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Abstract A finite-buffer queueing model with Poisson arrivals and generally dis-
tributed processing times is investigated. Every time when the service station restarts
the operation after the idle period, a random-length setup time is needed to achieve
full readiness for the work, during which the service process is suspended. A system
of integral equations for time-dependent departure process, conditioned by the initial
buffer state, is built. The solution of the corresponding system written for double
transforms is obtained in a compact form. Hence the mean number of packets
completely processed up to fixed time epoch can be easily found. The analytical
approach is based on the idea of embedded Markov chain, total probability law and
integral equations. The considered queueing system can be successfully used in
cellular networks or WSNs modelling, where the setup time corresponds to leaving
the sleep mode in energy saving mechanism. Numerical utility of analytical formulae
is shown in a network-motivated computational example.

Keywords Departure process � Finite-buffer queue � Integral equation � Setup
time � Transient state

1 Introduction

Evidently, queueing models with finite buffer capacities have wide network
applications, especially in modelling some processes occurring in network nodes,
like IP routers or nodes of WSNs. As it seems, systems with different-type limi-
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tations in the access to the service station are of particular importance, due to their
potential adoptions as models of energy saving mechanisms. Typically, each busy
period of the queueing system may correspond to the active mode and any idle
period—to the sleep mode. In practice, when a packet (job, call, etc.) arrives into
the empty system, it is impossible to start its operation immediately. Predominantly,
it takes some time (called a setup time) for the server to achieve the full readiness
for processing.

The steady-state behavior of the M/M/1-type queue with “queued” waking up
and setup times is investigated in [2]. A Markovian system with server setups
preceding the first service in a new busy period is analyzed in [13]. In [15] (see also
[1]) an equilibrium threshold strategy for customers’ behavior in a queue with setup
times is derived. Applications of queueing systems with setup periods in WSNs can
be found, e.g. in [16], where a sleep/wakeup protocol in the IEEE 802.15.4 standard
is modelled. In [3] a queueing system in modelling the IMS session re-setup delay
in WiMAX/LTE heterogeneous networks is applied. A BS sleeping mode in cel-
lular networks is in [14] modelled via the M/G/1-type queueing system with server
vacations and setup times. In [4] a model of data center with servers having
independent setup times after idle periods is considered. The system is mathe-
matically described by a two-dimensional Markov chain and some performance
measures are found using a generating function approach.

As one can observe, analytical results obtained for different-type queueing
models with server setup times relate, mainly, to the stable queues, i.e. to the
stochastic characteristics in the case of t ! 1: However, quite often
time-dependent analysis of the system behavior seems to be more desired, in par-
ticular due to the high variability network traffic, e.g. in TCP/IP connections.
Moreover, in rare traffic (like in some WSNs) the system stabilizes longer, so the
investigation of its performance shortly after the opening or the application of a new
control mechanism requires transient analysis (at fixed time t). Transient analysis of
the queue-size distribution in the M/G/1-type queueing model with arrivals in
random batches, N-policy and server setup times can be found in [7]. In [5] a
similar model is considered with additional multiple vacation policy.
Time-dependent solution for the queue-size distribution in a model with Poisson
arrivals and setup/closedown times is obtained in [11].

In the paper we deal with the finite-buffer queueing model of the M/G/1 type in
which the first processing in each new busy period (after finishing the idle time) is
preceded by a generally-distributed setup time, during which the service process is
still suspended (the arriving packets accumulate in the buffer queue). Using the idea
of embedded Markov chain, a system of integral equations for the distribution of
the number of packets completely processed up to the fixed time t (departure
process), conditioned by the initial buffer state, is built. The solution of the cor-
responding system written for double transforms is obtained via linear algebraic
approach and presented in a compact form by using a certain recursively defined
sequence.

In [9, 10] new results for departure process in the model with “queued” waking
up (N-policy) can be found. The same characteristic in the finite-buffer system with
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auto-correlated input stream modelled by the BMAP process is studied in [8]. In [6]
time-dependent results for departure process can be found for the model with
multiple vacation policy.

2 Description of the Model and Auxiliary Results

In the paper we investigate a single-server finite-buffer queueing model in which
packets arrive according to a Poisson process with rate k and are being served
individually with a general-type CDF (=cumulative distribution function) Fð�Þ of
the processing time, according to the FIFO service discipline. The maximal number
of packets present in the system simultaneously equals K, i.e. we have K � 1 places
in the buffer queue and one place “in service station”. Obviously, packets arriving
during the buffer overflow period (when the server is occupied and the buffer is
saturated) are being lost. We assume that the buffer may contain a number of
packets being accumulated before the start of the system at time t ¼ 0: Each busy
period, which is initialized together with the first arrival after the idle time, is
preceded by a setup time, which is a random variable with a general-type CDF G �ð Þ:
The server needs a setup time to achieve full operational readiness. If the system is
empty before the opening, then it also starts a setup time at the moment of the first
arrival. We assume independence of all inter-arrival, processing and setup times in
the evolution of the system.

Let us denote by hðtÞ the (random) number of packets completely processed up
to the fixed time t; and define the distribution function of h tð Þ; conditioned by the
initial level of buffer saturation, as follows:

Hn t;mð Þ ¼def P h tð Þ ¼ mjX 0ð Þ ¼ nf g; ð1Þ

where t[ 0;m� 0; 0� n�K and Xð0Þ stands for the number of packets present in
the system at the opening (at time t ¼ 0). The (conditional) departure process
defined in (1) is one of the most important operating characteristics of each
queueing system, illustrating its performance. Moreover, in network applications,
the output stream of packets transmitted from one node of the network becomes the
arriving stream of packets into another node.

We are interested in finding the explicit representation for the PGF (=probability
generating function) of the LT (=Laplace transform) of Hn t;mð Þ, i.e. for the
functional

~hnðs; zÞ ¼def
X1
m¼0

zm
Z1
0

e�stHn t;mð Þdt; ð2Þ
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where zj j\1 and < sð Þ[ 0: In further analysis we use the following result from
linear algebra which can be found in [12]:

Lemma 1 Introduce two number sequences akð Þ; k� 0; and wkð Þ; k� 1; with the
assumption a0 6¼ 0: Each solution of the following system of linear equations with
respect to xn; n� 0 :

Xn
k¼�1

akþ 1xn�k � xn ¼ wn; n� 0; ð3Þ

can be written in the form

xn ¼ CRnþ 1 þ
Xn
k¼0

Rn�kwk; n� 0; ð4Þ

where C is a constant independent on n, and Rkð Þ is the sequence (called a
potential in [12]) connected with the akð Þ in the following way:

X1
k¼0

hkRk ¼ 1
Pa hð Þ � 1

; ð5Þ

where

Pa hð Þ ¼def
X1
k¼�1

hkakþ 1; hj j\1: ð6Þ

Moreover, in [12] it is proved that successive terms of the sequence Rnð Þ can be
found recursively as follows:

R0 ¼ 0;R1 ¼ a�1
0 ;Rkþ 1 ¼ R1 Rk �

Xk
i¼0

aiþ 1Rk�i

 !
; k� 1: ð7Þ

In the further analysis we use the nomenclature �L xð Þ ¼def 1� L xð Þ; where Lð�Þ
stands for arbitrary CDF, and the notation IfA} for the indicator of the random
event A: Moreover, let us define

f ðsÞ ¼def
Z1
0

e�stdF tð Þ; ð8Þ

gðsÞ ¼def
Z1
0

e�stdG tð Þ;< sð Þ[ 0: ð9Þ
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3 Integral Equations for Conditional Departure Process

In this section, by using the idea of embedded Markov chain and the continuous
version of the formula of total probability, we find a system of integral equations for
Hn t;mð Þ t[ 0;m� 0; 0� n�Kð Þ; defined in (1). Next, we build the corresponding
system written for double transforms of conditional departure process, i.e. for
functionals ~hnðs; zÞ 0� n�K;R sð Þ[ 0; zj j\1ð Þ, given in (2).

Assume, firstly, that the system is empty before the opening, so its evolution
begins with idle period and the setup time begins simultaneously with the arrival
epoch of the first entering packet. We can, in fact, distinguish three mutually
excluding random events:

1. the first packet occurs before the moment t and the setup time also completes
before t (we denote this event by E1ðtÞ);

2. the first packet arrives before t but the setup time ends after t (E2ðtÞ);
3. the first arrival occurs after time t (E3ðtÞ).

Let us introduce the following additional notation:

H ið Þ
0 t;mð Þ ¼def P h tð Þ ¼ mð Þ \Ei tð ÞjX 0ð Þ ¼ 0f g; ð10Þ

where t[ 0;m� 0 and i ¼ 1; 2; 3: Obviously

P h tð Þ ¼ mjX 0ð Þ ¼ 0f g ¼ H0 t;mð Þ ¼
X3
i¼1

H ið Þ
0 t;mð Þ ð11Þ

and

~h0 s; zð Þ ¼
X3
i¼1

X1
m¼0

zm
Z1
0

e�stH ið Þ
0 t;mð Þdt: ð12Þ

According to the random event E1ðtÞ, we obtain the following representation:

H 1ð Þ
0 t;mð Þ ¼

Z t

x¼0

ke�kxdx
Zt�x

y¼0

XK�2

i¼0

kyð Þi
i!

e�kyHiþ 1 t � x� y;mð Þ
"

þHK t � x� y;mð Þ
X1
i¼K�1

kyð Þi
i!

e�ky

#
dGðyÞ

ð13Þ

Indeed, the first summand on the right side of (13) relates to the situation in
which the buffer does not become saturated during the setup time, while the second
one—to the case of the buffer overflow occurring during this time. Similarly,
considering E2 tð Þ; we obtain
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H 2ð Þ
0 t;mð Þ ¼ I m ¼ 0f g

Z t

0

ke�kx �G t � xð Þdx: ð14Þ

Evidently, if the setup time completes after t, the service at time t is still blocked,
so the only possibility is m ¼ 0: Similar argumentation explains the last case,
namely

H 3ð Þ
0 t;mð Þ ¼ I m ¼ 0f ge�kt: ð15Þ

From (13)–(15) we get, referring to (11),

H0 t;mð Þ ¼
Z t

x¼0

ke�kxdx
Zt�x

y¼0

XK�2

i¼0

kyð Þi
i!

e�kyHiþ 1 t � x� y;mð Þ
"

þHK t � x� y;mð Þ
X1
i¼K�1

kyð Þi
i!

e�ky

#
dGðyÞ

þ I m ¼ 0f g
Z t

0

ke�kx �G t � xð Þdxþ e�kt

0
@

1
A:

ð16Þ

Let us consider now the case of the system being non-empty at the opening (i.e.
1� n�K). Since successive departure epochs are Markov (renewal) moments in
the evolution of the M/G/1-type system, then, applying the continuous version of
the formula of total probability with respect to the first departure epoch after t ¼ 0,
we obtain the following system of integral equations:

Hn t;mð Þ ¼ I m� 1f g
Z t

0

XK�n�1

i¼0

kxð Þi
i!

e�kxHnþ i�1 t � x;m� 1ð Þ
"

þHK�1 t � x;m� 1ð Þ
X1
i¼K�n

kxð Þi
i!

e�kx

#
dF xð Þþ I m ¼ 0f g�F tð Þ;

ð17Þ

where 1� n�K. Let us explain in a short form successive summands on the right
side of (17). The first summand under the integral describes the situation in which
there are some free places in the buffer before the first departure occurring at time
0\x\t, while the second one corresponds to the case of the buffer saturation
occurring before time t: In the last summand the first packet leaves the system after
t: Introducing the double transforms ~hnðs; zÞ, defined in (2), and utilizing the fol-
lowing identities:
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X1
m¼0

zm
Z1
t¼0

e�stdt
Z t

x¼0

ke�kxdx
Zt�x

y¼0

kyð Þi
i!

e�kyHj t � x� y;mð ÞdG yð Þ ¼ ai sð Þ~hj s; zð Þ;

ð18Þ

where we define

ai sð Þ ¼def k
kþ s

Z1
0

kyð Þi
i!

e� kþ sð ÞydG yð Þ; ð19Þ

and

X1
m¼0

zmI m ¼ 0f g
Z1
t¼0

e�st
Z t

x¼0

ke�kx �G t � xð Þdxþ e�kt

2
4

3
5dt

¼ k 1� gðsÞ½ � þ s
s kþ sð Þ ¼def b s; zð Þ ¼ b sð Þ; ð20Þ

we transform the Eq. (16) to the following one:

~h0 s; zð Þ ¼
XK�2

i¼0

ai sð Þ~hiþ 1 s; zð Þþ ~hK s; zð Þ
X1
i¼K�1

ai sð Þþ b sð Þ: ð21Þ

Putting

aiðs; zÞ ¼def z
Z1
0

e� kþ sð Þx kxð Þi
i!

dF xð Þ; ð22Þ

where < sð Þ[ 0 and zj j\1; we rewrite now (17) in the form

~hn s; zð Þ ¼
XK�n�1

i¼0

aiðs; zÞ~hnþ i�1 s; zð Þþ ~hK�1 s; zð Þ
X1
i¼K�n

ai s; zð Þþ 1� f ðsÞ
s

; ð23Þ

where 1� n�K:
Let us apply to equations of the system (21) and (23) the following substitution:

~dn s; zð Þ ¼def ~hK�n s; zð Þ; 0� n�K: ð24Þ
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Now we obtain from (23) the following equations:

Xn
i¼�1

aiþ 1 s; zð Þ~dn�i s; zð Þ � ~dn s; zð Þ ¼ /n s; zð Þ; ð25Þ

where 0� n�K � 1 and functionals /n s; zð Þ are defined as follows:

/n s; zð Þ ¼def anþ 1 s; zð Þ~d0 s; zð Þ � ~d1 s; zð Þ
X1

i¼nþ 1

ai s; zð Þ � 1� f sð Þ
s

: ð26Þ

Similarly, introducing (24) into (21), leads to the following representation:

~dK s; zð Þ ¼
XK�2

i¼0

aiðsÞ~dK�i�1 s; zð Þþ ~d0 s; zð Þ
X1
i¼K�1

ai sð Þþ b sð Þ: ð27Þ

4 Compact-Form Solution for Transforms

In this section, utilizing Lemma 1, we find the solution of the system (25) and (27)
in the compact form. Let us note that the system (25) has the same form as (3) with
unknowns ~dn s; zð Þ; n� 0; but with functional coefficients, namely aiþ 1ðs; z) and
/i s; zð Þ; i� 0: Hence, the solution of (25) can be found by applying (4). Moreover,
observe that the number of equations in (25) is finite comparing to (3). This fact can
be used to find the value of C ¼ Cðs; zÞ explicitly, treating the Eq. (27) (written for
n ¼ K) as a specific-type boundary condition.

Thus, for 0� n�K the following formula holds true [compare (4)]:

~dn s; zð Þ ¼ C s; zð ÞRnþ 1 s; zð Þþ
Xn
i¼0

Rn�iðs; zÞ/i s; zð Þ; ð28Þ

where n� 0; and [see (7)]

R0 s; zð Þ ¼ 0;R1 s; zð Þ ¼ a�1
0 s; zð Þ;Rkþ 1 s; zð Þ

¼ R1 s; zð Þ Rk s; zð Þ �
Xk
i¼0

aiþ 1 s; zð ÞRk�i s; zð Þ
" #

; k� 1;
ð29Þ

and the functional sequence aiþ 1 s; zð Þ was defined in (22). Substituting n ¼ 0 into
(28), we get

~d0 s; zð Þ ¼ C s; zð ÞR1 s; zð Þ: ð30Þ
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Next, taking n ¼ 1 in (28) and applying (26) and (30), we obtain

~d1 s; zð Þ ¼ C s; zð ÞR2 s; zð ÞþR1 s; zð Þ/0 s; zð Þ

¼ C s; zð ÞR2 s; zð ÞþR1 s; zð Þ
"
a1 s; zð ÞR1 s; zð ÞC s; zð Þ

�~d1 s; zð Þ
X1
i¼1

ai s; zð Þ � 1� f sð Þ
s

# ð31Þ

and hence

~d1 s; zð Þ ¼ h s; zð Þ C s; zð Þ R2 s; zð Þþ a1 s; zð ÞR2
1 s; zð Þ� �� R1 s; zð Þ 1� f sð Þ

s

� �
; ð32Þ

where

h s; zð Þ ¼ h sð Þ ¼def 1þR1 s; zð Þ
X1
i¼1

ai s; zð Þ
" #�1

¼ f kþ sð Þ
f sð Þ : ð33Þ

From representations (30)–(33) follows that /i s; zð Þ [defined in (26)] for any
fixed i� 0 can be written as a function of C s; zð Þ; which is the only unknown
functional. To find the formula for Cðs; zÞ, let us, firstly, write (27), applying on the
right side of identities (26), (28), (30) and (32), and utilizing the fact that

XK�2

i¼0

ai sð Þ~dK�i�1 s; zð Þ ¼
XK�1

i¼1

aK�i�1ðsÞ~di s; zð Þ: ð34Þ

We obtain

~dK s; zð Þ ¼
XK�1

i¼1

aK�i�1 sð Þ C s; zð ÞRiþ 1 s; zð Þþ
Xi
j¼0

Ri�jðs; zÞ/j s; zð Þ
" #

þC s; zð ÞR1 s; zð Þ
X1
i¼K�1

ai sð Þþ b sð Þ

¼
XK�1

i¼1

aK�i�1 sð Þ
"
C s; zð ÞRiþ 1 s; zð Þ

þ
Xi
j¼0

Ri�j s; zð Þ ajþ 1 s; zð Þ~d0 s; zð Þ � ~d1 s; zð Þ
X1

r¼jþ 1

ar s; zð Þ � 1� f sð Þ
s

 !#

þC s; zð ÞR1 s; zð Þ ¼ W1 s; zð ÞC s; zð Þþ v1 s; zð Þ;
ð35Þ
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where we denote

W1 s; zð Þ ¼def
XK�1

i¼1

aK�i�1 sð Þ Riþ 1 s; zð Þþ
Xi
j¼0

Ri�j s; zð Þ R1 s; zð Þajþ 1 s; zð Þ�"

�h sð Þ R2 s; zð Þþ a1 s; zð ÞR2
1 s; zð Þ� � X1

r¼jþ 1

ar s; zð Þ
!#

þR1 s; zð Þ
X1
i¼K�1

ai sð Þ

ð36Þ

and

v1 s; zð Þ ¼def
XK�1

i¼1

aK�i�1 sð Þ
Xi
j¼0

Ri�j s; zð Þ R1 s; zð Þ 1� f sð Þ
s

h sð Þ
X1

r¼jþ 1

ar s; zð Þ � 1� f sð Þ
s

" #
þ b sð Þ:

ð37Þ

Now let us substitute n ¼ K in (28) and utilize representations (26), (30) and
(32). We obtain

~dK s; zð Þ ¼ C s; zð ÞRKþ 1 s; zð Þ

þ
XK
i¼0

RK�i s; zð Þ
(
aiþ 1 s; zð ÞR1 s; zð ÞC s; zð Þ

�hðsÞ C s; zð Þ R2 s; zð Þþ a1 s; zð ÞR2
1 s; zð Þ� �� R1 s; zð Þ 1� f sð Þ

s

� � X1
j¼iþ 1

aj s; zð Þ � 1� f sð Þ
s

)

¼ W2 s; zð ÞC s; zð Þþ v2 s; zð Þ;
ð38Þ

where

W2 s; zð Þ ¼def RKþ 1 s; zð Þ

þ
XK
i¼0

RK�i s; zð Þ aiþ 1 s; zð ÞR1 s; zð Þ � h sð Þ R2 s; zð Þþ a1 s; zð ÞR2
1 s; zð Þ� � X1

j¼iþ 1

aj s; zð Þ
" #

ð39Þ

and

v2 s; zð Þ ¼def
XK
i¼0

RK�i s; zð Þ h sð ÞR1 s; zð Þ 1� f sð Þ
s

X1
j¼iþ 1

aj s; zð Þ � 1� f sð Þ
s

 !
: ð40Þ
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From (35) and (38) follows immediately

C s; zð Þ ¼ W1 s; zð Þ �W2 s; zð Þ½ ��1 v2 s; zð Þ � v1 s; zð Þ½ �: ð41Þ

Now the representations (24), (26), (28) and (41) lead to the following main
theorem:

Theorem 1 The representation for the PGF of the LT of the conditional departure
process in the M/G/1/K-type model with generally distributed server setup times is
following:

~hn s; zð Þ ¼
X1
m¼0

zm
Z1
0

e�stP h tð Þ ¼ mjX 0ð Þ ¼ nf gdt

¼ W1 s; zð Þ �W2 s; zð Þ½ ��1 v2 s; zð Þ � v1 s; zð Þ½ �
(
RK�nþ 1 s; zð Þ

þ
XK�n

i¼0

RK�n�i s; zð Þ aiþ 1 s; zð ÞR1 s; zð Þ � hðsÞ R2 s; zð Þþ a1 s; zð ÞR2
1 s; zð Þ� � X1

j¼iþ 1

aj s; zð Þ
" #)

þ
XK�n

i¼0

RK�n�iðs; zÞ h sð ÞR1 s; zð Þ 1� f sð Þ
s

X1
j¼iþ 1

aj s; zð Þ � 1� f sð Þ
s

 !
;

ð42Þ

where the formulae for ai s; zð Þ;Ri s; zð Þ; h sð Þ;W1 s; zð Þ; v1 s; zð Þ;W2 s; zð Þ and v1 s; zð Þ
are given in (22), (29), (33), (36), (37), (39) and (40), respectively.

Remark 1 Let us note that from (42) the formula for the conditional mean number
EnhðtÞ of packets completely processed until the fixed time epoch t (where
0� n�K) can be found. Namely, we have

Enh tð Þ ¼ @

@z
L�1 ~hn s; zð Þ� �� �

z¼1; ð43Þ

where the notation L�1 �½ � stands for the inverse Laplace transform.

5 Numerical Results

Let us consider the stream of packets of average sizes 100 B, arriving into the node
of a wireless sensor network according to a Poisson process. Consider three dif-
ferent arrival intensities 300, 400 and 500 Kb/s, which give k ¼ 375; k ¼ 500 and
k ¼ 625 packets per second, respectively. Moreover, let us assume that a radio
transmitter/receiver of the node is switched off during an idle period and needs an
exponentially distributed setup time with mean 4 ms to become ready for pro-
cessing. Besides, let packets are being transmitted with speed 500 Kb/s according
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to 2-Erlang service distribution, that gives the mean processing time 1.6 ms (hence
the parameter of the 2-Erlang service distribution is l ¼ 1250). Under the
assumptions about arrival and serving rates, the utilization factor q of the system
equals to 0.6, 0.8 and 1.0, respectively. Mean number EnhðtÞ of packets completely
processed until the fixed time epoch t can be found from (43). Moreover, we can

estimate the transient loss ratio function as LRn tð Þ � 1� Enh tð Þ
kt ; where kt is mean

number of packets in the arrival stream up to the time t: Transient evolutions of the
mean number E0h tð Þ of completely processed packets and the estimations of
the loss ratio LR0 tð Þ for given values of system parameters are presented in Figs. 1
and 2, respectively.

Fig. 1 Transient mean number E0h tð Þ of completely processed packets for q = 0.6, 0.8 and 1.0

Fig. 2 Estimation of transient loss ratio LR0 tð Þ for q = 0.6, 0.8 and 1.0
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