
Mutation Testing in Model Accuracy
Assessment

Joanna Strug

Abstract Abstract models built during a development of software systems play an
important role in producing a high quality system. Any modeling mistakes, if not
corrected, will propagate to the further development stages decreasing the quality of
the final system and increasing costs of correcting them. It is of primary importance
to make sure that the model conforms to all requirements of the stakeholders and
ensures proper work of the future system under various conditions. This paper
describes a mutation testing based approach to accuracy assessment of conceptual
models built at the beginning of a system development. The approach focuses on
providing test cases for assessing and measuring accuracy of such model with
respect to its ability to handle unexpected and erroneous situations. Mutation testing
is usually used to assess quality of test cases, but it can also help to provide, in a
systematic and human-unbiased way, a number of test cases representing wide
range of unexpected situations.

Keywords Model evaluation � Mutation testing � Software modeling � UML �
OCL

1 Introduction

Abstract models, focusing on different characteristics of a system to be designed,
are built at all stages of the system development process [1]. Such model, if being
accurate reflections of system characteristics of interest for a particular level of
abstraction, contributes to successful development of a flawlessly working system.
However, modeling involves taking decisions regarding elaboration and even
refinement of requirements, definition of the system structure and operations,
selection of components performing these operations, and so on. As modeling
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activities are errors prone, accuracy of models cannot be taken for granted. Thus,
time and effort should be invested into developing models conforming to require-
ments of the stakeholders and ensuring proper work of the system under various
conditions [2].

Development of a model can be seen as an iterative process involving, after
building an initial model, iterative assessment of the model accuracy and its
improvements. The assessment step is essential in determining the degree to which
the model fulfills the expectations and in providing useful data for its improvement.

Main causes of inaccuracy of a conceptual model include missing and incor-
rectly modeled requirements, as well as lack of proper handling of unexpected,
erroneous situations and data. Faults caused by any of the first two of them can
usually be detected by positive test cases reflecting, in a representative way, the
intended ways of using the system that are given by a system specification [3].
However, due to the fact that early prediction of unexpected and potentially erro-
neous situations is limited to some obvious cases, the test cases ability to check if a
model can handle them properly is very limited [4]. Thus, an effective approach to
an assessment of a model accuracy should also provide a subset of negative test
cases [3] designed specifically for checking how the model handles the unexpected
situations.

A general approach to mutation testing based negative testing was presented in
[5] and in [6] a concept of applying mutation testing to assess a model accuracy,
focusing on this second aspect of the accuracy, was introduced. This paper builds
on the concept by adding more details, shows how to use information coming from
the evaluation to improve a model, and presents a real life case study.

The paper is organized as follows. Section 2 briefly presents background
information and related works. The approach to an evaluation of a model accuracy
is described in details in Sect. 3, and Sect. 4 presents the case study. In the last
section conclusions and directions for future works are given.

2 Background and Related Work

A great number of research deals with various problems related to software testing,
but only some of them regard negative testing [3, 7–9]. Techniques, such as
equivalence partitioning [8] or stress testing [7, 9] provide advises on selecting test
cases with invalid input values or on creating and testing some extreme conditions
for the system. However, test cases selected by mean of such techniques may not be
able to reflect a wide range of unexpected, but not necessarily extreme, situations.

Mutation testing, a technique that in general serves the derivation of faulty
artifacts from correct ones, seems to be adequate for contributing to the solving the
problem of providing negative test cases. The technique was originally introduced
to evaluate quality of test suites provided for programs [10]. Its application involved
generation of a number of faulty version of a correct program (called mutants) by
introducing small syntactic changes into the code of the original program and then
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running the mutants with tests from the evaluated test suite. The ratio of the number
of mutants detected by the tests over the total number of non-equivalent mutants
generated for the original program (called a mutation score), determined the quality
of the evaluated test suite in terms of its ability to detect faults.

A test quality assessment is still the main application area of mutation testing,
but works showing its application at different levels of abstractions and to different
artifacts are more and more common (examples of such works are given in [11]).
However, papers on using mutation testing for deriving negative test cases are still
rare. To the author’s best knowledge only a few other researchers have also studied
this topic [12–14]. The authors of the work in [13] mutated a model of a system and
used model-checking techniques to generate counter-examples showing violation of
certain properties. The counter-examples made a set of negative test cases, but due
to the fact that mutants of the model represent incorrect behaviour of the system,
some of the test cases may in fact detect specification related inconsistencies that
can also be detected by positive test cases. Another example of an approach, where
tests cases were derived from mutated model was presented in [14]. The approach
described in [12] is the most relevant to the one presented in this paper, as it also
aims at modifying tests directly. However, the modifications proposed by the
authors are random and affect only data processed by a program. The approach
presented in [5] and the one presented here provide much wider range of changes
introduced in a controlled way by using a set of mutation operators defined by the
author specifically to target test cases [5, 6].

3 An Approach to Model Accuracy Assessment

A conceptual model is built upon requirements that specify what a system is
expected to do, what kind of data it should process, under which conditions it
should operate, and so on. The requirements do not provide a clear answer to a
question of how the system should behave when subjected to conditions and data
out of its normal scope of operations. Issues arising from such a question need to be
resolve during development of the conceptual model, otherwise they will propagate
to further development stages and finally would make the final system vulnerable to
failures.

Development of an accurate model, handling properly various unexpected and
erroneous situations, is not easy, because a developer’s ability to predict situations
that may lead to failures is rather limited. Thus, it is necessary to run the model with
negative test cases being able to trigger a wide range of unexpected use scenarios
for the system and observe how the model behaves in these situations.
Unfortunately, test cases selected basing on requirements are positive, that is they
represent only intended ways of using the system and do not support detection of
this kind of problems.

The approach presented here focuses on assessing a model, during its devel-
opment, with the aim to detect its weaknesses caused by lack of proper handling of
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unexpected situations. It deals with this problem by providing and using negative
test cases that trigger such situations. The main idea behind this approach is to use
mutation testing to generate a number of test cases, each being a modified version
of any of the positive test cases. Each mutant is a negative test case, as it represents
some unintended use scenario for the system. The model, when run with a mutant,
will either behave as if the mutant represented some expected use scenario, or it will
fail showing its ability to recognize the fact that the mutant triggered an unexpected
way of using the system.

The following subsections outline the approach to a model evaluation and
describe its main stages in details.

3.1 An Outline of the Approach

Before the assessment of a conceptual model starts the model, representing
requirements defined for a system, and a suite of test cases selected basing on these
requirements, have to be provided. The assessment is carried out in three stages
(Fig. 1):

1. generation of mutated test cases,
2. execution of mutated test cases, and
3. analysis of assessment results.

The first stage involves generation of mutated test cases. The mutants are
obtained by introducing small changes into the original test cases accordingly to a
predefined rules, called mutation operators. Then, in the second stage, each mutant
is executed against the model and a verdict (accepted or rejected) is assigned to it.
Finally, in the last stage, accuracy of the model is calculated basing on the number
of mutants accepted and rejected by the model and the mutants are analyzed to
provide feedback for improving the model.

Fig. 1 Outline of the approach
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3.2 Stage 1—Generation of Mutated Test Cases

The expected input artifact for the first stage is a suite of positive test cases rep-
resenting all intended ways of using a system, as given by the requirements.
A single test case should specify conditions, data and steps (usually represented by
operations calls) needed to force a model to behave in a particular way, as well as
expected results that the model should produce after executing the test case.

To generate mutants of the test cases a set of mutation operators is needed. Here,
a mutation operators is a rule specifying an element of a test case that can be
changed and defining the ways it can be changed. A set of mutation operators
applicable to test cases consists of the following 9 operators [5, 6]:

• Condition Part Deletion (CPD)—deletes a part of a condition expected to hold
before executing a test case,

• Condition Part Replacement (CPR)—replaces a part of a condition by another,
compatible element of a condition,

• Operation Call Deletion (OCD)—deletes an operation call (i.e. a step) from a
sequence of operation calls in a test case,

• Operation Call Replacement (OCR)—replaces an operation call in a sequence of
operation calls in a test case by another operation call,

• Operation Call Insertion (OCI)—inserts an extra operation call in a sequence of
operation calls,

• Operation Call Swap (OCS)—changes the order in which two subsequent
operation calls should be performed,

• Operation Parameter Replacement (OPR)—replaces a value of a parameter in an
operation call (i.e. data passed within a given step) with another, compatible
value,

• Operation Parameter Swap (OCS)—changes the order of two values of
parameter in a given operation call,

• Operation Target Replacement (OTR)—replaces a target of an operation call
with another one.

The mutation operators cover all elements of a typical test case, so the set can be
seen as sufficient for generating mutants triggering wide range of unintended ways
of using a system. Algorithms outlined in [5] can be used to generate the mutants.

3.3 Stage 2—Execution of Mutated Test Cases

The expected input artifacts for the second stage are: the set of mutants generated in
the first stage and the model of system undergoing the assessment.

In general the model may represent a system at any level of abstraction, but in
this approach a focus is on a conceptual model built at an early stage of the system
development. It is therefore expected that the model represents requirements
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specified for the system by giving conceptual architecture and functionality of the
designed system. The model has to be executable, thus the formalism used to
describe the model should include means to define processing. The model, before
being assessed with respect to its handling of unexpected situations, should be
tested with all original test cases to ensure that the specified requirements have been
modeled correctly.

Once the prerequisites concerning the model are satisfied the model is run with
each mutated test case. When a mutant is executed its execution trace is generated
and linked to the mutant, and after it has been executed a verdict is assigned to the
mutant. A verdict rejected is assigned to a mutant when the model fails, otherwise a
verdict accepted is assigned to the mutant.

3.4 Stage 3—Analysis of Assessment Results

The third stage uses the results obtained in the second stage: the verdicts assigned to
mutants and the execution traces of mutants, to determine the accuracy degree of
the assessed model and to provide feedback for refining the model.

The accuracy of a model, in term of its ability to recognized unexpected situation
[6], is indicated by a mutation score. Let’s for the rest of this paper M denotes the
assessed model, T0 denotes the set of mutants generated for a set of positive test
cases denoted by T, T0

A and T0
R denote subsets of T0 consisting of accepted and

rejected mutants respectively, and T0
E denotes a subset of equivalent mutants [11].

The mutation score (denoted by MS) for a model M is defined as follows
[Eq. (1)]:

MS Mð Þ ¼ jT 0
Rj

ðjT 0
A þ jT 0

Rj jÞ � jT 0
Ej

ð1Þ

where:

T0
A

�� �� is the number of mutants accepted by the model M,

T0
R

�� �� is the number of mutants rejected by M, and

T0
E

�� �� is the number of equivalent mutants.

The mutation score expresses, in a quantitative way, the degree of a model
accuracy. Basing on the value of mutation score one can decide whether the
development of the model should be continued or may be finished. The highest
possible value of mutation score is 1—it means that all mutants were rejected.

When the mutation score implies that the model accuracy is not acceptable yet,
the mutants and their execution traces should be analyzed. An execution trace of a
mutant shows, in details, what the model really did when it was run with the
mutant. So, an examination of an execution trace of a mutant should help to find out
why the mutant was rejected or accepted and prepare a report describing the results
of examination.
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Rejection of a mutant shows that an evaluated model poses the ability to rec-
ognize an unexpected situation defined by the mutant and fails to work. Thus, an
examination of an execution trace of the rejected mutant helps to identify the
operations that drove the model to fail and to decide (possibly together with
stakeholders) what the proper handling of a class of erroneous situations repre-
sented by the mutant should be like.

When an evaluated model accepts a mutant, it shows that the model is not able to
recognize an unexpected situation and works further producing some, seemingly
correct, results. Examination of an execution trace of the accepted mutant helps to
identify faulty constraints specifying applicability range of operations performed
when the model is run with the mutant, and thus suggests ways of improving the
model.

Once, a model has been improved accordingly to the suggestions, it should be
assessed again to see if the mutation score has reached an assumed level.

4 Case Study: A HVAC System

The case study demonstrates application of the described approach to evaluation of
conceptual models on a software controlling a Heating, Ventilation and Air
Conditioning system (HVAC) [15].

In general, the HVAC system maintains the room temperature within an
assumed range. A user of the system can turn it on and off and set the temperature
range. The system, when turned on, displays its current status, check the temper-
ature in the room and, basing on the current value of the temperature, cools or heats
the room.

The approach, as described in Sect. 3 can be applied to assess models described
by means of various formalisms, but this work is aimed at models of object-oriented
systems. Thus, UML/OCL class diagram was used to model the system [16, 17].
The class diagram describes structure of a system by giving elements (classes) of
the system, their properties (attributes), functionalities (operations) and relations
between these elements [16], as well as constraints specifying the operations in the
form of their pre-conditions and post-conditions [17]. The pre- and post-conditions,
are here of particular importance. They define conditions that should hold before an
operation starts and when it ends, respectively. Missing or incorrectly specified pre-
and post-conditions make the model vulnerable to unexpected behavior. The class
diagram representing structure of the HVAC system is given in Fig. 2. The con-
straints defined for the system are not depicted in this figure for clarity, but an
example pre-condition of the operation regulate() in class Controller is shown as an
annotation in the Fig. 2.

A suite of test cases, the second element required by the assessment approach,
was prepared manually. In the case study the suite consisted of only one test case,
shown in Fig. 3a. It is given in a format required by the USE simulator [18].
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4.1 Generation of Mutants

The test case (denoted by t) used in the case study describes a scenario for checking
if the model makes it possible to turn on and off the system, and to turn on and off
the Heater and the AC, when the temperature rises and then falls down.

For the test case 51 mutants were generated. Detailed information on the number
of mutants generated by applying each of the mutation operators is given in the
second column of Table 1. Two of the mutants generated for t are shown in Fig. 3b, c.

4.2 Execution of Mutants

The mutants generated for test case t were executed within a USE environment [18].
The USE allows to run a model with a specified test case by simulating calls of the
model operations (according to a scenario provided by the test case). While running
the model, the tool checked if the pre- and post-conditions of called operations were

Fig. 2 A class diagram for HVAC system (screenshot from USE)

Fig. 3 a An example test case t for HVAC, b and c examples of mutants for t

208 J. Strug



satisfied. An unexpected situation represented by a mutated test case was recog-
nized if a violation of any condition was reported or the model failed. After exe-
cuting a mutant, depending on the simulation results, a verdict rejected or accepted
was assigned to it. Table 1 summarizes results of running the mutants. It gives, for
each mutation operator, the number of accepted, rejected and equivalent mutants.

The results of executing mutants were presented within the USE in a form of a
sequence diagrams [16]—these diagrams show the execution traces for the mutants.

4.3 Analysis of the Assessment Results

While most activities of the two previous stages of the model assessment can be
automated, the analysis has to be performed manually.

First the accepted mutants were analyzed to identify and remove the equivalent
mutants and the mutation score for the initial model was calculated as given by
Eq. (1). Here, a mutation score of 0.35 was reached, what indicates rather low
accuracy of the initial model and need for improvements.

To provide a feedback for the necessary improvements the execution traces of
the remaining accepted mutants were analyzed to find out why they were accepted
and what the model did wrong. For example, the mutant given in Fig. 3b was
accepted. It represents a situation when the room temperature rises, in an instance,
from below the lower threshold to above the upper threshold. While such situation
seems unlikely to occur it is not entirely impossible. The examination of the mutant
showed that the model turned on the AC, but it did not turn off the Heater. It is
clearly an erroneous behavior of the model that needs to be fix, as both the Heater
and the AC should never be working at the same time.

The rejected mutants were also analyzed to identify the operation that caused the
model to fail. The mutant from Fig. 3c was rejected. It represents a situation when
the user did not set the thresholds. The precondition defined for the regulate()

Table 1 Statistics by operators for mutants generated for t

Mutation
operator

# of mutants
for t T0j jð Þ)

# of rejected
mutants T0

R

�� ��� � # of accepted
mutants T0

A

�� ��� � # of equivalent
mutants T0

E

�� ��� �

CPD 3 0 3 0

CPR 5 3 2 0

OCD 6 1 5 2

OCR 7 2 5 4

OCI 14 5 9 2

OCS 5 2 3 1

OPR 10 0 10 5

OPS 1 0 1 0

OTR 0 0 0 0
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operation was violated, so the model was able to recognized erroneous situation but
the model developer (or stakeholders) should still propose some solution that would
allow the model to handle this situation.

Although the analysis performed in this stage are quite laborious, especially in
case of accepted mutants, a careful inspection of the execution traces of mutants
helps to gather information that in turn helps to improve the model, and thus the
final systems that is to be developed basing on the model.

5 Conclusions and Future Work

A high quality system should always work flawlessly, thus it should never, in any
situation, provide incorrect results and should be able to manage some unexpected
situation without crashing, so early modeling of proper handling of such situations
will significantly contribute to improvement of the quality of the final system. The
approach presented in this paper contributes to the domain of developing models, as
it provides a way to assess their accuracy with regard to their ability to recognized
erroneous situations. This aspect of a model accuracy is rarely considered [13].

The approach uses mutation testing to generate, in a systematic and
human-unbiased way, a number of test cases being able to trigger a wide range of
unexpected situations. While mutation testing is a very effective assessment tech-
nique, it is also quite expensive in term of costs of generating and executing
mutants [11]. Several cost reduction techniques were proposed, so far (a survey is
given in [19]). A study on applying such techniques, especially the selective and
structure dependant ones [20–24], in this context should also be a part of future
work. Another problem that needs to be addressed is the identification of equivalent
mutants [25]. It may also be worth to explore the possibility to use higher order
mutations [11, 25] that could help to overcome both above problems.

In this paper the approach was studied in the context of models represented by
means of UML and OCL. Still, the general approach to mutation testing based
negative testing [5] may be easily adapted for other modeling formalisms or to other
levels of system descriptions, as the general structure of a test cases will remain
unchanged.
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