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Preface

The System Analysis and Modeling (SAM) conference provides an open arena for par-
ticipants from academia and industry to present and discuss the most recent innovations,
trends, experiences, and concerns in modeling, specification, and analysis of distributed,
communication, and real-time systems using the Specification andDescription Language
(SDL-2010) and Message Sequence Charts (MSC) notations from the International
Telecommunication Union (ITU-T), as well as related system design languages such as
UML, ASN.1, TTCN-3, SysML, and the User Requirements Notation (URN).

The first seven editions of SAM (Berlin 1998, Grenoble 2000, Aberystwyth 2002,
Ottawa 2004, Kaiserslautern 2006, Oslo 2010, and Innsbruck 2012) were workshops.
Since the 2014 edition of SAM in Valencia, SAM has become a conference to better
reflect its structure, audience, and overall quality.

This 9th SAM conference (http://sdl-forum.org/Events/SAM2016/) was co-located
with the ACM/IEEE 19th International Conference on Model-Driven Engineering
Languages and Systems (MODELS 2016) in Saint-Malo, France, during October 3–4,
2016.

Theme for 2016: Technology-Specific Aspects of Models
Modern modeling languages are used in many different domains and for many different
applications. Technology-specific aspects of models include domain-specific aspects of
models and peculiarities of using models for different technologies, including, but not
limited to the Internet of Things (IoT), automotive software, cloud applications, and
embedded software. Moreover, the usage of models for different purposes and the
combination with different software engineering technologies, including but not limited
to software testing, requirements engineering, and automated code generation are also
of interest within this theme.

SAM 2016 especially invited contributions that cover such domain and
application-specific aspects. Additionally, academics and industry representatives were
invited to provide contributions regarding models and quality, language development,
model-driven development, and applications.

Review Process
SAM 2016 used a multi-tier review process. First, all papers were reviewed by at least
three Program Committee members. The papers and reviews were then made available
to Program Committee members who did not have a conflict of interest with the
authors. The papers were discussed online during a one-week online meeting before
final decisions were made. Out of 31 full papers, 15 papers were selected (48%
acceptance rate).

http://sdl-forum.org/Events/SAM2016/


Proceedings Overview
This volume contains 15 papers selected for presentation at SAM 2016. The volume
reflects the five sessions of the conference. The first two sessions are closely aligned
with the conference theme with a session on the “Internet of Things” and a session on
“Technology-Specific Aspects.” The other three sessions cover aspects regarding
modeling languages and model-driven development in general and were organized in
the sessions “Languages, Configurations and Features” and “Patterns and
Compilation.”

Acknowledgement
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of many people and organizations. We thank the authors of submitted papers, the 41
members of the Program Committee, the three additional reviewers, and the board
members of the SDL Forum Society. We thank the MODELS 2016 local Organizing
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Evaluating Variability Modeling Techniques
for Supporting Cyber-Physical System Product

Line Engineering

Safdar Aqeel Safdar1(&), Tao Yue1,2, Shaukat Ali1, and Hong Lu1

1 Simula Research Laboratory, Oslo, Norway
{safdar,tao,shaukat,honglu}@simula.no

2 University of Oslo, Oslo, Norway

Abstract. Modern society is increasingly dependent on Cyber-Physical Sys-
tems (CPSs) in diverse domains such as aerospace, energy and healthcare.
Employing Product Line Engineering (PLE) in CPSs is cost-effective in terms of
reducing production cost, and achieving high productivity of a CPS develop-
ment process as well as higher quality of produced CPSs. To apply CPS PLE in
practice, one needs to first select an appropriate variability modeling technique
(VMT), with which variabilities of a CPS Product Line (PL) can be specified. In
this paper, we proposed a set of basic and CPS-specific variation point
(VP) types and modeling requirements for proposing CPS-specific VMTs.
Based on the proposed set of VP types (basic and CPS-specific) and modeling
requirements, we evaluated four VMTs: Feature Modeling, Cardinality Based
Feature Modeling, Common Variability Language, and SimPL (a variability
modeling technique dedicated to CPS PLE), with a real-world case study.
Evaluation results show that none of the selected VMTs can capture all the basic
and CPS-specific VP and meet all the modeling requirements. Therefore, there is
a need to extend existing techniques or propose new ones to satisfy all the
requirements.

Keywords: Product Line Engineering � Variability modeling � Cyber-Physical
Systems

1 Introduction

Cyber-Physical Systems (CPSs) integrate computation and physical processes and their
embedded computers and networks monitor and control physical processes by often
relying on closed feedback loops [1, 2]. Nowadays, CPSs can be found in many
different domains such as energy, maritime and healthcare. Many CPS producers
employ the Product Line Engineering (PLE) practice, aiming to improve the overall
quality of produced CPSs and the productivity of their CPS development processes [3].

In [4], a systematic domain analysis of the CPS PLE industrial practice is presented,
which focuses on capturing static variabilities and facilitating product configuration at
the pre-deployment phase. The systematic domain analysis identifies the following key
characteristics of CPS PLE: (1) CPSs are heterogeneous and hierarchical systems;
(2) the hardware topology can vary from one product to another; (3) the generic

© Springer International Publishing AG 2016
J. Grabowski and S. Herbold (Eds.): SAM 2016, LNCS 9959, pp. 1–19, 2016.
DOI: 10.1007/978-3-319-46613-2_1



software code base might be instantiated differently for each product, mainly based on
the hardware topology configuration; and (4) there are many dependencies among
configurable parameters, especially across the software code base and the hardware
topology. Various challenges in CPS PLE were also reported in [4] such as lacking of
automation and guidance and expensive debugging of configuration data. In general,
cost-effectively supporting CPS PLE, especially enabling automation of product con-
figuration, is an industrial challenge.

Cost-effectiveness of PLE is characterized by its support for abstraction and
automation. Generally speaking, abstraction is a key mean that enables reuse. Concise
and expressive abstractions for CPS PLE are required to specify reusable artifacts at a
suitable level of abstraction as commonalities and variabilities. Such abstractions are
quite critical and provide the foundation for automation. To capture variabilities at a
high level of abstraction, a number of variability modeling techniques (VMTs) are
available in the literature, including Feature Modeling (FM) [5], Cardinality Based
Feature Modeling (CBFM) [6], a UML-based variability modeling methodology
named SimPL [7], and Common Variability Language (CVL) [8]. These VMTs were
proposed for a particular context/domain/purpose. For example, SimPL was designed
for the architecture level variability modeling. It is however no evidence showing
which VMT suits CPS PLE the best.

In this paper, we propose a set of basic variation point (VP) types, CPS-specific VP
types, and modeling requirements of CPS PLE. To define basic VP types, we con-
structed a conceptual model for basic data types in mathematics. Corresponding to each
basic data type, we defined one basic VP type (Sect. 4.1). We also constructed a
conceptual model for CPS based on the knowledge gathered from literature about CPSs
and our experience of working with industry [4]. The second and third authors of the
paper have experience of working with industrial CPS case studies and have derived
the conceptual model. From the CPS conceptual model, we systematically derived a set
of CPS-specific VP types (Sect. 4.2). We also derived a set of modeling requirements
based on the literature and our experience in working with industry [4] (Sect. 5). Based
on the proposed basic and CPS-specific VP types and the modeling requirements, we
evaluated FM [5], CBFM [6], CVL [8], and SimPL [7]. FM was selected as it is the
most widely used VMT in industry [9] and CBFM is an extension of FM. CVL is a
language for modeling variability using any domain specific language based on Meta
Object Facility (MOF), which was submitted to Object Management Group for stan-
dardization but did not go through due to Intellectual Property Rights issues. SimPL is
a specific VMT dedicated for CPS PLE and has been applied to address industrial
challenges. To evaluate the VMTs, we modeled a case study (Material Handling
System-MHS) with all the VMTs and evaluated them using the proposed eight basic
and 16 CPS-specific VP types, and nine modeling requirements.

Results of the evaluation show that (1) only SimPL and CVL can capture all the
basic VP types, whereas FM and CBFM provide partial support. None of the four VMTs
can capture all the CPS-specific VP types; (2) SimPL and CVL provide support for 81%
and 75% of the total CPS-specific VP types respectively, whereas CBFM supports 50%
and FM supports only 15% of the total CPS-specific VP types; (3) SimPL satisfies all
but one of the modeling requirements, FM and CBFM only covers one modeling
requirement, and CVL fully or partially fulfills four requirements out of nine

2 S.A. Safdar et al.



requirements. Based on above results, we can conclude that it is required to either extend
an existing technique or propose a new one to facilitate the variability modeling in the
context of CPS PLE. The proposed VP types and modeling requirements can be also
used as evaluation criteria for selecting existing VMTs or defining new ones for a
particular application when necessary.

The rest of the paper is organized as follows: Sect. 2 presents the related work.
Section 3 presents the context of the work. Section 4 presents the proposed VP types.
Section 5 presents the modeling requirements. In Sect. 6, we report evaluation results.
Threats to validity are given in Sect. 7. Section 8 concludes the paper.

2 Related Work

This section discusses the existing literature that compares or classifies VMTs, sys-
tematic literature reviews (SLRs) and surveys of VMTs.

Galster et al. [10] conducted a SLR of 196 papers published during 2000–2011, on
variability management in different phases of software systems. Results show that most
of the papers focus on design time variabilities and a small portion of the papers focus
on runtime variabilities. In [11], Chen et al. conducted a SLR of 33 VMTs in software
product lines and highlighted the challenges involved in variability modeling such as
evolution of variability, and configuration. Arrieta et al. [12] conducted a SLR of
variability management techniques, but limited their scope to techniques for Simulink
published after 2008. Berger et al. [9] conducted a survey on industry practices of
variability modeling using a questionnaire, aiming to discover characteristics of
industrial variability models, VMTs, tools and processes. Another industrial survey of
feature-based requirement VMTs was conducted to find out the most appropriate
technique for a company [13]. They evaluated existing techniques based on require-
ments collected from the company’s engineers, including readability, simplicity and
expressive, types of variability and standardization.

Eichelberger and Schmid [14] classified and compared 10 textual VMTs in terms of
scalability. They compared the selected techniques in five different aspects: config-
urable elements, constraints support, configuration support, scalability, and additional
language characteristics. Similarly, Sinnema and Deelstra [15] classified six VMTs and
compared them based on key characteristics of VMTs such as constraints, tool support,
and configuration guidance. Czarnecki et al. [16] reported an experience report, in
which they compared two types of VMTs: decision modeling and feature modeling.
They compared them in 10 aspects: application, hierarchy, unit of variability, data
types, constraints, modularity, orthogonality, mapping to artifacts, tool support, and
binding time and mode. A comparative study [17] was reported to compare two VMTs,
i.e., Kconfig and CDL, in the context of operating systems, in terms of constructs,
semantics, and tool support.

All the above studies classify and evaluate various types of VMTs either in general
or for a particular domain other than CPSs. We however, in this paper, propose a set of
basic and CPS-specific VP types as well as a list of modeling requirements for eval-
uating VMTs in the context of CPS PLE, based on which we evaluated four repre-
sentative VMTs with a non-trivial case study.

Evaluating Variability Modeling Techniques for Supporting CPS PLE 3



3 Context

Sections 3.1 and 3.2 introduce the case study and the four VMTs. In Sect. 3.3, we
present the study procedure.

3.1 Case Study

The case study is a product line of Handling Systems, which consist of various types of
sub-systems such as Automatic Storage Retrieval System (ASRS), Automatic Guided
Vehicle (AGV), Automatic Identification and Data Collection (AIDC) and Warehouse
Management System. We selected three of these systems: AGV, AIDC, and ASRS for
the evaluation of the selected VMTs. AGV is a fully automatic transport system that
uses unmanned vehicles to transport all types of loads without human intervention. It is
typically used within warehouse, production and logistics for safe movement of goods.
AIDC is used to identify, verify, record, and track the products. Typically, these
systems are used in supply chain, order
picking, order fulfillment, and determina-
tion of weight, volume, and storage. ASRS
is an automated system for inventory man-
agement, which is used to place and retrieve
the loads from pre-defined locations in the
warehouse. The descriptive statistics of the
MHS case study’s class diagram are given
in Table 1. We modeled the case study
(MHS) using the four selected VMTs (i.e.,
FM, CBFM, SimPL, and CVL). The case
study models corresponding to selected
VMTs are available at [18].

3.2 Variability Modeling Techniques

Feature Modeling (FM) is widely applied in practice [9].
A feature model is organized hierarchically as a tree. The
root node of the tree represents the system, whereas the
descendent nodes are functionalities of the system (fea-
tures). A feature can be mandatory, optional or alternative.
A feature can either be a compound feature that has one or
more descendent features or a leaf feature with no
descendent features. Figure 1 shows an excerpt of the FM
model for AGV modeled using Pure::Variants [19]. As
shown in Fig. 1, AGVHardware, Sensor, and Connectivity
are mandatory features. The Connectivity feature has three alternative features, i.e.,
Bluetooth, Wifi, and NFC. The Sensor feature has two optional features: MultiRay-
LEDScanner and LaserScanner.

Table 1. Descriptive statistics of the MHS

Element Count

Class 132
Generalization 56
Composition 62
Association 69
Simple attribute 113
Enumerated attribute 82
Enumeration 23
Enumeration Literal 73

Fig. 1. An excerpt of FM
for AGV

4 S.A. Safdar et al.



Cardinality Based Feature Modeling
(CBFM) is an extension to FM, which
introduces new concepts such as Feature
Cardinalities, Groups and Groups Cardinal-
ities, Attributes, and References. For Feature
Cardinalities, features can be annotated with
cardinalities such as <1..*> whereas alter-
native features and optional features are
special cases with cardinality <1..1> and
<0..1> respectively. A feature group can be
or-group with cardinality <1..k> or
alternative-group with cardinality <1..1>. For an alternative-group, one can select only
one feature, whereas for or-group, one can select 1 to k number of features where k is
the maximum number of features in the group. A feature can have one attribute of
either String or Integer type. To achieve better modularization, a special leaf node (i.e.,
Reference) was introduced to refer to another feature model. This can be used to divide
a large feature model into smaller ones to support modularization. As shown in Fig. 1
AGVHardware, Sensor, and Connectivity are mandatory features. AGVHardware and
Sensor have feature cardinality <1..10>. Connectivity has an alternative-group that
consists of three features: Bluetooth,Wifi, and NFC. The Sensor feature has an or-group
consisting of two features with group cardinality <0..2> (Fig. 2).

Common Variability Modeling (CVL)
is a generic variability modeling language
and is composed of three interrelated mod-
els: base model, variability model, and res-
olution model. The base model can be
defined in UML or any MOF based Domain
Specific Language (DSL). Corresponding to
the base model a variability model is
defined. The variability model has a tree
structure to specify variabilities. The reso-
lution model specifies configurations of
variabilities corresponding to a particular
product. To support CVL, an Eclipse-based
plugin CT-CVL is available [20]. In Fig. 3, rounded rectangles (e.g., AGVHardware,
SensorType, Connectivity) represent Choice elements and a rectangle (e.g., Sensor)
represents a VClassifier element whereas an ellipse represents a variable. Multiplicity
inside the VClassifier Sensor (0..10) indicates that the number of instances of sensors
can be between zero to 10 where for each instance one needs to configure sensor type
and model. Connectivity and SensorType are ChoiceVP with group cardinality (1..1),
which means only one option can be selected from given alternative options.

SimPL is a UML based VMT, which provides notations and guidelines for
modeling variabilities and commonalities of CPS product lines at the architecture and
design level. To support SimPL, several modeling tools [21] (RSA, MagicDraw, and
Papyrus) are available. It captures four types of VPs: Attribute-VP, Type-VP,
Topology-VP, and Cardinality-VP. A SimPL product line model can be specified with

Fig. 2. An excerpt of CBFM for AGV

Fig. 3. An excerpt of CVL for AGV

Evaluating Variability Modeling Techniques for Supporting CPS PLE 5



a subset of UML structural elements and stereotypes defined in the SimPL profile.
Constraints are specified in the Object Constraint Language (OCL). SimPL has two
major views: SystemDesignView and VariabilityView. SystemDesignView is com-
posed of HardwareView, SoftwareView, and AllocationView to represent hardware
components, software components and their relationship. VariabilityView is for cap-
turing and structuring variabilities using UML packages and template parameters.
Stereotype « ConfigurationUnit » is applied on UML packages to group relevant
variabilities. Variabilities are defined as template parameters of a package template and
can trace back to hardware or software elements in the SystemDesignView. Figure 4
presents an excerpt of the HardwareView of MHS, in which AGV is a hardware
component composed of zero to many Sensors. Sensor can be of two types: LaserS-
canner and MultiRayLEDScanner. AGV has one Attribute-VP (connectivity) and one
Cardinality-VP (sensors) denoting the number of instances of Sensor. For Sensor, two
variabilities are specified:
model (Attribute-VP) and
type of sensor (Type-VP).
AGVConfigurationUnit and
SensorsConfigurationUnit
are the template packages
that are used to organize
the variabilities corre-
sponding to hardware
component AGV and hard-
ware Sensor respectively.

3.3 Procedure of the Study

Figure 5 describes the procedure that we followed to conduct the study. First, we
constructed a conceptual model for defining data types in mathematics and then we
validated the data types with MARTE [22] and SysML [23], as these two standards are
often used for modeling embedded systems and therefore can be used for modeling
CPSs. In the third step, we defined a set of basic VP types (Sect. 4.1), based on the
mathematical basic data types. We used basic data types for defining the basic VP
types, as configuring a VP always requires assigning/selecting a value to/for a basic
type variable. In the fourth step, we derived a set of modeling requirements (Sect. 5)
based on knowledge collected from the literature and our experience of conducting
industry-oriented research in the field of CPS PLE [4]. In the fifth step, we constructed
a conceptual model for CPS, which is used to systematically derive the CPS-specific
VP types (Step 6, more details in Sect. 4.2). In Step 7, we modeled the MHS case study
with the selected VMTs, followed by the evaluation of the selected VMTs (Step 8,
details in Sect. 6), based on the basic VP types, CPS-specific VP types, and the set of
modeling requirements.

Fig. 4. An excerpt of SimPL for AGV
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4 Basic and CPS-Specific Variation Point Types

4.1 Basic Variation Point Types

Based on the basic data types in
mathematics, we constructed a
conceptual model to classify
them, as shown in Fig. 6. A Vari-
able can be a VariationPoint
or a Non-configurableVariable,
which represents the configur-
able and non-configurable vari-
able in CPS PLE. Each Variable
has a Type, which is classified
into two categories: Atomic
(taking a single value at a given
point of time) and Composite (composed of more than one atomic type, where each
atomic type variable takes exactly one value at a given point in time). Atomic types are
further classified into Quantitative types (taking numeric values) and Qualitative types
(taking non-numeric values). Quantitative types can be Discrete (taking countable
values) or Continuous (taking uncountable values). Integer is the concreteDiscrete type,
whereas Real is the concrete Continuous type. Qualitative types are categorized into
String, Binary and Categorical that is further classified into Ordinal and Nominal.

A Composite data type combines several
variables and/or constants, which is classified
as: Compound and Collection. Compound
takes only variables (e.g., complex numbers
in SysML containing two variables realPart
and imaginaryPart [23]) whereas Collection
takes Variables and/or Constants (e.g., col-
lection of colors). Attributes minElements and
maxElements of Collection specify the mini-
mum and maximum numbers of elements in a

Fig. 5. Procedure of the study

Fig. 6. Basic data types

Table 2. Collection types

Collection Hom. Uni. Ord.

Bag No No No
Record No Yes No
Set Yes Yes No
OrderedSet Yes Yes Yes
Array Yes No No
Sequence Yes No Yes

Evaluating Variability Modeling Techniques for Supporting CPS PLE 7



collection. As shown in Fig. 6, we have classified Collection into six types (i.e., Bag,
Array, Record, Set, OrderedSet and Sequence) based on three properties: homogeneity,
uniqueness and order. The homogeneity, uniqueness, and order properties of each
collection type are specified as OCL constraints (Appendix A). Table 2 summarizes the
six types of Collection along with their properties.

To validate the con-
ceptual model of the basic
data types, we mapped the
data types defined in the
MARTE Value Specifica-
tion Language-VSL [22]
and SysML [23] to the
basic data types presented
in Fig. 6. We used
MARTE and SysML for
validation because these
two modeling languages
can be used for modeling
CPSs [24, 25]. During the
validation, we do not
include the extended data
types provided in
MARTE, as they are
defined by extending the
data types used in our
mapping. In case of SysML we include all the data types. Results of the mapping are
presented in Table 3, from which one can see that each data type in MARTE and
SysML has a correspondence in our basic data type classification, which suggests that
our classification of the basic data types is complete.

In Fig. 7, we present a classification of basic VP types where one basic VP type is
defined corresponding to each basic data type presented in Fig. 6. A VariationPoint can
be a CompositeVP or an AtomicVP. An AtomicVP can come with any of the six
concrete types: StringVP, BinaryVP, NominalVP, OrdinalVP, IntegerVP, and RealVP
corresponding to String, Binary, Nominal, Ordinal, Integer, and Real respectively.
A CompositeVP can be CompoundVP or CollectionVP, which are defined corre-
sponding to Compound and Collection data types respectively. As shown in Fig. 7, a
CompositeVP may have several AtomicVPs and/or CompositeVPs depending on the
number of variableElements (Fig. 6) involved in the Composite data type. Collec-
tionVP may have two additional IntegerVP(s), i.e., lowerLimitVP and upperLimitVP
corresponding to the minimum and maximum numbers of the elements in the
collection.

Table 3. Mapping MARTE and SysML data types to the basic
data types

MARTE SysML Basic data types

Integer Integer Integer
UnlimitedNatural UnlimitedNatural Integer
Boolean Boolean Binary
String String String
Real Real Real
DateTime Complex Compound
EnumerationType Enumeration Ordinal/Nominal

ControlValue Nominal/Ordinal
IntervalType UnitAndQuantityKind Compound
TupleType Compound
ChoiceType Compound
CollectionType Collection
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4.2 CPS-Specific Variation Point Types

In this section, first we present a conceptual model for CPS (Fig. 8), based on which we
then derive a set of CPS-specific VP types (Table 4). As shown in Fig. 8, a CPS can be
defined as a set of physical components (e.g., human heart, engine), interfacing
components (e.g., sensor, actuator, network), and cyber components (with deployed
software), which are integrated together to accomplish a common goal.

A CPS can have one or more topologies, which define how various components are
integrated. A CPS controls and monitors a set of physical properties. A CyberCom-
ponent can either be a CommunicationComponent or ComputationalComponent, which
takes values of StateVariables as input and updates their values when needed. Each
component in CPS has several component properties. CPS may interact with Physi-
calEnvironment and ExternalAgents (e.g., external systems). Both PhysicalProperty
and ComponentProperty have attributes name, type, and unit to specify the name, type
(e.g., descriptive, numeric, Boolean), and unit of a specific property. PhysicalProperty
has an extra Boolean attribute isContinuous to specify either it is a continuous or a
discrete type of property.

In Table 4, the first column represents the CPS concepts used to derive
CPS-specific VP types and the second column shows the derived CPS-specific VP
types. The last column presents the basic VP type corresponding to a particular
CPS-specific VP type.

Fig. 7. Classification of the basic VP types

Fig. 8. A CPS conceptual model
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PhysicalProperty and ComponentProperty: Descriptive-VP, DiscreteMea-
surement-VP, ContinuousMeasurement-VP, BinaryChoice-VP, PropertyChoice-VP,
MeasurementUnitChoice-VP, and MeasurementPrecision-VP are defined for physical
properties and/or component properties of CPS. Descriptive-VP is a StringVP, which
requires setting a value in order to configure it. It can be defined for a textual Com-
ponentProperty such as ID of a sensor. DiscreteMeasurement-VP and Contin-
uousMeasurement-VP are IntegerVP and RealVP respectively. Both these two types of
VPs can be defined for numeric component properties (e.g., data transmission interval
of a sensor) or physical properties (e.g., length and weight of a physical component) of
CPS. BinaryChoice-VP is a BinaryVP, which can be defined for Boolean physical
properties (e.g., the presence of a magnetic field) and component properties (e.g.,
whether a sensor keeps the events’ log). PropertyChoice-VP is a NominalVP or an
OrdinalVP, which requires selecting one value from a list of pre-defined values. For
example, a ComponentProperty can be connectionType, which can be configured as
wired, 3G, or Wi-Fi, which can be captured as a PropertyChoice-VP.
MeasurementUnitChoice-VP is an OrdinalVP, which is derived from the unit of
PhysicalProperty and ComponentProperty. For example, one can select meter, cen-
timeter or millimeter as a unit for length (a PhysicalProperty). Measurement-
Precision-VP is a RealVP, which is related to the degree of measurement precision for a
PhysicalProperty or ComponentProperty.

Component: ComponentCardinality-VP, ComponentCollectionBoundary-VP,
ComponentChoice-VP, andComponentSelection-VP are derived from the different types
of CPS components: CyberComponent, InterfacingComponent, PhysicalComponent.

Table 4. CPS-specific VP types

CPS concept CPS-specific VP type Basic VP type

CP Descriptive-VP StringVP
CP, PP DiscreteMeasurement-VP IntegerVP
CP, PP ContinuousMeasurement-VP RealVP
CP, PP BinaryChoice-VP BinaryVP
CP, PP PropertyChoice-VP NominalVP/OrdinalVP
CP, PP MeasurementUnitChoice-VP OrdinalVP
CP, PP MeasurementPrecision-VP RealVP
CP, PP, COM Multipart/Compound-VP CompoundVP
COM ComponentCardinality-VP IntegerVP
COM ComponentCollectionBoundary-VP IntegerVP
COM ComponentChoice-VP NominalVP/OrdinalVP
COM ComponentSelection-VP CollectionVP
Topology TopologyChoice-VP NominalVP
Deployment AllocationChoice-VP NominalVP
Interact InteractionChoice-VP NominalVP
Constraint ConstraintSelection-VP CollectionVP

*CP = ComponentProperty, PP = PhysicalProperty, COM = Physical,
Interfacing, or Physical Component
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ComponentCardinality-VP is an IntegerVP, which is related to varying number of
instances of a CPS component (e.g., number of temperature sensors). Component-
CollectionBoundary-VP is an IntegerVP, which is related to the upper limit and/or the
lower limit of a collection of CPS components. For example, themaximum andminimum
numbers of sensors supported by a controller. ComponentChoice-VP is a NominalVP/
OrdinalVP, which is about selecting a particular type of CPS component such as selecting
a speedometer sensor from several speedometers with various specifications.
ComponentSelection-VP is a CollectionVP, which is about selecting a subset of CPS
components from a collection of CPS components such as selecting sensors for a product
from available sensors.

Multipart/Compound-VP is a CompoundVP, which can be specified for a Physi-
calProperty, ComponentProperty, or a component (Physical, Cyber, or Interfacing)
that requires configuring several constituent VPs involved in it. As in the domain of
CPS, it is common that different properties do not give complete meaning unless they
are combined together. For example, length is a PhysicalProperty, which is mean-
ingless without a unit. Hence, we need a Compound-VP type, which involves two VPs
including length and its unit. A Compound-VP can also be defined for a component
(e.g., sensor), which contains several other VPs defined for its properties.

Topology: TopologyChoice-VP is a NominalVP, which is related to selecting a
topology from several alternatives. For example, how CyberComponent (e.g., con-
troller) is connected with InterfacingComponents (e.g., sensors and actuators).

Deployment: AllocationChoice-VP is a NominalVP, which is about the deploy-
ment of software on a CyberComponent (e.g., controller). For example, the same
version of software can be deployed on different controllers or different versions of
software can be deployed on the same controller.

Interaction: InteractionChoice-VP is a NominalVP, which is about the interaction
(presented as association named interact in Fig. 8), of two CPS components (e.g.,
CyberComponent and InterfacingComponent) or interaction of CPS with an external
agent, which can be for example an external system.

Constraint: ConstraintSelection-VP is a CollectionVP, which is about selecting a
subset of constraints in order to support the configuration of a specific product, from a
set of constraints defined for the corresponding CPS product line.

5 Modeling Requirements

In addition to capturing different types of VPs, a VMT should also accommodate some
modeling requirements to enable automation of configuring CPS products. These
requirements (Table 5) are derived from the literature and our experience of working
with industry [4].

In Table 5, R1 is related to support different binding times of a VP, as a VP can be
configured at three different phases [26]: the pre-deployment phase, the deployment
phase and the post-deployment phase. Requirements R2 focuses on a traceability
mechanism to link the variability model and its base whereas R3 is related to realizing
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the separation of concerns principle in the product line model. R4–R8 are relevant to
different types constraints that a VMT should be able to capture for enabling
automation of the configuration process in CPS PLE [3]. In [3], a constraint classifi-
cation was presented and we extended it by adding two more categories: inference and
conformance. These constraints are needed to facilitate different functionalities of an
interactive, multi-step and multi-staged configuration solution, such as consistency
checking, decision inferences. R9 is related to modeling different types of configurable
elements of CPSs.

6 Evaluation

The purpose of the evaluation is to compare the selected four VMTs with the aim to
help modelers to select an appropriate VMT or propose a new one if necessary for
CPS PLE, which can capture different types of VPs (Sect. 4) and meet the modeling
requirements (Sect. 5). Corresponding to this goal, we pose the following research
questions: RQ1: To what extent can each selected VMT capture the basic VPs? RQ2:
To what extent can each selected VMT capture the CPS-specific VPs? RQ3: To what
extent does a selected VMT comply with the modeling requirements? We answer RQ1,
RQ2 and RQ3 in Sects. 6.1, 6.2, and 6.3, respectively.

Table 5. Modeling requirements

ID Name Description

R1 VP binding time Support different binding times for a VP (e.g.,
pre-deployment, deployment, and post-deployment
phases).

R2 Linkage between VP
and the base

Provide a mechanism to relate a VP to the corresponding base
model element.

R3 Separation of
Concerns

Provide a mechanism to realize the principle of separation of
concerns to enable multi-staged and cross-disciplinary
configuration of CPS.

R4 Variability
dependency

Capture dependencies between a VP and a variant, two VPs,
and two variants.

R5 Ordering Specify constraints on the order of configuration steps.
R6 Inference Specify constraints that can be used to configure VPs

automatically.
R7 Conformance Specify conformance rules for ensuring the correctness of

configuration data.
R8 Consistency Specify consistency rules for checking the consistency of the

configuration data and variability models.
R9 Multidisciplinary Model Software, PhysicalComponent,

InterfacingComponent, CyberComponent, and
PhysicalEnvironment elements of CPS.
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6.1 Evaluation Based on Basic VP Types (RQ1)

To answer RQ1, we evaluate the selected VMTs based on the basic VP types. In
Table 6, the first column represents the basic VP type and the second column indicates
if a basic VP type is required by the MHS case study, whereas columns 3–6 show how
each selected VMT supports each basic VP type.

As one can see from Table 6, modeling the MHS case study requires all the basic
VP types. However, FM supports only three out of eight basic VP types: BinaryVP,
NominalVP and OrdinalVP. Optional feature and alternative-group with two features of
FM map to BinaryVPs. In FM, alternative-group corresponds to NominalVPs and
OrdinalVPs, but FM does not differentiate NominalVP from OrdinalVP. CBFM pro-
vides support for all the basic VP types except for CompoundVP. Corresponding to
RealVPs and StringVPs, CBFM provides attributes (one attribute per feature) of Real
and String respectively. However, for IntegerVPs, it offers feature and group cardi-
nalities together with Integer attributes. For BinaryVP, CBFM has optional features,
alternative-groups, feature cardinalities (0..1), and Boolean attributes. Similar to FM,
CBFM also provides alternative-groups, which map to NominalVPs and OrdinalVPs
and CBFM does not differentiate these two types. For CollectionVP, CBFM provides
alternative-groups and or-groups.

Both SimPL and CVL support all the basic VP types. In SimPL, Attribute-VP
defined with Real and String attributes map to RealVPs and StringVPs. IntegerVPs can
map to Attribute-VPs defined on Integer attributes or Cardinality-VP. To support
BinaryVP, SimPL provides Attribute-VP defined on attributes of the binary type,
Cardinality-VP with two options, Type-VP with two types, and Topology-VP with two
topologies. Cardinality-VP, Type-VP, and Topology-VP offered by SimPL can be
mapped to NominalVPs and OrdinalVPs. SimPL does not differentiate NominalVP and
OrdinalVP. To support CompoundVP, SimPL defines «ConfigurationUnit», which can
be applied on packages, to organize a set of relevant VPs. In SimPL, CollectionVP
corresponds to Cardinality-VP.

To support RealVP and StringVP, CVL provides ParametricVP. For IntegerVP it
provides ParametricVP and cardinalities. For BinaryVP, CVL has different types of
ChoiceVPs (i.e., ObjectSubstitution, SlotAssignment, ObjectExistence, SlotValue-
Existence, and LinkExistence) along with multiplicity and ParametricSlotAssignment
(i.e., ParametricVP). In CVL, both NominalVPs and OrdinalVPs can be mapped to
SlotAssignments (i.e., ChoiceVP) with group multiplicity (1..1) or Paramet-
ricObjectSubstitution (i.e., ParametricVP). Similar to all the other VMTs, CVL does
not differentiate NominalVP and OrdinalVP. In CVL, CompoundVP maps to Com-
positeVP and a VClassifier with several RepeatableVP(s) can also be used to model
CompoundVPs. For CollectionVP, CVL has VClassifier with the multiplicity other than
(1..1) and a group of SlotAssignment (i.e., ChoiceVP).

To summarize, both SimPL and CVL support all the basic VP types whereas FM
and CBFM provide partial support. None of the selected four VMTs differentiate
NominalVP and OrdinalVP.
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6.2 Evaluation Based on the CPS-Specific VP Types (RQ2)

To answer RQ2, we evaluate the selected four VMTs based on the CPS-specific VP
types (Sect. 4.2) and VPs modeled for the MHS case study. In Table 7, the first column
represents the CPS-specific VP types and the second column indicates if a particular
CPS-specific VP type is required by the MHS case study. Columns 3–6 are related to
the four VMTs to signify if they support a particular CPS-specific basic VP type. The
seventh column shows the number of VPs in the MHS case study corresponding to a
particular CPS-specific VP type, whereas columns 8–11 show the number of VPs
modeled using the four VMTs.

As one can see from Table 7, our case study (MHS) contains VPs corresponding to
all the CPS-specific VP types. FM does not cater majority of the CPS-specific VP types
and only supports fully or partially three out of 16 CPS-specific VP types:
BinaryChoice-VP, PropertyChooice-VP, and ComponentChoice-VP.

CBFM supports six of 16 CPS-specific VP types: ComponentCardinality-VP,
ComponentCollectionBoundary-VP, MeasurementPrecision-VP, PropertyChoice-VP,
ComponentChoice-VP, and ComponentSelection-VP. It provides partial support for
three CPS-specific VP types (i.e., Descriptive-VP, DiscreteMeasurement-VP, and
ContinuousMeasurement-VP) because CBFM allows adding only one attribute for each
feature. BinaryChoice-VP is also partially supported, as it can be captured using
optional feature or cardinality but CBFM does not allow adding Boolean attribute. The
remaining six CPS-specific VP types are not supported by CBFM.

Table 6. Evaluation based on the basic VP types (RQ1)

Basic VP
Type

MHS VMT
FM CBFM SimPL CVL

IntegerVP Yes No One At/F, G &
F Cardinality

Attribute-VP,
Cardinality-VP

Multiplicity, ParametricVP

RealVP Yes No One At/F Attribute-VP ParametricVP
StringVP Yes No One At/F Attribute-VP ParametricVP
BinaryVP Yes OF,

Alt.
F

One At/F, OF,
Alt. G,
F-Cardinality

Attribute-VP,
Cardinality-VP,
Type-VP,
Topology-VP

ChoiceVP (ObjectSubstitution,
SlotAssignment,
ObjectExistence,
SlotValueExistence,
LinkExistence), Multiplicity,
ParametricSlotAssignment

NominalVP Yes Alt. G Alt. G Attribute-VP,
Type-VP,
Topology-VP

Group of SlotAssignment (i.e.,
ChoiceVP) with group
Multiplicity (1,1),
ParametricObjectSubstitution
(i.e., ParametricVP).

OrdinalVP Yes Alt. G Alt. G

CompoundVP Yes No No Configuration Unit CompositeVP, VClassifier with
several Repeatable-VP(s).

CollectionVP Yes No Alt. G, OR G Cardinality-VP VClassifier with configurable
Multiplicity, group of
SlotAssignment (i.e.,
ChoiceVP).

*F = feature, OF = optional feature, G = group, At = attribute, Alt = Alternative, / = per, & = and
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Both SimPL and CVL support Descriptive-VP, DiscreteMeasurement-VP, Con-
tinuousMeasurement-VP, ComponentSelection-VP, ComponentCardinality-VP,
ComponentCollectionBoundary-VP, BinaryChoice-VP, MeasurementPrecision-VP,
MeasurementUnitChoice-VP, PropertyChoice-VP, ComponentChoice-VP, and
Compound-VP. SimPL also supports TopologyChoice-VPs, which cannot be captured
using CVL. The remaining three CPS-specific VP types (i.e., AllocationChoice-VP,
InteractionChoice-VP, and ConstraintSelection-VP) are not catered by either SimPL
or CVL.

As shown in Table 7, none of the selected VMTs supports all the CPS-specific VP
types. SimPL supports 81 %, FM supports only 15 %, CVL caters 75 %, and CBFM
covers 50 % of the total CPS-specific VP types. Using SimPL and CVL we were able
to model 96 % and 86 %, whereas with FM and CBFM, we could model only 19 %
and 55 % of total VPs in our case study.

6.3 Evaluation Based on the Modeling Requirements (RQ3)

Table 8 summarizes the results of our evaluation of the four VMTs in terms of
modeling requirements (Sect. 5) with MHS. In Table 8, the first two columns are used
to identify the requirements and the third column indicates if a requirement is required
by MHS. Columns 4–7 signify if the VMTs support a particular requirement.

None of the selected VMTs except for CVL allows specifying the binding time (R1)
of a VP to enable its configuration in different phases. CVL and SimPL support linking a
VP to the corresponding base model element explicitly (R2), which is however not
supported by FM and CBFM, as they do not have separate base models. FM and CBFM

Table 7. Evaluation of VMTs based on the CPS-specific VP types and VPs (RQ2)

CPS-specific VP type VP types coverage VP coverage

MHS FM CBFM SimPL CVL MHS FM CBFM SimPL CVL

Descriptive-VP Yes No Partial Yes Yes 34 0 4 34 34
Discrete Measurement-VP Yes No Partial Yes Yes 23 0 5 23 23
Continuous Measurement-VP Yes No Partial Yes Yes 51 0 18 51 51
ComponentCardinality-VP Yes No Yes Yes Yes 42 0 42 42 42
ComponentCollectionBoundary-VP Yes No Yes Yes Yes 42 0 42 42 42
MeasurementPrecision-VP Yes No Yes Yes Yes 2 0 2 2 2
BinaryChoice-VP Yes Partial Partial Yes Yes 3 0 0 3 3
PropertyChoice-VP Yes Yes Yes Yes Yes 82 82 82 82 82
ComponentChoice-VP Yes Yes Yes Yes Yes 12 12 12 12 12
TopologyChoice-VP Yes No No Yes No 9 0 0 9 0
AllocationChoice-VP Yes No No No No 3 0 0 0 0
InteractionChoice-VP Yes No No No No 15 0 0 0 0
MeasurementUnitChoice-VP Yes No No Yes Yes 59 0 18 59 59
ConstraintSelection-VP Yes No No No No 1 0 0 0 0
ComponentSelection-VP Yes No Yes Yes Yes 42 0 42 42 42
Multipart/Compound-VP Yes No No Yes Yes 64 0 0 64 26
Total (count) 16 2.5 8 13 12 484 94 267 465 418
Coverage (%) 100% 15% 50% 81% 75% – 19% 55% 96% 86%

Evaluating Variability Modeling Techniques for Supporting CPS PLE 15



do not support the separation of concerns (R3) and CVL supports partially as it models
variabilities separately from the base model. SimPL supports R3 as it provides hardware,
software and allocation views in addition to the variability view. For MHS, we captured
all the four views defined in SimPL. But, it still requires a view for specifying envi-
ronment elements and corresponding VPs.

R4–R8 are related to capturing different types of constraints to enable automation in
CPS PLE. FM and CBFM provide partial support for capturing variability depen-
dencies such as requires and excludes, but they are unable to capture other complex
constraints such as consistency rules. In the case of CVL, it uses the Basic Constraint
Language [8] for capturing simple propositional and arithmetic constraints but it is
unable to capture all the types of constraints discussed in Sect. 5. If the base model is
modeled in UML, then OCL can be integrated with CVL, thereby allowing the
specification of all the types of constraints. SimPL is based on UML and OCL, which
makes it possible to capture all the types of constraints.

MHS is a multidisciplinary system, which contains Software, CyberComponent,
and different types of PhysicalComponent and InterfacingComponent interacting with
PhysicalEnvironment but none of the selected VMTs explicitly model these multi-
disciplinary elements of CPS (R9). SimPL supports all, except for PhysicalEnvironment
elements. In case of CVL, it depends on the DSL used for modeling the base model,
which may or may not have the capability of modeling different elements of CPS.

7 Threats to Validity

One threat to validity of our study is the selection of the VMTs. Since it is not
practically feasible to evaluate all existing VMTs, we therefore selected four repre-
sentative VMTs. Another threat to validity is the completeness of the basic and
CPS-specific VP types and modeling requirements. Note that our approach for deriving
the basic VP types is systematic, which to certain extent ensures their completeness. In
addition, we validated them using SysML and MARTE, which are two existing

Table 8. Results for the evaluation of the VMTs based on the modeling requirements (RQ3)

ID Name MHS FM CBFM CVL SimPL

R1 VP binding times Yes No No Yes No
R2 Linkage between

VP and the base
Yes No No Yes Yes

R3 Separation of
Concerns

Yes No No Partial Yes

R4 Variability
dependencies

Yes Partial Partial Partial Yes

R5 Ordering Yes No No Depends on base
modeling language

Yes
R6 Inference Yes No No Yes
R7 Conformance Yes No No Yes
R8 Consistency Yes No No Yes
R9 Multidisciplinary Yes No No Partial
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standards often used for embedded system modeling. We derived CPS-specific VP
types based on thorough domain analyses and our experience in working with industry.
We also verified that the MHS case study covers all the CPS-specific VP types.

8 Conclusion

In this paper, we present a set of basic and CPS-specific VP types that need to be
supported by a VMT in the context of CPS PLE. Moreover, we present a set of
modeling requirements, which need to be catered to enable the automation of con-
figuration in CPS PLE. Based on the proposed basic and CPS-specific VP types and
modeling requirements, we evaluated four VMTs: feature model, cardinality based
feature model, CVL, and SimPL, with a real-world case study. Results of our evalu-
ation show that the selected four VMTs cannot capture all the VP types and none of the
four VMTs meets all the requirements. This necessitates the extension of an existing
technique or proposal of a new one to facilitate CPS PLE. The proposed VP types and
modeling requirements can be used as evaluation criteria to select a suitable VMT or
develop a new one if necessary.
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Abstract. Complex Event Processing (CEP) is concerned with real-
time detection of complex events within multiple streams of atomic
occurrences. Numerous approaches in CEP have been already proposed
in the literature. In this paper, we examine the CEP Extension of
ThingML which is a cross-platform modeling language for deploying
Cyber Physical System (CPS). In particular, we focus on both lan-
guage characteristic and performance of the ThingML Extension while
processing CEP queries. Experiments show that although ThingML does
not outperform other well-known CEP engines, it is still a potential
CEP solution for CPS which has limited physical resources. In addition,
ThingML also shows its efficiency in term of language expressiveness in
comparison with State Machine based CEP queries.

Keywords: ThingML Modeling Language · Complex Event Process-
ing · Language expressiveness · Processing performance · Cyber Physical
System

1 Introduction

Complex Event Processing (CEP) is a set of methods and techniques for tracking
and analyzing real-time streams of information and detecting patterns or cor-
relations of unrelated data (complex events) that are of interest to a particular
business [21]. Besides being an attractive research topic, CEP concept is already
applied in many areas such as finance, manufacturing processes, energy manage-
ment, etc. [6]. It also has a strong impact on information systems design espe-
cially with the pervasive evolution of decentralized data nowadays [6]. Today,
with the convergence of Internet of Thing (IoT) and Big Data, the ability to
large-scale real-time stream processing and analysis become more and more
demanding; especially in Cyber Physical Systems (CPS) where fast response
is sometimes crucial (e.g., traffic management systems). Therefore, CEP has
evolved to cope with these situations in order to build highly scalable and
dynamic systems.

Although CEP systems have been designed to accomplish the same goal,
they present different solutions regarding data model, processing algorithm and
system architecture [8]. Event Pattern Language (EPL) which is the language
to define atomic or complex event and specify the process of filtering (determine
c© Springer International Publishing AG 2016
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event of interest) and extracting events properties for constructing high-level
events [19] is one of the key elements of the CEP solution. RAPIDE-EPL is an
example of EPL with the ability to declare event types (integer, string, boolean,
array, record) and attributes as well as matching rule [19]. SASE is a CEP
system with a SQL-similar language that combines filtering, correlation, and
transformation of RFID data for delivery of relevant, timely information as well
as storing necessary data for future querying [25]. The Cayuga System is a high-
performance system for complex event processing which has a well-defined query
language for event pattern detection [9].

In recent years, HEADS project [1] has presented ThingML [2], a domain-
specific language and compiler for the IoT, which includes concepts to describe
both software components and communication protocols. ThingML provides
developers the abilities to deploy the same implementation onto various plat-
forms (Java, Javascript C/C++ and Arduino) as well as extend to new platforms.
The formalism used is a combination of architecture models, state machines and
an imperative action language. Recently, ThingML has been extended to include
CEP capabilities supplementing the state machines. ThingML provides mecha-
nisms to declare events, extracting attributes and some basic event operations
such as: join, merge, filtering, etc.

This paper investigates CEP capabilities of ThingML. In particular, we aim
to evaluate whether ThingML with CEP Extension could be sufficient for deploy-
ing CEP applications for CPS systems. Our approach is conducting a detailed
study of both language characteristics and processing performance of this exten-
sion in order to answer following two research questions:

– RQ1. Is ThingML CEP Extension an efficient language for developing CEP
applications?

– RQ2. Is ThingML CEP Extension powerful enough for CPS systems?

To answer RQ1, we conduct a study analyzing how CEP operators would
be described in ThingML using the CEP extension and comparing them with
descriptions using only pure ThingML. Regarding RQ2, a benchmark including
data rate (events per second), latency (response time) and resource consumption
is running for each CEP operator in order to evaluate the ability to execute
complex event queries over real-time streams of sensing data.

2 Related Work

In the context of event processing systems, there are some frequently applied
benchmarks that are relevant to CEP: the Linear Road benchmark for Stream
Data Management Systems [4], the BEAST benchmark for Object-Oriented
Active Database Systems [12,13], the SPECjms2007 benchmark for Message-
Oriented Middleware [20], the NEXMark benchmark for Queries over Data
Streams [23] and BiCEP - a CEP system benchmark [5]. However, currently
there is no standardized benchmark that allows an objective comparison of dif-
ferent CEP systems.
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In 2006, Wu et al. [25] presented SASE - a CEP system that executes moni-
toring queries over streams of RFID reading and provided a comparison between
SASE and a relational stream processor TelegraphCQ [7] developed at the
University of California, Berkeley. In this study, solely latency test was con-
ducted to compare the performance of the two systems. The experiments showed
that SASE performed much better than TelegraphCQ, eventually achieved much
better scalability [25]. Later, Suhothayan et al. [22] when presenting Siddhi - a
CEP Engine that incorporated several improvements including the use of pipeline
architecture - also provided a comparison with Esper - the most widely used open
source CEP Engine. Similar to previous work, the experiments conducted in this
work only focused on latency metric as a criterion to evaluate the effectiveness
of their proposed approach.

In 2007, Bizarro introduced BiCEP [5], a project to benchmark CEP systems.
His main goal was to identify the core CEP requirements and to develop a
set of synthetic benchmarks that allowed a comparison of CEP products and
algorithms in spite of their architectural and semantic differences. In his paper, he
described the design and the benchmark metrics such as: sustainable throughput,
response time, scalability, adaptivity, computation sharing, etc. In the following
years, Mendes et al. built FINCoS, a framework that provides a flexible and
neutral approach for testing CEP systems [16]. FINCoS introduces particular
adapters to achieve a neutral event representation for various CEP systems. In a
further publication, Mendes et al. [18] used their framework to conduct different
performance tests on three CEP engines - Esper and two developer versions of
not further specified commercial products. In this work, they focused on the
impact of variations of CEP rules by varying query parameters such as window
size, windows expiration type, predicate selectivity, and data values. In a further
work, Mendes et al. [17] introduced Pairs benchmark aiming at assessing the
ability of CEP engines in processing progressively larger volumes of events and
simultaneous queries while providing quick answers.

In the following years, there were also some works introducing benchmarks for
CEP systems. However, similar to aforementioned works, they only concentrated
on performance metrics as the criteria for evaluation. In 2011, Grabs et al. [14]
proposed using metrics: data rate, latency and resource consumption to measure
performance of CEP systems. In 2012, Wahl et al. [24] described their concept to
measure the performance of different CEP systems in an automated manner by
introducing a testing environment that included an event emitting component
with stable interface, an interchangeable CEP component based on this interface
and a measurement and evaluation component. Recently, in 2013, Mathew also
conducted several experiments to evaluate the open source CEP system Esper
based on four metrics: CPU utilization, Memory Utilization, Selectivity and
Number of Classes [15].

In our work, we also perform experiments to evaluate the performance
of ThingML on CEP capabilities. Although we measure metrics that afore-
mentioned benchmarks also used [15,18], our work achieve a step further by
more comprehensively focusing on language characteristic and application of
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ThingML. In particular, we introduce several metrics to assess the expressive-
ness of the language and compare with ThingML without CEP features.

3 Background

3.1 CEP Operators

Complex Event Processing is one of the most rapidly emerging fields in data
processing, and it is a principal technology solution for processing real time data
streams [22]. A Complex Event Processor could be able to identify meaningful
patterns, relationships and data abstractions from various streams of unrelated
events. Once such information is extracted, the CEP engine would encapsulate
it into a composite event and send to the interested components. To describe
those behaviors, CEP uses a number of primitive operators as envisaged in [8]:

– Selection filters relevant events based on the values of their attributes.
As an example, consider the following pseudocode pattern which selects
Thermometer events that carry the temperature reading between 50 and 100.
Pattern 1:

Select Thermometer(temp >= 50 and temp <=100)
From DataSource

– Projection extracts or transforms a subset of attributes of the events. For
example, Pattern 2 selects only the humidity attributes of Thermometer
events.
Pattern 2:

Select Thermometer(humid)
From DataSource

– Window defines which portions of the input events to be considered for detect-
ing a pattern.

– Conjunction considers the occurrences of two or more events. As an example,
Pattern 3 can be used to capture a hypothetical event of Fire where both
Smoke and high temp events are notified within the window frame of 5 min.
Pattern 3:

Within 5m. Smoke() and Thermometer(temp > 50)
From DataSource

– Disjunction considers the occurrences of either one or more events in a pre-
defined set.

– Sequence introduces ordering relations among events of a pattern which is
satisfied when all the events have been detected in the specified order.

– Repetition considers a number of occurrences of a particular event. Pattern 4
illustrates an usage example of Repetition which detects a number of occur-
rences of high temperature.
Pattern 4:

Select Thermometer(temp > 60) as Temp
From DataSource
Where count(Temp) > 5
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– Aggregation introduces constraints involving some aggregated attribute val-
ues. As an example, Pattern 5 computes the average value of humidity from
Thermometer events.
Pattern 5:

Select avg(Thermometer.humid)
From DataSource

– Negation prescribes the absence of certain events. Pattern 6 enhances the
detection of Fire events by introducing the absence of Rain events.
Pattern 6:

Within 5m. Smoke() and Thermometer(temp > 50) and not Rain()
From DataSource

A CEP query may contain several of these primitive operators in order to
describe more complex patterns or behaviors. CEP engines provide the runtime
to perform complex event processing where they accept these queries and match
them against the event streams and trigger an event or execution whenever the
conditions specified by the queries have been satisfied [22].

3.2 ThingML

ThingML is a domain-specific modeling language which provides a practi-
cal model-driven software engineering toolchain targeting resource constrained
embedded systems such as low-power sensors, microcontroller based devices,
gateways, etc. and facilitates their integration with more powerful resources (e.g.
servers, cloud) [1,2]. ThingML provides mechanisms to describe both software
components and communication protocols. The language also provides a tem-
plate mechanism to integrate with third-party API, rather than re-developing
them from scratch [1,2]. Currently, it supports transformation from ThingML
model to targeting platforms such as C (Linux and Arduino) and Java.

ThingML language provides mechanism to describe the software components
as state machine based models whose internal states and communication proto-
cols are based on event triggers. Please refer to [2] for a full explanation of the
language syntax and semantics, and [11] for the example of an adaptive temper-
ature sensor network running on a microcontroller platform. Recently, in order
to enhance the capability of event processing, ThingML has been extended with
CEP logic. Currently, ThingML supports following operators:

– Selection: filters events according to their parameters, discarding elements that
do not satisfy a given constraint. The following example presents a ThingML
selection query which processes the stream of event E1 from the event port
eventPort, keeps only the events which have attributes values from 10 to 80,
and forwards these events to cep port:

stream SelectionStream
from m : eventPort?E1::keep if (m.att1 > 10 and m.att5 < 80)
produce cep!cepEvt(m.att1, m.att2, m.att3, m.att4, m.att5)
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– Projection: extracts only part of the information contained in the event. As
an example, it is used to extract and transform only attributes of interest:

stream ProjectionStream
from m : eventPort?E1
select var att1: Integer = m.att1 + 2

var att2: Integer = m.att2 * m.att2
produce cep!cepEvt(att1, att2)

– Conjunction: A conjunction of events E1, E2, ...En is satisfied when all the
events E1, E2, ...En have been detected (in any order). For example, the follow-
ing code snippet illustrates the usage of conjunction to detect the occurrences
of both events E1 and E2:

stream ConjunctionStream
from m : [e1 : eventPort?E1 & e2 : eventPort?E2

-> cepEvt(e1.att1, e2.att1)]
produce cep!cepEvt(m.att1, m.att2)

– Disjunction: A disjunction of events E1, E2, ...En is satisfied when at least one
of the events E1, E2, ...En has been detected. The following example illustrates
the disjunction of E1 and E2:

stream DisjunctionStream
from m : [e1 : eventPort?E1 | e2 : eventPort?E2 -> cepEvt]
produce cep!cepEvt(m.att1, m.att2, m.att3, m.att4, m.att5)

– Window : defines which portions of the input flows have to be considered during
the execution of operators. There are two types of windows supported by
ThingML: time and length windows. The window attribute is defined by two
values: size (time span) and step (time shift). As an example, the following
code snippet illustrates the usage of window to compute the average, minimum
and maximum values of the attribute att1 of event E1 within the window:

stream LengthWindowStream
from m : eventPort?E1 :: buffer 5 by 5
select var avg : Double = average(m.att1[])

var min : Integer = min(m.att1[])
var max : Integer = max(m.att1[])

produce cep!cepEvt(avg, min, max)

stream TimeWindowStream
from m : eventPort?E1 :: during 5000 by 5000
select var avg : Double = average(m.att1[])

var min : Integer = min(m.att1[])
var max : Integer = max(m.att1[])

produce cep!cepEvt(avg, min, max)
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4 A Study on CEP Functional Capacities of ThingML

This study aims to evaluate how CEP applications could be deployed with
ThingML. Particularly, the study examines CEP capabilities of ThingML lan-
guage by analyzing the capacities and performance of the ThingML CEP Exten-
sion. Detailed experiments are also conducted in order to compare ThingML
CEP Engine with other existing CEP engines in term of language characteristic
and processing performance.

In this study, we assess the CEP capability of ThingML based on the CEP
operators that the language supports. In particular, we evaluate the using effi-
ciency and processing performance of six CEP operators (as envisaged in [15])
which are currently supported by ThingML. The queries of all operators that
are used throughout the experiments of this study are the ones presented in
Sect. 3.2.

The following sections discuss the evaluation of language expressiveness and
performance of ThingML CEP capacity in order to answer the two aforemen-
tioned research questions:

4.1 RQ1: Is ThingML CEP Extension an efficient language
for developing CEP applications?

By “efficient language”, we mean an Event Pattern Language which provides
concise and meaningful definitions of atomic and complex events. To answer
this question, we present a language characteristic analysis of the CEP exten-
sion of ThingML. We demonstrate the language expressiveness of ThingML by
comparing the CEP operators of ThingML with our implementation of the oper-
ators without using CEP extension in order to provide insights into the strength
and limitations of the two implementation strategies. For evaluation, we use the
following metrics for each of the specified queries:

– Lines of Codes (LoC): number of lines of code written in both implementations
(with and without using CEP extension).

– Number of Keywords (NoK): number of keywords used in each implementa-
tion.

Table 1 shows the comparison of LoC and NoK between the two CEP queries
implementations in ThingML. As can be seen from this table, the implementation
of CEP queries with CEP extension always uses smaller number of code and
keywords. The smallest and largest differences in LoC are 3 (Selection query) and
14 (Time Window query), the respective numbers in NoK are 6 (Selection query)
and 45 (Conjunction query). Although these differences are not substantial, they
do state the efficiency of using CEP capacity of ThingML in term of language
expressiveness. In particular, by using CEP extension of ThingML to deploy
CEP application, we could improve the conciseness of the source code, which
could improve the understandability of the source code, produce less error or
even save time for development.
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Table 1. Language expressiveness measurement of ThingML with/without CEP.

Operator LoC NoK

With CEP Without CEP With CEP Without CEP

Selection 55 58 54 60

Projection 61 64 50 58

Conjunction 62 98 50 95

Disjunction 60 64 58 70

Length window 104 126 110 135

Time window 105 119 115 136

internal event m:eventPort?E1 action do

if(m.att1 > 10 and m.att5 < 80) do

cep!cepEvt(m.att1, m.att2, m.att3, m.att4, m.att5)

end

end

Fig. 1. Implementation of selection query without using CEP extension.

Table 1 only shows the differences of both implements of every single query,
which leads to the small differences between the two columns. However, in prac-
tice, an application would contain more than one query or the expressions and
computations of the queries could be much more complicated. Therefore, without
CEP extension, these numbers could become considerably large.

Figure 1 shows the partial implementation of the selection query presented in
Sect. 3.2 without using CEP extension. As can be seen, for this type of operator,
there is not much difference between the two implementations even if the Boolean
expression becomes more complex, resulting in the small difference between LoC
and NoK.

However, for disjunction operator which is a similar type of occurrence detec-
tion, using CEP extension could be much more efficient. As can be seen from
Fig. 2 which shows the partial implementation of disjunction query without using
CEP extension, the occurrences of each event should be checked individually,
which leads to code duplication and errors if the number of events in the dis-
junction query increases.

internal event m:eventPort?E1 action do

cep!cepEvt(m.att1, m.att2, m.att3, m.att4, m.att5)

end

internal event m:eventPort?E2 action do

cep!cepEvt(m.att1, m.att2, m.att3, m.att4, m.att5)

end

Fig. 2. Implementation of disjunction query without using CEP extension.
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property att1 : Integer[1000]

property att2 : Integer[1000]

property i : Integer = 0

...

internal event e:eventPort?E1 action do

att1[i] = e.att1

att2[i] = e.att2

i = i + 1

end

internal event timer?timer_timeout action do

i = 0

var avg : Double = average(att1)

var min : Integer = min(att1)

var max : Integer = max(att1)

cep!cepEvt(avg, min, max)

timer!timer_start(1000)

end

Fig. 3. Implementation of time window query without using CEP extension.

The same problem of code duplication also occurs for time window and con-
junction (Figs. 3 and 4). Especially for conjunction query which involves only
two events, the implementation is relatively large. Thus, with the increase of
the number of events, without using CEP Extension, the implementation of this
operator would be much more cumbersome and difficult to manage. Moreover,
for these types of operations, we should also use global variables for storing
intermediate attributes. Thus, causing more memory consumption increasing
with the number of involving events or the number of attributes of the events.
Especially for time windows and length windows where the number of events in
each window is undetermined, memory reservation for storing these events could
be problematic as ThingML does not support dynamic allocation.

Currently, in the implementations of time window (see Fig. 3) and length
window, we assume that the size and step of the windows are equal, thus, the
windows do not overlap each other. For simplicity, we have not analyzed the
other case as the algorithm could require more than two timers or become much
more complicated. However, as presented above, this would be easily resolved
by using CEP extension.

4.2 RQ2: Is ThingML CEP Extension powerful enough for CPS
systems?

To answer this question, we present a detailed performance analysis of ThingML.
We also compare ThingML CEP extension with our implementation without
CEP extension and Esper [10] which is an open source CEP Engine. We choose
to compare to Esper because it is an open-source full-fledged stream proces-
sor. In addition, Esper is a Java-based software that has a well-supported user
community, well-documented manuals, which facilitated this comparative study.
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property isEvent1 : Boolean = false

property isEvent2 : Boolean = false

property event1Att : Integer

property event2Att : Integer

...

internal event e1 : eventPort?E1 action do

isEvent1 = true

event1Att = e1.att1

if(isEvent2) do

timer!timer_cancel()

isEvent1 = false

isEvent2 = false

cep!cepEvt(event1Att, event2Att)

end

if(not isEvent2) do

timer!timer_start(1000)

end

end

internal event e2 : eventPort?E2 action do

//analogous to waitE1 State

end

internal event timer?timer_timeout action do

isEvent1 = false

isEvent2 = false

end

Fig. 4. Implementation of conjunction query without using CEP extension.

Experiment Settings. All the experiments were performed on a workstation
with a CPU Intel Core I5 2.60 GHz processor and 8 GB memory running Sun
J2RE 1.8 on Window 10. We set the JVM maximum allocation pool to 1 GB, so
that virtual memory activity has no influence on the results.

In order to test the system, we implemented an event generator that creates
a stream of events with different throughputs from 1 to 1000 events per second.
In our experiments, we considered 5 events types each of which has 5 attributes
excluding the timestamps. For each attribute, the number of possible values (the
domain size) was chosen from the range [1, 100]. We did not consider events with
more attributes because the additional attributes were not used in our queries
and can be projected out.

We measured the following metrics for each of the specified queries under
different throughputs:

– Latency is the time taken to detect a complex event since the last event in the
set of triggering events are sent to the CEP engine.
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– CPU Utilization is the CPU Utilization for different kinds of CEP query over
different event rates for a given pattern. It is measured by using a profiler
called YourKit [3].

– Memory Utilization is the memory profile for different kinds of CEP query
over different event rates for a given pattern; which is also measured with
YourKit.

The criterion for stopping each experiment was such that the system has
detected 1000 instances of the complex event specified in each query. The latency
was obtained by averaging the latency values of 1000 runs. For memory utiliza-
tion we captured the maximum heap memory allocated during the runs.

Result. Figure 5 presents the performance analysis of ThingML CEP Exten-
sion of the specified queries. As can be seen, the CPU utilization is around
50–60% which is medium CPU requirement. The CPU performance increases
very slightly as the throughput changes from 1 to 1000, which shows that CPU
requirement is not substantially affected by the occurrences of the events. For
all types of queries, the CPU utilization is always at highest performance when
the throughput is at highest rate (1000 events/s). This could be easily explained
as the more processing performance is required when the events occur more
frequently.

Similarly, the memory requirement for CEP Extension is also relatively low
(around 35–90 MB). Memory usage is also increasing as the throughput rate
raises. Length window and time window queries always amount to the largest
memory because these queries need to store information of the events occur
within the windows. In contrast, as the throughput increases, the latency is
found to decrease. Which means as the events occur more frequently, the event
processing time becomes shorter. This shows the effectiveness of the CEP engines
which try not to lose too much meaningful information as the events come out
so close to each other.

For the implementation without CEP Extension and Esper, the same pattern
also happens. Therefore, for saving space, we do not include all the bar charts
into this paper. Instead, we only show the comparison of the three implementa-
tions under the highest throughput (see Fig. 6). However, from the ThingML
implementation without CEP Extension, we observe that there are remark-
able differences in the three metrics. In particular, this implementation always
requires slightly more physical resources (CPU, Memory) while the latency is
slower. The differences could be clearly observed in conjunction, time window
and length window queries which require more processing performance. This
finding is also consistent with our discussion from the language characteristic
analysis that our own implementation without using CEP extension may not be
effectively optimized for CEP operations.

Compared with the other two implementations, Esper engine requires much
more physical resources: CPU utilization is ranging from 75–90 % and memory
usage is around 50–120 MB. However, the latency is much better (approximately
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Fig. 5. Performance analysis of ThingML with CEP Extension.

two times faster than CEP extension), which shows the effectiveness of the archi-
tecture (event processing algorithm, data structure, etc.) of this CEP engine.

4.3 Discussion

In this study, we perform the analysis of language characteristic and processing
performance of ThingML CEP extension. Finding from the first analysis reveals
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Fig. 6. Performance analysis of different implementations (1000 events/sec).

that the source code written by using CEP extension is much shorter and more
concise than the implementation without using the extension, hence improving
the understandability, saving development time, removing code duplication and
less error prone. In this study, we only evaluate every single query separately and
the queries are also simple, thus the differences between the two implementations
may not be substantial. However, a real CEP application could involve tens
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of queries. Therefore, in these practical situations, using CEP extension would
improve the efficiency of the development process. Moreover, CEP applications
could also involve hundreds of event types with really complicated patterns for
complex events (complex boolean expressions, nested operations, etc.) which may
not be implemented without using CEP extension. Therefore, this CEP extension
not only helps to save much more effort but also enables the implementation of
CEP applications.

As can be seen from the second experiment, CEP extension of ThingML is
not the most effective CEP Engine. However, this implementation requires rel-
atively low physical resources which are extremely limited for CPS devices. In
addition, although the latency of ThingML CEP is larger than that of Esper,
it is still within the range required for CPS applications, which need responses
within milliseconds. Also, because the event generator and CEP processor were
implemented in the same application, the measured performance and physical
consumption for CEP Engine also contained those of the event generator. Thus,
the actual numbers for the CEP engine could be even smaller than those pre-
sented, which could be a threat to validity. However, because all tested CEP
applications contain the same implementation of the event generator, the exis-
tence of the event generator does not influence the value of this comparative
study, but rather emphasizes the power of the extension to perform CEP tasks.

5 Conclusion

In this paper, we presented the analysis of ThingML CEP extension, a complex
event processing capacity of the modeling language for embedded and distrib-
uted systems. We first assessed the language expressiveness of this CEP extension
by considering the two quantitative attributes of the source code written with
and without the CEP extension. The assessment revealed that by using CEP
extension, CEP application written in ThingML could be much more concise.
In addition, this capacity could enable the implementation of some complex
event patterns which require complicated algorithm or even could not be imple-
mented without using CEP extension. We also performed the analysis of physical
resource consumption and processing performance of ThingML in comparison
with usual implementation (without using CEP extension) and Esper. Findings
from this experiment also showed that ThingML required much smaller physical
resources and reasonable latency values, which makes it a potential language for
deploying CEP applications for CPS systems.

For future study, we should also need to evaluate the performance of a real
ThingML CEP application which involves a variety of complex events because
currently our experiments were tested on only single and simple queries. In
addition, as presented above, ThingML is a modeling language which could be
deployed on different physical platforms. However, in this paper, we only tested
the performance experiments on computer workstation which has generous phys-
ical resources. Therefore, it is also necessary to consider the performance of this
language on different CPS platforms (e.g., Arduino, Raspberry Pi).
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Abstract. SDL 2010 offers excellent support for modelling, simulating
and testing systems of communicating agents. However, it is not perfectly
adapted to meeting the specific challenges presented by the Internet of
Things (IoT). Three areas that pose a challenge are considered, and lan-
guage adaptations that aim to address the specific needs of IoT systems
developers are explored.

The first challenge concerns signal delay or signal loss on crowded net-
works. Signals in SDL 2010 are by default delayed by an indeterminate
duration, but a facility to model delays that depend on network traffic
would be desirable. A modification is proposed to enable this.

The second concerns undesirable interactions with external IoT sys-
tems. SDL 2010 supports modelling of a system within an environment
populated by multiple agents. It also allows modelling of multiple inter-
acting subsystems. However, it would be useful to be able to model inter-
actions with external agents in a way that supported identification of
threats to reliability, privacy and security of an IoT system. An adapta-
tion of channel substructures, a construct that was dropped from SDL
96, is proposed to facilitate this.

The third and final challenge concerns the signal handling by multiple
recipients. Different approaches to supporting this are considered with a
view to further investigation to determine their desirability.

Keywords: SDL (Z.100) · Internet of Things (IoT) · Modelling ·
Simulation

1 Introduction

The Internet of Things (IoT) is made up of systems that affect many different
aspects of life. IoT systems include smart homes and cities, domestic appliances,
children’s toys, field robotics and more [1]. All these systems collect sensor data.
Some transmit the data to repositories for offline processing to support activities
such as decision making or scientific investigation. Others react to the data
they receive by generating signals that control physical systems such as lighting
or heating in buildings, road traffic signals or physical locks or barriers. All
have requirements for safety, security and reliability, and appropriate engineering
processes should be followed when they are developed and deployed.

c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-46613-2 3
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SDL 2010, a member of the ITU Z.100 family of standards [2], is a non-
proprietary formalism for modelling, simulating, implementing and deploying
systems that involve parallel activities and communication. With its strong the-
oretical basis, its excellent tool support and its established track record in dis-
tributed systems development, SDL 2010 is ideally placed to provide support
for creating critical elements of the Internet of Things (IoT). SDL’s capacity for
modelling and simulating communicating systems that interact with the phys-
ical world has been demonstrated by numerous examples, including a railway
crossing [3], a toffee vending machine [4], and automotive and building control
systems [5].

More recent work [1] explored the many benefits of SDL for developing and
deploying IoT systems, but also identified specific technical areas where SDL
could be more closely aligned with the needs of IoT developers. Challenges
include

– loss or delay of signals depending on load on a communication channel;
– unwanted interaction between a new IoT system and environmental agents.

These both stem from the fact that IoT systems depend on a shared, publicly
accessible communications infrastructure.

A related concern is that signals in an SDL model are consumed by a single
recipient, but addressing requirements for reliability and for privacy in an IoT
system entails taking account of the fact that signals might be consumed by
multiple environmental agents as well as by their intended recipient.

It should be emphasised that all these situations can already be modelled
using SDL 2010, but that modelling and simulation could be made more direct
and intuitive for the IoT developer by introducing the changes discussed below.

Each of the following sections addresses one of these challenges. Section 2
addresses signal delay in a busy network. It outlines a smart city scenario, iden-
tifies support provided by SDL 2010, and proposes a modification to the SDL
delaying channel. Section 3 explores the problem of unwanted interactions with
external systems. It introduces a simple situation involving two scientific investi-
gations in a remote location, explores the differences between classical telecom-
munications feature interaction and the kinds of unwanted interaction likely
to occur in the IoT, and proposes a language extension based on the channel
substructure of SDL 96. Section 4 considers situations where multiple recipients
respond to an event. For each of these challenges, the aim is to provide language
facilites to support the work of the IoT developer while retaining the benefits
of SDL. Other important IoT challenges that were also identified in [1], such as
power management, co-design of hardware and software, and targeting of new
IoT platforms, that relate to use of SDL and to tool support for SDL rather than
to the language itself, are not addressed here but will be the subject of future
work.
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2 Signals in a Busy Network

“The impact of deployment of an IoT system in contexts with numerous
of other systems making use of the same communication resources causing
potential delays and loss of messages is supported in SDL only to a limited
degree. SDL may be extended with features to specify possible loss and
delay of signals based on the load on a communication path.” [1].

In a busy network, delay or even loss of signals is likely. An engineer uses
modelling and simulation to predict the behaviour of an IoT system in a network
whose communications resources are shared with many other systems.

2.1 Scenario: Bristol Is Open

Bristol Is Open, a joint venture between the University of Bristol and Bristol
City Council1, collects sensor data from waste bins, street lights, volunteers’
smart phones and GPS devices, and from many other sources. This data can be
used for research or for creative activity, but a key intention is to create an open
programmable city. Ideas include automatic diversion of traffic in response to
road congestion, or text messages to notify people of problems with air quality
in particular areas.

With so much data being collected from so many sources, and so many actu-
ating signals being sent in response to that data, delay or loss of signals is
highly likely. This is a real-time problem. Significant delays in notifying citizens
about problems with air quality, or in establishing road traffic diversions are not
acceptable, and a good model allows such delays to be predicted.

Real-time behaviour is modelled in SDL in terms of a global time that
increases as a simulation proceeds. The current value of global time is accessed
by means of the SDL now expression, and is used in conjunction with SDL
timers. This model of time is not expressive enough to meet all the needs of
real-time systems developers [6], and over the years modelling and simulation
of real-time activities in SDL have attracted considerable attention. An inter-
mediate representation for SDL enabled investigation of alternative meanings
of time in SDL [7] as well as facilitating different kinds of model analysis by
supporting tool-set integration. Real-time extensions to SDL introduced in [6]
were further developed in [8]. Such approaches provide powerful mechanisms for
modelling and simulating passage of time. However, providing controllable time
would require a significant change to the SDL semantics [9].

2.2 Modelling Delay with Delaying Channels in SDL 2010

Using SDL 2010 without modification or extension, the kind of delay that might
be expected in a busy network can be modelled using a delaying channel, as

1 http://www.bristolisopen.com/.

http://www.bristolisopen.com/
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illustrated in Fig. 1a. A signal placed on a delaying channel is delayed for an
indeterminate period of time, and delaying channels are used to simulate the
behaviour of IoT systems communicating over a busy, shared network.

However, in order to model the behaviour of systems that are deployed in
a network that also supports large and varying populations of external agents,
it would be useful to be able to model delays whose variability was conditioned
by network traffic density. That is, engineers need to be able to design and run
simulation experiments that reveal the behaviour of a system under different
network traffic conditions. In other words, they need to run experiments in which
network traffic acts as the independent variable controlled by the engineer, and
signal loss or delay depends on network traffic.

2.3 Proposed Modification

A modification to SDL delaying channels is proposed that allows the engineer
to specify a delay function that takes account of traffic on the channel. This
modification provides some control over how the passage of time is modelled but
does not change the underlying SDL time semantics. Figure 1(b) illustrates a
proposed modification to SDL2010 that provides a reference to a named delaying
function.

Fig. 1. Simulating a busy network with a delaying channel

2.4 Implementing the Proposed Change

The textual representation (SDL-PR) for a channel is defined in Z.106 [2] using
the following grammar rule

<channel definition> ::=
channel [<channel name> [<encoding rules>]]
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[nodelay]
<channel path> [<channel path>]

endchannel [<channel name>] <end>

In the following version of the rule, an optional <specified delay> has been
added as an alternative to nodelay in the rule specifying a channel definition.
The nonterminal <specified delay> names a predefined function that takes an
integer as input and returns a value of type duration. The function is evaluated
at run time, delaying each signal by a duration that depends on the rest of the
traffic on the channel.

<channel definition> ::=
channel [<channel name> [<encoding rules>]]

[nodelay|<specified delay>]
<channel path> [<channel path>]

endchannel [<channel name>] <end>

The specified delay could be implemented as a predefined runtime library
from which the engineer could name the required delay. A collection of named
probability distribution functions, or cumulative distribution functions would be
useful for this purpose. Each distribution function could take as input the length
of the delaying queue, or some combination of the delays already applying to
signals in the queue, and delay the next signal accordingly.

An alternative approach, that would have allowed the developer to specify
the delay was considered and rejected. The alternative approach was to define
<specified delay> as a reference to an SDL procedure that could be defined by
the developer, rather than as a reference to a predefined function. Although this
approach would have provided more expressive power to the IoT developer, it
was rejected because it would have demanded a fundamental change to SDL.
A procedure has to be evaluated in the context of an SDL agent, that is, a block
or process, and not a channel. Introducing a channel agent, analogous to block
or process agents, would be a significant change to the current SDL semantics.
For this reason, the previous suggestion – a predefined set of delay functions –
is preferred.

3 Unwanted Interaction with External Agents

IoT systems are deployed in an environment that exposes them to external agents
at every system level. SDL 2010 supports modelling of a system in an environ-
ment populated by multiple agents. It also allows modelling of multiple inter-
acting subsystems. This section explores the extent to which SDL enables the
engineer to model interactions with external agents in a way that supports iden-
tification of threats to reliability, privacy and security of an IoT system.
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3.1 Scenario: Scientific Investigation in a Remote Location

Two different investigations were conducted in a remote location2. Each involves
data collection using a wireless sensor network.

Browsing Patterns of Sheep. The purpose of the first investigation was to
discover the browsing patterns of sheep. Each sheep was provided with an ear
tag that broadcast a signal at regular 15 min intervals. The broadcast signals
were picked up by devices mounted on poles, and the position of each sheep
was calculated by triangulation. The positions were then forwarded to outlying
stations where data was collected for further processing.

For 100 sheep, collisions were infrequent, which meant that power usage was
acceptable and useful data was collected. But once the number of sheep or the
reporting frequency was increased, collisions were frequent, demands on batteries
became unacceptably high and data was less useful.

Environmental Monitoring. A number of sensors were placed in a remote
location to collect data about temperature, humidity, wind speed and other
environmental factors [10]. The data collected by the sensors was forwarded for
central processing.

This second investigation had the potential to interfere with the first, lead-
ing to frequent collisions, re-sends, excessive power consumption and possibly
unusable data.

As it happens, although the two investigations were carried out on behalf
of two different organizations, they were in fact conducted by the same investi-
gators, who ensured that the signals broadcast by the two experiments did not
interfere with each other. But if the contracts had been awarded to different
investigators, contention would have been likely.

3.2 Interaction in the IoT

The scenario described above is a simple one, but despite its simplicity, it pro-
vides scope for unwanted interaction between different communicating systems.
The previous scenario, Bristol is Open, is complex, and provides even more
opportunity for interference between different systems. The current IoT is pop-
ulated by all manner of systems built using low-cost micro-controllers, single
board computers and other components. Many of these devices and systems are
created as a learning exercise, or as a proof of concept. Some are likely to be
poorly designed, and some may even be malicious [1]. An engineer designing a
system with a view to deployment in the Internet of Things must take account of
such external systems, and of their implications for reliability and security of the
new system. This means taking account not only of requirements for interaction
within the new system, but also addressing the problem of unwanted interactions
with other devices and systems in the IoT
2 This scenario is based on recent, as yet unpublished, work.
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Unwanted interaction between a new IoT system and other systems deployed
on the same communications infrastructure is closely related to the well-
researched problem known as feature interaction in the world of telecommunica-
tions services. Feature interaction occurs when new software added to an existing
telecommunication system interacts in an undesirable way with the existing soft-
ware. That is, new features interact with existing features, and the outcome is
not what the developers intended.

3.3 Modelling and Simulating Feature Interaction with SDL

SDL has an established record in feature interaction detection [11,12]. When
the CRESS notation was developed to communicate feature interaction prob-
lems with non-specialists, translation to SDL enabled practical simulation and
exploration of those problems [12]. As Internet telephony became more promi-
nent, SIP (Session Initiation Protocol) services and their feature interactions
were modelled using SDL with the aim of detecting and prevent unwanted
interactions [13].

In these examples, SDL provides a way to model an existing system and
a new feature, and, with the help of tools, to simulate the behaviour of the
whole system, with its old and new elements, and to discover problems such as
livelock, deadlock, and interactions that reflect conflicts between the underlying
requirements or assumptions for the new feature and the rest of the system.

3.4 Differences and Challenges

However, there are important differences between the conventional feature inter-
action problems in telecommunications and the interaction problems faced by
a system deployed in the IoT, and these differences present challenges to the
engineer who uses SDL to detect and prevent interaction problems.

The first concerns the resolution of unwanted interactions. In a typical fea-
ture interaction investigation, the engineer aims to detect and prevent undesir-
able interactions involving new and existing features, but includes both sets of
features in the final system. An engineer concerned with unwanted interactions
between a new IoT system and the external systems with which it will share a
communications infrastructure wants to predict and prevent those interactions,
but in a way that as far as possible makes the external systems invisible to a
user of the new system. Ideally, the new IoT system would not have to share
infrastructure; in practice, the new system must share, but should be insulated
against interference.

The second difference concerns access to the communications infrastruc-
ture. In a telecommunications system, certain communications cannot be inter-
cepted without physical intervention. In SDL terms, internal channels cannot be
accessed by environmental agents. In the IoT, communications are by way of the
public Internet, and can be intercepted by systems other than the one to which
they belong. Moreover, the source of an externally generated signal may appear
to be other than it actually is.
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SDL presents a problem to the engineer who needs to explore potentially
threatening interactions between a new IoT system and other systems that share
the same communications infrastructure. SDL guides development towards sys-
tems that to minimize the likelihood of unwanted interactions. Channels can only
transfer named signals. Internal channels are not accessible to the wider envi-
ronment. Communication between a system and its environment is by way of a
well defined interface across the system boundary. Interactions with the system
environment are modelled as signals that are passed across the system boundary
via a well defined interfacece, and environmental agents are typically only of
interest insofar as different system features may demand conflicting responses to
environmental stimuli. But once the new system is deployed on the public Inter-
net, its internal communications become vulnerable to interference that was not
possible in the original SDL model.

A further difference between conventional feature interaction and unwanted
interaction between a new system and other, external IoT systems is that features
are not created specifically to damage other features, whereas malicious systems
are likely to be found in the IoT. Such systems specifically aim to intercept
signals, or to create false signals, or to impersonate agents of the system under
development, and modelling such systems with a view to preventing their success
poses an additional challenge to the developer of new IoT systems.

A fourth and final difference between conventional feature interaction
problems and unwanted interaction between a new system and its environment
concerns visibility of the internal behaviour of interacting sub-systems. When
interactions between features of a telecommunications system are investigated,
the engineer (investigator) has access to the internal behaviour of both the exist-
ing system and the new features, and can used that access to detect and pre-
vent unwanted interactions between new and previously existing features. When
investigating differences between a new IoT system and its environment, the
engineer does not have access to the internal structure of environmental agents,
and must instead consider the kind of interface a potentially interfering agent
might have.

3.5 Using SDL 2010 to Model Unwanted Interaction

From the previous discussion, the following requirements can be identified:

– an ability to detect and resolve interactions in which signals from the environ-
ment affect the behaviour of new IoT system;

– an ability to model environmental interference that affects internal channels
within a new IoT system, and, having ensured that the new system is resilient
in the face of such interference, to remove models of external systems before
implementing and deploying the new system;

– an ability to model malicious agents that deliberately subvert the proposed
new IoT system, possibly impersonating parts of the new IoT system, or parts
of its intended environment;

– an ability to detect of undesirable interactions without knowledge of the inter-
nal structure of environmental agents.
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Fig. 2. A rogue block interferes with a channel in SDL 2010

Key to meeting these needs is an ability to model interception of signals on
internal channels by environmental agents.

With SDL 2010, undesirable transmission of signals between the environment
and the system can be modelled by directly adding such unwanted transmission
to the model of a system that is being developed. However, this entails modifying
internal system agents and adding channel definitions to signals that represent
the unwanted transmission. Even though use of signal lists makes this a reason-
ably clean procedure, creating the modification in order to investigate unwanted
interaction, and later reversing the modification in order to generate the required
system, is a source of error and vulnerability.

Similarly, it is possible to model signal interception, or injection of unwanted
signals into a channel by adding a rogue block to an SDL model of new IoT
system, as illustrated in Fig. 2. Again, this intervention clutters the model and
its later removal is another likely source of error.

3.6 Proposed Solution

A better solution is to reinstate something very like the channel substructure
of SDL 96 [4]. Channel substructures enabled the user of SDL to specify the
behaviour of a channel explicitly. A channel substructure specification was like
a block specfication except that it connected to external blocks, or the environ-
ment, rather than to channels. Channel substructures were dropped from SDL
2000 [14] because they were never used in practical models.

The difference between what is proposed here and the SDL 96 channel sub-
structure is that, instead of aiming to specify the behaviour of a channel, the
intention is to provide a clearly identifiable model of environmental interference
with the channel.

Figure 3(a) shows an SDL 96 diagram illustrating channel substructure.
Figure 3(b) uses a similar diagram to illustrate interference with the channel
by an external source. The only difference between the rogue and the SDL 96
channel substructure is that the rogue has an external connection that ultimately
leads to the system environment, whereas a channel substructure connected only
to the two blocks connected to the channel. The rogue is transformed in the same
way as a channel substructure was transformed in SDL 96, leading to the struc-
ture shown in Fig. 2.

The benefit of this is that the rogue is clearly identifiable, and its removal is
likely to be less error-prone than removal of the rogue block in Fig. 2.
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Fig. 3. A rogue block can be represented like an old SDL 96 channel substructure

To complete a model of rogue behaviour, a way for the rogue to ‘spoof’ the
value of sender would also be needed. That is, a signal sent by the rogue would
differ from the old channel substructure in that it would masquerade as the
block from which signals were placed on the original channel. This represents a
significant departure from normal SDL behaviour, and would require allowing the
anonymous variable whose value is accessed by self to be updated by processes in
a rogue block. However, the benefits of being able to model unwanted behaviour
in this way, and then to remove the unwanted behaviour safely before deploying
the new system indicate that this change is worth further consideration.

4 Multiple Recipients

Different modelling formalisms have different approaches to handling events. In
SDL 2010, an event, modelled as a signal, is handled by a single agent selected
from a set of potential recipients [2]. This contrasts with Harel state machines
in which a signal is handled by every agent that is capable of receiving it [15].

Ambient and broadcast communications characterise the Internet of Things.
For example, the smart city broadcasts information about atmospheric condi-
tions to all users who wish to receive that information in order to avoid areas
with high levels of allergens. Also, some activities require different agents to
coordinate their response to signals. For example, in the sheep monitoring inves-
tigation, the position of each sheep was determined by triangulation, so more
than one recipient had to react to the sheep’s beacon.
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However, event sharing also leads to potential conflict between the different
agents that could potentially react to an event [16]. For example, when sensors
in the programmable city detect road traffic congestion, a coordinated response
is needed to create appropriate diversions, and road safety will dictate that
response should be controlled by a single agent3.

4.1 Using SDL 2010 to Model Multiple Recipients

Sending Signals to Multiple Known Recipients. Figure 4 illustrates a
block that sends the same signals to three other blocks. The model illustrated
in Fig. 5 uses an intermediate block to achieve the same communication between
block A and blocks B, C and D. The second approach has the advantage that
all the logic relating to copying and forwarding signals is contained in the inter-
mediate block.

Fig. 4. Signals are sent directly to known recipients

Represent a Broadcasting Channel as a Signal Repository. A variation
on the approach illustrated in Fig. 5 can be used to model broadcast wireless
communications. Signals on a broadcast wireless channel can be accessed by any
device that is tuned to that channel. This can be modelled in SDL by defining
a block to represent the wireless channel. The broadcasting agent sends signals
to that block via a non-delaying channel, and the block stores those signals,
each with a time-stamp indicating when the signal arrived. Other agents send
requests to the block which retrieves and delivers the stored signals. Constraints
governing the usability of signals apply and old signals are eventually discarded
as they expire.

3 It is conceivable that roads and junctions, or vehicles, could negotiate diversions,
but establishing that this was safe and effective would require further research.
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Fig. 5. Signals are sent to an intermediate block, which copies the signals to their
recipients

4.2 Possible Extensions to SDL

The approaches outlined above all conform to the SDL principle that each signal
is consumed by a single agent. Reaction by a single agent leads to robust systems
in which a single recipient modelled as a state aggregation coordinates the actions
of all the agents, modelled as state partitions, that should respond to an event.
However, it also leads to rather rigid systems, in which formation and dissolution
of ad-hoc collections of cooperating or competing agents cannot be modelled
directly.

Some approaches to providing flexible, controllable signal handling in SDL
are discussed below.

Allow the Sender to Specify Multiple Recipients. In SDL 2010, the sender
of a signal can specify a recipient. This could be extended to allow the sender to
specify that more than one recipient should respond to the signal. This would
allow an IoT developer to specify the relationship between the sender and recipi-
ents directly, without the need to also specify a separate agent to replicate signals
for each recipient.

This could be implemented in SDL 2010 by introducing transformations that
inserted a new block between the sender of the signal and its intended recipients.
Adding new channels from the new block to the recipients, and re-naming the
signals would complete the transformation.

This change does not require any change to basic SDL, but could be imple-
mented as a syntactic extension.

Allow Agents to Indicate that they will Always Respond to a Signal.
A signal recipient could specify that it always responds to a signal. This could
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be implemented in a similar way to the previous suggestion, with each recipient
receiving its own version of the signal. This approach also has the advantage
that it facilitates model re-use, as it allows an existing model to be encapsulated
and extended by the addition of new signal recipients.

The Intermediate Block. Both these approaches make use of an intermediate
block, as in Fig. 6, that duplicates signals sent by an originator to multiple
intended recipients. This block either acts as a server, accepting requests from
those recipients and treating stored signals as data to be forwarded to recipients
on demand, or as a router, that forwards copies of the original signal to individual
recipients.

Fig. 6. An intermediate block makes signals available to different recipients

As illustrated in Fig. 5, an intermediate block can be modelled directly using
SDL 2010 without modification. However, it would be useful to introduce some
convenient syntax with appropriate transformations to define the corresponding
semantics in terms of an intermediate block4. Further consideration is need to
decide which, if any, syntactic modifications of SDL are desirable.

5 Next Steps

The engineer who wishes to model and simulate new systems for deployment
in the IoT faces some specific communications challenges. Some of these were
explored in the previous sections, and adaptations of SDL 2010 with a view to
making it easier to meet those challenges were discussed.

The challenges, originally identified in [1], represented areas where SDL
appeared to be less than ideally suited to modelling situations that are likely to
occur in the IoT. However, for the most part, these can be addressed with fairly
minor changes to SDL 2010.

Simulating system behaviour on a busy communications network can be mod-
elled by providing a runtime library of delay functions that delay signals on a
channel by a duration that depends on the signals already in the channel’s delay
queue. A minor change to SDL 2010 would make these available to the engi-
neer using SDL. Further consideration needs to be given to the functions to

4 Additional syntax that makes basic SDL more usable is formally defined by means
of transformations to the core language.
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be provided, but probability distributions, or cumulative distributions are likely
candidates.

Undesirable interactions with external agents can already be modelled by
representing those agents as part of a new IoT system. Re-instatement of a
construct similar to the SDL 96 channel substructure, would make it possible to
do this in a way that clearly indicates the external agent and that facilitates its
removal prior to deployment.

Allowing signals to be handled by multiple recipients can also be achieved by
adding an intermediate block between the sender and the recipients. Syntactic
constructs to be transformed so as to introduce such a block could be defined,
but further discussion and exploration is needed to identify which constructs are
likely to be of interest.

As a final word of caution, past experience indicates that added constructs do
not always live up to their original promise. For example, the original channel
substructure construct was never used. This may have been because detailed
control of channel behaviour was not actually needed, or because tool support
was never provided for the construct. Before introducing changes to SDL 2010,
careful evaluation of potential tool support and of demand for the proposed
modifications is needed.
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Abstract. Robotics systems have special needs often related with their real-time
nature and environmental properties. Often, control and communication paths
within the system are tightly coupled to the actual physical configuration of the
robot. As a consequence, these robots can only be assembled, configured, and
programmed by robot experts. Traditional approaches, based on mainly writing
the code without using software engineering techniques, are still used in the
development process of these systems. Even when these robotic systems are
successfully used, several problems can be identified and it is widely accepted
that new approaches should be explored. The contribution of this research consists
in delineating guidelines for the construction of robotic software systems, taking
advantage of the application of the OMG standard robotic specifications which
adhere to the model-driven approach MDA. Thereby the expert knowledge is
captured in standard abstract models that can then be reused by other less expe‐
rienced developers. In addition part of the code is automatically generated,
reducing costs and improving quality.

Keywords: Robotic software system · Model driven software development ·
OMG standard

1 Introduction

Robotics systems are essentially real-time, distributed embedded systems. They have
special needs often related with their real-time nature and environmental properties; they
have to be able to cope with the uncertain and dynamic physical environment where
they are immersed. Furthermore, robotic systems consist of different hardware compo‐
nents. There are a wide variety of controllers, sensors and actuators which results in very
complex and highly variable architectures. Often, control and communication paths
within the system are tightly coupled to the actual physical configuration of the robot.
As a consequence, these robots can only be assembled, configured, and programmed by
experts.

Traditional approaches, based on mainly coding the applications without using
modeling techniques, are still used in the development process of these software systems.
Even when the applications are running and being used in the different robotic systems,
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several problems can be identified. On the one hand, there is no clear documentation of
design decisions taken during the coding phase, making the evolution and the mainte‐
nance of the systems difficult. On the other hand, when using specific programming
languages, such as C in Microsoft RDS [27], the possibility of generalizing concepts -
that could be extracted, reused and applied in different systems - is wasted and the code
is written from scratch over and over again.

Thus, currently used methodologies and toolsets are not enough, and it is widely
accepted that new approaches should be explored. The goal of our work is to investigate
on the current use of modern software engineering techniques for developing robotic
systems and their actual automation level. Especially, we have explored the OMG
standards in this domain [32] and as a consequence we have delineated a methodology
for the construction of robotic software systems, taking advantage of the application of
the model-driven approach MDA and the OMG robotic specifications, in particular the
RTC proposal.

The rest of the paper is organized as follows. Section 2 summarizes the most relevant
software engineering techniques for developing robots. Section 3 presents our guidelines
for the construction of robotic systems, applying the MDA approach together with the
OMG robotic specifications, through a simple case study. Section 4 discusses a set of
related works. Finally, conclusions are presented in Sect. 5.

2 Software Engineering Techniques for Developing Robots

Although the complexity of robotic software is high, in most cases reuse is still restricted
to the level of libraries. At the lowest level, a multitude of libraries have been created
for robot systems to perform tasks like mathematical computations for kinematics,
dynamics and machine vision [14]. Instead of composing systems out of building blocks
with assured services, the overall software integration process for another robotic system
often is still re-implementation of the glue logic to bring together the various libraries.
Often, the kind of overall integration is completely driven by a certain middleware
system and its capabilities. This is not only expensive and wastes tremendous resources
of highly skilled roboticists, but this also does not take advantage from a maturing
process to enhance overall robustness.

From this perspective, it is widely accepted that new approaches should be estab‐
lished to meet the needs of the development process of today’s complex robotic systems.
Component-based development (CBD) [45], Service Oriented Architecture (SOA) [10],
as well as Model Driven Architecture (MDA) [31] are among the key promising tech‐
nologies in the robotic systems domain. These technologies have been adopted by the
Robotics Domain Task Force (RTF) [32], which promotes the integration of modular
robotic systems components through the use of OMG standards.

In first place, the CBD paradigm states that application development should be
achieved by linking independent parts, the components. Strict component interfaces
based on predefined interaction patterns decouple the sphere of influence and thus
diminishing the overall complexity. This results in loosely coupled components that
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interact via services with contracts. Components such as architectural units allow spec‐
ifying very precisely, using the concept of port, both the services provided and the serv‐
ices required by a given component and defining a composition theory based on the
notion of connector. Component technology offer high rates of reusability, but little
flexibility with regard to the implementation platform: most existing components are
linked to C/C++ and Linux, e.g. Microsoft robotics developer studio [27], EasyLab [7],
Player/Stage project [20]. On the other hand, some proposals achieve more independ‐
ence, thanks to the use of some middleware, e.g. Smart Software Component model [43],
Orocos [14], Orca [12] and CLARAty [29].

In second place, SOA is a flexible set of design principles used during the phases of
systems development and integration. SOA separates functions into distinct units, or
services which developers make accessible over a network in order to allow designers
to combine and reuse them in the production of applications. These services and their
corresponding consumers communicate with each other by passing data in a well-
defined, shared format.

Finally, the MDE [44] approach has emerged as a paradigm shift from code-
centric software development to model-based development. Such approach promotes
the systematization and automation of the construction of software artifacts. Models
are considered as first-class constructs in software development, and developers’
knowledge is encapsulated by means of model transformations. Models are imple‐
mentation-independent and they are automatically transformed to executable code.
The MDA is the OMG realization of the MDE. The MDA process can be divided into
three phases: the first phase builds a PIM, which is a high-level technology-inde‐
pendent model; then, the previous model is transformed into one or more PSMs; these
models are lower level and describe the system in accordance with a given deploy‐
ment technology; finally, the source code is generated from each PSM.

3 OMG Standards for Robotic Components

The Object Management Group (OMG) is an international, open membership, not-for-
profit technology standards consortium. OMG Task Forces develop enterprise integra‐
tion standards for a wide range of technologies and industries. OMG modeling standards
enable visual design, execution and maintenance of software and other processes. Orig‐
inally aimed at standardizing distributed object-oriented systems, the company now
focuses on modeling (programs, systems and business processes) and model-based
standards. OMG evolved towards modeling standards by creating the standard for the
Unified Modeling Language (UML) followed by related standards for Model Driven
Architecture (MDA).

Specifically in the area of Robotics, in 2005 the OMG launched the Robotics Domain
Task Force (RTF) with the purpose of fostering the integration of robotics systems from
modular components through the adoption of OMG standards. To realize this purpose,
the RTF has been promoting important actions and in the last years has released a set of
specifications: Robotic Technology Component (RTC) [35], Robotic Interaction Service
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(ROIs) [36], Dynamic Deployment and Configuration for Robotic Technology Compo‐
nent (DDC4RTC), Unified Component Model for Distributed, Real-time and Embedded
Systems (UCM), Finite State Machine Component for RTC (FSM4RTC) [33], Hard‐
ware Abstraction Layer for Robots (HAL4RT) [34], among others.

Let’s slightly describe some of these standards:
The RTC proposal specifies a component model that meets the requirements of

robotic systems. A component in RTC is a logical representation of a hardware and/or
software entity that provides well-known functionality and services. So, the developers
can combine RTCs from multiple vendors into a single application, allowing them to
create more flexible designs more quickly than before. It includes a Platform-Inde‐
pendent Model (PIM) expressed in UML and three Platform-Specific Models (PSMs)
expressed in OMG IDL: Local, Lightweight CMM and CORBA. In the Local PSM, the
components reside on the same network node and communicate over direct object refer‐
ences without the mediation of a network or network-centric middleware such as
CORBA. In the Lightweight CMM, most components are assumed to be distributed
relative to one another and they communicate using a CMM-based middleware. And in
CORBA, components are also assumed to be distributed and they communicate using
a CORBA-based middleware.

The RoIS Framework abstracts the hardware in the service robot (sensors and actua‐
tors) and the Human-Robot Interaction (HRI) functions provided by the robot. It
provides a uniform interface between the service robot and the application. Using the
RoIS Framework as an intermediary, a service application selects and uses only neces‐
sary functions and leaves hardware-related matters, such as which sensor to use, to the
HRI engine.

The DDC4RTC specification defines data models and service interfaces of deploy‐
ment and configuration for RTC based dynamic applications as an extension to DEPL
(OMG Deployment and Configuration of Component-based Distributed Applications
Specification) specification. Generally speaking, since system structure and configura‐
tion are frequently affected by robot movement and application or scenario state, it is
important to be able to represent and realize dynamic component deployment and run-
time re-configuration requirements.

The HAL4RT specification defines the Platform-Independent Model (PIM) of a
Hardware Abstraction Layer for robotic systems that is capable to support at least the
following devices: Sensors (sensor kind and unit of measure should be provided) and
Actuators (commands to perform motions, and motion feedback information should be
provided). In addition this specification defines the Platform specific Model (PSM) in
language C based on the HAL PIM. This specification aims to enable engineers such as
device makers, device users, and software users to build robotic software without any
concern about the differences among the targeted devices, by standardizing the API of
these devices.

All these standards interact with each other to provide a higher level of abstraction
that facilitates the task of programming robots.
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4 A Case Study: Applying MDA with the OMG Robotic Standards

In this section we describe the development of a robotic system applying the MDA
approach. The code is automatically derived from models compliant with the OMG
robotic standards. For implementing this case study we use the modeling tool Papyrus
[37], an Eclipse graphical editing tool for UML2. In accordance with its primary goal
of implementing the complete UML2 standard specification, Papyrus provides an exten‐
sive support for UML profiles. It includes facilities for defining and applying UML
profiles in a very rich and efficient manner. But, it also provides powerful tool custom‐
ization capabilities similar to DSML-like meta-tools. In this way, Papyrus is a tool that
brings together the advantages of using a general purpose language such as UML2, and
those of DSML-based approaches. In particular, the SOA and RTC profiles are smoothly
incorporated to Papyrus. On the other hand, for implementing the transformations we
use Acceleo [19], an open source code generator implementing the OMG’s MOF Model
to Text Language (MTL) standard that uses any EMF based models (e.g., UML, SysML)
to generate any kind of code (e.g., Java, C, PHP) while keeping the traceability of the
generated text.

4.1 Using the RTC Standard

The purpose of the RTC specification is to manage the lifecycle of all components in a
uniform way. This specification does not attempt to replace the existing UML

Fig. 1. Simplified LightweightRTC metamodel definition
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component models, but focuses on structural and behavioral characteristics required by
robotic applications that are not covered by other UML models. It also separates func‐
tional specification and execution control. By extending the general-purpose component
functionality of UML with direct support for domain-specific structural and behavioral
design patterns, RTC elements can serve as powerful building blocks in a robotics
system.

The RTC PIM consists of three parts: The Lightweight RTC, the Execution semantics
and the Introspection, as follows,

The Lightweight RTC describes a simple model containing definitions of concepts
such as component, port and similar ones.

The Execution semantics are extensions to Lightweight RTC to directly support
critical design patterns used in robotics applications such as periodic sampled data
processing, discrete event/stimulus response processing and modes of operation.

And finally, the Introspection is an API allowing for the examination of elements at
runtime. It is useful for dynamic component networks.

The Lightweight RTC specification (see Fig. 1) defines the stereotype light‐
weightRTComponent extending UML basic component, and describes some interfaces
which enable communication between components. When the stereotype is applied, the
component must implement all the methods that were defined in the required interfaces.
On the other hand, a RTC component may participate in any number of execution
contexts. These contexts shall be represented to a RTC component as instances of
ExecutionContext class. The ExecutionContext manages the behavior of each RTC
component that participates in it.

4.2 The Robot Firefighter

To illustrate our approach, we use a small example of a mobile robot to fight fires. This
robot must move and navigate itself around a platform with random obstacles and must
find fire sources. Once a flame is detected, the robot begins navigating towards the flame
to extinguish it. To improve the efficiency of the robot in the fire extinction, the robot
interacts with pre-existing systems. These systems are not part of the robot, but cooperate
with it to fulfill its purpose. On one side there are fire detectors placed physically in the
environment at strategic locations. Also a Map Service is available. These devices are
accessible as external services on the web. All of these services work together for deter‐
mining if there is a fire in progress. If so, the robot should navigate towards the flame
and extinguish it. Each of these devices covers a monitoring zone. When the device
indicates the presence of fire, the robot should ask the Map Service how to get to that
area. For this, the robot must provide its own position - which it knows through its GPS
- to the Map Service. The Map Service then returns a trajectory that the robot must follow
to reach the destination.

In first place, the PIM models for this robotic system should be created. By applying
the CBD paradigm, robotic elements, such as actuators and sensors, are modeled as
components. Thus, the following components were identified: ObstacleDetector,
MotionController, NearByFireDetector, FireExtinguisher, GPS, FireDetector and
MapService.
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«lightweightRTComponent»
MotionController
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FireExtinguisher

«lightweightRTComponent»
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«lightweightRTComponent»
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«lightweightRTComponent»
GPS

«lightweightRTComponent»
ObstacleDetector

Fig. 2. PIM of the robot firefighter: inner component model.
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«lightweightRTComponent»
Robot

«WebService»
MapServ ice

«WebService»
FireDetector

getFirePosition

getTrajectory (from, to)

fireAlarmActivated

Fig. 3. PIM of the robot firefighter: component and service model.

The first five components are inner components, physically allocated into the robot,
while the last two are external components that do not form part of the robot, but collab‐
orate with it by providing helpful services. All of the components provide ports to
communicate with each other and they are connected to the robot with their respective
glue code. Figure 2 shows the composition of the robot, describing its inner components:
ObstacleDetector, MotionController, NearByFireDetector, FireExtinguisher and GPS.
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These PIM models are expressed in the UML language enriched with the RTC stereo‐
types. Figure 3 presents the PIM models specifying the external services (i.e., FireDe‐
tector and MapService) as components. In our specific case, the service model is reduced
to two elements, but in more complex systems, several services can be smoothly
modeled.

Fig. 4. PSM of the robot firefighter: component’s implementation.
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These PIM models are expressed in UML language enriched with the RTC stereo‐
types. Figure 4 shows the PSM model that is automatically derived from the PIM model
in Fig. 2. This PSM describes the design of the system complying with the RTC speci‐
fication. The interface LightweightRTObject defines a lifecycle standard, specifying the
states and transitions through which all RTCs will pass from the time they are created
until the time they are destroyed. The ComponentAction interface provides callbacks
corresponding to the execution of the lifecycle operations of LightweightRTObject.
A RTC developer may implement these callback operations in order to execute appli‐
cation-specific logic pointing response to those transitions.

Once the structural models are stable, the behavioral models describing the interac‐
tion among components are created. Figure 5 shows a UML state machine describing
the overall behavior of the robot. The state machine specifies the four states which the
robot can go through: walkAround, navigatingTowardsTheFirePosition, approach‐
ingTheFlame and fireExtinguish. Immediately after starting its workflow the robot enters
to the state walkAround, and remains in the same state while no fire is detected. When
the fire detector triggers an alarm the robot switches to the state navigatingTowards‐
TheFirePosition. Then, the robot keeps in the same state, moving in the direction of the
fire, until the fire is reached.

  

margaid etats toboR mts 

Start

walkAround nav igatingTowards 
TheFirePosition

fire extinguish
approachingTheFlame

[fire detected]

[no fire detected]

[fire ahead]

[fire detected]

[fire detected]

[no fire detected]

[fire detector
alarm]

Fig. 5. PIM of the robot firefighter: overall behavioral model

Once the robot reaches the fire it enters to the state approachingTheFlame. In such
state the robot approaches the fire as close as possible. When the fire is very close the
robot switches to state fireExtinguish where it triggers mechanisms to extinguish the fire.
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Other behavioral models are created for the remaining behaviors of the robot, but are not
presented in this paper for space limitations.

Then, similarly to what was done with the structural models, PSM behavioral models
are automatically derived. For example, Fig. 6 shows a PSM of the robot´s behavior that
was automatically derived from the State machine in Fig. 5 by applying the state pattern
as prescribed by the RTC.

setats toboR ssalc 

WalkAround

+ execute() : void

ApproachingTheFlame

+ execute() : void

Nav igatingTowardsTheFirePosition

+ execute() : void

FireExtinguish

+ execute() : void

State

+ execute() : void

«lightweightRTComponent»
Robot

+ fireDetected() : boolean
+ fireDetectorAlarm() : boolean
+ fireAhead() : boolean
+ execute() : void

myState

Fig. 6. PIM of the robot firefighter: behavior’s implementation.

For each state in the state machine, a class is created as subclass of the abstract class
State. Each transition trigger in the state machine is mapped to a Boolean operation in
the main class Robot. A method named execute() is defined in the class Robot; according
to the State Pattern this method just delegates its behavior to the execute() method in
the corresponding State.

The next step of the development process consists in the transformation of structural
as well as behavioral PSM models to a specific programming language. The following
listing shows the transformation program written in Acceleo that takes as input the robot
structural models and produces Java code as output.
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The acceleo program above generates the following Java code as output,
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The rationale for building this Java program was the following, for each component
in the PIM, a Java class was created as an implementation of the LightweightRTObject
standard interface. Additionally all the Lightweight RTC resources were imported in
the program.

4.3 Lessons Learned from the Case Study

In this case study we have identified the different models that can be created to specify
both the structure and the behavior of the robot. These models were represented using
the OMG robotic standard, which is basically the well-known UML language enriched
with appropriate stereotypes to describe structural and behavioral characteristics
required by robotic applications that are not covered by other UML models. This
standard specification manages the lifecycle of all robotic components in a uniform way.
Additionally, the case study shows how the models are gradually defined at different
abstraction levels, starting with the more abstract models, completely independent of
the platform, from which other less abstract models could be automatically derived, to
finally get to the executable code.

5 Related Work

It is broadly recognized that there is a need to incorporate software engineering princi‐
ples within the development of future robot platforms. This has lead in the last years to
the conception of a set of activities with the objective of assembling researchers from
both fields, Model-Driven Software Development on one hand and Robotics on the other
hand. Examples of these activities are the International Workshop on Domain-Specific
Languages and Models for Robotic Systems (DSLRob) [42] launched in 2009, and the
Workshop on Model-Driven Robot Software Engineering(MORSE) [3] initiated in
2013, both with the goal of incentivizing the interaction of these areas. As a result, in
recent years several software frameworks have been developed to provide simple and
intuitive ways of writing software applications for robot platforms. This includes
academic research as well as industrial products.

On the industrial side one of the most well known is Lego Mindstorms Evolution 3
[26], developed especially for the Lego robots which can be built out of the Lego model
kits. This is an extremely flexible and powerful system which allows anyone to build a
robot using a few standard parts like motors, color sensors, touch sensors, infrared
sensors and other Lego elements. Afterwards, the user can graphically implement a
program by choosing the desired activities from the pallet of available blocks. Because
of this target group, the software only has a limited set of functions and cannot be
extended in any way. Evolution 3 only supports the creation of software for Lego robots,
and thus cannot be regarded as a general robot modeling framework.

Other industrial tool is Choregraphe [1], an environment developed by Aldebaran
Robotics, the manufacturer of the NAO humanoid robot, to allow robots to be
programmed by graphical applications. It also supports code reuse and debugging
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capabilities and makes it possible to monitor and control NAO robots manually. The
program uses an intuitive drag-and-drop interface in which a program is created using
boxes that can be combined into a kind of flow diagram. In summary, although it is easy
to use, Choregraphe allows the creation of complex programs. Like Lego Mindstorms
Evolution 3, Choregraphe can only be used in combination with the NAO robot and thus
cannot be regarded as a general robot modeling framework.

Another example of industrial product is Robotino View 2, a visual development
environment provided by Festo Didactic exclusively for Robotino robots. Robotino
View 2 shares the same limitation as the two previously mentioned frameworks — it is
proprietary and can only be used with one kind of robot.

Finally, Microsoft Robotics Developer Studio 4 (MRDS4) [27] is another program‐
ming environment for building robotics applications. It provides a Visual Programming
Language with an intuitive drag-and-drop interface for hobbyists and support for Micro‐
soft Visual Studio for professional developers. It has several significant advantages.
First, numerous robots are supported. Second, a high-fidelity simulation environment is
provided by Visual Simulation Environment (VSE), and the functionality of MRDS4
can be extended by providing additional libraries and services. Also, extensive docu‐
mentation, samples and tutorials are available.

On the academic side, many works [8, 11, 12, 23, 25, 28, 49] has taken advantage
of CBD for developing robotic systems whilst other proposals [4, 16, 18, 49] have
applied SOA to building robotic systems. Promising proposals were found for applying
model-driven development to robotics [2, 5, 6, 9, 13, 17, 21, 22, 24, 25, 39–41, 46, 48],
while only one work combined all three technologies [47]. Let us examine the most
representative ones:

Atkinson and colleagues in [2] introduce a prototype domain-specific modeling
framework designed to support the quick, simple and reliable creation of control soft‐
ware for standard robot platforms. In this paper they have presented a prototype frame‐
work, known as the Deep Robot Modeling Framework (DRMF). The current version of
the prototype supports a rudimentary implementation of all of these features in the
context of the NAO robot platform developed by Alderbaran Robots, although the basic
framework is platform independent. Applications developed using the NAO-specific
languages are automatically mapped into C++ code that can be loaded onto, and used
to drive, individual NAO robots.

Dhouib and colleagues in [17] define the language RobotML as an extension to the
Eclipse-based UML modeling tool Papyrus. Papyrus puts strong emphasis on UML’s
profile mechanism, which allows domain-specific adaptations. RobotML aims to
provide model-driven engineering capabilities for the domain of robot programming,
implementing code generators for different target platforms.

In [15] a small and declarative domain-specific language for pick and place appli‐
cations was elaborated for demonstrating the feasibility of the model driven approach.
Configurable code generation for C++ is provided.

These related works focus on defining specific modeling languages that enable the
designer to create abstract models of the robotic system and to automatically generate
code from them. Although these different languages and platforms are superficially very
different, at a high enough level of abstraction they all contain the same basic constructs
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– predefined types representing the components and actions from which the structure
and behavior of individual robots are constructed. In principle, therefore, they could all
be brought together under the umbrella of a single, unified robot modeling framework.
We believe that our approach makes a contribution towards the application of standard
instead of developing new concepts which are then difficult to integrate.

6 Conclusions

Programming robots is a complicated and time-consuming task. Often, control and
communication paths within the system are tightly coupled to the actual physical
configuration of the robot. Robotic researchers have been mainly concentrated on
creating hardware/software solutions for specialized tasks, leading to an extensive land‐
scape of comparable but isolated solutions which cannot be reused and combined easily.
Furthermore, these approaches lack comprehensive software engineering methodolo‐
gies and abstractions to handle the increased heterogeneity and complexity of robotic
software systems.

The contribution of this research consists in delineating guidelines for the construc‐
tion of robotic software systems, taking advantage of the application of the OMG
standard robotic specifications which adhere to the model-driven approach MDA.
Model-driven approaches further simplify the reuse of already implemented and tested
modules by enabling developers to model their applications on a higher abstraction level
incorporating existing modules, managing the complexity and facilitating the reusability
of robot code.

We observed that the CBD and SOA paradigms provide a starting point for a MDA
approach in robotics where the differences between various software platforms and
middleware systems can be completely hidden from the user due to the definition of
intermediate abstraction level. In particular, the proposed methodology takes advantages
of the standards defined by the Robotics Domain Task Force (RTF) which promotes the
integration of modular robotic systems components under the umbrella of MDA.

The approach captures the fundamental concepts of the robotic software develop‐
ment process, its relationships and properties. This modeling approach includes concepts
to represent services and components as primary elements in the robotic system in a
higher abstraction level.

The proposed methodology has been prototyped using Papyrus and Acceleo that are
tools provided by the Eclipse Modeling Project that focuses on the evolution of model-
based development technologies within the Eclipse community.

At the moment, there are few proposals taking advantage of the combined application
of CBD, SOA and MDA to robotic software system development as reviewed in [38]
and more recently in [30], and there is a lack of proposals towards the application of the
OMG robotic standard.
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Abstract. Cloud computing promises to provide computing power as a
utility and the adaptability to application requirements is one of its key
benefits. However, using cloud infrastructures still requires a lot of tech-
nical expertise, which becomes a burden especially for non-computer sci-
entists. Therefore, using model-driven approaches seems promising and
can help to lower this burden by raising the level of abstraction. To
achieve the correct scale of the cloud resources, a mechanism is required
to map the computational requirements of the users domain model to
parameters of the cloud infrastructure. In this paper, we present a frame-
work, which scales the required infrastructure according to the demands
of the users domain model. The framework utilizes a metamodel based
on the Topology and Orchestration Specification for Cloud Applications
(TOSCA) for modelling the cloud applications. Additionally, we intro-
duce a domain-specific language to define a mapping between domain
model parameters and parameters of the cloud infrastructure to achieve
an appropriate scale.

Keywords: Model driven engineering · Cloud orchestration · TOSCA

1 Introduction

Due to its elasticity and on-demand self-service characteristics, cloud computing
[1] is a great solution for users with varying computational requirements. How-
ever, setting up, running and scaling applications and the required infrastructure
in the cloud is a cumbersome and error-prone task. Therefore, methods and tools
are needed that simplify the process and lower the entry-barrier especially for non
computer-scientists. With help of model driven engineering (MDE), the level of
abstraction is raised and domain specific languages (DSLs) help to simplify tasks
by focusing on the vocabulary of a certain domain. With MDE also the prob-
lem of API-heterogeneity of different cloud providers, often called cloud-provider
lock-in, can be tackled [2], and graphical tools for modelling cloud infrastruc-
tures can be provided [3,4]. In combination with the templates and scripts used
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by cloud orchestration and configuration management tools, fully automated,
model driven deployment of cloud applications becomes possible.

These methods can be used for example to provide preconfigured computa-
tional resources to simulations scientists on demand. However, the appropriate
scale of the infrastructure largely depends on what the scientist wants to com-
pute. For example, an algorithm might require a certain amount of RAM in
the deployed virtual machines (VMs), or the number of entities in a simulation
might require a certain number of cores to be computed efficiently. These para-
meters are encoded in the domain model of the scientist, which comprise all
digital artefacts, the scientist created to solve a certain research problem. We
argue that the scale of the provided infrastructure should be able to adapt to the
computational requirements of the domain model of the scientist automatically.

To tackle this problem, we defined a framework [5] to be able to scale the
cloud infrastructure with the help of parametrized deployment models of the
users application based on the Topology and Orchestration Specification for
Cloud Applications (TOSCA) [7]. In this paper, we introduce a DSL for the
mapping between the domain model of the user and the deployment model to
define its correct scale.

The remainder of this paper is structured as follows. After providing the
foundations of this work in Sect. 2, we provide a driving example in Sect. 3.
We discuss our framework in Sect. 4 and introduce the DSL for the mapping in
Sect. 5. We evaluate the approach with help of a case study on the driving exam-
ple in Sect. 6. Related work is given in Sect. 7. Finally, we draw our conclusions
and give an outlook on future work in Sect. 8.

2 Automated Cloud Application Deployment

To define cloud computing, we refer to the definition given by the National
Institute of Standards and Technology (NIST) [1]: “Cloud computing is a model
for enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released with mini-
mal management effort or service provider interaction.” Thereby, NIST defines
three service models for cloud computing, which operate on different levels of
abstraction. On the highest level of abstraction is Software-as-a-Service (SaaS),
where fully fledged applications are delivered to the user e.g., via a web-browser.
Below that, Platform-as-a-Service (PaaS) offers programming environments or
platforms such as pre-configured databases as services. On the lowest level of
abstraction the user is able to directly acquire computing resources (e.g., virtual
machines, virtual network, and virtual storage) on demand via Infrastructure-as-
a-Service (IaaS). To offer higher level services such as PaaS and SaaS on top of
IaaS, cloud providers can rely on automation achieved with cloud orchestration
and configuration management tools, which we will discuss in the following.
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Fig. 1. TOSCA metamodel (adapted from Bergmayr et al. [4]).

2.1 Cloud Orchestration

To be able to manage and reuse configured resources in the cloud, cloud orches-
tration tools have emerged. Since many different cloud-provider dependent def-
initions of the term exist and it lacks of widely accepted definition, we will use
the following definition in the scope of this paper:

Cloud Orchestration refers to the automated launch and life-cycle management
of resources e.g., VMs, virtual storage, or virtual networks in the cloud. It also
assigns software configurations to the defined resources, without defining the
installation process or the configuration of the software itself. Cloud orchestra-
tion tools often provide additional functionality for automatic (event-based)
scaling of the deployed infrastructure.

Cloud Orchestration tools use template languages that allow to define the topol-
ogy and also the life-cycle operations on the topology in a reusable manner.
Examples include the language of Amazons CloudFormation [6] and the Heat
Orchestration Template (HOT) language of OpenStacks Heat orchestrator. The
Organization for the Advancement of Structured Information Standards (OASIS)
aims to standardize such a template language with the Topology and Orchestra-
tion Specification for Cloud Applications (TOSCA) [7]. The first version of the
standard based on the Extensible Markup Language (XML) was originally pub-
lished in 2013, while a draft of a simplified rendering based on YAML Ain’t
Markup Language (YAML) [8] was first published in 2015 and is still under
development.

A simplified metamodel of TOSCA is depicted in Fig. 1. A ServiceTemplate
captures the structure and the life-cycle operations of the application. It con-
sists of a TopologyTemplate and a Plan. Plans define how the cloud application is
managed and deployed. TopologyTemplates contain EntityTemplates, which are
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either NodeTemplates that define e.g., the virtual machines or application com-
ponents, RelationshipTemplates that encode the relationships between the Node-
Templates, e.g., that a certain application component is deployed on a certain
virtual machine, or GroupTemplates1 that allow to define groups of NodeTem-
plates, which e.g. should be scaled together. EntityTemplates have Properties,
e.g., the IP address of a virtual machine, and a certain type that references
an EntityType. The EntityType defines the allowed Properties through Prop-
ertyDefintions, and have Interfaces, which define the Operations that can be
executed on the type, e.g., the termination of a certain application component,
or the restart of a virtual machine. Operations have Parameters that define their
input and output. In addition to parameters for operations, TOSCA also allows
to define input parameters for Plans. These parameters can be used to parame-
terize the deployment workflow of the model and can e.g., include the virtual
machine type to use or the number of instances of a certain type to launch.

2.2 Configuration Management

To enforce a certain software configuration on the resources defined above, Con-
figuration Management tools are used. We use the following definition of the
term in scope of this paper:

Configuration Management refers to the automated and reusable enforcement of
a certain software configuration on several machines. It comprises the config-
uration of the operating system, the installation and configuration of software
and the configuration, launch, and termination of services.

Configuration Management tools became popular with the rise of the DevOps
movement [9] in recent years. They use declarative domain specific languages
to define the desired software configuration in a reusable manner. Examples
are the language used in Puppets [10] manifests or the language that defines
Ansibles [11] playbooks. In Ansible, playbooks are based on YAML and define
tasks that should be executed on a group of hosts. The following listing shows
the definition of the software configuration for a webserver with Ansible:

1 - hosts: webservers
2 vars:
3 http_port: 80
4 tasks:
5 - name: ensure apache is at the latest version
6 yum: name=httpd state=latest
7 - name: write the apache config file
8 template: src=/srv/httpd.j2 dest=/etc/httpd.conf

1 GroupTemplates and GroupTypes are currently part of the TOSCA YAML speci-
fication, but not part of the TOSCA XML specification. We included them in the
metamodel, because we need their functionality to for modeling scalability in our
deployments.



72 F. Glaser

The configuration is enforced on the hosts in the group webservers (Line 1),
the http port is set with help of a variable (Line 3). In the first task (Line 5),
an Apache webserver is installed with help of the package manager yum, and in
the second task (Line 7) a template for the server configuration is copied to the
hosts. Additionally, tasks can be encapsulated to form roles, and several roles
can be assigned to a host or a group of hosts.

3 Driving Example

Our driving example originates from material science and uses the Open Field
Operation and Manipulation (OpenFOAM) [14] software package. It exemplifies
a case where the domain model of the scientist has an influence on the required
scale of the cloud resources. OpenFOAM is a extensible C++ toolbox for solv-
ing systems of numerical equations, primary from the domain of computational
fluid dynamics on a predefined environment. It has a large user base both from
industry and academia and can be executed across large-scale High Performance
Computing (HPC) clusters using the Message Passing Interface (MPI). Typi-
cally, using OpenFOAM involves three steps. In the Pre-processing step, the
mathematical model, the description of the domain, on which the model should
be solved, and a mesh, which describes the decomposition of the domain for com-
putation is defined. In the Solving step, user-defined or predefined solvers are
used to solve the mathematical model on the domain, and in the Post-Processing
step additional tools can be used to visualize and analyse the created solutions.
We will refer to the artefacts created by the scientist as the domain model, which
in case of OpenFOAM consists of the following parts:

1. The geometry of the domain on which the mathematical model should be
solved and how the mesh on this domain is created.

2. The initial and boundary conditions for the problem for each parameter.
3. The physical properties for the system of partial differential equations (PDEs)

to be solved.
4. The control of the simulation, such as the simulation time and the reading

and writing of the solution.
5. A domain decomposition that describes how the domain should be decom-

posed for parallel computation.

Regarding a suitable scale of the infrastructure, information on how many worker
nodes can be utilized are encoded in the domain decomposition. Information on
how much storage is needed is influenced by the total length of the simulation
and the frequency with witch simulation data is written do disk.

We use OpenFOAM to exemplify the usage of our framework, which uses
a combination of MDE, cloud orchestration and configuration management to
automatically provision and scale the cloud infrastructure.
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Fig. 2. A framework for adapting application deployments according to domain model
demands.

4 The Framework

An overview of our framework and a possible instantiation for our driving exam-
ple is depicted in Fig. 2. We will discuss its components in the following. In this
paper we focus on the role of the evaluator and the static evaluation of the
domain model.

4.1 Domain Model

Domain models come in very different formats, they even might consist of code
that is later on compiled and linked to external libraries. In most cases, no
formal metamodel for the domain is available. In case of OpenFOAM, the parts
of the domain model described in Sect. 3 are encoded in text files that have a
OpenFOAM specific format.

4.2 Computation Framework

The computation framework (CF) represents the required software for executing
the domain model and its dependencies. It is the most restrictive component for
the cloud deployment, since it encodes how the computational load is distributed
on the underlying infrastructure and defines the needed soft- and hardware con-
figuration. In the driving example, OpenFOAM and its dependencies represent
the CF. OpenFOAM uses MPI for distributed computation, hence it requires a
MPI cluster to run and distribute the computational load.
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4.3 Deployment Models with TOSCA

With the given template/type of mechanism TOSCA and its ability to define
input parameters, we can distinguish between two types of deployment models:
We call a model with unset parameters abstract and a model with instantiated
parameters concrete. The transformation from an abstract model into a con-
crete model is called instantiation. The appropriate setting of the parameters
for the deployment during the instantiation process, is done with the help of
three sources: the user, static information from the domain model, and runtime
information from the CF.

The deployment model for the CF comprises three elements: a cloud orches-
tration template, configuration management scripts and a description on how
the domain model parameters are mapped to parameters of the infrastructure
used by the evaluator. We introduce the language for the mapping in Sect. 5.

The abstract deployment model for the OpenFOAM cluster is shown in
Fig. 3. Since there is no standardized graphical syntax for TOSCA available,
we use the following notation: NodeTemplates are depicted by boxes with solid
lines, RelationshipTemplates are visualized by connections between the boxes,
and GroupTemplates are depicted with boxes with dashed lines. For the Node-
Templates and the Groups we additionally list the type and a subset of the
Properties. One virtual machine serves as a gateway node. This node gets a
public IP address (floating IP) assigned and is reachable from the outside of
the cloud. The gateway node is connected to an extra volume which provides
the storage for the simulation data. An arbitrary number of virtual machines
is deployed to serve as worker nodes in the cluster to do the calculations. The
gateway node exports its volume via a Network File System (NFS), which is
then mounted and shared by the worker nodes. The software configuration for
the gateway and mpiworker nodes is modeled with help of a NodeTemplate of
type ansible.nodes.Application. With help of these NodeTemplates the corre-
sponding Ansible roles for the software configuration are associated to the host
in which the NodeTemplate is contained. Since the software configuration for
the worker nodes is dependent on the software configuration of the gateway,
we use an additional depence on relationship between the Ansible nodes. In the
abstract deployment model, several parameters can be adjusted to provide an
appropriate scale for the required computational power. Hence, the following
parameters are kept as input parameters of the model:

P1: The size S of the NFS.
P2: The virtual machine type T of the gateway and worker nodes. The virtual

machine type or virtual machine flavor is the common way of IaaS providers
to encode the hardware configuration of a virtual machine. This includes
RAM size, number of compute cores, and disk space.

P3: The number of worker nodes N . MPI can be used to distribute computation
across a single machine with multiple cores, or across multiple machines.
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Fig. 3. Abstract deployment model for OpenFOAM.

4.4 Evaluator and Monitor

To find suitable parameter settings that match the requirements of a domain
model, we distinguish between static evaluation, whereby the CF is not exe-
cuted in the cloud, and dynamic evaluation, whereby the CF is executed and
monitored. The static evaluation is performed before the CF is deployed on the
cloud infrastructure and to derive its initial appropriate scale. We implement
the static evaluation with help of the evaluator. This evaluator maps values of
parameters of the domain model to suitable parameter settings for the concrete
deployment model. This mapping is domain specific and needs to be defined for
each domain separately. For this purpose, we defined a small DSL, which will be
presented in Sect. 5.

Dynamic evaluations are done by monitoring the execution of the CF with
help of a monitor. According to the outcome of the deployment evaluation,
the parameters that have been used for the initial deployment are readjusted
and a new instantiation of the abstract deployment model is initiated. Hereby,
either a new concrete deployment model is created and deployed, or the existing
concrete deployment model and its instantiation is adjusted. Dynamic evalu-
ation and adjustments of a deployed infrastructure is nowadays implemented
by many cloud orchestrators with their ability to process scaling policies that
define under which conditions certain actions are automatically triggered on the
infrastructure. For example, if the number of accesses on a webserver exceeds a
certain threshold (condition), deploy an additional webserver (action). While it
is worthwhile to investigate, if parts of these scaling policies can be derived from
the domain model and the abstract deployment model of the CF, we focus on
the determination of the appropriate scale for the infrastructure before the CF
is deployed in scope of this paper.

4.5 Automated Deployment

The deployment of the CF is fully automated to avoid manual interaction with
the cloud and enable transparent deployment of the CF for the user. A cloud
orchestration framework is used for the orchestrated launch of the infrastructure
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Fig. 4. Metamodel of the mapping language.

and a configuration management tool is utilized to automatically configure the
launched infrastructure. As depicted on the right hand side in Fig. 2, we use the
cloud orchestrator Cloudify and the configuration management tool Ansible to
automatically deploy the CF on a private OpenStack [15] cloud.

5 Mapping Domain Model Parameters to Infrastructure
Parameters

Since the domain models come in very heterogeneous formats and in most cases
lack of a formal metamodel, it is not possible to define a formal model transfor-
mation from the domain model to a model that is executable on the infrastruc-
ture. Instead, our approach is to provide a mapping mechanism, that is able
to describe how parameters of the deployment model can be computed from
extracted parameters of the domain model.

To be able to define the mapping for the evaluator, we developed a DSL
which we will discuss in the following. The metamodel for the mapping lan-
guage is depicted in Fig. 4. A Mapping consists of a TargetParameter and an
Expression. Hereby, the TargetParameter represents a parameter of the abstract
deployment model and the Expression describes how the value for this para-
meter can be extracted from the domain model. The Comperator describes the
relationship between the TargetParameter and the Expression. It can be e.g., of
type EQUAL, to define that the TargetParameter must match the outcome of the
Expression. Expressions can be unary, binary, simple parameters, of type Extrac-
tor, or Mapper. Extractors encode how parameters are extracted from Sources
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of the domain model, which can either be files or folders. Extractors contain a
recipe, which define additional information on how a parameter is extracted from
a source. Mappers define how the extracted values are mapped to target para-
meters. They implement logic, where parameters of the domain model require a
setting of the deployment model, which can not be derived automatically from
the extracted value, e.g., a certain number of cores might be required for compu-
tation, but the deployment model does only allow to set the flavor of the VMs,
and not the number of cores directly.

For the time being, we defined basic Extractors, that extract information
from the structure of the domain model e.g., the number of files the model con-
sists of, and their size. We also defined Extractors that extract file content, e.g.,
the number of lines in a file, and the ability to extract information with help of a
regular expression (FileContentExtractor). Since our target IaaS system Open-
Stack does not allow to determine a fitting VM flavor for a given number of cores
automatically, we defined a Mapper that maps compute cores to the VM flavor
(FlavorMapper) and the other way around (CoreMapper). Additional domain-
specific Extractors and Mappers can be defined and implemented that inherit
from the corresponding base classes. We exemplify the usage of the language in
Sect. 6.3.

6 Evaluation

We prototypically implemented the evaluator based on the language introduced
above and the instantiation process to evaluate the framework. We now investi-
gate if we are able to derive an appropriate scale of the deployed infrastructure
with the introduced framework. To evaluate the mapping mechanism on our
driving example, we require different domain models for OpenFOAM. The tuto-
rial data for OpenFOAM 2.4.02 comprise around 200 domain models. For the
evaluation of our framework and the mapping we picked six domain models
with different computational requirements. The selected domain models and the
number of compute cores they require are given in Table 1. Even if these tutorial
domain models are small in comparison with realistic OpenFOAM simulations
that require large-scale HPC clusters to be computed, they are suitable to test
our framework.

6.1 Implementation

We prototypically implemented our framework with help of the Eclipse Modeling
Framework (EMF) [16]. We used the XML Schema Definition (XSD) of TOSCA
to generate an Ecore-metamodel. This metamodel served as a basis for code gen-
eration for the implementation of the evaluator and the instantiation process.
EMF was also used for the definition and implementation of the mapping lan-
guage. The utilized cloud orchestrator Cloudify currently supports only a subset
2 Available online at https://github.com/OpenFOAM/OpenFOAM-2.4.x/tree/mas
ter/tutorials.

https://github.com/OpenFOAM/OpenFOAM-2.4.x/tree/master/tutorials
https://github.com/OpenFOAM/OpenFOAM-2.4.x/tree/master/tutorials
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of the functionality of TOSCA and is additionally not completely compliant with
the standard. We used the Eclipse Epsilon Generation Language (EGL) [17] to
generate Cloudify compliant YAML templates from our TOSCA metamodel.
TOSCA is still subject to change and the development of the TOSCA YAML
version is a little ahead of the TOSCA XML version. Since the TOSCA YAML
version introduces some new features that are not yet reflected in the TOSCA
XML schema, we added the desired features to our generated Ecore-metamodel
manually. Hereby, we added GroupTypes and GroupTemplates, that allow to
group NodeTemplates and the ability to set concrete values for Parameters.

Table 1. Selected cases from OpenFOAM tutorial data.

Domain model Req. Cores

1 multiphase/twoPhaseEulerFoam/laminar/mixerVessel2D/ 1

2 heatTransfer/buoyantBoussinesqSimpleFoam/iglooWithFridges/ 2

3 multiphase/multiphaseInterFoam/laminar/damBreak4phaseFine/ 4

4 combustion/fireFoam/les/oppositeBurningPanels/ 6

5 multiphase/interDyMFoam/ras/DTCHull/ 8

6 multiphase/interDyMFoam/ras/testTubeMixer/ 16

6.2 Metrics

We aim to produce deployments that are efficient. We call a deployment efficient
if it neither utilizes more nor less resources than actually needed. To measure
the efficiency of the deployment, we use the following metrics to detect if too
many or to few resources were provisioned:

M1: Average load on the provisioned cluster during the execution of the domain
model. This number should be close to the number of provisioned cores in
the cluster, indicating that all cores are utilized for computation.

M2: Utilized portion of the NFS [%]. To detect over-provisioning of the storage
size, we measure how much of the storage has been actually used to store
the resulting data of the simulation.

6.3 Selection and Mapping of Domain Model Parameters

A suitable size for the NFS S depends on the expected size of the simulation
outcome. This in turn depends on the total simulation time Ttotal and on the
frequency fwrite with which partial results are written do disk. Both are para-
meters of the domain model. Given an estimate for the size Spart of the partial
results, the size for the distributed file system can be calculated as

S =
Ttotal

fwrite
× Spart. (1)
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To pick a suitable virtual machine type T for the gateway and worker nodes
from the types TY PES offered by the IaaS provider, we need the number of
cores Ncore, we can utilize. The number of cores we can utilize, depends on the
number of subdomains Nsub of the domain decomposition of the domain model
as described in Sect. 3. Hence, we pick the virtual machine type as

T = min
t∈TY PES, t.cores≤Nsub

|t.cores − Nsub|. (2)

The suitable number of worker nodes N , we can use for distributed computation
depends on the number of subdomains Nsub in the domain model, but also on
the virtual machine type T we picked in the last step. We can than calculate a
suitable number of worker nodes as

N = � Nsub

T.cores
� − 1. (3)

We subtract one, since the gateway node is also used for computation.

The following listing shows how the setting of parameter S is defined with
help of the XML serialization of the mapping language:

1 <mapping>
2 <targetParameter xsi:type=‘‘mapping:TargetParameter’’
3 name=‘‘size’’ type=‘‘INTEGER’’ unit=‘‘GB’’/>
4 <expression xsi:type=‘‘mapping:BinaryExpression’’
5 operator=‘‘MULTIPLY’’>
6 <part1 xsi:type=‘‘mapping:BinaryExpression’’
7 operator=‘‘DIVIDE’’>
8 <part1 xsi:type=‘‘mapping:FileContentExtractor’’
9 recipe=‘‘endTime((\s+)(\d+(.\d+)?))#3’’

10 source=‘‘system/controlDict’’/>
11 <part2 xsi:type=‘‘mapping:FileContentExtractor’’
12 recipe=‘‘writeInterval((\s+)(\d+(.\d+)?))#3’’
13 source=‘‘system/controlDict’’/>
14 </part1>
15 <part2 xsi:type=‘‘mapping:FileContentExtractor’’
16 recipe=‘‘partSize((\s+)(\d+(.\d+)?))#3’’
17 source="system/partSizeDict"/>
18 </expression>
19 </mapping>

The TargetParameter size is set with help of a BinaryExpression that imple-
ments the multiplication of Eq. 1 (Line 4–18). It itself contains a second Binary-
Expression (Line 6–14) that implements the division of the equation. The sim-
ulation time TTotal is extracted from the domain model with help of a FileCon-
tentExtractor defined in the lines 8–10, and the write interval fwrite is extracted
from the domain model with help of a FileContentExtractor defined in the lines
11–13. The expected size of the partial results can not be automatically derived
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Table 2. Results for the evaluated and deployed OpenFOAM cases.

Domain model Deployed cluster Metrics

#VMs #Cores NFS Size M1 M2

1 multiphase/twoPhaseEulerFoam/
laminar/mixerVessel2D/

1 1 1 GB 0.94 32%

2 heatTransfer/buoyantBoussinesq
SimpleFoam/iglooWithFridges/

1 2 1 GB 1.57 55%

3 multiphase/multiphaseInterFoam/
laminar/damBreak4phaseFine/

1 4 3 GB 3.79 92%

4 combustion/fireFoam/les/
oppositeBurningPanels/

2 8 9 GB 5.91 84%

5 multiphase/interDyMFoam/
ras/DTCHull/

2 8 3 GB 7.88 100%

6 multiphase/interDyMFoam/
ras/testTubeMixer/

4 16 1 GB 15.92 26%

from the domain model. It is a good example for a parameter that needs to be
provided by the user or with help of runtime information from executing the
CF. Since we are not able to utilize runtime information yet, we provided the
expected size of the partial results as part of the domain model. It is read with
a FileContentExtractor from a file defined in the lines 15–17. Together with the
domain model itself, the parameters mapping is passed to the evaluator, which
evaluates the domain model and returns a list of initialized parameters for the
deployment model. These parameters are then used in the instantiation process.

6.4 Results and Discussion

We executed the mapping on the OpenFOAM cases which are provided by
Table 1, and deployed the CF and the corresponding infrastructure automat-
ically in a small IaaS cloud based on OpenStack [15]. Then we executed the
domain model and collected the metrics defined in Sect. 6.2 with help of the
cluster monitoring tool Ganglia [18].

The results are summarized in Table 2. The number of deployed virtual
machines (#VMs), the total number of provisioned cores (#Cores) and the size
of the provisioned NFS is given. The total cluster size is automatically adjusted
to each domain model. The average load on the cluster (M1) indicates that
except for domain model 4 all provisioned cores were used for computation. In
Case 4 only 6 of the 8 provisioned compute cores were utilized. Since the abstract
model of our OpenFOAM cluster only allows the same virtual machine type for
all nodes in the cluster, and no virtual machine type with 6 compute cores is
available, 2 cores were over-provisioned. The framework was also able to adjust
the size of the NFS. Since the size of the provisioned NFS is rounded to full GB
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and the required size for the partial results is only a rough estimate, in most
cases not 100 % of the NFS was utilized (M2).

While the presented evaluation only considers fairly small tutorial domain
models, it shows that we are able to automatically adjust the scale of the pro-
visioned resources to the computational requirements of the domain model. In
case of the size for the NFS, additional user input was required to provide an
estimate for the size of the partial results. However, this information could also
be automatically derived during runtime. We are going to extend our work to
use runtime information of the CF in the future.

7 Related Work

Besides TOSCA, other cloud-related standardization attempts exist. In the MDE
community, the Open Cloud Computing Interface (OCCI) [12] received the most
attention. Merle et al. [13] defined a metamodel for OCCI with help of EMF to
provide a common basis for the generation and conformance testing of OCCI
tools. This metamodel is used by Paraiso et al. [19] to model the deployment of
applications with help of containers. Several works extend the Unified Modeling
Language (UML) to be able to capture cloud-specifics [20–22]. Bergmayr et al. [4]
show how to convert refined UML models to TOSCA templates. Their approach
is also based on an Ecore metamodel generated from the TOSCA XSD. With
the Cloud Application Management Framework (CAMF) [3], Loulloudes et al.
attempt to build a whole IDE to manage cloud applications with the help of
TOSCA.

Other approaches developed completely new cloud-specific modelling lan-
guages. Brandtzaeg et al. introduce CloudML [23], Silva et al. define the CloudDSL
[24], and Hamdaqa et al. present the StratusML [25]. All of theses languages are
specifiably tailored for the modeling of cloud applications. Bunch et al. define Nep-
tune [26], a domain specific language especially to deploy scientific applications in
the cloud. While our approach in modeling the CF is similar to the works intro-
duced above, the definition of the mapping between the domain of the user and the
deployment model is new.

Similar to the concept we defined for the dynamic update of the deployment
during runtime, Ferry et al. [27] define a Models@Runtime approach for the
deployment of cloud applications. We will evaluate the work of Ferry et al.
when we extend our implementation to be able to utilize runtime information of
the CF.

8 Conclusion and Outlook

Cloud orchestration and configuration management enable fully automated
deployment of applications in the cloud. In our work, we combine the two tech-
nologies with MDE and a mapping mechanism to bridge the gap between the
domain model to be computed and the required cloud infrastructure to enable
appropriate scaling according to the domain model demands. The introduced
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mechanism determines an appropriate scale of the infrastructure before it is
deployed in the cloud. In this paper we presented an initial evaluation of the
concept with help of a prototypical implementation and an example from the
domain of simulation science. Our initial experiences show that it is possible
to scale the infrastructure appropriately with information extracted from the
domain model. However, some information on the runtime behaviour of the
domain model can not be predicted by static evaluations. As future work, we
will move towards the automated modification and adaptation of our deploy-
ment models during runtime. The evaluation, we presented in this paper only
covers an initial case study. To fully show the validity of our approach, we will
conduct more case studies with software stacks from different domains.
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Abstract. Task trees are often used to define the actions on a software
as well as their order which is required to accomplish a certain task.
With an increasing task complexity, their creation can be laborious and
error-prone. Hence, there was work done to generate them automatically
from recordings of user actions. In this paper, we assess for one of these
approaches if the generated task trees are representative and descrip-
tive for recorded and also unrecorded user actions. This characteristic
is important as it allows for subsequent valid analyses of the software
usage based on these task trees. For our evaluations, we transform the
task trees generated from one set of recorded actions into grammars
for the language spoken between the user and the software. From these
grammars, we generate parsers with which we try to parse action com-
binations in other usage recordings. Our results show, that the approach
under analysis produces partially representative task trees, which are
also descriptive for unrecorded user behavior.

Keywords: Usage-based · Task tree generation · Task model analysis

1 Introduction

With task models, system designers have a powerful tool for defining the inter-
action of users with a website or any other software. A concrete variant of these
models are task trees, which define the detailed actions to be done for performing
a certain task as well as their required order [1]. Task trees can be an impor-
tant source for the analysis of user behaviour [2]. But with an increasing task
complexity, as well as with different variants of performing the same task, the
manual creation of a task tree can become laborious and error-prone. Hence,
task trees should be generated automatically from recordings of user behavior.
In this way, they can form the basis of subsequent usage analyses, e.g., usability
evaluations [3,4]. In addition, they can be the source for automated user-centered
system adaptions [5,6].

In previous work, we defined a process for automatic generation of task trees
from recorded user behavior [4,7,8]. For a subsequent analysis and usage of task
trees generated with this approach, it is important that they are a valid model
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for the user behavior. As such, the task trees should not only describe the user
behavior from which they were generated, but also unrecorded user behavior. In
one of our previous publications [9], we already compared task trees generated
for separate recordings of user behavior on the same software and checked if the
same or similar task trees are generated. That work showed, that our approach
produces similar task trees. But we did not check, if the generated task trees
are really a valid model for unrecorded user behavior. Therefore, the goal of this
paper is to answer the following research questions:

RQ1, Representativeness: How representative are the task trees generated
by our approach described in [4,7,8] for the recorded user behavior from which
they were created?

RQ2, Descriptiveness: To what extent do the task trees generated from
recorded user behavior describe also unrecorded user behavior?

To answer these research questions, we performed several analyses of the task
trees. Their description in this paper is structured as follows. First, we briefly
describe our notion of task trees and their generation in Sect. 2. Then, we describe
in Sect. 3 the approach that we use in this paper to check their descriptiveness
using their grammatical nature. In Sect. 4, we describe one of our case studies
that we performed to answer our research questions which is followed by a discus-
sion of the results in Sect. 5. We refer to related work in Sect. 6 and summarize
the paper in Sect. 7.

2 Task Trees and Trace-Based Task Tree Generation

In this section, we introduce our concepts of task trees as required for the remain-
der of this paper. Furthermore, we provide a brief description of our approach
for the automated generation from recorded user behavior. The section is based
on our previous work described in [4,7–9].

When users utilize a software, they perform individual actions. An action
is, e.g., entering text on the keyboard into a certain text field or clicking with
a mouse button on some element of the user interface. Users combine multiple
actions to perform a certain task. For example, to perform the task of logging in
on a website, they may perform the actions of clicking into the user name field,
entering the user name, clicking on the password field, entering the password,
and submitting the form using a click on a login button.

Tasks and actions may be combined to higher level tasks. For example, for
ordering a product in an online shop, users may perform the described task
for logging in, then some actions for the checkout process, and finally a task
for logging out again. As such, actions and tasks form a tree structure called a
task tree. In our work, we define that task trees consist of nodes where the leaf
nodes are the actions that users can perform on a software and the parent nodes
represent tasks. A task can never be directly or indirectly its own child.

Parent nodes in a task tree define the order in which their children,
actions or other tasks, can be executed. For this, parent nodes have one of
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four different types. Those types are sequence, iteration, optional, or selection.
A sequence has two or more children which are executed in the given order.
An iteration has only one child, which can be executed one or more times. An
optional also has only one child, which can be left out. Finally, a selection has two
or more children, of which only one is executed. An example of a task tree utiliz-
ing these types is shown in Fig. 1. In the figure, the leaf nodes (hatched boxes)
represent the actions required for a login process on a website. The parent nodes
(grey boxes) define through their given types the allowed order of execution of
their respective children. For example, the children of Sequence 2, which are
clicking on the user name field and entering the user name, are executed in their
given order as the type of their parent node is a sequence. Selection 1 defines,
that the user can either enter the user name (represented by Sequence 2 ) or the
password (represented by Sequence 3 ). Iteration 1 defines, that the user may
repeat this selection multiple times. This allows the user, e.g., to first enter the
user name, then enter the password, and then correct the user name again. The
user finishes the login process by clicking on the login button. Optionally, the
user may check a check box before to stay logged in (defined by Optional 1 ).
Van Welie et al. provide a more formal definition of task trees in [1].

Our process to generate this kind of task trees [4,7,8] works as follows. We
first record the individual actions that users perform on a software. The results
are lists of actions in the order in which they were performed. On these lists,
we perform an alternating detection of iterations and sequences. An iteration is
detected if the lists contain subsequent identical elements. Those are replaced
by a corresponding iteration. A sequence is detected if the lists contain subse-
quent element combinations that occur multiple times. Those are replaced by
corresponding sequences. Through the alternation of the iteration and sequence

Fig. 1. Example for a task tree of a login process on a website (adapted from [4]).
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detection, the iteration detection may also detect repetitions of sequences and
the sequence detection may detect sequences with iterations and other sequences
as their children.

After the alternating iteration and sequence detection, our approach may
have detected similar tasks. For example, there may be two tasks t1 and t2
representing a login process, but for navigating to the password field, t1 includes
a click on the password field and t2 the usage of the tabulator key, instead.
The other actions of both tasks would be identical. Hence, we defined a further
process that allows the detection and merging of similar tasks [4,8]. This process
is based on the comparison of the actions that are used in two similar tasks t1 and
t2 and may detect two things. Either, t1 includes an action a that is left out in t2.
Then the process merges t1 and t2, but makes a optional using a corresponding
parent node. Or t1 and t2 differ in a certain action where t1 contains action a1

and t2 contains action a2 at the same logical position. Then t1 and t2 are merged
and the possibility of using either of a1 and a2 is reflected by a new parent node
of type selection having a1 and a2 as its children.

The alternating iteration and sequence detection as well as the detection and
merging of similar tasks may run into further complex situations. As the focus
of this paper is not the description of all details of our process, we leave them
for our other publications [4,7,8]. Not all recorded actions may be assigned to a
detected task. The reason is, that some action combinations are executed only
once and are, therefore, not detected by our approach. We consider them as noise
in the data.

3 Transformation of Task Trees into Grammars

To evaluate the representativeness of task trees, we use a visualization which
we describe together with the case study in Sect. 4. For evaluating the descrip-
tiveness of the task trees for unrecorded user behavior, we use a more complex
approach based on [4], that we introduce in this section. The actions users per-
form on a software can be considered as the words of a language that users
“speak” with a software. Task trees define the order in which these words are
used. As such, they represent the grammar of this language [10]. To evaluate
the descriptiveness of our automatically generated task trees, we generate them
for a set of recorded actions As

1. Then we check, if they are also a valid model
for another set of recorded actions As

2. For this, we transform the task trees
generated based on As

1 into grammars. Then we generate parsers from these
grammars. Using these parsers, we try to parse the recorded actions in As

2. The
more actions we can parse through this, the higher we consider the representa-
tiveness of the task trees. To transform a task tree t into a grammar g, we define
the following rules which we already published in [4]:

– The leaf nodes of t become the terminal symbols in g.
– The sequences, iterations, and selections of t become non-terminals in g.
– For an iteration i with child c, we generate two production rules of the form

i → i c and i → c in g.
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– For a selection z with children c1 . . . cn, we create n production rules of the
form z → ci in g.

– For a sequence s with children c1 . . . cn, we create one production rule of the
form s → c1 . . . cn in g.

– For a sequence s with children c1 . . . ci . . . cn where ci can be left out, we
generate a further production rule s → c1 . . . c(i−1)c(i+1) . . . cn in g.

In the last rule, a child can be left out in various ways. For example, it can be
an optional or an iteration having an optional as its child. We consider all these
variants as defined by the rule. In addition, there may be multiple children of a
sequence that can be left out. In this case, we create as many production rules
as required to represent all possible permutations of leaving out one or several
of these children.

In Fig. 2, we show an example of applying the above rules on a task tree.
On the left, we display a task tree. The actions are identified by single letters
for simplification. On the right side, we show the corresponding grammar. Each
action in the task tree indicated through hatched boxes becomes a terminal
symbol in the grammar. For each parent node in the task tree indicated through
grey boxes there are non-terminals and corresponding production rules in the
grammar. The production rules are grouped to show which rules were generated
for which parent node in the task tree. For example, for Sequence 2, we generated
one production rule having the children of Sequence 2 (a, Selection 1, and b)
as the right hand side of the production rule. For Sequence 1, we generated two
productions rules as the second child of Sequence 1 can be left out.

From such a grammar, we generate a simple LR (SLR) parser as described by
Aho et al. [11]. The details of this generation and the implementation of this type
of parsers are not important for this paper. Hence, we do not describe them in

Fig. 2. Example of a grammar transformed from a task tree generated by our approach.
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more detail, but refer to the corresponding literature. Due to the nature of SLR
parsers, not all grammars generated by our approach can be used to generate
such a parser. An example is the following grammar from [4]:

A → BC

B → BD

B → D

D → ab

C → ac

(1)

When parsing a sentence of a language, SLR parsers only read the next word
of the sentence. For the above grammar, the action combination abac would be
a valid sentence. When parsing this input, an SLR parser would parse over the
first two actions ab and detect this as a representation of the non-terminal D,
and, due to the third production rule, as the non-terminal B. It can only be a
representation of B as the initial rule of the grammar indicates that a sentence
always starts with a representation of B. The next action to parse is the action
a. Due to the first and the second rule of the grammar, this can now either start
a second representation of D or a representation of C. For the parser, it cannot
be decided which of these alternatives is the case. The parser could only decide
if it read a further symbol ahead. But this is not done by SLR parsers.

Unfortunately, our above transformation rules may result in structures of the
above grammar. For example, the non-terminal B may represent an iteration
and D and C may represent two sequences. In such a case, we cannot generate
a valid parser for A. But in our approach, we generate separate parsers for any
detected task tree. This includes parsers not only for A, but also for tasks being
children of A, i.e., for B and C. Through this, the action combination abac will
be split up. The first two actions will be parsed by the parser representing B
and the second two actions by the second parser representing C. Hence, it is not
required to have a parser for A as the other parsers would also parse any action
combination described by A. Only in situations, where A has production rules
with a terminal node on the right side, this does not work anymore.

4 Case Study

To evaluate the representativeness and descriptiveness of the generated task
trees, we performed several case studies of which we describe due to paper size
restrictions only one in this paper. The other case studies and their results, as well
as more details on the case study at hand, are described in [4]. All case studies
follow the same setup which is described in the following. For the implementation
of the case studies, we utilized the framework AutoQUEST (Automatic Quality
Engineering of Event-driven Software). AutoQUEST provides functionality for
quality assurance of event driven software [12]. In addition to others, it can
be used to record user actions on websites. Afterwards, the recorded data can
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be analyzed for assessing the websites usability or to generate usage-based test
cases. AutoQUEST implements the task tree generation as described in [4,7,8]
resulting in task trees of the form described in Sect. 2.

In the case studies, we first recorded the actions users took on a website.
Then we generated task trees for the recorded data set. In addition, we subdi-
vided the data set into subsets of identical size. For each of these subsets we
also generated tasks trees. Then we created plots of the task trees showing the
relationship between the coverage of detected sequences and the number of all
covered actions. Finally, we transformed the task trees generated for a specific
subset into grammars, generated parsers for the grammars, and evaluated how
many actions of another subset or the full data set are matched by these parsers
as described in Sect. 3. In the following subsections, we describe these steps in
detail and provide corresponding results.

4.1 Recorded User Actions

In the case study at hand, we analyzed recordings of a web-based application
portal. Via this portal, prospective students can apply for their master studies
in computer science at our university. For this, the applicants provide personal
information, e.g., their name, date of birth, and address, as well as information
about their previous studies and other education. The interaction style is mainly
wizard based. This means, the applicants are guided through the individual
application steps. One page of the wizard requesting the personal information
of the applicants is shown in Fig. 3. Overall, the portal consists of 107 web
pages including, in addition to the wizard, administrative pages, login masks,
registration forms, description pages, and others.

We recorded the users of the portal over a period of 18 months. This resulted
in about 656,100 actions distributed over 14,811 sessions. A session in our record-
ing begins with the opening of the website and either the closing of the website
or the occurrence of a timeout. The details of the recorded data can be found in
the upper part of Table 1.

4.2 Generation of Task Trees

After recording the actions, we generated task trees from them. The resulting
number of sequences, iterations, selections, and optionals are listed in the lower
part of Table 1. For example, we generated 20,508 sequences.

Then, we created subsets As
1 . . . As

n ⊂ A of the recorded actions A. These
subsets were of a predefined size s being a percentage of all recorded actions
belonging to the full data set. The considered subset sizes were 1 %, 2.5 %, 5 %,
10 %, 20 %, 30 %, and 50 %. Depending on the intended subset size, we generated
different amounts of subsets. Depending on these amounts and the mathematical
possibility, the subsets of a certain size were created disjunctive to each other
or not. Details on the generated subsets of a certain size and the number of
actions contained in a subset can be found in the first three rows of Table 2. For
example, we created 50 subsets of size 1 %, which were disjunctive to each other
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Fig. 3. Screenshot of one wizard page requesting for the personal data of an applicant
in the application portal used for the case study.

and contained 6,561 actions. The division of the data set into subsets was done
on session level to ensure that task execution were not split. The assignment of
sessions to subsets was done randomly. Hence, we did not consider all possible
permutations of this division.

For each of the subsets, we also generated task trees. We list the average
numbers (μ) and standard deviations (σ) of detected sequences, iterations, selec-
tions, and optionals in the lowest four rows of Table 2. For example, for subsets
of size 1 % (first column), we detected on average 523 sequences with a standard
deviation of 15.
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4.3 Assessment of the Task Tree Representativeness

For the assessment of the task tree representativeness, we created plots of the
cumulative recorded actions represented by detected sequences. One of these
plots is shown in Fig. 4. For the creation of the plot, we first ordered the sequences
S generated for a data set by the number of recorded actions they represent.
We started this ordering with the sequence representing most recorded actions.
These ordered sequences represent the x-axis of the plot. The x-axis is given in
percentage of all detected sequences S. A certain point on the x-axis represents
the subset S′ ⊂ S of a data set that contains only those sequences covering most
recorded actions. On the y-axis, we then plot the cumulative ratio of actions
covered by the subset S′ represented by the corresponding point on the x-axis.
This ratio is given in percentage of the actions contained in the respective data
set. In Fig. 4, we created plots for several data sets. The black line shows the
actions covered by sequences detected on the full applicants portal data set.
Here, e.g., those 20 % of sequences that cover most recorded actions already
cover 86.3 % of all actions in the data set. All sequences detected on the data
set cover 95.1 % of the actions in the data set. The cyan lines represent the plots
for five randomly chosen subsets of size 40 %. The red lines represent the plots
for five randomly chosen subsets of size 10 %. The grey lines represent the plots
for five randomly chosen subsets of size 2.5 %. In the plots, we only focused
on sequences, as these define the major ordering of a task tree. In contrast,
iterations, optionals, and selections only define executions variants [4].

The figure shows, that all plots follow a similar shape. A small amount of
detected sequences (less than or equal 20 %) covers already a large amount of the
actions in a data set. We also see, that with an increasing data set size, the effect
becomes stronger. For example, for the full data set, the initial increasing of the
plot is stronger than for the plots generated for the different subsets. Because of
this effect, we introduce the term most prominent sequences. Those are the 20 %
of all sequences generated for a data set that cover most recorded actions. We
will use this separation of sequences in the following section.

Table 1. Facts of the case study including recorded actions and detected tasks.

Applicants portal

Recorded data

Recording period 10/2013 – 02/2015 (18 months)

Actions 656,100

Sessions 14,811

Generated tasks

Sequences 20,508

Iterations 2,199

Optionals 161

Selections 119
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Table 2. Information about created subsets, generated task trees, and the comparisons
done for the case study.

Subsets 1% 2.5% 5% 10% 20% 30% 40% 50%

Statistics

Count 50 30 20 10 5 9 6 6

Disjunctive yes yes yes yes yes no no no

Actions 6,561 16,402 32,805 65,610 131,220 196,830 262,440 328,050

Parsing
attempts

Same size 20 20 15 15 15 15 15 15

Full set 20 20 15 10 5 5 5 5

Generated
tasks

μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ

Sequences 523 15 1,124 22 1,967 33 3,380 30 5,830 57 8,012 95 10,066 181 11,898 36

Iterations 189 14 334 20 502 18 731 22 1,043 20 1,267 28 1,448 11 1,606 22

Selections 2 1 5 2 8 2 13 3 24 6 28 13 28 20 52 17

Optionals 1 1 4 2 10 3 21 5 41 4 53 14 50 21 85 13

4.4 Assessment of the Task Tree Descriptiveness

In the next step of our evaluation, we assessed the descriptiveness of the gener-
ated task trees. For this, we transformed the task trees generated for a certain
subset As

i ⊂ A of the full data set A into grammars. From these grammars,
we generated parsers. With these parsers, we then checked, which actions of a
another subset As

j ⊂ A|j �= i or of the full data set A are described by these
grammars. We call this a parsing attempt. For a parsing attempt, we subdivided
the other data set (As

j or A) into sublists ai . . . aj of recorded actions with a min-
imum length of two. For each of these sublists, we checked if any of the parsers
generated for As

i accepts the sublist as a valid input. If so, the corresponding
grammar, and hence the corresponding task tree, is a valid model for this sublist.
We considered all actions of a subset As

j or of the full data set A that can be
described with task trees generated for an As

i as so called matches. To get repre-
sentative results, we performed not only one parsing attempt between subsets,
but for multiple subsets of a certain size. The number of parsing attempts we
performed are listed in the rows four and five of Table 2. For example, for subsets
of size 1 %, we performed 20 parsing attempts in other subsets of the same size
and additionally 20 parsing attempts in the full data set.

For each of the parsing attempts, we recorded the ratio of matches, i.e., the
percentage of actions in a subset As

j or in A that are described by the task trees
generated from As

i . Then we calculated the average of this ratio for the differ-
ent parsing attempts listed in Table 2. We compiled the resulting average ratios
for the applicants portal into the bar charts in Fig. 5. The left bar chart repre-
sents the average matches between subsets of the same size, the right bar chart
the average matches of subset task trees in A. The x-axis of both charts show
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Fig. 4. Plot for the cumulative action coverage of the sequences of the full data set
(black) and five subsets for the subset sizes 2.5% (grey), 10% (red), and 40% (cyan)
(from [4]). (Color figure online)

Fig. 5. Plot for the actions matched by parsers, which were generated from merged
task trees for a specific subset size of the full data set in the case study.

the subset sizes from 1 % to 50 %. In the left bar chart, there are two bars per
subset size. The left bar, called c, shows the average ratio of actions in a subset
covered by the sequences generated from them. The right bar shows the average
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ratio of matches in another subset of the same size. Each bar is subdivided into a
black and a grey part. The black part represents the covered actions or matches
of the most prominent sequences only (see previous subsection). The grey part
adds the actions covered or matched by the remaining sequences. For example,
the sequences generated on a subset of size 5 % (third bars in left bar chart) cover
on average 86 % of the actions in this set (left bar) and cause matches of 81 % of
the actions in another subset of the same size (right bar). The most prominent
sequences generated on this subset size cover already 62 % in the subset from
which they were generated and match 61 % of actions in subsets of the same size.

In the right chart of Fig. 5, each bar, except the most right, represents the
matches of task trees generated for a subset in the full applicants portal data
set. The most right bar is equivalent to the left bars of the bar pairs in the left
plot and shows the ratio of actions covered by the sequences generated for the
full application portal data set. Also here, the bars are separated into a black
and a grey part where the black part shows the matches of the most prominent
sequences only and the grey part the matches of the other remaining sequences.
For example, the sequences generated for subsets of size 5 % (third bar) cover
81 % of the actions in the full data set. The most prominent sequences here
already cover 61 %. All sequences generated for the full data set (right most bar)
cover 95 %, where the most prominent sequences cover 87 %.

In the left bar chart, we see that with increasing subset size, the task trees
generated for one subset cover more and more actions in another subset of the
same size. Even more, we see that for smaller subset sizes, the matches in another
subset are smaller than the actions covered in the subset from which the task
trees were generated (the left bars of the bar pairs are higher than the right bars),
but for larger subsets this switches (the right bars or the bar pairs are higher
than the left bars). This effect is due to the differences between our task tree
generation and our descriptiveness check. Consider the actions aba which were
performed in the given order. Our task tree generation may detect a sequence
s1 representing ab and a further sequence s2 representing ba. Only one of these
sequences will cover two of the three actions aba. Either s1 will cover the first
two actions or s2 will cover the last two actions. But when considering the same
action combination and the two parsers generated for s1 and s2, then in our
descriptiveness check, both parser will report matches. Hence, although not all
three actions can be covered by the tasks generated from them, the parsers of
these tasks would match all three actions.

In the right bar chart, we see that the task trees generated from smaller
subset sizes already match a high number of actions in the full data set. The
higher the subset size, the more actions are matched. Considering both charts,
we derive that the most prominent sequences also cover most actions and that
the difference between their coverage and the coverage of all generated sequences
becomes smaller with an increasing subset size.
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5 Discussion

Considering the effects shown in Fig. 4, we conclude that already a small amount
of detected sequences covers a large amount of actions in the data set from which
they were detected. Hence, we can answer our first research question, RQ1,
with the statement, that the representativeness of the task trees generated by
our approach differs. Some task trees represent more recorded users actions and
are, therefore, more representative than others. This is a helpful information for
subsequent analyses based on these models. As we generate typically a large
number of task trees for a data set, this information allows us to decide, which
generated task trees are worth a further analysis and which may be considered as
describing noise in the data. In addition, this information can be used to adapt
our task tree generation so that only representative task trees are detected.

The results in Fig. 5 show, that the task trees generated for a data set are
also descriptive for user behavior not being part of the data set and, hence,
also for unrecorded user behavior. This is the first part of the answer for our
second research question, RQ2. The second part of the answer is, that with an
increasing data set size, the descriptiveness of the task trees also increases. But
considering Fig. 5b in more detail, we also see that after a certain data set size
is reached, the descriptiveness cannot be increased significantly anymore. For
example, considering the differences between the bars for subset sizes 5 % and
10 % as well as between 50 % and 100 %, we see that with a doubling of the
input data, the descriptiveness may be increased, but that this increase is less
for the larger two subset sizes. Most important, the descriptiveness itself cannot
be doubled by doubling the sample size. Based on this, we conclude that it may
not be required to record always all users of a website to get representative and
descriptive models.

In our extended description of the case study at hand, as well as of the other
case studies [4], we show the same types of plots as we show here for other data
sets. In these plots, we see the same effects but on different coverage levels. Any-
way, comparing these plots, we additionally see that the representativeness and
descriptiveness of the generated task trees depends on the number of different
actions that users can perform on a website. This can be derived from the fact
that more recordings are required when more actions are available to ensure
that any action and any possible action combination is recorded often enough
to result in a representative task tree. This is also an important information for
subsequent analyses done based on our task trees.

There are two threats to the validity or our results. First of all, we do not
generate grammars and parser for all detected task trees, if the grammars would
be invalid as described in Sect. 3. Through this, we may not find all possible
matches. On the other hand, due to the fact that our parsing attempts may
find more matches than recorded actions they represent (see previous section),
our results may include a certain amount of matches, which do not correspond
correctly to the descriptiveness. As such, our results underlie a failure rate which
may influence our results. But considering the differences between the bar pairs
in Fig. 5a, which is rather small, we consider that the effect of the failure rate is
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also rather small. This means we do not match significantly less or more actions
than our task trees cover.

6 Related Work

Task models can be used to describe a task decomposition, actions, and their
execution order. Additionally, they include the user goals that can be achieved
with a task and the objects that are required for the task execution [1]. They may
also include actions, which are not only done by the user but by the systems with
which the users interact [13,14]. There are multiple approaches for task model-
ing that utilize tree structures. Examples are TaskMODL [15], GOMS (Goals,
Operators, Methods, and Selection Rules) [16], and ConcurTaskTrees [13,14].
Depending on their concrete usage, they are focused on individual application
areas. For example, ConcurTaskTrees allow modeling system behavior in addi-
tion to user behavior which is not possible with Goals, Operators, Methods, and
Selection Rules (GOMS). The task trees generated by our approach [4,7,8] are a
tree based type of task model and describe only the actions and their execution
order. As other approaches, they are trimmed to a certain application area which
is a subsequent usability evaluation [3,4].

There are approaches for detecting tasks in recorded users actions, e.g.,
ACT-R [17] and Convenient, Rapid, Interactive Tool for Integrating Quick
Usability Evaluations (CRITIQUE) [5]. In addition, as the actions of users on
a software are similar to words of a language spoken between the user and the
software [10], techniques for grammatical inference based on language examples
seem to be an alternative for our task tree generation. But both, the mentioned
examples and grammatical inference, required labeled input data indicating the
beginning and end of a task [18], respectively a sentence of the language [19],
which is not required by our approach. It is also possible to derive statistical
models of the usage of a system from recorded user actions [20]. In contrast to
our approach, these define only probabilities of user interactions but not actually
happening action combinations.

Regarding the evaluation of the representativeness and descriptiveness of
our task trees as done in this paper, to the best of our knowledge, there is no
related work that evaluates the same aspects. In one of our previous works, we
evaluated if similar task trees are generated for different sets of recorded user
action on the same software [9]. But this work is not as far reaching as the
one described in this paper, as it neither focuses on representativeness of these
tasks nor on descriptiveness. But both information is important to allow for
reliable subsequent analyses of the generated models. More detailed results of
the evaluation in this paper, also on other case studies, are described in the PhD
Thesis in [4].

7 Conclusion and Outlook

In this paper, we evaluated the representativeness and descriptiveness of task
trees generated automatically from recorded user actions as described in [4,7,8].
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Both aspects are a required prerequisite for reliable subsequent usage analysis
based on these task trees as described in [3,4]. Our results show, that the task
trees are representative and descriptive for recorded and unrecorded user behav-
ior. The representativeness of the task trees varies and allows for subdividing
the task trees into more and less representative. This eases subsequent analyses
as only more representative task trees need to be considered.

In future work, we will use the results of this paper in various ways. For
example, we will adapt the task tree generation process, so that it detects only
highly representative task trees and less noise. In addition, we will adapt our
subsequent analysis of the task trees to focus only on the representative ones.
Finally, we will define an estimation heuristics from which we can determine,
based on the number of available actions on a software, how many user recordings
we require to get representative task trees and subsequent analysis results.

References

1. Van Welie, M., Van Der Veer, G.C., Eliëns, A.: An ontology for task world mod-
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Abstract. The interest in pragmatic analysis methods is constantly
fueled by the increasing complexity of software systems. Although the
methods are not scarce, to apply them successfully an additional exper-
tise is required, which often deviates from the development process or the
domain the system is intended for. The model-driven paradigm facilitates
the development and analysis by means of automation. It can address
the issue at a certain extent by raising the level of abstraction closer to
the domain. The inherent complexity is shifted from the model towards
the automation process. This has been quite effective in handling func-
tional aspects, but non-functional aspects like performance have proven
to be challenging in this regard. In this paper we present a model-driven
approach for performance analysis based on standardized languages. SDL
is used to capture the functional aspects of the system, which are further
enriched with performance annotations. Deployment diagrams allow for
the available resources to be assigned to system components, and model
execution is driven by real test cases in TTCN-3. Automatic execution of
different scenarios and graphical presentation of the results can aid the
user to optimize performance by choosing the best allocation of resources
in terms of execution time and payload.

Keywords: Performance · SDL · TTCN-3 · Architecture · Simulation

1 Introduction

It is an established fact that the complexity of software systems is characterized
by a trend to grow. This trend is not expected to change in the future considering
the interest in the internet of things [12] where billions of interconnected objects
will provide many services to the end users. The Specification and Description
Language (SDL) [20] is an international standard that provides many advantages
for modeling communicating systems [32]. Models are seen as effective means to
deal with system complexity. They can speed up and facilitate the development
process by raising the abstraction level. As complexity cannot be eliminated, the
best way to deal with it is to let software tools handle it (automatically) and
focus on the higher level of abstraction provided by models. This is indeed a
core feature of any pragmatic model-driven approach [31]. It enables the use of
the same model for different purposes, e.g., generation of the target code or a
representation for analyzing relevant aspects. One of the challenges is to ensure
c© Springer International Publishing AG 2016
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that the automation process does produce a valid representation for analysis.
Extensive discussions exist regarding functional aspects, and pragmatic solutions
have been proposed [3].

The problem becomes more complex with the introduction of non-functional
aspects. This is reflected in both parts of the model-driven approach, i.e., the
model and the automation process. The modeling language requires additional
notations to capture non-functional aspects, and the automation process must be
aware of such notations. Performance is a typical non-functional aspect whose
analysis requires additional expertise at both levels. A common approach is
to annotate existing models and/or to extend them with new diagrams. An
automation process transforms these annotated models into some other notation
for analysis. It is important for the analysis to consider also functional aspects,
e.g., if execution time is relevant for performance analysis, then the time spent
carrying out a certain action may affect the behavior of the system, hence the
need to consider behavior during analysis.

In [26] it is argued that, in order for the analysis models to be concise and
efficient, only functional aspects that influence performance should be captured
in the model. This is a sound claim when put in the context of the formalism
used for analysis (e.g., Markov chain, Petri net, etc.), where a complete func-
tional model may indeed increase the complexity. However, this approach can
widen the gap between functional and performance model, and there is a risk for
performance to become an “afterthought” in the process, which is not a good
idea as discussed in [25].

In this paper we present a model-driven approach for performance analysis
based on standardized languages. SDL is used to capture the functional aspects
of the system. State machines are enriched with performance aspects in terms
of execution time and payload via a simple interface. System components (SDL
block agents) are mapped to processing resources using deployment diagrams
[30]. Model execution is driven by real test cases described in Testing and Test
Control Notation Version 3 (TTCN-3) [11,17].

The approach for performance modeling is introduced in Sect. 2 and analysis
via simulation in Sect. 3. In Sect. 4 we give an overview of related work and
position our approach in respect to existing state of the art. We conclude in
Sect. 5 with a discussion around the approach and future work.

2 Performance Modeling

Two performance aspects are introduced into the model: the time spent during
execution, and payload as total resources utilized during execution. These apply
on SDL state machines (behavior diagram) by means of annotations and deploy-
ment diagrams via properties. Their syntax and semantics are as described in
the following paragraphs.
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2.1 Structure and Behavior

In SDL the overall design is called the system, and everything outside of it is
defined as the environment. The system can be composed of agents and commu-
nication constructs. There are two kinds of agents: blocks and processes. Agents
have an extended finite state machine (hereafter state machine) and can con-
tain other agents and communication constructs. In a process agent only, one
contained state machine can be in a transition at any given time. In traditional
usage (before SDL-2000) and in this paper, a state machine is not specified for a
block, and a block can contain only other blocks or processes. A state machine
has an implicit queue for signals. Each kind of signal has a name and parame-
ters; signal instances go through channels that connect agents and end up in
the implicit queues of processes. Figure 1 illustrates these concepts in a simple
example.

Fig. 1. Example of an SDL system.

The system is composed of two blocks, namely b1 and b2 ; each containing a
single process, p1 and p2 respectively. The behavior of the system is triggered
by the external signal of kind m1, whose single parameter (x in Fig. 1) is an
integer between 0 and 10. Upon receiving m1, process p1 sends m2 to p2 and
starts the timer t which is supposed to fire after 1 unit of time. Process p2 (not
shown in the figure) replies back with m3, and p1 signals the environment with
m4. The parameter of m4 is also an integer whose value is determined by m3,
i.e., if the signal is received before the timer t fires, then the value will be x
+ 1, otherwise the value of x will not change. If it is assumed the time taken
for transitions is insignificant,1 the way the system behaves always follows the
former scenario, thus m3 will always arrive before the timer fires.

Graphical symbols in the state machine can be annotated with perfor-
mance aspects as shown in Fig. 2 in the Behavior Diagram of the process p2.
1 In SDL-2010 [19] an undefined amount of time passes while an action is executed,

and it is valid for the time taken to be zero.
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Fig. 2. Performance editor for SDL state machines.

The annotations can be attached to any symbol in a transition (from its start
to its terminator), e.g., from an input symbol down to a next-state. It should
be noted that annotations to symbols outside a transition (e.g., state, text, etc.)
will be ignored during execution of the state machine. To further aid the user
in this regard we introduce the Performance Editor, which generates a tree-like
representation of the SDL model as shown in Fig. 2. The leaves are the symbols
that appear in transitions, and performance annotations can be edited only at
this level of the tree.

The annotations can be any valid SDL expression that results in a positive
integer representing units of time and payload. The actual values are determined
based on the available resources or processing speed of the machine where the
process is being executed. For example, for two machines M1 and M2 with the
later being twice as fast as the former, we could say that a time unit in M1 has
a weight of 2 and that of M2 a weight of 1. These weights are multiplied to the
values derived from the expressions in Fig. 2, and as a result the execution will
take 4 units of time in M1 and 2 units in M2. To note here is that if process p2
is executed in either machine, then the behavior of the system will be different
from what was described above, because the timer will fire before the arrival of
the signal m3.
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2.2 Communication and Architecture

Although communication is handled in SDL via channels, nothing was mentioned
regarding performance aspects attached to them. The reason for not introduc-
ing further annotations at the SDL level is that channels propagate through the
hierarchical structure of the system, and tracking all signal routes in a com-
plex system is not a sound choice from the user viewpoint. These aspects are
introduced together with the allocation of resources in the architectural model.

The architecture is modeled using the deployment diagram as defined in [30].
The choice was motivated by past experience where such a diagram was used for
simulation modeling [4,6] and testing [5] of distributed systems. Although not
formalized, the diagram is descriptive and flexible enough to accommodate all
additional information for performance analysis. Figure 3 shows an architecture
for the simple example introduced above.

Fig. 3. Example architecture for the SDL system in Fig. 1.

Each component is named after the SDL agent (block) it represents, e.g., b1
and b2 represent the SDL blocks with the same name in Fig. 1. A component
can have two properties, namely internalTransferTimeUnits and internalTrans-
ferPayloadUnits. As the names suggest, these are the performance aspects asso-
ciated to internal communication, and they apply to all SDL channels whose
endpoints are inside the SDL block represented by the component. If we look
at the hierarchical structure of an SDL system like a tree,2 and the sender and
receiver process of a signal are both in the sub-tree of the block represented by
the component, then the component’s properties are associated to the commu-
nication path. The values are positive integers representing units of time and
payload. This pair of values coupled with the pair attached to the signal out-
put in the state machine (as shown in Fig. 2) enable fine-grained performance
annotation of potentially every signal in the system.

The nodes represent computation resources and every component in the dia-
gram should be linked to exactly one of them. The resources are expressed in

2 The system is the root, blocks are internal nodes, and processes are leaves.
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terms of time and payload via the node’s properties timeUnitValue and payload-
UnitValue. These are the weights that apply to all annotated values in the SDL
state machines and components for communication. Accepted values for pay-
loadUnitValue are positive integers, while for timeUnitValue are positive inte-
gers divided by a power of 10 (e.g., 2/1000).3 The purpose of the divisor is to
differentiate between time values used in the model (SDL timers) and execution
time in terms of performance. This is very important considering that execution
time is usually orders of magnitude smaller than values used in timers. In the
example shown in Fig. 3 every signal exchange inside b2 will take internalTrans-
ferTimeUnits * timeUnitValue = 0.002 units of time as opposed to 0.001 in b1.
In general every process inside components attached to n1 will run twice as fast
compared to those attached to n2 due to the timeUnitValue. The same logic can
be applied for the payload, where n1 consumes twice the amount of resources
compared to n2.

A connection (as shown in Fig. 3) is used to introduce performance aspects
associated to communication between components attached to different nodes.
This means that, for a communication path between b1 and b2, the properties of
the connection apply instead of the properties of the components. For example,
every signal sent from b1 will take 0.005 units of time to arrive in b2.

2.3 Stimuli

System stimuli for performance analysis is provided by real test cases described
in TTCN-3. The abstract definition of test cases in TTCN-3 makes it possible
to specify test systems which are independent of the platform. The abstract
definitions can be either compiled or interpreted. The former can be used to
test target code while the later enables execution of the test cases together with
the SDL system for the purpose of analysis. Figure 4 shows a TTCN-3 module
definition with a single test case, where the system under test is the SDL example
introduced in Fig. 1.

The purpose of the test case tc is to trigger the behavior previously described
in Sect. 2.1, i.e., it sends an m1 signal with parameter value set to 5 and expects
an m4 signal with parameter value 6. This is defined as the “desired” behavior in
the example, because it will result in a pass verdict for the test case (alternative
behaviors will result in a fail).

TTCN-3 test cases interact with the SDL system via the channels connected
to the environment. The main advantage over generic (stochastic or determin-
istic) stimuli is that it allows to check whether functional aspects of the system
are affected during performance analysis.

It should be noted that the execution of a test case itself and communication
with the SDL system have no impact in the performance, i.e., time and payload
values associated with the test case are 0 (zero). This is the same as having an
implicit node and a component in the architecture that represent all test cases,
where the “test” node is connected to all other nodes in the architecture, and

3 A divisor of 1 can be omitted, thus only a positive integer is enough.
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Fig. 4. Example of a TTCN-3 module definition with a single test case.

all performance related properties of the node, component, and connections are
set to 0 (zero). The “test” node and component are transparent to the user, and
they are automatically added to any given architecture. This is illustrated in
Fig. 5 with the test node, tc component, and test2n1 and test2n2 connections.

2.4 Semantics of Time and Payload

The execution of SDL processes attached on the same node in the architecture
is sequential, and execution on different nodes is parallel.

Time. Each node in the architecture is considered to have an internal clock
which advances based on the time spent by the processes executing on that
node. Sequential execution (only one node) is straightforward because there is
only one clock. If two (or more) nodes are involved, their respective clocks are
synchronized based on signal exchange. For example, let’s suppose that the inter-
nal clock of n1 is 100 units and that of n2 is 80 units. If the m2 signal is sent
from n1 to n2, then its estimated time of arrival will be 100 + 5/1000 units.
The value is obtained by adding to the clock n1 the time delay associated with
the signal transfer represented by the transferTimeValue property of the c2 con-
nection in Fig. 3. Because the clock of n2 is less than the estimated time, upon
receiving the signal n2 will:

– advance its clock to the estimated time of arrival of the signal m2,
– handle any events (e.g., SDL timers) that may have been triggered because of

the clock change,
– handle the received signal.
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Fig. 5. Implicit test case representation in the architecture.

On the other hand, sending the m3 signal from n2 to n1 requires no changes to
the clock, because the clock of n1 is greater than the estimated time of arrival
of the signal. In this case the signal is handled immediately, unless the queue of
the receiver has still signals whose time of arrival is less than that of the signal
in question.

If the system time needs to be queried for some purpose, then the node’s
clock with the highest value is returned. However, this should not be confused
with the time in the model (e.g., the NOW keyword of SDL). In this case the
time is that of the node’s clock on which the process is executing. The purpose
of querying system time would be as performance analysis result at the end of
the execution.

Payload. Each node in the architecture is considered to have an internal pay-
load accumulator which is incremented based on the payload associated to the
symbols in the processes’ state machines and signal exchange within the node.
The payload associated to communication between nodes (e.g., transferPayload-
Value property of the c2 connection in Fig. 3) is added to the accumulator of
the receiver.
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Payload is not affected by parallelism (as opposed to time), i.e., there is no
need for synchronization between node accumulators. The resulting payload of
the system is the sum of the accumulators of all nodes. For example, if the
accumulated payload of n1 is 40 and that of n2 is 30, then the resulting system
payload will be 70. The value of system payload is also meant to be queried at
the end of execution together with system time as results of the performance
analysis.

3 Analysis via Simulation

The PragmaDev Co-Simulator allows execution of TTCN-3 test cases against
an SDL system. SDL and TTCN-3 descriptions are translated into an internal
representation (byte code) to be interpreted by the Executor, which in turn
forwards the scheduling of events to the Scheduler as shown in Fig. 6.

Fig. 6. Architecture of the PragmaDev Co-Simulator.

We extend the existing scheduler for the time and payload semantics
described in Sect. 2.4. The new performance-aware scheduler introduces an addi-
tional step in the execution flow of Fig. 6. After the byte code of an SDL symbol
in the state machine has been interpreted by the executor, and before it is sched-
uled for execution, the tool checks whether there are performance annotations
associated to it. If this is the case, then the SDL expressions in the performance
annotations are interpreted and the internal clock and payload accumulator are
updated. As the change in the clock may trigger other events, they are scheduled
first for execution followed by the execution of the byte code of the SDL symbol
in question.

As simulation is based on deterministic stimuli and behavior following the
TTCN-3 and SDL semantics, the potential of the performance-aware scheduler
and the approach itself lies in the comparison of different architectures rather
than the actual result of the analysis for a single architecture. However, it is
worth mentioning that there are also benefits in simulating a single architecture.
These are the cases where the analysis is aimed at the investigation of the impact
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Fig. 7. PragmaDev Simulator user interface and live execution trace in MSC.

that performance aspects may have in the functional behavior of the system.
For this purpose we have extended the interface of the existing simulator so
that performance results can be displayed when using the new scheduler. Time,
payload, and the verdict of the test case are shown in the simulator interface
and the live execution trace (using MSC) as illustrated in Fig. 7.

We introduce the Performance Analyzer shown in Fig. 8 to facilitate the
comparison of different architectures for a set of test cases (stimuli). The user
is only concerned with the input of architectures and test cases intended for
analysis. The tool computes automatically all possible pairs (architecture, test
case), and for each of them launches a simulator instance (with the performance-
aware scheduler) in the background. When the simulation is done, it retrieves the
result in a tuple (verdict, time, payload) and displays it in tabular and graphical
form. The result shown for a given pair depends on the verdict of the test case:

– pass implies that the behavior of the system was conform to the correct behav-
ior described in the test case, thus the values of time and payload can be
displayed;
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Fig. 8. PragmaDev Performance Analyzer user interface.

– not pass (e.g., fail, error) means that the system behaved incorrectly possibly
due to the performance aspects, thus it makes sense to display the verdict in
the table of results instead of the values of time and payload, and a zero value
is shown in the graph.

In cases where the second scenario is manifested, and if the cause of such result
needs to be further investigated, then the “stand-alone” simulation (as shown
in Fig. 7) of the corresponding pair should be the next step as it enables an
in-depth analysis of the case.

The results are displayed graphically via a radar graph, where each architec-
ture is shown with a different color. This representation better aids the decision
on the best architecture for a given test case or best architecture overall. An
architecture is better than another in terms of performance (time or payload) if
the surface covered by its line in the graph is smaller.

4 Related Work

Valuable work has been done for the performance analysis of systems described
in SDL. Several methods have been proposed to capture performance aspects,
describe system stimuli, and perform the analysis.

Some solutions bring modifications to the language that enable quantitative
analysis of the model. However, these are restricted to a small subset of the
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language, which can pose limitations on the functional aspects that can be cap-
tured. A typical example in this category is TSDL [1], where Markovian type
algorithms are used for performance analysis. SDL-net [2] does not suffer from
such limitations because the performance aspects are introduced in the Petri
net (used for analysis) rather than in the SDL description. However, the original
SDL model may differ from the SDL-net model, and the usage of data types is
very restricted due to the Petri net method.

Another category of approach is based on the principle of syntactically
unchanged SDL models. SPECS [7] uses annotated SDL specifications, where
performance aspects are added separately via a graphical user interface. The
models are simulated on a virtual machine that is derived from the SDL descrip-
tion and performance annotations. Simulation is also used in SPEET [33], where
system stimuli is provided by traffic load generators, and probes can be defined
within the formal description. HIT [14] uses a set of templates that enable trans-
formation of the SDL description into a quantitatively assessable model. QUEST
[9] uses time consuming machines for modeling resources: workload models are
mapped to machines, and a simulation model is automatically generated.

The advantage of simulation over other methods (analytic and/or numeric) is
that it can deal better with complexity. However, simulation models need to be
validated to ensure conformance to the original SDL description, and they can
produce a vast amount of data if system stimuli is modeled by stochastic traffic
generators. Easy-Sim [29] tries to address the first issue via tool coupling. Func-
tional aspects of the system are modeled in SDL whereas performance related
aspects are modeled by the SES/workbench. The coupling is implemented by
routing SDL events through the SES workbench. For example, a timer can be
set in the SES/workbench with the purpose of delaying an SDL signal. What is
interesting about the approach is that it introduces also extensions to Message
Sequence Charts (MSC) [15] to specify performance requirements of SDL sys-
tems. This idea is also employed by the DO-IT toolbox [24], which follows the
SDL+ methodology [18] but in the context of non-functional requirements.

A different approach is presented in [34], where the Unified Modeling
Language (UML) [28] is used to capture performance aspects and the UML
profile of SDL [16] for the behavior of the system. So, it is possible to exploit
the flexibility of UML notations and the formal nature of SDL in the same
description, which is then translated into a simulation model for analysis.

It should be noted that a lot of work has been done using UML for per-
formance analysis, which is backed-up by the existence of the standard UML
profile MARTE [27]. However, there is no substantial difference in the method-
ology (compared to SDL) and how the analysis is actually performed, i.e.,
Pertri net [23], Markovian type [21], or simulation [10,22].

The approach presented in this paper aims at seamless integration of per-
formance analysis in the development of SDL systems. SDL state machines can
be enriched with performance aspects at any time during development via a
simple graphical interface, and afterwards they can be mapped to available
resources using a deployment diagram. Compared to the existing state-of-the-art
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introduced in this section, a pragmatic and deterministic approach was used to
describe system stimuli. Instead of stochastic stimuli described in some exter-
nal notation, we used real test cases in TTCN-3 (user defined or automatically
generated [8]). This enabled testing of the system for functional and perfor-
mance aspects, and what is also of interest, checking whether performance has
an impact on the functional behavior of the system. As the approach is based
on ITU-T standard languages with formal semantics, it can exploit the full set
of existing features of tools including the SDL+TTCN-3 co-simulator (model
executor). To make the simulator performance-aware without touching the func-
tional execution semantics, a “coupling-like” solution was adopted where SDL
events were routed through the performance scheduler before execution. How-
ever, this should not be confused with the coupling employed in [29] because
the performance-aware scheduler is integral part of the simulator and not an
external tool.

5 Conclusions

The complexity of software systems is characterized by a trend to grow which is
expected to continue in the future. The model-driven paradigm provides means
to effectively deal with system complexity as it raises the abstraction level during
the development process. This has proven to be an effective choice in handling
functional aspects, however, the introduction of non-functional aspects like per-
formance in the model suffers from the inherent complexity of the underlying
mechanism used for analysis.

The model-driven approach presented in this paper aims at the seamless
integration of performance analysis in the development process. SDL was used
to capture the functional aspects of the system via state machines, which were
further enriched with performance aspects in terms of execution time and pay-
load, and mapped to available resources in the architectural description via
deployment diagrams. Compared to the existing state-of-the-art, a pragmatic
and deterministic approach was used to describe system stimuli, where real test
cases in TTCN-3 were used instead of stochastic stimuli described in some exter-
nal notation. This enabled testing of both functional and performance aspects,
and also checking whether the later had an impact on the former. The exist-
ing simulator was extended with a performance-aware scheduler, and the new
Performance Analyzer enabled automation of performance analysis on a set of
architectures and test cases and graphical representation of results to facilitate
comparison.

Considering the above mentioned benefits of the approach and tool support,
there are certain aspects that we plan to address in the future. First and foremost
we plan to introduce consumable resources by means of additional annotations
in the SDL model and properties in the deployment diagram. As these can
potentially have an impact on functional aspects of the system, their impact
should be assessed during analysis. This can be the waiting time for a resource
to be available, possible deadlocks due to unavailable resources, peak usage of
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resources, etc. Equally important is the graphical presentation of the results in a
comparative way in the Performance Analyzer. Whether the current presentation
format (table and radar graph) is adequate also for consumable resources is to be
further investigated. Supporting user defined performance aspects would be the
next step., i.e., provide means to add custom annotations in the model with their
corresponding properties in the architecture. Last but not least, following the
ideas presented in [13], we are also thinking about the possibility of extending the
approach (and tool support) with means for automatic performance properties
verification.

References

1. Bause, F., Buchholz, P.: Qualitative and quantitative analysis of timed SDL spec-
ifications. In: Gerner, N., Hegering, H.G., Swoboda, J. (eds.) Kommunikation in
Verteilten Systemen, pp. 486–500. Springer, Heidelberg (1993)

2. Bause, F., Kabutz, H., Kemper, P., Kritzinger, P.S.: SDL and Petri Net perfor-
mance analysis of communicating systems. In: Dembinski, P., Sredniawa, M. (eds.)
Protocol Specification, Testing and Verification XV, pp. 269–282. Chapman & Hall,
New York (1995)

3. Brumbulli, M.: Model-driven development and simulation of distributed commu-
nication systems. Ph.D. thesis, Humboldt Universität zu Berlin (2015)

4. Brumbulli, M., Fischer, J.: Simulation configuration modeling of distributed com-
munication systems. In: Haugen, Ø., Reed, R., Gotzhein, R. (eds.) SAM 2012.
LNCS, vol. 7744, pp. 198–211. Springer, Heidelberg (2013)

5. Brumbulli, M., Gaudin, E.: Automatic interleaving for testing distributed systems.
In: 8th European Congress on Embedded Real Time Software and Systems (ERTS
2016) (2016)

6. Brumbulli, M., Gaudin, E.: Towards model-driven simulation of the internet of
things, advances in intelligent systems and computing. In: Cardin, M.-L., Fong,
S.H., Krob, D., Lui, P.C., Tan, Y.H. (eds.) Complex Systems Design & Manage-
ment Asia, vol. 426, pp. 17–29. Springer International Publishing, Switzerland
(2016)
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21. Lindemann, C., Thümmler, A., Klemm, A., Lohmann, M., Waldhorst, O.P.: Per-
formance analysis of time-enhanced UML diagrams based on stochastic processes.
In: Proceedings of the 3rd International Workshop on Software and Performance,
WOSP 2002, New York, NY, USA, pp. 25–34. ACM (2002)

22. Marzolla, M., Balsamo, S.: UML-PSI: the UML performance simulator. In: Pro-
ceedings of the 1st International Conference on the Quantitative Evaluation of
Systems, QEST 2004, pp. 340–341. IEEE Computer Society (2004)

23. Merseguer, J., Campos, J.: Software performance modeling using UML and Petri
Nets. In: Calzarossa, M.C., Gelenbe, E. (eds.) MASCOTS 2003. LNCS, vol. 2965,
pp. 265–289. Springer, Heidelberg (2004)

24. Mitschele-Thiel, A., Langendörfer, P., Henke, R.: Design and optimization of high-
performance protocols with the DO-IT toolbox. In: Gotzhein, R., Bredereke, J.
(eds.) Formal Description Techniques IX: Theory, Application and Tools, pp. 45–
60. Chapman & Hall, New York (1996)

25. Mitschele-Thiel, A., Müller-Clostermann, B.: Performance engineering of
SDL/MSC systems. Comput. Netw. 31(17), 1801–1815 (1999)

26. Monin, W., Dubois, F., Vincent, D., Combes, P.: Looking for better integration
of design and performance engineering. In: Reed, R., Reed, J. (eds.) SDL 2003.
LNCS, vol. 2708, pp. 1–17. Springer, Heidelberg (2003)

http://www.ttcn-3.org/index.php/downloads/standards
http://www.ttcn-3.org/index.php/downloads/standards
http://www.gartner.com/newsroom/id/2636073
http://handle.itu.int/11.1002/1000/11063
http://handle.itu.int/11.1002/1000/12035
http://handle.itu.int/11.1002/1000/12035
http://handle.itu.int/11.1002/1000/12617
http://handle.itu.int/11.1002/1000/12447
http://handle.itu.int/11.1002/1000/12447
http://handle.itu.int/11.1002/1000/12847
http://handle.itu.int/11.1002/1000/12846


Optimizing Performance of SDL Systems 115

27. OMG: UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems. Version 1.1. OMG Standard, Object Management Group (2011). http://
www.omg.org/spec/MARTE/1.1

28. OMG: OMG Unified Modeling Language (OMG UML). Version 2.5. OMG Stan-
dard, Object Management Group (2015). http://www.omg.org/spec/UML/2.5

29. Schaffer, C., Raschhofer, R.J., Simma, A.: EaSy-Sim: a tool environment for the
design of complex, real-time systems. In: Pichler, F., Dı́az, R.M., Albrecht, R. (eds.)
EUROCAST 1995. LNCS, vol. 1030, pp. 358–374. Springer, Heidelberg (1996)

30. SDL-RT Consortium: Specification and Description Language - Real Time. SDL-
RT Standard V2.3, SDL-RT Consortium (2013). http://www.sdl-rt.org/standard/
V2.3/html/index.htm

31. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003)

32. Sherratt, E., Ober, I., Gaudin, E., Fonseca i Casas, P., Kristoffersen, F.: SDL -
the IoT language. In: Fischer, J., Scheidgen, M., Schieferdecker, I., Reed, R. (eds.)
SDL 2015. LNCS, vol. 9369, pp. 27–41. Springer, Heidelberg (2015)

33. Steppler, M., Lott, M.: SPEET - SDL performance evaluation tool. In: Cavalli, A.,
Sarma, A. (eds.) SDL 1997 Time for Testing, SDL, MSC and Trends, pp. 53–68.
Elsevier, Amsterdam (1997)

34. de Wet, N., Kritzinger, P.: Using UML models for the performance analysis of
network systems. Comput. Netw. 49(5), 627–642 (2005)

http://www.omg.org/spec/MARTE/1.1
http://www.omg.org/spec/MARTE/1.1
http://www.omg.org/spec/UML/2.5
http://www.sdl-rt.org/standard/V2.3/html/index.htm
http://www.sdl-rt.org/standard/V2.3/html/index.htm


Evolving the ETSI Test Description Language

Philip Makedonski1(B), Gusztáv Adamis2, Martti Käärik3, Finn Kristoffersen4,
and Xavier Zeitoun5

1 Institute of Computer Science, University of Göttingen, Göttingen, Germany
makedonski@cs.uni-goettingen.de

2 Test Competence Center, Ericsson Hungary Ltd., Budapest, Hungary
gusztav.adamis@ericsson.com
3 Elvior OU, Talinn, Estonia
martti.kaarik@elvior.com

4 Cinderella ApS, Copenhagen, Denmark
finn@cinderella.dk

5 CEA, LIST, Gif-sur-yvette, France
xavier.zeitoun@cea.fr

Abstract. Increasing software and system complexity due to the inte-
gration of more and more diverse sub-systems presents new testing chal-
lenges. Standardisation and certification requirements in certain domains
such as telecommunication, automotive, aerospace, and health-care con-
tribute further challenges for testing systems operating in these domains.
Consequently, there is a need for suitable methodologies, processes, lan-
guages, and tools to address these testing challenges. To address some of
these challenges, the Test Description Language (TDL) has been devel-
oped at the European Telecommunications Standards Institute (ETSI)
over the past three years. TDL bridges the gap between declarative test
purposes and imperative test cases by offering a standardised language
for the specification of test descriptions. TDL started as a standardised
meta-model, subsequently enriched with a graphical syntax, exchange
format, and a UML profile. A reference implementation of TDL has been
developed as a common platform to accelerate the adoption of TDL and
lower the barrier to entry for both end-users and tool-vendors. This arti-
cle tells the story of the evolution of TDL from its conception.

Keywords: Model-based testing · Test description language · Domain-
specific modeling

1 Introduction

Increasing software and system complexity due to the integration of more and
more diverse sub-systems presents new testing challenges. Standardisation and
certification requirements in certain domains such as telecommunication, auto-
motive, aerospace, and health-care contribute further testing challenges for sys-
tems operating in these domains, especially as they need to evolve and operate
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over long periods of time. Consequently, there is a need for suitable method-
ologies, processes, languages, and tools to address these testing challenges. The
European Telecommunications Standards Institute (ETSI) has a long experience
with the development of test specifications for standardised systems. To facil-
itate the efficient development of standardised test specifications and address
some of the continuously evolving challenges, the Technical Committee Methods
for Testing and Specification (TC-MTS) at ETSI has been active in develop-
ing methodologies, processes, and languages for testing, and in particular in the
context of standardisation. The ETSI test development process [17] follows a
stepwise approach based on the ISO/IEC 9646-1 [25] norm. Each step on the
way from base standard to executable test cases results in intermediate artifacts
at different levels of abstraction, which are intended for particular stakeholders
such as standardisation experts, technology experts, and test engineers.

With strong emphasis on test automation, TC-MTS lead the work on the
development and maintenance and evolution of the Testing and Test Control
Notation version 3 (TTCN-3) [10] over the past 15 years. While TTCN-3 has
been established as the language of choice for the implementation of test cases
at ETSI, on the higher levels of abstraction there was a distinctive lack of well-
established notations. Even with overall agreement on the basic structure and
content of test purposes and test descriptions, there was a proliferation of dialects
and customised notations for different standards. The Test Purpose Notation
(TPLan) [11] sought to provide a notation for the standardised specification of
test purposes. This left a gap between the declarative test purposes and the
imperative test cases. Without a suitable and standardised language for this
purpose, the development of test descriptions by means of different notations
and dialects lead to significant overhead and frequent inconsistencies that needed
to be checked and fixed manually. The consequences are particularly severe for
test descriptions related to technologies and standards that continue to evolve
over decades. More recently, TC-MTS has also explored the requirements for the
application of Model-Based Testing (MBT) in standardisation [12] with MBT
technologies becoming more mature and finding wider acceptance in the industry.

The Test Description Language (TDL) [13] seeks to bridge the methodologi-
cal gap between declarative test purposes and executable test cases by providing
a formalised model-based solution for the specification of test descriptions. At the
core of TDL there is a common meta-model with well-defined semantics, which
can be represented by means of different concrete notations. A TDL test descrip-
tion created in one notation can be reviewed and approved in other notations,
customized to suit the preferred level of abstraction and notational conventions
of the different users. TDL can also serve as an exchange and visualisation plat-
form for generated tests, contributing to the ongoing activities within TC-MTS
to establish MBT technologies within standardisation at ETSI [9,12,17].

TC-MTS laid down the foundation of TDL with Specialist Task Force (STF)
454 in 2013 in terms of the basic concepts of the language and their semantics.
In 2014, STF 476 added language functionality for the integration of TDL test
descriptions into test automation frameworks as well as a standardised graphical
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syntax for end-users. STF 476 also contributed an exchange format in order to
foster tool interoperability, as well as an extension to TDL enabling refined test
objective specification. In 2015, STF 492 developed an open reference imple-
mentation intended to serve as a common platform to accelerate the adoption
of TDL and lower the barrier to entry for both end-users and tool-vendors. The
work on the reference implementation contributed to the public launch of TDL
at User Conference on Advanced Automated Testing (UCAAT) 2015 sharing the
work on TDL with a broader audience. The discussions during the launch event
generated feedback from numerous stakeholders from different domains that will
influence the future development of the language.

This article is structured as follows: Sect. 2 showcases the different parts of
the TDL standard in their current form. Section 3 contains a technical overview
of the reference implementation of TDL. Section 4 discusses related work. Finally,
Sect. 5 provides a summary and an outlook on the future of TDL.

2 The TDL Standard

The TDL specification evolved into a multi-part standard. In this section, we
first provide a broad overview of the core principles behind the design of TDL
and then take a closer look at the different parts and illustrate some of the
features of the language with examples.

2.1 Core Design Principles

The TDL is intended for the design, documentation, and representation of for-
mal test descriptions for black-box testing following a scenario-based approach
describing interactions with the System Under Test (SUT). Test objectives
derived from requirements may be attached to different scenarios or even to parts
of a scenario. The scenarios are then used as basis for deriving and automating
tests. TDL can also be used for the representation of test sequences derived from
MBT tools, system simulators, or traces from test execution runs.

At the core of TDL is the Meta-model (MM) [13] standard specifying the
abstract syntax including the concepts of the language, the relationships among
them, their properties, and their intended semantics. The Exchange Format
(XF) [15] serves as basis for the interoperability of tools. Concrete syntax nota-
tions may be mapped to the abstract syntax making the elements of the meta-
model accessible to users by means of different representations, such as graphical,
textual, tabular, tree-based, possibly targeting different levels of abstraction. The
Graphical Representation (GR) [14] provides a standardised concrete syntax for
the graphical representation of TDL elements as a common ground. The Struc-
tured Test Objective Specification (TO) [16] provides an extension of TDL that
introduces additional concepts to the MM, as well as corresponding representa-
tions in the GR and the XF.

The decomposition of TDL into a multipart standard has the advantage
that tool vendors and users can decide which parts they want to conform to.
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For example, tools providing customised syntax representations for a specific
group of users may opt to support only the MM and XF parts, rather than
supporting the GR which may be unnecessary for the targeted user group.

2.2 The Meta-Model

Part 1 of the TDL standard defines the abstract syntax, static and dynamic
semantics of TDL. The abstract syntax is specified in terms of a Meta-Object
Facility (MOF) [33] meta-model describing the concepts of the language and
the relations between them. Constraints on the concepts and their relationships
are formalized by means of the Object Constraint Language (OCL) [30]. The
meta-model concepts are defined in packages covering different aspects of TDL.

The Foundation package defines the basic structural concepts of a TDL speci-
fication. These include the abstract notion of an element as the common ancestor
of all other concepts of the language, packages for grouping elements together,
concepts for importing elements from packages, annotations, and comments.

The Data package contains concepts for data definition and data use. The
data definition concepts cover abstract data type definitions, data instance spec-
ifications, actions, functions, parameters, and variables. Members and member
assignments may be used to specify the internal structure of data type and data
instance definitions, respectively. The data concepts in TDL are abstract symbols
that can be related by means of data element mappings to concrete data repre-
sentations stored in external resources, such as TTCN-3 or Extensible Markup
Language (XML) documents, which are referenced by means of data resource
mappings. The defined data elements can be referenced in various contexts, such
as parameters, interactions, timers, etc. by means of data use concepts. The data
use concepts also include wildcards such as any value of a given type.

The Test Configuration package defines the concepts related to the test archi-
tectures for TDL test descriptions. Test configurations in TDL are composed of
at least two component instances, one in the role of Tester and one in the role
of SUT, with at least one connection between their gate instances. A component
instance inherits the gate instances, timers and variables of the component type
it conforms to. A gate instance conforms to a gate type which specifies the data
that can be used in interactions over gate instances of that gate type.

The Test Behaviour package defines the concepts necessary for the specifi-
cation of behaviour. These include atomic behaviours, such as interactions for
exchanging data between gates of component instances, local or global actions,
references to other test descriptions, as well as explicit verdict assignments. Com-
pound behaviours, including conditional, alternative, repeated, interrupt, and
default behaviour, are used to group atomic behaviours.

The Time package in TDL contains concepts for the specification time oper-
ations, time constraints, and timers. Time in TDL is global and progresses
monotonically in discrete quantities. TDL offers time operations including Wait
and Quiescence, which are used to delay the execution or ensure that no inter-
actions occur in the gates of a component instance in the role of Tester. Timer
operations (Start, Stop, Timeout) operate on component instance timers.
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Finally, Annex B of Part 1 contains an example text-based notation for
illustrative purposes in order to showcase some concrete examples of the use
of the TDL MM. It can serve as the basis for a textual concrete syntax for TDL,
however, the notation itself is only informative at this point in time.

2.3 The Graphical Representation

Part 2 of the TDL standard defines the default, general-purpose graphical
representation format for TDL meta-model elements. One of the key design
requirements was that the graphical representation of TDL shall resemble the
graphical format of the most frequently used modeling notations in order to
preserve familiarity and ensure that it is easy to learn for users. Considering
that Unified Modeling Language (UML) is widely used in the industry and also
gaining momentum in standardisation, the graphical representation of TDL was
aligned with UML to the extent to which the corresponding TDL elements have
(almost) direct equivalents in UML. Elements of the TDL meta-model that have
no direct equivalent or have different semantics are represented in a different
way in order to avoid confusion.

The specification of a TDL test description typically requires three major
parts—data and data type specification, test configuration specification, test
behaviour specification. An example of a data type and a data instance speci-
fication is shown in the bottom part of Fig. 1. In this case, the definition of a
data type Message and a data instance Request of data type Message is illus-
trated. In TDL, the type definition symbols have double borders. As noted in
Sect. 2.2, TDL only provides abstract symbols for data that can be mapped to
external data. A data mapping specification is shown in the upper part of Fig. 1.
In this example, it is assumed that there is a file data.ttcn3 containing some
concrete data specifications in TTCN-3, which is made accessible as a mapping
target in TDL by means of a data resource mapping. The data element mappings
then specify how the abstract data type and data instance symbols specified in
TDL are related to the corresponding concrete data specifications. In the exam-
ple shown in Fig. 1, the Request data instance is mapped to a template m rq
defined in data.ttcn3. Similarly, the abstract Message data type defined in
TDL is mapped to the concrete t msg data type defined in data.ttcn3. The
resolution and validation of the correctness and consistency of such mappings is
left to tool implementations.

The definition of a test configuration is illustrated in Fig. 2. In order to define
a test configuration, first one or more gate types need to be defined. The gate
type defaultGT which can send and receive data instances of type Message is
shown in the top left part of Fig. 2. Next, one or more component types need to be
defined. The component type defaultCT which has a gate g of type defaultGT,
as well as a variable v of type Message, is shown in the top center part of
Fig. 2. Finally, a simple test configuration defaultTC containing two component
instances of type defaultCT (SS in the role TESTER and UE in the role SUT), as
well as a connection between their gates, is shown in the bottom part of Fig. 2.
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Simple Data Type
Message

Simple Data Instance
Request:Message

Data Resource Mapping
TTCN_DATA

Resource URI

Data Element Mapping Data Element Mapping

Fig. 1. Data definition and mapping specification

defaultGT 
Data Type: Message

defaultCT

Variable
v:Message g:defaultGT

TESTER
SS:defaultCT g

SUT
UE:defaultCTg

Test Configuration
defaultTC

Fig. 2. Gate type, component type, and test configuration

The specification of behaviour is exemplified in Fig. 3. The example features a
simple interaction sequence between the previously defined component instances.
The SS in the role of TESTER sends a Request message. The UE in the role of SUT
may respond to the SS by either an Accept or a Reject message. The verdict
in the first case will be PASS, while in the second case it will be FAIL.

2.4 The Exchange Format

Part 3 of the TDL standard defines the exchange format for TDL models. The
exchange format describes the rules for serialization and de-serialisation of TDL
models which enables interchange of TDL models between tools. The TDL XF is
based on the XML Metadata Interchange (XMI) specification [34]. The TDL XF
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TESTER
SS:defaultCT

g

SUT
UE:defaultCT

g

alternative

Request

Accept

Reject

PASS

FAIL

Fig. 3. Behaviour specification

specifies production rules for deriving a TDL XMI Schema covering the complete
definition of the TDL MM, including the MM extensions defined in the TDL TO,
as well as production rules for TDL XMI documents for the serialization of TDL
models. However, the semantic correctness of a TDL model represented in the
form of an XMI document cannot be validated based on the exchange format
rules alone. After de-serialisation, the resulting TDL model still needs to be
checked with respect to the rules defined in the MM.

2.5 Extending TDL: Structured Test Objectives

Part 4 of the TDL standard defines an extension of TDL to support the specifica-
tion of structured test objectives in a formalised manner within TDL. In Part 1
of TDL, the description of a test objective can be specified only as informal text.
In Part 4, additional concepts are introduced as extensions to the meta-model
in order to capture additional features of test objectives. These include:

– domain specification concepts such as abstract events and entities, as well as
reusable event occurrence templates,

– structured test objectives containing event occurrence sequences for initial
conditions, expected behaviour, and final conditions,

– event occurrence specifications containing entity references, event references,
event occurrence arguments, and time constraints,

– extended data specification for literal data used as event occurrence arguments
that do not require the definition of data types and data instances.

The concrete syntax notation is related to the TPLan notation used within
ETSI in order to align it with existing procedures and capitalise on user famil-
iarity. An example is shown in Fig. 4. While the notation for the structured test
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Fig. 4. Structured test objective specification

objectives as a whole is graphical in nature, its contents describing the event
occurrences are in the form of structured natural language, where entity and
event references are surrounded by keywords and free text in the form of com-
ments. This adds sufficient formalisation to the specification of test objectives in
order to enable tool support for the validation of test objectives and for mapping
them to test descriptions, while still retaining a natural language feel. Similar
to Part 1, Part 4 contains an informative text-based notation in its Annex B
focusing on the concepts introduced as extensions to the meta-model.

2.6 The UML Profile for TDL

To enable the application of TDL in UML based working environments, a
UML Profile for TDL (UP4TDL) was developed. Profiling in UML is a way to
adapt the UML meta-model with domain-specific concerns. In simplified terms,
domain-specific concepts are represented in a UML profile by means of stereo-
types. A stereotype enables the extension of a UML meta-class with additional
properties, relations, or constraints in order to address domain-specific concerns.

The overall architecture of UP4TDL is similar to the package structure
of TDL. The top-level package of the UP4TDL contains stereotypes that
enable binding annotations to any TDL elements. The test objective concept
is also declared there. For structuring TDL models in packages and import-
ing TDL elements from other packages, the UP4TDL relies on already exist-
ing concepts in UML (UML::Package and UML::ElementImport respectively).
The DataDefinition package contains the equivalents of the concepts from the
TDL:Data package, most of which are already present in UML. One major
addition is related to the data element mapping which allows the binding of
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abstract mappable data elements to concrete data specifications stored in a
data resource. The DataUse package contains an almost independent meta-
model that is used as the basis for integrating data-related expressions in TDL
models. These expressions are used in the specification of arguments of inter-
actions. The Behaviour package contains two kinds of stereotypes. A set of
stereotypes that extend UML::CombinedFragment represents the set of elements
defined in TDL::CombinedBehaviour. The other stereotypes mostly extend
UML::OccurenceSpecification and represent corresponding elements defined in
TDL::AtomicBehaviour. Finally, the Time package contains stereotypes repre-
senting elements related to the management of time in TDL. Currently, they are
specific to TDL. In future work, linking these concepts with the Modeling and
Analysis of Real-Time Embedded Systems (MARTE) profile [29] may help to
refine the embedding of UP4TDL into the UML environment.

The UML Testing Profile (UTP) [31] is published by the Object Manage-
ment Group (OMG) and is also providing high level test-related concepts for
use within UML-based working environments. UTP and UP4TDL share similar
global choices for representing various aspects of both languages. The arrange-
ment of test components in a test configuration may be described by a composite-
like diagram. Test behaviours can be described by sequence-like diagrams. The
data types and data instances may be presented in a class-like diagram. However,
there are also a number of differences between UP4TDL and UTP. Since TDL
and UTP evolved independently, UP4TDL also follows some design decisions
that keep it closer to TDL. While behaviour specifications in UTP may have
different kinds of representations, the behaviour-related stereotypes in UP4TDL
are also intended to be directly mapped to corresponding behaviour-related con-
cepts in TDL (e.g. ExceptionalBehaviour, PeriodicBehaviour).

In TDL, a global synchronization mechanism is assumed. Consider the two
communication events shown in Fig. 5. In UTP, these communication events
are represented by means of UML::Message. Without additional constraints
(such as GlobalOrdering) they are only locally ordered. Consequently, the fol-
lowing event sequence <Tunnel sent, Request sent, Request received, Tunnel
received> would be considered valid. In TDL, such a communication sequence is

TESTER
SS:defaultCT

g

SUT
UE:defaultCT

g

Tunnel

Request

TESTER
GW:defaultCT

g

Fig. 5. Communication event ordering
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represented by means of TDL::Interactions which are assumed to be atomic (no
distinction between the send event and the receive event) and globally ordered.
Consequently, the only acceptable event sequence would be <Tunnel occurred,
Request occurred>. This simplification choice is compatible with the way test
cases are implemented in many test management tools.

3 An Implementation of TDL

A reference implementation of TDL is essential for validating the TDL standards
by enabling the application of the specified concepts in practice and checking
their applicability, consistency, and usability. The reference implementation can
also help tool vendors to accelerate the adoption of TDL in their existing solu-
tions by using it as an import and/or export facility for TDL models, by adding
custom features on top of it, or by integrating it with existing products.

3.1 Requirements

A basic TDL implementation shall be able to read and write models serialized
according to the XF. It shall also allow users to check static semantics of mod-
els to verify their compliance with TDL. The specific means of creating and
editing TDL models is beyond the scope of the standard. TDL users may apply
domain-specific textual notations mapped to the TDL MM, such as the notation
described in Annex B of Part 1. Users may also utilize existing general purpose
modeling tools or other customized combined notations. The TDL MM specifies
constraints on the elements of the language, which are formalised by means of
OCL expressions. In order to evaluate these expressions against TDL models,
they also need to be integrated in the reference implementation.

One of the use cases for TDL from the very start was visualising tests gener-
ated from MBT tools as well as visualising test execution traces. The reference
implementation focused on providing such facilities by implementing means for
the visualisation of TDL models according to the TDL GR as the graphical rep-
resentations are also better suited for use in (standards-related) documents and
during high-level discussions, as well as for instructional purposes.

Due to the peculiarities and intended use of structured test objectives, it was
determined that instead of graphical shapes that can be exported as images, the
graphical representations of structured test objectives shall be realised as tables
exported in a Word document according to user-defined templates, which can
then be manipulated further in order to fit in within an existing document.

For the use of the UP4TDL, the profile itself needed to be implemented
first. However, using the facilities provided within modeling environments for
manipulating features provided by UML profiles can be rather cumbersome.
Hence, customised editing facilities for UML models using the UP4TDL were
also necessary in order to improve the usability of the UP4TDL implementation.

The availability of necessary tools and technologies for implementing model-
based domain-specific languages is an important factor influencing the choice of
platform for the reference implementation of TDL.



126 P. Makedonski et al.

3.2 Realisation

Eclipse and associated technologies were chosen as the base platform for the
implementation as it is the most widely used modeling platform today. At the
core of Eclipse modeling platform is the Eclipse Modeling Framework (EMF)
which provides an implementation of MOF (named Ecore) which was used to
for the implementation of the TDL meta-model. The meta-model specification
in the form of a UML model was done in the Papyrus modeling environment [2].
The resulting UML meta-model for TDL was transformed into an Ecore meta-
model for implementation purposes. The EMF provides the necessary facilities
for model serialisation and de-serialisation based on XMI. These facilities were
configured to work with XMI documents that are compliant with the TDL XF.

The semantic rules that are defined in the TDL standard as OCL constraints
can be integrated into the meta-model by means of annotations, which can be
used for automated validation of model instances. However, any modifications
to the constraints would require changing the meta-model and related generated
resources. Alternatively, the constraints can be specified as an add-on which can
be applied to the model instances as needed. This allows add-on constraints to
be modified, maintained, and extended independently from the meta-model. The
Epsilon Validation Language (EVL) [27] provides means for the implementation
of add-on constraints. The EVL also extends the capabilities of OCL by providing
additional facilities for the specification of guards on constraints which are used
to specify under which conditions the evaluation of a constraint shall be skipped.

The Eclipse Graphical Modeling Framework (GMF) links EMF modeling
capabilities with graphical editing. Diagram editors can be implemented by cre-
ating mappings between meta-model elements and diagram shapes, from which
the code for graphical editors is generated. This separation facilitates the inclu-
sion of custom shape and layout implementations. The Sirius project [4] utilizes
GMF and allows the declarative definition of diagram viewers and editors as
opposed to code generation. Sirius was chosen as an implementation platform to
avoid the maintenance overhead that comes with code generation as the appli-
cation matures. In addition, while the reference implementation focuses on the
visualisation of TDL models, facilities provided by the Sirius platform can be
extended with the specification of editing capabilities thus enabling an easy
transition from a viewer to an editor in the future.

The labels related to data use in the GR specification exhibit a more complex
structure than most other labels. For the realisation of these labels, an Xtext-
based serialisation relying on a partial grammar specification mapped to the
TDL MM was used. Xtext [6] is a framework for developing textual languages
on top of EMF. Xtext was also used for the realisation of the syntax specified
in the informative Annex B of Part 1 as part of the reference implementation
enabling the quick creation and manipulation of TDL models. Apart from the
grammar specification, it also includes further customisations in the scoping
and linking facilities, as well as enhanced semantic syntax highlighting which
provides customisable styles for identifiers based on their type and usage context.
Similarly, a Xtext-based realisation of the syntax specified in the informative
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Annex B of Part 4 is also included for users relying on TDL mainly for the
specification of structured test objectives.

The export of structured test objectives into tables in Word documents relies
on facilities from Docx4j [1] library providing Application Programming Inter-
face (API) for manipulating Word documents. A set of predefined templates,
including a template according to the concrete syntax defined in Part 4, are
included in the implementation. Users may define additional templates. The
templates describe the overall structure of the representation and contain a set
of placeholders for the different labels. Xtext is then used to substitute the label
placeholders with serialisation of the corresponding model elements and their
contents, in a similar manner as the labels in the GR viewer.

The implementation of the UP4TDL as well as supporting editing facili-
ties was realised on top of Papyrus. Papyrus provides a graphical editor and
an extensible framework for working with UML models. It was customised in
order to allow users to create graphical representations of UML models applying
UP4TDL with dedicated editing facilities. The customisations are shared among
three new kinds of diagrams—the DataDefinition diagram, the TestDescription
diagram, and the TestConfiguration diagram. Using the TDL TestConfiguration
diagram, the user can declare component types, component instances, gates, and
connections. To specify the types of data that are exchanged through gates, the
user may need to open a DataDefinition diagram to specify the data types and
data instances. In the DataDefinition diagram, the user can also map these data
elements to a data resource containing concrete data representations. Finally,
the user can start creating test descriptions that use the specified test configura-
tion by means of the TestDescription diagram. Additional editing facilities are
provided to streamline the work with UML models applying the UP4TDL. These
include a customised property editor that shows only the TDL-related properties
of stereotypes and an Xtext-based editor for the arguments of interactions.

The public availability of the implementation will be announced on the TDL
website [5], once licensing questions have been addressed at ETSI.

4 Related Work

Domain-specific testing languages offer a convenient solution, as they allow
domain experts to use familiar concepts to express and describe the system
behaviour for the purposes of testing. For example, automotive engineers may
rely on dedicated concepts, such as Electronic Control Unit (ECU), bus, power
port, etc., from the automotive domain in a domain-specific testing language
tailored for testing automotive systems.

The Check Case Definition Language (CCDL) [32] provides a high-level app-
roach for requirements-based black-box system level testing embedded in its own
testing process. Test simulations and expected results specified in human read-
able form in CCDL can be compiled into executable test scripts. However, due
to lack of standardisation, high-level test descriptions in CCDL are heavily tool-
dependent. High-level keyword-based test languages, using frameworks such as
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the Robot Framework [3], have also been integrated with MBT [35]. Beyond
textual keyword-based languages, graphical domain-specific testing languages,
such as one built on top of TTCN-3 [26], have also been developed.

There have been efforts to address the lack of standardisation in some
application domains, such as the standardised meta-model for testing avionics
embedded systems [19], and the Automotive Test Exchange Format (ATX) [7]
and TestML [18] focusing on automotive systems. Additionally, the Open Test
Sequence Exchange Format (OTX) [22–24] standardised at the International
Organization for Standardization (ISO) aims to provide tool-independent XML-
based data exchange format for the formal description and documentation of
executable test sequences for automobile diagnostics. These efforts have focused
primarily on enabling the exchange of test specifications between involved stake-
holders and tools, and are hardly concerned with precise semantics. The domain
and purpose specialisation of these languages limits their applicability outside
of the originally intended domain and testing activity.

The Message Sequence Chart (MSC) [21] standardised at the International
Telecommunication Union (ITU) was one of the first languages for the speci-
fication of scenarios, not focusing strictly on testing. In addition to the main
specification, Annex B [20] provides a formal specification of the semantics of
MSC. Some of the features of MSC were subsequently adopted in OMG’s UML
in the form of Sequence Diagram. While allowing specialisation of the sequence
diagram for different situations and domains, the loose semantics of UML and
the different potential usages and interpretations of sequence diagrams [28] are a
limiting factor for its use as a universal and consistent test description language.

The UTP [31] adds domain-specifics concepts related to testing thus enabling
test modeling with UML. While it maintains the wide scope of UML, it also
inherits the disadvantages associated with UML. The UP4TDL transfers the
concepts of TDL in the UML world providing a more specialised and integrated
means for test modeling with UML and inheriting the semantics from TDL.

The Precise UML [8] introduces a subset of UML and OCL for MBT seeking
to address the open-ended interpretations of the semantics of different diagrams
focusing on the specification of a behavioural model of the SUT. Its scope is
narrowed down the generation of test cases out of an SUT model.

Approaches based on a concrete executable language with strict semantics,
such as TTCN-3, enable the exchange of executable tests between partners.
However, such languages are not well suited for review and high-level discussions
due to the level of detail and the need to be able to understand the programming
language-like syntax.

While various domain-specific testing languages have been developed, they all
share a common set of challenges, including imprecise, informal, or no semantics,
lack of standardisation, lack of comprehensive tool support, and poor interop-
erability with other tools. A common standardised meta-model for testing with
associated well-defined semantics can help in consolidating approaches and pro-
viding a solid foundation for interoperability between tools.
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5 Conclusion

TDL has been designed to address existing challenges and streamline the test
development process. By abstracting away from implementation details, TDL
enables test engineers to focus on the task of describing the test scenarios that
cover the given test objectives, rather than work their way through a specific
test execution framework. It can also make test specifications easier to review
by non-testing experts. This is beneficial for the overall productivity and quality
of test development both in industry and in the standardisation process.

In this article, we discussed the evolution of TDL from its conception into
a multipart standard including a meta-model, standardised graphical syntax,
exchange format, and a UML profile. To accelerate the adoption of TDL a ref-
erence implementation is provided both for users to get started with using TDL
and for tool vendors to build their own solutions on top of it or integrate it with
their existing products. To bring test purpose specifications into the modeling
world and streamline the test specification process even further, an extension
to TDL was developed to enable the specification of structured test objectives
within TDL. The extension is based on TPLan and is targeted particularly
towards supporting the standardised test development processes at ETSI.

The road ahead for TDL includes two main directions for the near future—
mapping TDL to TTCN-3 and investigating the requirements for the adaptation
of TDL to specific testing needs, such as security and performance testing. Map-
ping of TDL test descriptions to TTCN-3 test cases will enable generating of
executable tests from TDL test descriptions in a semi-automatic way and allow
re-using of existing TTCN-3 test tools and frameworks for test execution. A
standardised mapping will leverage the impact of TDL and ensure that there
is a consistent and common way of implementing test cases based on TDL test
descriptions. This will significantly increase the efficiency of the test creation
process and thus decrease cost and time-to-market of software products.

During the launch event at UCAAT 2015, multiple stakeholders expressed
interest in adopting TDL for security and performance testing. However, they
also requested certain features that they rely on. In addition, there are ongoing
activities on security testing within TC-MTS. A next step is to identify and
catalogue the requirements for the adaptation of TDL to different domains and
types of testing in order to determine new language features and extensions.

The TDL working group within TC-MTS is dedicated to maintaining and
updating TDL according to evolving user needs. With contributions from numer-
ous partners from industry, academia, and standardisation, TDL is aiming to
address testing needs from a wide spectrum of users across different domains.

Acknowledgement. The work on TDL has been funded by ETSI in the context of
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Abstract. Operational semantics is one way of providing meaning to an
executable language. On a high level of abstraction, operational seman-
tics means to define an interpreter or an abstract machine for the lan-
guage. In this article, we review the concept of operational semantics in
the scope of meta-model-based language definitions and identify chal-
lenges and issues. We provide a clean conceptual approach using an
object-oriented runtime environment and state change operations, which
relies on an underlying abstract virtual machine. We present the app-
roach using a sample language.

1 Introduction

Modelling and meta-modelling are important approaches in the scope of OMG’s
MDA framework [8]. The table below shows the OMG four level architecture
and the corresponding concepts for grammar-based definition of languages.

OMG level Examples Grammar example OCL example

M3: meta-languages MOF EBNF MOF

M2: languages UML metamodel Java grammar OCL language

M1: models UML model a program a formula

M0: instances runtime objects a run a truth value

MDA is mostly concerned with models and programs, which are placed on
OMG level M1. Extending MDA to domain-specific languages lifts the focus
from M1 to M2, where languages are described.

We start with the understanding that a language on M2 is the collection of
instances of the metaclasses that define the language together with their seman-
tics. An instance of a programming language is called a program, and an instance
of a modelling language is called a model. In this paper, we use the term language
instance for both of them.

When (formally) describing languages on M2, one would typically consider
the three aspects structure, presentation, and semantics. A language structure
defines the set of all possible language instances and restrictions on this set.
c© Springer International Publishing AG 2016
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It consists of metaclasses for its concepts. The presentation aspect can include
descriptions of textual, graphical, and tabular presentations and a mixture of
these. The semantics aspect describes the meaning of language instances. It can
be given using different methods, e.g. describing language instance execution
(execution or operational semantics), mapping into another language (transfor-
mation semantics), or defining a mathematical relation between input domain
and output domain (denotational semantics).

This paper focuses on structural operational semantics (SOS), which is a way
of directly defining how language constructs are executed by providing execution
sequences (traces of configurations) as the semantics of a program. The traces
are given by a set of inference rules, describing how state changes happen.

Let us consider configurations with three parts < i, v, s >, with a language
instance i, a current value v, and a storage s. To describe the semantics of a
statement skip, we use the following rule, which states that skip can be replaced
by the empty language instance (⊥). The arrow denotes the state change relation.

< skip, v, s >→<⊥, v, s >

SOS also allows introducing steps on different levels as shown with a sample
inference rule handling an assignment of a location L with an expression E.
The precondition of the rule is that the expression E is reduced with several
steps (→∗) to empty (⊥), thereby producing the value v′ and the state s′ (i.e.
E evaluates to v′). The rule itself turns the assignment statement into a state
update, where the value for the location L is changed to v′. So the assignment
has one step of updating L, but underneath there are several intermediate steps
of evaluating E. In this case we use the transitive closure of the steps (→∗)
instead of a single step (→).

< E, v, s >→∗<⊥, v′, s′ >
< L := E, v, s >→<⊥, v′, s′ � {L �→ v′} >

Defining SOS for while statements is a bit more involved, as the following
example shows. The first rule tells us that the while statement does nothing in
case the condition B evaluates to false in the current state. The second rule
handles the case where B evaluates to true. In this case, we have to execute the
body S followed by the complete loop.

< B, v, s >→∗<⊥, false, s′ >
< while B do S, v, s >→<⊥, v, s′ >

< B, v, s >→ ∗ <⊥, true, s′ >
< while B do S, v, s >→< S; while B do S, v, s′ >

This last example shows the roots of SOS in functional programming, where
it is a normal idea that programs can change at runtime. For non-functional
programming languages this style might not be as appealing. For object-oriented
languages in particular, there are some inconveniences with this style of language
definition.
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1. In the programming world the program itself is typically considered to be
fixed. As the last example shows, the language instances in the configurations
are changed in order to indicate the position of execution. For imperative
programming, one would rather think of a program counter to indicate the
current position.

2. The state of execution is only partly considered. For object-oriented program-
ming, a rich object-structure would be envisioned.

3. Typical runtime structures as program counters and call stack are not directly
visible in SOS.

This paper tries to provide a way to describe operational semantics for an
object-oriented situation. The paper is conceptual, and uses an example to
explain the approach. It does not propose a concrete tool or language.

We continue this paper in Sect. 2 with a discussion of operational semantics
and introduce the sample language in Sect. 3. We look into configurations in
Sect. 4, and the relation of operational semantics to an execution platform in
Sect. 5. After discussing execution semantics in Sect. 6, we summarize in Sect. 7.

2 Operational Semantics Description

There are several forms of operational semantics, in particular structural opera-
tional semantics (SOS - also called small-step semantics) [12] and natural seman-
tics (also called big-step semantics) [7]. The first class focuses on the individual
computation steps, while the second has more focus on how the computation
results come about. For our purpose these differences are marginal and we use
SOS as a reference. Operational semantics use the understanding that computa-
tions are sequences of runtime states, where the states are called configurations
(see e.g. [4,7,10,12]). An SOS transition system is given by a set of configura-
tions, a set of labels and labelled transitions, as well as a set of initial states and a
set of final states. The typical idea of an SOS is to change configurations. Control
information is often encoded by changes to the current language instance.

Similar elements are defined in other approaches for semantics definition.
Rewrite-based approaches as K [13] and Maude [2] relate to configurations with
the main aim to reduce the computation to its final value. Rascal [9] provides
similar support as SOS, but is more code-oriented as also our approach.

For our definition of operational semantics, we use similar elements. We
assume a structure aspect description of the language L. The structure could
be defined using MOF (EMF) [3], but any other suitable language would work.
Starting from the structure of L, we need to define two parts of semantics. First,
we define the structural part of the runtime of L, i.e. its set of runtime states
(configurations)1, which we call runtime environment ([15]). Second, we have to
handle the dynamic part (execution in terms of state changes).

1 Please note the difference between structure of the language (its constructs, e.g.
if-construct), and structure of the runtime (its runtime elements, e.g. a stack frame).
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Commonly, the structural part is called instantiation semantics or structure-
only semantics [15]. It defines how the elements of the language relate to runtime
elements that can be created and used at runtime. For classes, this would typi-
cally be objects, while for methods, we envision stack frames. Depending on the
language, also message buffers, or an exception stack could appear. In traditional
operational semantics approaches, the main focus is on state changes, while the
configurations are defined ad-hoc. However, in our object-oriented approach,
configurations are very important.

The dynamic part describes the actual state changes that take place at run-
time. All execution sequences are based on trivial changes, which are implied
by the structural part. These trivial changes are creating new objects, setting
values, and adding objects to collections. The dynamic part describes how to
combine the trivial changes into bigger changes, in many cases a complete run.

In the operational semantics world, the main focus is on describing languages
with a completely defined runtime behaviour, i.e. in any state the possible next
states are determined. For example, this would be the case for Java. In practical
terms, it means that the program runs to completion.

In interpreted languages and script languages, the combined trivial changes
are not complete runs, but runs that can be put together by a user to even
bigger runs. An extreme is a language like MOF, which only defines trivial state
changes, which can be combined by a user using an editor. We discuss in Sect. 6
how state changes defined by a program are sequences and combinations of these
trivial changes.

The main contribution of this paper is the handling of the structural part in
Sect. 4, and its relation to the underlying machine and the structural part of this
machine as discussed in Sect. 5. Operational semantics normally considers this
underlying machine as given, and is not aware of its structure and behaviour. In
our approach, the language designer may choose the features of the underlying
machine and design the operational semantics combining trivial behaviour and
underlying behaviour.

3 SLS - A Sample Language

In order to illustrate and discuss our approach, we consider SLS, a simplified
version of SLX [6], an executable language for simulation of dynamic systems.
SLS is based on principles of next-event-progressions. Models of existing or hypo-
thetical systems are built in SLS by describing their components as objects of
classes. For each class of objects, attributes and methods are defined describing
the structure of the identified system components and their behavior.

SLS distinguishes active and passive classes (and objects). Passive objects
are objects that can only be acted upon. Active objects have a main() method
describing the sequence of executable statements by which they operate on their
own. The behaviors of all existing active objects including the system specifica-
tion determine at runtime the complete behavior of the system.

A main() method can only be called indirectly, by activating the cor-
responding active object from another active object: activate obj reference.
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If the main() executes a wait, the further execution of the active object is
frozen. It can be continued by another object: reactivate obj reference.

SLS features global dimensionless model time, i.e. time that is controlled by
the execution of the system, and that is not external to the execution. This
allows to mimic a real system by having multiple activities carried out at the
same time. An active object can experience scheduled delays in model time using
the advance construct. In SLS, model time is viewed as a succession of instants.
At any given instant in model time, the runtime system of SLS processes one
by one all events that take place at that time. After that, the runtime system
advances the model time to the next imminent event time.

For each active object, the runtime system needs to keep track of at least
three things: (1) the location of the next statement to be executed for the activity
in the program, (2) the location of data local to that object, and (3) the model
time at which the object is to resume (in case of scheduled delays).

In Fig. 1, we show a simple SLS example. Our system consists of two factories
(objects of class Factory) who produce products (objects of class Product) with
an individual production time. Both factories run in parallel and deposit their
products in a common collection (ProductList). As soon as 1000 products are
produced, the simulation run should stop with a printout.

The Factory is an active class and the Product is passive. The productList
is also a passive object (essentially a set of Products). Both the current number
of deposited products and the maximum number have been defined as attributes
of the global system (active) class Production.

The dynamic semantics of SLS is a simulation of the system, sometimes
called simulation semantics. The execution of the SLS sample system starts with
an instance of the system specification (here Production). The actual run is
started by calling the main() method of Production. At runtime, each active

Fig. 1. Sample SLS specification
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class (including the system specification) object has its own thread of control as
well as a state. The following states are possible.

State Semantics Sorting principle

moving The object is in the moving list. It is active or
waits for execution. The time of the object
is the current model time.

position in moving list

scheduled The object is in the scheduled list. It is delayed
by a defined time.

time of next move

waiting The object is in the waiting list. It is
suspended for unknown model time.

FIFO

terminated main() of the object is finished; object cannot
be reactivated

none

Now we look at the simulation run of our example, see the table below. The
Production object is in the moving list, its time is 0 and the model time is 0.
Its main() is called and generates two active Factory objects. Both of them get
move time 0, and are placed in the moving list. Then Production executes a
wait and is transferred into the waiting list, keeping its current execution state.

Time Who What Delay until

0 Production Create Factory(1) and Factory(2) Infinite

0 Factory (1) Delay 15 15

0 Factory (2) Delay 30 30

15 Factory(1) Create product-1 30

30 Factory(2) Create product-2 60

30 Factory(1) Create product-3 45

45 Factory(1) Create product-4 60

. . .

9975 Factory(1) Create product-997 9990

9990 Factory(2) Create product-998 10020

9990 Factory(1) Create product-999 10005

10005 Factory(1) Create product-1000, resume Production 10020

10005 Production Finish simulation run stop

The control now turns to the first entry of the moving list, the Factory(1)
object. Its main() just delays for 15 units (we consider this to be minutes). Doing
so, the Factory(1) will be placed into the scheduled list with move time 15. A
similar action is done for Factory(2) with a move time of 30.

Because the moving list has become empty, it will be filled with all objects in
the scheduled list with minimum move time. This also advances the model time
to that time. Here, only Factory(1) is at time 15. It generates a new Product
object, places it in the global productList, and delays for 15 more units. The
further processing is indicated in the table. We show the runtime situation at
system time 45 in Fig. 2.
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Fig. 2. Runtime situation at system time 45

Finally, the maximum is reached and the waiting Production is reactivated.
After printing some information, the main() of Production finishes and this
stops the simulation, because Production is the system instance.

4 Runtime Environment: Configurations

The runtime environment (RTE) is the set of possible states at runtime, i.e. con-
figurations. Runtime states are purely structural and the state changes (Sect. 6)
are based on them, see also [14]. The RTE depends on the language, i.e. the
RTE description has to be done on level M2. In addition, the RTE can depend
on the specific language instance, which has to be handled on level M1. We want
to distinguish several kinds of RTE elements.

– The read-only program is included in the RTE, such that the execution can
refer to the program.

– Global elements are only dependent on the language, e.g. predefined libraries,
and program counter. They are independent of the specific program.

– Local elements are runtime elements that relate to language concepts and
describe how these are instantiated. They are related to their respective con-
cepts, but are independent of the language instance. There are three main
cases as follows.
1. None-elements, which means that the language concept does not have a

runtime representation. An example would be statements and constant
declarations in SLS. The relation from concept to runtime is 1:0.

2. One-elements are extensions of concepts in terms of a 1:1 relationship. An
example are locations for global variables in SLS, or the instance of the
SLS system specification.

3. Many-elements are also related to concepts, but with the possibility of
many instances of the same element. A property of a passive SLS class is
an example - it exists for each instance of the class. A stack frame for a
method is another example, which exists for each call of the method. They
have a 1:n relation from concept to runtime.



Object-Oriented Operational Semantics 139

– Dependent elements are similar to local elements, but they depend on the
specific language instance. Active and passive classes in SLS are examples
here. They cannot be defined statically on level M2. Instead, on M2 a mapping
from the language concepts to the runtime structures can be defined.

Fig. 3. Structure and RTE for SLS

When defining the RTE of SLS, we start at level M2. As the RTE defines
instantiation semantics, it defines the transition from M1 to M0. We assume an
underlying mechanism that can instantiate objects from classes, which is called
MOF-VM. It is explained in more detail in the next section. For the RTE we
describe which MOF-VM classes to use on M1, which implies the possible MOF-
VM objects on M0. The crossing of the level boundary between M1 and M0 is
done by the MOF-VM semantics. At level M2 it is not possible to define M1
classes. Therefore, at M2 we define a mapping from language concepts to RTE
(see Fig. 3). This mapping is applied for the actual language instance, which
yields the RTE at level M1 (see Fig. 4). Being a mapping, the RTE is defined on
M2, and still depends on the language instance on M1. In Fig. 3, the dependent
elements are active and passive classes as well as the system. The dependency in
all cases are the available attributes. Please note that the mapping for SLS classes
is not as trivial as for UML classes, as we need to take care of concurrency by
including program counter (pc), call stack and time in the classes. For methods,
we define a local element mapping to stack frames.
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Fig. 4. RTE for the sample language instance

Figure 4 shows how the RTE mapping is applied to our sample language
instance at level M1. The RTE mapping defined at M2 is now applied, and
yields the MOF-VM classes RT Factory, RT Product, RT Production, and
StackFrame. Using this RTE, it is straightforward to instantiate the MOF-VM
classes, yielding the situation at time 45 at level M0 as shown in Fig. 2.

This way, the RTE is defined at M2 as a mapping from the language instance
on M1 to MOF-VM classes on M1, which then get instantiated at M0. Any
mapping notation can be used, for example QVT [11]. In this article, we use an
ad-hoc notation in order to explain the main idea.

The same approach is used for handling initial states and final states. All
these states have to be formed according to the RTE. They are also given by
mappings that are defined on level M2, and applied on level M1. Finally, initial
states and final states are used on level M0.

5 Execution Platform: MOF-VM

Instantiation semantics is based on an underlying mechanism that provides basic
instantiation. This could be very low level as in machine code, where an indica-
tion of a memory area leads to the provision of actual memory, thereby providing
very simple instantiation. It could be more high level like a Java virtual machine,
where a class instantiation mechanism is available. We assume a machine that
can instantiate objects from classes, which we call MOF-VM ([5]). MOF-VM
instantiation is the only way to do instantiation, such that all instances existing
are MOF-VM objects, including the objects on M2, M1, and M0.

In Fig. 5 we show how the language definition and the instantiation semantics
work together for the semantics of the M3 language MOF. The concepts of SLS
are defined on level M2 as instances of the Class concept of MOF (which is
defined on level M3), e.g. the class ActiveClass on the top left. This class has
a MOF-VM RTE as defined for MOF, which is shown on the top right part of
Fig. 5. Remember that MOF-VM is independent of the levels and provides the
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Fig. 5. MOF-VM instantiation versus language instantiation.

general way of crossing from one level to the one below. Using RT ActiveClass,
it is possible to create instances using MOF-VM semantics, and provide an
object with name Factory (bottom right). This object can be presented using the
custom presentation for ActiveClass (within SLS). This leads to the presentation
on the bottom left of Fig. 5.

On the left side, Factory is a MOF instance of ActiveClass. This language-
defined instantiation is based on the MOF-VM instantiation (right side) via the
applied mapping and the presentation.

Going one level up, the applied mapping is based on the defined mapping
on M3 (Fig. 6). There will be all of the three presentation, defined and applied
mappings on the levels M2 and M3; for better understandability, we have only
shown the relevant ones.

Fig. 6. Defined mapping versus applied mapping.

It is important to be aware that the underlying machine itself has already
some built-in runtime structure that may or may not be used by the definition of
the operational semantics. When we look at SOS as a language itself, the SOS-
VM is functional2, which means we expect it to be able to keep local values, and
to handle (recursive) functions (see also Sect. 6). Look at the following SOS rule
for a sequence construct to understand what that could imply.

2 SOS as a language (on M3) is functional, not the language described using SOS (on
M2). Of course, SOS can be used to describe all kinds of languages.
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< S1, v0, s0 >→ ∗ <⊥, v1, s1 >
< S2, v1, s1 >→ ∗ <⊥, v2, s2 >

< S1;S2, v0, s0 >→<⊥, v2, s2 >

The precondition of the rule is that a statement S1 is evaluated to v1, and S2

to v2. Then the sequence of S1 and S2 is evaluated to v2 in one step. The steps
inside S1 and S2 are intermediate steps in this case. In this rule, it is not clear
where the value v2 is stored – it is implicit in the underlying machine. This is
possible, because the SOS-VM allows to transfer the value from the precondition
(intermediate steps: above the line) to the top-level step (below the line) by just
giving its name. This way the local intermediate value is kept in the RTE of
the SOS-VM, and not in the RTE of the language. Similarly, the evaluation
of a statement can imply stack frames to be created. This is not explicit here,
because the SOS-VM facilities are used. Again, this means this part of the RTE
is hidden by using the SOS-VM.

The language developer has to decide where to place the RTE elements like
stack frames and local intermediate values. Either they are visible in the defined
RTE, or they are hidden and implicit by using the SOS-VM or MOF-VM.

6 Run Versus Step: Dynamic Semantics

As discussed in Sect. 2, an operational semantics has to describe configurations,
initial and final states, as well as state changes. In this section, we discuss state
changes based on the configurations defined in Sect. 4.

The RTE object structure has an implied navigation along its links, including
the navigation from objects to the language instance itself, and back. We assume
that the navigation is rich enough to also include basic elementary functions of
the underlying basic data types (MOF-VM data types), like boolean, integer,
and collection operations. This way, the navigation is a query facility allowing
to extract values in a very general sense (r-values). Furthermore, the navigation
allows to extract locations, where it is possible to change the state (l-values).
Simple updates are also implied by the RTE, and form the trivial state changes.

Defining executions is the combination of these trivial state changes into
larger changes. It is the language that defines the granularity of the state changes.

For the object-oriented version, we use an adaptation of abstract state
machines (ASM) [1] as the meta-language to define state changes. ASM normally
come with an own underlying sub-language for the description of locations and
values, but here this is implied by the RTE as follows.

– The RTE provides expressions (navigation/queries) and locations including
the notation new(C) to create a new element of a MOF-VM class C.

– An RTE update has the following syntax. <location> := <expression>

On top of these trivial updates, we use the following ASM constructs for
grouping of updates. As the semantics of the constructs is obvious, we do not
describe it here and refer the reader to [1] in case of doubt. In ASM, an instruction
is called rule.
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– Decision instruction: if <expression> then <rule> [ else <rule> ]
– Parallel execution: <rule> <rule>
– Sequential execution: <rule> seq <rule>
– Named rule: <name>(<name-list>) { <rule> }
– Calls of named rules: <name>(<expression-list>)
– Local names: let <name> = <value> in <rule>
– The ASM constructs forall, extend, and choose are not used here.

ASM normally have a global view on state changes, and would define the
semantics as a collection of global rules. As we are interested in an object-oriented
approach, we attach the rules to the appropriate classes. These classes can be
RTE classes or metamodel classes. As an example for RTE classes, we show
methods of the RT Factory runtime class. Essentially, the system (RT Factory)
delegates the handling of program counter and stack to the currently active
object. Please compare with the runtime structure in Fig. 3.

RT_Factory::setPC(newPC) { active.pc:= newPC }
RT_Factory::setValue(idx,v) { active.stack.top.env.add(idx,v) }
RT_Factory::getValue(i) { return active.stack.top.env.value(i) }
RT_Factory::push(stackframe) { active.stack.push(stackframe) }
RT_Factory::pop() { active.stack.pop() }

We explain our approach with the three SLS statements shown in Fig. 7.

Fig. 7. Some SLS statements shown as part of the SLS metamodel

In SOS, this abstract syntax would be formalized as follows, where S are
instances of statements, and M is a method name.

statement ::= forever S | S1;S2 | call M(S)

There are two possible ways of defining state changes in our approach, which
we call STEP and RUN. Doing the STEP variant means to specify the steps
of the language soleily based on changes in the RTE without using MOF-VM
RTE. The RUN approach is to specify the whole execution including all the
steps, possibly making use of the MOF-VM RTE. It is often easier to define the
RUN approach, but it will hide part of the RTE as it is kept in the underlying
MOF-VM RTE. We explain the operational semantics using the STEP and the
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RUN approach by defining methods step() and run(), and contrast it with the
SOS version. Please note, that STEP and RUN are alternatives, and in a real
case the language developer would select one of the two (and not both).

The semantics of the forever statement has to handle two situations. (1)
When entering a forever loop, the first step is to enter the body. (2) After
finishing the body, the forever has to be re-entered again.

The SOS semantics of it is given with a rule that just calls the body and then
calls the forever again. Thus, in SOS both situations are handled by a change
to the program code.

< forever body, v, s >→< body; forever body, v, s >

The definition using RUN is very similar to SOS, the main difference being
the attachment of the rule to the syntax class. Both situations are handled by
calls to the run() method. A sequencing of the underlying machine (seq) is used
to separate these two (big) steps.

Forever::run() { body.run() seq self.run() }

In STEP, the current position in the execution has to be handled explicitly.
Situation (1) is covered by the step() routine of class Forever, setting the pro-
gram counter. Situation (2) is covered when the inner statement is finished. In
this case, a continuation has to be provided by its parent, which is done with
the nextPC() method of class Forever. The definition of the semantics of the
sequence construct shows the use of the nextPC(). We use RTroot in order to
refer to the root of the runtime environment of type RT Factory. This example
shown nicely how the code of the syntax class Forever interacts with the code
of the RTE class RT Factory.

Forever::step() { RTroot.setPC(body) }
Forever::nextPC(node) { return self; }

The semantics of the SLS sequence statement includes three situations to
handle. (1) When entering the sequence, we start with the first statement. (2)
When the first statements is finished, we continue with the second statement. (3)
When the second statement is finished, the result of the sequence is the result
of the second statement.

In SOS, it is given by the following two tules. The first rule handles the case
where the first statement can be reduced to an empty statement starting from a
state s. In this case, it is sufficient to start the second statement from this new
state, implementing the second situation. If this is not possible, the second rule
describes that the first step in the execution of the sequence is the first step of
the first statement, which implements the first situation. The second statement
is unchanged in this case. The third situation does not need an extra handling
in this specification, as the value of the second statement is automatically the
final value. A different formulation is discussed in Sect. 5.

< s1, v, s >→<⊥, v′, s′ >
< s1; s2, v, s >→< s2, v′, s′ >

< s1, v, s >→< s1′, v′, s′ >
< s1; s2, v, s >→< s1′; s2, v′, s′ >
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In RUN, the first two situations are handled with a call to the run() methods
of s1 and s2. This is achieved with the sequence operator of ASM, thereby
introducing an intermediate step. The third situation is implied as with SOS.

Sequence::run() { s1.run() seq s2.run() }

In STEP, the situation is more tricky. The first situation is handled in the
step() method, where the pc is set to the first statement. The second situation
is handled in the first branch of the nextPC() method, where the continuation
after s1 is s2. The third situation is handled in the second branch of nextPC().
The value of s2 is retrieved, and set as value of the sequence itself. Then the
next step is given by the continuation of the parent.

Sequence::step() { RTroot.setPC(s1) }
Sequence::nextPC(node) {

if (node==s1) then return s2
else

let value = RTroot.getValue(s2) in
RTroot.setValue(self, value)
return nextPC(parent)

}

Finally, we look at the handling of a method call, for simplicity with just
one parameter. The following situations have to be handled for the semantics.
(1) The value of the parameter is evaluated. (2) The value of the parameter is
attached to the name of the parameter. (3) The body of the method is executed.
(4) The return value of the body is the value of the call.

SOS uses a precondition to handle the first situation, introducing interme-
diate steps. The second situation is done by extending the name mapping with
the appropriate name and value for the call of the body. The third situation is
given by replacing the active code. Finally, the fourth situation is implied by the
handling of return values in SOS-VM.

< e, v, s >→ ∗ <⊥, v′, s′ >
< call m(e), v, s >→< m.body, v′, s′ � {m.parName �→ v′} >

In RUN, the first situation is covered by a call to the run() of the parameter,
introducing intermediate steps with the underlying sequence operator (seq). The
value is attached to the name using the underlying parameter handling of the
run() method of body, which also handles the third situation. Finally, the result
value handling is implied by the return result handling of MOF-VM.

Call::run() { value := param.run() seq method.body.run(value) }

In STEP, the first situation is given by the step() method. The second and
third situations are handled in the first alternative of nextPC(). Here, a new
stack frame is created in order to keep the parameter value. Then the program
counter is set to the body. Finally, the fourth situation is handled in the second
alternative of nextPC(). The stack frame is removed and the value is attached
to the call. The next step is given by the continuation of the parent.
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Call::step() { RTroot.setPC(param) }
Call::nextPC(node) {

if (node==param) then
let sf = new(StackFrame) in
let value = RTroot.getValue(param) in

sf.env.add(method.parameter.definition, value)
RTroot.push(sf)
return method.body

else //return from call
let value = RTroot.getValue(method.body) in

RTroot.pop() seq RTroot.setValue(self,value)
return nextPC(parent)

The formulation of run() and step() can also be done using other formalisms
with sufficient formality, e.g. UML activities or Java code.

7 Summary

In this paper, we have discussed what operational semantics entails and how
it can be defined in an object-oriented setting. We have distinguished between
structure semantics and dynamic semantics, where structure semantics describes
the instantiation of the language constructs and dynamic semantics involves
collections of trivial state changes. For both kinds of semantics, it is essential to
rely on an underlying abstract machine providing some kind of semantics. We
have used the combination of MOF-VM and ASM as such a machine.

The proposed operational semantics is object-oriented because it gives a clear
indication of the runtime structure used with all the objects and their connection
to each other. In contrast to standard SOS, it allows to have a clear distinction
between the RTE of the language and the RTE of MOF-VM.

The paper has detailed the relation between operational semantics with its
two parts and the underlying machine. The semantics is described using methods
attached to runtime objects and to syntax objects. It is the task of the language
designer to decide where to place the semantic methods.

The RTE provides explicit elements for runtime configurations, thereby solv-
ing all the problems as indicated in the introduction. The next step is to turn
this approach into a meta-language for defining operational semantics and imple-
menting it in an appropriate tool.
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Abstract. Highly available applications undergo upgrades like any software
system. Because of the high availability requirement, such applications cannot be
taken offline for performing the upgrade and then put back into service. The
upgrade has to be performed while the application is providing services, and it
has to avoid service outage as much as possible. The Service Availability Forum
(SAF) has defined and standardized a set of middleware services to support high
availability and enable application portability. Among these services, the Soft‐
ware Management Framework (SMF) is in charge of the upgrade, mainly through
the execution of the upgrade campaign specification, which is seen as an orches‐
tration of the upgrade. The structure and concepts of an upgrade campaign, like
procedures, steps and upgrade methods, are defined in the standard. The way these
concepts are applied to the elements of an application in a given campaign defines
the orchestration of their upgrade and needs to be thought through. For this one
has to take into account the dependencies between the elements of the application.
Indeed, breaking these dependencies is the main source of outage during upgrade.
In this paper we propose a model driven approach for the generation of upgrade
campaign specifications taking into account these dependencies, the initial system
configuration and the target one.

Keywords: High availability · Upgrade campaign · Service Availability Forum
(SAF) · Availability Management Framework (AMF) · Software Management
Framework (SMF) · Dependencies · Model driven engineering

1 Introduction

Software systems may undergo upgrades for various reasons, including the upgrade of
software versions and fine-tuning of the configuration to improve performance. For
systems with the constraint of providing highly-available services, i.e. services available
99.999 % of the time, the upgrade has to be performed while the system is providing its
services. The Service Availability Forum (SAF) [1], a consortium of several computing
and telecommunication companies, defined and standardized a set of middleware services
for enabling the building and the management of highly available application services
using Commercial-Off-The-Shelf (COTS) components. Among the SAF middleware
services, the Availability Management Framework (AMF) [2] manages the availability of

© Springer International Publishing AG 2016
J. Grabowski and S. Herbold (Eds.): SAM 2016, LNCS 9959, pp. 148–163, 2016.
DOI: 10.1007/978-3-319-46613-2_10



the redundant components composing the application while the Software Management
Framework (SMF) [3] is responsible for the live upgrade of this application.

The upgrade of a system from a source configuration to a target one, by upgrading
software versions, adding and/or removing application elements, is performed by
SMF according to a roadmap, which is known as the upgrade campaign specification
[3]. An upgrade campaign specification is composed of a set of procedures, which are
composed of a set of steps. Each procedure has an upgrade method, rolling or single
step, and a scope. The rolling upgrade method is very useful for highly available
systems built with redundant entities as one can roll the upgrade over the redundant
entities. Coming up with such a roadmap, its procedures with their upgrade methods
and execution order that avoid/minimize service outage during execution is not an
easy task. One has to take carefully into account the dependencies among the enti‐
ties involved in the upgrade as breaking these dependencies is the main source of
service outage during upgrades.

In this paper, we propose a model driven approach for the generation of upgrade
campaign specifications. The approach takes as input a source configuration, a target
configuration, and a set of Entity Types Files (ETFs) [3], and through a set of transfor‐
mations generates an optimized upgrade campaign specification. The first transforma‐
tion determines the difference between the configurations and accordingly the upgrade
actions needed to migrate the system from the source to the target configuration.
However, these actions cannot be performed in any order or grouping, and this has to
take carefully into account the dependencies between the involved entities as well as the
well-formedness of an upgrade campaign specification as described in the standard. This
is achieved through a set of transformations that take into account all these aspects.

Our approach consists of a set of transformations to automate the process of the
generation as well as a set of metamodels that describe the different models involved.
With a model driven approach, the focus is mainly on including the domain knowledge
in the transformations rather than investigating how this knowledge should be applied
to achieve a good performance in the generation process. Thus, we are only enabling an
implementation, which would be both performant and cost-effective, we do not strive
for it. The model driven approach also provides a good basis for further abstractions to
widen the scope of applicability in the future.

The rest of the paper is organized as follows, Sect. 2 provides the necessary back‐
ground on the SAF standards, AMF and SMF. In Sect. 3 we introduce the different
metamodels used in our approach. In Sect. 4, we present our approach for upgrade
campaign specification generation and discuss the different transformations as well as
the prototype implementation. Before concluding in Sect. 6, we briefly review the related
work in Sect. 5.

2 Background

Out of the SAF middleware services, AMF [2] and SMF [3] are most relevant to system
upgrades. AMF is responsible for managing the components composing an application
to maintain service availability. Components are the smallest building blocks of an AMF
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application and can provide basic services, called component service instances (CSI).
Components are logically grouped into service units (SU) that provide service instances
(SI) composed of the CSIs of their components. SUs are in turn grouped into service
groups to provide redundancy and protect services. To provide a highly available service,
an SG must have at least two SUs, so that in case of failure the SIs it provides/protects
can be shifted from the faulty SU to the redundant healthy one. An SU may be active –
provide the service – or standby, which does not provide service but might receive state
information from the active SU so that service continuity can be ensured in case of
failure. An application consists of a number of SGs that are deployed on the nodes of a
cluster. An SG may have SUs on each node in the cluster, or on a subset of nodes referred
to as a Node Group (NG). AMF does not provide APIs for querying and modifying the
AMF configuration, this has to be done via another service called Information Model
Management (IMM) service [4].

On the other hand, SMF [3] orchestrates the upgrade following a roadmap called an
upgrade campaign specification, which contains the changes to be done in IMM and
how these changes should be done. An upgrade campaign specification describes one
and only one upgrade campaign by providing its initialization actions, campaign body,
and wrap-up actions. Initialization actions are taken at the beginning of the campaign
to prepare the system for the upgrade and for the changes that will take place during the
execution of the body of the campaign. Wrap-up actions are the post campaign and
verification actions that should take place at the end of the campaign. The campaign
body is specified as a set of upgrade procedures. In addition to proper initialization and
wrap-up actions, each procedure has a set of attributes, a scope, an upgrade method,
actions to be performed, and attributes common for its steps. The upgrade scope iden‐
tifies the entities that will be impacted by the upgrade procedure and it can be either a
set of Nodes, a set of SUs, or a set of Components. SMF supports only two upgrade
methods: 1) the single step upgrade method in which all the entities targeted in the scope
are upgraded at once; and 2) the rolling upgrade method which is commonly used for
upgrading highly available systems as it rolls over the redundant entities to be upgraded,
thus enabling some entities to provide the service while other redundant entities are
being upgraded. At runtime, based on the specified scope and upgrade method, SMF
decomposes every procedure into the appropriate number of steps and executes these
procedures step by step taking out of service some entities referred to as the deactivation
unit (DU) at the beginning of the step and at the end of the upgrade step putting back
into service the appropriate ones, which are referred to as activation unit (AU). The order
of procedures is specified using the execution level attribute, the procedures with lower
execution levels are executed before the procedures with higher execution levels, while
procedures of the same execution level can be executed in any order or simultaneously
depending on the SMF implementation.

From software delivery perspective, every software bundle is accompanied by an
ETF file [3] which describes the components and other entity types the bundle delivers
and the service types they can provide. ETF files are provided by the software vendor,
and contain data about the deployment constraints of a given delivered type.
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3 Modeling Framework

We designed several metamodels used in the generation of upgrade campaign specifi‐
cations. We briefly describe them in this section.

3.1 Dependencies Metamodel

The dependencies metamodel (shown in Fig. 1) captures the different dependencies that
may exist between entities in an AMF configuration and their relations. As discussed in
[5] it is important to characterize these different dependencies as they impose certain
ordering during the upgrade of the involved entities. We have three categories: directed,
symmetrical and collocation dependencies. The metamodel of Fig. 1 allows capturing
not only the dependencies existing in a given configuration but also the different entities
involved. In the following we describe briefly the dependencies:

• SI dependency: this dependency exists between two SGs, where one of them (called
Sponsor SG) is protecting a sponsor SI and the other (called Dependent SG) is
protecting a dependent SI.

• Proxy-Proxied dependency: the proxy-proxied is a deployment pattern which is part
of the AMF standard. This pattern consists of a component (Proxy) that implements
AMF management operations to extend the control over components (Proxied) that
do not implement the AMF APIs. Thus, the proxy-proxied dependency exists
between two SGs, one of them (Sponsor SG) is composed of SUs that contain the
proxy components, and the other one (Dependent SG) is composed of SUs that
contain the proxied components.

• Instantiation dependency: This is a dependency between components belonging to
the same SU, and which have to be instantiated in a given order. The component that
has to be instantiated first is the sponsor while the one that must be instantiated later
is the dependent.

• CSI dependency: between CSIs of the same SI. The sponsor CSI shall be assigned
before the dependent CSI.

• Container-Contained dependency: the container-contained is yet another deployment
pattern defined in the AMF standard. It implies a lifecycle dependency between two
components, meaning that one component (the contained) cannot exist or offer the
service without the existence and service of another component (the container) in the
same physical node. This dependency captures the container as being the sponsor
and it is identified by its SG and its type. The contained is identified similarly and
plays the role of the dependent in this dependency.

• Component-CSI dependency: for some components, imposing an order of instantia‐
tion is impossible given the nature of these components. The AMF solution for this
case is to order the assignment of CSIs instead of the instantiation of the components.
So, this dependency is used for components of this kind, and in this case a component
(dependent) is said to depend on another component (sponsor) if: 1) all the CSIs that
can be handled by the dependent depend on at least one CSI handled by the sponsor;
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and 2) none of the CSIs that can be handled by the sponsor depend on any of the CSIs
that can be handled by the dependent.

• SU collocation dependency: exists between components in the same SU.
• Node collocation dependency: exists between SUs configured for the same Node, or

SGs that have a Node in common.
• Node Group collocation dependency: exists between SGs sharing the same Node

Group.
• Container collocation dependency: this dependency is derived from container-

contained dependency, and identifies the pairs of (dependent type, dependent SG)
that share the same pair of (sponsor type, sponsor SG).

• Peer dependency: exists between components of SUs of the same SG.
• Service protection dependency: this dependency exists between SUs of the same SG

as they all together protect services assigned to the SG.

Fig. 1. The dependencies metamodel.

3.2 Change Metamodel

The change metamodel (shown in Fig. 2) is used to describe the changes to be performed
to take the system from the source configuration to the target configuration. These
changes, can be either IMM configuration related changes (ModifyImm, AddToImm,
RemoveFromImm) or software related changes (SoftwareChange).

Software related changes (SoftwareChange) can be for the installation (SwInstalla‐
tion) or removal (SwRemoval) of software bundles in/from a set of nodes (UCGNode).

The proposed metamodel captures two key aspects of the configuration related
changes:
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• The nature of a change: Since the input data for a change depends on its nature
(addition, removal, or modification), the change metamodel captures all the possible
cases from the addition (which requires all the attributes), to the removal (which only
requires the target’s name).

• The nature of the target of a change: the target of a change can be an AMF entity, an
AMF entity type, or an AMF association. The placement of this change in the right
section of the upgrade campaign specification is done based on this information. This
will be elaborated further in Sect. 4 where we discuss the generation of upgrade
campaign specifications.

3.3 Upgrade Campaign Specification Metamodel

The upgrade campaign specification metamodel (shown in Fig. 3) captures the concepts
needed to describe a SAF compliant upgrade campaign specification as specified in [3].
It is described using upgrade objects (UCG_UpgradeObject). Every upgrade object is
defined through its initialization, body, and wrap up sections. The main upgrade objects
(UCG_UpgradeObject) used to specify an upgrade campaign are:

• The upgrade campaign (UCG_UpgradeCampaign): It is the root element of the
upgrade campaign specification.

• The upgrade procedure (UCG_UpgradeProcedure): The upgrade objects composing
the upgrade campaign’s body specifying the changes that the SMF engine should
perform and how it should perform them.

Fig. 2. The change metamodel.
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The upgrade campaign body as mentioned earlier is composed of upgrade proce‐
dures, while the upgrade procedure body is composed of the upgrade step description,
which is an ordered list of upgrade actions (UCG_Action) and their respective target
entities. The initialization and the wrap up sections are also composed of ordered upgrade
actions. An upgrade action can be:

• An IMM configuration related operation (UCG_ImmOp): like addition, removal or
modification of an object in IMM representing an AMF entity.

• A software related action (UCG_SwOp): like installations and removals of software
bundles; usually called based on the software bundle DN and the node on which the
installation should be done (PlmEE).

• An administrative operation (UCG_AdminOp): administrative operations (Lock,
Unlock, Lock-Instantiation, and Unlock-Instantiation), defined in the AMF standard,
are called on AMF entities based on their DNs. For every administrative operation
we should specify how it should be done in the upgrade and at its rollback (doing
and undoing of the administrative operation).

• A Callback (UCG_Callback): called on entities deployed in the system, based on
their DNs.

• A CLI Command (UCG_Cli): called using the Command Line Interface (CLI). A
CLI command is specified using the path of the command, its arguments, and the
nodes on which it should be called. For each command, we specify how it is called
at upgrade and at its rollback (doing and undoing the command).

Fig. 3. The upgrade campaign specification metamodel.

154 O. Jebbar et al.



4 Upgrade Campaign Specification Generation

We first give an overall view of the generation process before describing each
transformation.

4.1 Overall View of the Generation Process

The overall view of our approach is shown in Fig. 4. The starting point is the input which
consists of:

• A source configuration: The configuration describing the system as it is currently.
• A target configuration: Describing the new desired configuration of the system.
• ETFs: Describing the software available in the software repository, the software

bundles deployed and to be deployed in the system, as well as the AMF types they
can provide.

Fig. 4. Overall view of the approach.

As shown in Fig. 4 the approach consists of several transformations, each one real‐
izing a specific function required in the generation process. The first transformation
consists of extracting the dependencies between the AMF entities into a dependencies
model (instance of the dependencies metamodel) from each of the configurations and
the provided ETFs. Using a second transformation, we create a change model (instance
of the change metamodel). This is based on the work done in [6] for the comparison of
two configuration models. It has been adapted to provide the difference as a change
model that describes the changes to be performed on the source configuration to obtain
the target configuration. From this change model, and using a third transformation, we
generate an elementary upgrade campaign specification model (instance of the upgrade
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campaign specification metamodel) containing an upgrade campaign element for each
change in the change model. This upgrade campaign specification model goes then
through yet another transformation which groups upgrade campaign elements to be
performed in the same upgrade procedure. For each group, all the upgrade campaign
elements are merged into an upgrade procedure and the elements not required anymore
are deleted from the upgrade campaign specification model. Finally, the resulting
upgrade campaign model is refined using a fifth transformation that takes into consid‐
eration the dependencies between the system’s entities to create a partial order and to
determine the optimal scope for each procedure.

4.2 The Transformations

4.2.1 Dependencies Extraction
In this transformation we extract from the ETFs, the source and the target configurations
the different dependencies between the system’s entities. Some dependencies, such as
SI dependency, Proxy-Proxied dependency, Container-Contained dependency and CSI
dependency are easier to extract than others since they are explicitly mentioned in the
AMF configuration. The rest of the dependencies on the other hand, are harder to
discover as they either have to be deduced from the way entities relate to each other and
their extraction might involve some deep querying of the configuration or they depend
on some vendor provided values (such as compatibility information) and might require
a lookup into more than one ETF. In order to perform this task, we took advantage of
the fact that all transformation languages use OCL as a mean for model querying and
navigation as illustrated by the example in Fig. 5. Thus, providing us with a suitable
environment to implement easily and execute efficiently these queries.

Fig. 5. ETL rule to create CSI dependencies.

4.2.2 Change Model Creation
The change model describes the actions that have to be performed to take the system
from the current configuration to the target one. This transformation is based on the work
done in [6] for comparing two AMF configuration models. The comparison of two AMF
configuration models is done along the following lines: Since the source and the target
configurations may not use the same naming for the configuration entities (e.g. if the
target configuration is generated automatically from scratch) the assumption is that at
least the SIs, which are provided before, after and throughout the upgrade have the same
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name in the two configurations. Starting with this assumption we identify the provider
SG of each SI in each of the configurations and map them to each other. Subsequently
we map the SUs of the SGs and their components based on other unchangeable properties
of the configuration. Thus, this way we create a consistent mapping between the entities
of the two configurations that we can compare as follows:

• If an entity in the source configuration matches an entity in the target configuration
and they both have the same values for all attributes, we conclude that the entity in
the source configuration has not been changed and therefore no action will be
included in the change model for this entity.

• If an entity in the source configuration matches an entity in the target configuration
but they do not have the same values for all attributes, we create a ModifyImm
element in our change model with the entity in the source configuration as the source
of this element (entity being changed), and the entity in the target configuration as
the target of this element.

• For every entity in the source configuration that does not match any entity in the
target configuration we create a RemoveFromImm element with this entity as a target
of the removal.

• For every entity in the target configuration that does not match any entity in the source
configuration we create an AddToImm element with this entity as a target.

Software bundle installations and removals are detected based on the changes in their
association classes with the AMF Node entity. Additions of an instance of this AMF
association class will imply the addition of a SwInstallation element in the change model.
Similarly a removal of any one of these entities will imply the instantiation of a SwRe‐
moval element in the change model.

4.2.3 Actions Creation
This transformation takes the change model as input and creates an elementary upgrade
campaign specification model which contains an upgrade campaign element for each
change in the change model. These upgrade campaign elements are created according
to the standard upgrade campaign schema [3] and they respect the logic described in the
SAF specifications. This implies putting the right upgrade actions in the right sections
of the upgrade campaign specification, some parts of which require explicit specification
of actions and their targets (e.g. initialization, wrap-up), while other parts have standard
actions and require only their parametrization (e.g. upgrade step). The elementary
upgrade campaign specification model requires further refinements as at this stage some
schema elements are only partially defined, e.g. an upgrade procedure may only have
an initialization and/or a wrap-up section, but not a body. In this translation from a
change model to an upgrade campaign specification we aimed at respecting some rules
for compliance with SAF standards such as:

• Only IMM operations targeting software bundles or AMF types are put in campaign
initialization or wrap-up, for the rest of the actions we create proper upgrade proce‐
dures.
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• Only IMM operations targeting Nodes, SUs, or Components are part of the body of
a given procedure, otherwise the corresponding upgrade action is put either in the
initialization or wrap-up of the procedure.

• Actions that prepare for the body of the procedure (for instance locking an SI before
removing it), are put in the initialization of the procedure. Actions that follow from
the actions of the body of the procedure are put in the wrap-up of the procedure
(unlocking a SI after its addition).

4.2.4 Actions Matching
The actions matching, also called grouping, transformation refines the elementary
upgrade campaign specification model generated by the previous transformation by
matching and grouping the upgrade campaign elements that should be done within the
same procedure. After this matching transformation the upgrade campaign specification
model becomes fully compliant to the standard upgrade campaign specification schema.
This transformation was implemented using EPSILON Pattern Language (EPL) [21].
In EPL the matching goes through several rounds by detecting the matching patterns in
the input model that gets refined after every round until no more matching patterns are
found. The matching patterns were formulated based on the following reasoning:

• Elements that are redundant of each other should either all be added or none of them
is added. Meaning that failure of addition of one, should imply the undoing of all the
additions already done.

• There is no need to have a “useless” logical entity, such as a SG without SUs, or SI
without the SG protecting it.

• A software bundle is installed only when at least one of its provided components is
configured for a node.

• A software bundle with no configured components should be uninstalled.
• We should not have an AMF association in the configuration without the minimum

required participating logical entities.

4.2.5 Ordering and Scope Optimization
The last transformation takes into consideration the dependencies extracted from the
source, the target configurations and ETFs to determine the appropriate ordering of the
execution of the upgrade procedures. Two categories of dependencies have to be consid‐
ered for the ordering of the upgrade procedures: Symmetrical and directed dependencies.

• The changes to entities related by a symmetrical dependency are to be ordered as
follow:
– Addition can happen whenever possible with respect to any directed dependencies

the entities are involved.
– Upgrade of an entity cannot happen before the addition of all the entities which

need to be added, and which are related to this entity through a symmetrical
dependency.
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– The removal of an entity cannot happen before the upgrade of all entities which
need to be upgraded, and which are related to this entity through a symmetrical
dependency.

• The directed dependencies are mainly driven by the compatibility between the
sponsor and the dependent entities, and the rationale that the dependent entity cannot
exist without the sponsor. The ordering in this case is summarized in Table 1.

Table 1. Ordering rules for directed dependencies

Change on sponsor Change on dependent Order
Addition Addition Sponsor first
Removal Removal Dependent first
Addition Upgrade Sponsor first
Upgrade Addition Sponsor first
Upgrade Upgrade Depends on compatibility
Removal Upgrade Dependent first
Upgrade Removal Dependent first

The rules described in Table 1 impose an order that allows for performing the changes
without violating the different dependencies. However, these rules might not be enough
for the design of an optimal upgrade campaign specification. The following factors have
determining role in keeping to the minimum any service disruption:

• The choice of AU/DU.
• The choice of the upgrade method.
• If there is a chance for the upgrade campaign triggering a rollback it is preferred if

this happens as early as possible in the execution. Rollback is triggered by a failure
and implies that all the procedures executed successfully before the failure are rolled
back. Hence earlier this happens less impact it has on the system.

We propose some heuristics to optimize an upgrade campaign specification from
these aspects. Our assumption is that the Node has the biggest scope of impact, followed
by the Container then the SU, while the Component has the smallest scope of impact:

• Heuristic #1: keep the AU/DU to the minimal scope of impact (Node, Container, SU,
Component), meaning that the AU/DU will be at most of the scope of impact of the
software bundle installation/removal. If the upgrade consists only of IMM modifi‐
cations then the AU/DU will be modification scope bounded. For instance, if an SU
is to be modified, there is no need to lock the Node.

• Heuristic #2: put as many changes as possible into the procedures having a bigger
scope of impact. For instance, if the upgrade of a contained entity has the scope of
impact of the Container we can upgrade with it all collocated contained entities.

• Heuristic #3: procedures with bigger scope of impact should be executed as early as
possible. The rationale is that more actions a step may take more likely it will fail.
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Since a step with a Node as its AU/DU, for instance, can take actions on any and all
of the hosted entities it is more likely to fail than a step that has an SU as its AU/DU.

• Heuristic #4: an execution level should contain procedures of the same scope of
impact.

4.3 Prototype

There exist many environments and tools for model management. The tool we used in
this work is EPSILON [20], a family of languages that provide a self-contained model
management environment that enables model transformation, verification, merging,
comparison and migration among other capabilities. The rationale behind this choice is
as follows:

• EPSILON family of languages are concrete syntax agnostic [24], meaning that the
model transformations are written only based on the abstract syntax, and using the
EPSILON Model Connectivity we can apply them successfully on models expressed
as XML, EMF (XMI 2.x), or even Z models [25].

• EPSILON enables and eases the integration with existing tools written in other
languages such as JAVA or ATL [26].

• EPSILON defines EPL [21], which enables patterns detection in models on one hand,
and the re-execution of the transformation until no more specified patterns are
detected in the input models on the other hand. As far as we know, no other model
management tool offers such capability that we needed especially in the implemen‐
tation of the actions’ matching, ordering and scope optimization activities.

In our prototype, the dependency extraction is realized as a transformation in
EPSILON Transformation Language (ETL) [20, 21], and so was the action creation. For
the refinements (actions matching and optimization activities), they have been imple‐
mented using EPL. The change creation function extends the work in [6] implemented
in JAVA, hence the use of the general purpose language Epsilon Object Language (EOL)
[20, 23] in order to integrate this tool in the overall approach. The generation of the xml
file from the upgrade campaign specification model, not shown in Fig. 4, is done using
the Epsilon Generation Language (EGL) [20, 22].

5 Related Work

The paper touches upon several topics including live upgrade, component dependencies,
dynamic reconfiguration and model comparison.

Component dependencies and dynamic reconfiguration of component based systems
have been thoroughly investigated in the literature. Chen [7] proposes an approach for
dynamic dependency management for dynamic reconfiguration of component based
systems. He considers the “static” (design time) known functional dependencies among
components, but defines the concept of dynamic dependency that holds temporarily
when a client component calls a method in a server component. The idea is that the
dependencies defined at design time do not hold all the time during execution but only
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when a component is using another component. The proposal is to monitor the interac‐
tions of each component using a virtual stub that registers ongoing interactions, block
interactions when needed for the reconfiguration, and resume blocked interactions after
reconfiguration. The proposed approach is not applicable in the context of service high-
availability as blocking interactions between components while they are still providing
service will certainly lead to service outage.

Matevska et al. [8] tackle the problem for the same kind of dependencies as in [7],
with the goal of minimizing service outage. They define the concept of dynamic depend‐
ency graph to keep track of which component is currently using which other component.
Components can be in different states, free, passive and active. Components are only
changed when they are in free and passive states; before the changes are performed they
are blocked and incoming invocations are queued. To avoid service outage, the idea is
to find the optimal point in time during the evolution of this dependency graph, and
change a component when there is no runtime dependency to it. The authors are
concerned with high-availability and service outage, but there is no guarantee there will
be an optimal point in time and there is no guarantee about the duration of the changes
while incoming invocations/requests are blocked. A similar approach, where software
modules are only upgraded in safe states and future incoming requests are buffered is
described in [9].

Dependencies relevant for upgrades in the context of AMF have been studied in [10].
Two kinds of dependencies are considered: functional dependencies (directed depend‐
encies in this paper) and upgrade dependencies. Upgrade dependencies are dependencies
between two upgraded components that did not exist between the original components.
A directed graph is created from these dependencies and taken into account for the design
of the upgrade campaign. However, not all relevant dependencies are considered (e.g.
collocation dependencies) and the type of applications that are considered is limited.
Our approach provides an automated method to identify dependencies and design an
upgrade campaign whereas the work described in [10] is mainly concerned with the
individual upgrades of applications and databases at a lower granularity.

Other works [11, 12] consider component dependencies during dynamic reconfigu‐
ration of component based applications from the perspective of application consistency,
not removing a component while it is being used by another one, avoiding dangling
references, etc., but with no consideration to the service outage and high-availability.
Dependencies are determined at runtime and taken into account before removing or
updating a component. Other approaches rely on specific operating systems [13],
container environments [14] or component models [15] or use low-level approaches
with wrapper-like functions [16] or modify source code [17]. An overview of techniques
used for dynamic reconfiguration can be found in [18].

Comparing models and determining their differences has been a very active research
topic as shown in the review of the different approaches provided in [19]. Our approach
for comparing two configuration models is similar to many of these approaches but
specialized to the context of AMF configurations where the services instances used in
both models are used as starting point for the matching and the differentiation.
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6 Conclusion

We devised and implemented a model driven approach for upgrade campaign specifi‐
cation generation. This is part of a larger project for model based software management
including model driven configuration generation and model based service level agree‐
ment management. A model driven approach leverages the modeling framework
designed for the project and increases the level of abstraction. The declarative aspects
of the transformations allow to focus on the concepts and their relations. The particular
feature of pattern detection of EPL was found particularly useful for the functions of
action matching, ordering and scope optimization.

As part of the larger project we have also been working on the simulation and eval‐
uation of upgrade campaign for highly available systems. As future work we plan to use
the simulation and evaluation tool to validate the heuristics presented in Sect. 4.2.5,
define new heuristics if necessary and validate the whole upgrade campaign specification
generation approach.
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Engineering Research Council of Canada (NSERC) and Ericsson.
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3 LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
pehladik@laas.fr

Abstract. The SAE standard Time-triggered Ethernet defines a strong
networking infrastructure, which supports the engineering of avionic sys-
tems. Avionic functions are often designed independently and integrated
to form the avionic system. The iterative integration approach helps in
controlling the design complexity of evolving avionic systems and aims
at minimizing the cost associate with the reconfiguration of scheduling
parameters of already integrated parts. On the other hand, the itera-
tive approach requires to specify and manage a huge set of constraints,
which are then solved to compute the optimal scheduling parameters. In
this paper, we focus on this issue of manual specification of these con-
straints by the system engineer. We propose a model-driven approach,
which provides the required abstractions and automation to support the
system engineer in using effectively the iterative integration approach.
The abstractions consist in a metamodel, which describes the system
at a given integration step and a metamodel for the constraints. The
automation consists in a model transformation which enables generating
automatically the relevant constraints at integration step.

Keywords: Time-Triggered Ethernet · IMA · Model-driven approach ·
Meta-model · Model transformation

1 Introduction

Avionic embedded systems are now engineered following the principles of Inte-
grated Modular Avionics (IMA) architecture [1]. The IMA architecture is charac-
terized essentially by the sharing of distributed computing resources called mod-
ules. Since avionic systems are inherently safety-critical systems, sharing these
resources requires to guarantee some safety properties such as the collision-free.
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Moreover, IMA-based avionic systems are distributed systems which depend on
a robust and deterministic networking infrastructure. The Avionic Full Duplex
Switched Ethernet (AFDX) [2] has long been adopted as a networking stan-
dard for the avionic systems. Therefore, the IMA and AFDX became the main
components of a typical architecture model for the recent civil aircrafts such
as B787 and A380. More recently, the SAE standard Time-Triggered Ethernet
(TTEthernet) is emerging as a new standard of the avionic network [3]. With
respect to AFDX, the TTEthernet standard enables to achieve a best usage of
the network resources and is more deterministic. In particular, the TTEthernet
network schedule is established off-line.

The avionic functions designed independently need to be integrated within
an existing system deployed on a TTEthernet-networked IMA architecture. The
integration of avionic system is a complex engineering task. We have presented
in [4] an iterative integration approach, which enables the integration of multi-
ple IMA partitions as well as TTEhernet frames. This approach addresses the
issue of finding an appropriate scheduling for the partitions and frames. The
synthesized schedule may require the reconfiguration of the already integrated
frames or partitions which lead to a supplementary re-certification cost that we
aim to minimize. We consider this issue as Constraints Optimization Problem
(COP) [13] where we satisfy not only a set of constraints but also we optimize
the reconfiguration cost function.

In order for avionic engineers to use the iterative integration approach, they
have to specify both the existing system and the new avionic functionality using
a set of formal constraints. These constraints can then solved effectively using
Constraints Programming (CP) techniques. The number and complexity of these
constraints grow up very sharply even for small system examples. Therefore,
using effectively the iterative integration approach faces a challenging constraints
management complexity. In order to overcome this issue, we propose in this paper
a model-driven engineering approach, which provides the required abstractions
(i.e. metamodels) and defines the transformation process to enable the automatic
generation of these constraints.

The paper is organized as follows. Section 2 presents the background knowl-
edge and the model for the iterative integration problem. In Sect. 3, we introduce
our model-driven engineering approach. We dedicate Sects. 4 and 5 to present
the meta-models of our approach. We define in Sect. 6 the transformation process
that generates the constraint program for a given integration problem. Our case
study is presented in Sect. 7. We present the related works in Sect. 8 and we
conclude the paper in Sect. 9.

2 Iterative Integration on TTEthernet Networks:
Backgrounds and Model

The TTEthernet is a layer 2 protocol standardized under SAE AS6802 [3]. It
defines a strategy of clock synchronization in a distributed system. The TTEther-
net supports two classes of traffic: time-triggered traffic and event-triggered traffic.
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The time-triggered traffic is relevant mainly for the critical applications. In this
work, we are only interested in time-triggered (TT) traffic. In contrast to the
event-triggered traffic, the time-triggered one is static and fixed time windows are
reserved for the transmission of each frame on a given dataflow link.

A TTEthernet network can be represented by a graph G = (V, E) where V
represents the nodes of the network and E the set of physical links. The nodes are
of two types: the set of End-Systems (ES ) and the set of Network-Systems (NS )
Each physical link connecting two nodes defines a bidirectional communications,
each of which is a dataflow link.

A TTEthernet frame fi is communicated from its source to its destinations
throughout fixed paths called virtual links. A virtual link vli is therefore asso-
ciated with each frame fi and defines a tree structure where its nodes are a set
of dataflow links. The root element of this tree is the first link on which a frame
fi is transmitted, denoted first(fi). The leaves are the last dataflow links on
which the frame fi is transmitted, designated last(fi). We denote by next(fi, l)
the next dataflow links on which the frame fi is transmitted taking as reference
the dataflow link l. We denote by f l

i the transmission of the frame fi on the
dataflow link l, f l

i,k the kth instance of the frame fi on the dataflow link l and
by Li the set of dataflow links on which fi is defined.

The transmission of each frame fi is characterized by the parameters: the
period of fi, fi.Period , and its transmission delay on a dataflow link fi.Length.
The periodic pattern describing the communication of all the frames is called
hyper-period (HP) and defined as the least common multiple of all frame periods.
We denote by Instances(fi) the number of instances considered for the frame fi
and formally defined as HP

fi.Period . The schedule of the kth instance of the frame
fi on the dataflow link l is determined by the variable f l

i .Offset which designate
the offset time with the respect to the beginning of HP . The offsets are the only
variables of the integration problem.

In the iterative integration problem as defined in [4,9], we have some con-
figured applications which communicate through a TTEthernet network and we
want to integrate new ones. To ensure the real-time requirements, we may recon-
figure the scheduling of the previous ones. We focus in the scope of this paper on
the reconfiguration of the network. This reconfiguration induces an additional
cost of the re-certification of the system. We designate by Cost(fi) the cost of
reconfiguring a frame fi on a given dataflow link. We denote by F the set of
considered frames, Fold the set of configured frames and Fnew the set of frames
to configure.

For a configured frame fi, we denote by f l
i/b.Offset(k) the offset of the kth

instance of the frame fi on the dataflow link l before the integration and by
f l
i/a.Offset(k) this offset after the integration. When it is clear from the context,

we simply designate the offset after the integration by f l
i .Offset(k). We define by

Rl
i(k) the reconfiguration function that returns 1 if the kth instance of frame fi on

the dataflow link l is reconfigured and 0 otherwise. The goal of the iterative inte-
gration problem is then to minimize the total reconfiguration cost of the network.
The reconfiguration cost of a frame instance f l

i,k is equal to Cost(fi) × Rl
i(k).
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3 Overall Approach

We present in this section our model-driven engineering approach to automati-
cally generate the constraints program that solves the problem of a given inte-
gration step. As shown by Fig. 1, our approach relies on the definition of two
meta-models. The first one, called the Integration Specification Meta-Model,
characterizes an iterative integration problem on TTEthernet networks. The
second one called CP Integration Meta-Model defines the CP formalization to
solve this problem. An instance of the first meta-model describes a real case
of the iterative integration problem. We specify in this instance the configured
frames and the frames to be configured and how they are deployed on the net-
work architecture. An instance of the second meta-model models the CP program
that solves a specific iterative integration problem. A transformation tool, which
relies on the meta-models, enables transforming a given instance of the Inte-
gration Specification meta-model to the corresponding CP model. The latter is
then transformed to a CP code structured following the targeted CP language
specification and solved by a CP solver to find a new optimal configuration. By
defining an intermediate CP model before generating the CP integration code,
our approach can target different CP solvers. To test our approach, we have
used MiniZinc [6] as target CP language. We specify in the following section the
Integration Specification meta-model.

Integration Specification 
Meta-Model

CP Integration Meta-Model

TTEthernet Network
 Model

CP Integration Model

Transformation Tool

<<instance of>>

CP Integration Program

<<instance of>>

<<uses>> <<uses>>

Fig. 1. Approach overview

4 Integration Specification Meta-Model

This meta-model is depicted in Fig. 2. An integration problem is based on the
definition of integration steps, which are represented by the metaclass Integra-
tionStep. This metaclass has an attribute step which indicates the step order of
the integration. It has also the attributes switchTreatmentDelay and HP which
designate respectively the required delay for a switch to handle a frame and the
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Hyper-Period for all the frame periods. An IntegrationStep is composed of a set of
frames to configure and the set of already configured frames if any. A Configured-
Frame differs from a FrameToConfigure by the indication of the actualOffsets
attribute which indicates the schedule before the integration of each instance of
the considered frame on each dataflow link. A Frame is characterized by sev-
eral attributes including period, length, reconfigurationCost, nbInstances, etc. A
VirtualLink is associated with each frame. Each VirtualLink is characterized by
a source and destinations DataflowLink. A VirtualLink can be hence composed
of a number of DataPaths. Each DataPath defines a path from the source to
one destination. It is constituted by the adjacent sequence of a dataflow links.
A Schedule characterizes the allocation of time windows of each frame on each
dataflow link. Obviously, many frames can be scheduled on a dataflow link and
a frame is transmitted on the different dataflow links that defines its associated
virtual link. The Schedule of a frame on a dataflow link may be synchronized
with another of the same one on another dataflow link. This case occurs when a
frame must be relayed simultaneously on different dataflow links.

Fig. 2. The integration specification meta-model

5 CP Integration Meta-Model

Our CP Integration Meta-Model is depicted by Fig. 3. It is composed of a set of
VariableDeclaration metaclasses, a set of Constraint metaclasses and a SolveItem
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metaclass. For readability purpose, we do not include in Fig. 3 the comprehen-
sive set of the relationships between these metaclasses. A SolveItem models a
directive to the solver, which consists in the definition of two attributes, type,
which is the type of the problem either a satisfaction or minimization problem;
and objective, which is the optimized objective in the case of an optimization
problem. In our case, the optimized objective is the reconfiguration cost.

5.1 Variables Declaration

As shown by Fig. 3, three types of variables are considered to solve the integra-
tion problem. The metaclass FrameInstanceOffsets specifies the offsets of the
different frame instances of a frame on a dataflow link. FrameInstanceOffsets
has the two attributes name and type. The attribute name is of type FrameIn-
stanceName and defines the name of the frame instances on one dataflow link.
The name is therefore uniquely identified by the IDFrame and the IDLink. The
attribute type is of type int[]. The metaclass FrameInstanceReconfig captures
the information whether the offsets of the already configured frame instances
are changed after the integration. It has two attributes name which is also the
name of the considered frame instances on a dataflow link and the attribute
type of type bool[]. The metaclass ReconfigurationCost specifies the cost of the
schedule after the integration.

5.2 Constraints

To solve the integration problem, we consider nine types of constraints illus-
trated in Fig. 3. We introduce for the definition of these constraints a new type
Quantifier which quantifies the instance order of a frame and has four attributes:
(1) ident which gives an identification name for the quantifier, (2) type which
specifies the type of the quantifier (e.g. exists or forall), (3) min the minimum
value of the quantifier and (4) max the max value of the quantifier.

Contention-Free Constraints: A Contention-Free Constraint expresses the
mutual exclusion of a transmission on a dataflow link. Given two frames fi and
fj transmitted on a dataflow link l, the end of transmission of an instance of fi
on l occurs before the beginning of transmission of a given frame instance of fj
or vice versa. The contention free constraints can be formalized as follows:

∀fi, fj ∈ F ,∀l ∈ Li ∩ Lj ,∀k ∈ [1..Instances(fi)],∀k′ ∈ [1..Instances(fj)],
(
f l
i .Offset(k) + fi.Length ≤ f l

j .Offset(k
′
)
)∨

(
f l
j .Offset(k

′
) + fj .Length ≤ f l

i .Offset(k)
)

In the CP Integration Meta-Model, a Contention-Free Constraint is modeled by
the class ContentionFreeConstraint which has the attributes (1) q1 and q2 as
two Quantifiers on respectively the instance order k and k

′
, (2) fio1 and fio2

the offsets of respectively f l
i and f l

j and (3) length1 and length2 to designate the
transmission delays of fi and fj on a dataflow link.



170 S. Beji et al.

Fig. 3. The CP integration meta-model

Path-Dependent Constraints: We introduce this constraint to express the
sequential transmission of a frame fi along a data path of the virtual link vli.
Formally this constraint is defined as follows:
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∀fi ∈ F ,∀l′ ∈ next(fi, l),∀k ∈ [1..Instances(fi)],
(
f l
i .Offset(k) + fi.Length + switch delay

) ≤ (f l
′

i .Offset(k))

where, switch delay denotes the processing delay of a frame by a switch. A Path-
Dependent constraint is specified in our meta-model by the metaclass PathDe-
pendentConstraint, which has the following attributes: (1) q1 as a Quantifier on
the instance order k of fi, (2) fio1 and fio2 the offsets of respectively f l

i and f l
′

i ,
(3) length the parameter fi.Length and (4) switchDelay the processing delay of
a frame by a switch.

Latency Constraints: In order to ensure that frames meet their deadline
requirements, we define latency constraints. These constraints bound the trans-
mission delay of a frame along their datapaths and are formalized as follows

∀fi ∈ F ,∀l ∈ last(fi),∀k ∈ [1..Instances(fi)],

f l
i .Offset(k) − f

first(fi)
i .Offset(k) ≤ max latencyi

We represent a latency constraint in our CP meta-model by the metaclass
LatencyConstraint which has the attributes (1) q1 to represent the instance
order k, (2) fio1 to designate the offsets of ffirst(fi)

i , (3) fio2 to designate the
offsets of f l

i and (4) maxLatency the maximal tolerated bound of latency.

Reconfiguration Constraint: The reconfiguration constraints detect if the
already configured frames are reconfigured after the integration of new frames.
The reconfiguration constraints are formalized as follows

∀fi ∈ Fold,∀l ∈ Li,∀k ∈ [1..Instances(fi)],

(f l
i/b.Offset(k) = f l

i/a.Offset(k)) ⇔ (Rl
i(k) = 0)

In the CP Meta-Model, a reconfiguration constraint is modeled by the meta-
class ReconfigurationConstraint which has the attributes (1) q1 to represent the
instance order k, (2) fio1 to designate the offsets after the integration (3) fir1
to designate the reconfiguration variables Rl

i(k) and (4) previousOffsets which
contains the previous offsets of fi on the dataflow link l.

6 Model Transformation Process

We detail in this section the transformation rules implemented in our Transfor-
mation Tool to generate automatically the CP Integration Model. We note by
ModelIn the integration specification model and by ModelOut the CP integra-
tion model. In the remainder, we detail the transformation rule corresponding
to each component of a CP Integration model.
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6.1 Variables

For the variables of the CP Model, we define the transformation rule given
by Algorithm 1 that generates the FrameInstanceOffset instances. In Line 1,
we select from the input model an instance of the metaclass Schedule, denoted
by A. We create in Line 2 an instance of the FrameInstanceOffsets metaclass
corresponding to A that we denote by B. In Line 3 − 5, we assign the relevant
attributes.

Algorithm 1. Generation of FrameInstanceOffset Instances
1: for each A = InstanceOf (ModelIn.Schedule) do
2: create B=new InstanceOf (ModelOut.FrameInstanceOffsets)
3: B.type ← int[A.Frame.nbInstances]
4: B.name.IDFrame ← A.frame.ID
5: B.name.IDLink ← A.dataF lowLink.ID
6: end for

6.2 Constraints

For the constraints, we present only the transformation rule that define the
ContentionFreeConstraint instances. This rule is specified by Algorithm 2. In
Line 1−2, we select from the input model two instances A and B of the metaclass
Schedule. In order to define correctly a Contention-Free Constraint, we must
check in Line 3 − 4 that A and B are two instances that define a schedule of
two different frames in the same dataflow link. To ensure constraint unicity, we
impose that the ID of the frame associated with A is inferior that of B. We create
then in Line 4 a new instance C of the ContentionFreeConstraint metaclass. In
Line 5−6, we define the two quantifiers of the created instance C. q1 is reserved
for the schedule of the frame associated with the instance A and q2 for that of
B. In Line 7 − 11, we define the attributes fio1 and length1 that correspond
respectively the schedule and the transmission delay of the frame associated with
A. Similarly, in Line 12 − 16, we define the schedule and the transmission delay
of the frame associated with B.

6.3 SolveItem

For the SolveItem, we have one instance by a CP Model (i.e. a singleton). We
generate this instance by following the Algorithm 3. In Line 1, we check the
existence of any already configured frame. This allows the definition of the nature
of the problem. If no frame is already configured which is the case in Line 2−3,
we assign the value satisfy to the type of the problem. In the contrary case,
shown in Line 5 − 6, the problem is rather of type minimize and the objective
to minimize is the ReconfigurationCost.
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Algorithm 2. Generation of ContentionFreeConstraint Instances
1: for each A = InstanceOf (ModelIn.Schedule) do
2: for each B = InstanceOf (ModelIn.Schedule) do
3: if (A.frame.ID < B.frame.ID)and(A.dataflowLink = B.dataflowLink)

then
4: create C=new InstanceOf (ModelOut.ContentionFreeConstraint)
5: C.q1 ← newQuantifier(“i”, forall, 1, A.Frame.nbInstances)
6: C.q2 ← newQuantifier(“j”, forall, 1, B.Frame.nbInstances)
7: for each D = InstanceOf (ModelOut.FrameInstanceOffsets) do
8: if (D.name.IDFrame = A.frame.ID)and(D.name.IDLink =

A.dataflowLink.ID) then
9: C.fio1 ← D

10: C.length1 ← A.frame.length
11: end if
12: end for
13: for each D = InstanceOf (ModelOut.FrameInstanceOffsets) do
14: if (D.name.IDFrame = B.frame.ID)and(D.name.IDLink =

B.dataflowLink.ID) then
15: C.fio2 ← D
16: C.length2 ← B.frame.length
17: end if
18: end for
19: end if
20: end for
21: end for

Algorithm 3 Generation of SolveItem
1: if (nbInstancesOf (ModelIn.IntegrationStep.ConfiguredFrame) = 0) then
2: ModelOut.SolveItem.type = satisfy
3: ModelOut.SolveItem.objective = null
4: else
5: ModelOut.SolveItem.type = minimize
6: ModelOut.SolveItem.objective = ReconfigurationCost
7: end if

7 Case Study

In this section, we illustrate our model-driven engineering approach through
the integration of the communication part of the distributed system whose
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physical architecture is illustrated by Fig. 4. We identify in this figure the differ-
ent dataflow links by numbers and we illustrate the direction of each flow by a
dashed arrow.

The temporal characterization of the frames is given by Table 1. We propose
as shown by the first column to integrate the set of frames in three integration
steps. The IDs of the frames are indicated in the second column. The frame
periods are given by the third column. We reserve the fourth column to the
indication of the information availability dates at the ES level. The fifth column
indicates the transmission delays of the frames on a dataflow link. We indicate
in the last column the structure of the virtual link. We adopt in this field the
notation ls − {ld1 , ..., ldn

} to indicate that the associated frame is transmitted
first in ls and the simultaneously in ld1 to ldn

. The reconfiguration cost of each
frame in this example is equal to 1.

In the following, we use this case study to illustrate through two examples: (1)
the integration specification in input as instance of the Integration Specification
Meta-Model, (2) an instance of the CP Integration Meta-Model corresponding
to the spec input, and (3) the associated MiniZinc code relative the to the CP
model.

Although this example illustrates the integration of only 26 virtual links, we
note that the resolution of each integration step requires about one thousand of
code lines. We only illustrate some relevant aspects of our approach using two
small examples. We set in the first example as goal to show the generation of
some CP variables and frame constraints through the example of a Contention-
Free Constraint. In the second example, we explain a constraint that exploits
the structure of the virtual link.

7.1 Example 1

Focusing in the first integration step and more precisely the integration of frames
f3 and f4, we notice that f3 is scheduled on the dataflow links with the IDs 3
and 2. f4 is scheduled on the dataflow links 3 and 8. The integration specifica-
tion model corresponding to this part is given by Fig. 5. We illustrate only the
schedules s1 and s2 of frames f3 and f4 on the dataflow link l3. As shown by
Fig. 6, two instances fio1 and fio2 of the class FrameInstanceOffsets are defined
in our output CP model to represent the schedules s1 and s2. As the number
of instances of f3 considered in the integration specification model is equal to 4,
the type attribute of the variable fio1 has a value of int[4]. The corresponding
MiniZinc Code is given by Fig. 7. We note that we limit our offsets to the inter-
val [1..120] to have an enough large finite domain that represents the different
possible values. Now that we have illustrated the different variables of the CP
Integration Model, we present the contention-free constraint of Example 1. This
constraint is defined by the instance c1 of the metaclass Contention FreeCon-
straint as illustrated by Fig. 8. The instance c1 contains the information required
to generate the corresponding MiniZinc code as illustrated by Fig. 9
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the system

Table 1. Temporal characteristics of integrated
frames
Integration
step

Frame
Id

Frame
period

Availabilities Frame
length

Virtual link

1 3 30 [7, 35, 65, 95] 1 3–2
4 30 [5, 33, 63, 93] 1 3–8

40 60 [21, 21] 2 3–2
41 60 [15, 15] 4 3–8
42 60 [17, 17] 1 1–4
43 60 [17, 17] 3 7–4

1030 60 [9, 9] 2 1–4
1031 60 [9, 9] 1 7–4

2 2 30 [9, 41, 67, 97] 2 3–8
10 60 [51, 51] 3 3–2
11 60 [31, 31] 7 3–8
12 60 [27, 27] 3 3–8
13 30 [25, 61, 75, 107] 4 7–2
14 60 [71, 71] 1 1–8
15 60 [89, 89] 2 7–4

1000 30 [17, 53, 89, 105] 1 1–4
1001 30 [19, 55, 69, 101] 2 7–4
1002 60 [63, 63] 1 1–4
1003 60 [7, 7] 1 7–4

3 0 60 [35, 95] 1 9–4
1 30 [0, 30, 60, 90] 1 3–10

109 60 [22, 82] 11 11-{2,4,6,8,10}
110 60 [14, 74] 5 11-{2,4,6,8,10}
111 60 [7, 67] 2 11-{2,4,6,8,10}
140 60 [61, 81] 4 3–6
141 60 [44, 104] 1 5–4

Fig. 5. Integration specification model of Example 1
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Fig. 6. CP variables considered in Example 1

Fig. 7. Declaration of the variables of Example 1 in MiniZinc

7.2 Example 2

The frame f3 is transmitted on the virtual link vl3 which is composed by the
datapath 3 − 8. The transmission of f3 on its associated datapath induces the
definition of a Path-Dependent Constraint that has the structure presented by
Fig. 10. In addition to the attributes switchDelay and length, to define this con-
straint, we consider from Example 1 the instance fio1 to characterize the offsets
of f3 on the dataflow link 2. We consider also the instance fio3 that defines the
offsets associated to the transmission of f3 on the dataflow link 2. The corre-
sponding MiniZinc code corresponding to this constraint is given by Fig. 11.

Fig. 8. Contention-Free constraint considered in Example 1

Fig. 9. Example 1: Contention-Free constraint code in MiniZinc
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Fig. 10. CP integration model of Example 2

Fig. 11. Example 2: Path-Dependent constraint code in MiniZinc

8 Related Works

The constraint programming approach to the scheduling problems in avionic
systems is now a very active and popular research field. Several formal defini-
tions and frameworks have been proposed for reasoning about the problem of
scheduling in IMA architecture (e.g. [10,11]), the problem of scheduling in Time-
Triggered Networks (e.g. [7,12,14,15]) and the cost optimization problems for
evolving avionic systems (e.g. [9]). The most related work to ours is the recent
paper of Lauer et al. [9] and the one of Steiner [14]. In [9], the authors address
the problem of an iterative integration in an IMA Architecture. Its objective is
to find an optimal scheduling configuration that minimizes the cost of the inte-
gration. However, it does only consider the integration of IMA partitions and the
proposed iterative approach handles only the scheduling of system model that
evolves by adding a single partition at each iteration. The work in [4] extends
the work in [9] to consider a SMT-based approach that handles not only the
integration of IMA partitions but also TTEthernet flows.

The combination of model-driven software engineering approach and con-
straints programming approach has been the focus of some other research works
including [5,8]. In [8], the authors propose a formalization of constraint program-
ming solving tasks in a model-driven process chain. In [5], the authors discuss the
need for a visual high level modeling language and the quality of metamodeling
techniques to implement the transformations. In particular, they present a plat-
form called s-COMMA, which efficiently implements the chain from modeling to
solving constraint problems.

9 Conclusion

In this paper, we have proposed a model-driven engineering approach to support
the automatic synthesis of programs that resolve the integration of TT flows of
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TTEthernet. The proposed approach relies on the definition of two meta-models.
The first one specifies an integration problem on TTEthernet networks. The sec-
ond one describes the structure of the corresponding CP program. Further to
the two meta-models, this approach is based also on the definition of transfor-
mation processes that automatizes the generation of the CP model to a given
integration problem. The resulted CP model is transformed to a CP code which
is resolved by a CP solver to find the new optimal configuration of the network.
As Future Work, we plan to extend our approach by considering the schedule
of IMA partitions. We expect no difficulties to extend the two meta-models to
consider the integration of IMA partitions and their associated constraints. We
will define also the necessary transformation process to automatize the synthesis
of IMA constraints.

Acknowledgment. This work was supported by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC).
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Abstract. Eighty percent of the lifetime of a system is spent on main-
tenance activities. Feature location is one of the most important and
common activities performed by developers during software maintenance.
This work presents our approach for performing feature location by lever-
aging the use of architecture models at run-time. Specifically, the execu-
tion information is collected in the architecture model at run-time. Then,
our approach performs an Information Retrieval technique at the model
level. We have evaluated our approach in a Smart Hotel with its archi-
tecture model at run-time. We compared our architecture-model-based
approach with a source-code-based approach. The rankings produced
by the approaches indicate that since models are on a higher abstrac-
tion level than source code, they provide more accurate results. Our
architecture-model-based approach ranks the relevant elements in the
top ten positions of the ranking in 84% of the cases; in the top positions
in the ranking of the source-code-based approach, there are false posi-
tives associated with some programming patterns and true positives are
spread between positions 12 and 100.

Keywords: Arquitecture model · Models@Run-time · Feature
location · Information retrieval · Reverse engineering

1 Introduction

In software development, all systems evolve over time as new requirements
emerge or when bug-fixing becomes necessary. Lehman et al. [13] pointed out
that up to 80 % of the lifetime of a system is spent on maintenance and evo-
lution activities. Feature location is one of the most important and common
activities performed by developers during software maintenance and evolution
[8]. Currently, research efforts in feature location are concerned with identifying
software artifacts that are associated with a program functionality (a feature).

c© Springer International Publishing AG 2016
J. Grabowski and S. Herbold (Eds.): SAM 2016, LNCS 9959, pp. 180–195, 2016.
DOI: 10.1007/978-3-319-46613-2 12
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Models at run-time provide a kind of formal basis for reasoning about the
current system state, for reasoning about necessary adaptations, and for analyz-
ing the consequences of possible system adaptations. Models at run-time devel-
opment approaches have the proven capability to deliver complex, dependable
software effectively and efficiently. In this paper, we show that the information
extracted from architecture models at run-time can be useful in the field of fea-
ture location. In models at run-time [5], there is a causal connection between
the system and the run-time model (i.e., there is a bidirectional relation between
the source code and the run-time model).

This work proposes an approach that combines architecture models at run-
time and Information Retrieval (IR) for feature location. In the first step of
our approach, the software engineer executes a scenario, which uses the desired
feature to be located. The execution information is collected in the architecture
model at run-time. Then, our approach filters the trace in order to extract the
relevant elements of the models. We adapt an information retrieval technique,
Latent Semantic Indexing (LSI). This technique allows the software engineers to
write queries that are relevant to the feature to be located. Finally, the software
engineers obtain a ranked list of model elements that are related to the feature
based on the similarity to the query.

We have evaluated our approach in a Smart Hotel that is defined with an
architecture model at run-time. The Smart Hotel presents sixty-eight model
elements in the architecture model that are implemented in 268 Java classes
(about 67,207 methods of source code). We have compared our approach based
on models with a feature location approach that is based on source code, which is
presented in [14]. We chose this approach because it outperforms all other source-
code-based approaches that use a single scenario and information retrieval [8].

The results indicate that the information gathered at a high level of abstrac-
tion of architecture models is closer to natural language queries of software engi-
neers; hence, the rankings are more accurate. Our architecture-model-based app-
roach ranks the relevant elements in the top ten positions of the ranking in 84 %
of the cases; in the top positions in the ranking of the source-code-based app-
roach, there are false positives associated with some programming patterns and
true positives are spread between positions 12 and 100.

The remainder of the paper is structured as follows. In Sect. 2, we present
the Smart Hotel. In Sect. 3, we introduce our approach for feature location with
architecture models at run-time. In Sect. 4, we evaluate our approach with the
Smart Hotel and we discuss the results. In Sect. 5, we examine the related work
of the area, and we present our conclusions in Sect. 6.

2 The Smart Hotel

The running example and the evaluation of this paper are performed through a
Smart Hotel [6]. The Smart Hotel is reconfigured in response to changes in the
context, for example if there is a client in the room or not, and what activities
they may be performing (sleeping, watching TV, ...). This section shows the
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language used for specifying the architecture model of the Smart Hotel. This
section also shows how the architecture model is reconfigured at run-time in
response to context changes.

2.1 The Architecture Model

We use Pervasive Modeling Language (PervML) [16] to describe the Smart Hotel
architecture. PervML1 is a DSL that describes pervasive systems using high-level
abstraction concepts based on Meta-Object Facility (MOF)2. This language is
focused on specifying heterogeneous services in specific physical environments
such as the services of a Smart Hotel. This DSL has been applied to develop
solutions in the Smart Hotel domain. The PervML language provides different
models to specify the services and devices of a pervasive system.

Due to space constraints, in this paper, we only focus on the subset of Per-
vML that specifies the relationships among devices and services. This subset
specifies the components that define a particular configuration system (services
and devices) and how these components are connected with each other (chan-
nels). Services are depicted by circles, devices are depicted by squares, and the
channels connecting services and devices are depicted by lines (see Fig. 1).

Fig. 1. Smart hotel architecture model

1 https://tatami.dsic.upv.es/pervml/index.php.
2 Meta object facility (MOF) 2.0 core specification, 2003.

https://tatami.dsic.upv.es/pervml/index.php
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2.2 The Architecture Model Reconfiguration

The Smart Hotel reconfiguration engine determines how the system should be
reconfigured in response to a context change, and then it modifies the PervML
architecture model accordingly. The Monitor uses the run-time state as input
to check context conditions. If any of these conditions are fulfilled, the Analyzer
queries the run-time models about the necessary modifications. The response
of the models is used by the Planner to elaborate a reconfiguration plan. This
plan also contains reconfiguration actions, which modify the architecture model
and maintain the consistency between the PervML architecture model and the
system. The Execution of this plan modifies the system by executing recon-
figuration actions that deal with the activation and deactivation of software
components and the creation and destruction of channels among components.
For more details about the reconfiguration engine see [6].

Lighting By Presence 
(The user is in the room)

Presence Simulation
(Nobody is in the room)
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TV Lights
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Fig. 2. Smart hotel architecture model reconfigurations

Figure 2 shows two Smart Home configurations according to the concrete
syntax of the PervML. Figure 2 (left) shows a User in the room configuration,
while Fig. 2 (right) shows a Nobody in the room configuration. As it can be
observed, movement sensors are not used for lighting (left); instead, they are used
to provide information to the security service (right). In addition, the Occupancy
simulation service is activated in the Nobody in the room configuration, and the
connections that are required for this service to communicate with multimedia,
lighting, and security services are established.

3 Feature Location with Architecture Models at
Run-Time

Figure 3 shows an overview of our feature location approach. In the Dynamic
Analysis phase, the software engineer executes a scenario, which uses the target
feature to be located. The run-time architecture model obtained from the run-
ning scenario contains the elements of the model that are related to the target
feature.
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Fig. 3. Feature location approach based on architecture models at Run-Time

In the Information Retrieval phase, the approach filters the run-time archi-
tecture model to extract the relevant elements of the target feature to be located.
To achieve the filtering, we adapt an Information retrieval (IR) technique named
Latent Semantic Indexing (LSI) [12], which allows the software engineers to write
queries that describe the feature to be located. The result is a ranked list of model
elements that are related to the feature based on the similarity to the provided
query.

The following subsections present the details of each one of the steps of our
approach that must be carried out in order to perform the feature location at
the model level. We use the Smart Hotel presented in Sect. 2 throughout the
different subsections to illustrate the details with a running example.

3.1 The Dynamic Analysis Phase

Execution information is gathered via dynamic analysis (see Fig. 3), which is
commonly used in program comprehension and involves executing a software
system under specific conditions. Invoking the desired feature during run-time
generates a feature-specific execution trace. In other words, the input for the
execution is a scenario that runs the specific feature.

For example, we depict a scenario where we want to fix a bug in the gradual
lights in the Smart Hotel. Therefore, the feature that we must locate is the
Gradual Lighting service. We follow the information from the bug report to
define the scenario that executes the targeted feature. In this case, the scenario
is as follows:

‘The software engineer simulates an empty Smart Hotel room. The lights are
off. The software engineer simulates that a client enters the room. The lights
gradually turn on. The software engineer simulates that the client leaves the
room, and then the lights gradually turn off.’
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3.2 The Information Retrieval Phase

Textual information in source code (represented by identifier names and internal
comments) embeds domain knowledge about a software system. In our case,
textual information corresponds to the names, attributes and methods of the
model elements. This information can be leveraged to locate the implementation
of a feature through the use of IR. IR works by comparing a set of artifacts to
a query and ranking these artifacts by their relevance to the query.

There are many IR techniques that have been applied for feature loca-
tion tasks. However most feature location research efforts have shown better
results when LSI is applied [14,17,18]. To perform LSI, our approach follows five
main steps: creating a corpus, preprocessing, indexing, querying, and generating
results (see Fig. 3 Information Retrieval phase).

We adapted each step of the LSI technique to work with architecture models.
Instead of using the source code files, we used the architecture model that con-
tains the executed model elements from the dynamic analysis. The adaptation
is performed as follows:

Creating a corpus. In the first step of LSI, a document granularity needs to
be chosen to form a corpus. A document lists all the text found in a contiguous
section of source code (methods, classes, or packages). A corpus consists of a set
of documents. In this work, each document corresponds to a model element of
the architecture model. Each document (model element) includes text from the
names of the attributes and methods.

Preprocessing. Once the corpus is created, it is preprocessed. Preprocessing
involves normalizing the text of the documents. For source code, operators and
programming language keywords are removed. In addition, identifiers and com-
pound words are split. In this work, the type of the attributes and the type of
the parameters in the methods are removed. Then, all the identifiers are split;
for example “IlluminationService” becomes “illumination” and “service”.

Indexing. The corpus is used to create a term-by-document matrix. Each row of
the matrix corresponds to each term in the corpus, and each column represents
each document. Each cell of the matrix holds a measure of the weight or relevance
of the term in the document. The weight is expressed as a simple count of the
number of times that the term appears in the document. In other words, each
term-document pair has a number that indicates the number of times this term
appears as part of the names of attributes or methods of this model element.
In this work, in the term-by-document co-occurrence matrix, the terms (rows)
correspond to the names of the attributes or methods (i.e., intensity) of the
run-time architecture model and the documents (columns) correspond to the
model elements (i.e., IlluminationService) that have appeared in the run-time
architecture model.

Figure 4 shows this term-by-document co-occurrence matrix with the values
associated to our running example. Each row in the matrix stands for each one
of the unique words (terms) extracted from our run-time architecture model.
Figure 4 shows a set of representative keywords in the domain such as ‘room’,
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Fig. 4. Information retrieval via Latent Semantic Indexing (LSI)

‘light’, or ‘presence’ as the terms of each row. Each column in the matrix stands
for the model elements of the run-time architecture model. Figure 4 also shows
the names of the model elements in the columns such as ‘PresenceService’ or
‘IlluminationService’, which represent the model elements of the run-time archi-
tecture model. Each cell in the matrix contains the frequency with which the
keyword of its row appears in the document denoted by its column. For instance,
in Fig. 4, the term ‘light’ appears 6 times in the ‘PresenceService’ model element.

Querying. A user formulates a query in natural language consisting of words
or phrases that describe the feature to be located. Since LSI does not use a pre-
defined grammar or vocabulary, users can originate queries in natural language.
In this work, we use the bug reports to formulate the queries. Only the relevant
terms are taken into account, and words such as determinants and connectors
from the language are avoided.

In Fig. 4, the query column represents the words that appear in the bug
report. Each cell contains the frequency with which the keyword of its row
appears in the query. For instance, the term ‘light’ appears 2 times in the query.

Generating results. In LSI, the query and each document correspond to a
vector. The cosine of the angle between the query vector and a document vector
is used as the measure of the similarity of the document to the query. The closer
the cosine is to 1, the more similar the document is to the query. A cosine
similarity value is calculated between the query and each document, and then
the documents are sorted by their similarity values. The user inspects the ranked
list to determine which of the documents are relevant to the feature.
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We obtain vector representations of the documents and the query by nor-
malizing and decomposing the term-by-document co-occurrence matrix using a
matrix factorization technique called singular value decomposition (SVD) [14].
SVD is a form of factor analysis, or more precisely, the mathematical general-
ization of which factor analysis is a special case. In SVD, a rectangular matrix
is decomposed into the product of three other matrices. One component matrix
describes the original row entities as vectors of derived orthogonal factor val-
ues, another describes the original column entities in the same way, and the
third is a diagonal matrix that contains scaling values such that when the three
components are matrix-multiplied, the original matrix is reconstructed.

A three-dimensional graph of the LSI results is provided in Fig. 4. The graph
shows the representation of each one of the vectors, labeled with letters that
represent the names of the model elements, which are referenced in the box
below the graph. The graph reflects the ‘PresenceService’ model element vector
as being the closest to the query vector, followed by the ‘IlluminationService’
model element vector.

The goal of our approach is to rank model elements relevant to the feature
to locate within the top positions. The ranking of model elements is ordered
by the values of the cosines. In the running example (see Fig. 4, Ranking), the
‘PresenceService’ element is in the first position and therefore is the most rele-
vant, while the ‘OutsideDetector’ element is in the last position and is the less
relevant.

4 Evaluation: Feature Location in the Smart Hotel

We evaluated whether our feature location approach with architecture models at
run-time achieves better results than current approaches [14] that use source code
to perform feature location. We choose the approach presented in [14] because
is the one that shows the best results for feature location in source code [8,20].

We defined the experimental design of our study using the Goal-Question-
Metric method (GQM) [2]. We used the template presented in [3]. The GQM
method was defined as a mechanism for defining and interpreting a set of opera-
tion goals using measurements. In this evaluation, according to GQM template
our goal was the following:

– Object: Our Smart Hotel
– Purpose: Evaluation
– Issue: The accuracy of the results in our architecture-model-based feature

location approach
– Context: Feature location in the run-time architecture model

To fulfill this goal, we focused on answering the following research question:
Does our architecture-model-based approach for feature location provide better
results than a source-code-based approach?
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Fig. 5. The evaluation process followed in the Smart Hotel

Figure 5 shows the entire process that we followed for this evaluation.
(A) Smart Hotel Design-time. The Smart Hotel was developed using a

Dynamic Software Product Line (DSPL) [4]. The architecture model and the
source code of the Smart Hotel were configured with a feature model [7]. The
feature model specifies the 39 different features that the Smart Hotel has imple-
mented. We used the feature model of the software product line as an oracle to
evaluate our approach. In other words, we made use of a set of PervML models
and implementation codes whose feature realizations are known beforehand and
will be considered as the ground truth. This enables us to compare the oracle
with the results provided by our approach and the source-code approach.

The Smart Hotel presents sixty-eight model elements (thirteen services,
twenty devices, and thirty-five channels) in the architecture model. The soft-
ware components of the Smart Hotel consist of 268 classes that are implemented
in about 67,207 methods of Java source code.

(B) Smart Hotel Run-time. In the evaluation set-up, a scale environ-
ment with real KNX3 devices was used to represent the Smart Hotel. In our
case, we chose to carry out in-virtuo experiments [2,21], where the real world is
described as computer models. This experiment involves the interaction among
participants and a computerized model of reality. The simulated environment
offers major advantages regarding the cost and the feasibility of replicating a
real-world configuration. In addition, some scenarios, such as fires or floods,
cannot be replicated in the real world.

(C) Dynamic Analysis. We then ran the scenario that executes the feature
to be located. For this case study, we executed 30 independent runs (as suggested
by [1]) for each of the 39 features. The execution of the scenario generated the
Smart Hotel run-time architecture model and source code traces.

(D) Information Retrieval. Our architecture-model-based feature loca-
tion approach and the source-code-based feature location approach used the
Smart Hotel run-time architecture model and source code traces, respectively.
Our architecture-model-based feature location approach produced a ranking of

3 KNX technology is a standard for applications in home and building control (http://
www.knx.org/).

http://www.knx.org/
http://www.knx.org/
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model elements (see Fig. 5, M-b Ranking) and the source-code-based feature
location approach produced a ranking of methods (see Fig. 5, S-C-b Ranking)
for the targeted feature.

(E) Checking Results. The feature model oracle enabled us to know how
many of the model elements or methods in the rankings were the ones that
realized the target feature. We tagged the model elements (see Fig. 5, Tagged
M-b Ranking) and methods (see Fig. 5, Tagged S-C-b Ranking) that belonged
to the targeted feature. This allowed us to know their positions in the rankings.

4.1 Results

We performed this evaluation with the thirty-nine features that compose the
Smart Hotel. We defined the scenarios based on bug reports of each one of the
features. On average, the traces generated were the following: 46 model elements
in the architecture-model-based feature location approach and 3,817 methods in
the source-code-based feature location approach.

Figure 6 shows the position of the first model element and the first method
that belong to the target feature in the ranking for each one of the thirty-
nine features. The x-axis represents the features, and the y-axis represents the
position in the ranking. The blue dots represent the first model element for each
feature and the red Xs represent the first source code method for each feature.
The position of the first model element that belongs to each one of the features
has values between 1 and 28, where the 84 % of the results are in the top ten
positions. However, the position of the first source code method that belongs to
each one of the features has values between 12 and 100.

Features

P
os

it
io

n
 in

 t
h

e 
ra

n
ki

n
g

 

Fig. 6. Position of the first model element and the first method that belong to the
target feature in the ranking for each one of the features
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Does Our Architecture-model-based Approach for Feature Location
Provide Better Results Than the Source-code-based Approach? Our
architecture-model-based approach ranks the relevant elements in the top ten
positions of the ranking in 84 % of the cases; in the top positions in the ranking
of the source-code-based approach, there are false positives associated with some
programming patterns and true positives are spread between positions 15 and
100 (see Fig. 6).

It is accepted by the feature location community [14,18] that, a feature loca-
tion approach is considered better than another feature location when it produces
a ranking where the elements that belong to the feature are in higher positions
than in the ranking of the other approach. In our evaluation with the Smart
Hotel, our architecture-model-based feature location approach obtained better
positions in the rankings than the source-code-based approach.

4.2 Analysis of the Results

The results of our evaluation confirms that introducing architecture models at
run-time outperforms the equivalent technique at source code level.

Figure 7 shows the graphical representation of the ranking for the ‘Gradual
Lighting’ feature (feature number five in Fig. 6). Due to space constraints, we
only show the graphical representation for one feature, however, all the rankings
follow a similar distribution in the results.

The query is the vector that is on the x-axis. The remainder of the vectors
are model elements in the architecture-model-based feature location approach
or methods in the source-code-based feature location approach. Those that have
been tagged by the oracle have a ri label at the end of the arrow, while those

(a) Model elements

q

r1ME

r2ME
r3MEr4ME

(b) Source code methods

q

r1M

r2M
r3M

r4M

r5M

q Query

Non-relevant Model Elements or Methods

rnME Relevant Model Elements

rnM Relevant Source Code Methods

Fig. 7. Vectorial representation of the model elements and source code methods in the
Ranking of the ‘Gradual Lighting’ feature
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that have not been tagged have nothing at the end of the arrow. The angle
corresponds to the cosine with which we calculated the position in the ranking
(see Sect. 3.2); the closer the model element or method is to the query, the higher
the position in the ranking. The length of each vector indicates the number of
times that the terms appear in each model element or method. The longer the
vector is, the more terms appear in the model element or method.

The graph of the left corresponds to the architecture-model-based feature
location approach, of the total of vectors (model elements), forty-six, the graph
only shows the thirty-three which have positive cosines, the rest, thirteen, are in
the left of the y-axis and have few relevance for the query. The graph on the right
corresponds to the source-code-based feature location approach, of the total of
vectors (methods), 3,817, the graph only shows the 1,302, which have positive
cosines, the rest, 2,515, are in the left of the y-axis.

The first difference between the architecture-model-based approach and the
source-code-based approach lies in the size of the search space in which the
feature must be located. The goal of a feature location technique is to reduce the
effort required by software engineers to find the desired feature. Our architecture-
model-based approach on average requires searching in less than fifty model
elements while a source-code-based approach on average requires searching in
more than three thousand eight hundred methods.

The graphical representation of Fig. 7 allows us to see that the architecture-
model-based approach discriminates better than the source-code-based app-
roach. The majority of the model elements that belong to the feature achieve
better results than the ones that do not belong. However, in the source-code-
based approach, the source code methods that belong to the feature and the
source code methods that do not belong to the feature are not differentiated.

In addition, the vectors of the model elements that belong to the feature
are closer to the query vector than the vectors of the source code methods that
belong to the feature (see Fig. 7). Therefore, the model-based approach provides
searches that are more accurate.

Since architecture models at run-time allow working on a high level of
abstraction, the words used at the model level (i.e., room, presence) are closer to
the query than the ones used at source code level (i.e., save or run). The result is
that queries using a natural language show better results with the architecture-
model-based approach. In the source-code-based approach some auxiliary terms
are taken into account. Some terms, like controller or run, can proceed from
some programming patterns. By raising the level of abstraction with the archi-
tecture model, we can prevent auxiliary methods and variables from interfering
with the feature location.

Finally, in our Smart Hotel, we realized that the model elements that con-
tained few attributes and methods got worse positions in the ranking than the
ones that contained more attributes and methods. For example, one of the ele-
ments related to the feature ‘Gradual Lighting’ in Fig. 7 obtained position 27 in
the ranking. This is because this element corresponds to a channel element
that connects two services. This particular channel only has three attributes
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that describe the information that goes through the channel. The information
required by this element was not as detailed as the other model elements when
specifying the model. For this reason, the model element corresponding to this
channel got a lower position in the ranking. In contrast, other kinds of channels
got better positions since, on average, they have about twenty attributes and
methods.

4.3 Threats to Validity

In this section, we discuss some of the issues that might have affected the results
of the evaluation and may limit the generalizations of the results.

One issue is whether or not the software system used in the evaluation is
representative of those used in practice. Given the scale and complexity of our
Smart Hotel (sixty-eight model elements and 67.207 methods), we consider our
evaluation to be a good starting point for representing a realistic case. However,
this threat can be reduced if we experiment with other software systems of
different sizes and domains.

Furthermore, the DSL model used in this study is a language in a specific
domain. PervML is a DSL that describes pervasive systems using high-level
abstraction concepts. However, other experiments with other DSLs should be
performed to validate our findings.

Another issue is the selection of the scenarios based on the bug reports to
obtain the execution trace. Since we are experts in the Smart Hotel system,
we can claim that our scenarios are good representatives of features that have
been necessary to locate in order to solve the most common bugs of the Smart
Hotel. Thus, depending on the chosen scenarios, the results may differ. The more
knowledge the software engineer has about the system, the better the scenarios
and the queries will be, leading to better results.

5 Related Work

Some approaches that are related to feature location use design-time models to
extract variability. Although they do not use architecture models at run-time,
their works are based on extracting features using models.

Font et al. [9] suggest that model fragments that are extracted mechanically
may not be recognizable units by the application engineers. They propose identi-
fying model patterns by human-in-the-loop and conceptualizing them as reusable
model fragments. Their approach provides the means to identify and extract
those model patterns and further apply them to existing product models. In
[10], the work from [9] is extended to handle situations where the domain expert
fails to provide accurate information. The authors propose a genetic algorithm
for feature location in model-based software product lines. When this method
was compared with another approach that did not use a genetic algorithm, the
results showed that their approach was able to provide solutions for situations
where the information of the domain expert was inaccurate, while the other
approach failed.
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Martinez et al. [15] propose an extensible framework that allows features to
be identified, located, and extracted from a family of models. They introduce
the principles of this framework and provide insights on how it can be extended
for use it in different scenarios. As a result, the initial investment required by
the task of adopting a software product line from a family of models is reduced.

Xue et al. [22] present an approach to support effective feature location in
products variants. They exploit commonalities and differences of product vari-
ants by software differencing and formal concept analysis (FCA) techniques so
that IR techniques can achieve satisfactory results.

All of these works are based on extracting model fragments from a given set of
models taking into account their commonalities and variabilities. However, these
approaches do not take into account the run-time behaviour of the systems and
are not focused on feature location. Nevertheless, all of them can be used as a
basis for the extraction of the model fragments that correspond to the feature
to be located.

There are many more research efforts in dynamic feature location techniques
that are based on source code analysis. Some of these works combine other kinds
of analysis (i.e., information retrieval) to obtain more accurate results.

Liu et al. [14] combine information from an execution trace and from the
comments and identifiers from the source code. They executed a single scenario
(which runs the desired feature), and all executed methods are identified based
on the collected trace using LSI. The result is a ranked list of executed methods
based on their textual similarity to a query. Similarly, Koschke et al. [11] develop
a semi-automated technique using a combination of static and dynamic program
analysis. However, they use FCA to explore the results of the dynamic analysis.

Revelle et al. [18] apply data fusion for feature location. Their technique
combines information from textual, dynamic, and web mining analysis applied
to a software system. Their input is a single scenario that executes the feature;
after running the scenario, they construct a call graph that contains only the
methods that were executed. Then, they apply a web-mining algorithm, and the
system filters out low-ranked methods. The remaining set of methods is scored
using LSI based on their relevance to the input query that describes the feature.

Similarly to our approach, all these feature location techniques use informa-
tion from different sources. Additionally, Revelle and Poshyvanyk [19] present
an exploratory study of feature location techniques that use various combina-
tions of textual, dynamic, and static analysis. Also, they introduces a new way
of applying textual analysis by which queries are automatically composed by
identifiers of a method known to be relevant to a feature. Although they are
based on locating feature in source code, some of the ideas could be applied to
our architecture-model-based feature location approach to obtain more accurate
results.

6 Conclusions

This work proposes an approach that combines architecture models at run-time
and information retrieval for feature location. Specifically, our approach uses a



194 L. Arcega et al.

scenario that executes the desired feature to be located. In addition, our approach
ranks all of the model elements that are executed to extract the model elements
that are related to the feature. We adapt an information retrieval technique
called LSI to work with architecture models at run-time. The ranked list of
model elements is obtained based on the similarity of these model elements to a
query in a natural language.

Both models and feature descriptions are on a higher abstraction level than
source code. This means that models are closer to natural language queries, and
the results are more accurate. The comparison of our architecture-model-based
feature location approach with a source-code-based feature location approach
for the Smart Hotel case study demonstrate this outcome.

Our architecture-model-based approach ranks the relevant elements in the
top ten positions of the ranking in 84 % of the cases. In the top positions of the
source-code-based approach ranking, there are false positives associated with
some programming patterns and true positives are spread between positions 12
and 100.
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Abstract. When looking for solutions to automatically translate from
high-level source to target code in heterogeneous programming environ-
ments and under budgetary restrictions, one often encounters the prob-
lem that affordable compilers with front-end support for a particular
source language don’t map to the desired target-language. The goal of
this paper is to present an approach for adapting existing compilers in a
non-intrusive way that keeps the front-end intact and replaces the back-
end with a component that supports the translation into any language
with a context-free text-based syntax. This is achieved by introducing
a domain-specific language for code generation to the compiler pipeline
that offers a programmable interface to access internal representations of
parsed source code in its programs. We formulate a set of requirements
for this language and show how compiler developers can use the supplied
interface in combination with the domain-specific language to adapt the
textual output to their needs.

Keywords: Legacy compiler · Code generation · Meta-model · ASN.1 ·
Meta-language · Domain-specific language

1 Introduction

Work on a sophisticated project often requires the cooperative use of multiple
programming languages that describe different aspects of the software. It is in
this context that one often finds the need to generate high-level code, e.g. from
formal specifications, to be used in conjunction with high-level code written in
some other language. In these situations, one would be looking for a compiler
that translates the source into its target-language representation. In this paper,
language refers to the concrete syntax of a language, compiler refers to any
program that translates a source into a target-language and the implementation
language of the compiler is called the host-language. Compilers for established
formal languages usually exist, but may lack support for the desired target or
are prohibitively expensive. In consequence, one has to spend resources to either
employ a team of programmers that render the specification manually, abandon
the use of source or target-language in favor of a combination with better tool
support, or develop a new compiler. These choices imply a potentially costly
binding of resources: rendering the specification manually could be expensive and
introduces redundancies, abandoning the use of source or target-language might
not be feasible and is certainly not desirable, and developing a new compiler is
c© Springer International Publishing AG 2016
J. Grabowski and S. Herbold (Eds.): SAM 2016, LNCS 9959, pp. 196–210, 2016.
DOI: 10.1007/978-3-319-46613-2 13
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Fig. 1. Canonical compiler architecture according to [4]. Passive structures and exter-
nal files are represented by rectangles and stacks respectively and rounded boxes indi-
cate active phases. Dotted arrows point in the direction of the control flow, solid arrows
show data flow. Arrows pointed towards structures indicate permission to write, while
arrows pointing away from them indicate read access.

uncertain to pay off in the long term, especially if decisions like these are made
on a by-project basis.

Given access and permission to modify the code of an existing compiler for the
source language, we propose a method to add support for an additional target-
language while keeping the front-end intact, thereby removing it from the cost-
equation. By providing optimized means of expressing the generation of high-
level code through the use of a domain-specific language that is deployed as part
of the adapted compiler we can facilitate the construction of additional compiler
extensions by parties that are otherwise unaffiliated with compiler development.
We call domain-specific languages for code generation meta-languages. Figure 1
on page 2 shows the traditional compiler architecture according to Garlan and
Shaw [4]. Our fundamental assumption is that front- and back-end can be sepa-
rated in the original compiler. We propose to replace the code generating compo-
nent with a generic module that provides an interface for importing the abstract
syntax in combination with a meta-language that can access these structures.
Although this approach could be used for compilers with low-level language tar-
gets, we focus on high-level text-based output in this paper, since we regard
applications involving the translation of specification-type source languages into
implementation-type target-languages as more common.

The paper is organized as follows. First we take a look at related work in
Sect. 2 and discuss the relationship to the problem presented here. We continue
by comparing different approaches in Sect. 3 and follow up with a description of
our generic module for code generation in Sect. 4. Section 5 contains a case study
for an ASN.1-to-C compiler using our approach. We finish with our conclusions
and outlook in Sect. 6.

2 Related Work

The LLVM-project as described by Lattner and Adve [5] solves a very similar
problem: the abstract syntax of a source language is to be translated for multiple
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target architectures. By decoupling source and target via mapping into an inter-
mediate language for a low-level virtual machine, they modularize both front-
and back-ends, allowing them to be exchanged independently to support arbi-
trary combinations of source and target-language. This technique isn’t unique
to LLVM and the intermediate language is commonly known as IR (intermedi-
ate representation). The LLVM-approach is to use a canonical IR for arbitrary
source languages. The key difference between the problem solved with LLVM
compared to the one solved in this paper is our need to generate high-level
as opposed to low-level target code. Since LLVM ultimately generates machine
code, the canonical IR is executable by design. This restriction would not be
appropriate for our source and target-languages because our models might not
be executable.

Parr uses his StringTemplate library [6] to generate high-level documents
using string templates. String templates are sequences of static text and dynam-
ically evaluated expressions with access to the model and other string templates.
The problem is similar because many different document formats can be gen-
erated from the same source. He specifically prevents the library to be turing-
complete in order to separate model and view [7] and points out that string
templates can be used to generate any context-free text-based language due to
the structural similarity between string templates and context-free grammars.
This makes string templates a suitable tool for generating context-free text-
based languages. The key difference is that we don’t assume our target-language
to be context-free, e.g. C isn’t context-free because it requires prior declaration
of identifiers.

In the context of model-transformation, the combination of Xtext and Xtend
can be used to implement code generators for different language targets [2]. The
fundamental idea is to use information inherently present in the concrete syntax
specification of the source language in order to derive the abstract syntax in
Xtext [3] as a form of text-to-model transformation and import it into Xtend
for code generation as a model-to-text transformation. This technique requires a
shared metamodel of the abstract syntax and a compatible execution platform.
Our problem differs because we cannot assume a standardized metamodel for
representing the abstract syntax in legacy compilers. We discuss benefits and
drawbacks of metamodel-based rewrites for legacy compilers in Sect. 3.

3 Comparing Different Methods for Exchanging the
Target-Language

In this section we analyze different methods that can be used to exchange the
language emitted by a compiler. Ideally, we would like to support both the
existing as well as any additional target-language in the same program. We have
divided this task into two steps:
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1. Prepare the compiler to be extended through additional code generators by
introducing a generic module for code generation.

2. Specialize or extend the generic module with one or more code generators for
the desired target-languages.

This separation helps us to weigh the amount of work needed to implement the
first additional target-language versus any following ones. The workload differs
because later extensions benefit from mechanisms that are in place after the first
target-language has been introduced. We observe a sliding scale in flexibility with
respect to new target-languages: putting a larger (fixed) amount of work into
the first step tends to reduce the (dynamic) costs for the second step and vice
versa. We continue by analyzing three specific approaches on that spectrum with
varying demands regarding the costs of the first and the second steps.

3.1 Metamodel

Characterization. A model is an abstraction of an aspect of reality. A meta-
model is the model of a model. In our paper, the metamodel contains data
structure definitions specific to the source language, i.e. the abstract syntax.
Metamodel instances are produced as the result of the parsing process and cap-
ture all aspects that are relevant to code generation for any given input. The
metamodel-based approach of language development aims to reduce the costs of
implementing new compilers by employing domain-specific languages throughout
the development process and standardizing exchange formats between different
phases via compliance to a shared metamodel. This architecture allows for easy
replacement of compiler components as well as semi-automated derivation of
auxiliary tools like editors and debuggers.

Analysis. Languages developed using this approach benefit from flexible back-
ends and only need to exchange their code generator components to facilitate dif-
ferent target-languages. However, it is not trivial to transform a Non-Metamodel-
Based compiler into one using explicit metamodels if the former hasn’t specif-
ically been constructed with a shared metamodel in mind. This is because the
metamodel-based approach relies on a language-agnostic specification of nav-
igable intermediate structures with a standardized interface that is rendered
into concrete data types for the various languages that are used in the develop-
ment of the compiler. It is not customary in traditional compiler development to
specify intermediate structures in a language different from the host-language,
meaning that supporting tools, e. g. lexer and parser generators, usually support
code injections in the host-language that access and manipulate these structures.
Because of the multitude of specifications in different domain-specific languages,
automatically refactoring the use and construction of these structures to abide
by a new interface is a complex task. Manually exchanging intermediate struc-
tures implies a workload about the same order of magnitude as redeveloping the
compiler from scratch using a metamodel-based approach.



200 D. Weber et al.

Conclusion. This approach requires a costly first step while the second step
benefits from the use of a meta-language during code generation. With a compar-
atively small amount of extra work, additional tools like editors and debuggers
can be derived. Initial compiler development can gain the most with this app-
roach, but compilers with high demands in terms of supported target-languages
that would benefit from custom editors and debuggers could profit as well.

3.2 Meta Language

Characterization. A meta-language is a programming language that includes
domain-specific facilities aimed at improving the description of code generators.
Meta-languages have been developed alongside metamodel-based techniques and
can also be used in absence of an explicit metamodel. One example for this is
Xtend, a JVM-based language typically used to implement code generation for
language specifications written in Xtext. Even though Xtext and Xtend are
designed with each other in mind they don’t have to be used in combination
allowing Xtend to implement the back-end of compilers that are not using explicit
metamodels. Due to their domain-specificity, meta-languages can significantly
reduce the amount of work needed to support target-languages. One can distin-
guish between declarative meta-languages that unparse the abstract syntax tree
through recursive application of unparse-rules and imperative meta-languages
similar to general-purpose languages with built-in facilities for the generation of
high-level code. Both variants require access to the abstract syntax.

Analysis. In order to provide access to the abstract syntax in absence of an
explicit metamodel, it will usually be necessary to employ a compatibility layer
between host- and meta-language. The layer could be formed via compliance to
a shared metamodel or using an interface provided by the meta-language that is
used to feed data into it. Once the structures are accessible, one uses the meta-
language to implement code generators as if the metamodel-based approach had
been used to begin with. The approach differs from the metamodel-based one,
since the metamodel is not needed for the other translation phases.

Conclusion. This approach offers a good compromise of balancing the fixed
amount of work needed for setting up the extension mechanism with the dynamic
amount of work for implementing additional code generators. It allows the use of
meta-languages for the back-end of the compiler but doesn’t support automatic
derivation of editors and debuggers, since these applications require access to
the grammar of the source language.

3.3 General-Purpose Language

Characterization. Instead of using meta-languages in the compiler back-end,
one can simply use an existing general-purpose language augmented with a pro-
gramming library suitable for generating high-level code. The need to recompile
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the compiler for each additional code generator can be overcome through the use
of a well-defined interface in combination with dynamic linking or by employing
an interpreted (general-purpose) language. A library for code generation could
include support for common tasks such as access to intermediate structures via
iterators, file and exception handling as well as support for string templates.
Compared to common strings that don’t support dynamic expressions or recur-
sion, string templates conserve the structure of the generated text, improving
the readability of generators for high-level code.

Analysis. Using the host-language to generate target code requires the imple-
mentation of a library that is useful in processing the generated structures. Since
the required functionality of that library, e.g. iterating complex structures, file
and exception handling, is very common, it is likely that one can choose an exist-
ing library for the task. This reduces the work necessary to prepare the extension
mechanism to designing a generic interface for code generators.

The second step, extending the compiler with additional code generators,
is more complex. Only some advantages of meta-languages can be emulated
through library functions. Using the host-language as the language to imple-
ment the code generators has the following drawbacks compared to using a well
designed meta-language:

– the general-purpose language lacks support for domain-specific features, such
as string templates with access to the surrounding variable scope,

– compiling dynamically linked libraries requires OS dependent code changes
that need to be adapted for each platform,

– bugs in the code generator cannot easily be traced back to the offending code
since source code will usually not ship alongside the compiler,

– the code generator is not isolated from the main program, bugs may have
ramifications further down the execution path.

Some of these disadvantages can be circumvented through the use of an inter-
preted general-purpose language, but those will typically

– be designed for stand-alone usage, assuming script rather than host-language
driven control and manipulating global program states,

– ship with extensive programming libraries unrelated to code generation and
increase the memory footprint of any compiler they are deployed with,

– offer minimal support for using host-language structures inside of script files.

Conclusion. This approach requires a minimal amount of work for prepar-
ing the compiler and can benefit from existing support through programming
libraries. Extending the compiler with additional target-languages can be much
more complicated compared to the use of a meta-language because in addition
to concentrating on the complex task of code generation one must also deal
with the idiosyncrasies of the host-language. This can include memory and file
management, platform dependent integer types as well as a lack of standardized
iteration mechanisms, exception handling and object oriented features further
complicating debugging and maintenance of any additional target-language.
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4 A Generic Module for Code Generation

In this section we discuss how a generic module may be constructed that can be
used in place of a code generator for existing compilers. The module contains
a compiler or interpreter for a meta-language as well as an interface to import
structures from the host-language. Given the existence of such a module, the
key steps to extend an existing compiler are:

1. provide an interface for compiler users to switch language targets,
2. give access to the abstract syntax of the source language to code generators,
3. supply code generators written in the meta-language.

The first step depends on internal compiler specifics, so we cannot comment on
it. The second step can be accomplished through the use of the module’s import
interface. Using the code generators developed in the third step, the compiler
can generate target-language-specific code utilizing the module’s support for the
meta-language.

We begin by listing our design goals for a generic module for code generation,
followed by an overview of our implementation. In order to verify the merits of
our proposition we have developed a meta-language called Glue. The next section
showcases an example for using Glue to extend an existing open source ASN.1-
compiler.

4.1 Design Goals

We make five basic assumptions about scenarios in which the module is used.
These are:

1. Compiler and code generator are developed by independent parties.
2. Compiler developers want to minimize their work when preparing the com-

piler for target-language extensions.
3. Code generator developers are not familiar with the meta-language but have

programming experience.
4. Translation of the source language is a complicated task.
5. Code generators are developed incrementally and may contain bugs.

Under these assumptions, here are five factors that we have identified as impor-
tant for the design of the domain-specific language and module:

1. The meta-language should have domain-specific features for code generation,
e.g. string templates or rule-based unparsing of abstract syntax trees.
Rationale: Domain-specificity is the key reason for preferring the meta-
language over any general-purpose language.

2. Importing external data structures should only require dealing with the parts
that are actually useful in meta programs. Navigation and member access
shouldn’t require prior decomposition and reconstruction.
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Rationale: Structures associated with the abstract syntax have to be imported
into the meta-language. Keeping the translation interface simple helps to
reduce the amount of work that needs to be invested in order to prepare the
compiler.

3. Code not directly contributing to the translation effort should be minimized.
Examples include
– managing dynamic memory,
– assigning data types to variables,
– dealing with platform dependencies,
– handling runtime errors.
Rationale: It is helpful to keep the focus on essential elements of the respec-
tive code generator during development and for maintenance purposes.

4. The generic module should be deployed as a platform independent and
autonomous programming library for the host-language.
Rationale: External dependencies of the component may lead to restrictions
in the platform of potential applications.

5. The syntax should exercise minimality (no redundant concepts), orthogo-
nality (no overlapping concepts), and familiarity (syntactical similarity to
popular languages).
Rationale: These are qualities that allow external developers and end users
to quickly pick up the language and follow code generator implementations.

In order to fulfill these requirements, we have decided to deploy an interpreter
for a meta-language called Glue as part of our generic module. Our goal is to
provide a platform independent C-based alternative to the Java-based Xtend,
so we look to Xtend for domain-specificity, to C for syntactical cues and to
Python for simplicity. The resulting language looks like C with Python-like type
inference and garbage collection as well as built-in support for Xtend-style string
templates.

Source
Code

Target
Code

Symbol
Table

Abstract 
Syntax Tree

Lexical
Analysis

Syntactical
Analysis

Semantical
Analysis

Optimization
Code

Generation

Glue Scripts

Fig. 2. Modified compiler architecture after integration of our generic module. Glue
script files describe specialized code generators, conceptionally taking the place of
Xtend.
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+assign(other: GlueObject)
+apply(args: GlueObject [0..*]): GlueObject
+resolve(name: String): GlueObject
+iter(): GlueObject
+next(): GlueObject

+ref: Integer
GlueObject

GlueTypeInfo
+name: String
GlueType

1

10..1

1 1

Fig. 3. UML class diagram depicting the relationship between objects and types han-
dled by the Glue interpreter. The interface for GlueObject-instances is incomplete and
only contains the methods relevant to this paper.

4.2 Implementation

Our module contains a platform independent, autonomous interpreter for a
meta-language we refer to as Glue. It is used to replace the code generating com-
ponent of a compiler in a manner consistent with Fig. 2 on page 9. In order to
expose host language structures to script files, one can use the interface depicted
in Fig. 3 on page 9 to define new types of GlueObject. In practice this means
that for every type used in the abstract syntax, the compiler developer needs to
provide an instance of GlueType that is used as a gateway to the internal rep-
resentation. Note that this doesn’t require the reconstruction of host structures
as Glue structures; GlueObjects only need to hold a reference to the specific
part they provide access to and atomic attributes like strings or numbers can be
converted on-the-fly into equivalent Glue types.

The interpreter interacts with GlueObjects through their virtual interface,
e.g. by calling assign() in order to assign a new value to a GlueObject.
GlueObject’s other methods shown in Fig. 3 on page 9 are used to implement
function calls (apply()), attribute resolution (resolve()), iterator construc-
tion (iter()) as well as advancement (next()). Additional methods have been
omitted for brevity. Since the module is C-based, pointers to these methods
reside in a virtual function table as part of a GlueTypeInfo-object. Types are
represented by instances of GlueType whose role is that of a factory producing
instances of their type. Since they are derived from GlueObject, this construc-
tion allows Glue-scripts to reason about the types and meta-types of objects. A
simple single-inheritance scheme is supported.

The Glue-syntax borrows heavily from C/C++ syntax but includes auto-
matic, reference based garbage collection, built-in string templates with access
to the surrounding variable scope, exception handling, and runtime type infer-
ence. It ships with a library that contains support for file and path handling,
container types like sets, maps, lists and tuples as well as atomic types like strings
and unbounded integers. The inheritance scheme is used to provide reasonable
default behavior for unimplemented methods.
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5 Case Study: ASN.1 to C

In this section we demonstrate how to exchange the target-language in a concrete
compiler using our approach. To this end, we consider a subset of ASN.1 [9]
and explain the necessary modifications performed at an open source ASN.1-
compiler. We show the Glue script files that are used to generate C-code and
conclude by analyzing the overall quality of the compiler output for a concrete
specification.

University.asn1 asn1c

main.glue

Employee.h

Teacher.h

Faculty.h

Student.h

Course.h

Fig. 4. Illustration of inputs and outputs for the discussed example.

5.1 Scenario

We have integrated our module for code generation into Lev Walkin’s open
source ASN.1-compiler asn1c [8] and use it here to translate an ASN.1-fragment
into equivalent C-structures. The source language supports type-definitions
using SEQUENCE, CHOICE, SEQUENCE OF, type references, and the terminal type
VisibleString. This subset is interesting because it allows types to be com-
plex, recursive, anonymous, aliased, and self-referential. We chose to describe
the abstract syntax of our subset of ASN.1 in ASN.1 in order to emphasize that
it is powerful enough to express its own abstract syntax, i.e. the abstract syn-
tax shown in Listing 1 is a valid input to a compiler accepting only the subset
described therein.

However, in order to avoid confusing different meta-levels, our demonstration
uses the specification in Listing 2 as compiler input. The Listing also shows the
value of the abstract syntax the way it can be navigated in Glue scripts and
Fig. 4 on page 10 shows input and output files. The difficulties addressed with
this example are:

1. SEQUENCE, CHOICE and SEQUENCE OF are complex types in C.
Example: Faculty, Employee and Course are of meta-type SEQUENCE OF,
CHOICE and SEQUENCE respectively.

2. Types may refer to other types and require a prior declaration.
Example: Employee refers to Teacher using the attribute teacher.

3. Directly embedding ASN.1 types requires a distinction between named and
unnamed types.



206 D. Weber et al.

1 AbstractSyntax DEFINITIONS AUTOMATIC TAGS ::=
2 BEGIN
3 AST ::= SEQUENCE OF SEQUENCE {
4 module VisibleString,
5 member SEQUENCE OF Named-Type
6 }
7

8 Named-Type ::= SEQUENCE {
9 name VisibleString,

10 type Embedded-Type
11 }
12

13 Embedded-Type ::= CHOICE {
14 typeref VisibleString,
15 sequence SEQUENCE OF Named-Type,
16 choice SEQUENCE OF Named-Type,
17 sequenceOf Embedded-Type
18 }
19 END

Listing 1. Abstract syntax of the ASN.1-subset defined as an ASN.1-specification.
This representation is made navigable in Glue scripts using a global variable of type
AST. According to the specification, an abstract syntax tree is a list of modules, each
with a name and a list of named types. A named type is a pair consisting of a name
and an embedded type definition. Type definitions are either references to other types,
tuples/selections of attributes, or lists of embedded types.

1 University DEFINITIONS
2 AUTOMATIC TAGS ::= BEGIN
3 Faculty ::= SEQUENCE OF SEQUENCE {
4 name VisibleString,
5 member SEQUENCE OF Employee,
6 courses SEQUENCE OF Course
7 }
8

9 Employee ::= CHOICE {
10 teacher Teacher,
11 student Student
12 }
13

14 Teacher ::= SEQUENCE {
15 name VisibleString,
16 courses SEQUENCE OF Course
17 }
18

19 Student ::= VisibleString
20

21 Course ::= SEQUENCE {
22 title VisibleString,
23 instructor Teacher,
24 students SEQUENCE OF Student
25 }
26 END

asn1 AST ::= { { module "University", member {

{ name "Faculty", type sequenceOf: sequence: {
{ name "name", type typeref: "VisibleString"},
{ name "member", type sequenceOf: typeref: "Employee" }
{ name "courses", type sequenceOf: typeref: "Course" }

}},

{ name "Employee", type choice: {
{ name "teacher", type typeref: "Teacher" },
{ name "student", type typeref: "Student" }

}},

{ name "Teacher", type sequence: {
{ name "name", type typeref: "VisibleString" },
{ name "courses", type sequenceOf: typeref: "Course" }

}},

{ name "Student", type typeref: "VisibleString" },

{ name "Course", type sequence: {
{ name "title", type typeref: "VisibleString" },
{ name "instructor", type typeref: "Teacher" },
{ name "students", type sequenceOf: typeref: "Student" }

}}
}}}

Listing 2. ASN.1-specification serving as input next to its abstract syntax. The con-
crete syntax on the left is exposed to Glue as the abstract value on the right, expressed
in terms of the abstract type AST of Listing 1. Each line on the left-hand-side directly
corresponds to a line on the right-hand-side.
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Example: Faculty is a SEQUENCE OF an anonymous SEQUENCE .
4. Self-referential types have to be protected from self-inclusion.

Example: Teacher and Course depend on one another’s definition.

5.2 Solution

The abstract syntax of the source specification is made accessible to the script
through the global variable asn1 that we define using the interface shown in Fig. 3
on page 9. In accordance with Listing 1 we have implemented GlueTypes for AST,
Named-Type and Embedded-Type. Since they are responsible for creating their
instances, these types have their apply()-method implemented. Type instances
are views of the underlying abstract syntax, so each of them contains a pointer
to the part it wraps. We implemented resolve()-methods for Named-Type- and
Embedded-Type-instances for access to the sub-structures as well as an iter()-
method for AST-instances that compiles a GlueList of contained modules and
returns an iterator to that list. The resolve()-methods wrap their attributes
on-the-fly either by creating a wrapper instance, by initializing a GlueList of
wrappers, or by constructing a GlueString. The root instance with the name
asn1 is initialized internally and exposed to the script via the interpreter API.

The principal algorithm implemented in the code generator systematically
iterates over the abstract syntax tree and recursively translates visited nodes
into C-code. Listing 5 shows this loop: each Named-Type-node on the module
level yields a C-header with an include guard, a list of dependencies (either
#include or forward declaration) and a type declaration. In order to emit the
type, the function emit() in Listing 3 is called. Using the attribute type, we can
distinguish between the different alternatives contained in the CHOICE Type and
generate the appropriate code.

For typeref nodes, we test whether a direct reference to the type would com-
plete a circular inclusion. To that end, the function contains() in Listing 4 is used
to search the referenced type’s closure with regards to its include dependencies for
the currently processed top-level Named-Type-node. If present, it is necessary to
refrain from including the type’s header file, instead forward declaring the type
and referring to it using a pointer. Since the dependency map is constructed iter-
atively, this scheme allows the direct inclusion in one direction, referring to the sec-
ond type via pointer only if a dependency circle were to be completed otherwise.
For sequence nodes, we generate a struct and recursively embed the attributes.
The choice and sequenceOf nodes are implemented through a tagged union and a
dynamic list respectively. The terminal type VisibleString is mapped to char*.

5.3 Observations

The generated header files are shown in Listing 6 with the exception of the header
files for Teacher and Student. We observe that employing string templates to
describe the translation has allowed us to automatically derive correctly indented
target code. Should we want to improve the generated code, e.g. by adding encode
and decode routines or by fixing an error or oversight, it would be obvious which
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1 new emit(self) {
2 if (self.type == "Typeref") {
3 new type = self.typeref;
4

5 if (contains(self.typeref, expr.name)) {
6 if (self.typeref != expr.name)
7 forwards.insert(self.typeref);
8

9 type = $(struct $type*);
10 }
11 else includes.insert(self.typeref);
12

13 return type;
14 }
15 else if (self.type == "Sequence")
16 return $(
17 $if (self == expr.type)
18 struct ${ expr.name} {
19 $else
20 struct {
21 $$
22 $for (e: self.sequence)
23 ${ emit(e.type)} ${ e.name};
24 $$
25 }
26 );
27 else if (self.type == "Choice")
28 return $(
29 $if (self == expr.type)
30 struct ${ expr.name} {
31 $else
32 struct {
33 $$
34 enum {
35 $for (e: self.choice)
36 ${ self.name.upper}_${ e.name.upper},
37 $$
38 } tag;
39

40 union {
41 $for (e: self.choice)
42 ${ emit(e.type)} ${ e.name};
43 $$
44 } value;
45 }
46 );
47 else if (self.type == "SequenceOf")
48 return $(
49 $if (self == expr.type)
50 struct ${ expr.name} {
51 $else
52 struct {
53 $$
54 int cap, len;
55 ${ emit(self.sequenceOf)}* list;
56 }
57 );
58 else if (self.type == "VisibleString")
59 return "char*";
60 }

Listing 3. Code emitting function.

62 new containment = Map();
63 new contains(type1, type2) {
64 if (type1 == type2)
65 return true;
66

67 for (it: containment[type1])
68 if (contains(it, type2))
69 return true;
70

71 return false;
72 }

Listing 4. Function that recursively
searches the convex dependency hull of a
type for another type.

74 for (module: asn1)
75 for (expr: module.member) {
76 new includes = Set();
77 new forwards = Set();
78 new decl = emit(expr.type);
79

80 Path(expr.name + ".h").open("w").write($(
81 #ifndef ${ expr.name.upper}_H
82 #define ${ expr.name.upper}_H
83

84 $for (include: includes)
85 #include "$include.h"
86 $$
87 $for (forward: forwards)
88 struct $forward;
89 $$
90

91 typedef $decl ${ expr.name};
92

93 #endif
94 ) "“n").commit();
95

96 containment[expr.name] = includes;
97 }

Listing 5. The for-loops iterating over
the modules and their type definitions,
generating a header file for each defini-
tion.
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1 #ifndef FACULTY_H_INCLUDED
2 #define FACULTY_H_INCLUDED
3

4 #include "Course.h"
5 #include "Employee.h"
6

7 typedef struct Faculty {
8 int cap, len;
9 struct {

10 char* name;
11 struct {
12 int cap, len;
13 Employee* list;
14 } member;
15 struct {
16 int cap, len;
17 Course* list;
18 } courses;
19 }* list;
20 } Faculty;
21

22 #endif

#ifndef EMPLOYEE_H_INCLUDED
#define EMPLOYEE_H_INCLUDED

#include "Student.h"
#include "Teacher.h"

typedef struct Employee {
enum {

EMPLOYEE_TEACHER,
EMPLOYEE_STUDENT,

} tag;

union {
Teacher teacher;
Student student;

} value;
} Employee;

#endif

#ifndef COURSE_H_INCLUDED
#define COURSE_H_INCLUDED

#include "Student.h"
struct Teacher;

typedef struct Course {
char* title;
struct Teacher* instructor;
struct {

int cap, len;
Student* list;

} students;
} Course;

#endif

Listing 6. Compiler output for types Faculty, Employee and Course respectively.

part of the code generator to modify. The generating code is easy to read because
the structure of the emitted code is eminent and not obstructed by the structure
of the emitting code which is another major benefit to using string templates for
generating high-level code. Common tasks involving resources and error handling
are performed in the background, significantly reducing the complexity of the
code generator.

6 Conclusions and Outlook

We have discussed different approaches to exchange the target-language in exist-
ing, Non-Metamodel-Based compilers and identified 5 key properties for a generic
module for code generation: (1) use of a meta-language, (2) minimal interface
for importing host-language structures, (3) focus on essential elements of code
generation, (4) deployment as platform independent library, and (5) minimal,
orthogonal, and familiar syntax. We presented our module that includes support
for the domain-specific language Glue and demonstrated its integration and use
by modifying an open source ASN.1 compiler to translate a subset of ASN.1
into C-code. Based on the characteristics of the generated code we were able to
confirm that the use of a meta-language can be worthwhile when attempting to
generate high-level text-based code for multiple targets.

As Arnoldus [1] demonstrated in his PhD thesis, adapting the meta-language
to include a syntactical description of the target-language yields a powerful tool
for statically detecting syntax errors in the output before attempting to trans-
late any source code. However, this requires modifications to the meta-language
during parse-time (of the meta-program) which is technologically challenging. It
would be interesting to research whether the syntactical correctness of the target
code could be guaranteed without changing the grammar of the meta-language.
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Abstract. Model transformations are at the very heart of the Model-
Driven Engineering paradigm. As modern programs, they are complex,
difficult to write and test, and overall, difficult to understand, maintain,
and reuse. In other paradigms, such as object-oriented programming,
design patterns play an important role for understanding and reusing
code. Many works have been proposed to detect complete design pattern
instances for understanding and documentation purposes, but also par-
tial design pattern instances for quality assessment and refactoring pur-
poses. Recently, a catalog of design patterns has been proposed for model
transformations. In this paper, we propose to detect these design patterns
in declarative model transformation programs. Our approach first detects
the rules that may play a role in a design pattern. Then, it ensures that
the control flow over these rules corresponds to the scheduling scheme in
the design pattern. Our preliminary evaluation shows that our detection
mechanism is effective for both complete and partial instances of design
patterns.

1 Introduction

Model-driven engineering (MDE) is a recent software development approach
that is rapidly growing in popularity [14]. At its core, it makes intensive use
of models as a means for automation and reuse. MDE developers use model
transformations to perform operations on models, such as: evolving, refactoring,
and simulating them [16]. Model transformations, which uses generally a rule-
based declarative paradigm [9], are still manually developed. Therefore, like any
hand-written software programs, model transformations must be well-designed
and implemented in order to be understandable by other developers, be re-used
in other projects, and reduce maintenance efforts.

In other paradigms, such as object-oriented programming (OOP), design pat-
terns play an important role in software design [13]. They are proven solutions
to recurring design problems that complement practices of developers. Design
patterns are described at a higher level of abstraction than the implementa-
tion language to ease communication and comprehension. They are considered
as micro-architecture building blocks from which more complex designs can be
built, thus promoting modularity and reuse. Recently, Lano et al. proposed a
thorough catalog of over 20 design patterns for model transformations [17]. They
c© Springer International Publishing AG 2016
J. Grabowski and S. Herbold (Eds.): SAM 2016, LNCS 9959, pp. 211–225, 2016.
DOI: 10.1007/978-3-319-46613-2 14
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showed that these design patterns reduce complexity and execution time, as well
as improve the flexibility and modularity of model transformations. Although the
intent and application conditions of each pattern are described rigorously, they
chose to define the solution part of the design pattern using a formal notation. To
facilitate their understanding for model transformation engineers and to enable
the automatic instantiation of design patterns in model transformation imple-
mentations, Ergin et al. [10] proposed a dedicated modeling language DelTa with
both a graphical and a textual [12] notation.

With the increasing scale and complexity of utilizing models in MDE, the
model transformations developed are also increasing in scale and complexity.
Furthermore, as with any software product, model transformations are evolving
constantly in development projects. This tends to deteriorate their architecture
and design, which is a burden of maintenance tasks. Nevertheless, design pat-
terns expressed in DelTa impose structure thanks to the abstraction they use.
Therefore, the identification of design patterns implemented in an existing model
transformation can tremendously help the developer in understanding the design,
as well as document the transformation [22]. Even if a design pattern was not
implemented in its integrity in the model transformation, identifying some of its
participants provides valuable feedback to the developer: (1) a missed opportu-
nity to implement it in order to improve the quality, (2) a suggestion to correctly
implement it through refactoring, or (3) the presence of a modified version of
the design pattern, since any design pattern may be implemented with endless
variations [20]. Various design pattern detection mechanisms have proven to be
very efficient [2,4,7,22]. However, these techniques have been applied to impera-
tive OOP code. Detecting design patterns on model transformations comes with
many challenges because they are described (1) declaratively, (2) at the level of
meta-models dealing with types and relations rather than instances, and (3) with
non-deterministic execution of rules.

In this paper, we present an approach to detect complete or partial instances
of design patterns in concrete model transformation implementations. It is a
model finding approach based on a rule engine, where we map model transfor-
mations to an abstract representation and design patterns to rules that these
representations must satisfy. After identifying individual participants of a design
pattern, we verify that the scheduling scheme described in the pattern is sat-
isfied in the transformation. We compute an accuracy score at each detection
step that is finally aggregated and reported. We implemented a prototype where
we encode design patterns defined with the DelTa language as rules and that
automatically maps a complete model transformation implemented in a specific
model transformation language to the abstract representation. We report prelim-
inary results that show our detection mechanism is effective for both complete
and partial instances of design patterns.

In Sect. 2 we provide the necessary background on model transformation and
their design patterns. In Sect. 3 we describe our approach on an example. We
report the results on the effectiveness of our approach in Sect. 4. Finally, we
conclude in Sect. 5.
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2 Background

We first review background on model transformations and their design patterns,
and then discuss different techniques for detecting design patterns in programs.

2.1 Model Transformation

In MDE, a model transformation is the automatic manipulation of a model fol-
lowing a specification defined at the level of metamodels [16]. A model transfor-
mation can be outplace, when it produces a target model from a source model,
such as in a translation, or it can be inplace when it modifies a model and
the result is an updated version of the source model, such as in a simulation.
Typically, a model transformation is defined by a set of declarative rules to be
executed. A rule consists of a pre-condition and a post-condition pattern. The
pre-condition pattern determines the applicability of a rule: it is the pattern that
must be found in the input model to apply the rule. Optionally negative pat-
terns may be specified in the pre-condition to inhibit the application of the rule
if present. The post-condition imposes the pattern to be found after the rule is
applied. Patterns are made up of structural elements (i.e., model fragments) and
of constraints on their attributes. Rules follow a scheduling scheme that defines
the order in which they are applied when a transformation is executed. The
scheduling can be made explicit by the language with a control flow structure
partially ordering rules, such as in Henshin. In some languages, such as ATL,
rules are scheduled implicitly, depending on the causal dependence between the
post-condition of a rule and the pre-condition of another. Features that model
transformation languages support are listed in [9]. A comparison of existing
model transformation tools can be found in [18]. Possible scheduling schema of
model transformations are described in [21].

Fig. 1. Model transformation of entity relation in Henshin
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For example, consider the model transformation defined in the Henshin lan-
guage in Fig. 1. It contains three rules that are scheduled to execute in sequence,
as depicted on the bottom right. This is an excerpt of transformation that cre-
ates database tables and columns from a class diagram. The first rule in the top
left states that if a class is present then create a table and link it with a trace
element unless such a trace already exists for the class.

2.2 Model Transformation Design Patterns

A design pattern expresses a means of solving a common model transforma-
tion design problem: it describes the transformation structure (rules, condition
patterns, and scheduling) that constitute the solution idea. A design pattern
includes also a description of the problem which motivated the pattern, how
such problems can be detected, and the benefits and negative consequences to
consider when using the pattern.

In the mid-2000s, several works proposed design patterns for model trans-
formation. Agrawal et al. [8] defined design patterns for graph transformation
described in a specific model transformation language. Iacob et al. [15] defined
other design patterns for outplace transformations. Levendovszky et al. [19] pro-
posed domain-specific design patterns for model transformation and different
domain-specific languages.

More recently, Lano et al. [17] presented the most comprehensive model trans-
formation design pattern study and defined a catalog of 29 patterns classified
into five categories. For example, these include a design pattern to map objects
before links, to decompose a transformation into phases based on the target
model, the criteria to separate rules so they can be executed in parallel, to
ensure that elements created by a rule are unique, or to individually process all
nodes of a model recursively.

At the same time, Ergin and Syriani [11] presented similar design patterns,
as well as new ones, such as modifying a model iteratively until a fixed point is
reached, or the execution of a modeling language by translating it into another
modeling language that can be simulated.

2.3 DelTa to Describe the Structure of Design Patterns

Lano et al. [17] presented the structure design patterns using a formal language
TSPEC in the form of contracts with pre- and post-conditions that a concrete
model transformation implementing the pattern should satisfy. However, Ergin
and Syriani [12] engineered a domain-specific language, DelTa, dedicated to
represent the structure of model transformation design patterns. Because an
implementation is already available in EMF, we opted to use the DelTa imple-
mentations of Lano et al.’s design patterns.

DelTa is a language to define model transformation design patterns with its
own syntax and semantics. It is independent from existing model transformation
languages. In terms of abstraction, DelTa borrows concepts from various MTLs
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Fig. 2. Entities before relations design pattern

to create a more understandable and common language. Figure 2 represents a
model transformation design pattern in its graphical syntax as described in [10].

A DelTa model specifies the minimal rules (the large rectangles) and nec-
essary rule scheduling (the connections between them) that a concrete model
transformation implementing it should have. Rules consist of the minimal con-
straints and actions on elements of the metamodel that concrete transforma-
tion rules implementing them should specify. Constraints and actions refer to
variables that are typed as entities (rectangles like sEnt) or relations (arrows
between entities) of a metamodel, or traces (dotted lines). For example, in rule
entityMapping, there is a constraint stating that there must be an entity (sEnt).
Furthermore, the n0 symbol on rule elements indicates that trace and the entity
tEnt are part of a negative constraint. These two entities come from different
metamodels (src and trgt). In DelTa, we only reason about entities and rela-
tions, independently from specific metamodel types and relations. Entities are
represented using a UML class notation and their metamodel appears on the top
right. An “x” symbol on an element inside a rule means that this element should
not appear in the concrete transformation rule implementing the DelTa rule.

Color coding of entities and relations inside the rules indicates whether they
are part of the constraint or a type of action of the rule. White elements form
the minimal application pre-condition that a concrete transformation rule imple-
menting it should have. Gray elements are the minimal elements to be created in
the concrete transformation rule. For example, the tEnt and the trace between
it and sEnt must be created. Therefore, the rule entityMapping dictates that
the concrete transformation rule implementing it should look for an entity from
one metamodel and create a new entity from another metamodel, as well as a
trace between them. Elements in black are the minimal elements to be deleted
in the concrete transformation rule.

When a self loop symbol appears on the top left (as it is the case with both
rules in Fig. 2), the DelTa rule is exhaustive: the concrete transformation rule
implementing it should be applied on all of its matches. This may require to
have more than one rule implementing this DelTa rule, for example to match
different metamodel types.

In DelTa, the scheduling is depicted using a control flow notation. The
start node (filled ball) indicates the initial rule of the design pattern. Arrows
between rule blocks indicate a predence order: the concrete transformation rule
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implementing the entityMapping rule should be performed before the one imple-
menting the relationMapping rule. A dashed box containing rules specifies that
the order of execution of the rules it contains is irrelevant to the design pattern.
Entities, rules, and scheduling represent the participants of a model transfroma-
tion design pattern. In this paper, we use model transformation design patterns
expressed in DelTa from [10].

2.4 Design Patterns Detection in Software Engineering

To the best of our knowledge, there is no previous work that tackles the detection
of design patterns in model transformation. Most of the detection approaches
target the patterns of Gamma et al. in object-oriented programs [13]. These
approaches target primarily the structural patterns as these can be detected
by matching the structure of code to one of the pattern [3,22]. To improve the
detection, some projects combine multiple strategies as in [7]. The detection of
behavioral patterns also attracted the interest of the research community. In
De Lucia et al. [2], the authors use model checking to improve the detection of
behavioral patterns. A work similar to our is one in [5]. In this paper, the authors
first identify pattern key participants using a machine learning technique. Then,
they check for the other participants of the pattern and the relations between
them.

3 Design Pattern Detection for Model Transformation

We propose an approach to detect complete and partial instances of design pat-
terns in concrete model transformations. We consider design pattern detection
as a constraint satisfaction problem where a design pattern imposes a specific
structure that a concrete model transformation should contain, and we solve it
using a declarative strategy based on an inference rule engine.

3.1 Overview

As shown in Fig. 3, the detection of a design pattern is encoded as a set of rules.
These rules apply to a set of facts representing the model transformation. The
facts conform to fact templates: a generic abstract representation of transforma-
tion components relevant to design pattern detection. This abstract represen-
tation makes our approach independent from a specific model transformation
language. The mapping to of a concrete model transformation is performed by
a model-to-text transformation.

The detection process is performed in three automated steps. First, the
transformation is mapped to an abstract representation (i.e., facts) using a
higher-order transformation. Second, we identify which rules of the model trans-
formation can play the role of the participants of the design pattern. Third, once
the participant candidates are identified, we verify that their execution satisfies
the scheduling scheme specified in the design pattern.
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Fig. 3. Architecture overview of design pattern detection

In the remainder of this section, we describe how concrete model transforma-
tions are mapped to generic facts and then explain the two steps of the detection
process.

3.2 Mapping Model Transformations to Generic Facts

Fact Template. To describe model transformations, we defined a fact-based
language inspired by the Henshin transformation language [1]. The motivation
behind this decision is that design patterns, as defined in [17], deal mainly with
the manipulation (creation/modification/deletion) of model elements by rules as
well as with the rule execution scheduling. All these constructs can be described
by the Henshin concepts.

The main fact template to describe a transformation is Rule. A Rule is com-
posed of nodes, each corresponding to an action on a model element present in
the pre- or post-condition of a model transformation rule. Nodes are described
by the fact template Node. Nodes have several attributes to define the element
name and type they represent, a reference to the rule in which they appear,
and also an action. If the action slot is assigned “create”, “update” or “delete”,
then the node is part of the post-condition of the transformation rule. If it
is assigned “preserve” or “forbid”, then the node is part of the pre-condition
(positive or negative constraint, respectively) of the transformation rule. Nodes
may also be related with the Edge fact template when the action in one node
depends on another node, e.g., an element is created and its attributes are set
according to those of another element. For rule execution scheduling, we define
the fact template Sequence that specifies the precedence between two rules.
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The precedence relationship may also involve control events such as the begin-
ning and the end of a loop.

Listing 1.1 shows fact templates for Rule, Node, and Sequence expressed
in the Jess language [6]. In Jess, each template has a name and a set of slot
definitions. When asserting a fact, the slots must be set with values. Some slots
are used to describe the fact properties such as Name in Rule and Action in
Node. Others are used to connect facts. For example, the slot RuleId in Node
is set with the Id of the Rule which the node belongs to. Similarly, SourceId
and TargetId in Sequence refer respectively to the Ids of the preceding and
following rules.

Listing 1.1. Fact Templates representing a model transformation language

1 (deftemplate Rule (slot Id)(slot Name))

2

3 (deftemplate Node (slot Id)(slot RuleId )(slot Action)

4 (slot Occurrences )(slot Name)(slot Type))

5

6 (deftemplate Sequence(slot SourceId )(slot TargetId ))

Fact. Listing 1.2 shows the Jess facts of a rule having two nodes.

Listing 1.2. Fact representing a concrete model transformation

1 (Rule (Id"R1")(Name"Class2TableMapping "))

2

3 (Node (Id"N1")( RuleId"R1")

4 (Action"preserve")( Occurrences "n")(Name"")(Type"Class"))

5

6 (Node (Id"N2")( RuleId"R1")

7 (Action"create")( Occurrences "n")(Name"")(Type"Table"))

To be effective for large transformations, we automate the mapping of a given
concrete model transformation to a set of facts. Therefore, we need to write a
fact generator for each model transformation language considered. To this end,
we use Acceleo1, a template-based model-to-text transformation tool in EMF.
These code generation templates encode the semantic equivalence between the
transformation language constructs and our fact templates. Listing 1.3 illustrates
an example for generating of a fact Rule from a Henshin rule. Although our
implementation currently supports Henshin, adapting to another model trans-
formation language simply requires to create a new Acceleo template for it.

Listing 1.3. Fact representing a concrete model transformation

1 [template public generateRule(rule:Rule , position:Integer )]

2 (Rule (Id \"["R" + position ]\") (Name \"[ rule.name /]\"))

3 [/ template]

1 https://eclipse.org/acceleo/.

https://eclipse.org/acceleo/
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3.3 Encoding Design Patterns as Detection Rules

As mentioned in Sect. 2.2, the participants of a model transformation design
pattern are DelTa rules, the elements they contain in their constraint and actions,
and their scheduling scheme. The pattern Entities Before Relations in Fig. 2, for
instance, consists of two DelTa rules: entityMapping and relationMapping. It also
mandates that the former must be executed before the latter. Consequently, our
detection strategy starts by finding concrete model transformation rules that
match the ones in the DelTa model, and then verify if the scheduling specified
in the patterns holds for the concrete matched rules.

Listing 1.4. Rule encoding the complete entityMapping rule of Entities before Rela-
tions design pattern

1 (defrule CreateEntityMapping_Rule

2 (Rule (Id ?r_1)(Name ?r_2))

3 (Node (Id ?sEnt_1 )( RuleId ?r_1)( Action"preserve")

4 (Occurrence ?sEnt_4 )( Name ?sEnt_5 )(Type ?sEnt_6 ))

5 (Node (Id ?tEnt_1 )( RuleId ?r_1)( Action"forbid")

6 (Occurrence ?tEnt_4 )( Name ?tEnt_5 )(Type ?tEnt_6 ))

7 (Node (Id ?tEnt_2 )( RuleId ?r_1)( Action"create")

8 (Occurrence ?tEnt_4 )( Name ?tEnt_5 )(Type ?tEnt_6 ))

9 (Edge (Id ?ed_1)( RuleId ?r_1)( SourceId ?sEnt_1)

10 (TargetId ?tEnt_1 ))

11 (Edge (Id ?ed_2)( RuleId ?r_1)( SourceId ?sEnt_1)

12 (TargetId ?tEnt_2 ))

13 =>

14 (assert

15 (EbR_entityMapping

16 (Id (str-cat ?r_1 ?sEnt_1 ?tEnt_1 ?tEnt_2 ?Ed_1 ?Ed_2))

17 (RuleId ?r_1)

18 (sEnt_1Id ?sEnt_1)

19 (tEnt_1Id ?tEnt_1)

20 (tEd_1Id ?ed_1)

21 (tEnt_2Id ?tEnt_2)

22 (tEd_2Id ?ed_2)

23 (accuracy 1))

24 )

25 )

The detection of instances of a DelTa rule is encoded as a rule in Jess.
For example, Listing 1.4 rule detects complete instances of entityMapping. The
Jess rule first filters all transformation rule facts that have a “preserve” node
connected to a “forbid” node and to a “create” node. For each rule satisfying
these conditions, it asserts a fact EbR entityMapping. Another Jess rule will filter
the concrete rules that can play the role of relationMapping and asserts for each
match a fact EbR relationMapping. The encoding of DelTa rules into Jess rules
can be implemented with Acceleo templates.

Once the potential participants are detected, the next step is to ensure if the
execution schedule of the concrete rules corresponds to the one of the pattern.
In the case of the pattern Entities Before Relations, a Jess rule filters facts
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EbR entityMapping and EbR relationMapping, and a Sequence fact relating the
rules respectively involved in the participant facts.

3.4 Accuracy for Complete and Partial Instances

In the case of complete instance detection, all the conditions (participants and
scheduling) should be fully satisfied, i.e., accuracy equals 1.

When detecting partial instances, rules variants are defined for participants
and scheduling detection. These rules may omit one of the conditions and adjust
the value of fact accuracy accordingly. For example, in the detection of enti-
tyMapping participants, a variant rule can consider rules with “preserve” and
“create” nodes, but without a “forbid” node. This is depicted in Listing 1.5. The
accuracy is then adjusted to 0.66 for example. The scheduling verification rule,
calculate the global accuracy of the pattern instance from the accuracy values
of the participants facts and one of the scheduling itself.

Listing 1.5. Rule encoding a partial entityMapping rule of Entities before Relations
design pattern

1 (defrule CreateEntityMapping_Rule

2 (Rule (Id ?r_1)(Name ?r_2))

3 (Node (Id ?sEnt_1 )( RuleId ?r_1)( Action"preserve")

4 (Occurrence ?sEnt_4 )(Name ?sEnt_5 )(Type ?sEnt_6 ))

5 (not (Node (Id ?tEnt_1 )( RuleId ?r_1)( Action"forbid")

6 (Occurrence ?tEnt_4 )(Name ?tEnt_5 )(Type ?tEnt_6 ))

7 ...

8 =>

9 (assert

10 (EbR_entityMapping

11 (Id (str-cat ?r_1 ?sEnt_1 ?tEnt_1 ?tEnt_2 ?Ed_1 ?Ed_2))

12 (RuleId ?r_1)

13 (sEnt_1Id ?sEnt_1)

14 (tEnt_1Id"")

15 (tEd_1Id"")

16 (tEnt_2Id ?tEnt_2)

17 (tEd_2Id ?ed_2)

18 (accuracy 0.66))

19 )

20 )

4 Preliminary Evaluation

4.1 Setup

A preliminary evaluation of this work consists in selecting a subset of design pat-
terns and detect their instances on a sample of model transformations. The goal
here is to analyze qualitatively how our detection approach applies to concrete
transformations.
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We selected 13 Henshin transformations2 with different characteristics (see
Table 1). As we had to analyze manually the results, we opted for small-medium
transformations having 1 to 13 rules. We also paid attention to the control com-
plexity as most of the transformation design patterns deal with the rule execution
control. Indeed, some of the selected transformations use default implicit control
(no control specified), and others have up to 13 rule scheduling units with loops
and calls between the units. Additionally, we varied the complexity of the rules
with respect to the number of involved model elements, with an average number
of nodes per rule between 3 and 11.

Table 1. Selected transformations.
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bank 3 0 12 12 0 0
bankmap 1 0 5 4 0 0

comb 2 1 22 38 1 1
diningphils 4 0 22 34 0 0

ecore2genmodel 8 6 55 59 12 2
gossipingGirls 2 0 7 9 0 0

grid-full 4 5 18 27 8 3
grid-sparse 3 4 11 16 6 2

java2statemachine 13 13 77 59 27 5
petriM 2 0 15 27 0 0

sierpinski 1 0 6 12 0 0
sort 1 1 3 2 1 1

entityRelationMapping 3 1 16 14 3 0

In this preliminary evaluation we experimented with the detection of three
patterns, selected from the catalog of [17]. Two of them deal with the rule mod-
ularization (Entities Before Relations and Construction and cleanup), and one
with optimization (Unique Instantiation).

Entities Before Relations. The goal of this pattern (Fig. 2), also called Map
Objects Before Links, is to create the entities and then their relations. As men-
tioned in Sect. 3.3, three rules are defined for the detection of this pattern:
(1) detection of entities creation, (2) detection of relations creation, and (3) prece-
dence checking between the two creations. In addition to the detection of complete
instances, we implemented the detection of one kind of partial instance, i.e., the
situation in which the transformation program have rules for creating the entities
before the creation of their relations, but does not check if an entity exists before
it creates a new one (see Sect. 3.4).

2 https://www.eclipse.org/henshin/examples.php.

https://www.eclipse.org/henshin/examples.php
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Construction and Cleanup. As shown in Fig. 4, this pattern consists in sepa-
rating rules which create model elements from those which delete elements [17].
Like for the previous patterns, the detection is done in three phases: (1) finding
element creation rules, (2) finding element deletion rules, and (3) precedence
checking between the two.

Fig. 4. Construction & cleanup - Structure in DelTa

Unique Instantiation. This pattern, sketched in Fig. 5, aims at avoiding mul-
tiple creations of the same model element. This may happen in two situations:
(1) two rules creating the same model element or (2) a rule creating a model
element, and that appears in a loop inside a rule execution schedule. We defined
detection rules for each situation, i.e., identifying element-creation rules, and
checking duplications and loops.

Fig. 5. Unique instantiation - structure in DelTa

4.2 Qualitative Analysis

Entities Before Relations. Surprisingly, our prototype did not find complete
instances of the pattern Entities Before Relations. To understand this, we man-
ually inspected the automatically detected partial instances. We noticed that,
in many cases, the EntityMapping participants were identified with an accu-
racy of 1. However, the relationMapping participants did not satisfy the con-
dition of the non-existence of a relation before its creation. All the detected
partial instances satisfied the execution schedule conditions with perfect accuracy.
Figure 1 illustrates two examples of partial instances found in the entityRelation-
Mapping e rules transformation. The rules ClassMapping and AttributeMapping
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are both complete instances of entityMapping. Conversely, in rule attributeRela-
tionMapping, the relation between “Class” and “Attribute” is mapped to a rela-
tion between “Table” and “Column” without ensuring that such a relation does
not already exist (not a “forbid” action). Although the scheduling is perfectly
accurate, i.e., both ClassMapping and AttributeMapping rules precede attribut-
eRelationMapping, the aggregated accuracy is lower than 1.

Construction and Cleanup. The prototype found many instances of the
design pattern Construction and cleanup. An interesting instance is one found
in the Java2StateMachine. In this transformation, only one rule has a “delete”
action (updateAction on the right of Fig. 6). All the other rules create elements.
This rule appears at the last step of the execution schedule (on the left of Fig. 6).
This is a non trivial instance to detect because of the modularization of the
execution schedule. In our detection program, we implemented a function that
reconstructs a flat schedule by resolving the schedule step references.

Fig. 6. An example of instance of the pattern Construction and Cleanup

Unique Instantiation. This is by far the most frequent pattern and many of
its instances were found in almost all the considered transformations. Some of
them have a high accuracy. An example of a complete instance was found in the
Ecore2GenModel high-order transformation. The createCustomizationUnit rule
creates an element, which is not created by other rules (Fig. 7a). Moreover, this
rule does not appear in a loop in the execution schedule (Fig. 7b).
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(a) Creation rule (b) Cleaning instance

Fig. 7. Unique instantiation instance detected in Ecore2Genmode transformation

5 Conclusion

In this paper, we propose an approach and a preliminary implementation for the
detection of complete and partial instances of design patterns in model transfor-
mations. Our approach follows a declarative strategy which consists in identify-
ing transformation rules that play the roles of design pattern participants and
then check if their execution sequence conforms to the schedule specified in the
pattern.

We conducted a preliminary evaluation which consisted in applying our detec-
tion rules on a set of transformations and in qualitatively analyzing the detection
results. Although the obtained results are encouraging, our evaluation revealed
some limitations. First, we define explicitly rules for detecting pattern vari-
ants [20]. The advantage of this strategy is that we identify acceptable variants
of a design pattern. The drawback is that our detection code is very verbose with
very similar rules. We plan in the future to have a generic detection of variants
by allowing weights to the pattern participants.

Another limitation of our approach resides in the limited number of con-
trol structures we handle. In our current implementation, we do not consider
alternatives structures. Thus for the pattern Unique Instantiation, if two rules
respectively in the two branches of the alternative create the same element, we
do not detect a valid instance. Handling more control structures is a part of our
future work.
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Abstract. In order to enable automatic design synthesis it is necessary
that functionality can be completely specified and that the so-called real-
izability problems can be detected and resolved. In this paper we focus
on the second issue to resolve realizability problems. We assume a specifi-
cation approach called the interface-modular method in which interfaces
and core functionalities are specified and analyzed separately as modules
that can be composed into complete specifications using UML collabora-
tions and activities as the main notations. From this the designs can be
derived by a process of direct synthesis whereby activities are localized
to components in a manner that maintains the modularity. Such direct
synthesis may contain so-called realizability problems that may need to
be resolved. In this paper we propose and discuss modular solutions to
the known realizability problems in terms of activities.

Keywords: Design synthesis · Interface definitions · Realizability issues

1 The Interface Modular Method

1.1 Collaborations for Structuring Interfaces and Services

In UML 2.x, collaborations are both structural and behavioural classifiers.
A collaboration defines a structure of connected parts called roles. A collaboration
may be used in the form of a collaboration-use within the context of an enclos-
ing collaboration (or a composite class) where its roles are assigned to roles/parts
in the enclosing entity. Hence collaborations support composition by role assign-
ment. This is illustrated in Fig. 1, where a TaxiSystem1 is defined as a collab-
oration among roles (Taxi, User, TaxiDispatcher (TD)) with collaboration-uses
representing partial interface behaviours (TaxiReq, UserWait, ...). Here the roles
of collaboration-use UserWait, for instance, is bound to the User and TD roles.
Behaviour can be associated with the collaborations in order to precisely define

1 In a TaxiSystem, Users can book Taxis by placing taxi-booking requests to a Taxi-
Dispatcher.
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Fig. 1. UML collaboration diagram showing roles and collaboration-uses in interfaces
of a TaxiSystem.

interface behaviour. This is illustrated by the references to activity diagrams given
in a separate compartment of the collaboration in Fig. 1.

The only non-standard feature of collaborations used in the Interface-
Modular (IM for short) method [2] is the indication of which roles are initi-
ating (a black dot) and which roles that are terminating (a black square). This
information, that can be provided by suitable profiling, is useful when it comes
to design synthesis and detection of realizability issues as will be explained in
Sect. 2. It was first proposed in [3].

In contrast to classes, roles define partial properties. Roles, role assignment
and role composition goes well with the understanding of services and interfaces
as partial behaviours (defined by roles) to be assigned to and composed within
components. However, in UML the composition of roles and compliance between
roles and classes is not clearly defined. The IM method provides a solution to
this problem that will be explained below.

1.2 Using Activities for (Cross-Cutting as Well as Local) Behaviour
Definition and Composition

UML 2.x activities provide a rather powerful notation for behaviour definition
based on a token flow semantics. Activities can be used to define modules with
cross-cutting global behaviours as well as local behaviours. Tools exist that can
analyse activities for dynamic problems and generate state machines for imple-
mentation [9,10]. Using such tools, activities are useful not only to specify behav-
iour, but also to express design detail and generate implementations.

For local behaviours (i.e. behaviour performed by a single component, i.e.
an entity performing one or more roles within a single computing node) we use
standard UML activities. Modules are call behaviour actions defined as activities
with pins (parameters) for connection with their environment. Figure 2 illustrates



228 U. Fatima and R. Bræk

TaxiWait

TaxiRequest

UserAssign

Check 
TaxiQ

Check 
TaxiQ

Insert User 
in UserQ

Insert Taxi 
in TaxiQ

Extract Taxi 
from TaxiQ

Extract User 
from UserQ

Remove Taxi 
from TaxiQ

Remove User 
from UserQ

Initial 
Settings

Variables
TaxiQ: Queue
UserQ: Queue

{No Taxi Available} {Taxi Available}

{User Waiting} {No User Waiting}

TaxiAvailable

UserWait

TaxiAssign

UserWithdraw TaxiWithdraw

start

act CF

Fig. 2. The core functionality module of TD.

how the core functionality (abbreviated CF in the following) of the TD role
can be defined as a local activity. Note how this diagram defines the essential
behaviour of a taxi dispatcher as an interface independent module. It defines
data processing in terms of queues and operations that are highly relevant for
stakeholders such as users and taxi drivers and therefore important to cover in a
specification of functionality, even though it will become internal to the TD. In
order to specify dependencies and constraints on the actual external flows that
can be connected to a module, one may attach so-called external flows to the pins
as illustrated. This is a method extension that helps to specify and understand
modules separately and to ensure compliance when modules are connected. It
will not be elaborated further here.

TaxiReq
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User TD

User TaxiReq TD

(a) Global Activity
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Fig. 3. Overview of global activity vs. localized activity.



Modular Solutions to Common Design Problems Using Activities 229

end

User TDtr.TaxiReq

User TD
tw.User

Wait

User TD
uwd.User
Withdraw

TaxiRequest

User TDgt.Grant

act User-TD

UserWait

TaxiAvailable

TaxiAssign

UserWithraw UserConnected

(a) User-TD Interface Functionality
Model.

TD Taxi
tw.Taxi
Wait

end

TD Taxi
ts.Taxi
Status

TD Taxi
twd.Taxi

Withdraw

TD Taxisz.Seize

act Taxi-TD

TaxiAvailable

TaxiWait

TaxiRequest

UserAssign

TaxiConnected TaxiWithdraw

(b) Taxi-TD Interface Functionality
Model.

Role 1 Role 2Service
 name

Terminating 
Role

Initiating
 Role

role
participation

(c) Notation for CallBe-
haviourAction.

Fig. 4. Interface functionality modules of TaxiCentral.

When using activities for cross-cutting behaviour specification (i.e. behaviour
involving more than one component) it is common to indicate the components
that participate as so-called partitions. The particular notation for indicating
partitions is not standardized in UML 2.x, but varieties of the so-called swim-
lane notation are common, especially in business process modelling. Figure 3(a)
illustrates how the behaviour associated with the collaboration TaxiReq can
be expressed in this way. Note that flows crossing partition boundaries imply
communication. Such flows may specify the data type that is passed, but will
normally not name any particular messages or method calls to carry the data.
This is in contrast to interactions (sequence diagrams) where the messages are
explicitly named. In the IM method, we use this form of activity diagram to
define the behaviour of elementary collaborations, i.e. collaborations not further
decomposed into collaboration-uses. Most model elements of UML 2.x activities
are allowed including streaming pins.

The behaviour of a composite collaboration (non-elementary) can now be
defined by an activity diagram that orders the execution of elementary collabo-
rations using activity flows. Most model elements of UML activities are allowed
here as well. On this level the elementary collaboration activities are repre-
sented as callBehaviourActions referring to the activities defining their behav-
iour, in much the same way as Interaction Overview Diagrams refer to detailed
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interactions [3]. In the symbols for callBehaviourActions, roles are represented
as partitions using the notation illustrated in Fig. 3 and explained in Fig. 4(c),
which is in accordance by the notational variation allowed in UML 2.x. As an
extension of UML, the initiating and terminating roles may be indicated by the
black dots and squares as illustrated. This aids the understanding and analysis
on this level of behaviour definition. This notation was first introduced in [3] to
define distributed behaviours and to help identify so-called realizability problems
at an early stage.

Figure 4 defines two interfaces of the TaxiSystem as modules. Note that the
full interface functionality (abbreviated IF in the following) with its two roles
and remote interactions are encapsulated in the modules. Since IF modules do
not live in isolation, but will interact with CF modules at either end, the interface
modules have pins to connect with the CF modules and carry this interaction.
Such pins for internal composition with the CF is not so much of an over-
specification as one may think at first because they represent the dependencies
that exists both ways between IF and CF. Understanding these dependencies
is necessary to fully understand both the core and the interface as well as to
compose the two.

1.3 Interfaces as Modules

Encapsulation and well-defined interfaces is widely recognized as a key to system
modularity. Thus, when specifying and designing the functionality of a system
or component one may benefit from a clear separation between the encapsulated
CF and the exposed IF. Interfaces as modules is a distinguishing feature of the
IM method [2].

This is made possible by using UML 2.x activities to define both the IF
and the CF as well as their pins for external connections. Hence, the interface
is a module with cross-cutting behaviour involving two parts (formally roles in
UML collaborations) and pins for connection with the CF. In the IM method
composition and compliance is therefore well-defined in terms of the pins used
to connect IF and CF modules and the ordering of collaboration-uses defined by
activities within each interface. Altogether collaborations and activities provide
languages to define interfaces as modules independently of a particular CF and
to mix-and-match IF and CF modules. Activities put few constraints on the
granularity of modules, and this helps to factor out IF and CF modules without
the need for any additional “glue”.

One might object here that the pins for connection between IF and CF
within a component reveals internal detail of a component and therefore should
be avoided. On the other hand this helps to achieve the benefits of separation
and modularisation. The pins are internal, but they simply represent the depen-
dencies that exist between the interfaces and the core that one need to take into
account anyway both to understand and to compose. Moreover a precise defini-
tion of both IF and CF and their mutual dependencies is needed in a complete
specification of functionality, and having explicit pins makes composition well
defined.
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2 Direct Design Synthesis

An important motivation for the IM method was to simplify the task of making
specifications complete in the sense that they define the full behaviour expected
by the environment. Given such a complete specification defined in terms of
activities, direct design synthesis is a matter of defining local component activ-
ities that together will provide the specified behaviour. When using the IM
method, direct design synthesis may be performed for each IF module and CF
module separately. The CF modules are internal to components and therefore,
by nature, local activities. Therefore, the problems related to distribution are
confined to the IF modules only.

In specifications one normally uses global flows to order the IF collaboration
activities as shown in Fig. 4. Such global flows are useful for early overview and
validation. They focus on the intended overall behaviour and suppress details
related to the local flows needed to enforce the global ordering. The same is
the case when using Interaction Overview Diagrams (IODs) or high-level MSC
diagrams. In a distributed system, however there are no global flows, only local
flows and interactions. Direct design synthesis therefore involves two main steps:
(1) split the elementary collaboration activities into two local role activities
linked by message passing instead of flows; (2) replace the global flows by local
flows. The first step is rather straight forward as illustrated in Figs. 3 and 5 and
will not be elaborated further here.

The second step can be performed by copying the global flow to each com-
ponent, c.f. Fig. 5. This results in two parallel local flows, one for each interface
role activity. This includes also interrupting flows and control nodes like choices,
forks, events etc. Once the global flows are copied to both the participating
components/roles of an interface, we need to determine which of these flows are
initiating flows and responding flows. Flows connected to the initiating role of
the next collaboration, i.e. the role that performs the first sending action of a
collaboration, are defined as initiating flows. Flows connected to the responding
role, i.e. the role that participates, but is not initiating, are called responding
flows. The initiating flows enable the initiating role of a collaboration to start
the collaboration and send messages whereas the responding flows enable the
responding role to participate in the collaboration and receive the messages sent
by the initiating role. The responding flows determine when the responding role
must be ready to respond in collaborations initiated by the initiating role, hence
the name: responding flows. Responding flows and initiating flows are both ordi-
nary flows in the UML sense, but the responding flows may give rise to design
problems, also called realizability problems, that have to be resolved. Since the
distinction is useful for analytical purpose, the responding flows and their control
nodes are here marked as dashed.

Table 1 summarises how the global control nodes are mapped to the initiating
side and the responding side. The responding flows and nodes are first dashed
as an indication here and then mapped to normal flows and nodes as shown in
Table 1. One can see that join nodes, merge nodes and forks can be treated the
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Table 1. Synthesis rules for control nodes and interruptible region. ICR block is shaded
to emphasize its re-usability as a module

A BC1 A BC2
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Fig. 5. An illustration of the process of direct design synthesis.

same way on the initiating and responding side and poses no problems. Choices
and interruptions on the other hand, need special attention.

Choices must be treated differently on the responding side. A local choice, i.e.
a choice that is performed locally on the initiating side, must on the responding
side be mapped either to a fork or a special responding choice resolution module
as indicated in Table 1. This is because the outcome of the decision depends
on which collaboration is activated on the initiating side. Therefore, both alter-
natives must be activated on the responding side in order to detect the first
message of the chosen collaboration. As shown in Table 1, this means that both
B.C1 and B.C2 must be activated to detect the first message either from A.C1 or
A.C2. Figure 6 defines the responding choice resolution module and how it can
be applied in the TaxiSystem example. For instance, when the User sends a taxi
request to the TD, either the UserWait collaboration or Grant collaboration will
be activated depending upon the decision made by the initiating role, TD. To
detect the first message, the User roles both in UserWait and Grant needs to
be enabled.

In order to model this, the responding choice resolution module has a ‘fork’
with outgoing flows enabling both the responding roles User.UserWait and
User.Grant via enable pins. If User.UserWait receives the event, it needs to
stop User.Grant and vice versa because both are enabled. This is modelled in
the resolution module. The resolution module gets notified about the detection
of the first message by either of the responding roles via init input pins and
stops the corresponding role via stop output pins.

Corresponding init and stop pins need to be added to the responding roles to
communicate with the responding choice resolution module. Figure 6 illustrates
how the internal details of a responding role (User.Grant) are modified in order
to add the functionality required by the init and stop pins. An ‘activity final’
node is added (to stop the activity) and connected to the stop pin. A ‘fork’ is
added to communicate the reception of the first event via init pin. Note that
the additions made in the User.Grant role in order to communicate with the
responding choice resolution block are straight forward and simple. Also note
that the addition of these pins does not modify the specified role behaviour and
can be added to all role activities to compose them with resolution modules
when needed. The behaviour now described by the User.Grant responding role
can be re-used for similar situations without further modifications. Hence it can
serve as a reusable module.
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Fig. 6. Responding choice resolution and its application in the TaxiSystem with expla-
nation of the required modification of role activities, here exemplified by User.Grant

If the output flow segments from a choice is a mix of responding and initiating
flows, then we have a so-called non-local choice. In this case resolution is not
straight forward since the decision making process is not localized to any of the
components as will be explained in the following. Interruptible regions require
special attention both on the initiating and responding sides, as indicated in
Table 1. In the next Section we shall explain how the problems associated with
non-local choices and interruptions can be resolved in a modular way.

3 Realizability Problems

If a distributed design resulting from a direct synthesis implies unspecified behav-
iours, sometimes referred to as implied scenarios, one has a so-called realizability
problem. Realizability problems are not particular to the IM method, but fol-
low from the nature of a distributed design, and have often been studied in the
context of sequence diagrams and state machines, see e.g. [3].

The realizability problems that we address in this paper are related to:

– non-local choices
– Interruptible regions and interrupting flows

A third category of problems is the possibility of message reordering due to
weak sequencing. Weak sequencing may be found by analysing the responding
flows as explained in [5]. UML activities supports reordering before consumption,
which resolves this problem. It will therefore not be elaborated further here. In
order to resolve the remaining realizability problems, additional coordination
among role activities are needed. The necessary coordination can be provided
by, and encapsulated in general and reusable resolution modules as indicated
in Table 1. The table illustrates the resolutions on both the initiating and the
responding sides.
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3.1 Non-local Choices

Unlike, local choices where the decision to choose the next collaboration action is
localized to one component, non-local choices imply realizability problem because
the decision to choose the next collaboration action cannot be localized to one
component. For non-local choices, there are two cases to consider:

a. non-local data choice: the choice between alternatives depends on data not
locally available.

b. non-local initiative choice: the choice between alternatives depends on events
(initiatives) occurring independently in different components.

Case ‘a’ represents a design flaw that must be rectified by appropriate design
modification, i.e. by making the data available locally in one of the components.
Case ‘b’ is not due to design errors. Initiative choice problems follow from the
nature of the system behaviour, and can normally not be prevented. One there-
fore has to detect and to resolve the situation when it actually occurs during
execution. This may happen whenever there is a choice between collaborations
initiated by different components due to local triggering events.

Initiative choice problems can be categorized as follows [3]:

– The alternatives have different goals and priority. For instance, the UserWith-
draw initiated by the User and TaxiAvailable initiated by the Taxi. In such
cases, only one of them should win.

– The alternatives have the same goal and priority. For instance, CallDisconnect
in a PhoneCallSystem. Semantically there is no conflict whether the caller or
the callee initiates the disconnection. The goal is CallDisconnect. In such cases
any of them can win and the resolution may be simply to ignore the second
initiative that occurs.

The first category is resolved with an initiative choice resolution module
(ICR module) as depicted in Table 1 and defined in Fig. 7 with the “1” pins to
be connected to the initiating side and “2” pins to the responding side.

We construct the ICR module to resolve the conflict between collaborations
C1 and C2 by following two major steps:

enable 1

state = init check state

check priority

init init

sec prim

enable 2

init 1 init 2

stop 1stop 2

start

Fig. 7. Details of the initiative choice resolution module (ICR) depicted in Table 1.
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a. Assigning priorities: We have assigned primary and secondary priorities to
the conflicting initiatives and allow the primary side initiative to be accepted
in cases of conflict, a concept we have adopted from [4].

b. Adding init and stop pins: The ICR module needs pins to receive indi-
cation about two events: (1) the initiating role has started the collaboration
on the initiating side; (2) the first message following the initiative has been
received on the responding side. These events are signalled by tokens on the
init1 and init2 pins. By receiving information about both the initiatives via
the init pins, the ICR module can detect the collision and stop the collabo-
ration with the lower priority via stop pins.

Corresponding init and stop pins need to be added on the participating
roles2. Note that ‘enabling’ of roles does not mean that the roles have taken
initiative as soon as they are enabled. It only means they are ready to take an
initiative or to respond to an initiative. Note that the ICR modules are local to
each component and do not involve any additional communication among the
components. The ICR modules can be used as shown in Fig. 8 to resolve initiative
choices between collaboration C1 and C2. Note that we use the notation for
collaboration ordering here as a shorthand for two local role activities linked by
message passing. We assume C1 has been assigned primary priority. Let us follow
an initiative on A.C1. The A.C1 activity will send its first message and indicate
the initiation to the ICR module via init1. When the message is received by the
B.C1 activity this is indicated by the init2 to the right hand ICR module which
does the following:

– If no initiative has been taken by B.C2 then B.C2 is stopped and B.C1 is
allowed to continue so that the C1 collaboration will run.

– If an initiative has been taken by B.C2, which is indicated by init1 to the right
hand ICR module, then priority determines what to do: either stop B.C1 or
stop B.C2. As C1 has the primary priority, B.C2 is stopped. Hence the ICR
module has a state dependent behaviour. The initiative choice module has to
be stopped once the choice has been made.

2 The stop pins are added to all the participating roles except the responding role of
the primary collaboration (B.C1), because the primary collaboration should not be
stopped once initiated.
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This solution is similar to the normal state machine solution: either side is
allowed to initiate as long as they have not received an initiative from the other. If
an initiative message is received after self taking an initiative, resolution applies.
This solution has the advantage that resolution can be generic and independent
of particular messages, as long as every activity block can signal reception of an
initiative message to the ICR module and be stopped by the ICR module when
decided.

3.2 Interruptible Regions and Interrupting Flows

An interruptible activity region, as defined in UML, is part of an activity diagram
indicated by a dashed rectangle that surrounds a group of activity elements. The
region is interrupted when a token traverses an interrupting edge and transfers
the control to a target activity node outside the region (see Fig. 4). When this
happens the interrupted activities are stopped and all tokens within the region
are removed.

Interruptible regions are useful and convenient to model many cases of fre-
quently occurring behaviour, but they are not so easy to implement. They involve
a choice combined with stopping the interrupted activity which for collaborative
activities involves stopping two distributed roles.

For Interrupts on One Side. There are several ways by which one can stop
the interrupting and non-interrupting sides as discussed below:

– Interrupting side: The interrupting side can be stopped by:
Ia. placing the interrupted role in a block that terminates as soon as the

event triggering the interrupt happens.
Ib. replacing the interrupting flow by a normal initiating flow followed by

a fork with one branch initiating the role in the next collaboration and
other branch stopping the interrupted role as shown in Table 1.

– Non-interrupting side: The non-interrupting (responding) side can be
stopped by:
Na. sending an additional stop message in the interrupted collaboration.
Nb. timeout in the interrupted role
Nc. detecting that the next collaboration following the interrupted collabo-

ration has started and then stopping the role participating in the inter-
rupted collaboration as shown in Table 1.

We have adopted solution ‘Ib’ on the interrupting side and ‘Nc’ on the non-
interrupting side. Solution ‘Nc’ on the non-interrupting side is similar to the
solution proposed for responding choice resolution. If component A is the inter-
rupting side and component B the non-interrupting side, then Table 1 illustrates
how to implement solution ‘Nc’ at B: (1) enable the responding roles of the inter-
ruptible collaboration B.C0 and the interrupting collaboration B.C1; (2) add an
init output pin on B.C1 to indicate the start of C1 to B.C0; (3) add a stop input
pin on B.C0 to enable its stopping once B.C1 signals the start of C1.
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Fig. 9. Details of interruptible region resolution module depicted in Table 1. The ICR
module in Fig. 7 is re-used.

For Interrupts on Both Sides. When the interruption can be triggered at
both the components, it is an initiative choice situation with two conflicting
activities. Therefore, in this case resolution of the interruptible region com-
bines the treatment of interruption with initiative choice resolution as shown
in Table 13 with C1 and C2 as potentially conflicting activities and C0 as the
interrupted one. Since, both component A and B are triggering interrupts, the
solution for the “interrupting-side” from single interrupts can be re-used and
replicated in both A and B. This solution when combined with the ICR module
results in the interruptible region resolution module shown in Fig. 9. All pins
of the ICR module are extended to the enclosing interruptible region resolution
module. The “0” pins are added to connect the interruptible region resolution
module with the interrupted collaboration. The interruptible region resolution
module has the following pins in addition to the ICR module:

– interrupt: The interrupting edge converted to normal initiating flow is con-
nected to this pin.

– initiate1: The initiatives of the interrupting collaborations are expressed out-
side the collaborations to represent the interrupt events. Therefore, initiate1
pin is added to communicate the interrupting initiative to its initiating role
on the interrupting side.

– enable0: It enables the roles participating in the interrupted collaboration C0.
– stop0: It stops the roles of the interrupted collaboration C0 either when the

resolution module detects the interrupt (on the interrupting-side) or when the
module receives a message from one of the interrupting collaborations (on the
non-interrupting side).

The ICR module is re-used in the interruptible region resolution without
being modified and this illustrates its modular nature. Similarly, the interruptible
region resolution module can be re-used. Figure 10 shows how the interruptible
region resolution can be applied.

3 For interruptible regions, the events representing the initiatives of the conflicting
collaborations are shown explicitly outside the collaborations, whereas in the case of
initiative choice they were encapsulated inside the conflicting collaborations.
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Fig. 10. General usage of interruptible region resolution module with C0 as interrupted
collaboration.

Application of the direct synthesis rules and realizability resolutions
described in the Sects. 2 and 3 respectively, results in separate component activ-
ities with local flows and actions only, as illustrated in Fig. 10.

In order to validate correctness, the resolution modules together with the
TaxiSystem modules have been entered into the Reactive Blocks tool [9] and
analysed using the built in model checker of the tool. An implementation has
been generated that runs as expected.

4 Related Work and Conclusions

It is a very common and much recommended practice to define interfaces and to
separate interface definitions from definitions of the internal behaviour of com-
ponents. In most cases, however, the interfaces are defined statically as a set of
operations or messages with the internal behaviour defined as an “implemen-
tation”. Typical examples are APIs, web-service interfaces and Java interfaces.
Although such interfaces may be reused for different implementations the def-
inition of internal behaviour (the implementation) is tied to the interfaces and
normally not separated from them. There is normally no behaviour definition for
the interfaces themselves. But even if behaviour is specified using e.g. UML pro-
tocol state machines [1], the interfaces and the internal behaviour is not defined
as separate modules that can be composed by directly using the composition
mechanisms of the specification language as we do when using the IM method.
We are not aware of other approaches where interface behaviour (IF) and inter-
nal behaviour (CF) is factored out and encapsulated in modules that can be
understood and analysed separately and then easily be composed into complete
specification and design models. The interface behaviours we specify, define the
behaviour that is visible on each particular interface as modules that are turned
into corresponding design modules during design synthesis. Earlier work has
used projections of the complete behaviour of a component or a system to define
interface behaviours [7]. One of the original methods of projections is proposed
in [8] to reduce the complexity of analysing non-trivial communication proto-
cols. Our method is inspired by similar reduction of complexity by constructing
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smaller interface behaviours. Projections are however difficult to compose within
components. The IM method overcomes this problem by defining interfaces as
ordinary modules, not as projections, with pins for composition.

There are several approaches to synthesize component behaviours from global
scenario specifications, for instance using sequence diagrams (UML SD or MSC)
or Use Case Maps for global scenario based specification and state machines
(UML SM or SDL) for component design. See e.g. [11] for a survey. Several of
these aims to synthesize component behaviour, but due to the incompleteness
of scenario based specification the resulting design is normally not complete.
In contrast, the IM method promotes complete specifications that also include
the data and operations provided by the CF. The problem of scenario composi-
tion facing many of the other approaches is solved directly in the specification
modules when using the IM method.

The work presented in this paper builds on our own work on the IM
method [2] and on previous work, notably [3] that have resulted in the notation
for ordering collaboration behaviour and criteria for identification of the known
realisability problems. However [3] assumes interactions for elementary collabo-
rations and state machines for component design. It also builds on previous work
by [6] on design synthesis using activities. That work, however did not deal with
responding choice resolution, and interruption. For initiative choice it re-used a
solution from [13] that introduces additional interactions and therefore is more
intrusive than the solution presented here. The main contributions presented
here are the general, modular and distributed solutions to the design synthesis
problems using activities, in particular the resolution modules for choices and
interruptions entirely defined using local modules. For choices there are alter-
native solutions proposed for state machines, notably [4]. For activities [12,13]
have proposed solutions, but these solutions require that interactions are added.
We are not aware of any related solutions for interruptions.

The approach presented here provides simplifications and modularity on sev-
eral levels. First, during specification, the problem is decomposed into modules
for interfaces and core functionality that can be specified separately and then
composed. Design synthesis may then be performed for IF and CF modules
separately, and is simplified by the local nature of CF modules and the two-
party nature of IF modules. Modularity on the component level is supported by
well-defined interfaces provided by the IF modules. Within components more
fine grained modularity is provided by the local IF and CF modules and the
resolution modules that are general and re-usable.
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