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Abstract A single-channel queueing model with finite buffer capacity, Poisson
arrivals and generally distributed processing times is investigated. According to
frequent energy saving requirements, after each busy period the service station is
being switched off during a randomly distributed closedown time. Similarly, the
first processing in each busy period is preceded by a random setup time, during
which the service process is suspended and the machine is being switched on and
achieves full readiness for the processing. A system of Volterra-type integral
equations for the distribution of the time to the first buffer overflow, conditioned by
the initial level of buffer saturation, is built, by applying the idea of embedded
Markov chain and continuous version of total probability law. Using the linear
algebraic approach, the solution of the corresponding system written for Laplace
transforms is obtained explicitly.

Keywords Buffer overflow � Closedown time � Finite-capacity queue � Setup
time � Transient state

1 Introduction and Preliminaries

As it is well known, queueing models, in particular with finite buffer capacities, can
be successfully used in modelling different-type real issues typical for telecom-
munication and computer networks, manufacturing processes, transport organiza-

W.M. Kempa (&)
Faculty of Applied Mathematics, Institute of Mathematics,
Silesian University of Technology, 23 Kaszubska Str.,
44-100 Gliwice, Poland
e-mail: wojciech.kempa@polsl.pl

I. Paprocka
Faculty of Mechanical Engineering, Institute of Engineering Processes Automation
and Integrated Manufacturing Systems, Silesian University of Technology,
18A Konarskiego Str., 44-100 Gliwice, Poland
e-mail: iwona.paprocka@polsl.pl

© Springer International Publishing AG 2017
J. Świątek et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part III,
Advances in Intelligent Systems and Computing 523, DOI 10.1007/978-3-319-46589-0_17

215



tion and logistics. A special role in modelling play systems with less or more
complex mechanisms limiting access to the service station. It is associated with the
dynamically developing market of different-type solutions for energy consumption
reducing and minimizing the costs of system operation. One of such mechanisms
are setup and closedown times, occurring at the start and completion epoch of each
busy period of the system, respectively. Due to frequent energy saving require-
ments, the service station is being switched off when there are no jobs waiting for
processing, and is being switched on when a job arrives at the empty system. Safe
deactivation of the server requires a random time, called a closedown time.
Similarly, a randomly distributed setup time is needed for the server to initialize its
work and achieve full readiness for processing. In the paper we consider a a
single-channel queueing model with finite buffer capacity and the processing
organized according to the FIFO service discipline, in which each busy period starts
with a setup time and completes with a closedown time. One of the most important
stochastic characteristics of each finite-capacity queueing model is the CDF (=cu-
mulative distribution function) of the time to buffer overflow, i.e. the random time
from the start epoch of the system to the first moment at which the buffer becomes
saturated (the system contains maximal number of jobs). The knowledge of that
time is of key importance, e.g. in QoS (=Quality of Service) in telecommunications,
since during the buffer overflow period all incoming jobs or packets are lost. In the
article, using the approach based on the conception of embedded Markov chain, the
continuous version of total probability law and linear algebra, we derive a
closed-form representation for the LT (=Laplace transform) of the CDF of the time
to buffer overflow, conditioned by the number of jobs accumulated in the buffer at
the opening of the system.

As one can observe, in the literature most results for different-type stochastic
characteristics of queueing models are found only for the stable systems (stationary
state). However, as it seems, non-stationary (transient) analysis is often recom-
mended or directly necessary, e.g. due to high changeability of the traffic (e.g.,
packet streams in nodes of TCP/IP-based networks), enormous traffic load or
unreliable server being subject to breakdowns. In these situations the stationary
state of the system is difficult to achieve.

In [1] the queueing model of the M/G/1-type with server breakdowns, setup and
closedown times, and with the controlled vacation periods is considered. The sta-
tionary results for the batch-arrival queue with multiple vacation policy and server
setup and closedown times can be found in [2]. One can find some other results for
models with group arrivals in [3, 4]. In [5] the case of discrete time is investigated: a
combined control mechanism based on multiple vacation policy and server setup
and closedown times is analyzed. The model of a multi-server queue is studied in
[6]. Transient results for infinite-capacity systems with server setup times can be
found in [7, 8]. In [9] analytical solution for non-stationary queue-size distribution
in the queueing system with finite buffer and setup and closedown times is obtained
(see also [10]). Similar technique is applied in [11] for the model with server
breakdowns. Distributions of the time to buffer overflow in finite-capacity models
are studied e.g. in [12, 13]. In [12] the case of MMPP-type (Markov-Modulated
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Poisson Process) arrival stream is investigated, while in [13] the general indepen-
dent arrival process is assumed.

The remaining part of the paper is organized as follows. In the next Sect. 2 we
give a detailed mathematical description of the studied queueing model. In Sect. 3
we find a system of integral equations for conditional CDF of the time to buffer
overflow. In Sect. 4 we obtain the corresponding system for LTs and write it in a
specific form. Section 5 contains main result: the compact-form representation for
the LT of conditional distribution of the time to buffer overflow. In the last Sect. 6 a
short conclusion can be found.

2 Description of Queueing Model

In the article we deal with a single-channel queueing model with finite capacity of
the buffer accumulating jobs (customers, packets, calls, etc.) waiting for processing.
We assume that the arrival stream is governed by simple Poisson process with rate
k; while the service time of each job is generally distributed random variable with a
CDF F �ð Þ: A number of jobs simultaneously present in the system is bounded by a
non-random value N; i.e. we have a buffer with N � 1 places and one place in
service station. At the opening of the system, at time t ¼ 0; a buffer may contain a
number of jobs waiting for service in the buffer. Every time when the system
empties, i.e. if at the completion epoch of the job service there is no job waiting in
the buffer, the service station starts a randomly distributed closedown time with a
CDF C �ð Þ: If at the completion epoch of a closedown time a buffer contains at least
one job waiting for service, the server is being switched on at this moment,
otherwise the server waits in the standby mode for the first arrival. The first pro-
cessing after the idle period is always preceded by a setup time, with random
duration with a CDF S �ð Þ (the server begins the setup time simultaneously with the
moment of its switching on). Besides, if a job arrives at the system during the
closedown time, after its completion epoch the server immediately begins the setup
time and next starts the service process. The service station needs the closedown
time to be closed safely. Similarly, the setup time is needed for a server to achieve
full readiness for processing after the idle period. We assume the well-known FIFO
service discipline. Moreover, if the entering job finds the buffer already being
overflowed, it is lost (it leaves the system without service).

3 Equations for Conditional CDF of Time
to Buffer Overflow

Let Dn be the time to the buffer overflow, conditioned by the number of jobs
accumulated in the buffer before the opening of the system, i.e.
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Dn ¼def inf ft[ 0 : X tð Þ ¼ NjX 0ð Þ ¼ ng; 0� n�N � 1; ð1Þ

where X tð Þ denotes the number of jobs present in the system at time t; including the
one being processed at this time (if any).

Assume, firstly, that the system is empty at the start moment t ¼ 0. In this case
we consider t ¼ 0 as the moment at which the last service completes during a busy
period. Thus, in consequence, a closedown time begins at this time. Let us note that
we can distinguish six different mutually excluding random events:

1. the first job arrives during the closedown time, and both the closedown and
setup times finishes before time t (let us denote this random event by E1ðtÞ);

2. the first job arrives during the closedown time and before time t; but the fol-
lowing setup time finishes after t (E2ðtÞÞ;

3. the first job occurs before t and during the closedown time but that period
completes after t (E3ðtÞÞ;

4. the first job enters after the closedown time but before t, and the setup time
finishes after t (E4ðtÞÞ;

5. the first job enters after the closedown time but before t, and the setup time ends
before t (E5ðtÞÞ;

6. the first job occurs after time t (E6ðtÞÞ.
Observe that the following representations hold true:

P D0[ tð Þ \E1ðtÞf g ¼ Zt

u¼0

dC uð Þ Zu

x¼0

ke�kxdx
Zt�u

v¼0

XN�2

k¼0

k uþ v� xð Þ½ �k
k!

e�k uþ v�xð ÞP Dkþ 1 [ t � u� vf gdS vð Þ;

ð2Þ

P D0 [ tð Þ \E2ðtÞf g ¼ Zt

u¼0

�Sðt � uÞdCðuÞ Zu

x¼0

ke�kx
XN�2

k¼0

k t � xð Þ½ �k
k!

e�k t�xð Þdx; ð3Þ

P D0 [ tð Þ \E3ðtÞf g ¼ �C tð Þ
XN�1

k¼1

ktð Þk
k!

e�kt; ð4Þ

P D0 [ tð Þ \E4ðtÞf g ¼ Zt

u¼0

dCðuÞ Zt

x¼u

ke�kx�Sðt � xÞ
XN�2

k¼0

k t � xð Þ½ �k
k!

e�k t�xð Þdx; ð5Þ

P D0 [ tð Þ \E5ðtÞf g ¼ Zt

u¼0

dC uð Þ Zt

x¼u

ke�kxdx
Zt�x

v¼0

XN�2

k¼0

kvð Þk
k!

e�kvP Dkþ 1 [ t � x� vf gdSðvÞ

ð6Þ
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and

P D0 [ tð Þ \E6ðtÞf g ¼ e�kt: ð7Þ

In the formulae above we use the nomenclature �G tð Þ ¼ 1� G tð Þ; where G �ð Þ
denotes arbitrary CDF. Comment shortly the formulae (2)–(7). In (2) and (6) the
setup time completes before the moment t; hence the service station starts the
processing with the number of jobs which have occurred during the service sus-
pension period. In (3)–(5) and (7), if the condition determined in the definition of
the appropriate EiðtÞ is satisfied, the time to buffer overflow exceeds t with prob-
ability 1.

Now, let us investigate the situation in which at t ¼ 0 the buffer contains at least
one job, i.e. the level of buffer saturation equals n, where 1� n�N � 1: Due to the
fact that successive service completion moments are Markov epochs in the oper-
ation of the system, then, by virtue of the continuous version of the total probability
law applied in relation to the first departure moment after the opening of the system
at time t ¼ 0, the following system of Volterra-type integral equations can be
written:

P Dn [ tf g ¼
XN�n�1

k¼0

Zt

0

P Dnþ k�1 [ t � xf g kxð Þk
k!

e�kxdF xð Þþ �FðtÞ
XN�n�1

k¼0

ktð Þk
k!

e�kt;

ð8Þ

where 1� n�N � 1: Indeed, the first summand on the right side of (8) refers to the
case in which the first service finishes at time x\t: The second summand presents
the situation where the first departure occurs after t; hence the time to buffer
overflow exceeds t with probability 1 if and only if at most N � n� 1 jobs arrive up
to t:

4 Corresponding System of Equations for LTs

In this section we obtain the corresponding system of equations for LTs of con-
ditional CDFs of the time to buffer overflow (more precisely: for the tail of CDF)
and write it in a specific form. Let us start with introducing the following notation:

dn sð Þ ¼def Z
1

0

e�stP Dn [ tf gdt; Re sð Þ[ 0; 0� n�N � 1: ð9Þ

Now, since d0 sð Þ ¼P6
i¼1

R1
0
e�stP D0 [ tð Þ \EiðtÞf gdt, then just from the repre-

sentations (2)–(7) we get
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d0 sð Þ ¼
XN�2

k¼0

ck sð Þdkþ 1 sð Þþ g sð Þ; ð10Þ

where

ck sð Þ¼def kkþ 1

kþ 1ð Þ!
Z1

u¼0

e� kþ sð ÞudCðuÞ Z1

v¼0

e� kþ sð Þv ðuþ vÞkþ 1 � vkþ 1
h i

dS vð Þ

þ k
kþ s

~cðkþ sÞ Z1

0

e� kþ sð Þv ðkvÞk
k!

dS vð Þ;
ð11Þ

g sð Þ¼def Z1

u¼0

dC uð Þ Z1

t¼u

e� kþ sð Þt�S t � uð Þ
XN�2

k¼0

kkþ 1

kþ 1ð Þ! tkþ 1 � t � uð Þkþ 1
h i

dtþ
XN�1

k¼1

Z1

0

e� kþ sð Þt ktð Þk
k!

�C tð Þdt

þ Z1

t¼0

e� kþ sð Þtdt
Zt

u¼0

dC uð Þ Zt

x¼u

XN�2

k¼0

kkþ 1

k!
t � xð Þk�S t � xð Þdxþ 1

kþ s

ð12Þ

and

~c sð Þ ¼def Z
1

0

e�stdC tð Þ: ð13Þ

Similarly, the system of Eq. (8) will be transformed in the following way:

dn sð Þ ¼
XN�n�1

k¼0

akðsÞdnþ k�1 sð Þþ hN�n�1 sð Þ; ð14Þ

where 1� n�N� 1 and

ak sð Þ ¼def Z
1

0

e� kþ sð Þt ktð Þk
k!

dF tð Þ; ð15Þ

hkðsÞ ¼def Z
1

0

e� kþ sð Þt�FðtÞ
Xk
i¼0

ktð Þi
i!

dt: ð16Þ

Now, let us apply to (10) and (14) the following substitution:

dn sð Þ ¼defDN�n sð Þ; ð17Þ

where 0� n�N � 1: After this transformation (10) and (14) can be reformulated as
follows:
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DN sð Þ ¼
XN�2

k¼0

ck sð ÞDn�k�1 sð Þþ g sð Þ; ð18Þ

and

Xn�1

k¼�1

akþ 1 sð ÞDn�k sð Þ � DnðsÞ ¼ /n sð Þ; 1� n�N � 1; ð19Þ

where

/n sð Þ ¼def an sð ÞD1 sð Þ � hn�1 sð Þ: ð20Þ

5 Compact Solution for LT of CDF
of Time to Buffer Overflow

In [14] the system of equations of type (19) was considered but with infinitely many
equations (infinite-sized), namely for n� 1: Moreover, originally, the system had
coefficients being defined by usual number sequences, not by functional sequences
as in (19). As it was proved in [14], each solution of (19) can be represented in the
following form (we adjust here the original representation from [14] to the case of
functional sequences akðsÞð Þ and /kðsÞð Þ):

DnðsÞ ¼ AðsÞRn sð Þþ
Xn
k¼1

/kðsÞRn�k sð Þ; n� 1; ð21Þ

where A sð Þ is a function of variable s which is independent on n; and successive
terms of the functional sequence RkðsÞ; k� 0, can be found from the following
recursion, by using coefficients ak sð Þ; k� 0:

R0 sð Þ ¼ 0;

R1 sð Þ ¼ a�1
0 sð Þ; Rkþ 1 sð Þ ¼ R1 sð Þ Rk sð Þ �

Xk
i¼0

aiþ 1 sð ÞRk�i sð Þ
 !

; k� 1:

ð22Þ

Let us note that, due the fact that the number of equations in (19) is finite, we can
use the Eq. (18) written for n ¼ N as a boundary condition which allows for
expressing the function AðsÞ explicitly. Hence we can find the representation for the
unknown function DnðsÞ from (21) in a compact form.
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Starting with substituting n ¼ 1 into (21), we obtain

D1 sð Þ ¼ A sð ÞR1 sð Þ: ð23Þ

Next, taking in (21) n ¼ N and referring to (23), we get

DN sð Þ ¼ AðsÞRN sð Þþ
XN
k¼1

/k sð ÞRN�k sð Þ

¼ A sð ÞRN sð Þþ
XN
k¼1

ak sð ÞD1 sð Þ � hk�1 sð Þ½ �RN�k sð Þ

¼ A sð Þ RN sð ÞþR1 sð Þ
XN
k¼1

ak sð ÞRN�k sð Þ
 !

�
XN
k¼1

hk�1 sð ÞRN�k sð Þ: ð24Þ

Introducing (21) into (18), we can rewrite (18) as follows:

DN sð Þ ¼
XN�2

k¼0

ck sð Þ A sð ÞRN�k�1 sð Þþ
XN�k�1

i¼1

A sð Þai sð ÞR1 sð Þ � hi�1 sð Þ½ �RN�k�1�i sð Þ
( )

þ g sð Þ ¼ AðsÞ
XN�2

k¼0

ck sð Þ RN�k�1 sð ÞþR1ðsÞ
XN�k�1

i¼1

ai sð ÞRN�k�1�i sð Þ
" #

þ g sð Þ �
XN�2

k¼0

ck sð Þ
XN�k�1

i¼1

hi�1 sð ÞRN�k�1�i sð Þ:

ð25Þ

Comparing the right sides of (24) and (25), we eliminate AðsÞ in the following
way:

A sð Þ ¼ W1 sð ÞW�1
2 ; ð26Þ

where

W1 sð Þ ¼def g sð Þ �
XN�2

k¼0

ck sð Þ
XN�k�1

i¼1

hi�1 sð ÞRN�k�1�i sð Þþ
XN
k¼1

hk�1 sð ÞRN�k sð Þ ð27Þ

and

W2 sð Þ ¼def RN sð ÞþR1 sð Þ
XN
k¼1

ak sð ÞRN�k sð Þ

�
XN�2

k¼0

ck sð Þ RN�k�1 sð ÞþR1 sð Þ
XN�k�1

i¼1

ai sð ÞRN�k�1�i sð Þ
" #

: ð28Þ
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Collecting the formulae (17), (20), (21) and (26), we can state the following
main theorem:

Theorem 1 The representation for the LT dn sð Þ of the conditional tail CDF of the
time to the buffer overflow in the M/G/1/N-type finite-capacity queueing system with
generally distributed setup and closedown times is following:

dn sð Þ ¼ Z1

0

e�stP Dn [ tf gdt

¼ W1 sð ÞW�1
2 RN�n sð ÞþR1ðsÞ

XN�n

k¼1

akðsÞ
 !

�
XN�n

k¼1

hk�1 sð ÞRN�n�k sð Þ; ð29Þ

where the formulae for W1 sð Þ;W2 sð Þ, Rk sð Þ; akðsÞ and hk sð Þ are given in (27), (28),
(22), (15) and (16), respectively.

6 Conclusion

In the article a single-channel queueing model with finite buffer capacity and a
mechanism of setup-closedown times of the service station is investigated. The
arrival stream is described by a single Poisson process while the processing, setup
and closedown times are generally distributed random variables. By using the
analytical approach based on the concept of embedded Markov chain, continuous
version of the total probability law and linear algebra a compact-form representa-
tion for the LT of the conditional tail CDF of the time to the buffer overflow is
obtained. The final formulae are written in terms of “input” system characteristics
and a functional sequence, defined recursively, connected with them.
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