
Object-Oriented Operational Semantics

Andreas Prinz1(B), Birger Møller-Pedersen2, and Joachim Fischer3

1 Department of ICT, University of Agder, Grimstad, Norway
andreas.prinz@uia.no

2 Department of Informatics, University of Oslo, Oslo, Norway
birger@ifi.uio.no

3 Department of Computer Science, Humboldt University, Berlin, Germany
fischer@informatik.hu-berlin.de

Abstract. Operational semantics is one way of providing meaning to an
executable language. On a high level of abstraction, operational seman-
tics means to define an interpreter or an abstract machine for the lan-
guage. In this article, we review the concept of operational semantics in
the scope of meta-model-based language definitions and identify chal-
lenges and issues. We provide a clean conceptual approach using an
object-oriented runtime environment and state change operations, which
relies on an underlying abstract virtual machine. We present the app-
roach using a sample language.

1 Introduction

Modelling and meta-modelling are important approaches in the scope of OMG’s
MDA framework [8]. The table below shows the OMG four level architecture
and the corresponding concepts for grammar-based definition of languages.

OMG level Examples Grammar example OCL example

M3: meta-languages MOF EBNF MOF

M2: languages UML metamodel Java grammar OCL language

M1: models UML model a program a formula

M0: instances runtime objects a run a truth value

MDA is mostly concerned with models and programs, which are placed on
OMG level M1. Extending MDA to domain-specific languages lifts the focus
from M1 to M2, where languages are described.

We start with the understanding that a language on M2 is the collection of
instances of the metaclasses that define the language together with their seman-
tics. An instance of a programming language is called a program, and an instance
of a modelling language is called a model. In this paper, we use the term language
instance for both of them.

When (formally) describing languages on M2, one would typically consider
the three aspects structure, presentation, and semantics. A language structure
defines the set of all possible language instances and restrictions on this set.
c© Springer International Publishing AG 2016
J. Grabowski and S. Herbold (Eds.): SAM 2016, LNCS 9959, pp. 132–147, 2016.
DOI: 10.1007/978-3-319-46613-2 9

Object-Oriented Operational Semantics 133

It consists of metaclasses for its concepts. The presentation aspect can include
descriptions of textual, graphical, and tabular presentations and a mixture of
these. The semantics aspect describes the meaning of language instances. It can
be given using different methods, e.g. describing language instance execution
(execution or operational semantics), mapping into another language (transfor-
mation semantics), or defining a mathematical relation between input domain
and output domain (denotational semantics).

This paper focuses on structural operational semantics (SOS), which is a way
of directly defining how language constructs are executed by providing execution
sequences (traces of configurations) as the semantics of a program. The traces
are given by a set of inference rules, describing how state changes happen.

Let us consider configurations with three parts < i, v, s >, with a language
instance i, a current value v, and a storage s. To describe the semantics of a
statement skip, we use the following rule, which states that skip can be replaced
by the empty language instance (⊥). The arrow denotes the state change relation.

< skip, v, s >→<⊥, v, s >

SOS also allows introducing steps on different levels as shown with a sample
inference rule handling an assignment of a location L with an expression E.
The precondition of the rule is that the expression E is reduced with several
steps (→∗) to empty (⊥), thereby producing the value v′ and the state s′ (i.e.
E evaluates to v′). The rule itself turns the assignment statement into a state
update, where the value for the location L is changed to v′. So the assignment
has one step of updating L, but underneath there are several intermediate steps
of evaluating E. In this case we use the transitive closure of the steps (→∗)
instead of a single step (→).

< E, v, s >→∗<⊥, v′, s′ >
< L := E, v, s >→<⊥, v′, s′ � {L �→ v′} >

Defining SOS for while statements is a bit more involved, as the following
example shows. The first rule tells us that the while statement does nothing in
case the condition B evaluates to false in the current state. The second rule
handles the case where B evaluates to true. In this case, we have to execute the
body S followed by the complete loop.

< B, v, s >→∗<⊥, false, s′ >
< while B do S, v, s >→<⊥, v, s′ >

< B, v, s >→ ∗ <⊥, true, s′ >
< while B do S, v, s >→< S; while B do S, v, s′ >

This last example shows the roots of SOS in functional programming, where
it is a normal idea that programs can change at runtime. For non-functional
programming languages this style might not be as appealing. For object-oriented
languages in particular, there are some inconveniences with this style of language
definition.

134 A. Prinz et al.

1. In the programming world the program itself is typically considered to be
fixed. As the last example shows, the language instances in the configurations
are changed in order to indicate the position of execution. For imperative
programming, one would rather think of a program counter to indicate the
current position.

2. The state of execution is only partly considered. For object-oriented program-
ming, a rich object-structure would be envisioned.

3. Typical runtime structures as program counters and call stack are not directly
visible in SOS.

This paper tries to provide a way to describe operational semantics for an
object-oriented situation. The paper is conceptual, and uses an example to
explain the approach. It does not propose a concrete tool or language.

We continue this paper in Sect. 2 with a discussion of operational semantics
and introduce the sample language in Sect. 3. We look into configurations in
Sect. 4, and the relation of operational semantics to an execution platform in
Sect. 5. After discussing execution semantics in Sect. 6, we summarize in Sect. 7.

2 Operational Semantics Description

There are several forms of operational semantics, in particular structural opera-
tional semantics (SOS - also called small-step semantics) [12] and natural seman-
tics (also called big-step semantics) [7]. The first class focuses on the individual
computation steps, while the second has more focus on how the computation
results come about. For our purpose these differences are marginal and we use
SOS as a reference. Operational semantics use the understanding that computa-
tions are sequences of runtime states, where the states are called configurations
(see e.g. [4,7,10,12]). An SOS transition system is given by a set of configura-
tions, a set of labels and labelled transitions, as well as a set of initial states and a
set of final states. The typical idea of an SOS is to change configurations. Control
information is often encoded by changes to the current language instance.

Similar elements are defined in other approaches for semantics definition.
Rewrite-based approaches as K [13] and Maude [2] relate to configurations with
the main aim to reduce the computation to its final value. Rascal [9] provides
similar support as SOS, but is more code-oriented as also our approach.

For our definition of operational semantics, we use similar elements. We
assume a structure aspect description of the language L. The structure could
be defined using MOF (EMF) [3], but any other suitable language would work.
Starting from the structure of L, we need to define two parts of semantics. First,
we define the structural part of the runtime of L, i.e. its set of runtime states
(configurations)1, which we call runtime environment ([15]). Second, we have to
handle the dynamic part (execution in terms of state changes).

1 Please note the difference between structure of the language (its constructs, e.g.
if-construct), and structure of the runtime (its runtime elements, e.g. a stack frame).

Object-Oriented Operational Semantics 135

Commonly, the structural part is called instantiation semantics or structure-
only semantics [15]. It defines how the elements of the language relate to runtime
elements that can be created and used at runtime. For classes, this would typi-
cally be objects, while for methods, we envision stack frames. Depending on the
language, also message buffers, or an exception stack could appear. In traditional
operational semantics approaches, the main focus is on state changes, while the
configurations are defined ad-hoc. However, in our object-oriented approach,
configurations are very important.

The dynamic part describes the actual state changes that take place at run-
time. All execution sequences are based on trivial changes, which are implied
by the structural part. These trivial changes are creating new objects, setting
values, and adding objects to collections. The dynamic part describes how to
combine the trivial changes into bigger changes, in many cases a complete run.

In the operational semantics world, the main focus is on describing languages
with a completely defined runtime behaviour, i.e. in any state the possible next
states are determined. For example, this would be the case for Java. In practical
terms, it means that the program runs to completion.

In interpreted languages and script languages, the combined trivial changes
are not complete runs, but runs that can be put together by a user to even
bigger runs. An extreme is a language like MOF, which only defines trivial state
changes, which can be combined by a user using an editor. We discuss in Sect. 6
how state changes defined by a program are sequences and combinations of these
trivial changes.

The main contribution of this paper is the handling of the structural part in
Sect. 4, and its relation to the underlying machine and the structural part of this
machine as discussed in Sect. 5. Operational semantics normally considers this
underlying machine as given, and is not aware of its structure and behaviour. In
our approach, the language designer may choose the features of the underlying
machine and design the operational semantics combining trivial behaviour and
underlying behaviour.

3 SLS - A Sample Language

In order to illustrate and discuss our approach, we consider SLS, a simplified
version of SLX [6], an executable language for simulation of dynamic systems.
SLS is based on principles of next-event-progressions. Models of existing or hypo-
thetical systems are built in SLS by describing their components as objects of
classes. For each class of objects, attributes and methods are defined describing
the structure of the identified system components and their behavior.

SLS distinguishes active and passive classes (and objects). Passive objects
are objects that can only be acted upon. Active objects have a main() method
describing the sequence of executable statements by which they operate on their
own. The behaviors of all existing active objects including the system specifica-
tion determine at runtime the complete behavior of the system.

A main() method can only be called indirectly, by activating the cor-
responding active object from another active object: activate obj reference.

136 A. Prinz et al.

If the main() executes a wait, the further execution of the active object is
frozen. It can be continued by another object: reactivate obj reference.

SLS features global dimensionless model time, i.e. time that is controlled by
the execution of the system, and that is not external to the execution. This
allows to mimic a real system by having multiple activities carried out at the
same time. An active object can experience scheduled delays in model time using
the advance construct. In SLS, model time is viewed as a succession of instants.
At any given instant in model time, the runtime system of SLS processes one
by one all events that take place at that time. After that, the runtime system
advances the model time to the next imminent event time.

For each active object, the runtime system needs to keep track of at least
three things: (1) the location of the next statement to be executed for the activity
in the program, (2) the location of data local to that object, and (3) the model
time at which the object is to resume (in case of scheduled delays).

In Fig. 1, we show a simple SLS example. Our system consists of two factories
(objects of class Factory) who produce products (objects of class Product) with
an individual production time. Both factories run in parallel and deposit their
products in a common collection (ProductList). As soon as 1000 products are
produced, the simulation run should stop with a printout.

The Factory is an active class and the Product is passive. The productList
is also a passive object (essentially a set of Products). Both the current number
of deposited products and the maximum number have been defined as attributes
of the global system (active) class Production.

The dynamic semantics of SLS is a simulation of the system, sometimes
called simulation semantics. The execution of the SLS sample system starts with
an instance of the system specification (here Production). The actual run is
started by calling the main() method of Production. At runtime, each active

Fig. 1. Sample SLS specification

Object-Oriented Operational Semantics 137

class (including the system specification) object has its own thread of control as
well as a state. The following states are possible.

State Semantics Sorting principle

moving The object is in the moving list. It is active or
waits for execution. The time of the object
is the current model time.

position in moving list

scheduled The object is in the scheduled list. It is delayed
by a defined time.

time of next move

waiting The object is in the waiting list. It is
suspended for unknown model time.

FIFO

terminated main() of the object is finished; object cannot
be reactivated

none

Now we look at the simulation run of our example, see the table below. The
Production object is in the moving list, its time is 0 and the model time is 0.
Its main() is called and generates two active Factory objects. Both of them get
move time 0, and are placed in the moving list. Then Production executes a
wait and is transferred into the waiting list, keeping its current execution state.

Time Who What Delay until

0 Production Create Factory(1) and Factory(2) Infinite

0 Factory (1) Delay 15 15

0 Factory (2) Delay 30 30

15 Factory(1) Create product-1 30

30 Factory(2) Create product-2 60

30 Factory(1) Create product-3 45

45 Factory(1) Create product-4 60

. . .

9975 Factory(1) Create product-997 9990

9990 Factory(2) Create product-998 10020

9990 Factory(1) Create product-999 10005

10005 Factory(1) Create product-1000, resume Production 10020

10005 Production Finish simulation run stop

The control now turns to the first entry of the moving list, the Factory(1)
object. Its main() just delays for 15 units (we consider this to be minutes). Doing
so, the Factory(1) will be placed into the scheduled list with move time 15. A
similar action is done for Factory(2) with a move time of 30.

Because the moving list has become empty, it will be filled with all objects in
the scheduled list with minimum move time. This also advances the model time
to that time. Here, only Factory(1) is at time 15. It generates a new Product
object, places it in the global productList, and delays for 15 more units. The
further processing is indicated in the table. We show the runtime situation at
system time 45 in Fig. 2.

138 A. Prinz et al.

Fig. 2. Runtime situation at system time 45

Finally, the maximum is reached and the waiting Production is reactivated.
After printing some information, the main() of Production finishes and this
stops the simulation, because Production is the system instance.

4 Runtime Environment: Configurations

The runtime environment (RTE) is the set of possible states at runtime, i.e. con-
figurations. Runtime states are purely structural and the state changes (Sect. 6)
are based on them, see also [14]. The RTE depends on the language, i.e. the
RTE description has to be done on level M2. In addition, the RTE can depend
on the specific language instance, which has to be handled on level M1. We want
to distinguish several kinds of RTE elements.

– The read-only program is included in the RTE, such that the execution can
refer to the program.

– Global elements are only dependent on the language, e.g. predefined libraries,
and program counter. They are independent of the specific program.

– Local elements are runtime elements that relate to language concepts and
describe how these are instantiated. They are related to their respective con-
cepts, but are independent of the language instance. There are three main
cases as follows.
1. None-elements, which means that the language concept does not have a

runtime representation. An example would be statements and constant
declarations in SLS. The relation from concept to runtime is 1:0.

2. One-elements are extensions of concepts in terms of a 1:1 relationship. An
example are locations for global variables in SLS, or the instance of the
SLS system specification.

3. Many-elements are also related to concepts, but with the possibility of
many instances of the same element. A property of a passive SLS class is
an example - it exists for each instance of the class. A stack frame for a
method is another example, which exists for each call of the method. They
have a 1:n relation from concept to runtime.

Object-Oriented Operational Semantics 139

– Dependent elements are similar to local elements, but they depend on the
specific language instance. Active and passive classes in SLS are examples
here. They cannot be defined statically on level M2. Instead, on M2 a mapping
from the language concepts to the runtime structures can be defined.

Fig. 3. Structure and RTE for SLS

When defining the RTE of SLS, we start at level M2. As the RTE defines
instantiation semantics, it defines the transition from M1 to M0. We assume an
underlying mechanism that can instantiate objects from classes, which is called
MOF-VM. It is explained in more detail in the next section. For the RTE we
describe which MOF-VM classes to use on M1, which implies the possible MOF-
VM objects on M0. The crossing of the level boundary between M1 and M0 is
done by the MOF-VM semantics. At level M2 it is not possible to define M1
classes. Therefore, at M2 we define a mapping from language concepts to RTE
(see Fig. 3). This mapping is applied for the actual language instance, which
yields the RTE at level M1 (see Fig. 4). Being a mapping, the RTE is defined on
M2, and still depends on the language instance on M1. In Fig. 3, the dependent
elements are active and passive classes as well as the system. The dependency in
all cases are the available attributes. Please note that the mapping for SLS classes
is not as trivial as for UML classes, as we need to take care of concurrency by
including program counter (pc), call stack and time in the classes. For methods,
we define a local element mapping to stack frames.

140 A. Prinz et al.

Fig. 4. RTE for the sample language instance

Figure 4 shows how the RTE mapping is applied to our sample language
instance at level M1. The RTE mapping defined at M2 is now applied, and
yields the MOF-VM classes RT Factory, RT Product, RT Production, and
StackFrame. Using this RTE, it is straightforward to instantiate the MOF-VM
classes, yielding the situation at time 45 at level M0 as shown in Fig. 2.

This way, the RTE is defined at M2 as a mapping from the language instance
on M1 to MOF-VM classes on M1, which then get instantiated at M0. Any
mapping notation can be used, for example QVT [11]. In this article, we use an
ad-hoc notation in order to explain the main idea.

The same approach is used for handling initial states and final states. All
these states have to be formed according to the RTE. They are also given by
mappings that are defined on level M2, and applied on level M1. Finally, initial
states and final states are used on level M0.

5 Execution Platform: MOF-VM

Instantiation semantics is based on an underlying mechanism that provides basic
instantiation. This could be very low level as in machine code, where an indica-
tion of a memory area leads to the provision of actual memory, thereby providing
very simple instantiation. It could be more high level like a Java virtual machine,
where a class instantiation mechanism is available. We assume a machine that
can instantiate objects from classes, which we call MOF-VM ([5]). MOF-VM
instantiation is the only way to do instantiation, such that all instances existing
are MOF-VM objects, including the objects on M2, M1, and M0.

In Fig. 5 we show how the language definition and the instantiation semantics
work together for the semantics of the M3 language MOF. The concepts of SLS
are defined on level M2 as instances of the Class concept of MOF (which is
defined on level M3), e.g. the class ActiveClass on the top left. This class has
a MOF-VM RTE as defined for MOF, which is shown on the top right part of
Fig. 5. Remember that MOF-VM is independent of the levels and provides the

Object-Oriented Operational Semantics 141

Fig. 5. MOF-VM instantiation versus language instantiation.

general way of crossing from one level to the one below. Using RT ActiveClass,
it is possible to create instances using MOF-VM semantics, and provide an
object with name Factory (bottom right). This object can be presented using the
custom presentation for ActiveClass (within SLS). This leads to the presentation
on the bottom left of Fig. 5.

On the left side, Factory is a MOF instance of ActiveClass. This language-
defined instantiation is based on the MOF-VM instantiation (right side) via the
applied mapping and the presentation.

Going one level up, the applied mapping is based on the defined mapping
on M3 (Fig. 6). There will be all of the three presentation, defined and applied
mappings on the levels M2 and M3; for better understandability, we have only
shown the relevant ones.

Fig. 6. Defined mapping versus applied mapping.

It is important to be aware that the underlying machine itself has already
some built-in runtime structure that may or may not be used by the definition of
the operational semantics. When we look at SOS as a language itself, the SOS-
VM is functional2, which means we expect it to be able to keep local values, and
to handle (recursive) functions (see also Sect. 6). Look at the following SOS rule
for a sequence construct to understand what that could imply.

2 SOS as a language (on M3) is functional, not the language described using SOS (on
M2). Of course, SOS can be used to describe all kinds of languages.

142 A. Prinz et al.

< S1, v0, s0 >→ ∗ <⊥, v1, s1 >
< S2, v1, s1 >→ ∗ <⊥, v2, s2 >

< S1;S2, v0, s0 >→<⊥, v2, s2 >

The precondition of the rule is that a statement S1 is evaluated to v1, and S2

to v2. Then the sequence of S1 and S2 is evaluated to v2 in one step. The steps
inside S1 and S2 are intermediate steps in this case. In this rule, it is not clear
where the value v2 is stored – it is implicit in the underlying machine. This is
possible, because the SOS-VM allows to transfer the value from the precondition
(intermediate steps: above the line) to the top-level step (below the line) by just
giving its name. This way the local intermediate value is kept in the RTE of
the SOS-VM, and not in the RTE of the language. Similarly, the evaluation
of a statement can imply stack frames to be created. This is not explicit here,
because the SOS-VM facilities are used. Again, this means this part of the RTE
is hidden by using the SOS-VM.

The language developer has to decide where to place the RTE elements like
stack frames and local intermediate values. Either they are visible in the defined
RTE, or they are hidden and implicit by using the SOS-VM or MOF-VM.

6 Run Versus Step: Dynamic Semantics

As discussed in Sect. 2, an operational semantics has to describe configurations,
initial and final states, as well as state changes. In this section, we discuss state
changes based on the configurations defined in Sect. 4.

The RTE object structure has an implied navigation along its links, including
the navigation from objects to the language instance itself, and back. We assume
that the navigation is rich enough to also include basic elementary functions of
the underlying basic data types (MOF-VM data types), like boolean, integer,
and collection operations. This way, the navigation is a query facility allowing
to extract values in a very general sense (r-values). Furthermore, the navigation
allows to extract locations, where it is possible to change the state (l-values).
Simple updates are also implied by the RTE, and form the trivial state changes.

Defining executions is the combination of these trivial state changes into
larger changes. It is the language that defines the granularity of the state changes.

For the object-oriented version, we use an adaptation of abstract state
machines (ASM) [1] as the meta-language to define state changes. ASM normally
come with an own underlying sub-language for the description of locations and
values, but here this is implied by the RTE as follows.

– The RTE provides expressions (navigation/queries) and locations including
the notation new(C) to create a new element of a MOF-VM class C.

– An RTE update has the following syntax. <location> := <expression>

On top of these trivial updates, we use the following ASM constructs for
grouping of updates. As the semantics of the constructs is obvious, we do not
describe it here and refer the reader to [1] in case of doubt. In ASM, an instruction
is called rule.

Object-Oriented Operational Semantics 143

– Decision instruction: if <expression> then <rule> [else <rule>]
– Parallel execution: <rule> <rule>
– Sequential execution: <rule> seq <rule>
– Named rule: <name>(<name-list>) { <rule> }
– Calls of named rules: <name>(<expression-list>)
– Local names: let <name> = <value> in <rule>
– The ASM constructs forall, extend, and choose are not used here.

ASM normally have a global view on state changes, and would define the
semantics as a collection of global rules. As we are interested in an object-oriented
approach, we attach the rules to the appropriate classes. These classes can be
RTE classes or metamodel classes. As an example for RTE classes, we show
methods of the RT Factory runtime class. Essentially, the system (RT Factory)
delegates the handling of program counter and stack to the currently active
object. Please compare with the runtime structure in Fig. 3.

RT_Factory::setPC(newPC) { active.pc:= newPC }
RT_Factory::setValue(idx,v) { active.stack.top.env.add(idx,v) }
RT_Factory::getValue(i) { return active.stack.top.env.value(i) }
RT_Factory::push(stackframe) { active.stack.push(stackframe) }
RT_Factory::pop() { active.stack.pop() }

We explain our approach with the three SLS statements shown in Fig. 7.

Fig. 7. Some SLS statements shown as part of the SLS metamodel

In SOS, this abstract syntax would be formalized as follows, where S are
instances of statements, and M is a method name.

statement ::= forever S | S1;S2 | call M(S)

There are two possible ways of defining state changes in our approach, which
we call STEP and RUN. Doing the STEP variant means to specify the steps
of the language soleily based on changes in the RTE without using MOF-VM
RTE. The RUN approach is to specify the whole execution including all the
steps, possibly making use of the MOF-VM RTE. It is often easier to define the
RUN approach, but it will hide part of the RTE as it is kept in the underlying
MOF-VM RTE. We explain the operational semantics using the STEP and the

144 A. Prinz et al.

RUN approach by defining methods step() and run(), and contrast it with the
SOS version. Please note, that STEP and RUN are alternatives, and in a real
case the language developer would select one of the two (and not both).

The semantics of the forever statement has to handle two situations. (1)
When entering a forever loop, the first step is to enter the body. (2) After
finishing the body, the forever has to be re-entered again.

The SOS semantics of it is given with a rule that just calls the body and then
calls the forever again. Thus, in SOS both situations are handled by a change
to the program code.

< forever body, v, s >→< body; forever body, v, s >

The definition using RUN is very similar to SOS, the main difference being
the attachment of the rule to the syntax class. Both situations are handled by
calls to the run() method. A sequencing of the underlying machine (seq) is used
to separate these two (big) steps.

Forever::run() { body.run() seq self.run() }

In STEP, the current position in the execution has to be handled explicitly.
Situation (1) is covered by the step() routine of class Forever, setting the pro-
gram counter. Situation (2) is covered when the inner statement is finished. In
this case, a continuation has to be provided by its parent, which is done with
the nextPC() method of class Forever. The definition of the semantics of the
sequence construct shows the use of the nextPC(). We use RTroot in order to
refer to the root of the runtime environment of type RT Factory. This example
shown nicely how the code of the syntax class Forever interacts with the code
of the RTE class RT Factory.

Forever::step() { RTroot.setPC(body) }
Forever::nextPC(node) { return self; }

The semantics of the SLS sequence statement includes three situations to
handle. (1) When entering the sequence, we start with the first statement. (2)
When the first statements is finished, we continue with the second statement. (3)
When the second statement is finished, the result of the sequence is the result
of the second statement.

In SOS, it is given by the following two tules. The first rule handles the case
where the first statement can be reduced to an empty statement starting from a
state s. In this case, it is sufficient to start the second statement from this new
state, implementing the second situation. If this is not possible, the second rule
describes that the first step in the execution of the sequence is the first step of
the first statement, which implements the first situation. The second statement
is unchanged in this case. The third situation does not need an extra handling
in this specification, as the value of the second statement is automatically the
final value. A different formulation is discussed in Sect. 5.

< s1, v, s >→<⊥, v′, s′ >
< s1; s2, v, s >→< s2, v′, s′ >

< s1, v, s >→< s1′, v′, s′ >
< s1; s2, v, s >→< s1′; s2, v′, s′ >

Object-Oriented Operational Semantics 145

In RUN, the first two situations are handled with a call to the run() methods
of s1 and s2. This is achieved with the sequence operator of ASM, thereby
introducing an intermediate step. The third situation is implied as with SOS.

Sequence::run() { s1.run() seq s2.run() }

In STEP, the situation is more tricky. The first situation is handled in the
step() method, where the pc is set to the first statement. The second situation
is handled in the first branch of the nextPC() method, where the continuation
after s1 is s2. The third situation is handled in the second branch of nextPC().
The value of s2 is retrieved, and set as value of the sequence itself. Then the
next step is given by the continuation of the parent.

Sequence::step() { RTroot.setPC(s1) }
Sequence::nextPC(node) {

if (node==s1) then return s2
else

let value = RTroot.getValue(s2) in
RTroot.setValue(self, value)
return nextPC(parent)

}

Finally, we look at the handling of a method call, for simplicity with just
one parameter. The following situations have to be handled for the semantics.
(1) The value of the parameter is evaluated. (2) The value of the parameter is
attached to the name of the parameter. (3) The body of the method is executed.
(4) The return value of the body is the value of the call.

SOS uses a precondition to handle the first situation, introducing interme-
diate steps. The second situation is done by extending the name mapping with
the appropriate name and value for the call of the body. The third situation is
given by replacing the active code. Finally, the fourth situation is implied by the
handling of return values in SOS-VM.

< e, v, s >→ ∗ <⊥, v′, s′ >
< call m(e), v, s >→< m.body, v′, s′ � {m.parName �→ v′} >

In RUN, the first situation is covered by a call to the run() of the parameter,
introducing intermediate steps with the underlying sequence operator (seq). The
value is attached to the name using the underlying parameter handling of the
run() method of body, which also handles the third situation. Finally, the result
value handling is implied by the return result handling of MOF-VM.

Call::run() { value := param.run() seq method.body.run(value) }

In STEP, the first situation is given by the step() method. The second and
third situations are handled in the first alternative of nextPC(). Here, a new
stack frame is created in order to keep the parameter value. Then the program
counter is set to the body. Finally, the fourth situation is handled in the second
alternative of nextPC(). The stack frame is removed and the value is attached
to the call. The next step is given by the continuation of the parent.

146 A. Prinz et al.

Call::step() { RTroot.setPC(param) }
Call::nextPC(node) {

if (node==param) then
let sf = new(StackFrame) in
let value = RTroot.getValue(param) in

sf.env.add(method.parameter.definition, value)
RTroot.push(sf)
return method.body

else //return from call
let value = RTroot.getValue(method.body) in

RTroot.pop() seq RTroot.setValue(self,value)
return nextPC(parent)

The formulation of run() and step() can also be done using other formalisms
with sufficient formality, e.g. UML activities or Java code.

7 Summary

In this paper, we have discussed what operational semantics entails and how
it can be defined in an object-oriented setting. We have distinguished between
structure semantics and dynamic semantics, where structure semantics describes
the instantiation of the language constructs and dynamic semantics involves
collections of trivial state changes. For both kinds of semantics, it is essential to
rely on an underlying abstract machine providing some kind of semantics. We
have used the combination of MOF-VM and ASM as such a machine.

The proposed operational semantics is object-oriented because it gives a clear
indication of the runtime structure used with all the objects and their connection
to each other. In contrast to standard SOS, it allows to have a clear distinction
between the RTE of the language and the RTE of MOF-VM.

The paper has detailed the relation between operational semantics with its
two parts and the underlying machine. The semantics is described using methods
attached to runtime objects and to syntax objects. It is the task of the language
designer to decide where to place the semantic methods.

The RTE provides explicit elements for runtime configurations, thereby solv-
ing all the problems as indicated in the introduction. The next step is to turn
this approach into a meta-language for defining operational semantics and imple-
menting it in an appropriate tool.

Acknowledgements. We thank the anonymous reviewers for their helpful questions
and remarks.

Object-Oriented Operational Semantics 147

References

1. Börger, E., Stärk, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Secaucus (2003)

2. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Quesada,
J.F.: Rewriting logic and its applications maude: specification and programming
in rewriting logic. Theor. Comput. Sci. 285(2), 187–243 (2002)

3. OMG Editor. OMG Meta Object Facility (MOF) Core Specification Version 2.4.2.
Technical report, Object Management Group (2014)

4. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex,
1st edn. The MIT Press, Cambridge (2009)

5. Gjøsæter, T., Prinz, A., Nytun, J.P.: MOF-VM: instantiation revisited. In: Pro-
ceedings of the 4th International Conference on Model-Driven Engineering and
Software Development, pp. 137–144 (2016)

6. Henriksen, J.O.: SLX: the X is for extensibility [simulation software]. In: Proceed-
ings of Simulation Conference, Winter, vol. 1, pp. 183–190 (2000)

7. Kahn, G.: Natural semantics. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing,
M. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987).
doi:10.1007/BFb0039592

8. Kleppe, A., Warmer, J.: MDA Explained. Addison-Wesley, Boston (2003)
9. Klint, P., Storm, T., Vinju, J.: EASY meta-programming with rascal. In: Fernan-

des, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491,
pp. 222–289. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18023-1 6

10. Mosses, P.D.: Structural operational semantics modular structural operational
semantics. J. Logic Algebr. Program. 60, 195–228 (2004)

11. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
Version 1.1, January 2011

12. Plotkin, G.D.: A structural approach to operational semantics. Technical report
DAIMI FN-19, AARHUS UNIVERSITY (DK) (1981)

13. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic
Algebr. Program. 79(6), 397–434 (2010)

14. Scheidgen, M., Fischer, J.: Human comprehensible and machine processable speci-
fications of operational semantics. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.)
ECMDA-FA 2007. LNCS, vol. 4530, pp. 157–171. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-72901-3 12

15. Wider, A.: Model transformation languages for domain-specific workbenches.
Ph.D. thesis, Humboldt-Universität zu Berlin (2015)

http://dx.doi.org/10.1007/BFb0039592
http://dx.doi.org/10.1007/978-3-642-18023-1_6
http://dx.doi.org/10.1007/978-3-540-72901-3_12

	Object-Oriented Operational Semantics
	1 Introduction
	2 Operational Semantics Description
	3 SLS - A Sample Language
	4 Runtime Environment: Configurations
	5 Execution Platform: MOF-VM
	6 Run Versus Step: Dynamic Semantics
	7 Summary
	References

