 × 50 × 25 4 × 2 × 1 3 × 2 × 1

Affine Mattes 100 × 50 × 25 4 × 2 × 1 3 × 2 × 1

SyN CC 100 × 1 × 0 1 × 0.5 × 1 4 × 2 × 1

For brevity of notations, we assume that a
(t)
1 and a

(t)
2 also denote registered

atlases in the subject space. Atlas patches of the T1 and T2−w images at the
jth voxel are denoted by a(t)1 (j) and a(t)2 (j), where a(t)1 (j),a(t)2 (j) ∈ R

d×1, d =
pqr. A subject patch at the ith voxel is denoted by s1(i) ∈ R

d×1. For the ith

patch s1(i), we define a neighborhood Ni around the ith voxel, and assume that
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similar looking atlas patches can be found within that neighborhood. Since the
atlases and subject are registered, a small 9 × 9 × 9 neighborhood suffices for
the purpose [18]. Atlas T1 and T2 patches (a(t)1 and a(t)2 ) are collected within the
neighborhood Ni from T atlases and combined in two d × TL matrices A1(i)
and A2(i), respectively, L = |Ni|.

For every s1(i), a few similar looking atlas T1 patches are found from A1(i)
so that their convex combination reconstructs s1(i) [2]. This is formulated as,

s1(i) ≈ A1(i)x(i), x(i) ≥ 0, x(i) ∈ R
TL×1, ||x(i)||0 � TL, (1)

where x(i) is a sparse vector with number of non-zero elements (||x(i)||0) being
much less than its dimension, 0 indicates a TL × 1 vector with all elements
as 0. Only a few elements of x(i) are nonzero, indicating a few atlas patches are
selected from A1(i). Eq. 1 is efficiently solved by elastic net regularization [21],

x(i) = arg min
α

||s1(i) − A1(i)α||22 + λ1||α||1 + λ2||α||22, α ≥ 0. (2)

Both λ1 and λ2 are chosen as 0.01. By minimizing both �1 and �2 norms of x(i),
the sparsity of x(i) is maintained as well as all similar looking patches in A1(i)
are given non-zero weights. Once x(i) is obtained for a subject patch s1(i), a
corresponding synthetic T2 patch is generated by ŝ2(i) = A2(i)x(i). Only the
center voxel ŝ2(i) is chosen as the ith voxel of the synthetic T2−w image.

3 Data

We experimented on two datasets with patients having mild to moderate TBI.
The first set (called HighRes) contains 32 patients having T1−w (1 mm3, TR =
2530 ms, TE = 3 ms, TI = 1100 ms, flip angle 7◦), high resolution T2−w (0.5 ×
0.5×1 mm3, TR = 3200 ms, TE = 409 ms, flip angle 120◦), as well as b = 0 images
(2×2×2 mm3). For this set, we assume that a “pseudo” ground truth distortion
corrected b = 0 is obtained when the distorted one is registered to the original
high resolution T2. The second dataset (called LowRes) also has 32 patients with
T1 (1 mm3), lower resolution T2 (0.5 × 0.5 × 2 mm3), and blip-up blip-down
diffusion weighted images having distorted b = 0 images (2 × 2 × 3.5 mm3),
which were corrected by [22]. In this case, we assume the ground truth corrected
b = 0 to be the one corrected by blip-up blip-down acquisitions [22]. For each
of HighRes and LowRes datasets, we arbitrarily chose 10 atlases for Fusion [14],
and a subset of T = 3 atlases for our synthesis from the same dataset. The
similarity metrics, described in the next section, are computed on the remaining
22 subjects from each dataset. Corrected b = 0 images using our synthetic T2

are compared with those using a Fusion [14] synthetic T2, as well as a baseline
b = 0 to T1 registration, when neither T2 or synthetic T2 are available.

4 Results

To quantitatively measure the accuracy of synthesis, we use the synthetic
images as intermediate steps for distortion correction, where b = 0 images are
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Fig. 1. The top two rows show axial and sagittal views of a patient from HighRes

dataset, where T1−w, T2−w, Fusion [14], and proposed synthesis results are shown.
There is a lesion in the frontal lobe (red arrow) which was not synthesized in Fusion.
Also ventricles and cortex are fuzzier (yellow arrow) as well as hippocampus (red arrow)
has CSF-like intensities in Fusion based T2. The bottom row shows another subject
from the same dataset where the lesion on the left frontal lobe (red arrow) is not well
synthesized in either synthetic T2s. Our method generally produced sharper features
in the cortex and anatomically correct intensities near the hippocampus. (Color figure
online)

deformably registered by ANTS [19] to the synthetic T2, which is also in the
space of original T1 images. The corrected b = 0 is compared to the ground
truth (Sect. 3) b = 0 via peak signal to noise ratio (PSNR). Although the syn-
thesis was performed on whole head, PSNR is computed only on the brain so that
background noise in the sinuses and air pockets are not used in the computation.
Most of the distortion occurs near the brain and skull boundary. Therefore CSF
is most affected by the distortion. To compute if the CSF is correctly aligned
between T1 and b = 0, we first segmented the T1−w images [23], and computed
median b = 0 intensities for only cortical CSF voxels. For this purpose, b = 0
images are normalized to have modes of the WM intensities as 1. CSF being
hyperintense on b = 0, higher median intensities indicate better matching. As
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Fig. 2. The top two rows show distorted b = 0 and corrected b = 0 images via T1, orig-
inal T2, synthetic T2s from Fusion [14] and the proposed method, along with absolute
difference images from the original T2 corrected b = 0. The “Corrected b = 0” indi-
cates b = 0 image corrected by original high resolution T2. The same image slices of
subject #1 of Fig. 1 are shown. Bottom two rows shows similar slices for the subject
#2 from Fig. 1. Yellow arrows indicate the lesions that are better reconstructed with
the proposed synthesis. The colormap of the absolute difference images indicate 0 to
30 % of the maximum intensity of the b = 0 images. Note that the distortion correction
for subject #2 using the T1−w image yielded gross scaling errors. (Color figure online)
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Fig. 3. PSNR between ground truth b = 0 (see Sect. 3 for definition) and T1 or synthetic
T2 corrected b = 0 are shown for (a) HighRes dataset, (c) LowRes dataset. Median CSF
intensities from corrected b = 0 images are shown for (b) HighRes dataset, (d) LowRes

dataset.

the synthetic images are only used as an intermediate step of the distortion cor-
rection, we did not compute any similarity metric between the synthetic T2 and
the original T2.

Fusion, being a registration based voxel-wise method, usually requires more
atlases and more accurate registrations. On the contrary, the proposed method
uses patches from a neighborhood, therefore some degree of registration error
is permitted. An example is shown in Fig. 1, where original T1−w, T2−w, and
synthetic T2−w images are shown for two subjects from HighRes dataset. Fusion
produces fuzzier ventricles (e.g., yellow arrow) and cortex due to minor registra-
tion mismatch. However, both of them have sharper features in the results from
the proposed algorithm. This is evident near the hippocampus (red arrow) as
well, which has CSF-like intensities in the Fusion synthesis. Also there is a lesion
near the left frontal lobe (red arrows) on both subjects, which was not synthe-
sized well in Fusion, since there were no lesions in the atlases in that region. It is,
however, partially synthesized in our method, where CSF patches from nearby
voxels contribute to synthesize the lesion. An example of distortion correction is
shown in Fig. 2 where distorted and corrected b = 0 images of the same subjects
as Fig. 1 are shown. The lesions on both subjects are better registered with our
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synthetic T2 (yellow arrows). Also the cortex and ventricles are generally better
aligned in the proposed method, as seen from the lower values near those regions
in the difference images.

Figures 3(a)–(c) shows the PSNR between ground truth b = 0 and T1 or syn-
thetic T2 based corrected b = 0 images. Median PSNRs for the HighRes dataset
are 23.79, 25.67, and 28.68 dB for T1, Fusion, and proposed synthetic T2 cor-
rected b = 0 s. The numbers are 19.02, 24.34, and 25.62 for LowRes dataset. Our
synthetic T2 provides significantly higher PSNR (p < 0.0001) than both Fusion
and T1 correction for both datasets. Median CSF intensities on the corrected
b = 0 images are 1.29, 1.75, and 2.17 for HighRes data, and 1.23, 1.84, and
1.91 for LowRes data. In this case also, our synthetic T2 is significantly better
(p < 0.001) on both datasets and for both T1 and Fusion T2.

5 Discussion

We have proposed a patch matching method to synthesize whole head T2−w
MR images from T1−w images and demonstrated on 44 patients with TBI that
such synthetic images can substitute for real T2−w images to perform accurate
distortion correction for DWI images. We have compared with a state-of-the-art
registration based voxel-wise fusion method [14] and showed that the proposed
synthesis produces more accurate results than the fusion method.

To register an atlas and a target, we have employed an “approximate ANTS”
registration, which, in comparison to affine registration, is more robust on patho-
logical brains, produces better matching, requires less number of atlases, and
takes similar time. Only 3 atlases are used in all experiments. Although the
accuracy increases slightly with more atlases, 3 atlases already provided bet-
ter results than Fusion. Due to the registration, similar patches can be found
within a small neighborhood, as done in [18], as opposed to patch search within
the whole brain when the atlases are not registered to the subject [2,16]. Also
because of the patch matching instead of voxel-wise analysis, some error in reg-
istrations between atlases and target can be tolerated.

The LowRes dataset produces slightly worse results than the HighRes dataset,
both in terms of PSNR (28.68 vs 25.62 dB) and median CSF intensities (2.17
vs 1.91). The reason is partially due to the fact that the synthesis is performed
with the T2−w atlases having a native 2 mm inferior-to-superior (I-S) resolution
compared to 1 mm I-S resolution on HighRes atlases.

As mentioned in Sect. 1, synthetic images can not perfectly replicate the orig-
inal images. This is especially true in the presence of pathologies, such as Fig. 1,
where the lesions are not well synthesized. However, in absence of a real T2−w,
synthetic images can be used as intermediate data for more accurate distortion
correction. The combination of registration and patch matching provides greater
flexibility than registration alone.
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Abstract. Accurate and robust fusion of pre-procedure magnetic reso-
nance imaging (MRI) to intra-procedure trans-rectal ultrasound (TRUS)
imaging is necessary for image-guided prostate cancer biopsy procedures.
The current clinical standard for image fusion relies on non-rigid surface-
based registration between semi-automatically segmented prostate sur-
faces in both the MRI and TRUS. This surface-based registration method
does not take advantage of internal anatomical prostate structures, which
have the potential to provide useful information for image registration.
However, non-rigid, multi-modal intensity-based MRI-TRUS registration
is challenging due to highly non-linear intensities relationships between
MRI and TRUS. In this paper, we present preliminary work using image
synthesis to cast this problem into a mono-modal registration task by
using a large database of over 100 clinical MRI-TRUS image pairs to
learn a joint model of MR-TRUS appearance. Thus, given an MRI, we
use this learned joint appearance model to synthesize the patient’s corre-
sponding TRUS image appearance with which we could potentially per-
form mono-modal intensity-based registration. We present preliminary
results of this approach.

1 Introduction

Non-rigid registration of multi-modal images is a challenging problem for image-
guided interventions. The highly non-linear intensity relationships between such
multi-modal images and the high dimensionality of the non-rigid deformation
make registration optimization difficult. In contrast to intensity-based registra-
tion, image segmentation offers an alternative strategy to register images where
corresponding structures in both image are first segmented and then these seg-
mented structures are subsequently registered to each other. However, image
segmentation, both automated and manual, is itself a difficult problem that is
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prone to error and high variability. Furthermore, depending upon the segmenta-
tion’s granularity, potentially useful information for the registration about the
anatomy, e.g. fine internal anatomical structures within a volume of interest,
could be abstracted away by the segmentation. In this paper, we present prelimi-
nary work to convert this multi-modal image registration task into a mono-modal
registration task using image synthesis. Using a large set of manually-labeled,
multi-modal training data, we learn a model of intensity appearance between two
different modality images, and then use this model to synthesize the appearance
of a target image given an image of the other modality. We present results
applying our approach to synthesize trans-rectal ultrasound (TRUS) imaging
from magnetic resonance imaging (MRI) for image-guided prostate biopsy local-
ization.

With over 450,000 men estimated to be diagnosed with prostate cancer in
the year 2015 [14], prostate cancer is one of the most commonly occurring forms
of cancer and one of the major causes of cancer-related death in the U.S. TRUS
image-guided biopsy is the current clinical standard for diagnosing prostate can-
cer. The biopsy sampling procedure consists of two parts: (i) 12 untargeted,
systematic tissue cores, in a non-patient-specific plan, from different regions of
the prostate; and (ii) a small number of TRUS-guided targeted biopsies.

While TRUS itself cannot be reliably used for targeting suspicious lesions
because of poor image quality and lack of contrast, multi-parametric MRI
(mpMRI) that combines T2-weighted imaging with functional sequences, e.g.
diffusion-weighted MRI, spectroscopic MRI and dynamic contrast enhanced
MRI, shows significantly better localization of suspicious lesions within the
prostate [2]. To avoid performing biopsies under MRI guidance, which can be
time consuming, expensive and impractical [15], current practice aims to fuse
pre-procedure mpMRI with intra-procedure TRUS imaging. In this case, clini-
cians identify suspicious prostatic tissue using mpMRI and then urologists use
TRUS imaging to provide targeted image-guided navigation for biopsy. Rigid
registration between the MRI and TRUS is inadequate for accurate biopsy guid-
ance due to prostate gland deformations caused by (i) variations in patient ori-
entation, (ii) changes in bladder or rectal filling, (iii) and presence or absence of
an endorectal MR coil, and (iv) deformation caused by handheld TRUS probes.
Therefore, non-rigid registration is required to accurately compensate for these
deformations.

A variety of non-rigid registration methods have been proposed to fuse
MR and TRUS images for prostate biopsy. Previously proposed surface reg-
istration algorithms to align the segmented prostate surfaces from the MRI
and TRUS images [8,9] are highly operator dependent because they rely upon
semi-automated segmentation methods, which are both time-consuming and
prone to significant variability. As an alternative to surface-based registration,
Sparks et al. [12] perform image fusion by first performing a probabilistic seg-
mentation of the prostate in TRUS images, and then register this segmenta-
tion probability map. Karnik et al. [6] suggest that intensity-based registration
methods may perform better than surface-based registration methods, and have



MRI-TRUS Image Synthesis with Application 159

the additional benefit that they do not require segmentation. Mitra et al. [7]
propose an intensity-based registration method, but validated it only on mid-
gland MRI-TRUS slices. Rather than using raw intensity values, Sun et al. [13]
propose MRI-TRUS fusion using an intensity-based non-local feature descrip-
tor, but this strategy relies on analogous structures existing in both image vol-
umes, which does not necessarily hold in the poor quality TRUS images. Some
other works have used mono-modal TRUS image registration to perform intra-
operative updates of the guidance. Xu et al. [17] use a combination of image
intensity and image intensity gradient information to register 2D TRUS image
slices to a 3D TRUS reference volume. Xu et al. [16] use mono-modal TRUS
registration to perform updates during the biopsy procedure, but their method
makes the assumption that the initial pre-operative TRUS acquisition aligns well
with the MRI.

Similar to these works, we seek to perform non-rigid mono-modal TRUS
image registration to update the image-guided biopsy procedure. In this work,
we present a method to synthesize the TRUS image appearance for a given MRI.
Rather than adopting a synthesis methodology that models the physics of image
acquisition [4,5], in this work we attempt to learn the appearance relationship of
one modality from another based on a large set of richly-annotated, clinical MRI-
TRUS training data. Our method, described in Sect. 2, builds a subject-specific
joint MRI-TRUS appearance model by first warping all MRI-TRUS image pairs
into the space of the test MRI. In this paper, we test two different methods to
build this model: (i) using a principal component analysis (PCA)-based app-
roach; and (ii) using a dictionary learning approach. We then use these learned
models of appearance to synthesize a novel TRUS image that corresponds to
the patients pre-procedure MRI. Our preliminary results, in Sect. 3 demonstrate
approaches to synthesize qualitatively realistic TRUS images given an MRI.

2 Methods

Section 2.1 begins by describing the pre-processing steps necessary to create our
database of training data. In Sect. 2.2, we detail our methods for jointly modeling
MR-TRUS appearance, and how we apply this model to synthesize TRUS images
given novel MRIs. Figure 1 illustrates our method’s model building and synthesis
workflow.

2.1 MRI-TRUS Training Data and Pre-processing

We train our MRI-TRUS model of joint appearance using data from a clinical
database of N = 105 patients undergoing prostate biopsy at our institution. For
each patient, the dataset contains a pre-procedure T2-weighted MRI IMR, an
intra-procedure TRUS image ITRUS, as well as segmented prostate surfaces SMR

and STRUS in each image. Both surfaces were generated using a semi-automated,
clinical segmentation tool (Eigen, Grass Valley, CA). For each MRI-TRUS image
pair, we account for deformations induced by the biopsy procedure by non-rigidly



160 J.A. Onofrey et al.

Fig. 1. Our workflow for training a patient-specific joint MRI-TRUS appearance model
and synthesizing novel TRUS images. We make use of a large database of richly anno-
tated data to learn a model of MRI-TRUS appearance. Given a novel, test MRI, we
first warp all the MRI and TRUS images in our database to the test image’s space using
a series of intra-subject and inter-subject registrations. We then use these transformed
image pairs as training data to learn the model of MRI-TRUS appearance. We then
use this model to synthesize the corresponding TRUS image for that patient.

registering the TRUS image to the MRI space using a surface-based registration.
For each image i = 1, . . . , N , we non-rigidly register STRUS,i to SMR,i using a
robust point matching (RPM) framework [3] with the transformation parame-
terized by a free-form deformation (FFD) [10,11] with 10.0 mm isotropic control
point spacing; We denote these transformations TTRUS�MR, where i � j indi-
cates nonrigid transformation from space i to j. We use all this data to create
our patient-specific models of joint MRI-TRUS appearance as described in the
next section.

2.2 Joint MR-TRUS Appearance Modeling

For a novel MRI IMR not included in the training set, we warp our training
data into this image’s space. To do this, we perform N inter-subject MRI-
MRI registrations. These registrations use a non-rigid RPM registration with
5.0 mm isotropic control point spacing [3,10], and we denote these transforma-
tions TMR�MR,i for i = 1, . . . , N . Using these transformations and the intra-
subject transformations from Sect. 2.1, we reslice all training images to the MRI
reference space using the following:

I ′
MR,i = TMR�MR,i ◦ IMR,i

I ′
TRUS,i = TTRUS�MR,i ◦ TMR�MR,i ◦ IMR,i

for all i = 1, . . . , N patients in the training database, where ◦ is the transforma-
tion operator.
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With the N training images resliced to this common space, we construct our
joint model of MRI-TRUS appearance. First, we center both the MRI and the
TRUS data to have the same median intensity inside the prostate, where the
prostate is defined by the segmented surface SMR for the test patient. Rather
than modeling the appearance of the entire MRI reference volume Ω ⊂ R

3, where
anatomical structure is highly variable and prone to large registration errors due
to being far away prostate surfaces used to perform the registration, we model
the appearance of the prostate volume and the volume immediately outside the
gland boundary. Using the whole gland prostate surface segmentation SMR, we
use morphological filtering to dilate the binary whole gland mask with a large
circular filter to define this region, and we denote voxel locations within this
volume x ∈ ΩP ⊂ Ω. For each MRI-TRUS image pair, we extract and vectorize
the joint MRI-TRUS intensity appearance in this region ji = [mi,ui]

T , where
mi ∈ R

d and ui ∈ R
d are the vectors of d voxel intensities in I ′

MR,i(x) and
I ′
TRUS,i(x),∀x ∈ ΩP , respectively. The N joint appearance vectors are realiza-

tions of the distribution of MRI-TRUS joint intensity appearance J between
the pre-procedure MRI and intra-procedure TRUS imaging. In this work, we
model the distribution of deformations J and synthesize TRUS images using
two methods: (i) a linear global appearance model using principal component
analysis (PCA); and (ii) a non-linear global appearance model using dictionary
learning.

Appearance Modeling and Synthesis Using PCA. PCA estimates the
eigenvectors of J ’s covariance matrix

j = j̄ + Φw (1)

where the eigenvectors Φ = [φ1, . . . ,φN ] ∈ R
2d×N are the N principal modes

of MRI-TRUS appearance, j̄ is the mean appearance for the training data, and
w ∈ R

N is a vector of eigenvectors weights. Figure 2 illustrates an example set of
eigenvectors generated by our model. To synthesize the novel TRUS image, we
first get the target MRI intensity vector m, which contains the voxel intensities
IMR(x),∀x ∈ ΩP . We then create the joint appearance vector as j = [m,0]T ,
where 0 is a zero vector that reflects the TRUS image that we want to synthe-
size. We perform the TRUS image synthesis operation by projecting j onto the
appearance eigenvectors and solving for w in (1)

ŵ = ΦT (j − j̄m),

where we set the TRUS component of the mean appearance vector to zero j̄m =
[m̄,0], and then substitute this result back into (1)

ĵ = j̄ + Φŵ. (2)

The resulting joint appearance solution ĵ = [m̂, û]T provides both the MRI
reconstruction of minimum error m̂ with respect to the PCA model and the
novel synthesized TRUS image in û.
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Fig. 2. Sample eigenvectors showing joint MRI-TRUS intensity appearance found using
PCA. The joint eigenvector is the concatenation of the MRI eigenvector and the TRUS
eigenvector at the same positions in the two corresponding matrices. The first principal
component with the largest eigenvalue is shown in the top left corner and the remaining
principal components are sorted in decreasing order of their eigenvalues from left to
right and top to bottom.

Appearance Modeling and Synthesis Using Dictionary Learning. Dic-
tionary learning, in comparison to PCA, provides a non-linear model of the
distribution joint appearance J . We use K-SVD to generate an overcomplete
dictionary D = [d1, . . . ,dk] ∈ R

2d×k of K sparse joint appearance atoms [1].
While the atoms were created using the joint appearance vectors, each atom
k = 1, . . . ,K may be partitioned into separate MRI and TRUS components
dk = [dMR,k,dTRUS,k, ]

T . Figure 3 shows atoms from a sample dictionary of
joint MRI-TRUS appearance. To reconstruct an MRI-TRUS appearance sample
j = [m,0]T , where 0 is a zero vector that reflects the TRUS image that we want
to synthesize, we solve the sparse coding problem

γ̂ = min
γ

‖j − Dmγ‖22 s.t. ‖γ‖0 ≤ Γ0 (3)

where Dm is the dictionary D with all K atoms having their TRUS appearance
vectors set to zero dTRUS,k = 0, γ is the sparse dictionary weighting coefficients,
and Γ0 is the dictionary’s target sparsity constraint. We use orthogonal matching
pursuit (OMP) to solve for (3). From (3), we have ĵ = Dγ̂, where ĵ = [m̂, û]T

provides both the MRI reconstruction of minimum reconstruction error m̂ with
respect to the dictionary model and the novel synthesized TRUS image in û.

3 Results and Discussion

From our database of N = 105 prostate biopsy patients, we perform leave-
one-out testing. In each leave-one-out test, we selected the i-th patient’s MRI
as the reference image, and created a unique joint appearance model using the
remaining N − 1 images as described in Sect. 2.2. For PCA-based modeling, we
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Fig. 3. Sample dictionary atoms showing joint MRI-TRUS intensity appearance found
using K-SVD. The joint eigenvector is the concatenation of the MRI eigenvector and
the TRUS eigenvector at the same positions in the two corresponding matrices.

Fig. 4. Example MRI-TRUS image synthesis results from three subjects. From left
to right, we show each patient’s prostate MRI, the reconstructed MRI from the joint
appearance model (using PCA 102), synthesized TRUS images found using both the
PCA and dictionary learning (K-SVD) methods, and the patient’s target TRUS image.
Here, PCA X indicates that X eigenvectors were used for the synthesis, with PCA 0
indicating that the mean TRUS image. K-SVD 16 indicates a sparsity constraint of 16
atoms for the synthesis.

limited the model to use the first 3, 16, 46, and 102 eigenvectors, which corre-
sponded to 50, 75, 90, and 100 % of the model’s cumulative variance, respec-
tively. We also used the mean of the training TRUS images, which corresponded
to using 0 eigenvectors in the PCA model, to synthesize the TRUS. For the dic-
tionary learning-based model, we set our dictionary to have K = 64 atoms and
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a sparsity constraint Γ0 = 16. All MR images were resampled to have 1.0 mm
isotropic voxel spacing.

We evaluated TRUS image synthesis both qualitatively and quantitatively
by comparing how similar the synthesized image was to patient i’s correspond-
ing target TRUS image. Figure 4 shows example synthesized TRUS images and
compares them to their respective target TRUS. These results show the syn-
thesized TRUS images appearing more realistic as more eigenvalues are used in
the PCA models. The synthesized TRUS appearance changes from the smooth
mean TRUS appearance using 0 eigenvectors to gradually include more appear-
ance details as more eigenvectors are used. The dictionary learning-based model
synthesized TRUS images nearly identical in appearance to the PCA model using
102 eigenvectors, but did so using only 16 atoms, an 84 % reduction in appear-
ance dimensionality. Ideally, the synthesized TRUS and target TRUS images
should exhibit similar structural appearance at corresponding locations, how-
ever we note that registration errors might still exists between the MRI and
TRUS images since surface-based registration was used to align the datasets in
Sect. 2.1. Figure 4 also shows the reconstructed MRIs (created using the PCA-
based model with 102 eigenvectors) for the example patients. These MRI recon-
structions appear to capture the overall appearance of the original MRI, but
omit some of the subtle anatomical features, for example the low intensity lesion
at the bottom of subject 37’s prostate.

Quantitatively, we calculated the correlation coefficient (CC) between the
synthesized TRUS image and the target TRUS image, using only the voxels
close to the prostate gland in ΩP . Figure 5 shows the distributions of CC val-
ues for the various appearance models. The mean CC values decreased as more
eigenvectors were used for the PCA-based models, and the PCA-based model

Fig. 5. Boxplots show the distribution of correlation coefficient similarity measures
between synthesized TRUS images and their corresponding target TRUS image using
different appearance model methods. Here, PCA X indicates that X eigenvectors were
used for the synthesis, with PCA 0 indicating that the mean TRUS image. K-SVD 16
indicates a sparsity constraint of 16 atoms for the synthesis. Only PCA 102 and K-SVD
16 had no significant differences (two-tailed, paired t-test, p = 0.32), while all other
method comparisons showed significant differences (two-tailed, paired t-test, p ≤ 0.05).
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using 102 eigenvectors and dictionary learning model showed no significant dif-
ferences (two-tailed, paired t-test, p = 0.32). All other combinations of methods
compared gave significantly different similarity values (two-tailed, paired t-test,
p ≤ 0.05). These results appear to indicate that while the synthesized TRUS
images in Fig. 4 appear more realistic, the structures synthesized do not actually
correlate well with those in target TRUS. Interestingly, the smoothest synthetic
TRUS images, those created using the mean intensity of the TRUS data (PCA
0) had the highest mean CC.

4 Conclusion

The method proposed in this paper can be used to create models of multi-modal
image appearance, which in turn can be used to generate synthetic images of one
modality from the other. Our results show that using a data-driven approach to
image appearance modeling can both produce realistic MRI reconstructions and
synthesize realistic TRUS images. We tested two different approaches to model-
ing MRI-TRUS appearance, using PCA and dictionary learning-based methods.
Interestingly, the dictionary learning approach appears to provide similar quali-
tative and quantitative synthesis results compared to PCA, but does so with an
84 % reduction in appearance dimensionality. For this preliminary study, we uti-
lized a global approach to appearance synthesis. However, the results show that
such a global model of image appearance may not sufficiently capture the unique
anatomical features present in the test images. Patch-based learning and synthe-
sis methods may be better suited for learning such non-global appearances. In
future work, we aim to explore using local, patch-based joint appearance model-
ing, and we envision that our global model of appearance presented in this work
could serve as an initial pre-processing step prior to local appearance modeling
and synthesis. Future work will also incorporate these synthetic TRUS images
into the image registration process, and then quantifying target registration error
of expertly identified matching landmarks identified in both the pre-procedure
MRI and intra-procedure TRUS imaging to see how it compares with the current
clinical standard that uses surface-based registration.
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Abstract. This work is part of an ongoing project aimed to generate
synthetic retinal fundus images. This paper concentrates on the gen-
eration of synthetic vascular networks with realistic shape and texture
characteristics. An example-based method, the Active Shape Model, is
used to synthesize reliable vessels’ shapes. An approach based on Kalman
Filtering combined with an extension of a Multiresolution Hermite vascu-
lar cross-section model has been developed for the simulation of vessels’
textures. The proposed method is able to generate realistic synthetic vas-
cular networks with morphological properties that guarantee the correct
flow of the blood and the oxygenation of the retinal surface as observed
with fundus cameras. The validity of our synthetic retinal images is
demonstrated by qualitative assessment and quantitative analysis.

Keywords: Synthetic retinal images · Shape · Texture · Validation

1 Introduction

Retinal Image Analysis (RIA) aims to develop computational and mathemati-
cal techniques for helping clinicians with the diagnosis of diseases such as dia-
betes, glaucoma and cardiovascular conditions, that may cause changes in retinal
blood vessel patterns like tortuosity, bifurcations, variation of vessel width and
colour [1,18]. RIA algorithms have to be validated to avoid obtaining misleading
results. Validation can be defined as the process of showing that an algorithm
performs correctly by comparing its output with a reference standard [16]. A
common practice for validation of medical image algorithms is to use Ground
Truth (GT) provided by medical experts. Obtaining manually GT images anno-
tated by clinicians is an expensive and laborious task which motivates the cre-
ation of synthetic datasets providing GT of adequate quality for algorithm valida-
tion. Medical phantoms are used extensively in medical imaging [3,9]. However,

c© Springer International Publishing AG 2016
S.A. Tsaftaris et al. (Eds.): SASHIMI 2016, LNCS 9968, pp. 167–176, 2016.
DOI: 10.1007/978-3-319-46630-9 17
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to our best knowledge, there are no publicly available databases of synthetic
retinal fundus images, and providing annotations for large image repositories
remains impractical (e.g. UK Biobank alone stores fundus images for 68,000
patients). Synthesized high-resolution fundus images, along with GT free from
inter-/intra-observer variability, would allow an efficient validation of algorithms
for segmentation and analysis of retinal anatomical structures: by tuning mor-
phological and textural characteristics of these images, we can represent the
hallmarks of several diseases or different populations. This work focuses on the
generation of retinal vessels and their integration with non-vessel regions, i.e.
retinal background, fovea and Optic Disc (OD), previously reported by Fiorini
et al. [5], to yield complete fundus camera images. The resulting synthetic reti-
nal fundus images include explicit GT for vessels binary maps, bifurcation point
locations, vessel widths and artery/vein classification.

This paper is organized as follows. In Sect. 2 we describe the proposed method
for the generation of the morphological properties (Subsect. 2.2) and the textural
features (Subsect. 2.3) of the vasculature. In Sect. 3 we report results and sum-
marize and discuss our experiments to evaluate them. Finally in Sect. 4 we give
concluding remarks and hints for future work.

2 Method

2.1 Overview

The proposed approach consists of a learning phase and a generation phase.
In the former phase, data describing vascular morphology and texture are col-
lected from annotations of real images. Models are specified and their parameters
learned from the training data. In the latter phase, the models obtained are used
to create synthetic vascular networks. Arteries (A) and Veins (V) are created sep-
arately with the same protocol, and then combined together. This work is based
on the publicly available High-Resolution Fundus1 (HRF) images database [13],
and on a subset of retinal images of the GoDARTS bioresource2.

2.2 Vascular Morphology

The generation of synthetic vessel morphology has been achieved using the well-
known Active Shape Model (ASM) [4]. This model provides a statistical rep-
resentation of shape represented by a set of points, called landmark points. By
analysing the variations in shape over the training set, a PCA model is built.
The training samples (vessel centerlines in our case) are aligned into a common
coordinate frame and the deviations from the mean shape are analysed. Each
training shape is represented as a fixed number n of landmark points placed
along a vessel and equally spaced. These landmarks form a 2n vector x, the

1 The HRF database can be free downloaded at http://www5.cs.fau.de/research/data/
fundus-images/.

2 The GoDARTS resource is described at http://medicine.dundee.ac.uk/godarts.

http://www5.cs.fau.de/research/data/fundus-images/
http://www5.cs.fau.de/research/data/fundus-images/
http://medicine.dundee.ac.uk/godarts
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dimensionality of which is reduced using PCA, assuming that the most inter-
esting feature is the one with the largest variance. Hence, each shape can be
approximated as:

xi ≈ x̄ + Pbi (1)

where x̄ is the mean shape of the aligned data, P contains the first t eigenvectors
corresponding to the largest t eigenvalues of the covariance matrix of the training
shapes, and bi is a t dimensional vector of parameters of a deformable shape
model. We choose t, so that the model represents 98 % of the total variance of
our training data. By varying the element in bi, randomly choosing them from
a multivatiate normal distribution learned across the training set shapes, we
generate a new synthetic vessel using Eq. (1).

The data describing the shape of the vessels of each type (A and V) for
the main arcades, nasal and temporal (n = 81 landmarks), and their branches
(n = 31 landmarks) up to three levels of branching have been previously collected
from 50 GoDARTS retinal fundus images. We used polar coordinates centred in
the OD and with the main axis in the direction of the OD-Fovea axis (i.e. the line
connecting the OD centre and the fovea), adopted by the VAMPIRE software
suite [15]. Vessel shapes are represented into this system using a transforma-
tion that includes a rigid translation and rotation. Similarly the shapes of the
branches have been aligned using a rigid transformation that shifts their starting
point to the origin of the same coordinate system. Fig. 1 shows the aligned set of
shapes and the mean shape for the temporal arcade (a) and a vessel branch (b).

(a) (b)

Fig. 1. Vessels aligned shapes (green) and their mean shape (red) for the temporal
arcades (a) a vessel branch (b). (Color figure online)

Individually generated synthetic vessels are then connected to create the
vascular network skeleton. The location of vessel bifurcations is estimated from
real images as follows. First we calculate the spatial density distribution map
(Fig. 2(a)) of all bifurcation points annotated on real images. Then we map our
synthetic vessel onto it, obtaining a probability score for each point of the vessel
to become a bifurcation point (Fig. 2(b)). We select one of the points having
maximum score as the first bifurcation point of the main arcades. We select the
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following bifurcation point as one of the points having maximum score located at
a distance d ∈ [l/2n, l/n] from the previous one, where l is the length of the vessel
and n is the desired number of bifurcations. These bounds are required to obtain
a biologically plausible structure. We continue to select points until the desired
number of bifurcation points is achieved. This number is chosen empirically,
based on accurate analysis of the number of bifurcations in real images.

(a) (b)

Fig. 2. (a) Density Map distribution of artery bifurcation points in the image plane.
(b) A synthetic vessel with the probability score of each point to be a bifurcation point.

We compute orientation and calibre for each branch vessel originating at
a bifurcation point using Murray’s bifurcation model [12], linking branching
angles with vessel calibres. Newly generated synthetic branches need to fit with
the context of the vascular tree already generated: all vessels should be inside
the Field of View (FOV), but outside the foveal region, avoiding intersections
between vessels of the same type, and converging toward the fovea.

The binary map of the vascular tree (see example in Fig. 3) is obtained by
adding calibre information using mathematical morphological dilation of the
skeleton. The initial calibre of the main arcades is sampled from the estimate
distribution of the largest vessel calibre of real images. The initial calibre of the
branches is obtained from the parent vessel calibre following Murray’s Law.

2.3 Vascular Texture

To generate synthetic vessel textures we collected examples of intensity values
along vessels and of textural features of the surrounding area (background). We
then created a model combining both information, capturing the transition of
intensities between vessels and background.

Data Collection. Cross-sections of the vessel of interest were defined, spaced
by 5 pixels along the vessel centerline. We extracted the intensity RGB profile
on lines perpendicular to the direction of the vessel as depicted in Fig. 4(a).
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Fig. 3. Example of synthetic vascular tree (arteries in red and veins in blue for display
purpose). (Color figure online)

(a) (b)

Fig. 4. (a) Cross-sections perpendicular to vessel direction, background regions and
RGB intensity profile along one of the cross-sections. (b) Green channel fitting profile
using the Extended Multiresolution Hermite Model. (Color figure online)

The green channel intensities are fitted (Fig. 4(b)) with a weighted NonLinear
Least Squares model using a 6-parameters Extended Multiresolution Hermite
Model [11] (EMHM) to fit the cross-sectional intensity profiles. The EMHM
accounts for non-symmetric and symmetric profiles, with or without central
reflex, expressed by the formula:

H(a,m, δ, σ, p, q, x) = −p{1 + a[(x − m − δ)2 − 1]}e− (x−m)2

2σ2 + q (2)

where a ∈ [−1, 1] models the depth of the central reflection; m ∈
[1, length(profile)] is the mean of the Gaussian and allows shifts along the x-axis
and length(profile) is the length of the vessel region around the target location;
δ ∈ [−2, 2] accounts for asymmetry; σ ∈ [1, 15] is the standard deviation of the
Gaussian; q ∈ [0, 255] shifts the function along y-axis, avoiding negative pixels
values; p ∈ [0, 150] guarantees that vessels are darker than the background; x is
a vector of the same length of the cross-section of the vessel. The initial condi-
tions are a = 0, m = length(profile)/2, δ = 0.2, σ = length(profile)/std(profile),
q = max(profile), p = max(profile) − min(profile).

At the endpoints of each cross-section (green circles in Fig. 4(a)) we computed
five statistical texture descriptors [7,14] (Mean, Std, Skewness, Kurtosis and
Entropy) on two near-circular windows of 6 pixel radii.
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The ensemble of these data, 6 EMHM parameters (Xn×6) and 5 × 2 back-
ground texture descriptors (Yn×10) for each profile, for a total of 975 artery
and 1593 vein profiles, collected from the 15 healthy subjects of HRF dataset,
constitute the measurements for the procedure proposed below.

Generation of Vessel Textures. The procedure for creating reliable synthetic
vessel texture takes into account both the continuity of intensity profiles along
the vessel and their consistence with background intensities. We apply a Kalman
Filter [8], casting our problem as a state space system:

{
xk = Fxk−1 + wk−1 System model
yk = Hxk + vk Measurement model

(3)

where xk is the state vector containing the 6 parameters describing the intensity
profile, F is the state transition matrix (set to identity matrix), yk is the vector
of measurements given by 10 textural descriptors of the synthetic background
and the two vectors wk−1 and vk are unrelated realizations of white zero-mean
Gaussian noise. The measurement matrix H has been obtained, using Multivari-
ate Multiple Linear Regression, solving the system:

⎡

⎢
⎣

y1,1 . . . y1,10
...

. . .
...
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⎡

⎢
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ε1,1 . . . ε1,10
...
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εn,1 . . . εn,10

⎤

⎥
⎦ (4)

where the matrices Xn×6 and Yn×10 are the measurements calculated as
described in Sect. 2.3 and ε represents the system error.

Equation (3) recursively estimate, through a predictor-corrector method, the
state xk and its covariance Pk. The initial estimate of the state x̂0 (first profile)
is assumed to be known and its covariance matrix P0 is initialized to zero. The
first profile for the major arcades is the profile having background descriptors
more similar to the current synthetic ones. The first profile for the branches is
the profile of the parent vessel at the bifurcation point from which they originate.

Iterating this procedure, each new intensity profile of the green channel is
generated taking into account the previous one and the surrounding background.
A similar procedure was applied to the red and blue channels. However, based
on experimental results, we later decided to simply use the average intensity
profile of the training ones for the latter two channels. The red component is
weighted with underlying background red intensity level, in order to take into
account the spatial colour distribution of the whole image. Finally, the RGB
intensity profile is cut with the full-width-at-half-maximum algorithm [10] to
keep the mere component of the vessel, and re-sampled using the Bresenham
line-drawing algorithm [2]. Experiments showed that the quality of the synthetic
images generated would not improve using the full Kalman estimator in the red
and blue channels.

The two vascular trees obtained (arteries and veins) are combined and super-
imposed on synthetic backgrounds, reported elsewhere [5], to create complete
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synthetic fundus camera images. Gaussian filtering is finally applied to smooth
vessel edges and in general unrealistically sharp intensity changes.

The image size of the final synthetic is 3,125 × 2,336 pixels with FOV diame-
ter of 2,662 pixels, in line with the resolution of state-of-the-art fundus cameras.
The whole method and an user-friendly GUI of the simulation tool have been
implemented in Matlab R©2014b. An extended dataset of synthetic images and
the simulation tool will be publicly available after publication.

3 Results

In Fig. 5 we visually compare real images (a, b) with synthetic images (c, d).
We notice that the synthetic vessels are characterized by a realistic morphology,
including typical tortuosity. The temporal segments of the arcades go toward
and around the macula, and the nasal segments radiate radially from the nerve
head. The vessels colouring is always darker than the background, following real
images: vessels appear brighter around the OD and darker towards the fovea and
the extremities of the FOV. The arteries appear, as in real images, brighter and
narrower than veins. Because of the changes in intensity profile along the tree,
the central reflex (a central, thin, bright reflection appearing sometimes along
the centerline of large vessels, especially arteries) is automatically provided.

(a) (b)

(c) (d)

Fig. 5. Comparison between real fundus images from the GoDARTS dataset (a, b) and
two complete synthetic retinal fundus images generated by our method (c, d).
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(a) (b)

Fig. 6. Density Map distribution of bifurcation points in synthetic images for artery
(a) and vein (b).

As can be seen in Fig. 6, the bifurcation probability maps of our synthetic
images are plausible and similar to the one of the real images.

Our method is fully capable of modelling any biological plausible patterns
and outliers given examples of such patterns in the training images. Moreover,
the proposed method is potentially capable of dealing with pathologies without
increasing its complexity. Indeed, our models can learn their parameters from
training set of pathological images.

In absence of quantitative quality criteria, we performed a simple qualita-
tive assessment by asking 7 experts (ophthalmologists and researchers in retinal
image analysis) to score the degree of realism of 12 synthetic retinal fundus
images, using a scale from 1 to 4, where 1 = not realistic at all, 2 = slightly real-
istic, 3 = nearly realistic, 4 = very realistic. Scores are summarized in Table 1.

Table 1. Qualitative assessment: scores given by the experts for each image

Image #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

mean 2.14 1.36 2.00 2.43 2.14 1.71 2.79 2.50 2.29 2.36 2.00 1.86

±std ±0.64 ±0.44 ±0.93 ±1.05 ±0.99 ±0.70 ±1.06 ±0.89 ±1.03 ±0.87 ±0.53 ±0.64

The best image obtained a score of 2.79, while the average score over all the
images is 2.13. We did not ask the experts to make any allowance for the fact that
many characteristics of fundus images are not modelled (e.g. small capillaries,
the vascular network inside the OD). Considering this, the scores suggest that
our synthetic images are plausible, as far as the only features generated go.
The experts also suggested some improvements: the density of the vessels in
some zone is too high, the largest vessels occasionally end abruptly, some first
level branches appear too straight and the direction of growth sometimes recoils.
These aspects will be considered in our future work. The comments given by the
experts will be analysed systematically and properly addressed. A qualitative
evaluation on a larger dataset will be used for this scope.

The main purpose of this project was to generate a synthetic dataset pro-
viding GT for validation of retinal image analysis algorithms, e.g. vasculature
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Table 2. Performance comparison of VAMPIRE segmentation algorithm on real (HRF)
and synthetic images: True Positive Rate (TPR), False Positive Rate (FPR), Specificity
(Sp), Accuracy (Acc) (mean± standard deviation).

TPR FPR Sp Acc

Real images 0.9874± 0.0015 0.0058± 0.0070 0.9942± 0.0070 0.9936± 0.0063

Synthetic images 0.9703± 0.0185 0.0151± 0.0125 0.9849± 0.0125 0.9835± 0.0122

and landmark detection. To demonstrate the suitability of our dataset for this
purpose, we compared the performance of a retinal vessel segmentation soft-
ware, VAMPIRE [17], when run on our synthetic images and on real images.
We used 10 images of healthy eyes with manual GT from the HRF dataset, and
10 of our synthetic images including their synthetic binary maps. Segmentation
results are evaluated in term of the standard statistical criteria [16]. The com-
parison of these 2 experiments, summarized in Table 2, shows that our synthetic
images behave comparably with real ones in term of vasculature segmentation
and certainly in line with the performance of algorithms reported recently in the
literature [6]. We note generally small differences between all values.

4 Conclusions

This paper has presented a novel technique to generate a reliable synthetic retinal
vasculature, as part of an ongoing project aimed to generate full, realistic, syn-
thetic fundus camera images. The results are promising for both the morphology
and the texture of the vessel networks. To our best knowledge no similar method
has been reported in literature. The encouraging quality of our initial results is
supported, so far, by small-scale visual inspection and quantitative experiments.
Further improvements to this preliminary work will take into account further
properties of real fundus images, including the geometric interaction between
arteries and veins, the way vessels radiate from the OD, the vascular network
inside the OD, and the appearance of further structures like small capillaries
and the retinal nerve fibre layer. Another future direction will be the simulation
of lesions.
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