A Survey on Numerical Methods
for the Simulation of Initial Value
Problems with sDAEs

Michael Burger and Matthias Gerdts

Abstract This paper provides an overview on numerical aspects in the simulation
of differential-algebraic equations (DAEs). Amongst others we discuss the basic
construction principles of frequently used discretization schemes, such as BDF
methods, Runge—Kutta methods, and ROW methods, as well as their adaption
to DAEs. Moreover, topics like consistent initialization, stabilization, parametric
sensitivity analysis, co-simulation techniques, aspects of real-time simulation, and
contact problems are covered. Finally, some illustrative numerical examples are
presented.

Keywords BDF methods ¢ Consistent initialization ¢ Contact problems e
Co-simulation ¢ Differential-algebraic equations ¢ Real-time simulation * ROW
methods ¢ Runge—Kutta methods ¢ Sensitivity analysis * Stabilization

Subject Classifications: 651.80, 65L05, 65L.06

1 Introduction

Simulation is a well-established and indispensable tool in scientific research as
well as in industrial development processes. Efficient tools are needed that are
capable of simulating complex processes in, e.g., mechanical engineering, process
engineering, or electrical engineering. Many of such processes (where appropriate
after a spatial discretization of a partial differential equation) can be modeled as

M. Burger (P<)

Department Mathematical Methods in Dynamics and Durability MDF, Fraunhofer Institute for
Industrial Mathematics ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

e-mail: Michael.Burger @itwm.fraunhofer.de

M. Gerdts

Department of Aerospace Engineering, Institute of Mathematics and Applied Computing,
Universitidt der Bundeswehr Miinchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
e-mail: matthias.gerdts @unibw.de

© Springer International Publishing AG 2017 221
A. Ilchmann, T. Reis (eds.), Surveys in Differential-Algebraic Equations IV,
Differential-Algebraic Equations Forum, DOI 10.1007/978-3-319-46618-7_5

mailto:Michael.Burger@itwm.fraunhofer.de
mailto:matthias.gerdts@unibw.de

222 M. Burger and M. Gerdts

differential-algebraic equations (DAEs), which are implicit differential equations
that typically consist of ordinary differential equations as well as algebraic equa-
tions. Often, DAEs are formulated automatically by software packages such as
MODELICA or SIMPACK. In its general form, the initial value problem for a DAE
on the compact interval I = [a, b] reads as

F(1,2(1).2 (1)) = 0, z(a) = za, (1.1)

where F : [x R" x R" — R" is a given function and z, € R” is an appropriate
initial value at r = a. The task is to find a solution z : I —> R”" of (1.1). Throughout
it is assumed that F is sufficiently smooth, i.e., it possesses all the continuous partial
derivatives up to a requested order.

Please note that (1.1) is not just an ordinary differential equation in implicit
notation, since we permit the Jacobian of F with respectto 7, i.e., F’ ; ,, to be singular
along a solution. In such a situation, (1.1) cannot be solved directly for z’. Particular
examples with singular Jacobian are semi-explicit DAEs of type

F(t,2,7) = (M(t’x;f; ;J;()t’x’ y)) . zi= ()T, (1.2)

with a non-singular matrix M and the so-called differential state vector x and
the algebraic state vector y. Such systems occur, e.g., in process engineering and
mechanical multi-body systems. More generally, quasi-linear DAEs of type

F(t,2.7) = Q(t.2)7 — f(1.2)

with a possibly singular matrix function Q frequently occur in electrical engineering.

The potential singularity of the Jacobian F ; , has implications with regard to
theoretical properties (existence and uniqueness of solutions, smoothness properties,
structural properties, ...) and with regard to the design of numerical methods
(consistent initial values, order of convergence, stability, ...). A survey on the
solution theory for linear DAEs can be found in the recent survey paper [141]. A
comprehensive structural analysis of linear and nonlinear DAEs can be found in the
monographs [90] and [92]. While explicit ordinary differential equations (ODEs)
can be viewed as well-behaved systems, DAESs are inherently ill-conditioned and the
degree of ill-conditioning increases with the so-called (perturbation) index, compare
[75, Definition 1.1]. As such, DAEs require suitable techniques for its numerical
treatment.

To this end, the paper aims to provide an overview on the numerical treatment
of the initial value problem. The intention is to cover the main ideas without too
many technical details, which, if required, can be found in full detail in a huge
number of publications and excellent textbooks. Naturally not all developments can
be covered, so we focus on a choice of methods and concepts that are relevant in
industrial simulation environments for coupled systems of potentially large size.

A Survey on Numerical Methods for Initial Value Problems with sDAEs 223

These concepts enhance basic integration schemes by adding features like sensitivity
analysis (needed, e.g., in optimization procedures), contact dynamics, real-time
schemes, or co-simulation techniques. Still, the core challenges with DAE:s, that is
ill-conditioning, consistent initial values, index reduction, will be covered as well.

The outline of this paper is as follows. Section 2 introduces index concepts
and summarizes stabilization techniques for certain classes of DAEs. Section 3
deals with the computation of the so-called consistent initial values for DAEs
and their influence on parameters. Note in this respect that DAEs, in contrast to
ODEs, do not permit solutions for arbitrary initial values and thus techniques are
required to find suitable initial values. The basics of the most commonly used
numerical discretization schemes are discussed in Sect. 4, amongst them are BDF
methods, Runge—Kutta methods, and ROW methods. Co-simulation techniques for
the interaction of different subsystems are presented in Sect. 5. Herein, the stability
and convergence of the overall scheme are of particular importance. Section 6
discusses approaches for the simulation of time crucial systems in real-time. The
influence of parameters on the (discrete and continuous) solution of an initial value
problem is studied in Sect. 7. Hybrid systems and mechanical contact problems are
discussed in Sect. 8.

Notation

We use the following notation. The derivative w.r.t. time of a function z(¢) is denoted
by 7/(¢). The partial derivative of a function f with respect to a variable x will be
denoted by f] = Jf/dx. As an abbreviation of a function of type f(z, x(f)) we use
the notation f7f].

2 Error Influence and Stabilization Techniques

DAEs are frequently characterized and classified according to its index. Various
index definitions exist, for instance the differentiation index [62], the structural
index [45], the strangeness index [90], the tractability index [92], and the perturba-
tion index [75]. These index definitions are not equivalent for general DAEs (1.1),
but they coincide for certain subclasses thereof, for instance semi-explicit DAEs in
Hessenberg form. For our purposes we will focus on the differentiation index and
the perturbation index only.

The differentiation index is one of the earliest index definitions for (1.1) and
is based on a structural investigation of the DAE. It aims to identify the so-called
underlying ordinary differential equation. To this end let the functions F) : [to, tr] x
RUFDn 5 R for the variables 7,7, ...,zVTD € R" forj = 0, 1,2,. .. be defined

224 M. Burger and M. Gerdts

by the recursion

FO@,2,7) = F(1,2,7), (2.1)
FG—D
ot

J i
AFU—D)
+2. (t.z.d,....2M D =12,
=0

FO(t,2,7,...,20tD) = (t.z.7,....29) (2.2)

9z
2.3)

Herein, F is supposed to be sufficiently smooth such that the functions F) are well
defined.
The differentiation index is defined as follows:

Definition 2.1 (Differentiation Index, Compare [62]) The DAE (1.1) has differ-
entiation index d € Ny, if d is the smallest number in Ny such that the so-called
derivative array

FO(,z,7,....29t) =0, j=0,1,....d, (2.4)

allows to deduce a relation of type 7' = f(¢, z) by algebraic manipulations.
If such a relation exists, then the corresponding ordinary differential equation
(ODE) 7' (t) = f (1, z(r)) is called the underlying ODE of the DAE (1.1).

The definition leaves some space for interpretation as it is not entirely clear what
is meant by “algebraic manipulations.” However, for semi-explicit DAEs it provides
a guideline to determine the differentiation index. Note that the special structure
of semi-explicit DAEs is often exploited in the design of numerical schemes and
stabilization techniques.

Definition 2.2 (Semi-Explicit DAE) A DAE of type

X () = f(t.x(1),y(1)), 2.5
0 = g(t,x(1), y(1)), (2.6)

is called semi-explicit DAE. Herein, x(+) is referred to as differential variable and y(-)
is called algebraic variable. Correspondingly, (2.5) is called differential equation
and (2.6) algebraic equation.

For semi-explicit DAEs the common approach is to differentiate the algebraic
equation w.r.t. time and to substitute the occurring derivatives of x by the right-
hand side of the differential equation. This procedure is repeated until the resulting
equation can be solved for y'.

A Survey on Numerical Methods for Initial Value Problems with sDAEs 225

Example 2.1 (Semi-Explicit DAE with Differentiation Index One) Consider (2.5)-
(2.6). Differentiation of the algebraic equation w.r.t. time yields

0 = g/l + &I () + & [()
= gilf] + &[] + g1y (0.
Herein, we used the abbreviation f[f] for f(z, x(z), y(¢)) and likewise for the partial
derivatives of g.
Now, if the Jacobian matrix g;[t] is non-singular with a bounded inverse along
a solution of the DAE, then the above equation can be solved for y’ by the implicit

function theorem and together with the differential equation (2.5) we obtain the
underlying ODE

X (1) = f(t, x(2), (1)),
Y (0) = =gl (&l + &.[1,1) ,

and the differentiation index isd = 1.

In the above example, the situation becomes more involved, if the Jacobian
matrix g;[t] is singular. If it actually vanishes, then one can proceed as in the
following example.

Example 2.2 (Semi-Explicit DAE with Differentiation Index Two) Consider (2.5)—
(2.6). Suppose g does not depend on y and thus g; [f] = 0. By differentiation of the
algebraic equation we obtain

0= g/l + gl (1) = gl + &, [A/1 =: ¢V (1, x(1), y(1))

A further differentiation w.r.t. time yields
0= (gl + M)A + (¢ 1Y (1)

with (g(l));[t] = g [f[f]. Now, if the matrix g [7]f}[f] is non-singular with a
bounded inverse along a solution of the DAE, then the above equation can be
solved for y' by the implicit function theorem and together with the differential
equation (2.5) we obtain the underlying ODE

X (1) = f(t, x(1), y(1)),
Y (0) = =@/ ()il +)l f1) .

and the differentiation index is d = 2.

226 M. Burger and M. Gerdts

The procedure of the preceding examples works for semi-explicit Hessenberg
DAESs, which are defined as follows:

Definition 2.3 (Hessenberg DAE)
(a) Fora given k > 2 the DAE

-x/l (t) = fl(tv y(t)v X1 (t)v -x2(t)s R -xk—Z(t)v -xk—l(t))s
x»nt) = f x1(1), x2(1), ..., xx—2(), X4—1 (1)),
: - 2.7
X (1) = fim1 (2, Xp—2(8), x—1(1)),
0 = g, Xp—1(1))
is called Hessenberg DAE of order k, if the matrix
R(@) =gy [fici [0 1 - £, (2.8)

is non-singular for all 7 € [ty, #;] with a uniformly bounded inverse [|R™!(7)| <
C in [y, 7], where C is a constant independent of ¢.
(b) The DAE

X (1) = f(t.x@). y(0)).

0 = glt.x(t).y() @9)

is called Hessenberg DAE of order 1, if the matrix g;[t] is non-singular with
I g; [f]7"|| < Cforallt € [t, tf] and some constant C independent of 7.

Herein, y is called algebraic variable and x = (x,...,Xx— 1)T in (a) and x in (b),
respectively, is called differential variable.

By repeated differentiation of the algebraic constraint 0 = g(, xx—1(¢)) w.r.t.
to time and simultaneous substitution of the derivatives of the differential variable
by the corresponding differential equations, it is straightforward to show that the
differentiation index of a Hessenberg DAE of order k is equal to k, provided the
functions g and f;, j = 1,...,k — 1, are sufficiently smooth. In order to formalize
this procedure, define

g0t xi-1(0) := g(t, 1 (1). (2.10)

Differentiation of g(® with respect to time and substitution of

X1 (1) = fi1 (8, X2 (), X1 (1)

A Survey on Numerical Methods for Initial Value Problems with sDAEs 227

leads to the equation
0 = gi(t.x—1(0) + g5, (t. x,—1 (1) - fim1 (1. 11—2(2). 21 (1))
=: gVt x2(1), 11 (1)),

which is satisfied implicitly as well. Recursive application of this differentiation and
substitution process leads to the algebraic equations

0 =gVt 01— (0, ..., 11 (1), j=1,2,... k=2, (2.11)
and

0 =g* D, y(0). x1(..... 01 (0). 2.12)

Since Egs. (2.11)—(2.12) do not occur explicitly in the original system (2.7), these
equations are called hidden constraints of the Hessenberg DAE. Note that the matrix
R in (2.8) is given by dgk=1 /dy.

A practically important subclass of Hessenberg DAEs are mechanical multibody
systems in descriptor form given by

g =),
M(t, q()V' (1)) = f(t.q(1), v(1)) — gl (t. q(1) T A (D). (2.13)
0= g(,49(1)),

where ¢(-) € R” denotes the vector of generalized positions, v(-) € R” the vector of
generalized velocities, and A(-) € R™ are Lagrange multipliers. The mass matrix M
is supposed to be symmetric and positive definite with a bounded inverse M~ and
thus, the second equation in (2.13) can be multiplied by M(t, ¢(t))~". The vector f
denotes the generalized forces and torques. The term g;(t, g) T A can be interpreted
as a force that keeps the system on the algebraic constraint g(t, g) = 0.

The constraint (¢, g(¢)) = 0is called constraint on position level. Differentiation
with respect to time of this algebraic constraint yields the constraint on velocity level

&t q(0) + g,(1,q()) - v(1) = 0

and the constraint on acceleration level

g0t q(0) + €l (1.q(1)) - V(1) + g (1. (1)) - V' (1) + &y (2. g1 V(D). V(1) = 0.

Replacing v’ by

V(1) = M1, q() ™" (f(q(1), (1) — gt q(1)) T A1)

228 M. Burger and M. Gerdts

yields

0 = g(t,q(1)) + g, (1, q(1) - v(1)
+g,(t.q() - M(t.q(1)) ™" (f(q(1). v(1) — gl(t. q(1) TA(1))
+8,,(t, g)) (v (1), v(1)).

. _1 T . .
If g, (. @) has full rank, then the matrix g (t, 9)M(t,q)~ g,(t,q) ' is non-singular
and the latter equation can be solved for the algebraic variable A. Thus, the
differentiation index is three.

Remark 2.1 Note that semi-explicit DAEs are more general than Hessenberg DAEs
since no regularity assumptions are imposed in Definition 2.2. In fact, without
additional regularity assumptions, the class of semi-explicit DAEs is essentially
as large as the class of general DAEs (1.1), since the settings z/(f) = y(¢r) and
F(t,y(t),z(t)) = O transform the DAE (1.1) into a semi-explicit DAE (some care
has to be taken with regard to the smoothness of solutions, though).

2.1 Error Influence and Perturbation Index

The differentiation index is based on a structural analysis of the DAE, but it does not
indicate how perturbations influence the solution. In contrast, the perturbation index
addresses the influence of perturbations on the solution and thus it is concerned with
the stability of DAEs. Note that perturbations frequently occur, for instance they are
introduced by numerical discretization schemes.

Definition 2.4 (Perturbation Index, See [75]) The DAE (1.1) has perturbation
index p € N along a solution z on [fy, #], if p € N is the smallest number such that
for all functions 7 satisfying the perturbed DAE

F(t,2(). 7 (1) = 8(0), (2.14)
there exists a constant S depending on F and #r — fp with

lz(0) =zl < § (IIZ(to) = Zto)l| + max [8()] + ... + max ||5(P‘”(f)ll)
(2.15)

for all ¢ € [to, t7], whenever the expression on the right is less than or equal to a
given bound.

A Survey on Numerical Methods for Initial Value Problems with sDAEs 229

The perturbation index is p = 0, if the estimate

120 201 = 5 (et ~)] + max

L f 8(s)ds

holds. The DAE is said to be of higher index, if p > 2.

) (2.16)

According to the definition of the perturbation index, higher index DAEs are ill-
conditioned in the sense that small perturbations with high frequencies, i.e., with
large derivatives, can have a considerable influence on the solution of a higher index
DAE as it can be seen in (2.15). For some time it was believed that the difference
between perturbation index and differentiation index is at most one, until it was
shown in [34] that the difference between perturbation index and differentiation
index can be arbitrarily large. However, for the subclass of Hessenberg DAEs as
defined in Definition 2.3 both index concepts (and actually all other relevant index
concepts) coincide.

The definition of the perturbation index shows that the degree of ill-conditioning
increases with the perturbation index. Hence, in order to make a higher index DAE
accessible to numerical methods it is advisable and common practice to reduce
the perturbation index of a DAE. A straightforward idea is to replace the original
DAE by a mathematically equivalent DAE with lower perturbation index. The index
reduction process itself is nontrivial for general DAEs, since one has to ensure that it
is actually the perturbation index, which is being reduced (and not some other index
like the differentiation index).

For Hessenberg DAEs, however, the index reduction process is straightforward as
perturbation index and differentiation index coincide. Consider a Hessenberg DAE
of order k as in (2.7). Then, by replacing the algebraic constraint 0 = g(z, x;—; (7))
by one of the hidden constraints g, j € {1,...,k — 1}, defined in (2.11) or (2.12)
we obtain the Hessenberg DAE

x/l (t) = fl (ts y(t)v X1 (t)s Xz(l), O] -xk—Z(t)v Xk—1 (t))s
X%t = f xi(), x2(0), ..., x2(), x-1(0),
: - 2.17)
X () = fim1 (1, Xp—2 (1), X—1(1)),
0 = gV, Xp—1— (), ..., x—1(D),

where we use the setting xy := y for notational convenience. The Hessenberg DAE
in (2.17) has perturbation index k — j. Hence, this simple index reduction strategy
actually reduces the perturbation index, and it leads to a mathematically equivalent
DAE with the same solution as the original DAE, if the initial values x(#y) and
y(to) satisfy the algebraic constraints g9 (fo, x,—1—¢(fo). . . ., xx—1(f0)) = 0 for all
£=0,....k—1.

230 M. Burger and M. Gerdts

On the other hand, the index reduced DAE (2.17) in general permits additional
solutions for those initial values x(#) and y(#), which merely satisfy the algebraic
constraints g9 (t9, xi—1_¢ (o), . . ., xk—1 (to)) = O forall £ = j, ...,k — 1, but not the
neglected algebraic constraints with index £ = 0,...,j — 1. In the most extreme
case j = k — 1 (the reduced DAE has index-one) x(#y) can be chosen arbitrarily
(assuming that the remaining algebraic constraint can be solved for y(zy) given the
value of x(zp)). The following theorem shows that the use of inconsistent initial
values leads to a polynomial drift off the neglected algebraic constraints in time,
compare [73, Sect. VIL.2].

Theorem 2.1 Consider the Hessenberg DAE of order k in (2.7) and the index
reduced DAE in (2.17) with j € {1,...,k — 1}. Let x(t) and y(t) be a solution
of (2.17) such that the initial values x(ty) and y(ty) satisfy the algebraic constraints
8O (to, xp—1—e(t0), . .., xx—1(t0)) = O forall £ =j,... . k—1. Thenfor = 1,....j
and t > ty we have

-1

_ 1 -
g X1 (O () = Y (= 10)" 8T o). (2.18)
v=0
with gV~ (1] := gV~ (19, xp—1—(j—t4v) (t0)s - - - » Xk—1(0))-

Proof We use the abbreviation g(©[f] for g (¢, xi_1_¢(7), xx—1 (t)) for notational
convenience. Observe that

- d
g(] +1) [1] =

G=0f t=1,...,j
dtg []’ ’ 9J9

and thus

t
700 = g0l + [0V ela,

fo

We have g [f] = 0 and thus for £ = 1:

t
7 = g1l + [e = 5o

fo

This proves (2.18) for £ = 1. Inductively we obtain

t
QU] = U=+ + / LUOe)dr

to
£ =1
g™] + Z (7= 1) [n]d

o = 0

A Survey on Numerical Methods for Initial Value Problems with sDAEs 231

1 .
g <‘+“)[r1+2(PENIGIDRE SN ()

(1 (l+l))[t]+z _ vg(l {4+v— l)[l‘o]

~

1 .
— Z . (t _ to)vg(j (Z+1)+V)[t0],

which proves the assertion. O

We investigate the practically relevant index-three case in more detail and
consider the reduction to index one (i.e., k = 3 and j = 2). In this case Theorem 2.1
yields

1, x2(0) = gto] + (¢ — 1)V [to], (2.19)
gV (t.x1(), x2(1)) = gV [to]- (2.20)

The drift-off property of the index reduced DAE causes difficulties for numerical
discretization methods as the subsequent result shows, compare [73, Sect. VIL.2].

Theorem 2.2 Consider the DAE (2.7) with k = 3 and the index reduced prob-
lem (2.17) with j = 2. Let z(t; t,,, zm) denote the solution of the latter at time t
with initial value z,, at t,, where 7 = (x1,x»,y)" denotes the vector of differential
and algebraic states. Suppose the initial value zy at ty satisfies g[to)] = 0 and
gW[n] = 0.

Let a numerical method generate approximations z, = (X1 X2n.Yn)' Of
z2(ty; 1o, 20) at time points t, = ty + nh, n € Ny, with stepsize h > 0. Suppose
the numerical method is of order p € N, i.e., the local error satisfies

||Zn+l _Z(tn+l; Iy, Zn)” = ﬁ(hp-H)s n € Np.

Then, for n € N the algebraic constraint g = g satisfies the estimate

L
lg(tn, x2.0) || < CHP (Lo(tn — 1) + 21 (ta — lo)z) (2.21)

with constants C, Ly, and L.

Proof Since zj satisfies g@[tg] = 0 and g("'[ty] = 0, the solution z(t; t, zo)
satisfies these constraints for every ¢. For notational convenience we use the notion
29(t, z(1)) instead of g9 (¢, x,(1)) and likewise for gV, To this end, for a given ,

232 M. Burger and M. Gerdts
we have

189zl = 18 (s 20) — 8 (1 2t 10, 20)) |

n—1
= 11> (8 (s 2t tmt1. 2ot 1)) = 8 (. 2t . 2))) |l
m=0
n—1
f Z ”g(O) (tny Z(tn; tm+1 5 Zm+l)) - g(O)(tny Z(tn; [Zm)) ” . (222)
m=0

Exploitation of (2.19)—(2.20) with f, replaced by #,, and £, 1, respectively, yields

18t 2t w12 2t 1)) — 8 (1 2t b Zn)) |
=18 Umt 1 2mr1) + (tn = twr 18 (s 1. Zmt1)
— 8t zm) = (= 1)8"™ (G 2 |
=18 Ut 1 2mr1) + (tn =)8 (et 1. Zmt1) — 8 U1 213 s)
+ 80 Cnr1, 215t) = 80 (s 2m) = (60 = 1) (s 2|
=18 Ut 1 2mr1) + (tn =)8 (et 1. Zmt1) — 8 1 213 s)
+ 8V (n 2m) + (1 — 1)8" (0 20) — 89 (s 2) = (10— 1) (1, 20) |
=18 (1 2mt1) — 8 U1 2t 1 s 2m))
+ (1 = tt1) (87 12 s 1) — 81 (e z)) |l
< LoCH T + (1w — tur D18 (1. Zmt1) — 81 (et 1. 2t B 2n))
+ (tn =)18V Gt 12 2t 12 s Z)) = 8 (. 2z |
< CWHY (Lo + Li(ty — twt1)) + (g — b D18 (s 2) — 87 (s 2 |
= CH'* (Lo + Li(th — twt1)) s
where Ly and L; are Lipschitz constants of g(* and g(). Together with (2.22) we
thus proved the estimate

n—1

g tns 2l < D CHF! (Lo Lty = 1))

m=0
P L 2
< CHP { Lo(t, — to) +) (tn —10)" | -

|

The estimate (2.21) shows that the numerical solution may violate the algebraic
constraint with a quadratic drift term in #, for the setting in Theorem 2.2. This drift-
off effect may lead to useless numerical simulation results, especially on long time

A Survey on Numerical Methods for Initial Value Problems with sDAEs 233

horizons. For DAEs with even higher index, the situation becomes worse as the
degree of the polynomial drift term depends on the j in (2.17), i.e., on the number of
differentiations used in the index reduction.

2.2 Stabilization Techniques

The basic index reduction approach in the previous section may lead to unsatis-
factory numerical results. One possibility to avoid the drift-off on numerical level
is to perform a projection step onto the neglected algebraic constraints after each
successful integration step for the index reduced system, see [18, 47].

Another idea is to use stabilization techniques to stabilize the index reduced
DAE itself. The common approaches are Baumgarte stabilization, Gear—-Gupta—
Leimkuhler stabilization, and the use of overdetermined DAEs.

2.2.1 Baumgarte Stabilization

The Baumgarte stabilization [22] was originally introduced for mechanical multi-
body systems (2.13). It can be extended to Hessenberg DAESs in a formal way. The
idea is to replace the algebraic constraint in (2.7) by a linear combination of original
and hidden algebraic constraints g, £ € {0, 1, ...,k — 1}. With the setting x; := y,
the resulting DAE reads as follows:

xll (t) = fl (ts y(t)s X1 (t)v xz(t)v ey xk—Z(t)v xk—l(t))v
() = fl, x1(0), x20), ... 20, xk—1(0),
: (2.23)
(1) = Si—1(2, Xp—2(1), Xx—1(1)),
k1
0 =3 agO(t, x—1—e(0), ..., x—1(0).
i=0

The DAE (2.23) has index one. The weights g, £ = 0, 1,...,k— 1, withag—; = 1
have to be chosen such that the associated differential equation

k—1
0= a0
£=0

is asymptotically stable with |7 ()| — 0 for £ € {0,...,k — 2} as t —> o0,
compare [73, Sect. VIL.2]. A proper choice of the weights is crucial since a balance
between quick damping and low degree of stiffness has to be found.

The Baumgarte stabilization was used for real-time simulations in [14, 31], but
on the index-two level and not on the index-one level.

234 M. Burger and M. Gerdts

2.2.2 Gear-Gupta—-Leimkuhler Stabilization

The Gear—Gupta—Leimkuhler (GGL) stabilization [64] does not neglect algebraic
constraints but couples them to the index reduced DAE using an additional mul-
tiplier. Consider the mechanical multibody system (2.13). The GGL stabilization
reads as follows:

q'(1) = v(t) — g, (t.q(1) T (1),
M(t, q()V' (1) = f(1. q(0). v(1)) — gl (t.q() T A0, (2.24)
0 = g(t.q().
0 = & (1, q(1)) + g,(t.q(1) - v(2)

The DAE is of Hessenberg type (if multiplied by M~!) and it has index two, if M
is symmetric and positive definite and g; has full rank. Differentiation of the first
algebraic equation yields

0 = gt q(1) +8, (1. 4(0)-(v(1) — g (1, q(1) T (1) = =€ (1, 4(1)g, (¢, q(1) T 1 (0).

. . . T . .
Since g, is supposed to be of full rank, the matrix g, [f]g;[f] " is non-singular and the
equation implies pu = 0.
The idea of the GGL stabilization can be extended to Hessenberg DAE:s. To this
end consider (2.7) and the index reduced DAE (2.17) with j € {1,...,k — 1} fixed.
Define

g(O) (ts xk—l)

gD (t, X2, X4—1)
G(t,xl,...,xk_l) = .

UVt xumgy - oo Xem1)
and suppose the Jacobian
0---0 0 0 (g(O));ki1
4 _ 0 e 0 E - ’ (g(l));k,Z (g(l));k71
(LoeeXi—1) . .
0---0 0 . : :
0---0 (g(J—l))/H (g(j_l));kfz (g(/—l));kil

A Survey on Numerical Methods for Initial Value Problems with sDAEs 235

has full rank. A stabilized version of (2.17) is given by

X (1) = f(t.x(1), y(1) — Gi(t.x(1) T (1),
0 = G(t,x(1)), (2.25)
0 =gVt x4mjmr1 (). ..., 1 (1)),

where j is an additional algebraic variable, x = (xi,...,x—)', and f =
(fi,--. ,fk_l)T. The stabilized DAE has index max{2, k — j}. Note that

i +)5, [fir]

Gl + Gl 1

(Ul + X (690, el
(=1

gl
= : =0.

g(j') 1

Moreover,

0= th(t,xl(t),...,xk_l(t))

= Gl + Gl (f] - G (1))
= Gl + G,[f[1] — GG, 1u(r)
= —G[1G,[1T n

and thus p = 0 since G/, was supposed to have full rank.

2.2.3 Stabilization by Over-Determination

The GGL stabilization approaches for the mechanical multibody system in (2.24)
and the Hessenberg DAE in (2.25) are mathematically equivalent to the overdeter-
mined DAEs

g =),
M(t, q(0))V' (1) = f(t, q(1), v (1)) — g, (¢, q() "\ (),
0= g(,4(1)),

0 = g,(t,q(1)) + g,(t. q(0) - v(2)

236 M. Burger and M. Gerdts

and

X (1) = f(t, x(2), y(1)),
0 = G(1.x(1)).
0 = gV (t, xijm1 (). x4—1 (1)),

respectively, because the additional algebraic variable p vanishes in either case.
Hence, from an analytical point of view there is no difference between the
respective systems. A different treatment is necessary from the numerical point of
view, though. The GGL stabilized DAEs in (2.24) and (2.25) can be solved by
standard discretization schemes, like BDF methods or methods of Runge—Kutta
type, provided those are suitable for higher index DAEs. In contrast, the overde-
termined DAEs require tailored numerical methods that are capable of dealing
with overdetermined linear equations, which arise internally in each integration
step. Typically, such overdetermined equations are solved in a least-squares sense,
compare [56, 57] for details.

3 Consistent Initialization and Influence of Parameters

One of the crucial issues when dealing with DAEs is that a DAE in general only
permits a solution for properly defined initial values, the so-called consistent initial
values. The initial values not only have to satisfy those algebraic constraints that are
explicitly present in the DAE, but hidden constraints have to be satisfied as well.

3.1 Consistent Initial Values

For the Hessenberg DAE (2.7) consistency is defined as follows.
Definition 3.1 (Consistent Initial Value for Hessenberg DAEs) The initial values

x(to) = (x1(to), ..., xx—1(t0)) " and y(to) are consistent with (2.7), if the equations
0= g(j)(to,Xk—l—j(tO)v"'vxk—l(to))v j=12,... k=2, 3.1
0 = g* V(to, y(to), x1(t0), - . . , xi—1(t0)) (3.2)
hold.

Finding a consistent initial value for a Hessenberg DAE typically consists of two
steps. Firstly, a suitable x(#p) subject to the constraints (3.1) has to be determined.
Secondly, given x(#p) with (3.1), Eq. (3.2) can be solved for yo = y(#y) by Newton’s
method, if the matrix Ry = dg*~" /dy is non-singular in a solution (assuming that

A Survey on Numerical Methods for Initial Value Problems with sDAEs 237

a solution exists). For mechanical multibody systems even a linear equation arises
in the second step.
Example 3.1 Consider the mechanical multibody system (2.13). A consistent initial
value (qo, vo, Ag) at fp must satisfy

0 = g(%, qo),

0 = g)(fo. q0) + g, (t0. q0) - vo.

0 = g1(10, g0) + &3 (10, q0) - vo + &, (10, go) - Vg + &4, (10, 40) (V0 Vo)

with
M(to, o)V = f (10, 9o, v0) — & (10, 40) " Ao

The latter two equations yield a linear equation for v} and Ao:

M(to, qo) g,(to. q0)" (Vo)
g;(tos CIO) 0 AO

_ f (0, qo, vo)
—81(t0, qo) — &1 (t0, qo) - Vo — &4, (0, Go) (vo, vo) | °

The matrix on the left-hand side is non-singular, if M is symmetric and positive
definite and g; (1o, go) is of full rank.

Definition 3.2 (Consistent Initial Value for General DAEs, Compare [29,
Sect.5.3.4]) For a general DAE (1.1) with differentiation index d the initial value
70 = z(#p) is said to be consistent at 7y, if the derivative array

FO®0,20.2). ...z =0, j=0.1,....4. (3.3)
in (2.4) has a solution (2o, z, . . . ,ng'l)).

Note that the system of nonlinear equations (3.3) in general has many solutions
and additional conditions are required to obtain a particular consistent initial value,
which might be relevant for a particular application. This can be achieved for
instance by imposing additional constraints

G(t0, 20, 7) = 0, (3.4

which are known to hold for a specific application, compare [29, Sect.5.3.4]. Of
course, such additional constraints must not contradict the equations in (3.3).

If the user is not able to formulate relations in (3.4) such that the combined
system of equations (3.3) and (3.4) returns a unique solution, then a least-squares

238 M. Burger and M. Gerdts

approach could be used to find a consistent initial value closest to a ‘desired’ initial
value, compare [33]:

d+1
1 1 5
Minimize _||G(t, 20, 2))||* + P
o 1G(t0.20.)| 2;no)u
W.I.L. (0. 20 - - - ,z(dJrl))T
s.L. FO(tg.20.2).....25T)y =0, j=0.1.....d.

In practical computations the major challenge for higher index DAEs is to
obtain analytical expressions or numerical approximations of the derivatives in
FU,j = 1,...,d. For this purpose computer algebra packages like MAPLE,
MATHEMATICA, or the symbolic toolbox of MATLAB can be used. Algorithmic
differentiation tools are suitable as well, compare [72] for an overview. A potential
issue is redundancy in the constraints (3.3) and the identification of the relevant
equations in the derivative array. Approaches for the consistent initialization of
general DAEs can be found in [1, 30, 35, 51, 71, 78, 93, 108]. A different approach
is used in [127] in the context of shooting methods for parameter identification
problems or optimal control problems. Herein, the algebraic constraints of the DAE
are relaxed such that they are satisfied for any initial value. Then, the relaxation
terms are driven to zero in the superordinate optimization problem in order to ensure
consistency with the original DAE.

3.2 Dependence on Parameters

Initial values may depend on parameters that are present in the DAE. To this end
the recomputation of consistent initial values for perturbed parameters becomes
necessary or a parametric sensitivity analysis has to be performed, compare [66, 69].
Such issues frequently arise in the context of optimal control problems or parameter
identification problems subject to DAEs, compare [68].

Example 3.2 Consider the equations of motion of a pendulum of mass m and length
£ in the plane:

g, (1) = vi (1),
q5(1) = va(t),
mvy (1) = —2q1(DA(),
mvy (1) = —mg — 2q2(DA (1),
0=qi(0)” + q2(0)° — .

A Survey on Numerical Methods for Initial Value Problems with sDAEs 239

Herein, (g1, ¢>) denotes the pendulum’s position, (v;, v2) its velocity, and A the
stress in the bar. A consistent initial value (¢1.0, g2.0, V1.0, V2.0, Ao) has to satisfy the
equations

0=4qio+ -1, (3.5)

0 = q10v10 + 920020, 3.6)
2

0=— Ao+ (viy+v30) — 208 37

Apparently, the algebraic component Ay depends on the parameter p = (m, £, g) "
according to

m
ho=20(p) =, (Vg + V30— 9208)

But in addition, the positions ¢; ¢ and ¢, o depend on £ through the relation (3.5). So,
if £ changes, then g ¢ and/or g, ¢ have to change as well subject to (3.5) and (3.6).
However, those equations in general do not uniquely define g, 9, 2.0, V1.0, V2,0 and
the question arises, which set of values one should choose?

Firstly, we focus on the recomputation of an initial value for perturbed parame-
ters. As the previous example shows, there is not a unique way to determine such
a consistent initial value. A common approach is to use a projection technique,
compare, e.g., [69] for a class of index-two DAEs, [68, Sect.4.5.1] for Hessenberg
DAEs, or [33] for general DAEs.

Consider the general parametric DAE

F(t,2(1),7().p) = 0 (3.8)
and the corresponding derivative array
FO(tz7,....29"Y py=0, j=01,....4d.
Remark 3.1 Please note that the differentiation index d of the general parametric

DAE (3.8) may depend on p. For simplicity, we assume throughout that this is not
the case (at least locally around a fixed nominal parameter).

Let p be a given parameter. Suppose Zo = zo(p) with Zj = z,(p), ... ’Zg)d—H) =
ng+1)(D) is consistent. In order to find a consistent initial value for p, which is

supposed to be close to p, solve the following parametric constrained least-squares
problem:
LSQ(p): Minimize

1 d+D\T =~ =~ ~d+D\T
M08 5T = G0 % BT

240 M. Burger and M. Gerdts

d+1
LETIT

with respect to (£, &), .. subject to the constraints

FO(ty. 6.8 ... €TV py=0, j=0.1,....d.

Remark 3.2 In case of a parametric Hessenberg DAE it would be sufficient to
consider the hidden constraints up to order k — 2 as the constraints in LSQ(p) and
to compute a consistent algebraic component afterwards. Moreover, the quantities
to and Z(()j) ,j=0,...,d+ 1, could be considered as parameters of LSQ(p) as well,
but here we are only interested in p.

The least-squares problem LSQ(p) is a parametric nonlinear optimization prob-
lem and allows for a sensitivity analysis in the spirit of [54] in order to investigate
the sensitivity of a solution of LSQ(p) for p close to some nominal value p. Let

1 -
L pop) = IE =217 + 1 G p) (3.9)
with & = (€. &), £ T, 2= G0.Z,..... 2T and
GEp) = (FO / G+1) (3.10)
P (IOsEOsE()s---sE() 5p) i=0.1,..d ‘

denote the Lagrange function of LSQ(p).

Theorem 3.1 (Sensitivity Theorem, Compare [S4]) Let G in (3.10) be twice
continuously differentiable and p a nominal parameter. Let £ be a local minimum of
LSQ(p) with Lagrange multiplier L such that the following assumptions hold:

(a) Linear independence constraint qualification: G’S (é ,D) has full rank.

(b) KKT conditions: 0 = VgL(é, i, p) with L from (3.9)
(c) Second-order sufficient condition:

LiE Ap)(hh) >0 Vh#0 1 GLE.p)h =0.

Then there exist neighborhoods B.(p) and Bg (é ,), such that LSQ(p) has a unique
local minimum

(E(p), u(p)) € Bs(€, o)

for each p € B(D). In addition, (§(p), n(p)) is continuously differentiable with
respect to p with

L&, f1.5) Ge(.p) (s’/@):_ L, (&) 3.41)
G.€p 0 () G, (€.p)

A Survey on Numerical Methods for Initial Value Problems with sDAEs 241

The second equation in (3.11) reads
GLE.PE(P) + GE.p) =0
and in more detail using (3.10),

H o pG)

)

£ 2041 NP 2 204D A
g0 (0-bo o ETD) &G+ oo & D) =0
(=0

ap

forj =0,1,...,d. Let us define Sg{) = (5(()0)/(13) for{ =0,...,d + 1. Then, we
obtain

j+1 ; ;
FW) N AGED) ‘ FW) N AGED)

2 oo (b0 &S+ 0o T =00 B2)

£=0

and in particular forj = 0,
oF ~on oF A A oF A A
tv) sA'S tv 7/7A'S/ ts 7/7/\ :Os
32(050 €0+ D) 0+az,(0$0 £0-D) o+3p(0§0 £0-D)

which is the linearization of (3.8) around (to, &, &). p) with respect to p. Taking
into account the definition of the further components F' 0, j=1,...,d+ 1, of the
derivative array, compare (2.3), we recognize that (3.12) provides a linearization
of (2.3) with respect to p. Hence, the settings

S(t)) = S, S'(tg) = S)..... STV (rp) = s¢HY
provide consistent initial values for the sensitivity DAE

Fi(t,2(1), 2 (1), p)S(t) + FL,(t,2(1), 2 (1), p)S'(t) + F, (1, 2(1), 2 (), p) = 0,

where S(f) := 9dz(t; p)/dp denotes the sensitivity of the solution of (3.8) with respect
to the parameter p, compare Sect.7. Herein, it is assumed that F is sufficiently
smooth with respect to all arguments.

In summary, the benefits of the projection approach using LSQ(p) are twofold:
Firstly, it allows to compute consistent initial values for the DAE itself. Secondly,
the sensitivity analysis provides consistent initial values for the sensitivity DAE.
Finally, the sensitivity analysis can be used to predict consistent initial values under
perturbations through the Taylor expansion

§(p) =)+ &P —p) +ollp—pl)

for p € B.(p).

242 M. Burger and M. Gerdts
4 Integration Methods

A vast number of numerical discretizations schemes exist for DAEs, most of them
are originally designed for ODEs, such as BDF methods or Runge—Kutta methods.
The methods for DAEs are typically (at least in part) implicit methods owing to the
presence of algebraic equations. It is beyond the scope of the paper to provide a
comprehensive overview on all the existing numerical discretization schemes for
DAEs, since excellent textbooks with convergence results and many details are
available, for instance [29, 73, 75-77, 90, 92, 134]. Our intention is to discuss
the most commonly used methods, their construction principles, and some of their
features. Efficient implementations use a bunch of additional ideas to improve the
efficiency.
All methods work on a grid

Gr={th<t <...<ty_1 <ty =1t}

with N € N and step-sizes hy = t+1 — tx, k = 0,...,N — 1. The maximum
step-size is denoted by h = rna)gl lhk. The methods generate a grid function

zn » Gy —> R* with z;,(1) & z(t) for t € Gy, where z(f) denotes the solution of (1.1)
with a consistent initial value zo. The discretization schemes can be grouped into
one-step methods with

zn(tig1) = zn(ti) + hi@(ti, zn (1), hi). i=0,....N—1, 4.1)
for a given consistent initial value z;(ty) = zo and s-stage multi-step methods with

w(tivs) =W tivs 2n(t), o is—1) s iy oo higg—1), i=0,...,N —s,
42)

for given consistent initial values z,(t) = zo. - .., zn(t;,—1) = Zs—1. Note that multi-
step methods with s > 1 require an initialization procedure to compute zj, . .., Zs—i-
This can be realized by performing s — 1 steps of a suitable one-step method or by
using multi-step methods with 1,2, ..., s — 1 stages successively for the first s — 1
steps.

The aim is to construct convergent methods such that the global error e :
Gy, —> R” defined by

en = zn — An(z), en(t) = zu(t) — An(2)(0), t € Gy,
satisfies

lim |lep]loo = 0
h—0

A Survey on Numerical Methods for Initial Value Problems with sDAEs 243

or even exhibits the order of convergence p € N, i.e.
llenlloo = O(H) as h — 0.

Herein, A, : {z : [to.tf] — R"} — {z, : G, — R"} denotes the restriction
operator onto the set of grid functions on G, defined by A, (z)(¢) = z(¢) for t € Gy,

A convergence proof for a specific discretization scheme typically resembles the
reasoning

consistency + stability == convergence,

compare [131]. Herein, consistency is not to be confused with consistent initial
values. Instead, consistency of a discretization method measures how well the
exact solution satisfies the discretization scheme. Detailed definitions of consistency
and stability and convergence proofs for various classes of DAEs (index-one,
Hessenberg DAEs up to order 3, constant/variable step-sizes) can be found in the
above-mentioned textbooks [29, 73, 75-77, 90, 92, 134]. As a rule, one cannot in
general expect the same order of convergence for differential and algebraic variables
for higher index DAEs.

4.1 BDF Methods

The Backward Differentiation Formulas (BDF) are implicit multi-step methods and
were introduced in [40, 61]. A BDF method with s € N stages is based on the
construction of interpolating polynomials, compare Fig. 1. Suppose the method has
produced approximations zj(t;4+¢), k = 0,...,s — 1, of z at the grid points f;4y,
k = 0,...,5 — 1. The aim is to determine an approximation zj(#;+s) of z(t+y),
wherei € {0,...,N —s}.

To this end, let P(¢) be the interpolating polynomial of degree at most s with

P(titr) = zn(tisr), k=0,...,s.

2 (tivk—1) zn(tivk)

Zn(tivr—3)

tivk—3 litk—2 litk—1 livk

Fig. 1 Idea of BDF method: polynomial interpolation of approximations

244 M. Burger and M. Gerdts

The polynomial P can be expressed as

P@t) = ZZh(l‘i+k)Lk(t), Li(r) = l—[1 — iy

t. J— t ’
P tmo.en itk T Tkt

where the L;’s denote the Lagrange polynomials. Note that P interpolates the
unknown vector z;(#;+), which is determined implicitly by the postulation that P
satisfies the DAE (1.1) at 4, i.e.

F(tits 2n(tits), P (tirs5)) = 0. (4.3)

The above representation of P yields

P (tiys) = Zzh(fﬁk)l‘;c(tﬁx) = ZakZh(hH)

=0 1+s—l =0

with o = h,’+s_1L;((l,'+S), k=0,...,s5

Example 4.1 The BDF methods with s < 6 and a constant step-size & read as
follows, see [134, S. 335]:

s =1:hP'(tiy1) = zi+1 —z (implicit Euler method)

1
s =2:hP (tiys) = 5 (Bzig2 — 4zip1 + 2i)

1
6

1
s=4: hP/(tH_4) = 12 (25zi+4 — 48zi+3 + 36zi4> — 16241 + 3z7)

s =3:hP'(tiy3) = (zips — 18242 + 9zit1 — 22)

1
s=5:hP(tiys) = 60 (137zi45 — 300z;44 + 300z;+3 — 200242 + 75zi+1 — 12z;)

1
s=6: hP/(tH_(J) = 60 (147246 — 360z;+5 + 450244 — 400z;4+3 + 225z;4>

—72zi+1 + 10z;) .

Abbreviations: ziy+; = z,(ti+x), k =0, ..., 6.

Introducing the expression for P’(#;+) into (4.3) yields the nonlinear equation

F (ti+m Zn(tits), Z OékZh(h+k)) 4.4

lslko

A Survey on Numerical Methods for Initial Value Problems with sDAEs 245

for z,(t;+5). Suppose (4.4) possesses a solution z;(#;4,) and the matrix pencil

As

Fl+ Fl, 4.5)

hH—s—l

is regular at this solution, i.e., there exists a step-size h;4+s;—; such that the
matrix (4.5) is non-singular. Then the implicit function theorem allows to solve
Eq. (4.4) locally for z;(#;+) and to express it in the form (4.2). In practice Newton’s
method or the simplified Newton method is used to solve Eq.(4.4) numerically,
which requires the non-singularity of the matrix in (4.5) at the Newton iterates.

BDF methods are appealing amongst implicit methods since the effort per
integration step amounts to solving just one nonlinear equation of dimension n,
whereas a fully implicit s-stage Runge—Kutta method requires to solve a nonlinear
equation of dimension n - s. For numerical purposes only the BDF methods with
s < 6 are relevant, since the methods for s > 6 are unstable. The maximal attainable
order of convergence of an s-stage BDF method is s.

Convergence results assuming fixed step-sizes for BDF methods for certain
subclasses of the general DAE (1.1), amongst them are index-one problems and
Hessenberg DAEs, can be found in [27, 63, 99, 111]. Variable step-sizes may
result in non-convergent components of the algebraic variables for index-three
Hessenberg DAEs, compare [64]. This is another motivation to use an index
reducing stabilization technique as in Sect. 2.2.

The famous code DASSL, [29, 109], is based on BDF methods, but adds several
features like an automatic step-size selection strategy, a variable order selection
strategy, a root finding strategy, and a parametric sensitivity module to the basic
BDF method. Moreover, the re-use of Jacobians for one or more integration steps
and numerically efficient divided difference schemes for the calculation of the
interpolating polynomial P increase the efficiency of the code. The code ODASSL
by Fiihrer [56] and Fiihrer and Leimkuhler [57] extends DASSL to overdetermined
DAEs, which occur, e.g., for the GGL stabilization in Sect. 2.2. In these codes, the
error tolerances for the algebraic variables of higher index DAEs have to be scaled
by powers of 1/h compared to those of the differential states since otherwise the
automatic step-size selection algorithm breaks down frequently, compare [110]. An
enhanced version of DASSL is available in the package SUNDIALS, [80], which
provides several methods (Runge—Kutta, Adams, BDF) for ODEs and DAEs in one
software package.

4.2 Runge—Kutta Methods

A Runge—Kutta method with s € N stages for (1.1) is a one-step method of type

n(tiv1) = zn(t) + P (i, zn (), hi) (4.6)

246 M. Burger and M. Gerdts

with the increment function
B(t.2.h) ==Y biki(t,z.h) (4.7)
j=1

and the stage derivatives k;(t,z,h), j = 1,...,s. The stage derivatives k; are
implicitly defined by the system of n - s nonlinear equations

F i+ ez h) =0, “8)
F (1 + ehi 2y k) =0, 4.9)
where
g =) + Y agk, =15 (4.10)
j=1
are approximations of z at the intermediate time points t; + ¢¢h, £ = 1,...,s. The

coefficients in the Runge—Kutta method are collected in the Butcher array

ci|di a2 «- - dis
Caldo1 A2« Ay

Cs|ds1 Qg2 *** dss

by by -+ by

Commonly used Runge—Kutta methods for DAEs are the RADAU ITA methods
and the Lobatto IIIA and ITIC methods. These methods are stiffly accurate, i.e., they
satisfy ¢, = 1 and a; = b; for j = 1,...,s. This is a very desirable property
for DAEs since it implies that (4.9) and z,(iz . = zx(tiy1) hold at ti41 = t; + c,h;.
Runge—Kutta methods, which are not stiffly accurate, can be used as well. However,
for those it has to be enforced that the approximation z;,(#;41) satisfies the algebraic
constraints of the DAE at ;. This can be achieved by projecting the output of the
Runge—Kutta method onto the algebraic constraints, compare [18].

Example 4.2 (RADAU II1A) The RADAU IIA methods with s = 1, 2, 3 are defined
by the following Butcher arrays, compare [134, Beispiel 6.1.5]:

4—/6| 88—746 296—16946 —2434/6
10 360 1800 225
1|1 1/3|5/12 —=1/12 4446 2964+1694/6 88+7+/6 —2—34/6

|1 1|3/4 1/4 110 1(@«% 163-5(«)/6 2%5
36 36 9

|3/4 1/4 16—+/6 16++/6 1

36 36 9

The maximal attainable order of convergence is 2s — 1.

A Survey on Numerical Methods for Initial Value Problems with sDAEs 247

Example 4.3 (Lobatto IIIA and Lobatto I1IC) The Lobatto IIIA methods with s =
2, 3 are defined by the following Butcher arrays, compare [134, Beispiel 6.1.6]:

0l o0 o
?L?21?2 1/2|5/24 1/3 —1/24
1212 1]1/6 2/3 1/6

|1/6 2/3 1/6

The Lobatto IIIC methods with s = 2, 3 are defined by the following Butcher arrays,
compare [134, Beispiel 6.1.8]:

0[1/6-1/3 1/6

?‘1;;'};@2 1/2(1/6 5/12 —1/12
2 172 1|1/6 2/3 1/6

|1/6 2/3 1/6

The maximal attainable order of convergence is 2s — 2. A combined method of
Lobatto IITA and IIIC methods for mechanical multibody systems can be found in
[124].

The main effort per integration step is to solve the system of nonlinear equa-
tions (4.8)—(4.9) for the unknown vector of stage derivatives k = (ki, ... ,k‘Y)T by
Newton’s method or by a simplified version of it, where the Jacobian matrix is
kept constant for a couple of iterations or integration steps. Another way to reduce
the computational effort is to consider ROW methods or half-explicit Runge—Kutta
methods as in Sect. 4.3.

Convergence results and order conditions for Runge—Kutta methods applied to
DAE:s can be found in, e.g., [28, 75, 84, 85].

4.3 Rosenbrock-Wanner (ROW) Methods

In this section, we introduce and discuss the so-called Rosenbrock-Wanner(ROW)
methods for DAEs, cf. [121], where H.H. Rosenbrock introduced this method class.
ROW methods are one-step methods, which are based on implicit Runge—Kutta
methods. In literature, these methods are also called Rosenbrock methods, linearly-
implicit or semi-implicit Runge—Kutta methods, cf. [73].

The motivation to introduce an additional class of integration methods is to avoid
solving a fully nonlinear system of dimension # - s and to solve instead of that only
linear systems. Thus, the key idea for the derivation of Rosenbrock-Wanner methods
is to perform one Newton-step to solve Eqgs. (4.8)—(4.9) for a Runge—Kutta method
with a;; = 0 for i < j (diagonally implicit RK method, cf. [73]). We rewrite these

248 M. Burger and M. Gerdts

equations for such a method and an autonomous implicit DAE,

F(z.7) =0, (4.11)
as follows:
{—1
Fla) +hi| Y ajki+awke | ke | =0, =15 (4.12)
j=1

Due to the fact that we consider a diagonally implicit RK method, the above
equations are decoupled and can be solved successively. Then, performing one

Newton-step with starting value kéo) leads to

(L (K 2 (S0 (k= K) = = (457.40).

(4.13)

ford =1,...,s.
We come to the general class of Rosenbrock-Wanner methods by proceeding with
the following steps. First, we take as starting value kl(zo) =0forl =1,...,s Then,

the Jacobians are evaluated at the fixed point z,(#;) instead of zgf__ll) , which saves

computational costs substantially. Moreover, linear combinations of the previous
stages k;,j = 1,..., £ are introduced. And last but not least, the method is extended
to general non-autonomous implicit DAEs as Eq.(1.1). We obtain the following
class of Rosenbrock methods

L
F (1 + cohi 257" 0) + Wil D" yky + Joke + yedi =0, €= 1,5, (414)
Jj=1

with
J. = F,(t;, zu(1:), 0), (4.15)
Jy = Fy(ti, z(1:), 0), (4.16)
Ji = F(ti, zu(;), 0). (4.17)

The solution at the next time point ;4 is computed exactly as in the case of Runge—
Kutta methods:

zn(ti1) = zn(ti) + i@ (i, 20 (8:), hi), Q(t,z,h) = ijkj(fv z,h), (4.18)
=1

A Survey on Numerical Methods for Initial Value Problems with sDAEs 249

with the stage derivatives k;(t, z, h) defined by the linear system (4.14). An example
for a ROW method is the linearly implicit Euler method (s = 1), for which the stage
derivative is defined as follows

F (4,2,0) + hiJ ki + Jyk = 0. (4.19)

For semi-explicit DAEs of the form (2.5)—(2.6), a ROW method as defined above
reads as

7,(tit1) = z,(t) + ijk;(tivz)lcl(ti)’zz(ti)’ hi) (4.20)
=1
A EEAOE I ACRADRAGN] 4.21)
=1
with
f t,-—l—c;gh,,zf(Z b z}([Y)
Et' ~+ ceh; z):2 D Zy(é 1)3 i (JgC; chzy) ZWI ky
g\l T Celin zigy ! (4.22)
—k AN
+(0)erl(gr) -0
for¢ = 1,...,s. Herein, we have setz = ((z") ", () ") T = (x",y")T and
F(t,2,7) = (f (#.x.3) _x/) . (4.23)
g(t,x,y)

Up to now, we have considered ROW methods with exact Jacobian matrices J, =
F,,Jy = F,. There is an additional class of integration methods, which uses for J,
arbitrary matrices (‘inexact Jacobians’)—such methods are called W-methods, see
[73, 146, 147].

We further remark that related integration methods can be derived, if other
starting values are used for the stage derivatives, instead of k?)) = 0 as it is done to
derive Eq. (4.14), cf. [67, 68]—the methods derived there as well as ROW and W-
methods can be seen to belong the common class of linearized implicit Runge—Kutta
methods.

An introduction and more detailed discussion of ROW methods can be found in
[73]; convergence results for general one-step methods (including ROW methods)
applied to DAE:s are available in [41]. Moreover, ROW methods for index-one DAEs
in semi-explicit form are studied in [53, 117, 120, 135]; index-one problems and
singularly perturbed problems are discussed in [23, 24, 74]. Analysis results and
specific methods for the equations of motion of mechanical multibody systems, i.e.,

250 M. Burger and M. Gerdts

index-three DAEs in semi-explicit form are derived in [145, 146]; compare also the
results in [14, 106, 123].

4.4 Half-Explicit Methods

In this section, we briefly discuss the so-called half-explicit Runge—Kutta methods,
here for autonomous index-two DAESs in semi-explicit form. That is, we consider
DAE systems of the form

X (1) = f(x(0), y(0)), (4.24)
0 = g(x(1)). (4.25)

with initial values (xg,yo) that are assumed to be consistent. To derive the
class of half-explicit Runge—Kutta methods, it is more convenient to use stages
rather than the stage-derivatives k; as before. In particular, for the semi-explicit
DAE (4.24), (4.25), we define stages for the differential and the algebraic variables
as

Xie = xp(t;) +hy Za@'/(;, Yie := yu(t;)+hi Zagjk;, L=1,...,s. (4.26)

J=1 J=1

Then, it holds

Xie = xp(t;) + hy Z agk;

J=1

= xu(t) + hy Z%f (Xh(li) + Z Ak, yn(ti) + Z a;mki}l) 4.27)

j=1 m=1 m=1

= 0(t) + By af (. ;).

j=1

Using this notation and the coefficients of an explicit Runge—Kutta scheme, half-
explicit Runge—Kutta methods as firstly introduced in [75] are defined as follows

{—1
Xie = x(t) + hi Y _agf (X V). £=1.....s. (4.28)

Jj=1

0 = g(Xi), (4.29)

A Survey on Numerical Methods for Initial Value Problems with sDAEs 251

Xn(tiv1) = xu(t;) + by Z bef (Xie, Yie), (4.30)
=1

0 = gCen(ti+1)). (4.31)

The algorithmic procedure is as follows: We start with X;; = x;,(t;) assumed to be
consistent. Then, taking Eq. (4.28) for X, and inserting into Eq. (4.29) lead to

0 = g(Xi2) = g (en(ty) + anthif X, Yin)) (4.32)

this is a nonlinear equation that can be solved for Y;;. Next, we calculate X;» from
Eq. (4.28) and, accordingly, Y, etc. For methods with ¢; = 1, one obtains an
approximation for the algebraic variable at the next time-point by y,(f;+1) = Y.
The key idea behind this kind of integration schemes is to apply an explicit Runge—
Kutta scheme for the differential variable and to solve for the algebraic variable
implicitly.

Convergence studies for this method class applied to index-two DAEs can
be found in [26, 75]. In [7, 12, 105] the authors introduce a slight modification
of the above stated scheme, which improves the method class concerning order
conditions and computational efficiency. To be more precise, partitioned half-
explicit Runge—Kutta methods for index-two DAESs in semi-explicit form are defined
in the following way:

Xin = x(t), Ya = yu(t),
-1

Xie = xp(t;)) + h; Z aljf(Xija Yij),
Jj=1

¢
Xy = xu(t) + hi Y agf Xy, Yy), (4.33)
=1
0= g(}_(ié),
£=2...s+1,
Xn(tiv1) = Xist1, Yr(tit1) = Yigt1.

Results concerning the application of half-explicit methods to index-one DAE
are available in [13]; the application to index-three DAEs is discussed in [107].

252 M. Burger and M. Gerdts
4.5 Examples

Some illustrative examples with DAEs are discussed. Example 4.4 addresses an
index-three mechanical multibody system of a car on a bumpy road. A docking
maneuver of a satellite to a tumbling target is investigated in Example 4.5. Herein,
the use of quaternions leads to a formulation with an index-one DAE.

Example 4.4 We consider a vehicle simulation for the ILTIS on a bumpy road
section. A detailed description of the mechanical multibody system is provided in
[128]. The system was modeled by SIMPACK [81] and the simulation results were
obtained using the code export feature of SIMPACK and the BDF method DASSL
[29]. The mechanical multibody system consists of 11 rigid bodies with a total of 25
degrees of freedom (DOF) (chassis with 6 DOF, wheel suspension with 4 DOF in
total, wheels with 12 DOF in total, steering rod with 1 DOF, camera with 2 DOF).
The motion is restricted by 9 algebraic constraints. Figure 2 illustrates the test track
with bumps and the resulting pitch and roll angles, and the vertical excitation of the
chassis. The integration tolerance within DASSL is set to 10~ for the differential
states and to 10® for the algebraic states (i.e., no error control was performed for the
algebraic states).

Example 4.5 We consider a docking maneuver of a service satellite (S) to a
tumbling object (T) on an orbit around the earth, compare [103]. Both objects
are able to rotate freely in space and quaternions are used to parametrize their
orientation. Note that, in contrast to Euler angles, quaternions lead to a continuous
parametrization of the orientation without singularities.

roll angle z position

roll angle
z position

[GRNAL Y R]

56666 ooooo
00000 O000O0

01 2 3 4 5 6 7 8
time

pitch angle

pitch angle

01 2 3 4 5 6 7 8
time

Fig. 2 Simulation results of the ILTIS on a bumpy road: roll angle, pitch angle, vertical excitation
of chassis

A Survey on Numerical Methods for Initial Value Problems with sDAEs 253

The relative dynamics of S and T are approximately given by the Clohessy-
Wilshire-Equations

X'(t) = 20y (1) — 3n%x(t) + ax(1),
y'(t) = —2nx'(t) + ay(1),
(1) = —n’z(t) + a.(1),

where (x,y,z) " is the relative position of Sand T, a = (a,, ay, a.) " is a given control
input (thrust) to S, n = \/ w/al, a, is the semi-major axis of the orbit (assumed to
be circular), and p is the gravitational constant.

The direction cosine matrix using quaternions ¢ = (g1, ¢2.¢3,q4) ' is defined by

. G—B—-G+a 2(q192 + 93q4) 2(q193 — q294)
R@) = 2(q1a2—q3q8) —3 +B—B+4q; 2(q293 + q194)
2(q193 + q2q4) 2(q293— q19s) —41 — G+ 45+ 43

The matrix R(g) represents the rotation matrix from rotated to non-rotated state. The
orientation of S and T with respect to an unrotated reference coordinate system is
described by quaternions ¢° = (¢}, 45.45,¢5)" for S and ¢" = (¢!, 4%, 4%, 45"
for T. With the angular velocities 0° = (07, 05, w3) T and 0’ = (0!, 0!, w!)T the
quaternions obey the differential equations

1 o
@0 =, () o0, acism “34)
where the operator ® is defined by
0 w3 —w o q1
) ®q= —w3 0 w w q2
0 wy —Ww] 0 w3 q3
—w1 —Wy —W3 0 q4

Assuming a constant mass distribution and body fixed coordinate systems that
coincide with the principle axes, S and T obey the gyroscopic equations

@0 = ¢ @0030 (7 —I5) + 0).
11

1
(@) (1) = 58 (0 Vw3 (1) (I35 — J3)) + ua(t))
22

1
(@3) () = 58 (05O} (1) (I3, — J3,) + us(t))
33

254 M. Burger and M. Gerdts

1
wnwzﬂ@$mﬂm&—%»
11

1
wwwzﬂ@mmﬂm%—m»
22

1
wﬂwzﬂ@@mﬂmm—&»
33

Herein u = (uy, u,, M3)T denotes a time-dependent torque input to S.
The quaternions are normalized to one by the algebraic constraints

0=(¢9)>+ () + (@)’ + @)’ -1, «ae{S.T}

which has to be obeyed since otherwise a drift-off would occur owing to numerical
discretization errors. In order to incorporate these algebraic constraints, we treat
(¢5.g%)T as algebraic variables and drop the differential equations for ¢ and
q4T in (4.34). In summary, we obtain an index-one DAE with differential state
x.y.2.¥.Y.7. 0}, 03, 03, q‘f,qg,q§,w1T,wg,wg,_q{,qg,qg)T € R'S, algebraic
state (¢35, %) " € R?, and time-dependent control input (a,u) T € R® for S.

Figure 3 shows some snapshots of a docking maneuver on the time interval
[0, 667] with initial states

¢°(0) = (0,0,0,1)T, q"(0) = (=0.05,0,0,0.99875) T,
«5(0) = (0,0,0)T, »”(0) = (0,0.0349,0.017453) T,
(x(0),5(0),2(0)) T = (0,—100,0)T, (¥(0),5(0),Z(0))" = (0,0,0)7,

Fig. 3 Snapshots for the docking maneuver

A Survey on Numerical Methods for Initial Value Problems with sDAEs 255

Control 1 vs time Control 2 vs time Control 3 vs time
0.1 0.015
0.01
- S 0.05 o 0.005
s B 0 s 0
< € .0.05 € -0.005
8 8 o1 8 -0.01 R s S
- I -0.015
0.15 -0.02 i
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
t t t
Control 4 vs time Control 5 vs time Control 6 vs time
-0.005 T 0.008 === T 0.005 T T
-0.01 H‘,:r”" 0.007 P ‘ 0 i]
0,015 ‘ 0.006 ‘ ‘ -0.005 ‘ i
<2002 Lt [te) 1 © L
5 0025 = 5 0.005 Y S -0.01 o
£ 2003 I ot £ 0.004 £ -0.015
g -0.035 ¢ 0.003 ‘ : . ; S -0.02
© C0.04 ! | | © 0.002 © -0.025
-0.045 0.001 -0.03 : :
-0.05 0 -0.035
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

t t t

Fig. 4 Control input for the docking maneuver: ma,, ma,, ma, with m = 100 (top from left to
right), uy, ua, uz (bottom from left to right)

o State 7 vs time 0.0014 State 8 vs time 0,002 State 9 vs time
™ [0.0012 | 0.001
. 0o00s 0.001 e o 0
o 001r : © 0.0008 ° :g-gg;
£ .0.015 | $ 0.0006 8 15003
® 5 ®0.0004 ® 0,004
-0.02 B 0.0002 20,005
-0.025 0 -0.006
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
t t t
0.02 State 10 vs time 0.0353 State 11 vs time 0.02 State 12 vs time
0.015 | 0.0352 ; ; 0.015 f \
o 001 —//\\ /\ }/\\ /\ . 0.0351 e o 0011 /[\\ \ A
20005 f AR { = 0.035 T 0.005 [-
I OF b \ © 0.0349) 0 H AR
§0.005 f i \ 8 0.0348 £ 0005 | / hofd
“ 001 F t | © 00347 ? 001 i \}
-0.015 | 0.0346 -0.015 o/ \/
-0.02 0.0345 -0.02
02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

t t t

Fig. 5 Angular velocities of the service satellite S and the tumbling target T: w?, w5, 5 (top from
left to right), a)lT, a)ZT R a)3T (bottom from left to right)

and parameters a, = 7071000, © = 398 - 10'2, J% = 1000, J%, = 2000, J% =
1000, & € {S,T}. The integration tolerance within DASSL is set to 107'° for the
differential states and to 10™* for the algebraic states. Figure 4 depicts the control
inputs m - a = m - (ay, ay, a;) " with satellite mass m = 100 and u = (uy, uz, u3)T.
Finally, Fig. 5 shows the angular velocities »® and w”.

256 M. Burger and M. Gerdts
5 Co-simulation

In numerical system simulation, it is an essential task to simulate the dynamic
interaction of different subsystems, possibly from different physical domains,
modeled with different approaches, to be solved with different numerical solvers
(multiphysical system models). Especially, in vehicle engineering, this becomes
more and more important, because for a mathematical model of a modern passenger
car or commercial vehicle, mechanical subsystems have to be coupled with flexible
components, hydraulic subsystems, electronic and electric devices, and other control
units. The mathematical models for all these subsystems are often given as DAE,
but, typically, they substantially differ in their complexities, time constants, and
scales; hence, it is not advisable to combine all model equations to one entire
DAE and to solve it numerically with one integration scheme. In contrast, modern
co-simulation strategies aim at using a specific numerical solver, i.e., DAE integra-
tion method, for each subsystem and to exchange only a limited number of coupling
quantities at certain communication time points. Thus, it is important to analyze the
behavior of such coupled simulation strategies, ‘co-simulation’, where the coupled
subsystems are mathematically described as DAEs.

In addition to that, also the coupling may be described with an algebraic
constraint equation; that is, DAE-related aspects and properties also arise here.
Typical examples for such situations are network modeling approaches in general
and, in particular, modeling of coupled electric circuits and coupled substructures
of mechanical multibody systems, see [11].

Co-simulation techniques and their theoretical background are studied for a long
time, see, for instance, the survey papers [83, 143]. In these days, a new interface
standard has developed, the ‘Functional Mock-Up Interface (FMI) for Model-
Exchange and Co-Simulation’, (https://www.fmi-standard.org/). This interface is
supported from more and more commercial CAE-software tools and finds more and
more interest in industry for application projects. Additionally, the development of
that standard and its release has also stimulated new research activities concerning
co-simulation.

A coupled system of » > 2 fully implicit DAEs initial value problems reads as

0= F(t,zi(1), (1), u; (1)) = 0, 1 € [to,t7], zito) = zi0, i=1,...r (5.1)
with initial values assumed to be consistent and the (subsystem-) outputs
&i(1) == Ei(t, zi(0), wi (1)),
and the (subsystem-) inputs u; that are given by coupling conditions

wi(t) = hiEr, ... &), i=1,2,..., ie,u=h(f),

https://www.fmi-standard.org/

A Survey on Numerical Methods for Initial Value Problems with sDAEs 257

where we have set u := (uIr,...,u;r)T, £ = (slT,...,E,T)T and h =

(hT,...,h;r)T RY — R™, withny = ny, + ... +ny, 0 + ...+ 0, = ny
Moreover, we assume here

oh; .
o0&

that is, the inputs of system i do not depend on his own output. If the subsystems
DAEs are in semi-explicit form, Eq. (5.1) has to be replaced by

Xi(1) = fit, xi(0), yi (1), ui (1)),
0 = gi(t, xi(1), yi(1), ui (1)),

with ¢ € [to, ;] and (x;(%), yi(to)) = (xi0,yi0) With consistent initial values. This
representation is called block-oriented; it describes the subsystems as blocks with
inputs and outputs that are coupled.

In principle, it is possible to set up one monolithic system including the coupling
conditions and output equations as additional algebraic equations:

X = fi(t, xi(1), yi(0), i (1)),

0 = gi(t, x;(1), yi(1), ui(1)),

0 = u;i(r) — h(§(0),

0=2¢&)— &t xi(@),ur)), i=1....r

This entire system could be solved with one single integration scheme, which is,
however, as indicated above typically not advisable. In contrast, in co-simulation
strategies, also referred to as modular time-integration [125] or distributed time
integration [11], the subsystem equations are solved separately on consecutive time-
windows. Herein, the time integration of each subsystem within one time-window
or macro step can be realized with a different step-size adapted to the subsystem
(multirate approach), or even with different appropriate integration schemes (mul-
timethod approach). During the integration process of one subsystem, the needed
coupling quantities, i.e., inputs from other subsystems, are approximated—usually
based on previous results. At the end of each macro step, coupling data is exchanged.
To be more precise, for the considered time interval, we introduce a (macro) time
grld G = {T(), ey TN} withto = Tp < T) < ... < Ty = Ir. Then, the
mentioned time-windows or macro steps are given by [T, T,+1],n =0,...,N —1
and each subsystem is integrated independently from the others in each macro
step T, — T,+1, only using a typically limited number of coupling quantities as
information from the other subsystems. The macro time points 7, are also called
communication points, since here, typically, coupling data is exchanged between
the subsystems.

258 M. Burger and M. Gerdts
5.1 Jacobi, Gauss-Seidel, and Dynamic-Iteration Schemes

An overview on co-simulation schemes and strategies can be found, e.g., in
[11, 104, 125]. There are, however, two main approaches how the above sketched
co-simulation can be realized. The crucial differences are the strategy (order) how
the subsystems are integrated within the macro steps and, accordingly, how coupling
quantities are handled and approximated. The first possible approach is a completely
parallel scheme and is called Jacobi scheme (or co-simulation/coupling of Jacobi-
type). As the name indicates, the subsystems are integrated here in parallel and,
thus, they have to use extrapolated input quantities during the current macro step, cf.
Fig. 6. In contrast to this, the second approach is a sequential one, it is called Gauss-
Seidel scheme (or co-simulation/coupling of Gauss-Seidel-type). For the special
case of two coupled subsystems, r = 2, this looks as follows: one subsystem is
integrated first on the current macro step using extrapolated input data yielding a
(numerical) solution for this first system. Then, the second subsystem is integrated
on the current macro step but, then, using already computed results from the first
subsystem for the coupling quantities (since results from the first subsystem for the
current macro step are available, in fact). The results from the first subsystem may be
available on a fine micro time grid—within the macro step—or even as function of
time, e.g., as dense output from the integration method; additionally, (polynomial)
interpolation may also be used, cf. Fig. 6.

The sequential Gauss-Seidel scheme can be generalized straightforwardly to
r > 2 coupled subsystems: The procedure is sequential, i.e., the subsystems are
numerically integrated one after another and for the integration of the i-th subsystem
results from the subsystems 1,...,i — 1 are available for the coupling quantities,
whereas data from chronologically upcoming subsystems i + 1, ..., r have to be
extrapolated based on information from previous communication points.

The extra- and interpolation, respectively, are realized using data from pre-
vious communication points and, typically, polynomial extra- and interpolation
approaches are taken. That is, in the macro step 7,, — T+, the input of subsystem
i is extrapolated using data from the communication points 7}, .. ., Ty,

(1) = Wit ui(Tus). ... ui(T,)) = Zu (To) H ,

1=0,1] Toj = Tumt

t € [T,,T,+1] and with the extrapolation polynomial ¥; with degree < k; for
interpolation, e.g., for Gauss-Seidel schemes, we have correspondingly

k+1 k+1

(1) = Wit w(Tp). (T = 3 wiTon) [Tt

=0 1=0,1%) n+l—]_ n+1—1

A Survey on Numerical Methods for Initial Value Problems with sDAEs 259

T1m Yl ' 24 (1) = frt, 21 (1), 41 (1), @1 (1))

Pl Y TR /—\ 0= g1(z1(8), 31(1))
1 1

i1 () = Wt ur (Tamk)y -, 11 (T))

['
' |
1 1 i
1 1 1
H i 1

. ‘ dig(t) = ‘I';z(t:.'uz(Tr.:_x-)-. oo ua(Th))
} } } P

T2n: Y20 v ah(t) = f1(t, za(t), y2(t), Ga(t))

0 = galaa(t),y2(t))

W In, —— n+1
ZimYin : 2y (t) = f1(t, z1(8), y1(£), @1 (2))
TN s Y //’"“RE? 0 = g1(1(t),v1(1)
: ' : >

@ (t) = Uit Foi)s - 11(To)

‘ | da(t) = Walt; ::12(3",,_k}, e vua(T) ua(Toin))
: [} [] ’

|| | |
T2,n:Y2,n v@) e5(t) = f1(t, 2a(t), y2(2), fi2(t))

0 = ga(za(t), ya(t))

Tl I, — n+1

Fig. 6 Jacobi (upper diagram) and Gauss-Seidel (lower diagram) co-simulation schemes

The most simple extrapolation is that of zero-order, k = 0, leading to ‘frozen’
coupling quantities

ui(t) = ui(Tn)a re [Tﬂs Tn-H]'

A third approach to establish a simulation of coupled systems are the so-called
dynamic iteration schemes, [11, 20, 21], also referred to as waveform relaxation
methods, [82, 94]. Here, the basic idea is to solve the subsystems iteratively on each
macro step using coupling data information from previous iteration steps, in order
to decrease simulation errors. How the subsystems are solved in each iteration step
can be in a sequential fashion (Gauss-Seidel) or all in parallel (Jacobi or Picard),

260 M. Burger and M. Gerdts

cf. [11, 20]. The schemes defined above are contained in a corresponding dynamic
iteration scheme by performing exactly one iteration step.

5.2 Stability and Convergence

First of all, we point out that there is a decisive difference between convergence
and stability issues for coupled ODEs on the one hand and for coupled DAEs on
the other hand. The stability problems that may appear for coupled ODEs with
stiff coupling terms resemble the potential problems when applying an explicit
integration method to stiff ODEs—thus, these difficulties can be avoided by using
sufficiently small macro step-sizes H, = T,4+1 — Ty, cf. [9, 11, 104]. In the DAE-
case, however, reducing the macro steps does not generally lead to an improvement;
here, it is additionally essential that a certain contractivity condition is satisfied, see
[9, 11, 21, 125].

5.2.1 The ODE-Case

For problems with coupled ODEs, convergence is studied, e.g., in [8, 10, 16, 17].
For coupled ODEs systems that are free of algebraic loops—this is guaranteed, for
instance, provided that there is no direct feed-through, i.e., 0&;/du; = 0, i =
1,...,r, for a precise definition see [10, 16]—we have the following global error
estimation for a co-simulation with a Jacobi scheme with constant macro step-size
H > 0 assumed to be sufficiently small,

g<C (Z e + H"“) , (5.2)
i=1

where k denotes the order of the extrapolation and &} is the global error in
subsystem i and &* is the overall global error, cf. [8, 10]. That is, the errors from
the subsystems contribute to the global error, as well as the error from extra-
(inter-)polation, & (H**1). These results can be straightforwardly deduced following
classical convergence analysis for ODE time integration schemes.

5.2.2 The DAE-Case

For detailed analysis and both convergence and stability results for coupled DAE
systems, we refer the reader to [9, 11, 20, 125] and the literature cited therein. In the
sequel we summarize and sketch some aspects from these research papers.

A Survey on Numerical Methods for Initial Value Problems with sDAEs 261

As already said, in the DAE case, the situation becomes more difficult. Following
the lines of [20], we consider the following coupled DAE-IVP representation

xi(1) = fi(x(0), y(1)), (5.3)

0=gix(1),y®), i=1,....r (5.4)

withx = (xi'—, coxD Ty = ;r’ ...,y and initial conditions (x;(to), yi(t0)) =
(xi0,yi0), 1 =1,..., r. For the following considerations, we assume that the IVP(s)

possess a unique global solution and that the right-hand side functions f;, g; are
sufficiently often continuously differentiable and, moreover, that it holds

g
ayi

isnon-singularfori = 1, ..., r in a neighborhood of a solution (index-one condition
for each subsystem). Notice that this representation differs from the previously
stated block-oriented form. Equations (5.3)—(5.4) are, however, more convenient,
in order to derive and to state the mentioned stability conditions, the coupling here
is realized by the fact that all right-hand side functions f;, g; of each subsystem do
depend on the entire differential and algebraic variables.

As before, we denote by a - quantities that are only available as extra- or
interpolated quantity. Thus, establishing a co-simulation scheme of Jacobi-type
yields for the i-th subsystem in macro step 7, — T}+1

x;,n :fi(-il,nv e ii—l,ns Xins ii-l—l,nv ey ir,ns
5’1,117 ... 75’1‘—1,11’ Yin, S)i+1,n7 ... vj’r,n)a

0= gi(jzl,nv .. 7%i—1,n3xi,naii+l,m .. vir,n,
5’1,117 e 75’1‘—1,11’ yi,nayi-l—l,n’ e vj’r,n)‘
Accordingly, for a Gauss-Seidel-type scheme, we obtain
, - ~
xi,n :.ﬁ(xl,na e Xins Xitlns o+« s Xrns
Vins - Yins 5)i+l,ns ce syr,n)s
0= gi(X1ns -+ XinsXit s - -+ s Xrns

Vins--- 7yi,n55)i+l,na e 75)1”,11)‘

With ¢ = (g1,...,&)", a sufficient (not generally necessary) contractivity
condition for stability is derived and proven in [20]. The condition is given by

o= g gl < 1.

262 M. Burger and M. Gerdts

with y = (31,...,y,). For a detailed list of requirements and assumptions to be
taken as well as for a proof and consequences, the reader is referred to [20, 21]. For
the special case r = 2, the above condition leads to the following for the Jacobi-type

scheme:
0 —1
815,81y
g2_.,>1'2g2’y1 0

whereas, for the Gauss-Seidel-type scheme, we obtain

-1
82.y1 82, 00

An immediate consequence is that for a Jacobi-scheme of two coupled DAEs with
no coupling in the algebraic equation, i.e., g;, = 0, for i # j, we have & = 0.

As a further example, we discuss two mechanical multibody systems coupled via
a kinematic constraint:

o= <1,

Mi(g)q! = ¥i(gi.q) — Gl (@A, i=1,2,
0=1y(),

withg = (q;'—, q;'—)T and G(q) := dy/dq and G;(q) := dy/dq;, i = 1,2. Performing
an index reduction by twice differentiating the coupling constraint and setting v; :=
g ai = v aswellasx; := (¢, v)T andy; = af,y, = (@ ,AT)T, f; =
(viT, aiT)T, we are in the previously stated general framework:

X =h X =/

Myay — Y + G, A
0= Ma — G/ A 0= 2
a1 — Y1 + Gy [Glal + Goar +

=: g1(x1, X2, ¥1,¥2) =: g2(x1,X2,¥1,¥2)

Herein, " contains the remainder of the second derivative of y without the term
Giay + Gras.

That is, the only coupling is via algebraic variables and in algebraic equations. If
we set up a Jacobi-scheme, in macro step 7,, — T+, in subsystem 1, we have to
use extrapolated values from subsystem 2, i.e., y, is replaced by

5’2(1‘) = l]/ly(t; y2(Tn—k)v LR vy2(Tn))

A Survey on Numerical Methods for Initial Value Problems with sDAEs 263

and in subsystem 1, accordingly, y1(t) = ¥ (:y1(Ty—). - ... y1(T,)). The above
contractivity condition in this case reads

0 oM 'G]
M;7'GIR;'Gi 0 0 <1,
-R;'Gi 0 0

with R; := GM'G],i=1,2.

Analogously, we can consider a Gauss-Seidel-type scheme. Starting with sub-
system 1, we have to extrapolate here y, from previous macro steps yielding x;, yj,
which then can be evaluated during time-integration of subsystem 2. Stating the
contractivity condition for this case and noticing that only the algebraic variable
A has to be extrapolated from previous time points, the relevant (A-)part of the
condition requires

IR;'R1|| = (GoMaGy) (GiMT G| < 1. (5.5)

We observe in both cases that mass and inertia properties of the coupled systems
may strongly influence the stability of the co-simulation. In particular for the latter
sequential Gauss-Seidel scheme, the order of integration has an essential impact on
stability, i.e., the choice of system 1 and 2, respectively, should be taken such that
the left-hand side of (5.5) is as small as possible.

This result has been developed and proven earlier in [11] for a more general
framework, which is slightly different than our setup and for which the coupled
mechanical systems are also a special case. In that paper, a method for stabilization
(reducing o) is suggested. In [125], the authors also study stability and convergence
of coupled DAE systems in a rather general framework and propose a strategy for
stabilization as well.

For the specific application field of electric circuit simulation, the reader is
referred to [20, 21] and the references therein. A specific consideration of coupled
mechanical multibody systems is provided in [8, 9] and in [126], where the coupling
of a multibody system and a flexible structure is investigated and an innovative
coupling strategy is proposed. Lately, analysis results on coupled DAE systems
solved with different co-simulation strategies and stabilization approaches are
provided by the authors of [129, 130]. In [19], a multibody system model of a wheel-
loader described as index-three DAE in a commercial software package is coupled
with a particle code for soft-soil modeling, in order to establish a coupled digging
simulation.

The general topic of coupled DAE system is additionally discussed in the early
papers [82, 89, 94].

A multirate integrator for constrained dynamical systems is derived in [96],
which is based on a discrete variational principle. The resulting integrator is
symplectic and momentum preserving.

264 M. Burger and M. Gerdts
6 Real-Time Simulation

An important field in modern numerical system simulation is real-time scenarios.
Here, a numerical model is coupled with the real world and both are interacting
dynamically. A typical area, in which such couplings are employed, is interac-
tive simulators (‘human/man-in-the-loop’), such as driving simulators or flight
simulators, see [58], but also interactively used software (simulators), e.g., for
training purposes, cf. [98]. Apart from that, real-time couplings are used in tests
for electronic control units (ECU tests) and devices (‘hardware-in-the-loop’—HiL),
see, e.g., [15, 122] and in the field of model based controllers (‘model/software-in-
the-loop’—MIiL/SiL), see, e.g., [42, 43].

It is characteristic for all the mentioned fields that a numerical model replaces a
part of the real world. In case of an automotive control unit test, the real control
unit hardware is coupled with a numerical model of the rest of the considered
vehicle; in case of an interactive driving simulator, the simulator hardware and, by
that, the driver or the operator, respectively, is also coupled with a virtual vehicle.
The benefits of such couplings are tremendous—tests and studies can be performed
under fully accessible and reproducible conditions in the laboratory. Investigations
and test runs with real cars and drivers can be reduced and partially avoided, which
can save time, costs, and effort substantially. From the perspective of the numerical
model, it receives from the real world environment signals as inputs (e.g., the
steering-wheel angle from human driver in a simulator) and gives back its dynamical
behavior as output (e.g., the car’s reaction is transmitted to the simulator hardware,
which, in turn, follows that motion making the driver feel as he would sit in a real
car). It is crucial for a realistic realization of such a coupling that the simulation as
well as the communication are sufficiently fast. That is, after delivering an input to
the numerical model, the real world component expects a response after a fixed time
AT—and the numerical model has to be simulated for that time span and has to
feed back the response on time. Necessary for that is that the considered numerical
simulation satisfies the real-time condition: the computation (or simulation) time
AT omp has to be smaller or equal than the simulated time AT.

Physical models are often described as differential equations (mechanical multi-
body systems that represent a vehicle model). Satisfying the real-time condition here
means accordingly that the numerical time integration of the IVP

Ft,z(t),Z (), u(®) =0, te[T;T;+ AT]
2T = 204,

is executed with a total computation time that is smaller or equal than AT. If a
complete real-time simulation shall be run on a time horizon [fy; ff] which is divided
by an equidistant time-grid {7, ..., Tn}, to = To, &y = Tn, Tix1 — Ti = AT, the
real-time condition must be guaranteed for any subinterval of length AT. In fact,
this is a coupling exactly as in classical co-simulation—with the decisive difference
that one partner is not a numerical model, but a real world component and, thus,

A Survey on Numerical Methods for Initial Value Problems with sDAEs 265

the numerical model simulation must satisfy the real-time condition. Obviously,
whether or not the real-time condition can be satisfied, strongly depends both on the
numerical time integration method and the differential equation and its properties
itself. In principle, any time integration method can be applied, provided that the
resulting simulation satisfies the real-time condition.

The fulfillment of the real-time condition as stated above has, however, to be
assured deterministically in each macro time step 7; — 7; + AT—at least in
applications, where breaking this condition leads to a critical system shutdown (e.g.,
hardware simulators, HiL-tests). Whence, the chosen integration methods should
not have indeterministic elements like step-size control or iterative inner methods
(solution of nonlinear systems by Newton-like methods): varying iteration numbers
lead to a varying computation time. Consequently, for real-time application, time
integration methods with fixed time-steps and with a fixed number of possible
iterations are preferred. Additionally, to save computation time, typically, low-order
methods are in use, which is also caused by the fact that in the mentioned application
situations, the coupled simulation needs not to be necessarily highly accurate, but
stable.

6.1 Real-Time Integration of DAEs

For non-stiff ODE models, which have to be simulated under real-time conditions,
even the simple explicit Euler scheme is frequently used. For stiff ODEs, the linearly
implicit methods as discussed in Sect. 4.3 are evident, since for these method class,
only linear systems have to be solved internally, which leads to an a priori known,
fixed, and moderate computational effort, see [14, 15, 49, 118] and the references
therein.

Since all typical and work-proven DAE time integration methods are at least
partially implicit leading to the need of iterative computations, it is a common
approach to avoid DAE models for real-time applications already in the modeling
process (generally, for real-time applications, often specific modeling techniques are
applied), whenever it is possible. However, this is often impossible in many applica-
tion cases of practical relevance. For instance, the above-mentioned examples from
the automotive area require a mechanical vehicle model, which is usually realized
as mechanical multibody system model, whose underlying equations of motion are
often a DAE as stated in Eq. (2.13). Thus, there is a need for DAE time integration
schemes that are stable and highly efficient also for DAEs of realistic complexities.

Time integration methods for DAEs with a special focus on real-time applications
and the fulfillment of the real-time condition are addressed, e.g., in [14, 15, 31, 32,
39, 44, 49, 50, 119]. In the sequel, we present a specific integration method for the
MBS equations of motion (2.13) in its index-two formulation on velocity-level.

For the special case of the semi-explicit DAE describing a mechanical multibody
system, compare (2.13), the following linearly implicit method can be applied,
which is based on the linearly implicit Euler scheme. The first step is to reduce

266 M. Burger and M. Gerdts

the index from three to two by replacing the original algebraic equations by its first
time-derivative,

G(g)v =0,

which is linear in v. The numerical scheme proposed in [14, 31] consists in handling
the time-step for the position coordinates explicitly and requiring that the algebraic
equation on velocity level is satisfied, i.e.,

G(qi+1)vit1 = 0.
In particular, this leads to the set of linear equations as follows

gi+1 = qi + hv;,

(M — hJy — K2, GT(q,-)) (Ui+l —~ v,-) _ (hﬁ + hzqu,-)
G(qi+1) 0 hA; —G(giy1)vi)’

where J,/y == 9f/3(q/v)(gi, vi)-

An important issue is naturally the drift-off, cf. Sect. 2, in the neglected algebraic
constraints—here, in the above method for the index-two version of the MBS DAE,
the error in the algebraic equation on position-level, i.e., 0 = g(g), may grow
linearly in time; this effect is even more severe, since a low-order method is in
use. Classical strategies to stabilize this drifting are projection approaches, cf., e.g.,
[73, 100], which are usually of adaptive and iterative character. The authors in
[14, 31] propose and discuss a non-iterative projection strategy, which consists, in
fact, in one special Newton-step for the KKT conditions related to the constrained
optimization problem that is used for projection; thus, only one additional linear
equation has to be solved in each time-step. The authors show that using this
technique leads to a bound for the error on position level, which is independent
of time. An alternative way to stabilize the drift-off effect without substantially
increasing the computational effort is the Baumgarte stabilization, cf. Sect.2 and
[31, 48, 122].

7 Parametric Sensitivity Analysis and Adjoints

The parametric sensitivity analysis is concerned with parametric initial value
problems subject to DAEs on the interval [z, #7] given by

F(t,2(1),7(1).p) = 0, (7.1
z(to) = zo(p), (7.2)

A Survey on Numerical Methods for Initial Value Problems with sDAEs 267

where p € R™ is a parameter vector and the mapping zp : R” — R” is at least
continuously differentiable. We assume that the initial value problem possesses a
solution for every p in some neighborhood of a given nominal parameter p and
denote the solution by z(#; p). In order to quantify the influence of the parameter on
the solution, we are interested in the so-called sensitivities (sensitivity matrices)

S(1) = g; tp) fort € [to. 17]. (1.3)

Throughout we tacitly assume that the sensitivities actually exist.

In many applications, e.g., from optimal control or optimization problems
involving DAEs, one is not directly interested in the sensitivities S(-) themselves
but in the gradient of some function g : R” — R defined by

g(p) == ¢(z(tr:p).p)» (7.4)

where ¢ : R" x R" — R is continuously differentiable. Of course, if the
sensitivities S(-) are available, the gradient of g at p can easily be computed by
the chain rule as

Ve(P) = S(tp) " Vep(a(tr:). D) + Vo (a(ty: p). p). (7.5)

However, often the explicit computation of S is costly and should be avoided. Then
the question for alternative representations of the gradient Vg(p) arises, which
avoids the explicit computation of S. This alternative representation can be derived
using an adjoint DAE. Both approaches are analytical in the sense that they provide
the correct gradient, if round-off errors are not taken into account.

Remark 7.1 The computation of the gradient using S is often referred to as the
forward mode and the computation using adjoints as the backward or reverse
mode in the context of automatic differentiation, compare [72]. Using automatic
differentiation is probably the most convenient way to compute the above gradient,
since powerful tools are available, see the web-page familywww.autodiff.org.

The same kind of sensitivity investigations can be performed either for the
problem (7.1)—(7.2) in continuous time or for discretizations thereof by means of
one-step or multi-step methods.

7.1 Sensitivity Analysis in Discrete Time
7.1.1 The Forward Mode

Suppose a suitable discretization scheme of (7.1)—(7.2) is given, which provides
approximations z;(#; p) at the grid points #; € G;, in dependence on the parameter

family www.autodiff.org

268 M. Burger and M. Gerdts

p. We are interested in the sensitivities
. 9zn A nxm
Sh(l‘i) = ap (l‘i,p) eR fort; € Gy,

for a nominal parameter p € R™. As the computations are performed on a finite
grid, these sensitivities can be obtained by differentiating the discretization scheme
with respect to p. This procedure is called internal numerical differentiation (IND)
and was introduced in [25].

To be more specific, let p be a given nominal parameter and consider the one-step
method

zn(t0:) = 20(P). (7.6)
w(tiv1:p) = (ti; p) + W@ (i, (4 p), i p), i=0,1,....N—1. (7.7)

Differentiating both equations with respect to p and evaluating the equations at p
yields

Su(to) = zo(P). (7.8)

Sh(l,'.H) = Sh(li) + h; (a(p [li]Sh(li) + 0P [l,’]) , i=0,1,...,.N—1.(7.9)
0z ap

Herein, we used the abbreviation [t;] for (¢;, z,(¢;; p), hi, p). Evaluation of (7.8)—(7.9)
yields the desired sensitivities S;,(¢;) of z,(#; p) at the grid points, if the increment
function @ of the one-step method and the function zy are differentiable with respect
to z and p, respectively. Note that the function zy can be realized by the projection
method in LSQ(p) in Sect. 3.2 and sufficient conditions for its differentiability are
provided by Theorem 3.1.

The computation of the partial derivatives of @ is more involved. For a Runge—
Kutta method Eqgs. (4.7)-(4.9) (with an additional dependence on the parameter
p) have to be differentiated with respect to z and p. Details can be found in [68,
Sect.5.3.2].

The same IND approach can be applied to multi-step methods. Differentiation of
the scheme (4.2) and the consistent initial values

w(to;p) = 20(p), z(ti;p) = 21(p), ., wlts—1:P) = 25—1(P)

with respect to p and evaluation at p yields the formal scheme

Su(te) = 2,(p), £=0,...,s—1,

s—1
14 oy
Su(tivs) = “Spltive) + s
g 3Zi+(317

A Survey on Numerical Methods for Initial Value Problems with sDAEs 269

More specifically, for an s-stage BDF method the function v is implicitly given
by (4.4) (with an additional dependence on the parameter p). Differentiation of (4.4)
with respect to p yields

oF s
([tL+Y]+ * B a /[tl-l—Y]) Sh(tl+Y)+Z _ a /[tt+v]Sh(tt+l)+ [ti+x] =0

(7.10)

and, if the iteration matrix M := F.[t;,] + th‘:; F.,[ti+] is non-singular,

s—1

_ oy OF oF
Sh(tigs) = —M""- (Z n ‘ [ti+s)Sh(tite) + op [ti+x]) .
=0

i+s—1 07

Herein, we used the abbreviation [t;4,] = ([i+s, zn(tits),), + Z akzh(t,+k))

7.1.2 The Backward Mode and Adjoints

Consider the function g in (7.4) subject to a discretization scheme, i.e.

gn(p) := ¢(zu(tn;p), p). (7.11)

We intend to compute the gradient of g, at p. Using the sensitivity S;,(7y) the gradient
is given by

V() = Si(tn) Vo2 (v). D) + Voo (znltn: p). p)-

Now we are interested in an alternative representation of the gradient without the
sensitivity S, (zy). To this end consider the one-step method in (7.6)—(7.7). Following
[68, Sect. 5.3.2] define the auxiliary functional

N—1

gh(p) = gn(p) + Y An(tir1) " @altir1: p) — 2n(tis p) — hi® (b3, 2t p). i p))
i=0

with multipliers A,(t), . .., Ax(ty) that will be specified later. Note that g, = g, for
all discrete trajectories satisfying (7.6)—(7.7). The gradient of gj, at p computes to

Vel () = Su(tn) " Vop(zu(tn:). D) + Voe(zultn:). p)
N—1

]
+Z(sh(r,+1) Sutt) — by, WdSi(0) ~ by [t,-]) Alin)

i=0

270 M. Burger and M. Gerdts

= S(tw) " Vo2 (tn: D). D) + Vo (zn(tn: p). D)
N—1

o 00 T
IO OEDS (Sh(li) thio [li]Sh(li)) An(ti41)

i=1 i=0
- Z) [n]Txh(nH)
= Si(tn) " (Rnltn) + Vop(zu(tn:), P)) + Ve (i(tn: D). D)

+ Z ()" (Ah(tz) — An(tip1) — [lz]Tlh(le))

i=1

—Si(to) " (M(fl)'i‘hoa [t0] M(fl)) Zh fz] An(tiz1)

In order to eliminate the sensitivities, we choose the multipliers A, such that they
satisty the adjoint equations

An(ty) = =Vyo0(zn(tn:p). p). (7.12)

P
An(t) = Ap(tiv1) + b 9% [t An(tig1), i=0,....N—1. (7.13)

The adjoint equations have to be solved backwards in time starting at #y. With this
choice the gradient of gj reduces to

N—1
ara A 0P
Ver(®) = Vpp(n(ty: p).p) — Sulto) "An(to) = Y _ hi op (1] " A1)
i=0
width Si(ft9) = zy(p). Since g, and g coincide for all discrete trajectories

satisfying (7.6)—(7.7), the following theorem holds, see [68, Theorems 5.3.2, 5.3.3]
for a proof:

Theorem 7.1 We have

N—1

A n oo
Ven(p) = Vgi(p) = Vpp(n(tn:). p) = Sulto) " Anto) = 3 hi', r,] An(tir).
=0

where Ay(-) satisfies the adjoint Egs. (7.12)—(7.13). Moreover, the combined dis-
cretization scheme (7.7) and (7.13) for zj, and Ay, is symplectic.

A Survey on Numerical Methods for Initial Value Problems with sDAEs 271

Remark 7.2 Computing the gradient of g;, via the adjoint approach is more efficient
than using the sensitivities, because the adjoint equations do not depend on the
dimension of p, whereas the sensitivity equations (7.8)—(7.9) are matrix difference
equations for the n x m-matrices Sy (-).

7.2 Sensitivity Analysis in Continuous Time

7.2.1 The Forward Mode

The IND approach is based on the differentiation of the discretization scheme.
Applying the same idea to the parametric DAE in continuous time (7.1)—(7.2) yields
the sensitivity DAE

Fiaso+Fuso+Fu=0 rtemy. a4
0z 07 op
S(io) = () (7.15)

for the sensitivities S(¢) in (7.3). We used the abbreviation [f] = (¢, z(¢; p), 7 (t;), P)
and assumed that

0%z
JrN A
S'(t) = apat(l,l?)-

Note that the derivative z;(p) can be obtained by a sensitivity analysis of the
least-squares problem LSQ(p) in Sect.3.2. Moreover, the sensitivity analysis in
Theorem 3.1 provides a consistent initial value for the sensitivity DAE (7.14)—
(7.15).

Now, the initial value problems for z and S in (7.1)—(7.2) and (7.14)—(7.15) can
be solved simultaneously using some suitable one-step or multi-step method. Since
efficient implementations often use approximate Jacobians, automatic step-size
algorithms, or order selection strategies, the resulting numerical solutions z;(; p)
and Sj,(-) satisfy S,(-) ~ 9z;/0p(:; p) only up to some tolerance. As a result, the
gradient of g in (7.5) will be accurate only in the range of a given integration
tolerance. The forward approach using sensitivities is investigated in more detail,
e.g.,in [29, 37,79, 87, 101] and a comparison is provided in [52].

A connection to the IND approach arises if the same discretization scheme and
the same step-sizes for both DAEs are used. For the BDF method we obtain

J— .
F (ti+mzh(ti+s)a hises Zaﬂh(ti+l)vp) =0
5 [=O

272 M. Burger and M. Gerdts

fori =0,...,N —s. Application of the same BDF method with the same step-sizes
to the sensitivity DAE (7.14) yields

oF . wy OF
9 [tits] - Sa(tigs) + ; I

oF
Nties] - Saltive) +) [tigs] = 0,
i+s—1 aZ ap

fori =0, ..., N—s. The latter coincides with the IND approach in (7.10). Hence, the
discrete and continuous forward modes commute under discretization with the same
method and the same step-sizes. The same is true for the Runge—Kutta method (4.7)—
(4.10) applied to (7.1), i.e.,

zn(tiv1) = zu(t) + hy Zbikj(tis (i), his p), (7.16)
=1

where k;(t;, zu(t;), hi, p), j = 1,... s, are implicitly defined by

Flti+cohian(t) +hi Y agjkikep| =0 £=1...s (7.17)

j=1
Application of the same Runge—Kutta method with the same step-sizes to the
sensitivity DAE (7.14) yields
Su(tiv1) = Sp(ti) + by Z biK;,
j=1
where K;, j = 1,..., s, are implicitly given by the system of linear equations

oOF > oF
9 [ti + cehi] | Su(t:) + h Z a K | +

oF
[ti =+ C[]’li] - K¢ + [ti + C(hi] =0
0z ap

Jj=1

for{ =1,...,s. With
ok; ok;
Ki= [Sue) + 0l =15
0z ap

the latter coincides with the IND approach for (7.16)—(7.17).

A Survey on Numerical Methods for Initial Value Problems with sDAEs 273

7.2.2 The Backward Mode and Adjoints

Consider the function g in (7.4), i.e., g(p) = ¢(z(t;p),p). Using the sensitivity
S(tr) the gradient is given by

Ve(P) = St) " V.o(z(tr:p). p) + Voo (2(ty:), p).

As in the discrete case we are interested in an alternative representation of the
gradient without the sensitivity S(z;). To this end we define the auxiliary functional

7
¢(p) = g(p) + / MO TF(,2(t:p), 2 (6 p). p)t

where A is a suitable function to be defined later. Differentiation with respect to p,
evaluation at p, and integration by parts yield

Ve (P) = S(ty) T Vop(alty:). p) + Vo (2(t:). D)
+ / ' (FI[]-S(t) + FL[1-S'() + F;,[t])T A(1)dt
= St " (Fulir] " A(ty) + Vog(z(ty:). p)) — S(t0) T Fls[to] T Alto)

FVpelip)) + [FTAO

fo
v T 4 d ani
+ / S@) (Fz[t] At) — it (FZ, [7] A(t))) dt.
to
Since we like to avoid the sensitivities S(f) and S(#;) we define the adjoint DAE

FLIt T A(ty) + Vo (i3 p). p) = 0, (7.18)

FllT 2@ — 5; (FLINT () = 0. (7.19)

Please note that this derivation is a formal derivation only and it is not clear whether
the adjoint DAE (7.18)—(7.19) actually possesses a solution. In fact, it may not have
a solution in general. The existence and stability of solutions of the adjoint DAE
subject to structural assumptions were investigated in [36]. Details can be found in
[68, Sect.5.3.3] as well.

274 M. Burger and M. Gerdts

If the adjoint DAE possesses a solution, then the gradient of g is represented by

V() = —S(10) T FLlio] TA0) + V(s). p) + / " ET A

4]

with S(fo) = z;(p) and as in the discrete case it coincides with Vg(p), compare [68,
Sect. 5.3.3].

Remark 7.3 Solving the DAE (7.1)—-(7.2) and (7.18)—(7.19) simultaneously by
some suitable one-step or multi-step method in general does not commute with the
discrete adjoint approach.

7.3 Example

Example 7.1 is concerned with a trolley moving on a surface, which leads to an
index-three DAE. Herein, a parametric sensitivity analysis is performed and the
sensitivity of the states w.r.t. to some parameters is computed using the forward
mode.

Example 7.1 Consider the motion of a trolley of mass m; on a one-dimensional
surface described by the function A(x), which is supposed to be at least twice
continuously differentiable, see Fig. 7.

Let a load of mass m;, be attached to the trolley’s center of gravity with a mass-
less rod of length £ > 0. The equations of motion are given by the following index-

X2,X4

myg

Fig. 7 Configuration of the trolley

A Survey on Numerical Methods for Initial Value Problems with sDAEs 275

State 1 vs time State 2 vs time

0.02

i 0.015

P 0.01 // A\
0.005 // &‘X

yd -0.005 X‘X /

/ -0.01

e -0.015 N/

-0.02

02 04 06 08 1 0O 02 04 06 08 1

t t

state 1
OO0000000
O—=NWAhUIONOWO =
state 2
o

o

State 7 vs time State 8 vs time

0.6 0.06
PAEIN 0.04 7

iy / \ oor
0.3 // N 0.02 N 7/
0.2 y

N/
0.1 / 33133 \/

0 02 04 06 08 1 0 02 04 06 08 1
t t

state 7
state 8

Fig. 8 Positions of trolley (top) and velocities of load (bottom) (normalized time interval [0, 1])

three DAE:

mix) (1) = u(t) — 221 (1) (x1 (1) — x3(1)) + Ao (D) (x1(2)),
mixy (1) = —mig — 241 (0) (2 (t) — x4(1)) — Aa(0),
max; (1) = 241 (1) (x1 () — x3(7)),
myxy (1) = —mag + 221 (1) (x2(1) — x4(1)),

0= (ni(1) —x3(0)” + (x2(t) — xa (1)) — €2,

0 = x2(2) — h(x1(2)).

Herein, (x1, x;) denotes the trolley’s center of gravity, (x3,x4) the load’s position,
A1, Ay the algebraic variables, and u(f) a given control input.

Figures 8 shows the results of a simulation using the software OCPID-DAEI, see
http://www.optimal-control.de, on the interval [0,2.79] (scaled to the normalized
interval [0, 1]) with m; = 0.3, my = 0.5, £ = 0.75, g = 9.81, and h(x) =
0.02 sin(2mx). Figure 9 shows the control input u and the algebraic variables A,
and A,. The computations were performed for the GGL-stabilized system.

Figure 10 shows the sensitivities of some states w.r.t. to m;.

http://www.optimal-control.de

276 M. Burger and M. Gerdts

State 10 vs time State 11 vs time
S.g o (1)
o 25 - :%
— 2 ~— -4
£ 15 £ 5
@ 1 @ '9
0.5 -8 —
0 -9
0O 02 04 06 08 1 0 02 04 06 0.8 1
t t
Control 1 vs time
2
_ 1.&13 i —
5 0% e
€ N\, i
3 O_‘ﬁ_’ N
-1.5
-2

0 02 04 06 08 1
t

Fig. 9 Algebraic variables (1, A;) (fop) and control input u (bottom) (normalized time interval

[0.1])

Sensitivity State 1 w.r.t. parameter m1 vs time Sensitivity State 2 w.r.t. parameter m1 vs time

0 2

-2 \ 1.5 ™\

-4 ™ 1 / \
T 6 \ T /N
E g Y E 05 / \
2 hY hY 2 0
% 19 N S 05 N\
© 14 7 T4 hY

-16 NS -1.5 N\

-18 -2

0 02 04 06 038 1 0O 02 04 06 08 1

t t

Sensitivity State 3 w.r.t. parameter m1 vs time Sensitivity State 4 w.r.t. parameter m1 vs time

0 2
5 \\ / 15 /\
- - 1
8 20 \ / 05 \
.25 \‘/ -1-513
0 02 04 06 08 1 0 02 04 06 08 1

t t

Fig. 10 Sensitivities of positions of trolley (fop) and load (bottom) w.r.t. to m; (normalized time
interval [0, 1])

A Survey on Numerical Methods for Initial Value Problems with sDAEs 277

Sensitivity State 1 w.r.t. parameter | vs time Sensitivity State 2 w.r.t. parameter | vs time

1.6 0.15
14 "\ 0.1 /f
_ 12 VA _ 005 /
) 1 / 7/ k] 0 — /
= 08 | N\ /
% / X -0.05
3 06 / 3 N/
0.4 y -0.1 \ ;
0.2 A -0.15 </
0 -0.2
0 02 04 06 08 1 0 02 04 06 08 1

t t

Sensitivity State 3 w.r.t. parameter | vs time Sensitivity State 4 w.r.t. parameter | vs time

25 0
2 Ja\ 0.2
515 / \ 5 04
S \ S .08
0.5 Y 1 P
0 1.2 wd
0 02 04 06 08 1 0 02 04 06 08 1

t t

Fig. 11 Sensitivities of positions of trolley (fop) and load (bottom) w.r.t. to £ (normalized time
interval [0, 1])

Figure 11 shows the sensitivities of some states w.r.t. to £.

8 Switched Systems and Contact Problems

Many applications lead to DAE models with piecewise defined dynamics. Herein,
the different DAE models are only valid in defined regions of the state space. Those
regions are separated and bounded by manifolds, which are typically implicitly
defined by state-dependent switching functions. A transition from one region
(i.e., one DAE) to another (with another DAE) occurs, if the switching function
changes its sign, i.e., the switching function indicates a switch in the dynamic
system. Moreover, a transition from one region to another may come along with
a discontinuity of some state components. For instance, contact and friction forces
acting between two or more colliding rigid bodies typically lead to discontinuities
in the velocity components of the state of a mechanical multibody system.

More general classes of switched DAEs and the existence and stability of
solutions are discussed in [97]. The controllability of switched DAEs is investigated
in [91]. Hybrid optimal control problems and necessary conditions can be found in
[59, 133, 136].

278 M. Burger and M. Gerdts
8.1 Hybrid Systems and Switching Functions

Itis convenient to view the dynamic process as a hybrid system, compare [114, 142].
To this end, the status of the system is characterized by a finite set of modes M =
{L,...,P}.Inmode m € M, the state evolves according to the DAE

X (1) = f"(x(0), y(0).
0 = g"(x(n), y(1)).

The system remains in mode m as long as the trajectory z(f) = (x(¢), y()) " stays
within the set

M= {x e X | $"(x) > O},

where for each m € M, s : R" — R is called switching function of mode m. For
simplicity we exclude vector-valued switching functions in order to avoid situations
with multiple active switching functions, which are difficult to resolve. Z = XxY C
R" x R™ defines the space of possible differential and algebraic states.

A transition from mode m to another mode /1 becomes possible only in the event
that x is about to cross the boundary of ™ at some time point 7, i.e., if s™(x(77)) =
0 and s™(x(¢)) < 0 for some ¢ > 7 provided the process would be continued with the
dynamics of mode m. Herein, x(?i) denote the left- and right-sided limits of x at [
respectively. The time point 7 in the above situation is called switching point.

In case of a transition from mode m to 71 at time , the following jump condition
applies to the differential state:

x(i) = x(i7) + d"7 (). (8.1)

Herein, "™ : X — X denotes the jump function for a transition from mode m to
mode 7i2. The transition from mode m to mode 7 is possible only if the state x(77)
belongs to some set X"~ C X. Moreover, x(i7) is supposed to be consistent with
the DAE.

The following assumption provides a sufficient condition for a proper crossing
of the switching manifold {x € X | s"(x) = 0} in mode m.

Assumption 8.1 Let the condition
K@) TVs"(x(77)) < 0
be satisfied whenever the system is in mode m € M and 1 is a point with s™(x(1~))=0.

In the case ¥’ (") T Vs”(x(77)) = 0, the trajectory is tangential to the manifold
™ and it may or may not cross the manifold or it may even stay on the manifold.
These cases are difficult to handle in general and bifurcation and non-uniqueness

A Survey on Numerical Methods for Initial Value Problems with sDAEs 279

issues may occur. Even if Assumption 8.1 holds, infinitely many switches (Zeno
phenomenon) may occur with lim;—oo (i1 — %) = 0, where the #;’s denote the
switching times. The continuation of the trajectory beyond such an accumulation
point (the Zeno point) is nontrivial in general. Often, the trajectory is continued
such that it stays on the switching manifold.

The simulation of a hybrid system subject to Assumption 8.1 can be performed
as follows:

Algorithm 1 (Hybrid System Simulation Using Switching Functions)

(0) Init: Choose a consistent initial value z,(f0) = (x(f0), yu(t0)) " at t = to, an
initial mode my € M with s™ (x;,(#0)) > 0, a final time ¢ > fy, and set k = 0.

(1) Stop the integration, if # = t.

(2) Perform one step of a numerical integration scheme with a suitable step-size &
to the DAE

X (1) = " (x(0). y(1)),
0 = g™ (x(n), y(0),

and compute the approximation zj, (t41) = (X (trt1), yr(fes1)) T attime fq =
min{t, t + h}.

3) If s (xp(tx+1)) > 0, set my+ = my, k < k+ 1, and go to (1). Otherwise go to
4).

(4) If s (xp,(tr+1)) = 0, find m with x;(t41) € X" ™, update the state by

X (ter1) = X (tig1) + d™ 7 (0 (f1)),

compute a corresponding consistent initial value yy(#.+1), update the mode by
My4+1 = m, setk <— k + 1, and go to (1). Otherwise go to (5).

(5) If 8™ (xp(tr+1)) < 0, determine a step-size T € [0, 1] such that s (x;,(f; +
th)) = 0 using the integration scheme in (2), set fy4+1 = #; + th and z;(tx+1) =
(n (1) ya(ter1)) T, and go to (4).

In order to determine the step-size t in step (5) of Algorithm 1, a root of the
function

r(t) = s" (xp(tx + Th))

has to be found. If #(0) = s (x,(#x)) > 0 and r(1) = 5™ (x,(#x +h)) < 0, aroot can
be located by the bisection method with a linear rate of convergence. Such a root
7 is guaranteed to exist in [0, 1] by the intermediate value theorem, if the mapping
¢ :[0,1] — R" with ¢(tr) := xu(tx + th) is continuous. If ¢ is continuously
differentiable, then we may apply Newton’s method in order to find a root of r and

280 M. Burger and M. Gerdts

hope for an at least super-linear convergence rate. The Newton iteration reads

r(te)

, {=0,1,2,...,
r'(te)

Tg+1 = T —

where

F(x) = ¢(0) V™ (¢ ().

Note that the iteration is well defined, if Assumption 8.1 holds. In fact, the weaker
condition &'(2) T Vs (¢(%)) # 0 in a root 7 of r would be sufficient for a locally
super-linear convergence of Newton’s method. Often, interpolation techniques are
used to compute ¢(tr) and ¢’(r) approximately in order to avoid the frequent
evaluation of the discretization scheme, see [29, Sect. 5.3.3] for further details.

Example 8.1 Let x = (x1,X2,x3,x4)" and y = (y1,y2)" be the differential and
algebraic states of a pendulum of mass 1 and length 1 with a wall described by the
switching function s' (x) = x, + é for mode 1 and the set

S = {120, %3, x0) T | 5" (x2) > 0}

In mode 1 (free mode) the pendulum moves according to the DAE (GGL-
stabilization)

x1(0) = x3(1) = 2x1(y2(1),
X0 = x4(1) — 2x2(0)y2(1),
X0 = = 2x(0)yi(),
x(1) = —g = 2x2(1)y(1),
0=x1(0* +x0()” — 1,
0 = x1()x3(1) + x2(1)x4(0).

If the position (x1,x,) " hits the boundary of .#! at some 7, i.e., if x,(7) = —;, the
jump condition

A+ A ~— —
(x3(f+)) _ (M(f_)) —(+e) (M(f_)) - (&%({_))
x4(17) x4(17) x4(17) x4(17)
applies and the mode remains unchanged. Herein, ¢ € [0, 1] is the elasticity constant.
Figure 12 shows the results of a simulation with the code DASRT of the contact
problem using switching functions in the time interval [0, 6] with ¢ = 0.9, initial

state x(0) = (1,0,0,0)7, y(0) = (0,0)7, and error tolerance 107! for the
differential states.

A Survey on Numerical Methods for Initial Value Problems with sDAEs 281

. X position o y position
A A -0.05
0.98 i
i o1}
el T
E 09 A E i
IR RS el
FiA o
0.9 ﬁé -0.35 H % %?i ’iﬁ
Bl =
0.88
ILRRRRLLL e E LT e
0 1 2 .3 4 5 6 0 1 2 _3 4 5 6
s x velocity s y velocity
1 2 A
A i M
ER AR AR \
| AL
‘ BIRRRAAN
-142 . ‘ ‘
0 1 2 .3 4 5 6 0 1 2 tirie 4 5 6
algebraic state 1 algebraic state 2
8 1e-06
; ¥ 5e-07
5 ﬁ i 0 Iﬁ:{ LI.[L ’“JI&I‘ %)’ %4v i
= 4 * N (; ¥ 3
B 3 IR R Ai;t -5e-07 4
IR RAR A AVAVAVAVIVY O
RIRVAVAVA'A o068
v v
0 -1.5e-06
0 1 2 .3 4 5 0 1 2 m:e 4 5 6

Fig. 12 Numerical simulation of pendulum with contact surface and switching functions

The results illustrate the Zeno phenomenon since the sequence of contact points
accumulates. A natural continuation beyond the accumulation point is the constant
solution with the pendulum being at rest on the switching manifold.

8.2 Parametric Sensitivity Analysis for Switched Systems

We add a parameter vector p € R? to the problem setting in Sect. 8.1 and investigate
the sensitivity of a solution of the hybrid system with respect to the parameter vector.

282 M. Burger and M. Gerdts

To this end, let the state evolve according to the parameter-dependent DAE

X (1) = " (). y(0).p),
0= ¢"(x(1),y(),p)
in mode m € M within the set
S(p) ={xeX | s p) =0}, s"R"xR? — R.

In case of a transition from mode m to i at time 7, the following jump condition
applies to the differential state:

x(T) = x(@) + 4" (x(7). p). (8.2)

Herein, d"~" : X x RY —> X denotes the parametric jump function for a transition
from mode m to mode 7, where a transition is possible if x(~) belongs to some set
X">"(p) C X. The jump function d in (8.2) has to be chosen such that it provides
consistent differential states x(7).

The functions f™, g", s, m € M, and d™" m,im € M, are supposed to be at
least continuously differentiable with respect to all arguments.

Let z(t:p) = (x(t:p), y(t;p)) T for t € [to, tr] denote a solution of the switched
system for the parameter p with a consistent initial value z(fp;p) = zo(p) =
(xo(p).yo(p))T in mode m with s"(xo(p),p) > 0. In particular, let 2(r) :=
(&(0),5@®) T with 2() = z(#;p) and 2y = z0(p) denote the solution for a fixed
nominal parameter p € RY.

We are interested in computing the sensitivities

ox Ay, .
S(0:=) D). 0=) @h)

assuming their existence in [fo, #].
While in mode m with s"(x(#; p), p) > 0, the sensitivities solve the sensitivity
DAE

S(1) = A™(1)S.(1) + B" (1)S,(1) + " (1),
0 = G"()S:(1) + H™()S,(1) + K" (1),

with
af™ dg™
ary =" 60,3600 5) 6" ="5 G0.50.p).
af™ dg™
0= G005, H0= " G0.50.5)
af™ dg™
(1) = gp ®0).50).). e = G050,

compare Sect. 7.

A Survey on Numerical Methods for Initial Value Problems with sDAEs 283

We investigate, what happens at a switching point 7 in mode m with parameter p.
Then, we have

s"(x(@:p):p) = 0. (8.3)
In general, this switching point will depend on the parameter. Define
r(t.p) := s"(x(1";p).p)
for p close to p. Equation (8.3) implies
7:=r(p) =0.
Assumption 8.2 The switching point t in mode m satisfies
0 # g; @.p) = ZS’"(X(?‘;[?);[?) =¥ (T7:p) T Ves" (x(i7:)).

If Assumption 8.2 holds, then, by the implicit function theorem, there exist
neighborhoods Bs(p), § > 0, B.(7), ¢ > 0, and a continuously differentiable
mapping T : Bs(p) —> B,(?) with

1=T@p) and r(T(p).p) =0 Vp e Bs(p),
and
oy =—(Ten) an
e ?) gt
with
or . L= T i A
at(t,p) =xX(17:p) Vius" (x(t7:D); P)s
ar"/\ mesi—Y. 2\ T ~— mesoi—y\. o
ap(mv) = V" (X(7);p) Sx(d™) + Vps" (3(17); p).
Introducing T'(p) into (8.2) yields the relation

x(T(p)T:p) = x(T(p)";p) + d" 7™ ((T(p)"; p),p). (8.4)

284 M. Burger and M. Gerdts

Herein, we assume that the transition m — m is stable under small perturbations in
p. Differentiation of (8.2) with respect to p and evaluation at p yields

XA PT B) + S (@) =X @ PT (B) + Se(i)
+V. A" EE).)T (X P)T(B) + Si())
+V,d" M (&(7), p) T

Rearranging terms leads to an update rule for the sensitivity Sy at the switching point
? according to

Sit) = (Y5 =X G 1) + Ved" TG)G) T'5)
+ (1 + V" G),)T) $.6)
+V,d" (&), p) T (8.5)
If x is continuous at 7, i.e., d = 0, then the update rule for S, reduces to
Se(iT) = 8.(07) + (K@ p) =X (1 p) T' ().

If, in addition, X’ is continuous at 7, then S, is continuous at 7 as well.

After x() and S,(#7) have been computed by (8.2) and (8.5), the algebraic
component Sy(i") has to be computed consistently.

Note that this update rule is only valid under Assumption 8.2, which ensures a
proper crossing of the switching manifold. If Assumption 8.2 does not hold at 7, it
is not clear how to update the sensitivity Sy and in general the state may not depend
continuously differentiable on p.

A related parametric sensitivity analysis for mechanical multibody systems using
switching functions can be found in [144, Sect. 3.9] and [112]. An adjoint calculus
for switched DAEs is derived in [114].

Remark 8.1 Please note that Assumptions 8.1 and 8.2 are crucial in the above
analysis. These assumptions are often explicitly or implicitly assumed by standard
integrators like DASRT or SCILAB/DASKR. The user needs to be aware of this
since codes may fail if the assumptions are not met. As pointed out earlier, it is in
general not clear how to continue integration (especially in the context of sensitivity
analysis) if the assumptions are not satisfied. In case of the Zeno phenomenon, it is
often assumed that the solution stays on the switching manifold. Modifications in
the codes are necessary in such cases.

A Survey on Numerical Methods for Initial Value Problems with sDAEs 285
8.3 Contact and Friction in Mechanical Multibody Systems

Mechanical multibody dynamics taking into account contact forces and friction
forces are, beyond doubt, the most important examples of switched systems and
include particular impact and friction models, compare, e.g., [3, 139]. Suitable
discretization schemes for such systems, which typically do not locate impact
points exactly but work with a fixed step-size instead, are introduced in [2, 6, 113].
Extensions towards large-scale systems and tailored algorithms for complementarity
problems can be found in [5, 137, 138, 140]. Impact models and the interpretation
of the mechanical multibody system as a measure differential equation can be found
in [65, 88, 102].

The equations of motion of a mechanical multibody system with contact and
friction are given by

q' (1) = (),
M(q()' (1) = f(q(1), v(1)) + Fc(q(r)).

In the above model, g(f) € R”" denotes the vector of generalized coordinates, v its
velocity, f(g, v) the vector of generalized forces, and M(g) the non-singular mass
matrix.

The above multibody system is augmented by an impact model that relates the
velocity v (™) right before an impact to the velocity v (i) right after the impact. The
impact model typically leads to a discontinuity of some components of the velocity
vector v at a contact point 7 and hence, the velocity components are only of bounded
variation in general. The vector F¢(g) contains the contact and friction forces, which
apply only in the case of a contact between the rigid bodies of the multibody system,
compare [60, 132]. Whether or not a contact between bodies occurs, is measured by
distance functions s; : R” — R with

se(g) = 0, k=1,...,m.

Herein, a contact at time 7 occurs, if sy (g(7)) = 0 forsome k € {1, ..., m}. In case of
a contact, the resulting contact and friction force F¢ x(g) is an element of the friction
cone

FCi(q) :=={F"+ F'| F" = m(q)A.F' = Di(q@)B. A = 0.¥(B) < 1A}

Herein, F" = F}(q) denotes the contact force into the normal direction of the
contact surface, which can be expressed as F} (q) = nx(q)Ax with the normal vector
nk(q) = Vsi(g) to the contact manifold .%(q) = {g € R" | sx(q) = 0}. A, satisfies
the Signorini contact conditions

0 < si(q) 1 A >0,

286 M. Burger and M. Gerdts

which is a complementarity system for A;. The operator L in 0 < alb > 0is
defined by a > 0,b > 0, and ab = 0.

The force F' = Fj(qg) is the tangential force owing to friction in the contact mani-
fold, which can be expressed as F}(q) = Di(q) B, where the columns of the matrix
Dy(q) span the friction space. For isotropic Coulomb friction, which we assume
throughout, the function ¥ is given by ¥ (8) := ||B|» and ux > 0 is the friction
coefficient at the contact manifold .#;(¢). The norm || - ||; causes some difficulties
as ||Bill2 < wmxAx leads to a non-smooth constraint. To overcome this difficulty,
the norm || - ||, is typically approximated by | - ||;, which leads to the following
polyhedral approximation of the friction cone:

FCi(q) :={F"+ F' | F" = m(q)A, F' = Di(q)B, A > 0, [|Blly < pud},
compare [60, 132].

Depending on the choice of the friction cone, the total contact force is then
defined by

Fe(g) = Z Fei(q)

kisk(q)=0

with F¢(g) being an element either of the total friction cone

FC(g)=) FCdq)

k:sk(q)=0

or its polyhedral approximation

FC(g)=) FCuq).

ksk(g)=0

If a contact occurs at time 7, i.e., sy (¢(7)) = O forsome k € {1, ..., m}, the impact
model

Vsi(g@®) T (@) + (@) = 0

applies. Herein, &; € [0, 1] denotes the elasticity constant. A fully elastic contact
occurs if & = 1. An inelastic contact occurs if g, = 0.

A Survey on Numerical Methods for Initial Value Problems with sDAEs 287

An approach to determine the friction force Fi, = Dy (q(7)) Bk at a contact is based
on the maximum dissipation principle, compare [132]. Herein, the corresponding
friction force Fj maximizes the rate of energy dissipation for a given normal
force F} = ni(q(7))Ax at a contact. This principle leads to the following convex
optimization problem for §:

Maximize — v DB st Y(B) < k. (8.6)

Let B be a solution of (8.6). If A, > 0, then 8 = 0 satisfies the Slater condition for
this convex optimization problem, and a necessary and sufficient condition for the
solution By reads as follows, compare [38, Theorem 6.1.1, Proposition 6.3.1]: There
exists a multiplier ¢, € R such that

0 € Di(g@)) "o + Gdy (Br), (8.7)
0<& L pde—y(Bi) =0. (8.8)

Herein, Y = 9(|| - ||2) denotes the generalized gradient of the locally Lipschitz
continuous function ¥, which is given by

181, 8- if #0,

0 =
Ve { fe |l < 13, i 6 = 0.

If Ay = 0, then B = 0 is the only feasible point in (8.6) and the conditions (8.7)—
(8.8) are satisfied, e.g., by choosing

— 4 Dilg@®) "), if & > 0,

& = ID(g®) Tv(@)|2 and o = 0 i =0,

Note that in either case o« € 9y (0). Instead of ¥ (B) = ||B]|» we may use the
approximation ||B||; in (8.6), which transforms the convex optimization problem
in fact into a linear program. To this end, f is replaced by B = BT — B~ with

pt.B~ > 0:

Maximize —v (i) T Di(g())(BT — B7) (8.9)
S.t. eT(,B+ + B7) < Ak, ,3+ >0, 8~ >0. .

Herein, we exploited the relation ||| = e' (BT + B~) with the vector ¢ =
(1,...,1)T of all ones of appropriate dimension. First order necessary and sufficient

288 M. Burger and M. Gerdts

conditions for a solution 8; = ,8,;" — B, of (8.9) yield
: T (e (i
0 = [Di(g(D), —Di(q(@)] v(@) + &)L)
k
0<& L uh—e B +B;) >0,
0<pE L pf=o.

Multiplication of the first equation by (8 k+ , ,Bk_)T from the left and exploitation of
the complementarity conditions yield

0<Be L Dilg®)TvGE") + e >0,
0<& L mh—e =0
with
Dilg@) = [Di(q(®), —Di(q®)]. B = [B;. BT

Note that the matrix Dk is balanced, i.e., if Dk contains a column c, then it contains
—c as well. Summarizing, the equations of motion with contact and friction forces
satisfy the following complementarity system:

q'(n = (),
M(g())v' (1) = f(q(1). v(2)) + Z ni(q(@)Ar(?) + Di(q(2) B (D),

k=1
0 <s(g(r) L Ax(r) =0,

0<B® L Di(q(®)Tv() + &u(t)e = 0,
0<&® L meret) —e () =0
and
Vsi(@@) Tt +ev() =0 ifsi(q(r) =0
with k = 1,...,m. A semi-implicit discretization scheme for the system was
suggested in [6, 132]. Let 2t = (g%, v*, A%, B¢, ¢%) be the state at time #; and &7 > 0 a
step-size. Let the index set of active contacts at #, be defined by

AUi= ke {l,....m}| si(q" + ') <O}

Let Afj‘l = (A,f“)ke 4¢ and likewise for Bﬁ;“ and §ﬁ;“.

A Survey on Numerical Methods for Initial Value Problems with sDAEs 289

Then /! = (¢*+!, v, Af‘]}'l, ~f;Z;H, Qﬁfl) solves the following complementar-
ity problem:

ql+l _ql — hv(-ﬁ-l’ (810)

M (0 =) = h (@0 + Yo m@ONT + D@L B

keAt
0<At 1 Vsi@) T +g0vh) >0, (keAh (8.12)
0<B L DigH o +¢fle>0, (keab (8.13)
0<&tt L Al =T > 0. (keAbh (8.14)

Convergence results and alternative discretizations are discussed in [4, 6, 60, 113].

It remains to discuss, how the nonlinear complementarity problem can be solved.
If M is independent of g or if M(¢**") was replaced by M(4"), then the problem is
actually a linear complementarity problem, compare [3, 46, 138, 139], and it could
be solved by Lemke’s algorithm [95] or as in [5, 137]. Another approach is to use a
semi-smooth Newton method, compare [86, 115, 116]. Herein, the complementarity
system (8.10)—(8.14) is rewritten as the nonlinear and non-smooth equation

0= G (8.15)

gt — gt — hot+!

Mg+ (0 = 0f) =k (F(g"0) + Cheae @A + DetgBEH)
= drs(AT, V(@) T ! + g0t)) (ke AY J
ors(B Di(g) T + LM e) (ke AY)
drs(C T AT — e TR (ke AY

where ¢rp(a,b) := va? 4+ b> — a — b denotes the Lipschitz continuous Fischer-
Burmeister function, see [55]. Let dG(z) denote Clarke’s generalized Jacobian of G,
compare [38] and [70] for details on how to compute it. Then, a root of G can be
obtained by the following basic version of the semi-smooth Newton method.

Algorithm 2 Semi-Smooth Newton Method

(0) Init: Choose tolerance fol > 0 and an initial guess for z‘*!, e.g., 2@ = (¢* +
hvt,v%,0,0,0)T. Setj = 0.
(1) If |GEYD)| < tol, set 2! = z) and STOP.

290 M. Burger and M. Gerdts

(2) Compute an element V) € dG(z'”) and the Newton direction) by solving
the linear equation

vWg = —G(z(j)).

4) SetzUth =700 4+ 40 j < j+1,and goto (1).

The following examples summarize results, which have been obtained by
applying Algorithm 2 to mechanical multibody systems with contact and friction.

Example 8.2 Consider a bouncing and rotating ball with radius r = 1, mass
m = 1, and moment of inertia J/ = 1 in the x — z-plane with ¢ = (x,z.6)",
M = diag(m,m,J), f(q.¢) = (0,—mg,0)7, g = 9.81, and s(q) = z — r. The
friction space is spanned by

-1 1
D(q) = 00
r—r

Figure 13 shows a simulation of the bouncing ball in the time interval [0, 10] with
initial state ¢(0) = (0,10,0)T, v(0) = (1,10, —5)T, friction coefficient u = 0.2,
and elasticity parameter ¢ = 0.675. The states ¢, v, A, B, and ¢ as functions of time
are depicted in Fig. 14.

R S SRR A e R T

R e e e e - S - S

Fig. 13 Snapshot of a bouncing and rotating ball with contact and friction

A Survey on Numerical Methods for Initial Value Problems with sDAEs 291

X position z position rotation angle
4 16 0
2+ 14 T -5
0 /\ 12 % -10
T 2 € 10 g -
£ 3 £ % \ E 15
*x -6 X 6 v //\ Q 20
-8 4
10 2l ¥V VWA 2 ~
-12 . 0 - -30 -
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
time time time
x velocity z velocity angular velocity
1 15 15 r
0.5 10 -2
- 0 5 -2.5
g -0.5 s} 0 \ \ \\]\ \V\‘ © -3
< X 5 \ \' N\ X 35
X 15 -10 -4
2 -15 4.5
2.5 -20 -5
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
time time time
lambda betal beta2
3000 350 128
2500 300 t
120
2000 ggg 120
X 1500 * 50 2 80
60
1000 i 100 40 |
500 I 50] it 20 i
0 ‘ Hrn 0 Ll 0 i
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
time time time
zeta
0 =
R4
-2e-10 l !
-4e-10
o
= -6e-10
-8e-10
-1e-09
-1.2e-09

time

Fig. 14 Snapshot of a bouncing and rotating ball with contact and friction

Example 8.3 Consider a billiard table and the motion of a sphere on the table in
the x — y-plane. For simplicity, the friction on the table is neglected, but friction
forces and contact forces at the boundaries of the table are taken into account with
elasticity constant ¢ = 0.9 and friction coefficient & = 0.5. The radius of the sphere
is ¥ = 0.04 [m], its mass is m = 0.1 [kg], and its moment of inertia is J = 1. The
generalized coordinates are g = (x, y, G)T, the mass matrix is M = diag(m, m, J),
the generalized forces are f(g.q’) = (0,0,0) ", and the switching function for the

292 M. Burger and M. Gerdts

Fig. 15 Snapshot of a billiard table with contact and friction at the borders of the table. For better
visibility the sphere was enlarged by a factor of two in the pictures

opposite boundary of the table is s(q) = y — r. The friction space is spanned by

-1 1
Di@=] 00
r —r

Figure 15 shows some snapshots of a simulation of the billiard problem
in the time interval [0,2.05] with initial state g(0) = (0,3£/4,0)7, v(0) =
0,-2,-1 1)T, where £ = 2.24 denotes the length of the table in [m]. The states g,
v, A, B, and ¢ as functions of time are depicted in Fig. 16.

A Survey on Numerical Methods for Initial Value Problems with sDAEs 293

X position osition rotation angle
0 8 25 P ‘ : 0 9
0.1} \ 2| / 5|
= 0.2 = K)
15 = -10
£ s s pd E
< 04 x AN Q- S
05 AN 05 N / 20 \‘“m
-0.6 : . 0 . : -25 :
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 15 2
time time time
x velocity y velocity angular velocity
0 2 -10.955
-0.05 15| -10.96
-0.1 1t -10.965
@ 015 05 -10.97
g -02 9 o © -10.975
= -0.25 x 0.5 -10.98
X -0.3 - -10.985
-0.35 -1 -10.9
-0.4 -1.5 -10.995
-0.45 2 . B .
0 0.5 1 1.5 2 0 0.5 1 15 2 0 0.5 1 15 2
time time time
lambda betal beta2
20 25
18 | 45
16 2t 4
31 15 821
< 10 2 : * 25
x 8 x 1 x 5
6 15
4 0.5 1
2 0.
0 0 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 15 2
time time time
zeta
0
-2e-12
o etz
° -6e-12
-8e-12
-le-11
-1.2e-11 .
0 05 1 156 2

time

Fig. 16 Snapshot of a billiard table with contact and friction at the borders of the table

9 Conclusions

Simulation is a well-established and indispensable tool in industrial design proce-
dures. Moreover, efficient simulation techniques are required in other disciplines
such as controller design, parameter identification, or optimal control. This paper
aims to provide an overview on different aspects in the simulation of DAE
initial value problems. The focus was set on a choice of methods and concepts
that are relevant in industrial simulation environments for coupled systems of
potentially large size. These concepts build upon basic integration schemes and add
features like sensitivity analysis (needed, e.g., in optimization procedures), contact
dynamics, real-time schemes, or co-simulation techniques. Each of these topics is a
field of research in its own right with many contributions. Only some of the many
contributions could be mentioned in this overview paper and we refer the interested
reader to the specialized literature in the bibliography.

294

M. Burger and M. Gerdts

References

10.

11.

12.

13.

14.

15.

16.

17

18.

19.

20.

21.

22.

. Amodio, P., Mazzia, F.: Numerical solution of differential algebraic equations and computa-

tion of consistent initial/boundary conditions. J. Comput. Appl. Math. 87, 135-146 (1997)

. Anitescu, M.: Optimization-based simulation of nonsmooth rigid multibody dynamics. Math.

Program. 105(1(A)), 113-143 (2006)

. Anitescu, M., Potra, FA.: Formulating dynamic multi-rigid-body contact problems with

friction as solvable linear complementarity problems. Nonlinear Dyn. 14(3), 231-247 (1997)

. Anitescu, M., Potra, FA.: A time-stepping method for stiff multibody dynamics with contact

and friction. Int. J. Numer. Methods Eng. 55(7), 753-784 (2002)

. Anitescu, M., Tasora, A.: An iterative approach for cone complementarity problems for

nonsmooth dynamics. Comput. Optim. Appl. 47(2), 207-235 (2010)

. Anitescu, M., Potra, FA., Stewart, D.E.: Time-stepping for three-dimensional rigid body

dynamics. Comput. Methods Appl. Mech. Eng. 177(3—4), 183-197 (1999)

. Arnold, M.: Half-explicit Runge-Kutta methods with explicit stages for differential-algebraic

systems of index 2. BIT 38(3), 415438 (1998)

. Arnold, M.: Multi-rate time integration for large scale multibody system models. In: IUTAM

Symposium on Multiscale Problems in Multibody System Contacts: Proceedings of the
IUTAM Symposium held in Stuttgart, Germany, February 20-23, 2006, pp. 1-10. Springer,
Dordrecht (2007)

. Arnold, M.: Stability of sequential modular time integration methods for coupled multibody

system models. J. Comput. Nonlinear Dyn. 5, 031003 (2010)

Arnold, M.: Modular time integration of block-structured coupled systems without algebraic
loops. In: Schops, S., Bartel, A., Giinther, M., ter Maten, E.J.W., Miiller, P.C. (eds.) Progress
in Differential-Algebraic Equations. Differential-Algebraic Equations Forum, pp. 97-106.
Springer, Berlin/Heidelberg (2014)

Arnold, M., Giinther, M.: Preconditioned dynamic iteration for coupled differential-algebraic
systems. BIT Numer. Math. 41(1), 001-025 (2001)

Arnold, M., Murua, A.: Non-stiff integrators for differential-algebraic systems of index 2.
Numer. Algorithm. 19(1-4), 25-41 (1998)

Arnold, M., Strehmel, K., Weiner, R.: Half-explicit Runge—Kutta methods for semi-explicit
differential-algebraic equations of index 1. Numer. Math. 64(1), 409-431 (1993)

Arnold, M., Burgermeister, B., Eichberger, A.: Linearly implicit time integration methods in
real-time applications: DAEs and stiff ODEs. Multibody Syst. Dyn. 17(2-3), 99-117 (2007)
Arnold, M., Burgermeister, B., Fiihrer, C., Hippmann, G., Rill, G.: Numerical methods in
vehicle system dynamics: state of the art and current developments. Veh. Syst. Dyn. 49(7),
1159-1207 (2011)

Arnold, M., ClauB}, C., Schierz, T.: Error analysis and error estimates for co-simulation in
FMI for model exchange and co-simulation v2.0. Arch. Mech. Eng. LX, 75-94 (2013)

. Arnold, M., Hante, S., Kobis, M.A.: Error analysis for co-simulation with force-displacement

coupling. Proc. Appl. Math. Mech. 14(1), 4344 (2014)

Ascher, U.M., Petzold, L.R.: Projected implicit Runge-Kutta methods for differential-
algebraic equations. SIAM J. Numer. Anal. 28(4), 1097-1120 (1991)

Balzer, M., Burger, M., Dauwel, T., Ekevid, T., Steidel, S., Weber, D.: Coupling DEM
particles to MBS wheel loader via co-simulation. In: Proceedings of the 4th Commercial
Vehicle Technology Symposium (CVT 2016), pp. 479-488 (2016)

Bartel, A., Brunk, M., Giinther, M., Schops, S.: Dynamic iteration for coupled problems of
electric circuits and distributed devices. SIAM J. Sci. Comput. 35(2), B315-B335 (2013)
Bartel, A., Brunk, M., Schops, S.: On the convergence rate of dynamic iteration for coupled
problems with multiple subsystems. J. Comput. Appl. Math. 262, 14-24 (2014). Selected
Papers from NUMDIFF-13

Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems.
Comput. Methods Appl. Mech. Eng. 1, 1-16 (1972)

AS

23

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44,

45.

46.

urvey on Numerical Methods for Initial Value Problems with sDAEs 295

. Becker, U.: Efficient time integration and nonlinear model reduction for incompressible
hyperelastic materials. Ph.D. thesis, TU Kaiserslautern (2012)

Becker, U., Simeon, B., Burger, M.: On rosenbrock methods for the time integration of nearly
incompressible materials and their usage for nonlinear model reduction. J. Comput. Appl.
Math. 262, 333-345 (2014). Selected Papers from NUMDIFF-13

Bock, H.G.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlin-
earer Differentialgleichungen, vol. 183. Bonner Mathematische Schriften, Bonn (1987)
Brasey, V., Hairer, E.: Half-explicit RungeKutta methods for differential-algebraic systems of
index 2. SIAM J. Numer. Anal. 30(2), 538-552 (1993)

Brenan, K.E., Engquist, B.E.: Backward differentiation approximations of nonlinear differen-
tial/algebraic systems. Math. Comput. 51(184), 659-676 (1988)

Brenan, K.E., Petzold, L.R.: The numerical solution of higher index differential/algebraic
equations by implicit methods. SIAM J. Numer. Anal. 26(4), 976-996 (1989)

Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations. Classics in Applied Mathematics, vol. 14. SIAM,
Philadelphia (1996)

Brown, P.N., Hindmarsh, A.C., Petzold, L.R.: Consistent initial condition calculation for
differential-algebraic systems. SIAM J. Sci. Comput. 19(5), 1495-1512 (1998)
Burgermeister, B., Arnold, M., Esterl, B.: DAE time integration for real-time applications in
multi-body dynamics. Z. Angew. Math. Mech. 86(10), 759-771 (2006)

Burgermeister, B., Arnold, M., Eichberger, A.: Smooth velocity approximation for con-
strained systems in real-time simulation. Multibody Syst. Dyn. 26(1), 1-14 (2011)

Biiskens, C., Gerdts, M.: Differentiability of consistency functions for DAE systems. J.
Optim. Theory Appl. 125(1), 37-61 (2005)

Campbell, S.L., Gear, C.W.: The index of general nonlinear DAEs. Numer. Math. 72, 173-196
(1995)

Campbell, S.L., Kelley, C.T., Yeomans, K.D.: Consistent initial conditions for unstructured
higher index DAEs: a computational study. In: Computational Engineering in Systems
Applications, France, pp. 416-421 (1996)

Cao, Y., Li, S., Petzold, L.R., Serban, R.: Adjoint sensitivity analysis for differential-algebraic
equations: the adjoint DAE system and its numerical solution. SIAM J. Sci. Comput. 24(3),
1076-1089 (2003)

Caracotsios, M., Stewart, W.E.: Sensitivity analysis of initial-boundary-value problems with
mixed PDEs and algebraic equations. Comput. Chem. Eng. 19(9), 1019-1030 (1985)

Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

Cuadrado, J., Cardenal, J., Bayo, E.: Modeling and solution methods for efficient real-time
simulation of multibody dynamics. Multibody Syst. Dyn. 1(3), 259-280 (1997)

Curtiss, C.F.,, Hirschfelder, J.O.: Integration of stiff equations. Proc. Nat. Acad. Sci. U.S.A.
38, 235-243 (1952)

Deuflhard, P., Hairer, E., Zugck, J.: One-step and extrapolation methods for differential-
algebraic systems. Numer. Math. 51(5), 501-516 (1987)

Diehl, M., Bock, H.G., Schldder, J.P., Findeisen, R., Nagy, Z., Allgower, F.: Real-time
optimization and nonlinear model predictive control of processes governed by differential-
algebraic equations. J. Process Control 12(4), 577-585 (2002)

Diehl, M., Bock, H.G., Schldder, J.P.: A real-time iteration scheme for nonlinear optimization
in optimal feedback control. SIAM J. Control Optim. 43(5), 1714-1736 (2005)

Dopico, D., Lugris, U., Gonzalez, M., Cuadrado, J.: Two implementations of IRK integrators
for real-time multibody dynamics. Int. J. Numer. Methods Eng. 65(12), 2091-2111 (2006)
Duft, LS., Gear, C.W.: Computing the structural index. SIAM J. Algebr. Discrete Methods
7(4), 594-603 (1986)

Ebrahimi, S., Eberhard, P.: A linear complementarity formulation on position level for
frictionless impact of planar deformable bodies. Z. Angew. Math. Mech. 86(10), 807-817
(2006)

296

47

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67

68.
69.

70.

M. Burger and M. Gerdts

. Eich, E.: Convergence results for a coordinate projection method applied to mechanical
systems with algebraic constraints. SIAM J. Numer. Anal. 30(5), 1467-1482 (1993)
Eichberger, A., Rulka, W.: Process save reduction by macro joint approach: the key to real
time and efficient vehicle simulation. Veh. Syst. Dyn. 41(5), 401-413 (2004)

Engelhardt, L., Burger, M., Bitsch, G.: Real-time simulation of multibody systems for on-
board applications. In: Proceedings of the First Joint International Conference on Multibody
System Dynamics (IMSD2010) (2010)

Esterl, B., Butz, T., Simeon, B., Burgermeister, B.: Real-time capable vehicletrailer coupling
by algorithms for differential-algebraic equations. Veh. Syst. Dyn. 45(9), 819-834 (2007)
Estévez Schwarz, D.: Consistent initialization for index-2 differential-algebraic equations
and its application to circuit simulation. Ph.D. thesis, Mathematisch-Naturwissenschaftlichen
Fakultit II, Humboldt-Universitdt Berlin (2000)

Feehery, W.F., Tolsma, J.E., Barton, PIL: Efficient sensitivity analysis of large-scale
differential-algebraic systems. Appl. Numer. Math. 25, 41-54 (1997)

Feng, A., Holland, C.D., Gallun, S.E.: Development and comparison of a generalized semi-
implicit Runge—Kutta method with Gear’s method for systems of coupled differential and
algebraic equations. Comput. Chem. Eng. 8(1), 51-59 (1984)

Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming.
Mathematics in Science and Engineering, vol. 165. Academic Press, New York (1983)
Fischer, A.: A special Newton-type optimization method. Optimization 24, 269-284 (1992)
Fiihrer, C.: Differential-algebraische Gleichungssysteme in mechanischen Mehrkorpersyste-
men: Theorie, numerische Ansitze und Anwendungen. Ph.D. thesis, Fakultit fiir Mathematik
und Informatik, Technische Universitidt Miinchen (1988)

Fiihrer, C., Leimkuhler, B.J.: Numerical solution of differential-algebraic equations for
constraint mechanical motion. Numer. Math. 59, 55-69 (1991)

Gallrein, A., Baecker, M., Burger, M., Gizatullin, A.: An advanced flexible realtime tire model
and its integration into Fraunhofer’s driving simulator. SAE Technical Paper 2014-01-0861
(2014)

Garavello, M., Piccoli, B.: Hybrid necessary principle. SIAM J. Control Optim. 43(5), 1867—
1887 (2005)

Gavrea, B.I., Anitescu, M., Potra, FEA.: Convergence of a class of semi-implicit time-stepping
schemes for nonsmooth rigid multibody dynamics. SIAM J. Optim. 19(2), 969—-1001 (2008)
Gear, C.W.: Simultaneous numerical solution of differential-algebraic equations. IEEE Trans.
Circuit Theory 18(1), 89-95 (1971)

Gear, C.W.: Differential-algebraic equation index transformations. SIAM J. Sci. Stat. Comput.
9, 39-47 (1988)

Gear, C.W., Petzold, L.R.: ODE methods for the solution of differential/algebraic systems.
SIAM J. Numer. Anal. 21(4), 716-728 (1984)

Gear, C.W,, Leimkuhler, B., Gupta, G.K.: Automatic integration of Euler-Lagrange equations
with constraints. J. Comput. Appl. Math. 12(13), 77-90 (1985)

Geier, T., Foerg, M., Zander, R., Ulbrich, H., Pfeiffer, F., Brandsma, A., van der Velde, A.:
Simulation of a push belt CVT considering uni- and bilateral constraints. Z. Angew. Math.
Mech. 86(10), 795-806 (2006)

Gerdts, M.: Optimal control and real-time optimization of mechanical multi-body systems. Z.
Angew. Math. Mech. 83(10), 705-719 (2003)

. Gerdts, M.: Parameter optimization in mechanical multibody systems and linearized runge-

kutta methods. In: Buikis, A., Ciegis, R., Flitt, A.D. (eds.) Progress in Industrial Mathematics
at ECMI 2002. Mathematics in Industry, vol. 5, pp. 121-126. Springer, Heidelberg (2004)
Gerdts, M.: Optimal Control of ODEs and DAEs. Walter de Gruyter, Berlin/Boston (2012)
Gerdts, M., Biiskens, C.: Consistent initialization of sensitivity matrices for a class of
parametric DAE systems. BIT Numer. Math. 42(4), 796-813 (2002)

Gerdts, M., Kunkel, M.: A nonsmooth Newton’s method for discretized optimal control
problems with state and control constraints. J. Ind. Manag. Optim. 4(2), 247-270 (2008)

A Survey on Numerical Methods for Initial Value Problems with sDAEs 297

71.

72.

73.

74.

75.

76.

7.

78

79.

80.

81

83.

84.

85.

86.

7.

88.

89.

90.

91.

92.

Gopal, V., Biegler, L.T.: A successive linear programming approach for initialization and
reinitialization after discontinuities of differential-algebraic equations. SIAM J. Sci. Comput.
20(2), 447-467 (1998)

Griewank, A., Walther, A.: Evaluating Derivatives. Principles and Techniques of Algorithmic
Differentiation, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA (2008)

Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems. Springer Series in Computational Mathematics, vol. 14, 2nd edn.
Springer, Berlin/Heidelberg/New York (1996)

Hairer, E., Lubich, C., Roche, M.: Error of Rosenbrock methods for stiff problems studied via
differential algebraic equations. BIT 29(1), 77-90 (1989)

Hairer, E., Lubich, C., Roche, M.: The Numerical Solution of Differential-Algebraic
Systems by Runge-Kutta Methods. Lecture Notes in Mathematics, vol. 1409. Springer,
Berlin/Heidelberg/New York (1989)

Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nons-
tiff Problems. Springer Series in Computational Mathematics, vol. 8, 2nd edn. Springer,
Berlin/Heidelberg/New York (1993)

Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving
Algorithms for Ordinary Differential Equations. Reprint of the Second 2006 edition. Springer,
Berlin (2010)

. Hansen, B.: Computing consistent initial values for nonlinear index-2 differential-algebraic

equations. Seminarberichte Humboldt-Universitit Berlin, 92-1, 142-157 (1992)

Heim, A.: Parameteridentifizierung in differential-algebraischen Gleichungssystemen. Mas-
ter’s thesis, Mathematisches Institut, Technische Universitidt Miinchen (1992)

Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E.,
Woodward, C.S.: Sundials: suite of nonlinear and differential/algebraic equation solvers.
ACM Trans. Math. Softw. 31(3), 363-396 (2005)

. INTEC GmbH. SIMPACK - Analysis and Design of General Mechanical Systems. WefBling
82.

Jackiewicz, Z., Kwapisz, M.L Convergence of waveform relaxation methods for differential-
algebraic systems. SIAM J. Numer. Anal. 33(6), 2303-2317 (1996)

Jackson, K.R.: A survey of parallel numerical methods for initial value problems for ordinary
differential equations. IEEE Trans. Magn. 27(5), 3792-3797 (1991)

Jay, L.: Collocation methods for differential-algebraic equations of index 3. Numer. Math. 65,
407-421 (1993)

Jay, L.: Convergence of Runge-Kutta methods for differential-algebraic systems of index 3.
Appl. Numer. Math. 17, 97-118 (1995)

Jiang, H.: Global convergence analysis of the generalized Newton and Gauss-Newton
methods of the Fischer-Burmeister equation for the complementarity problem. Math. Oper.
Res. 24(3), 529-543 (1999)

Kiehl, M.: Sensitivity analysis of ODEs and DAEs - theory and implementation guide. Optim.
Methods Softw. 10(6), 803—821 (1999)

Kleinert, J., Simeon, B., Drefiler, K.: Nonsmooth contact dynamics for the large-scale simu-
lation of granular material. Technical report, Fraunhofer ITWM, Kaiserslautern, Germany. J.
Comput. Appl. Math. (2015, in press). http://dx.doi.org/10.1016/j.cam.2016.09.037

Kiibler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput. Model. Dyn.
Syst. 6(2), 93-113 (2000)

Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solu-
tion, vol. viii, 377 p. European Mathematical Society Publishing House, Ziirich (2006)
Kiisters, F., Ruppert, M.G.-M., Trenn, S.: Controllability of switched differential-algebraic
equations. Syst. Control Lett. 78, 32-39 (2015)

Lamour, R., Mirz, R., Tischendorf, C.: Differential-Algebraic Equations: A Projector Based
Analysis. Differential-Algebraic Equations Forum. Springer, Berlin (2013)

http://dx.doi.org/10.1016/j.cam.2016.09.037

298

93.

94.

95.

96.

97.

98

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

M. Burger and M. Gerdts

Leimkuhler, B., Petzold, L.R., Gear, C.W.: Approximation methods for the consistent
initialization of differential-algebraic equations. SIAM J. Numer. Anal. 28(1), 205-226
(1991)

Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The waveform relaxation
method for time-domain analysis of large scale integrated circuits. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 1(3), 131-145 (1982)

Lemke, C.E.: The dual method of solving the linear programming problem. Naval Res. Log.
Q. 1, 3647 (1954)

Leyendecker, S., Ober-Blobaum, S.: A variational approach to multirate integration for
constrained systems. In: Multibody Dynamics. Computational Methods and Applications.
Selected Papers Based on the Presentations at the ECCOMAS Thematic Conference,
Brussels, Belgium, 4-7 July 2011, pp. 97-121. Springer, Dordrecht (2013)

Liberzon, D., Trenn, S.: Switched nonlinear differential algebraic equations: solution theory,
Lyapunov functions, and stability. Automatica 48(5), 954-963 (2012)

. Linn, J., Stephan, T., Carlson, J.S., Bohlin, R.: Fast simulation of quasistatic rod deformations

for VR applications. In: Bonilla, L.L., Moscoso, M., Platero, G., Vega, J.M. (eds.) Progress
in Industrial Mathematics at ECMI 2006. Springer, New York (2007)

Lotstedt, P., Petzold, L.R.: Numerical solution of nonlinear differential equations with
algebraic constraints I: convergence results for backward differentiation formulas. Math.
Comput. 46, 491-516 (1986)

Lubich, C., Engstler, C., Nowak, U., Pohle, U.: Numerical integration of constrained
mechanical systems using MEXX*. Mech. Struct. Mach. 23(4), 473—495 (1995)

Maly, T., Petzold, L.R.: Numerical methods and software for sensitivity analysis of
differential-algebraic systems. Appl. Numer. Math. 20(1), 57-79 (1996)

Michael, J., Gerdts, M.: A method to model impulsive multi-body-dynamics using Riemann-
Stieltjes- Integrals. In: 8th Vienna International Conference on Mathematical Modelling,
International Federation of Automatic Control, pp. 629-634 (2015)

Michael, J., Chudej, K., Gerdts, M., Pannek, J.: Optimal rendezvous path planning to an
uncontrolled tumbling target. In: IFAC Proceedings Volumes (IFAC-PapersOnline), 19th
IFAC Symposium on Automatic Control in Aerospace, ACA 2013, Wurzburg, Germany, 2—6
September 2013, vol. 19, pp. 347-352 (2013)

Miekkala, U., Nevanlinna, O.: Convergence of dynamic iteration methods for initial value
problems. SIAM J. Sci. Stat. Comput. 8(4), 459-482 (1987)

Murua, A.: Partitioned half-explicit Runge—Kutta methods for differential-algebraic systems
of index 2. Computing 59(1), 43-61 (1997)

Negrut, D., Sandu, A., Haug, E.J., Potra, FA., Sandu, C.: A Rosenbrock-Nystrom state
space implicit approach for the dynamic analysis of mechanical systems: II —the method and
numerical examples. J. Multi-body Dyn. 217(4), 273-281 (2003)

Ostermann, A.: A class of half-explicit Runge—Kutta methods for differential-algebraic
systems of index 3. Appl. Numer. Math. 13(1), 165-179 (1993)

Pantelides, C.C.: The consistent initialization of differential-algebraic systems. SIAM J. Sci.
Stat. Comput. 9(2), 213-231 (1988)

Petzold, L.R.: A description of DASSL: a differential/algebraic system solver. Rep. Sand 82-
8637, Sandia National Laboratory, Livermore (1982)

Petzold, L.R.: Differential/algebraic equations are not ODE’s. SIAM J. Sci. Stat. Comput.
3(3), 367-384 (1982)

Petzold, L.R.: Recent developments in the numerical solution of differential/algebraic
systems. Comput. Methods Appl. Mech. Eng. 75, 77-89 (1989)

Pfeiffer, A.: Numerische Sensitivititsanalyse unstetiger multidisziplindrer Modelle mit
Anwendungen in der gradientenbasierten Optimierung. Fortschritt-Berichte VDI Reihe 20,
Nr. 417. VDI-Verlag, Diisseldort (2008)

Potra, FA., Anitescu, M., Gavrea, B., Trinkle, J.: A linearly implicit trapezoidal method for
integrating stiff multibody dynamics with contact, joints, and friction. Int. J. Numer. Methods
Eng. 66(7), 10791124 (2006)

A Survey on Numerical Methods for Initial Value Problems with sDAEs 299

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.
133.

134.

135.

136.

Pytlak, R., Suski, D.: On solving hybrid optimal control problems with higher index DAE:s.
Institute of Automatic Control and Robotics, Warsaw University of Technology, Warsaw,
Poland (2015, Preprint)

Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math.
Oper. Res. 18(1), 227-244 (1993)

Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58(3), 353-367
(1993)

Rentrop, P., Roche, M., Steinebach, G.: The application of Rosenbrock-Wanner type methods
with stepsize control in differential-algebraic equations. Numer. Math. 55(5), 545-563 (1989)
Rill, G.: A modified implicit Euler algorithm for solving vehicle dynamic equations.
Multibody Syst. Dyn. 15(1), 1-24 (2006)

Rill, G., Chucholowski, C.: Real time simulation of large vehicle systems. In: Proceedings of
Multibody Dynamics 2007 (ECCOMAS Thematic Conference) (2007)

Roche, M.: Rosenbrock methods for differential algebraic equations. Numer. Math. 52(1),
45-63 (1988)

Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential
equations. Comput. J. 5(4), 329-330 (1963)

Rulka, W., Pankiewicz, E.: MBS approach to generate equations of motions for hil-
simulations in vehicle dynamics. Multibody Syst. Dyn. 14(3), 367-386 (2005)

Sandu, A., Negrut, D., Haug, E.J., Potra, F.A., Sandu, C.: A Rosenbrock-Nystrom state space
implicit approach for the dynamic analysis of mechanical systems: [—theoretical formulation.
J. Multi-body Dyn. 217(4), 263-271 (2003)

Schaub, M., Simeon, B.: Blended Lobatto methods in multibody dynamics. Z. Angew. Math.
Mech. 83(10), 720-728 (2003)

Schierz, T., Arnold, M.: Stabilized overlapping modular time integration of coupled
differential-algebraic equations. Appl. Numer. Math. 62(10), 1491-1502 (2012). Selected
Papers from NUMDIFF-12

Schneider, F., Burger, M., Arnold, M., Simeon, B.: A new approach for force-displacement
co-simulation using kinematic coupling constraints. Submitted to Z. Angew. Math. Mech.
(2016)

Schulz, V.H., Bock, H.G., Steinbach, M.C.: Exploiting invariants in the numerical solution of
multipoint boundary value problems for DAE. SIAM J. Sci. Comput. 19(2), 440-467 (1998)
Schwartz, W., Frik, S., Leister, G.: Simulation of the IJAVSD Road Vehicle Benchmark
Bombardier Iltis with FASIM, MEDYNA, NEWEUL and SIMPACK. Technical Report
IB 515/92-20, Robotik und Systemdynamik, Deutsche Forschungsanstalt fiir Luft- und
Raumfahrt (1992)

Schweizer, B., Lu, D.: Stabilized index-2 co-simulation approach for solver coupling with
algebraic constraints. Multibody Syst. Dyn. 34(2), 129-161 (2014)

Schweizer, B., Li, P, Lu, D.: Implicit co-simulation methods: stability and convergence
analysis for solver coupling approaches with algebraic constraints. Z. Angew. Math. Mech.
96(8), 986-1012 (2016)

Stetter, H.J.: Analysis of Discretization Methods for Ordinary Differential Equations.
Springer Tracts in Natural Philosophy, vol. 23. Springer, Berlin/Heidelberg/New York (1973)
Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3-39 (2000)
Stewart, D.E., Anitescu, M.: Optimal control of systems with discontinuous differential
equations. Numer. Math. 114(4), 653-695 (2010)

Strehmel, K., Weiner, R.: Numerik gewohnlicher Differentialgleichungen. Teubner, Stuttgart
(1995)

Strehmel, K., Weiner, R., Dannehl, I.: On error behaviour of partitioned linearly implicit
Runge—Kutta methods for stiff and differential algebraic systems. BIT 30(2), 358-375 (1990)
Sussmann, H.J.: A nonsmooth hybrid maximum principle. In: Stability and Stabilization of
Nonlinear Systems. Proceedings of the 1st Workshop on Nonlinear Control Network, Held in
Gent, Belgium, 15-16 March 1999, pp. 325-354. Springer, London (1999)

300

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

M. Burger and M. Gerdts

Tasora, A., Anitescu, M.: A fast NCP solver for large rigid-body problems with contacts,
friction, and joints. In: Multibody Dynamics. Computational Methods and Applications.
Revised, extended and selected papers of the ECCOMAS Thematic Conference on Multibody
Dynamics 2007, Milano, Italy, 25-28 June 2007, pp. 45-55. Springer, Dordrecht (2009)
Tasora, A., Anitescu, M.: A matrix-free cone complementarity approach for solving large-
scale, nonsmooth, rigid body dynamics. Comput. Methods Appl. Mech. Eng. 200(5-8), 439—
453 (2011)

Tasora, A., Anitescu, M.: A complementarity-based rolling friction model for rigid contacts.
Meccanica 48(7), 1643-1659 (2013)

Tasora, A., Negrut, D., Anitescu, M.: GPU-based parallel computing for the simulation
of complex multibody systems with unilateral and bilateral constraints: an overview. In:
Multibody Dynamics. Computational Methods and Applications. Selected papers based on
the presentations at the ECCOMAS Conference on Multibody Dynamics, Warsaw, Poland,
June 29-July 2, 2009, pp. 283-307. Springer, New York, NY (2011)

Trenn, S.: Solution concepts for linear DAEs: a survey. In: Ilchmann, A., Reis, T. (eds.)
Surveys in Differential-Algebraic Equations I. Differential-Algebraic Equations Forum,
pp. 137-172. Springer, Berlin (2013)

van der Schaft, A., Schumacher, H.: An Introduction to Hybrid Dynamical Systems. Springer,
London (1989)

Veitl, A., Gordon, T., van de Sand, A., Howell, M., Valasek, M., Vaculin, O., Steinbauer, P.:
Methodologies for coupling simulation models and codes in mechatronic system analysis and
design. In: Proceedings of the 16th IAVSD Symposium on Dynamics of Vehicles on Roads
and Tracks. Pretoria. Supplement to Vehicle System Dynamics, vol. 33, pp. 231-243. Swets
& Zeitlinger (1999)

von Schwerin, R.: Multibody System Simulation: Numerical Methods, Algorithms, and
Software. Lecture Notes in Computational Science and Engineering, vol. 7. Springer,
Berlin/Heidelberg/New York (1999)

Wensch, J.: An eight stage fourth order partitioned Rosenbrock method for multibody systems
in index-3 formulation. Appl. Numer. Math. 27(2), 171-183 (1998)

Wensch, J., Strehmel, K., Weiner, R.: A class of linearly-implicit Runge—Kutta methods for
multibody systems. Appl. Numer. Math. 22(13), 381-398 (1996). Special Issue Celebrating
the Centenary of Runge—Kutta Methods

Wolfbrandt, A., Steihaug, T.: An attempt to avoid exact Jacobian and nonlinear equations in
the numerical solution of stiff differential equations. Math. Comput. 33(146), 521-534 (1979)

	A Survey on Numerical Methods for the Simulation of Initial Value Problems with sDAEs
	1 Introduction
	Notation

	2 Error Influence and Stabilization Techniques
	2.1 Error Influence and Perturbation Index
	2.2 Stabilization Techniques
	2.2.1 Baumgarte Stabilization
	2.2.2 Gear–Gupta–Leimkuhler Stabilization
	2.2.3 Stabilization by Over-Determination

	3 Consistent Initialization and Influence of Parameters
	3.1 Consistent Initial Values
	3.2 Dependence on Parameters

	4 Integration Methods
	4.1 BDF Methods
	4.2 Runge–Kutta Methods
	4.3 Rosenbrock-Wanner (ROW) Methods
	4.4 Half-Explicit Methods
	4.5 Examples

	5 Co-simulation
	5.1 Jacobi, Gauss-Seidel, and Dynamic-Iteration Schemes
	5.2 Stability and Convergence
	5.2.1 The ODE-Case
	5.2.2 The DAE-Case

	6 Real-Time Simulation
	6.1 Real-Time Integration of DAEs

	7 Parametric Sensitivity Analysis and Adjoints
	7.1 Sensitivity Analysis in Discrete Time
	7.1.1 The Forward Mode
	7.1.2 The Backward Mode and Adjoints

	7.2 Sensitivity Analysis in Continuous Time
	7.2.1 The Forward Mode
	7.2.2 The Backward Mode and Adjoints

	7.3 Example

	8 Switched Systems and Contact Problems
	8.1 Hybrid Systems and Switching Functions
	8.2 Parametric Sensitivity Analysis for Switched Systems
	8.3 Contact and Friction in Mechanical Multibody Systems

	9 Conclusions
	References

