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Abstract. Cyber attacks are becoming increasingly complex, practi-
cally sophisticated and organized. Losses due to such attacks are impor-
tant, varying from the loss of money to business reputation spoilage.
Therefore, there is a great need for potential victims of cyber attacks
to deploy security solutions that allow the identification and/or predic-
tion of potential cyber attacks, and deploy defenses to face them. In this
paper, we propose a framework that incorporates Attack-Defense trees
(ADTrees) and Continuous Time Markov Chains (CTMCs) to system-
atically represent attacks, defenses, and their interaction. This solution
allows to perform quantitative security assessment, with an aim to pre-
dict and/or identify attacks and find the best and appropriate defenses
to reduce the impact of attacks.

Keywords: Attack-Defense Trees · Markov chains · Security modeling ·
Quantitative analysis

1 Introduction

Cyber attacks are becoming more and more technically sophisticated, and well
organized. Losses due to such attacks are important, varying from the loss of
money to business reputation spoilage. On the other side of the coin, in order
to fend and stop this destructive cyber attacks wave, research efforts on cyber
attacks and security have considerably risen, trying to come with the best solu-
tions that allow security engineers to predict cyber attacks, estimate their like-
lihood, and find the most feasible defenses to prevent or reduce the negative
impact of these cyber attacks. As a consequence of these research efforts, a great
number of graphical models have been proposed in the last two decades (e.g.,
attack trees [14], attack graphs [7], attack-countermeasure trees [17], and attack-
defense trees [10]) and have been widely used for cyber security modeling and
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assessment. In spite of their similarities, these models differ on how to model
attacks and defenses, and how to integrate aspects like time, and dependencies
between actions within the model. The perfect model should be easy to use, and
practically implementable. It should provide a user-friendly and comprehensive
representation of real-life security scenarios, and should integrate aspects like
time and dependencies as well as security assessment functions. These require-
ments are well defined by the ADTrees model [10], which extends attack trees [14]
with refinable defenses, and allows the representation of sequential dependencies
between actions. It also supports security assessments of attributes such as the
likelihood, the cost, and/or the efficiency of attacks/defenses.

ADTrees are defined as a graphical methodology used to represent security
scenarios by systematically representing the different actions that an attacker
may undertake to realize a security goal, and the different actions that a defender
may apply to stop the attacker’s actions from being realized. It comes with a
strong formal framework for reasoning about security scenarios through different
types of semantics (propositional, multiset, De Morgan lattice, and equational),
and has proven to be simple, easy to use, and yet powerful in its modeling
capability. It has been validated in a large industrial case study [4].

To perform quantitative security assessment for evaluating attributes like
cost, efficiency, time, and probabilities, ADTrees apply a bottom-up proce-
dure [14]. Unfortunately this procedure can only be used for attribute evaluation
under the assumption that all considered actions (attacks/defenses) are inde-
pendent. This is a very strong assumption which is unrealistic in practice, since
actions are usually dependent, or in the simplest case sequentially dependent.
To overcome this limitation, we propose a new approach for security assess-
ment of ADTrees involving dependencies between actions. This approach relies
on Continuous Time Markov Chains. Being a powerful model, provided with a
useful quantitative analysis approach, CTMCs tend to be the perfect candidate
to assess ADTrees involving dependencies. Inspired by authors of [1–3,12,15], we
model atomic attacks/defenses using an exponential distribution. In fact, expo-
nential distribution seems to be a suitable distribution to model a great number
of attacks/defenses like brute force attacks, adaptive defense mechanisms (e.g.,
moving target defenses), or countermeasures with delayed impacts like policies
execution. In this paper, we propose a framework that combines the graphi-
cal and formal methodology of ADTrees with CTMCs, and allows performing
a system’s security assessment. The framework takes as an input an ADTree
representing a security scenario, and transforms it into a CTMC. This CTMC is
then used to perform the security assessment through the evaluation of security
attributes such as likelihood, the mean time required by an attack scenario, and
other attributes that security engineers may define. To achieve this, we define a
new semantics for ADTrees in terms of CTMCs. These semantics express how
to translate attacks/defenses into individual CTMCs and how to combine these
individual CTMCs into one final CTMC representing the entire ADTree.

Related work. Over the last two decades, a number of graphical security models
(e.g., attack trees [14], attack graphs [7], and attack-countermeasure trees [17])
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have been proposed in the literature and have been widely used for cyber security
modeling and assessment. Moreover, due to the development of cyber attacks in
terms of techniques, dependencies, and organization, these models have been
enriched and elevated in order to correctly model and assess sophisticated cyber
attacks. For instance, attack trees have been enriched and augmented with adapt-
able countermeasures to become ADTrees [10]. Performing quantitative analysis
on these models usually goes through applying an analytic approach such as
Markov chains [1–3,12,15], Petri-Nets [5,16], or Bayesian networks [11].

The choice of the analytical approach depends mainly on the model itself, the
aspects (time, dependencies) that it considers, and the user preference toward
the approach. We find that the Markov chains approach has mostly been chosen
for assessing these models. For instance, they have been applied in [2,3,15] on
attack trees, and in [1,12] on attack graphs to perform quantitative analysis,
and have shown their easy and useful applicability. Inspired by the previous
works, we have chosen to apply the Markov chains approach on ADTrees for the
following reasons: Models used in the previously cited works like attack trees [2,
3,5,15,16], and attack graphs [1,12] do not define the modeling of defenses in
their specification.

Although defense specification is not present in those models, some
authors [1–3,5,12,15,16] tried to incorporate defenses to model security sce-
narios. Unfortunately, they have assumed that the defenses can totally, with no
delay, mitigate a given attack. In other words, an attack node is simply deleted
from the attack model when it is counter-defended. This assumption is too strong
since it is not always the case for a defense to immediately stop an attack once
the defense is set up. In fact, there exist defenses whose impact comes after a
certain delay like a password changing policy. The ADTree model overcomes
the limitation of modeling defense by nature, as it allows to model and represent
defenses of different types independent of their impact delay. Secondly, compared
to attack-countermeasure trees model, an ADTree model allows the refinement
of defenses, which is more realistic. Kordy el al. [11] adopted ADTrees model and
used Bayesian networks approach to assess the likelihood of security scenarios.
This approach requires for each instant of time the construction of a conditional
probability table for each action because of the stochastic dependency between
actions. This requirement can be time consuming, error prone, and not prac-
tical when a large ADTree is evaluated. Thanks to CTMCs, we can represent
the same information (conditional probability tables) using a temporal probabil-
ity function known as CDF (Cumulative Distribution Function). This function
is associated to each action, and provides for each given instant of time t the
probability of occurrence of the action with respect to its dependencies.

Contributions. To summarize, the contributions of this paper are threefold.

– We define a new semantics of ADTree model in terms of CTMCs. The seman-
tics express the way attacks/defense action must be represented as a CTMC,
and how different CTMCs can be composed to represent the entire attack-
defense tree.
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– We use the composed CTMC that represents the attack-defense scenario to
perform quantitative analysis. Given that attack trees are formally a sub-class
of attack-defense trees, our analysis technique also applies to attack trees.

– We demonstrate the applicability of our solution using a simple but realistic
example study.

Organization. Section 2 presents the basics of the attack-defense tree model and
CTMC model. Section 3 defines our semantics for attack-defense trees in terms
of CTMCs. Section 4 discusses the analytical approach of CTMCs to perform
quantitative security assessment. Section 5 performs quantitative analysis on an
example study. Finally, Sect. 6 provides conclusions and perspectives.

2 ADTrees and CTMCs

2.1 ADTrees

ADTrees are a graphical methodology used to represent security scenarios. They
can be seen as a two-player game. The first player is qualified by proponent
‘p’, and the second by opponent ‘o’ [9]. Depending on the root of the attack-
defense tree, if the root is an attack, then the proponent is the attacker, else
it is the defender. Graphically, each performed action or accomplished sub-goal
is represented by a node depicted by a red circle (©) if it refers to an attack
action/subgoal, or by a green square (�) if it refers to a defense action/subgoal.
Any node of either type in an ADTree can be refined (either disjunctively, con-
junctively, or sequentially conjunctive), or countered by another node of the
opposite type. Nodes that cannot be refined any further are qualified by basic
actions. When a node is disjunctively refined, its accomplishment requires at
least one of its refinement nodes to be accomplished. A conjunctively refined
node requires all its refinement nodes to be realized without any prefixed order.
The sequential conjunctive refinement is similar to the latter but requires a pre-
defined accomplishment order for its refinement nodes. We depict a conjunctive
refinement of a node by an arc over all edges connecting the node and its refine-
ment nodes, and the sequentially conjunctive refinement with a directed arc.
When a node is countered with another node of opposite type, they are linked
together using a dashed line.

Figure 1 illustrates an ADTree for a simple networked system where the
attacker wants to compromise a server host by executing malicious scripts.
To achieve his goal, the attacker must first perform reconnaissance in order to
gain knowledge about the network’s assets (e.g., topology, protocols, addresses,
open ports) using some tools like Nmap. On the other side, to prevent the
attacker from gaining knowledge on the network, the defender can apply one
of the two adaptive defenses. The first defense regularly changes IP addresses
of network hosts and the second defense ‘Mutable network’ dynamically shuffles
IP addresses, routing tables and topology of the network. In the second step,
the attacker looks for any vulnerabilities using Nesus for instance. Then, using
Metasploit for example, he exploits the discovered vulnerability, and executes a
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Fig. 1. An example ADTree representing the security scenario

specific designed payload to gain high privileges on the target host. To fend this,
the defender frequently performs penetration tests to discover vulnerabilities and
develop appropriate patches. As an alternative to target exploitation through
vulnerabilities, the attack can brute force the root’s password to gain the priv-
ilege. The defender implements in this case a policy to periodically change the
passwords. This will delay the attacker from succeeding his goal. Finally, if the
attacker manage to escalate the privileges, he can execute malicious command
and cause harm to the server.

Given that this multi-step attack must be performed in a particular order,
we use a sequential conjunction refinement. To realize the ‘Escalate Privilege’
attack, the attacker must either successfully brute force the root password or (dis-
junction refinement) exploit a discovered vulnerability and (conjunction refine-
ment) running its dedicated Exploit and payload program.

2.2 Formal Definition of ADTrees

Formally, ADTrees are defined by means of an abstract syntax called
ADTerms [10]. The ADTerms in this paper are typed over the signature Σ =
(S,F), where:

– S = {p, o} is the set of types (proponent p and opponent o)
– F = {(∨p

k)k∈N, (∧p
k)k∈N, (−→∧ p

k)k∈N, (∨o
k)k∈N, (∧o

k)k∈N, (−→∧ o
k)k∈N, cp, co} ∪ B

p ∪ B
o

is a set of function symbols.

The unranked functions (∨s
k)k∈N, (∧s

k)k∈N and (−→∧ s
k)k∈N, where s ∈ S, represent

the disjunctive (∨), conjunctive (∧), and sequential conjunction (−→∧ ) refinement
operators for the proponent and the opponent, respectively. The binary functions
cs connect an action of a given type s ∈ Swith an action of the opposite type s ∈ S.
If we model the proponent as the attacker, then the set Bp (and respectively B

o)
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consists of atomic attacks (and atomic countermeasures). Conventionally p = o
and o = p.

Definition 1. ADTrees are closed terms over the signature Σ = (S,F), gener-
ated by the following BNF-grammar, where bs ∈ B

p ∪ B
o, and s ∈ S is the type

of players.

t :≡ bs | ∨s(t, . . . , t) | ∧s(t, . . . , t) | −→∧ (t, ..., t) | cs(t, t) (1)

Example 1. If we label the basic events of the ADTree in Fig. 1 by
bp0, b

p
1, b

p
2, b

p
3, b

p
4, b

o
0, b

o
1, b

o
2, and bo3, respectively for Network scanning, Vulnerabil-

ity scanning, Use vulnerability Exploit, Password brute forcing, Execute danger-
ous commands, IP randomization, Mutable network, patches development, and
finally password policy, then the resulting ADTerm of the ADTree is:

t = −→∧ p

(
co

(
bp0,∨o

(
bo0, b

o
1

))
,∨p

(
∧p

(
co(bp1, b

o
2), b

p
2

)
, co(bp3, b

3
0)

)
, bp4

)
(2)

2.3 Continuous Time Markov Chains

Markov chains [13] are stochastic processes used to model system behavior where
probabilistic events are considered. They are called Markovian since the predic-
tions are made based only on the current state of the system, and not on any
previous state. A Markov process that transits from one state to another via an
exponential rate is called Continuous Time Markov Chain or CTMC.

Definition 2. A continuous time Markov chain is a tuple (S,G, π), where:

– S is a finite disjoint set of states,
– G : S × S → R is the infinitesimal generator matrix which gives the rate of

transition between two states s ∈ S and s′ ∈ S,
– π : S → [0, 1] is the initial probability distribution on S.

The proposed semantics for ADTree requires to differentiate between the initial
state, intermediate states, and the final states. Therefore, we slightly modify
Definition 2 and adapt it to our needs. The new explicit notation (Definition 3)
will help us to easily formalize and define our semantics. Moreover, the initial
distribution π is usually devoted to the initial state of the system. Therefore,
we omit the variable π from the definition, since we arbitrary devote the entire
initial distribution to the initial state.

Definition 3. An enumerated continuous time Markov chain M is a tuple
(S, S0, S∗, G), where:

– S is a finite disjoint set of states,
– S0 ⊂ S is a finite set of initial states,
– S∗ ⊂ S is a finite set of final states,
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– G : S × S → R is the infinitesimal generator matrix which gives the rate of
transition between two states s ∈ S and s′ ∈ S.

We note that there exists a set of intermediate states that we denote by
Smid ⊂ S, where S = S0 ∪ Smid ∪ S∗, and S0 ∩ Smid ∩ S∗ = ∅.

The infinitesimal generator matrix G defines the exponential rates gs,s′ of the
transitions that go from one state s ∈ S to an other state s′ ∈ S. The element
gs,s of the infinitesimal generator matrix G are chosen such that each row of the
matrix sums to zero. Therefore, the generator matrix G is built as follows:

G =

{
−∑

s �=s′ gs,s′ if s = s′,
gs,s′ otherwise.

(3)

Here, each gs,s′ ≥ 0 represents the exponential rate of transition from state s ∈ S
to state s′ ∈ S. The inverse 1/gs,s′ represents the average time needed to transit
from s ∈ S to s′ ∈ S and |1/gs,s| is the average amount of time (sojourn time)
spent in state s ∈ S. Furthermore, for a given state s ∈ S, if ∀s′ ∈ S, s′ �= s,
G(s, s′) = 0, then state s ∈ S is called an absorbing state and M a continuous
time absorbing Markov chain.

3 Markov Chain Semantics for Attack-Defense Trees

We now define the semantics for ADTrees in terms of CTMC. In particular,
we first define the semantics for basic events bs ∈ B

p ∪ B
o, followed by the

semantics for the three refinement operators (∨s
k)k∈N, (∧s

k)k∈N and (−→∧ s
k)k∈N,

where s ∈ S, and finally the semantics for counteractions cs (see Sect. 2.2). We
then use the semantics of these ADTree components to compose a single CTMC
that represents the semantics of the complete ADTree.

Semantics for basic events. Consider a set M of all possible CTMCs. We
can then define a function Ψ : B → M that associates, for each basic event
bs ∈ B

p ∪ B
o, a CTMC defined as ({s0, s∗}, {s0}, {s∗}, Gbs), where s0 and s∗

are the initial and final states, respectively. The element Gbs represents the
infinitesimal generator to the CTMC. It is computed using Eq. 3, and hence
given by Eq. 4:

Gbs =
[−λbs λbs

0 0

]
(4)

Figures 2-a and b, illustrate the CTMC corresponding to basic events bp ∈ B
p

and bo ∈ B
o, respectively. The rates λbp and μbo represent the exponential rates

of an atomic attack and an atomic countermeasure, respectively.

Semantics for conjunctive refinements. We define an unranked function
∧k∈N : Mk → M which takes k Markov chains and composes them in a way
that all k Markov chains should be executed in an irrelevant execution order.
Therefore, the composed Markov chain is (

∏k
i=1 Sbi ,

∏k
i=1 Sbi

0 ,
∏k

i=1 Sbi∗ , G∧s
k∈N).

The set S∧s
k∈N contains all possible combinations of the states of the k involved



A Stochastic Framework for Quantitative Analysis of Attack-Defense Trees 145

Fig. 2. CTMC-Semantics of basic events, refinements, and countermeasures.

Markov chains. The initial state is equal to (sb10 , sb20 , ..., sbk0 ), and similarly, the
final state is (sb1∗ , sb2∗ , ..., sbk∗ ). The remaining states refer to intermediate (tran-
sitive) states.

Figure 2-c illustrates the CTMC obtained by applying the function ∧s
2 on

CTMC Ms
1 and Ms

2 , where Ms
1 and Ms

2 are two CTMCs corresponding to two
basic events bs1, b

s
2 ∈ B. The generator G∧s

k∈N is obtained by the following equa-
tion:

G
−→∧s

k∈N(si, sj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∑
i�=j G∧s

k∈N(si, sj) if i = j,

0 if i �= j ∧ |siΔsj | > 2,

0 if si ∈ Ω,

Gidf (Sidf ∩ si, S
idf ∩ sj) otherwise.

(5)

Where Δ is the symmetric difference between two sets, |S| is the cardinality of
a given set S, Ω is the set of absorbing states, and idf = ϑ(si ∩ sj) is a func-
tion which returns the identifier of the Markov chains from where the input sets
belong to. For example, ϑ(s10, s

2
5, s

2
8) returns {1, 2}. In summary, this formula-

tion consists in identifying which transition (tidfi ) is linking state si to state sj .
Note that this formulation is valid for sequential conjunction and disjunction
refinement as well.

Semantics for sequential conjunctive refinements. We define the sequen-
tial conjunction refinements using the function −→∧ k∈N : Mk → M which takes
k CTMCs as input and composes them sequentially. The final state of the nth

CTMC is merged with the initial state of the n + 1th CTMC. Figure 2-d illus-
trates how two CTMCs are composed by −→∧ s

2. The result of −→∧ k∈N composition

is a CTMC (S
−→∧s

k∈N , S
−→∧s

k∈N

0 , S
−→∧s

k∈N∗ , G
−→∧ss

k∈N) where:

– S
−→∧s

k∈N = S
−→∧s

k∈N

0

⋃
S

−→∧s
k∈N∗

⋃
S

−→∧s
k∈N

mid

– S
−→∧s

k∈N

0 =
∏k

i=1 Sbi
0
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– S
−→∧s

k∈N∗ =
∏k

i=1 Sbi∗
– S

−→∧s
k∈N

mid =
⋃k−1

i=1 Sbi∗ × S
bi+1
0

⋃
Sbi
mid × S

bi+1
0

⋃
Sbi∗ × S

bi+1
mid

The set S
−→∧s

k∈N is composed of the initial state S
−→∧s

k∈N

0 ={(sb10 , sb20 , ..., sbk0 )}, the
final state {(sb1∗ , sb2∗ , ..., sbk∗ )}, and the intermediate states of Smid, which is com-
posed of intermediate states of the k involved Markov chains plus the linking
states

⋃k−1
i=1 Sbi∗ × S

bi+1
0 (chains each CTMC with the next CTMC).

Semantics for disjunction refinement. We define a disjunctive refinement
using an unranked function ∨k∈N : Mk → M, which takes k CTMCs as input
and composes them in a way that each CTMC can evolve independently to the
other CTMCs. Therefore, there will be k final states (one from each k involved
CTMC). The result of composing k CTMCs by means of a disjunction refinement
is (S∨s

k∈N , S
∨s

k∈N

0 , S
∨s

k∈N∗ , G∨s
k∈N), where:

– S∨s
k∈N = S

∨s
k∈N

0 ∪ S
∨s

k∈N∗ ∪ S
∨s

k∈N

mid ,
– S

∨s
k∈N

0 =
∏k

i=1 Sbi
0 ,

– S
∨s

k∈N∗ =
n⋃

i=1

Sbi∗ × ∏
j �=i S

bj
0 ,

– S
∨s

k∈N

mid =
n⋃

i=1

Sbi
mid × ∏

j �=i S
bj
0 .

The set S∨s
k∈N is composed of the initial state (sb10 , sb20 , ..., sbk0 ), the intermediate

states of Smid, and the final states {(sb1∗ , sb20 , ..., sbk0 ), (sb10 , sb2∗ , ..., sbk0 ), ..., (sb10 , sb20 ,
..., sbk∗ )}. The set Smid is composed of intermediate states of the k involved
CTMCs. Figure 2-e illustrates how two CTMCs are disjunctively composed.

Semantics for countermeasures. We represent counter-measuring with an
unranked function cs(bp, bo), where s ∈ S, bp ∈ B

p and bo ∈ B
o. If we consider

the proponent to be the attacker and the opponent to be the defender, this
function will link the atomic attack bp ∈ B

p with an atomic defense bo ∈ B
o.

Note that besides taking as inputs atomic attacks/defenses, the function cs can
also take as inputs conjunctively, disjunctively or sequential conjunctive refined
inputs.

The CTMC-semantics for a countermeasure is characterized using a new
unranked function cs : M×M → M. This new function takes two CTMCs Ms and
Ms as inputs, one representing the proponent action, and the second representing
the opponent action. It links them such that they counter each other. In other
words, the final state of the proponent action will be the initial state of the
opponent action and vice-versa. Therefore, if the proponent starts his next step
before the opponent action is executed, the proponent would skip successfully
the countermeasure set by the opponent. However, if the countermeasures is
successfully executed (before the proponent manages to move to next step), the
proponent is brought to the initial state where he has to re-perform his action.
For example, in Fig. 1, if the password changing policy is executed the attacker
has to re-perform the brute force attack again.
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The constructed CTMC for counter-measuring is defined as follows:

– Sc(Ms,Ms) = S
c(Ms,Ms)
0 ∪ S

c(Ms,Ms)
mid ∪ S

c(Ms,Ms)
∗ ,

– S
c(Ms,Ms)
0 = SMs

0 × (sM
s

1 , sM
s

2 , ..., sM
s

|SMs
∗ |) where sM

s

i ∈ SMs

∗ and i ∈
{1, ..., |SMs

∗ |},
– S

c(Ms,Ms)
∗ = Ss

∗ × SMs

0 ,
– S

c(Ms,Ms)
mid = SMs

mid × SMs

0 ∪ SMs

mid.

Similarly to the other semantics, the set Sc(Ms,s) is composed of the initial state,
which contains the initial state of player (proponent/opponent) s and a tuple
of all final states of player (opponent/proponent) s. The final state consists
of the final states of the player (proponent/opponent) and the initial state of
player (opponent/proponent) s. It also contains intermediate states from each
player’s chain. Figure 2-f shows how counter-measuring of an atomic attack with
an exponential rate λ is performed against an atomic countermeasure with an
exponential rate μ.

We have formulated the generator matrix Gc(Ms,Ms) as follows:

Gc(Ms,Ms)(si, sj) =

{
−∑

i�=j Qc(Ms,Ms)(si, sj) if i = j,∑
GMs

(si′ , sj′) +
∑

GMs

(si′′ , sj′′) otherwise.
(6)

Where (si′ , sj′), (si′′ , sj′′) ∈ si × sj and ϑ(si′) = ϑ(sj′) and ϑ(si′′) = ϑ(sj′′).
Overall, this formulation consists in summing the rates of all possible transi-

tions that go from state si to state sj . Since every transition tidfi belongs to only
one CTMC Midf , the execution of tidfi will only affect states of Midf . Therefore,
there will generally be only one transition (one rate), unless it regards a disjunc-
tion of countermeasures, where the rates of the involved countermeasures are
summed.

Fig. 3. CTMC obtained by composing individual CTMCs for the ADTree in Fig. 1
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Example 2. We use the ADTerm given by Eq. 2 (Sect. 2.2) and apply the new
semantics described above to obtain the entire CTMC (see Fig. 3) representing
the whole ADTree of Fig. 1. This is merely achieved by first building CTMCs
of basic events, then composing them according to the involved refinements
operators that links the basic events.

4 Quantitative Security Assessment

In this section, we show how to perform quantitative analysis using Markov
chains [18]. We show how to compute and extract matrices that are necessary
for the analysis. To achieve this, we consider an enumerated continuous time
Markov chain M = (S, S0, S∗, G), from which we can extract and compute the
following structures:

The first structure is called the instantaneous probability matrix P (t). It
gives the instantaneous probability to transit from a state si to state sj . In an
other words, for each state si ∈ S in a CTMC M , is associated a cumulative
distribution function 0 ≤ FX(t) ≤ 1 (where X is a random variable and t
is the time) that describes the probability of being in state si ∈ S, in time
interval [0−t), starting from state sj ∈ S. The instantaneous probability matrix
is computed using the infinitesimal generator matrix G as P (t) = eG.t.

Application. We exploit this matrix to draw the cumulative distribution func-
tion (CDF) of each final state (representing the final goal) starting from the
initial state. Therefore, we can compute at any time the probability of success
for each possible attack scenario leading to a final state (final goal).

The second structure is the mean probability transition matrix P , where
each element P i�=j

i,j is equal to |gij/gii| for i �= j, and gives the mean probability
to transit from state si to state sj . The elements Pi,i however, are null. In an
absorbing CTMC, this matrix particularly takes a canonical form defined as:

P =
[
Q R
0 Id

]
(7)

Here Id is the identity matrix, and 0 is the null matrix. We exploit the submatrix
Q to compute the fundamental matrix N , using: N = (1 − Q)−1, where each
element ni,j in the fundamental matrix N gives the expected number of steps
the process visited a state sj starting from state si. The sum of the ith row in
matrix N represents the expected number of steps performed to reach any of
the absorbing state starting from state si.

Application. Knowing for each scenario, the set of visited states, we can use
the fundamental matrix N , to compute the amount of steps performed in each
scenario and hence determine the most/less probable scenario, or exert a ranking
for the different possible scenarios.

The third component is the absorbency frequency matrix B = N ×R, where
each element bij of B gives the probability of getting absorbed by each absorbing
states.
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Application. This matrix will serve to identify the most probable goal if we have
many, or to confirm again the most probable scenario and with which steady state
probability.

Finally, using the fundamental Matrix N and the sojourn times |1/gii| of each
state, we can compute the mean time required to reach the final goal starting
from the initial state.

Application. In the context of security modeling, we compute the MTTSF
(Mean Time To Security Failure) also known as MTTB (Mean Time To Breach)
or MTTA (Mean Time To Attack). We can also compute the mean time for each
scenario. The MTTSF is given by:

MTTSF =
∑
i∈Xt

n0,i × 1
|gii| (8)

Where n0,i is the expected number of steps performed to go from the initial state
s0 to state si.

5 Security Assessment of the Networked System

We report on the analysis conducted to evaluate the security of the scenario dis-
cussed in Sect. 2.1. In particular, we consider the ADTree in Fig. 1 and its CTMC
representation in Fig. 3 to perform security assessment. To achieve this, we go
through three cases: one (case 1), where we don’t consider existence of coun-
termeasures (attack trees), the second (case 2) we add countermeasure ‘prevent
target identification’, and the last case (case 3), in addition to the previously
added countermeasure we add two more countermeasures respectively ‘Frequent
patches’ and ‘Passwords policy’. The results of our analysis can be used by secu-
rity engineers to choose appropriate defenses in order to harden the security of

Fig. 4. Cumulative Distribution Function of scenarios group
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the system. For the purpose of performing quantitative analysis, we have arbi-
trarily affected rational values for the different exponential rate of each basic
event. Therefore, by denoting atomic attack as bp0 . . . bp5 and countermeasures as
bo0 and bo3. We assign exponential rates λ as follows: λbp0

= 1 for bp0 = Network
scanning, λbp1

= 2 for bp1 = Vulnerability scanning, λbp2
= 1 for bp2 = Use vulner-

ability exploit, λbp5
= 5 for bp5 = Execute malicious scripts. The atomic attack

bp3=Password brute force attack use an Erlang distribution Erl(2, 3), which
corresponds to a sequence of two exponentials of rate λbp3

= 3. Therefore, we
model this attack with two atomic attacks bp3 and bp4 of the same rate equal to
3. The countermeasures bo0 = IP address randomization, bo1= Mutable network,
bo2= Updates, and bo3 = Password policy are modeled using exponential distrib-
utions μbo0

= 1, μbo1
= 2, μbo2

= 1, and μbo3
= 1, respectively. A point that we

should highlight, is that the fact of having sub-goals disjunctively refined, and
at least one of the refinements is conjunctively refined, induces the replication
of the final goal in the constructed Markov chain (see the two black states in
Fig. 3). Therefore, there will be more than one state referencing to the same final
goal but reached through different scenarios. As shown in Fig. 3, the first final
state is reached through [bp0; b

p
3; b

p
4; b

p
5]. However, the second final state is reached

through two different scenarios [bp0; b
p
2; b

p
1; b

p
5] or [bp0; b

p
1; b

p
2; b

p
5]. Therefore, we can

define for each final goal (final state) fi a group of scenarios Gi composed of the
same atomic attacks, but conducted in different order.

Probabilistic security attributes. We compute the probability of reaching
the final goal over time expressed in terms of CDF. We also try to determine the
probability of each group of scenarios, and draw the evolution of their probability
of success over time. We compute the most probable scenario and perform a
ranking for the possible scenarios. To achieve this, we first use the instantaneous
probability matrix to draw the CDF of each final goal fi. In our example of
study, we have determined two groups of scenarios G1 and G2.

From Fig. 4, in the two first cases, we see that the group of scenarios G1 is
instantaneously more probable than the group of scenarios G2. This means that
the scenarios of group G1 are more probable than scenarios of G2. However,
they both converge to the same steady state probability of 50 %. We explain this
from the fact that in case 2, the countermeasure ‘prevent target identification’
is applied to an atomic attack which is common to both groups G1 and G2. In
other words, defense contributes in reducing the total probability of the goal
over time (the sum of all groups CDFs) as we can see in Fig. 5. Nonetheless, in
case 3, we have put more countermeasures in a way to reduce the probability
of success for G1, and we can see that the instantaneous probability of reaching
the final goal through G1 has slightly reduced for t ≥ 3 time units to a point
where G2 becomes more probable.

In Fig. 5, we can see the impact of the countermeasures on the probability
of succeeding the final goal. For instance, for a working time of [0-5] time units,
the attacker has a probability to succeed of 97% in the first case, 91% in the
second case, and finally 86% in the last case, which is more secure. Note that
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Fig. 5. Cumulative Distribution Function of the final goal

the impact is slightly small since the rates that we have affected are too close to
the attacks rates.

Then we use the fundamental matrix N to compute the expected number
of steps realized in each scenario of each group, and therefore determine the
most probable scenario MPS (we can rank scenarios). The results are depicted
in Fig. 6, where we can see that the most probable scenario has the largest
amount of steps. In this case, scenario [bp0; b

p
3; b

p
4; b

p
5] is the most probable one.

Furthermore, the number of steps is increasing each time countermeasures are
added. We explain that from the fact that the attacker performs more steps since
the execution of a countermeasure forces the attacker to restart from his initial
state. Therefore, in each scenario, the number of expected steps is increased as
long as countermeasures are added. Moreover, we can rank the three scenarios
as follows: [bp0; b

p
3; b

p
4; b

p
5], then [bp0; b

p
1; b

p
2; b

p
5], and finally scenario [bp0; b

p
2; b

p
1; b

p
5].

Finally, we use the absorbency frequency matrix B to compute the percentage
in which the attacker succeed in reaching his final goal through a particular
scenario in the steady state, that is to say, when he is given enough time. This
will allow us to testify which group of scenarios is the most probable. The results
are shown in Fig. 7 (left side).

The steady state probability is 50% for the first two cases, where no coun-
termeasures are applied, then when a common countermeasures is applied. The
third case shows that it is more probable to perform attacks through G2 than
trough G1, since this last one contains more countermeasures.

Time based attributes. Finally, we evaluate the mean time to breach the sys-
tem in terms of MTTSF. Therefore, we make use of Eq. (5) and compute the
MTTSF for the three cases. The results are illustrated in Fig. 7 (right side). We
can see that the attacker is each time delayed as long as we add countermea-
sures. Indeed, the countermeasure ‘prevent target identification’ has delayed the
attacker to spend 25.64% more time units than usual (initial case). In the third
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Fig. 6. Expected number of steps for each scenario and for each case

Fig. 7. Absorbing probabilities (left), Mean Time To Security Failure (right)

case, the attacker has to spend 44.62% more time units compared to the initial
non-secure case.

6 Conclusions

We presented a stochastic framework to perform quantitative analysis of
ADTrees. We started by defining a new semantics for ADTrees in terms of
CTMCs, then showed how to construct a final CTMC representing the entire
ADTree. We then applied the analytical approach of CTMC to perform quanti-
tative analysis. We finally demonstrated the usefulness of our solution by means
of a simple but realistic example study.

As part of our future work, we will extend our framework to model and
quantitatively assess complex security scenarios like social attacks. We will also
extend our framework in order to embed it within the ADTool [6,8], which is a
free software tool for security modeling and quantitative analysis using ADTrees.
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