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Abstract. Robotics systems have special needs often related with their real-time
nature and environmental properties. Often, control and communication paths
within the system are tightly coupled to the actual physical configuration of the
robot. As a consequence, these robots can only be assembled, configured, and
programmed by robot experts. Traditional approaches, based on mainly writing
the code without using software engineering techniques, are still used in the
development process of these systems. Even when these robotic systems are
successfully used, several problems can be identified and it is widely accepted
that new approaches should be explored. The contribution of this research consists
in delineating guidelines for the construction of robotic software systems, taking
advantage of the application of the OMG standard robotic specifications which
adhere to the model-driven approach MDA. Thereby the expert knowledge is
captured in standard abstract models that can then be reused by other less expe‐
rienced developers. In addition part of the code is automatically generated,
reducing costs and improving quality.

Keywords: Robotic software system · Model driven software development ·
OMG standard

1 Introduction

Robotics systems are essentially real-time, distributed embedded systems. They have
special needs often related with their real-time nature and environmental properties; they
have to be able to cope with the uncertain and dynamic physical environment where
they are immersed. Furthermore, robotic systems consist of different hardware compo‐
nents. There are a wide variety of controllers, sensors and actuators which results in very
complex and highly variable architectures. Often, control and communication paths
within the system are tightly coupled to the actual physical configuration of the robot.
As a consequence, these robots can only be assembled, configured, and programmed by
experts.

Traditional approaches, based on mainly coding the applications without using
modeling techniques, are still used in the development process of these software systems.
Even when the applications are running and being used in the different robotic systems,
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several problems can be identified. On the one hand, there is no clear documentation of
design decisions taken during the coding phase, making the evolution and the mainte‐
nance of the systems difficult. On the other hand, when using specific programming
languages, such as C in Microsoft RDS [27], the possibility of generalizing concepts -
that could be extracted, reused and applied in different systems - is wasted and the code
is written from scratch over and over again.

Thus, currently used methodologies and toolsets are not enough, and it is widely
accepted that new approaches should be explored. The goal of our work is to investigate
on the current use of modern software engineering techniques for developing robotic
systems and their actual automation level. Especially, we have explored the OMG
standards in this domain [32] and as a consequence we have delineated a methodology
for the construction of robotic software systems, taking advantage of the application of
the model-driven approach MDA and the OMG robotic specifications, in particular the
RTC proposal.

The rest of the paper is organized as follows. Section 2 summarizes the most relevant
software engineering techniques for developing robots. Section 3 presents our guidelines
for the construction of robotic systems, applying the MDA approach together with the
OMG robotic specifications, through a simple case study. Section 4 discusses a set of
related works. Finally, conclusions are presented in Sect. 5.

2 Software Engineering Techniques for Developing Robots

Although the complexity of robotic software is high, in most cases reuse is still restricted
to the level of libraries. At the lowest level, a multitude of libraries have been created
for robot systems to perform tasks like mathematical computations for kinematics,
dynamics and machine vision [14]. Instead of composing systems out of building blocks
with assured services, the overall software integration process for another robotic system
often is still re-implementation of the glue logic to bring together the various libraries.
Often, the kind of overall integration is completely driven by a certain middleware
system and its capabilities. This is not only expensive and wastes tremendous resources
of highly skilled roboticists, but this also does not take advantage from a maturing
process to enhance overall robustness.

From this perspective, it is widely accepted that new approaches should be estab‐
lished to meet the needs of the development process of today’s complex robotic systems.
Component-based development (CBD) [45], Service Oriented Architecture (SOA) [10],
as well as Model Driven Architecture (MDA) [31] are among the key promising tech‐
nologies in the robotic systems domain. These technologies have been adopted by the
Robotics Domain Task Force (RTF) [32], which promotes the integration of modular
robotic systems components through the use of OMG standards.

In first place, the CBD paradigm states that application development should be
achieved by linking independent parts, the components. Strict component interfaces
based on predefined interaction patterns decouple the sphere of influence and thus
diminishing the overall complexity. This results in loosely coupled components that
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interact via services with contracts. Components such as architectural units allow spec‐
ifying very precisely, using the concept of port, both the services provided and the serv‐
ices required by a given component and defining a composition theory based on the
notion of connector. Component technology offer high rates of reusability, but little
flexibility with regard to the implementation platform: most existing components are
linked to C/C++ and Linux, e.g. Microsoft robotics developer studio [27], EasyLab [7],
Player/Stage project [20]. On the other hand, some proposals achieve more independ‐
ence, thanks to the use of some middleware, e.g. Smart Software Component model [43],
Orocos [14], Orca [12] and CLARAty [29].

In second place, SOA is a flexible set of design principles used during the phases of
systems development and integration. SOA separates functions into distinct units, or
services which developers make accessible over a network in order to allow designers
to combine and reuse them in the production of applications. These services and their
corresponding consumers communicate with each other by passing data in a well-
defined, shared format.

Finally, the MDE [44] approach has emerged as a paradigm shift from code-
centric software development to model-based development. Such approach promotes
the systematization and automation of the construction of software artifacts. Models
are considered as first-class constructs in software development, and developers’
knowledge is encapsulated by means of model transformations. Models are imple‐
mentation-independent and they are automatically transformed to executable code.
The MDA is the OMG realization of the MDE. The MDA process can be divided into
three phases: the first phase builds a PIM, which is a high-level technology-inde‐
pendent model; then, the previous model is transformed into one or more PSMs; these
models are lower level and describe the system in accordance with a given deploy‐
ment technology; finally, the source code is generated from each PSM.

3 OMG Standards for Robotic Components

The Object Management Group (OMG) is an international, open membership, not-for-
profit technology standards consortium. OMG Task Forces develop enterprise integra‐
tion standards for a wide range of technologies and industries. OMG modeling standards
enable visual design, execution and maintenance of software and other processes. Orig‐
inally aimed at standardizing distributed object-oriented systems, the company now
focuses on modeling (programs, systems and business processes) and model-based
standards. OMG evolved towards modeling standards by creating the standard for the
Unified Modeling Language (UML) followed by related standards for Model Driven
Architecture (MDA).

Specifically in the area of Robotics, in 2005 the OMG launched the Robotics Domain
Task Force (RTF) with the purpose of fostering the integration of robotics systems from
modular components through the adoption of OMG standards. To realize this purpose,
the RTF has been promoting important actions and in the last years has released a set of
specifications: Robotic Technology Component (RTC) [35], Robotic Interaction Service
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(ROIs) [36], Dynamic Deployment and Configuration for Robotic Technology Compo‐
nent (DDC4RTC), Unified Component Model for Distributed, Real-time and Embedded
Systems (UCM), Finite State Machine Component for RTC (FSM4RTC) [33], Hard‐
ware Abstraction Layer for Robots (HAL4RT) [34], among others.

Let’s slightly describe some of these standards:
The RTC proposal specifies a component model that meets the requirements of

robotic systems. A component in RTC is a logical representation of a hardware and/or
software entity that provides well-known functionality and services. So, the developers
can combine RTCs from multiple vendors into a single application, allowing them to
create more flexible designs more quickly than before. It includes a Platform-Inde‐
pendent Model (PIM) expressed in UML and three Platform-Specific Models (PSMs)
expressed in OMG IDL: Local, Lightweight CMM and CORBA. In the Local PSM, the
components reside on the same network node and communicate over direct object refer‐
ences without the mediation of a network or network-centric middleware such as
CORBA. In the Lightweight CMM, most components are assumed to be distributed
relative to one another and they communicate using a CMM-based middleware. And in
CORBA, components are also assumed to be distributed and they communicate using
a CORBA-based middleware.

The RoIS Framework abstracts the hardware in the service robot (sensors and actua‐
tors) and the Human-Robot Interaction (HRI) functions provided by the robot. It
provides a uniform interface between the service robot and the application. Using the
RoIS Framework as an intermediary, a service application selects and uses only neces‐
sary functions and leaves hardware-related matters, such as which sensor to use, to the
HRI engine.

The DDC4RTC specification defines data models and service interfaces of deploy‐
ment and configuration for RTC based dynamic applications as an extension to DEPL
(OMG Deployment and Configuration of Component-based Distributed Applications
Specification) specification. Generally speaking, since system structure and configura‐
tion are frequently affected by robot movement and application or scenario state, it is
important to be able to represent and realize dynamic component deployment and run-
time re-configuration requirements.

The HAL4RT specification defines the Platform-Independent Model (PIM) of a
Hardware Abstraction Layer for robotic systems that is capable to support at least the
following devices: Sensors (sensor kind and unit of measure should be provided) and
Actuators (commands to perform motions, and motion feedback information should be
provided). In addition this specification defines the Platform specific Model (PSM) in
language C based on the HAL PIM. This specification aims to enable engineers such as
device makers, device users, and software users to build robotic software without any
concern about the differences among the targeted devices, by standardizing the API of
these devices.

All these standards interact with each other to provide a higher level of abstraction
that facilitates the task of programming robots.
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4 A Case Study: Applying MDA with the OMG Robotic Standards

In this section we describe the development of a robotic system applying the MDA
approach. The code is automatically derived from models compliant with the OMG
robotic standards. For implementing this case study we use the modeling tool Papyrus
[37], an Eclipse graphical editing tool for UML2. In accordance with its primary goal
of implementing the complete UML2 standard specification, Papyrus provides an exten‐
sive support for UML profiles. It includes facilities for defining and applying UML
profiles in a very rich and efficient manner. But, it also provides powerful tool custom‐
ization capabilities similar to DSML-like meta-tools. In this way, Papyrus is a tool that
brings together the advantages of using a general purpose language such as UML2, and
those of DSML-based approaches. In particular, the SOA and RTC profiles are smoothly
incorporated to Papyrus. On the other hand, for implementing the transformations we
use Acceleo [19], an open source code generator implementing the OMG’s MOF Model
to Text Language (MTL) standard that uses any EMF based models (e.g., UML, SysML)
to generate any kind of code (e.g., Java, C, PHP) while keeping the traceability of the
generated text.

4.1 Using the RTC Standard

The purpose of the RTC specification is to manage the lifecycle of all components in a
uniform way. This specification does not attempt to replace the existing UML

Fig. 1. Simplified LightweightRTC metamodel definition
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component models, but focuses on structural and behavioral characteristics required by
robotic applications that are not covered by other UML models. It also separates func‐
tional specification and execution control. By extending the general-purpose component
functionality of UML with direct support for domain-specific structural and behavioral
design patterns, RTC elements can serve as powerful building blocks in a robotics
system.

The RTC PIM consists of three parts: The Lightweight RTC, the Execution semantics
and the Introspection, as follows,

The Lightweight RTC describes a simple model containing definitions of concepts
such as component, port and similar ones.

The Execution semantics are extensions to Lightweight RTC to directly support
critical design patterns used in robotics applications such as periodic sampled data
processing, discrete event/stimulus response processing and modes of operation.

And finally, the Introspection is an API allowing for the examination of elements at
runtime. It is useful for dynamic component networks.

The Lightweight RTC specification (see Fig. 1) defines the stereotype light‐
weightRTComponent extending UML basic component, and describes some interfaces
which enable communication between components. When the stereotype is applied, the
component must implement all the methods that were defined in the required interfaces.
On the other hand, a RTC component may participate in any number of execution
contexts. These contexts shall be represented to a RTC component as instances of
ExecutionContext class. The ExecutionContext manages the behavior of each RTC
component that participates in it.

4.2 The Robot Firefighter

To illustrate our approach, we use a small example of a mobile robot to fight fires. This
robot must move and navigate itself around a platform with random obstacles and must
find fire sources. Once a flame is detected, the robot begins navigating towards the flame
to extinguish it. To improve the efficiency of the robot in the fire extinction, the robot
interacts with pre-existing systems. These systems are not part of the robot, but cooperate
with it to fulfill its purpose. On one side there are fire detectors placed physically in the
environment at strategic locations. Also a Map Service is available. These devices are
accessible as external services on the web. All of these services work together for deter‐
mining if there is a fire in progress. If so, the robot should navigate towards the flame
and extinguish it. Each of these devices covers a monitoring zone. When the device
indicates the presence of fire, the robot should ask the Map Service how to get to that
area. For this, the robot must provide its own position - which it knows through its GPS
- to the Map Service. The Map Service then returns a trajectory that the robot must follow
to reach the destination.

In first place, the PIM models for this robotic system should be created. By applying
the CBD paradigm, robotic elements, such as actuators and sensors, are modeled as
components. Thus, the following components were identified: ObstacleDetector,
MotionController, NearByFireDetector, FireExtinguisher, GPS, FireDetector and
MapService.
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stnenopmoc renni toboR pmc 

«lightweightRTComponent»
MotionController

«lightweightRTComponent»
FireExtinguisher

«lightweightRTComponent»
NearbyFireDetector

«lightweightRTComponent»
Robot

«lightweightRTComponent»
GPS

«lightweightRTComponent»
ObstacleDetector

Fig. 2. PIM of the robot firefighter: inner component model.

toboRrethgiFerif pmc 

«lightweightRTComponent»
Robot

«WebService»
MapServ ice

«WebService»
FireDetector

getFirePosition

getTrajectory (from, to)

fireAlarmActivated

Fig. 3. PIM of the robot firefighter: component and service model.

The first five components are inner components, physically allocated into the robot,
while the last two are external components that do not form part of the robot, but collab‐
orate with it by providing helpful services. All of the components provide ports to
communicate with each other and they are connected to the robot with their respective
glue code. Figure 2 shows the composition of the robot, describing its inner components:
ObstacleDetector, MotionController, NearByFireDetector, FireExtinguisher and GPS.
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These PIM models are expressed in the UML language enriched with the RTC stereo‐
types. Figure 3 presents the PIM models specifying the external services (i.e., FireDe‐
tector and MapService) as components. In our specific case, the service model is reduced
to two elements, but in more complex systems, several services can be smoothly
modeled.

Fig. 4. PSM of the robot firefighter: component’s implementation.
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These PIM models are expressed in UML language enriched with the RTC stereo‐
types. Figure 4 shows the PSM model that is automatically derived from the PIM model
in Fig. 2. This PSM describes the design of the system complying with the RTC speci‐
fication. The interface LightweightRTObject defines a lifecycle standard, specifying the
states and transitions through which all RTCs will pass from the time they are created
until the time they are destroyed. The ComponentAction interface provides callbacks
corresponding to the execution of the lifecycle operations of LightweightRTObject.
A RTC developer may implement these callback operations in order to execute appli‐
cation-specific logic pointing response to those transitions.

Once the structural models are stable, the behavioral models describing the interac‐
tion among components are created. Figure 5 shows a UML state machine describing
the overall behavior of the robot. The state machine specifies the four states which the
robot can go through: walkAround, navigatingTowardsTheFirePosition, approach‐
ingTheFlame and fireExtinguish. Immediately after starting its workflow the robot enters
to the state walkAround, and remains in the same state while no fire is detected. When
the fire detector triggers an alarm the robot switches to the state navigatingTowards‐
TheFirePosition. Then, the robot keeps in the same state, moving in the direction of the
fire, until the fire is reached.

  

margaid etats toboR mts 

Start

walkAround nav igatingTowards 
TheFirePosition

fire extinguish
approachingTheFlame

[fire detected]

[no fire detected]

[fire ahead]

[fire detected]

[fire detected]

[no fire detected]

[fire detector
alarm]

Fig. 5. PIM of the robot firefighter: overall behavioral model

Once the robot reaches the fire it enters to the state approachingTheFlame. In such
state the robot approaches the fire as close as possible. When the fire is very close the
robot switches to state fireExtinguish where it triggers mechanisms to extinguish the fire.
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Other behavioral models are created for the remaining behaviors of the robot, but are not
presented in this paper for space limitations.

Then, similarly to what was done with the structural models, PSM behavioral models
are automatically derived. For example, Fig. 6 shows a PSM of the robot´s behavior that
was automatically derived from the State machine in Fig. 5 by applying the state pattern
as prescribed by the RTC.

setats toboR ssalc 

WalkAround

+ execute() : void

ApproachingTheFlame

+ execute() : void

Nav igatingTowardsTheFirePosition

+ execute() : void

FireExtinguish

+ execute() : void

State

+ execute() : void

«lightweightRTComponent»
Robot

+ fireDetected() : boolean
+ fireDetectorAlarm() : boolean
+ fireAhead() : boolean
+ execute() : void

myState

Fig. 6. PIM of the robot firefighter: behavior’s implementation.

For each state in the state machine, a class is created as subclass of the abstract class
State. Each transition trigger in the state machine is mapped to a Boolean operation in
the main class Robot. A method named execute() is defined in the class Robot; according
to the State Pattern this method just delegates its behavior to the execute() method in
the corresponding State.

The next step of the development process consists in the transformation of structural
as well as behavioral PSM models to a specific programming language. The following
listing shows the transformation program written in Acceleo that takes as input the robot
structural models and produces Java code as output.
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The acceleo program above generates the following Java code as output,
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The rationale for building this Java program was the following, for each component
in the PIM, a Java class was created as an implementation of the LightweightRTObject
standard interface. Additionally all the Lightweight RTC resources were imported in
the program.

4.3 Lessons Learned from the Case Study

In this case study we have identified the different models that can be created to specify
both the structure and the behavior of the robot. These models were represented using
the OMG robotic standard, which is basically the well-known UML language enriched
with appropriate stereotypes to describe structural and behavioral characteristics
required by robotic applications that are not covered by other UML models. This
standard specification manages the lifecycle of all robotic components in a uniform way.
Additionally, the case study shows how the models are gradually defined at different
abstraction levels, starting with the more abstract models, completely independent of
the platform, from which other less abstract models could be automatically derived, to
finally get to the executable code.

5 Related Work

It is broadly recognized that there is a need to incorporate software engineering princi‐
ples within the development of future robot platforms. This has lead in the last years to
the conception of a set of activities with the objective of assembling researchers from
both fields, Model-Driven Software Development on one hand and Robotics on the other
hand. Examples of these activities are the International Workshop on Domain-Specific
Languages and Models for Robotic Systems (DSLRob) [42] launched in 2009, and the
Workshop on Model-Driven Robot Software Engineering(MORSE) [3] initiated in
2013, both with the goal of incentivizing the interaction of these areas. As a result, in
recent years several software frameworks have been developed to provide simple and
intuitive ways of writing software applications for robot platforms. This includes
academic research as well as industrial products.

On the industrial side one of the most well known is Lego Mindstorms Evolution 3
[26], developed especially for the Lego robots which can be built out of the Lego model
kits. This is an extremely flexible and powerful system which allows anyone to build a
robot using a few standard parts like motors, color sensors, touch sensors, infrared
sensors and other Lego elements. Afterwards, the user can graphically implement a
program by choosing the desired activities from the pallet of available blocks. Because
of this target group, the software only has a limited set of functions and cannot be
extended in any way. Evolution 3 only supports the creation of software for Lego robots,
and thus cannot be regarded as a general robot modeling framework.

Other industrial tool is Choregraphe [1], an environment developed by Aldebaran
Robotics, the manufacturer of the NAO humanoid robot, to allow robots to be
programmed by graphical applications. It also supports code reuse and debugging
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capabilities and makes it possible to monitor and control NAO robots manually. The
program uses an intuitive drag-and-drop interface in which a program is created using
boxes that can be combined into a kind of flow diagram. In summary, although it is easy
to use, Choregraphe allows the creation of complex programs. Like Lego Mindstorms
Evolution 3, Choregraphe can only be used in combination with the NAO robot and thus
cannot be regarded as a general robot modeling framework.

Another example of industrial product is Robotino View 2, a visual development
environment provided by Festo Didactic exclusively for Robotino robots. Robotino
View 2 shares the same limitation as the two previously mentioned frameworks — it is
proprietary and can only be used with one kind of robot.

Finally, Microsoft Robotics Developer Studio 4 (MRDS4) [27] is another program‐
ming environment for building robotics applications. It provides a Visual Programming
Language with an intuitive drag-and-drop interface for hobbyists and support for Micro‐
soft Visual Studio for professional developers. It has several significant advantages.
First, numerous robots are supported. Second, a high-fidelity simulation environment is
provided by Visual Simulation Environment (VSE), and the functionality of MRDS4
can be extended by providing additional libraries and services. Also, extensive docu‐
mentation, samples and tutorials are available.

On the academic side, many works [8, 11, 12, 23, 25, 28, 49] has taken advantage
of CBD for developing robotic systems whilst other proposals [4, 16, 18, 49] have
applied SOA to building robotic systems. Promising proposals were found for applying
model-driven development to robotics [2, 5, 6, 9, 13, 17, 21, 22, 24, 25, 39–41, 46, 48],
while only one work combined all three technologies [47]. Let us examine the most
representative ones:

Atkinson and colleagues in [2] introduce a prototype domain-specific modeling
framework designed to support the quick, simple and reliable creation of control soft‐
ware for standard robot platforms. In this paper they have presented a prototype frame‐
work, known as the Deep Robot Modeling Framework (DRMF). The current version of
the prototype supports a rudimentary implementation of all of these features in the
context of the NAO robot platform developed by Alderbaran Robots, although the basic
framework is platform independent. Applications developed using the NAO-specific
languages are automatically mapped into C++ code that can be loaded onto, and used
to drive, individual NAO robots.

Dhouib and colleagues in [17] define the language RobotML as an extension to the
Eclipse-based UML modeling tool Papyrus. Papyrus puts strong emphasis on UML’s
profile mechanism, which allows domain-specific adaptations. RobotML aims to
provide model-driven engineering capabilities for the domain of robot programming,
implementing code generators for different target platforms.

In [15] a small and declarative domain-specific language for pick and place appli‐
cations was elaborated for demonstrating the feasibility of the model driven approach.
Configurable code generation for C++ is provided.

These related works focus on defining specific modeling languages that enable the
designer to create abstract models of the robotic system and to automatically generate
code from them. Although these different languages and platforms are superficially very
different, at a high enough level of abstraction they all contain the same basic constructs
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– predefined types representing the components and actions from which the structure
and behavior of individual robots are constructed. In principle, therefore, they could all
be brought together under the umbrella of a single, unified robot modeling framework.
We believe that our approach makes a contribution towards the application of standard
instead of developing new concepts which are then difficult to integrate.

6 Conclusions

Programming robots is a complicated and time-consuming task. Often, control and
communication paths within the system are tightly coupled to the actual physical
configuration of the robot. Robotic researchers have been mainly concentrated on
creating hardware/software solutions for specialized tasks, leading to an extensive land‐
scape of comparable but isolated solutions which cannot be reused and combined easily.
Furthermore, these approaches lack comprehensive software engineering methodolo‐
gies and abstractions to handle the increased heterogeneity and complexity of robotic
software systems.

The contribution of this research consists in delineating guidelines for the construc‐
tion of robotic software systems, taking advantage of the application of the OMG
standard robotic specifications which adhere to the model-driven approach MDA.
Model-driven approaches further simplify the reuse of already implemented and tested
modules by enabling developers to model their applications on a higher abstraction level
incorporating existing modules, managing the complexity and facilitating the reusability
of robot code.

We observed that the CBD and SOA paradigms provide a starting point for a MDA
approach in robotics where the differences between various software platforms and
middleware systems can be completely hidden from the user due to the definition of
intermediate abstraction level. In particular, the proposed methodology takes advantages
of the standards defined by the Robotics Domain Task Force (RTF) which promotes the
integration of modular robotic systems components under the umbrella of MDA.

The approach captures the fundamental concepts of the robotic software develop‐
ment process, its relationships and properties. This modeling approach includes concepts
to represent services and components as primary elements in the robotic system in a
higher abstraction level.

The proposed methodology has been prototyped using Papyrus and Acceleo that are
tools provided by the Eclipse Modeling Project that focuses on the evolution of model-
based development technologies within the Eclipse community.

At the moment, there are few proposals taking advantage of the combined application
of CBD, SOA and MDA to robotic software system development as reviewed in [38]
and more recently in [30], and there is a lack of proposals towards the application of the
OMG robotic standard.
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