
Advances in Intelligent Systems and Computing 522

Adam Grzech
Jerzy Świątek
Zofia Wilimowska
Leszek Borzemski Editors

Information Systems
Architecture and
Technology: Proceedings
of 37th International
Conference on Information
Systems Architecture
and Technology—ISAT
2016—Part II

Advances in Intelligent Systems and Computing

Volume 522

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Advances in Intelligent Systems and Computing” contains publications on theory,
applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually
all disciplines such as engineering, natural sciences, computer and information science, ICT,
economics, business, e-commerce, environment, healthcare, life science are covered. The list
of topics spans all the areas of modern intelligent systems and computing.

The publications within “Advances in Intelligent Systems and Computing” are primarily
textbooks and proceedings of important conferences, symposia and congresses. They cover
significant recent developments in the field, both of a foundational and applicable character.
An important characteristic feature of the series is the short publication time and world-wide
distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156

Adam Grzech • Jerzy Świątek
Zofia Wilimowska • Leszek Borzemski
Editors

Information Systems
Architecture and Technology:
Proceedings of 37th
International Conference
on Information Systems
Architecture and
Technology—ISAT
2016—Part II

123

Editors
Adam Grzech
Department of Computer Science
Faculty of Computer Science
and Management

Wrocław University of Technology
Wrocław
Poland

Jerzy Świątek
Department of Computer Science
Faculty of Computer Science
and Management

Wrocław University of Technology
Wrocław
Poland

Zofia Wilimowska
Department of Management Systems
Faculty of Computer Science
and Management

Wrocław University of Technology
Wrocław
Poland

Leszek Borzemski
Department of IT and Management
Faculty of Computer Science
and Management

Wrocław University of Technology
Wrocław
Poland

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-3-319-46585-2 ISBN 978-3-319-46586-9 (eBook)
DOI 10.1007/978-3-319-46586-9

Library of Congress Control Number: 2016951674

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This four-volume set of books contains the proceedings of the 37th International
Conference on Information Systems Architecture and Technology, or ISAT 2016
for short, held during September 18–20, 2016 in Karpacz, Poland. The conference
was organized by the Department of Management Systems and the Department of
Computer Science, Wrocław University of Science and Technology, Poland.

The International Conference on Information Systems Architecture and
Technology has been organized by the Wrocław University of Science and
Technology since 1970s. The purpose of the ISAT conference is to discuss a state
of the art of the information systems concepts and applications as well as the
architectures and technologies supporting modern information systems.
Contemporary organizations seem to be knowledge-based organizations and in
connection with that information becomes the most important resource. Knowledge
management is the process through which organizations generate value from their
intellectual and knowledge-based assets. It is a management philosophy, which
combines good practice in purposeful information management with a culture of
organizational learning, in order to improve business performance. The computers
are able to collect and select the information can make some statistics, and so on,
but decisions have to make managers basing on their experience and taking into
consideration computer support. An improvement of decision-making process is
possible to be assured by analytical process supporting. Applying some analytical
techniques, such as computer simulation, expert systems, genetic algorithms, can
improve quality of managerial information.

One of the conference’s aims is also to consider an impact of the knowledge,
information, computing, and the communication managing technologies of the
organization functionality scope as well as the enterprise information systems
design, implementation and maintenance processes taking into the account various
methodological, technological, and technical aspects. It is also devoted to the
information systems concepts and applications supporting exchange of goods and
services by using different business models and exploiting opportunities offered by
Internet-based electronic business and commerce solutions.

v

ISAT is a forum for specialized disciplinary research, as well as on interdisci-
plinary studies that aims to present original contributions and to discuss different
subjects of today's information systems planning, designing, development, and
implementation. The event is addressed to the scientific community, people
involved in variety of topics related to information, management, computer and
communication systems, and to people involved in the development of business
information systems and business computer applications.

This year, we received more than 110 papers form about 10 countries. Each
paper was reviewed by at least two members of Program Committee or independent
reviewers. Only 86 best papers were selected for oral presentation and publication
in the 37th International Conference on Information Systems Architecture and
Technology proceedings.

The book is divided into four volumes which splits papers into areas: Managing
Complex Planning Environments, Systems Analysis and Modeling, Modeling of
financial and Investment decisions, Risk Management, Project Management,
Logistics and Market, Artificial Intelligence, Knowledge Based Management, Web
Systems, Computer Networks and Distributed Computing, High Performance
Computing, Cloud Computing, Multi-agent Systems, Internet of Things, Mobile
Systems, Service Oriented Architecture Systems, Knowledge Discovery and Data
Mining, Quality of Service, E-Business Systems.

We would like to thank the Program Committee and external reviewers, who
were essential for reviewing the papers and ensuring a high standard of the ISAT
2016 Conference and its proceedings. We thank the authors, presenters, and par-
ticipants of ISAT 2016, and without them the conference would not have taken
place. Finally, we thank the organizing team for their efforts during this and pre-
vious years which have led to a successful conclusion of the conference.

Wrocław, Poland Adam Grzech
September 2016 Jerzy Świątek

Zofia Wilimowska
Leszek Borzemski

vi Preface

ISAT 2016 Conference Organization

General Chair

Zofia Wilimowska, Poland

Program Co-Chairs

Zofia Wilimowska, Poland
Leszek Borzemski, Poland
Adam Grzech, Poland
Jerzy Świątek, Poland

Local Organizing Committee

Zofia Wilimowska, Chair
Leszek Borzemski, Vice-Chair
Adam Grzech, Vice-Chair
Jerzy Świątek, Vice-Chair
Arkadiusz Górski, Technical Editor, Conference Secretary
Anna Czarnecka, Technical Editor, Website Administrator
Agnieszka Parkitna, Conference Secretary
Anna Kamińska, Conference Secretary
Michał Kowalski, Technical Coordinator
Ziemowit Nowak, Website Support
Mariusz Fraś, Website Support

vii

International Program Committee

Witold Abramowicz, Poland
Dhiya Al-Jumeily, UK
Iosif Androulidakis, Greece
Patricia Anthony, New Zealand
Zbigniew Banaszak, Poland
Elena Benderskaya, Russia
Leszek Borzemski, Poland
Janos Botzheim, Japan
Patrice Boursier, France
Wojciech Cellary, Poland
Haruna Chiroma, Malaysia
Edward Chlebus, Poland
Gloria Crisan, Romania
Marilia Curado, Portugal
Zhaohong Deng, China
Małgorzata Dolińska, Poland
Ewa Dudek-Dyduch, Poland
El-Sayed El-Alfy, Saudi Arabia
Naoki Fukuta, Japan
Piotr Gawkowski, Poland
Manuel Graña, Spain
Wiesław Grudzewski, Poland
Adam Grzech, Poland
Katsuhiro Honda, Japan
Marian Hopej, Poland
Zbigniew Huzar, Poland
Natthakan Iam-On, Thailand
Biju Issac, UK
Arun Iyengar, USA
Jürgen Jasperneite, Germany
Janusz Kacprzyk, Poland
Henryk Kaproń, Poland
Yannis L. Karnavas, Greece
Ryszard Knosala, Poland
Zdzisław Kowalczuk, Poland
Binod Kumar, India
Jan Kwiatkowski, Poland
Antonio Latorre, Spain
Gang Li, Australia
José M. Merigó Lindahl, Chile
Jose M. Luna, Spain
Emilio Luque, Spain
Sofian Maabout, France

viii ISAT 2016 Conference Organization

Zygmunt Mazur, Poland
Pedro Medeiros, Portugal
Toshiro Minami, Japan
Marian Molasy, Poland
Zbigniew Nahorski, Poland
Kazumi Nakamatsu, Japan
Peter Nielsen, Denmark
Tadashi Nomoto, Japan
Cezary Orłowski, Poland
Sandeep Pachpande, India
Michele Pagano, Italy
George Papakostas, Greece
Zdzisław Papir, Poland
Marek Pawlak, Poland
Jan Platoš, Czech Republic
Tomasz Popławski, Poland
Edward Radosiński, Poland
Dolores I. Rexachs, Spain
José S. Reyes, Spain
Leszek Rutkowski, Poland
Gerald Schaefer, UK
Habib Shah, Malaysia
Jeng Shyang, Taiwan
Anna Sikora, Spain
Małgorzata Sterna, Poland
Janusz Stokłosa, Poland
Remo Suppi, Spain
Edward Szczerbicki, Australia
Jerzy Świątek, Poland
Eugeniusz Toczyłowski, Poland
Elpida Tzafestas, Greece
José R. Villar, Spain
Bay Vo, Vietnam
Hongzhi Wang, China
Leon S.I. Wang, Taiwan
Jan Werewka, Poland
Thomas Wielicki, USA
Zofia Wilimowska, Poland
Bernd Wolfinger, Germany
Józef Woźniak, Poland
Roman Wyrzykowski, Poland
Jaroslav Zendulka, Czech Republic
Bernard Ženko, Slovenia

ISAT 2016 Conference Organization ix

ISAT 2016 Reviewers

Patricia Anthony, New Zealand
Zbigniew Antoni Banaszak, Poland
Elena Benderskaya, Russian Federation
Grzegorz Bocewicz, Poland
Leszek Borzemski, Poland
Jerzy Brzeziński, Poland
Wojciech Cellary, Poland
Krzysztof Cetnarowicz, Poland
Haruna Chiroma, Malaysia
Witold Chmielarz, Poland
Grzegorz Chodak, Poland
Robert Ryszard Chodorek, Poland
Kazimierz Choroś, Poland
Andrzej Chydziński, Poland
Gloria Cerasela Crisan, Romania
Mariusz Czekała, Poland
Pedro D. Medeiros, Portugal
Aldona Dereń, Poland
Grzegorz Dobrowolski, Poland
Ewa Dudek-Dyduch, Poland
Mariusz Fraś, Poland
Naoki Fukuta, Japan
Krzysztof Goczyła, Poland
Arkadiusz Górski, Poland
Manuel Grana, Spain
Jerzy Grobelny, Poland
Adam Grzech, Poland
Bogumila Hnatkowska, Poland
Maciej Hojda, Poland
Zbigniew Huzar, Poland
Natthakan Iam-On, Thailand
Przemysław Ignaciuk, Poland
Jerzy Józefczyk, Poland
Krzysztof Juszczyszyn, Poland
Adam Kasperski, Poland
Włodzimierz Kasprzak, Poland
Grzegorz Kołaczek, Poland
Zdzislaw Kowalczuk, Poland
Andrzej Kozik, Poland
Dorota Kuchta, Poland
Lumír Kulhánek, Czech Republic

x ISAT 2016 Conference Organization

Halina Kwaśnicka, Poland
Jan Kwiatkowski, Poland
Wojciech Lorkiewicz, Poland
Jose M. Luna, Spain
Lech Madeyski, Poland
Zbigniew Malara, Poland
Rafał Michalski, Poland
Zbigniew Nahorski, Poland
Jerzy Nawrocki, Poland
Peter Nielsen, Denmark
Tadashi Nomoto, Japan
Andrzej Nowak, Poland
Krzysztof Nowicki, Poland
Cezary Orłowski, Poland
Donat Orski, Poland
Piotr Pacyna, Poland
Michele Pagano, Italy
Agnieszka Parkitna, Poland
Marek Pawlak, Poland
Willy Picard, Poland
Jan Platoš, Czech Republic
Łukasz Popławski, Poland
Dolores Rexachs, Spain
Radosław Rudek, Poland
Jarogniew Rykowski, Poland
José Santos, Spain
Danuta Seretna-Sałamaj, Poland
Anna Sikora, Poland
Maciej Stasiak, Poland
Malgorzata Sterna, Poland
Janusz Stokłosa, Poland
Grażyna Suchacka, Poland
Remo Suppi, Spain
Joanna Szczepańska, Poland
Edward Szczerbicki, Poland
Paweł Światek, Poland
Jerzy Świątek, Poland
Halina Tarasiuk, Poland
Kamila Urbańska, Poland
José R. Villar, Spain
Krzysztof Walczak, Poland
Zofia Wilimowska, Poland
Marek Wilimowski, Poland

ISAT 2016 Conference Organization xi

Bernd Wolfinger, Germany
Jozef Wożniak, Poland
Roman Wyrzykowski, Poland
Jaroslav Zendulka, Czech Republic
Bernard Ženko, Slovenia
Maciej Zięba, Poland

xii ISAT 2016 Conference Organization

Contents

Part I Embedded Systems Design and Applications

Modification of Concurrent Design of Hardware and Software
for Embedded Systems—A Synergistic Approach 3
Mieczysław Drabowski

Elastic FOPID+FIR Controller Design Using Hybrid
Population-Based Algorithm. 15
Krystian Łapa

Optimization of Read-Only Memory Program Models
Mapping into the FPGA Architecture . 27
Viktor Melnyk and Ivan Lopit

Simple Rule-Based Human Activity Detection
with Use of Mobile Phone Sensors . 39
Mariusz Fraś and Mikołaj Bednarz

Part II Systems Security Issues

Timed Analysis of Security Protocols . 53
Sabina Szymoniak, Olga Siedlecka-Lamch and Mirosław Kurkowski

Some Remarks on Security Protocols Verification Tools 65
Mirosław Kurkowski, Adam Kozakiewicz and Olga Siedlecka-Lamch

Algorithmic Complexity Vulnerability Analysis of a Stateful
Firewall . 77
Adam Czubak and Marcin Szymanek

Analysis of the Minutia Groups Base of Currents Algorithms
‘Pasterns’ Database. 99
Michał Szczepanik, Ireneusz J. Jóźwiak, Karol Stasiński
and Paweł Wichary

xiii

http://dx.doi.org/10.1007/978-3-319-46586-9_1
http://dx.doi.org/10.1007/978-3-319-46586-9_1
http://dx.doi.org/10.1007/978-3-319-46586-9_2
http://dx.doi.org/10.1007/978-3-319-46586-9_2
http://dx.doi.org/10.1007/978-3-319-46586-9_3
http://dx.doi.org/10.1007/978-3-319-46586-9_3
http://dx.doi.org/10.1007/978-3-319-46586-9_4
http://dx.doi.org/10.1007/978-3-319-46586-9_4
http://dx.doi.org/10.1007/978-3-319-46586-9_5
http://dx.doi.org/10.1007/978-3-319-46586-9_6
http://dx.doi.org/10.1007/978-3-319-46586-9_7
http://dx.doi.org/10.1007/978-3-319-46586-9_7
http://dx.doi.org/10.1007/978-3-319-46586-9_8
http://dx.doi.org/10.1007/978-3-319-46586-9_8

Part III Computing and Service Systems Architectures

Self-organizing Agents for Dynamic Network- and QoS-Aware
Service Composition in Cloud Computing . 111
Leila Helali and Zaki Brahmi

Distributed Computing Architecture on Epiphany MIMD
Accelerators . 125
Łukasz Faber

A Fail-Safe NVRAM Based Mechanism for Efficient Creation
and Recovery of Data Copies in Parallel MPI Applications 137
Artur Malinowski, Paweł Czarnul, Maciej Maciejewski
and Paweł Skowron

Towards Effective Allocation of Resources in Service-Oriented
Systems . 149
Łukasz Falas and Krzysztof Juszczyszyn

Part IV Communication Systems

Transient Processing Analysis in a Finite-Buffer Queueing Model
with Setup Times . 163
Wojciech M. Kempa and Dariusz Kurzyk

Analysis of Routing Protocols Metrics for Wireless Mesh Networks. . . . 177
Piotr Owczarek, Maciej Piechowiak and Piotr Zwierzykowski

Energy Efficient Dynamic Load Balancing in Multipath TCP
for Mobile Devices . 187
Michał Morawski and Przemysław Ignaciuk

Part V Data Processing Tools

Mutation Testing in Model Accuracy Assessment. 201
Joanna Strug

Generating Source Code Templates on the Basis of Unit Tests 213
Mariusz Nyznar and Dariusz Pałka

Decomposition and Reduction of Indexing Structures with Use
of the GPU Computations . 225
Damian Raczyński and Włodzimierz Stanisławski

Social-Media Data Analysis Using Tessera Framework
in the Hadoop Cluster Environment . 239
Martin Sarnovsky, Peter Butka and Jakub Paulina

Author Index . 253

xiv Contents

http://dx.doi.org/10.1007/978-3-319-46586-9_9
http://dx.doi.org/10.1007/978-3-319-46586-9_9
http://dx.doi.org/10.1007/978-3-319-46586-9_10
http://dx.doi.org/10.1007/978-3-319-46586-9_10
http://dx.doi.org/10.1007/978-3-319-46586-9_11
http://dx.doi.org/10.1007/978-3-319-46586-9_11
http://dx.doi.org/10.1007/978-3-319-46586-9_12
http://dx.doi.org/10.1007/978-3-319-46586-9_12
http://dx.doi.org/10.1007/978-3-319-46586-9_13
http://dx.doi.org/10.1007/978-3-319-46586-9_13
http://dx.doi.org/10.1007/978-3-319-46586-9_14
http://dx.doi.org/10.1007/978-3-319-46586-9_15
http://dx.doi.org/10.1007/978-3-319-46586-9_15
http://dx.doi.org/10.1007/978-3-319-46586-9_16
http://dx.doi.org/10.1007/978-3-319-46586-9_17
http://dx.doi.org/10.1007/978-3-319-46586-9_18
http://dx.doi.org/10.1007/978-3-319-46586-9_18
http://dx.doi.org/10.1007/978-3-319-46586-9_19
http://dx.doi.org/10.1007/978-3-319-46586-9_19

Part I
Embedded Systems Design and

Applications

Modification of Concurrent Design
of Hardware and Software for Embedded
Systems—A Synergistic Approach

Mieczysław Drabowski

Abstract The objective of this research is to present the concept of synergic
approach to the problem of system synthesis, i.e. a combined solution to task
scheduling and resource partition problems. The model and approach are new and
original suggestions allowing design of hardware and also software controlling the
performance of a computer system. This is an approach which we call a synergistic
concurrent synthesis (s-co-synthesis). This paper shows the results of selected
representative computational experiments into different instances of system this
synthesis problems which prove the correctness of the synergic design concept and
indicate methods solving these problems.

Keywords Co-design � Synergic � Scheduling � Allocation � Partition �
Optimization � Ant colony optimization � Branch and bounded

1 Introduction. Coherent Co-synthesis of Computer
Systems—Model and Method

The goal of high-level synthesis of computer systems is to find an optimum solution
satisfying the requirements and constraints enforced by the given specification of
the system. The following criteria of optimality are usually considered: costs of
system implementation, its operating speed, power consumption and dependability.
A specification describing a computer system may be provided as a set of inter-
active tasks (processes, functions). The partition of the functions between hardware
and software is the basic problem of synthesis. Such partition is significant, because
every computer system must be realized as result of hardware implementation for
its certain tasks. In the synthesis methods so far, the software and hardware parts
were developed separately and then connected in process the co-called co-synthesis,

M. Drabowski (&)
Faculty Electrical and Computer Engineering, Cracow University of Technology,
24 Warszawska Street, Krakow, Poland
e-mail: drabowski@pk.edu.pl

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_1

3

which increased the costs and decreased the quality and reliability of the final
product. The resources distribution is to specify, what hardware and software are in
system and to allocate theirs to specific tasks, before designing execution details.
The problems of tasks scheduling are one of the most significant issues occurring at
the procedure synthesis of operating systems responsible for controlling the dis-
tribution of tasks and resources in computer systems. The objective of this research
is to present the concept of synergic approach to the problem of system synthesis,
i.e. a combined solution to task scheduling and resource partition problems. The
model and approach are new and original proposals allowing design of hardware
and software for performing operations of the computer system. This is approach,
which we called a s-co-synthesis. This research shows the results selected of
computational experiments for different instances of system s-co-synthesis prob-
lems proving the correctness of the synergic synthesis concept and shows the
methods solving these problems. Due to the fact that synthesis problems and their
optimizations are NP-complete we suggest meta-heuristic method: Ant Colony
Optimization. S-co-synthesis of computer systems, as well as synergic design
methodology their structures and scheduling procedures may have practical
application in developing the tools for aided for rapid prototyping of such systems.
Classical process of hardware and software synthesis [1] of embedded computer
system consists of the following stages (Fig. 1):

• Specification of the designed system in terms of functional and behavioral—
requirement and constraint analysis. System description in a high-level lan-
guage, abstracting from the technical implementation of its modules.

• Resource partition—designing the best possible system structure.
• Task scheduling—designing the best possible system control.
• Allocation of the system functions (tasks) and resources (structure modules),

adaptation of structure system and control modules and their integration.

The measure for an efficient implementation of a computer system is the degree
of its modules utilization, minimized idle-time of its elements and maximized

System specification

Resource partition Task scheduling

Allocation of tasks and resources

Resulting system

Fig. 1 General classical
process of synthesis

4 M. Drabowski

parallel operation of its elements. A non-optimum system contains redundant
modules or modules that are excessively efficient in comparison with the needs
defined by the tasks which, consequently, increases the system cost. In high-level
synthesis, the optimization of the designed system costs, speed and power con-
sumption is usually an iterative process, requiring both changes in the architecture
and task scheduling. Therefore, an optimum system should be created as a com-
promise between the projects: system control and its hardware organization.

1.1 General Model for the Problem of System Synthesis

System synthesis is a multi-criteria optimization problem. The starting point for
constructing our approach to the issues of hardware and software synthesis is the
deterministic theory of task scheduling [2]. The theory may serve as a method-
ological basis for multiprocessor and multisource system synthesis. Accordingly,
the decomposition of general task scheduling model is suggested, adequate to the
problems of computer system synthesis. Moreover, we wish to specify the model of
task scheduling in a way suitable for finding optimum control methods (in terms of
certain criteria)—as well as optimum assignment of tasks—in terms of other criteria
—the division between universal and dedicated hardware components. Thus, we
shall examine the system:

X
¼ fR;T;Cg ð1Þ

where:

R—is the set of resources: hardware and software.
T—is the set of system tasks.
C—is the set of optimization criteria for the system’s behavior and structure.

Resources. Recourse set consists of P processors = {P1, P2, …, Pm} and addi-
tional resources A = {A1, A2, …, Ap}.

Tasks. Set of tasks consists of n tasks which are to be processed on a set of m
processors. A feasible schedule is optimal, if its length is minimal and it is
implemented using minimum resource cost and minimal power consumption. Each
task is defined by a set of parameters: resource requirements, execution time, ready
time and deadline, an attribute—preemptable or nonpreemptable. The tasks set may
contain defined precedence constraints represented by a digraph with nodes rep-
resenting tasks, and directed edges representing precedence constraints. If there is at
least one precedence constraint in a task set, we shall refer it to as a set of dependent
tasks; otherwise we call it a set of independent tasks. The tasks form all the system
functions, both outer practical and inner-operating, diagnostic and also transmission
processes.

Modification of Concurrent Design of Hardware and Software … 5

Criteria of optimality. As for the optimality criteria for the system to be
designed, we shall assume its minimum cost, maximum operating speed and
minimum power consumption [4]. We will apply multi-criteria optimization in
sense of Pareto. The solution is optimized in sense of Pareto if it is not possible to
find a better solution, regarding at least one criterion without deterioration in
accordance to other criteria [5]. The solution dominates other ones if all its features
are better. Pareto ranking of the solution is the number of solutions in a pool which
do not dominate it. The process of synthesis will produce a certain number of
non-dominated solutions. Although non-dominated solutions do not guarantee that
they are an optimal Pareto set of solutions; nevertheless, in case of a set of sub-
optimal solutions, they constitute one form of higher order optimal set in sense of
Pareto and they give, by the way, access to the problem shape of Pareto optimal set
of solutions. Let’s assume that we want to optimize a solution of two contradictory
requirements: the cost and power consumption Fig. 2. Synthesis of a system may
also provide a system operating control, create an interface and provide methods
and components for synchronization and communication between the tasks
implemented by software and hardware. To sum up, the high-level synthesis of
system, i.e. defining constraints and requirements of system, identifying its
resources and operations, defining control should be implemented in synergy and
be subject to multi-criteria optimization and verification during implementation.

1.2 Process of System Synergic Co-synthesis

Modeling the joint—synergic—search for the optimum task schedule and resource
partition of the designed system into hardware and software parts is fully justified.
We suggest the following schematic diagram of a coherent process of synthesis
computer system—Fig. 3. Simultaneous consideration of these problems may be
useful in implementing optimum solutions, e.g. the cheapest hardware structures.
Synergic approach enables also performing all the assigned tasks with the minimum

Fig. 2 Set of optimal solutions in sense of Pareto

6 M. Drabowski

schedule length. With such approach, the optimum task distribution is possible on
the universal and specialized (dedicated) hardware and defining resources with
maximum efficiency.

Assuming the initial values of resource set and task scheduling—initial resource
set and task schedule should be admissible (from the pool of resources and
schedules and from the historic data base remembered due to the synthesis of
systems similar to them in the past); i.e. they should meet all the requirements in a
non-optimum way. Task scheduling, resource partitioning and task and recourse
allocation—tasks of specification, resources currently selected and assigned to
certain tasks. Evaluating the operating speed, power consumption and system cost,
multi-criteria optimization. The evaluation should be followed by a modification of
the resource set, as a result of a new system partitioning into hardware and software

environment

Specification

system

Resources
 database

Set of tasks
(requirements and constraints)

Initialization of synthesis

estimation
of parameters

System operation analysis

time-optimal,
cost-optimal

Resources set
modifications

Task scheduling

Task and resource allocation
System performance analysis

Resource partition

Resulting system

Fig. 3 Synergic process of synthesis of computer system: par-synthesis

Modification of Concurrent Design of Hardware and Software … 7

parts or achievement of a satisfying result. Iterative calculations are executed till
satisfactory design results are obtained—i.e. optimal (or sub-optimal) system
structure and schedule. The designed system should be fast, cheap, worth low
power consumption and dependable.

1.3 Adaptation of Ant Colony Optimization Algorithm
to Solve the Problems of Par-Synthesis

The Ant Colony Optimization (ACO) algorithm [6] is a heuristics using the idea of
agents (here: ants) imitating their real behavior. Basing on specific information
(distance, amount of pheromone on the paths, etc.) ants evaluate the quality of paths
and choose between them with some random probability (the better path quality, the
higher probability it represents). Having walked the whole path from the source to
destination, ants learn from each other by leaving a layer of pheromone on the path.
Its amount depends on the quality of solution chosen by agent: the better solution,
the bigger amount of pheromone is being left. The pheromone is then “vapouring”
to enable the change of path chosen by ants and let them ignore the worse (more
distant from targets) paths, which they were walking earlier [7].

To adapt the ACO algorithm to synthesis problems, the following parameters
have been defined:

• Number of agents (ants) in the colony,
• Vapouring factor of pheromone (from the range (0; 1)).

The process of choosing these parameters is important and should consider that:

• For too big number of agents, the individual cycle of algorithm can last quite
long, and the values saved in the table (“levels of pheromone”) as a result of
addition will determine relatively weak solutions.

• On the other hand, when the number of agents is too small, most of paths will
not be covered and as a result, the best solution can long be uncovered.

The situation is similar for the vapouring factor:

• Too small value will cause that ants will quickly “forget” good solutions and as
a result it can quickly come to so called stagnation (the algorithm will stop at
one solution, which doesn’t have to be the best one).

• Too big value of this factor will make ants don’t stop analyze “weak” solutions;
furthermore, the new solutions may not be pushed, if time, which has passed
since the last solution found will be long enough (it is the values of pheromone
saved in the table will be too big).

The algorithm defines two more parameters, which let you balance between:

• a—the amount of pheromone on the path, and
• b—“quality” of the next step.

8 M. Drabowski

These parameters are chosen for specific task. This way, for parameters:

• a > b there is bigger influence on the choice of path, which is more often
exploited,

• a < b there is bigger influence on the choice of path, which offers better
solution,

• a = b there is balanced dependency between quality of the path and degree of its
exploitation,

• a = 0 there is a heuristics based only on the quality of passage between con-
secutive points (ignorance of the level of pheromone on the path),

• b = 0 there is a heuristics based only on the amount of pheromone (it is the
factor of path attendance),

• a = b = 0 we’ll get the algorithm making division evenly and independently of
• the amount of pheromone or the quality of solution.

Having given the set of neighborhood N of the given point i, amount of pher-
omone on the path h and the quality of passage from point i to point j as an element
of the table η you can present the probability of passage from point i to j as.
Formula evaluation of the quality of the next step in the ACO algorithm–

Formula 2.

Pk
y
:: ¼

sij½ �a gij½ �bP
l2Nk

l

½sij�a½gij�b
whenj 2 Nk

i

0 else

8><
>:

ð2Þ

In the approach presented here, the ACO algorithm uses agents to find three
pieces of information:

• the best/the most beneficial division of tasks between processors,
• the best sequence of tasks,
• searching for the best possible solution for the given distribution.

Agents (ants) are searching for the solutions which are the collection resulting
from the first two targets (they give the unique solution as a result). After
scheduling, agents fill in two tables: two-dimensional table representing allocation
of task to the given processor and one-dimensional table representing the sequence
of running the tasks. The computational complexity of single agent process is
polynomial and depends on the number of tasks, resources and times of tasks
beginning. After initiating the tables (of allocation and sequence) for each agent, the
algorithm starts the above cycle, after which the evaluation of solutions takes place.
Having completed the particular number of cycles, the parameters are being
updated and algorithm continues working:

1. initiation of tables of tasks running sequence and allocation of tasks to
resources,

2. completing the cycle of analysis for each agent, evaluation of the best solution
found in current cycle,

Modification of Concurrent Design of Hardware and Software … 9

3. for each agent—basing on the best solution—updating the tables of tasks run-
ning sequence and allocation of tasks to resources,

4. is it the last cycle? (if not go to 2),
5. optimization/customization of system parameters.

2 Customization of the Branch and Bound
Greedy Algorithm to Synthesis Problems Solving

Branch and Bound (B&B) algorithm [8] is a greedy algorithm browsing the set of
solutions and “pruning” these branches, which give worse solutions than the best
solution already found. This kind of approach often significantly reduces the
number of solutions, which must be considered. However in the worst case sce-
nario, “pruning” the branches is impossible and as a result, the B&B algorithm
analyzes the complete search-tree. Both forms (DFS and BFS) of B&B algorithm
were used for synthesis. It let us comprehend the problem of analysis of three
different kinds of optimization (cost, power, time) without discrediting any of the
problems. B&B algorithm investigates the problem by: choice of the task, definition
of initial time to which you can schedule the task, choice of processor on which the
task will be allocated. Because allocating the chosen task in the first available time
unit or on the first available processor is not always the best idea, all available time
units and processors are being considered. As a result, calculative complexity of
algorithm changes exponentially when new tasks are added or polynomial after
addition of new processors. Although B&B algorithm operation process is rela-
tively simple, the number of solutions, which must be examined, is huge.

3 Calculative Experiments

Because one algorithm creates unlimited cycle and the other one takes a very long
time to finish in many cases, the results given in the tables present state of the
system after not more than three minutes of analysis. Depending on the solution
criterion, there were used both forms of B&B—DFS and BFS—for the algorithm to
be able to find a good solution in time.

Each solution given by Ant Colony algorithm will be graded on the basis of
solutions found by Branch and Bound (B&B) algorithm. Formula for the quality of
obtained solution is following—Formula 3. The final grade is influenced only by
these parameters, which were being optimized by algorithms: cost, power and time
of scheduling [4, 5]. The total quality of proposed system includes all three
parameters (scheduling time, cost and power consumed by the system):

10 M. Drabowski

• the quality higher than 100 % means that ACO algorithm has found better
solution than B&B,

• the quality equal 100 % means that both algorithms have found equally good
solutions,

• the quality less than 100 % means that B&B algorithm has found better
solution.

quality ¼ 100%
1

criterions

Xcriterions

criterion¼1

resultB&B

resultACO
ð3Þ

where:
criterions—number of criteria, resultsB&B—result obtained in the algorithm

B&B etc.
The correctness of scheduling proposed byACO andB&B algorithmswas verified

on the basis of the following examples. The algorithms were given the following
resources: processors (general Processors and dedicated (Application-Specific
Integrated Circuit)—specifications in Table 1, operating memory, mass storage.

3.1 Optimization of Scheduling Length and System Cost

Optimizing two aspects of system is much more difficult for the algorithms than
minimizing a single parameter.

Because Pareto optimization in this case limits significantly our possibilities of
finding the best system—as a criterion of the choice we can take the quality of
obtained solution. Time, which has passed until solution was found and the
parameters of the target system are presented in the Table 2. In the multi-objective
optimization it is clear that ACO algorithm exceeds the greedy algorithm B&B in
relation to the quality of solutions: solutions proposed by ACO algorithm are better

Table 1 Specifications processors

Id Computational
power

Consumption power
(active)

Consumption power
(non active)

Processor 1 1 100 10

Processor 2 2 120 12

Processor 3 4 120 15

Processor 4 8 200 20

ASIC 1 1 80 8

ASIC 2 2 110 11

ASIC 3 4 150 15

ASIC 4 8 180 18

Modification of Concurrent Design of Hardware and Software … 11

than the ones proposed by B&B algorithm even better about 30 %. Apart from
better quality of the solution itself proposed by ACO algorithm, we should notice
that the total quality of the system is also very high.

3.2 Power Consumption and System Cost Optimization

This is another example of joint optimization, where we look for the cheapest and
the most efficient system.

Time, which has passed until solution was found and the parameters of the
system are presented in the Table 3. This example illustrates that ACO algorithm

Table 2 Parameters of the target system (optimization 3.1)

Number of
tasks

Ant colony Branch and bound Quality

Time Length Cost Power Time Length Cost Power %

5 11.1 12 9.8 912 0.5 6.0 30.5 4173 116.6

10 12.8 15 11.7 1338 0.2 7.9 30.51 2001 126.4

15 14.7 11 13.7 2953 0.5 4.5 29.11 3094 131.3

20 59.0 10.0 15.0 4007 0.4 6.0 31.09 4173 118.3

25 60.1 9.8 20.5 5054 0.1 7.9 32.11 5282 124.5

30 12.5 11.3 19.0 6057 0.9 10.1 29.78 6396 125,5

35 16.2 12.5 19.2 7004 0.8 11.3 30.51 7448 125.4

40 15.5 15.0 19.0 8010 0,6 13.5 30.7 8609 125.3

45 42.4 16.6 18.7 9011 0.5 15.1 29.9 9614 125.7

50 26.5 18.1 21.3 10,024 0.4 16.2 31.4 10,693 126.5

55 34.5 20.1 22.1 11,009 0.4 18.1 30.6 11,772 125.3

60 44.1 21.4 19.6 12,003 0.2 20.2 30.51 12,872 127.2

Table 3 Parameters of the target system (optimization 3.2)

Number of tasks Ant colony Branch and bound Quality

Time Length Cost Power Time Length Cost Power %

5 0.3 20.0 2.1 1600 0.5 20.1 2.0 1580 103

10 0.5 30.1 2.2 2000 0.2 30.1 2.0 2001 100.4

15 3.5 30.09 2.0 3000 0.5 4.5 2.11 3094 72.3

20 4.5 18.3 5.2 3780 0.4 6.0 3.09 3799 71.8

25 10.1 22.2 5.1 4732 0.1 7.9 2.11 5282 72.5

30 12.5 27.2 5.5 5670 0.9 10.1 2.78 6396 71.5

35 12.1 21.2 10.1 6677 0.8 11.3 3.51 7448 62.4

40 27.3 28.1 10.9 7869 0.6 13.5 3.7 8609 60.3

45 16.5 33.2 11.7 8835 0.5 15.1 2.9 9614 60.9

50 57.5 32.1 10.9 9673 0.4 16.2 3.4 10,693 60.7

55 43.5 38.1 10.5 10,766 0.4 18.1 3.6 11,772 61.3

60 55.5 37.3 11.5 11,822 0.2 20.2 3.51 12,872 59.2

12 M. Drabowski

isn’t better than greedy algorithms for all kinds of problems. When the number of
tasks grows, the quality of solution decreases more and more, but you cannot say
the same about the quality of system; the ACO algorithm shows, that at the higher
expenditure you can obtain solution which is economical and fast at the same time.

4 Conclusion

Basing on the above research you may say, that the ACO algorithm is better
suitable for both one and multi-objective analyses. The systems obtained (as a result
of ACO algorithm) even in the worst case were only insignificantly worse than
solutions obtained by B&B algorithm. Furthermore, the use of s-co-synthesis
method significantly improved the quality of obtained solutions. In the case of
multi-objective synthesis, heuristic algorithm gave comparable results for optimized
parameters and at the same time, the final grade of the systems it proposed was
much better. The calculative experiments prove the superiority of synergic design
over the “old” synthesis and heuristic algorithms over the greedy ones. The
heuristic algorithms handle the NP-complete problems [3] much better than the
greedy algorithms. It is because they approach the problem in a way that let them
pre-analyze the good solutions and immediately start the optimization of bigger
number of parameters in the consecutive steps. The solution suggested in the paper
may be applied in supporting computer system prototyping, for dependable and
fault-tolerant multiprocessors systems and grid system, too. The model presented
for s-co-synthesis and the experimental results allow a further research in this area.
For example, other heuristics may be applied. One may also specify additional
optimality criteria. The above issues are now studied.

References

1. Aggoune, R.: Minimizing the makespan for the flow shop scheduling problem with availability
constraints. Eur. J. Oper. Res. 153, 534–543 (2004)

2. Gajski, D.: Principles of Digital Design. Prentice Hall, Upper Saddle River, NJ (1997)
3. Coffman, Jr., E.G.: Computer and Job-shop scheduling theory. Wiley, New York (1976)
4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, San Francisko (1979)
5. Dick, R.P., Jha, N.K.: COWLS: hardware-software co-synthesis of distributed wireless

low-power client-server systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(1),
2–16 (2004)

6. Montgomery, J., Fayad, C., Petrovic, S.: Solution representation for job shop scheduling
problems in ant colony optimization. LNCS 4150, 484–491 (2006)

7. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artif.
Life 5(2), 137–172 (1999)

8. Mitten, L.G.: Branch-and-bound methods: general formulation and properties. Oper. Res. 18,
24–34 (1970)

Modification of Concurrent Design of Hardware and Software … 13

Elastic FOPID+FIR Controller Design
Using Hybrid Population-Based Algorithm

Krystian Łapa

Abstract In this paper a new method for elastic H∞-optimal fractional order PID
with FIR filters (FOPID + FIR) controller design using hybrid population-based
algorithm is presented. With the use of a population-based algorithm an initial
structure of the controller is adjusted in a such way that the designed controller
fulfills the control objective in the best way possible. Moreover, in the control
process the controller feedback signals’ noise and discretization were taken into
consideration. The goal of this paper is to show the influence of using FIR filters
and FOPID controller structure on accuracy and to present possibilities of designing
elastic controller structure using proposed hybrid population-based algorithm. The
proposed method was tested on typical control problem.

Keywords PID controller FOPID controller � FIR filter Hybrid algorithms

1 Introduction

The problem of designing control systems is well known in the literature [1]. This is
due to the fact that the quality of work of individual parts or even of entire machines
mainly depends on the characteristics of the used controller. The proper controller
design should take following elements under consideration: indication of measur-
able signals, selection of the controller structure, tuning of controller parameters
and implementation in target hardware platform with fulfillment of requirements of
real-time work. Usually these steps are performed in the presented order.

In the literature there are well-known controller structures such as: controllers
structures based on the combination of linear correction terms, e.g. PID controllers
(optionally with gain scheduling algorithm, with feed-forward path or with addi-
tional low-pass filters [2]), state feedback controllers, nonlinear controllers based on

K. Łapa (&)
Institute of Computational Intelligence, Częstochowa University of Technology,
Częstochowa, Poland
e-mail: krystian.lapa@iisi.pcz.pl

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_2

15

computational intelligence and hybrid controllers, in which are combined approa-
ches from other groups. However, in practice PID controllers are used the most
often [1]. It is a result of widespread knowledge of how they work and their
relatively simple implementation in a microprocessor-based control systems. An
extension of PID controllers are, among the others, H∞-optimal (in these methods
the problem of control is defined as the optimal control task, and then the controller,
which may perform such a task, is designed) Fractional Order PID (FOPID) con-
trollers. These controllers improve responses with respect to rational-type con-
trollers such as PID [4].

The problems associated with designing of the controller apply, among the
others, to: difficult and time consuming design process, modification of the structure
to support more than one feedback signal (typical PID controllers consist of single
PID block for processing a single controller signal), proper selection of the structure
parameters, noise reduction, not taking into considering discretization of the
feedback signals, etc.

Among the experimental methods for the design of control systems, methods
based on artificial intelligence [3] and in particular the methods of evolution [5] are
becoming more common. The methods of evolution are based on populations of the
solutions, where each solution can represent the structure and the parameters of the
single controller [8]. During evolution the population can improve (better solutions
are being find) by modifying or mixing system structure and parameters between
solutions. This process is usually based on fitness function value calculated for each
solution.

In this paper a new method for elastic H∞-optimal fractional order PID with FIR
filters (FOPID + FIR) controller design using hybrid population-based algorithm is
presented. Low-pass finite-impulse-response filters (FIR) with programmable
characteristics for each of the measurement signals are used in the feedback
loop. These filters are designed to suppress interference that could disrupt the work
of the control system. Due to that it is possible to find the structure and parameters
of the controller, which makes it immune to this type of interference. From the other
hand, using proposed elastic FOPID controller instead of standard PID controller
allow to handle higher order processes by performing optimization with various
integral performance indices. In the design process an universal initial structure is
proposed, which in the process of evolution will be adjusted in a way that the
designed controller fulfills the control objective in the best way possible. This
elastic structure consists of FOPID functional blocks and FIR filters, both with
programmable structures, connections and parameters. Due to this approach the
design of the control system can be regarded as one continuous process, unlike the
commonly used method of trial and error. As a result, the process of controller
design is performed easier and faster. Details of the proposed method are described
in Sect. 3.

This paper is organized into 5 sections. Section 2 contains a description of the
elastic FOPID + FIR controller structure, while Sect. 3 shows the proposed evo-
lutionary algorithm used to design control system. Simulation results are presented
in Sect. 4. Conclusions are drawn in Sect. 5.

16 K. Łapa

2 Description of Proposed FOPID + FIR Controller

Proposed controller is based on elastic structure, which among the others, depends
from number of controller input signals fbi, i ¼ 1; . . .; FB, FB stands for number of
feedback signals (see Fig. 1). In proposed structure assumptions that fb1 stands for
desired value of fb2 and the rest of the feedback signals stand for additional
measurable signals are stated. Moreover, FOPID elements and FIR filters and their
inner elements can be dynamically switched off or on by changing controller
parameters. Due to that, the design of the controller should not only consider
selecting the real parameters of the controller but also integer parameters encoding
its structure. The typical FOPID control block consist of five elements: proportional
P, integral I and k and differential D and µ and its output is calculated as follows:

uðtÞ ¼ KPeðtÞþKI
Z t

0

eðtÞdt
0
@

1
A

�k

þKD deðtÞ
dt

� �l

; ð1Þ

where KP, KI and KD stand respectively for parameters of P, I and D elements of
control block, k and µ are additional degrees of freedom in a comparison to typical
PID controller structure, e(t) stands for input of FOPID block. These parameters
allow to handle higher order processes by performing optimization with various
integral performance indices. The proposed elastic FOPID structure (noted as
Control Block CB—see Fig. 2a) allows for additional reduction of P, I, D, k and µ
elements by using integer values CP, CI, CD, Ck, Cl and reduction of whole control
block by using integer value CCB. The reduction takes place if the integer values are
set to 0. Then, the output of the proposed FOPID takes the following form:

u tð Þ ¼ CPKPe tð ÞþCIKI
Rt
0
e tð Þdt

� �kaðtÞ
þCDKD de tð Þ

dt

� �kbðtÞ
for CCB ¼ 1

eðtÞ for CCB ¼ 0

8><
>: ; ð2Þ

where kaðtÞ stands for�k when Ck ¼ 1 and 1 when Ck ¼ 0, kbðtÞ stands for l when
Cl ¼ 1 and 1 when Cl ¼ 0 (if Ck ¼ 0 and Cl ¼ 0 proposed FOPID controller work

fb2()t fbFB()t...

FIR...

...

...

fb1()t
+ +

...
CB

...

...
+ +

++
u t()

fb2()t fb3()t

fb1()t
+ + + +

++

FIR
FIR FIR

CB

CB

CB

CB
CB1

CB2

CB3

CB4

CB5

(a) (b)

u t()

Fig. 1 Proposed controller structure: a with any number of FB feedback signals, b with 3
feedback signals

Elastic FOPID+FIR Controller Design Using Hybrid … 17

as typical PID controller). The proposed FIR filters used in controller are based on
typical FIR filters (see Fig. 2b) with using an additional integer parameter CF

standing for reduction of the filter. Thus, the output of the proposed filter takes the
following form:

u tð Þ ¼
PS
s¼1

bse t � s� 1ð Þ for CF ¼ 1

eðtÞ for CF ¼ 0

8<
: ; ð3Þ

where eðtÞ stands for input value, eðt � iÞ stands for input value from t � i time
step, bs stands for weights of filter, s ¼ 1; . . .; S, S stands for length of the filter (S
has to be an odd number). The weights of the filter are calculated using filter
parameters: transition frequency ft and length of the filter S, which are a part of the
elastic structure of the controller and should be selected by learning algorithm as
well. The weights values bs are calculated as follows:

bs ¼
sin 2pft s�1

2ðS�1Þj jð Þ
p s�1

2ðS�1Þj j for s ¼ 1
2 ðS� 1Þ

2ft for s 6¼ 1
2 ðS� 1Þ

8<
: : ð4Þ

The proposed controller structure is characterized by the following advantages:
(a) possibilities of processing any number of feedback signals fbi, (b) it uses cascade
control blocks configuration which allows us to obtain good accuracy of the con-
troller, (c) the structure is dynamic, each CB block elements (P, I, D, k, µ) and filter
FIR can be switched off or on, (d) it has great capabilities of learning due to many
selectable parameters (e) it is able to minimize the impact of feedback signals noise
by use of the FIR filters.

3 Description of the Proposed Hybrid Algorithm

In our paper a hybrid evolutionary algorithm is used to select the proposed con-
troller parameters and structure. It is based on an ensemble of genetic algorithm
(to select controller structure) and evolutionary strategy (to select controller

e
t () u
t ()

CB

e
t()

FIR

u
t()

++
+

...

...
b1 b2 bS

z-1 z-1

+ + + +

C P

C I

C D

C CB

ka t()

 kb t()

C F

K e t()

()0
tI ∫
()D de t dt

P

pow(,)K e t dt

K pow(,)

(a) (b)

Fig. 2 Structure of: a proposed elastic control block CB based on FOPID, b proposed elastic filter
FIR, z−1 stands for values from previous time step

18 K. Łapa

parameters). This ensemble was proposed in our previous work and it achieved
good results. In this paper we propose a number of improvements that may allow us
to obtain better performance. These improvements consider, most of all,
iteration-dependent parameters of learning process and their description can be
found in detail in the current section.

3.1 Encoding of the Controller Parameters

The parameters and the structure of the proposed controller are encoded in chro-
mosome Xch defined as follows:

Xch ¼ Xpar
ch ;X

str
ch

� �
; ð5Þ

where part Xpar
ch encodes the real parameters of the controller and part Xstr

ch encodes
integer parameters of the controller. The part Xpar

ch is defined as follows:

Xpar
ch ¼

KP
1 ;K

I
1;K

D
1 ; k1; l1. . .;

KP
M ;K

I
M ;K

D
M ; kM ; lM

ft1; . . .ftR

8><
>:

9>=
>; ¼ Xpar

ch;1; . . .;X
par
ch;Lpar

n o
; ð6Þ

where KP
m 2 ½0; 20�;KI

m 2 ½0; 50�;KD
m 2 ½0; 5�; km 2 ½0:5; 2:0�; lm 2 ½0:5; 2:0�,

stand for CB P, I, D, k, µ parameters, m ¼ 1; . . .; M, M stands for number of CB
blocks, ftr 2 ½0:1; 0:5� stands for transition frequency, r ¼ 1; . . .; R, R ¼ FB� 1
stands for number of filters, Lpar ¼ 5MþR stands for number of genes in part Xpar

ch .
The part Xstr

ch is defined as follows:

Xstr
ch ¼

CP
1 ;C

I
1;C

D
1 ;C

k
1 ;C

l
1 ; . . .;

CP
M ;C

I
M ;C

D
M ;C

k
M ;C

l
M ;

CCB
1 ; . . .;CCB

M ;CF
1 ; . . .;C

F
R

F1; . . .;FR

8>>>><
>>>>:

9>>>>=
>>>>;

¼ Xstr
ch; 1; . . .;X

str
ch; Lstr

n o
; ð7Þ

where CP
m 2 f0; 1g;CI

m 2 f0; 1g;CD
m 2 f0; 1g;Ck

m 2 f0; 1g;Cl
m 2 f0; 1g stand

for activation of CB P, I, D, k, µ elements (values equal to 1 stands for active
element), CCB

m 2 f0; 1g stands for activation of mth control block, CF
r 2 f0; 1g

stands for activation of rth filter (values equal to 1 stands for active element),
Fr 2 f0; . . .; 9g stands for length of the filter (real length of the filter is calculated as
Sr ¼ 5þ 2Fr to obtain at least 5-size long filters), Lstr ¼ 6Mþ 2R stands for
number of genes in part Xstr

ch .

Elastic FOPID+FIR Controller Design Using Hybrid … 19

3.2 Proposed Algorithm Description

Proposed algorithm is based on new iteration-dependent mutation and crossover
from genetic algorithm and evolutionary strategy. The algorithm works according
to the following steps

• Step 1. Initialization. In this step the value iteration is set to 0. Next the N
individuals (each individual Xch represents controller encoded by chromosome
(5) are randomly initialized and stored in population P. The initialization of
individuals’ genes is realized as follows: Xpar

ch; g ¼ UgðXpar
ch; g;

�Xpar
ch; gÞ, where

Ugða; bÞ returns a random real value from the range ½a; b�, Xpar
ch; g and �Xpar

ch; g stand

respectively for minims and maxims values of genes Xpar
ch;g, g ¼ 1; . . .; Lpar,

Xstr
ch; h ¼ UhðXstr

ch; h;
�Xstr
ch; hÞ, where Uhða; bÞ returns random integer value from the

range ½a; b�. Xstr
ch; h and �Xstr

ch;h stand respectively for minims and maxims values of
genes Xstr

ch; h,h ¼ 1; . . .; Lstr.
• Step 2. Evaluation. In this step each individual is evaluated by fitness function

defined as follows:

ff Xchð Þ ¼
XF
f¼1

wf � ffcomf Xchð Þ; ð8Þ

where ffcomf Xchð Þ stands for fitness function components which depend from
simulation problem (see Sect. 4), wf stands for weights of components,
f ¼ 1; . . .; F, F stands for number of fitness function components.

• Step 3. Probabilities calculation. In this step the value iteration is incremented.
Next, the dynamic parameters for mutation and crossover are calculated as
follows: individual mutation probability p1 ¼ 0:10þ 0:20 � a, gene mutation
range p2 ¼ 0:05þ 0:20 � a, gene mutation probability p3 ¼ 0:01þ 0:10 � a, a
stands for iteration-dependent value calculated as:

a ¼ 1� iteration
iterationmax : ð9Þ

where iterationmax stands for maximum number of algorithm iterations. The
purpose of iteration dependent probabilities is to increase the possibilities of
accurate exploration of space exploration by decreasing influence and range of
mutation.

• Step 4. Reproduction. In this step a N new individuals are created and stored in
population P0. For each individual the condition Ugð0; 1Þ\pc is checked
(where pc 2 ð0; 1Þ stands for crossover probability). If this condition is met,
new individual is created as a result of crossover between two individuals
selected by the roulette wheel method [7] from population P. Otherwise, the
individual is created as a result of cloning and mutating of one individual, which

20 K. Łapa

is also selected by the roulette wheel method [7] from population P. The
mutation is performed according to Eq. (11) (see Step 5). The genes obtained
from crossover are calculated as:

Xpar
ch; g ¼

XA; par
ch; g for Ug 0; 1ð Þ\0:5

XB; par
ch; g for Ug 0; 1ð Þ� 0:5

and
and

Ug 0; 1ð Þ\p3
Ug 0; 1ð Þ\p3

XA; par
ch; g þUg 0; 1ð Þ � XB; par

ch; g � XA; par
ch;g

� �
for Ug 0; 1ð Þ� p3

8>><
>>:

Xstr
ch; h ¼

XA; str
ch; h for Ug 0; 1ð Þ\0:5

XB; str
ch; h for Ug 0; 1ð Þ� 0:5

and
and

Ug 0; 1ð Þ\p3
Ug 0; 1ð Þ\p3

XA; str
ch;h þUh XA; str

ch; h ;X
B; str
ch; h

� �
for Ug 0; 1ð Þ� p3

8>><
>>:

;

8>>>>>>>>>><
>>>>>>>>>>:

ð10Þ

where XA; str=par
ch; g=h and XB; str=par

ch; g=h stand respectively for genes from the first and

second parent. The purpose of Eq. (10) is to increase chance to select gene
values directly from parents or in the other case to select gene values between
gene values of parents (if condition Ug 0; 1ð Þ� p3 is met).

• Step 5. Mutation. In this step genes of individuals from population P0 are
mutated. For each individual the condition Ugð0; 1Þ\pm is checked (where pm
stands for mutation probability). If this condition is met, genes of Xch are
modified as follows:

Xpar
ch;g ¼

Xpar
ch; g þUg �1; 1ð Þ � p2 � �Xpar

ch; g � Xpar
ch; g

� �
for Ug 0; 1ð Þ\p1

Xpar
ch; g for Ug 0; 1ð Þ� p1

(

Xstr
ch; h ¼

Xstr
ch; h þUh �1; 1ð Þ for Ug 0; 1ð Þ\p3

Xstr
ch; h for Ug 0; 1ð Þ� p3

�
8>>><
>>>:

:

ð11Þ

• Step 6. Repair. This step purpose is to repair (cut to specified ranged) gene
values of individuals from population P0, which is executed as follows:

Xpar
ch; g ¼ min �Xpar

ch; g;max Xpar
ch; g;X

par
ch; g

� �� �
Xstr
ch; h ¼ min �Xstr

ch; h;max Xstr
ch; h;X

str
ch; h

� �� �
8<
: : ð12Þ

• Step 7. Evaluation. In this step all individuals from population P0 are evaluated
according to fitness function (8).

• Step 8. Merging. This step aim is to select the best N individuals from merged
populations P and P0. Selected individuals replace population P.

• Step 9. Stopping condition. In this step the stop condition is checked

Elastic FOPID+FIR Controller Design Using Hybrid … 21

• (iteration� iterationmax). If this condition is met, algorithm stops and the best
individual according to the fitness function value is presented. Otherwise, the
algorithm goes back to Step 3.

4 Simulation Results

In our simulations a problem of designing controller structure and tuning param-
eters for double spring-mass-damp object was considered (see Fig. 3). More details
about this model can be found in our previous paper [9]. Object parameters were set
as follows: spring constant k ¼ 10N/m, coefficient of friction l ¼ 0:5, masses
m1 ¼ m2 ¼ 0:2 kg. Initial values of: s1; v1; s2; v2 (s stands for position, v stands for
velocity) were set to zero, and s� is a desired position of mass m1 (see Fig. 3),
simulation length Tall was set to 10 s, output signal of the controller was limited to
the range u 2 �2; þ 2ð Þ, quantization resolution for the output signal of the con-
troller and for the position sensor for s1 and s2 was set to 8 bit, noise level of
feedback signals was set to 1 %, time step in the simulation was equal to
T ¼ 0:1ms, while interval between subsequent controller activations were set to 20
simulation steps, number of model iteration is calculated as Z ¼ Tall=T . The
feedback signals for the controller was chosen as: fb1 ¼ s�, fb2 ¼ s1, fb3 ¼ s2.

4.1 Problem Evaluation

For problem under consideration a trapezoidal shape of desired signal s� was used
(see Fig. 4). Moreover, a following fitness function components (8) were used
(additionally, a settling time can be included in a further research):

• Complexity of the controller:

ffcom1 Xchð Þ ¼ 1
Lstr

XLstr
g¼1

Xstr
ch; g; ð13Þ

• RMSE standing for accuracy of the controlled object:

Fig. 3 Simulated
spring-mass-damp object

22 K. Łapa

ffcom2 Xchð Þ ¼ RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Z
�
XZ
i¼1

e2i

vuut ¼
ffi
1
Z
�
XZ
i¼1

s�i � s1ið Þ2
vuut ; ð14Þ

• Overshooting of the controller:

ffcom3 Xchð Þ ¼ max
i¼1; ...; Z

s1i
� �

: ð15Þ

• Oscillations of the output of the controller:

ffcom4 Xchð Þ¼
XO�1

o¼1

ffi
ro � roþ 1j j

p
; ð16Þ

where ro stands for each local minims and maxims of the output values of the
controller (minims and maxims were selected with ignoring noise influence on the
signals), o ¼ 1; . . .; O, O stands for number of minims and maxims of oscillations.
The aim of the Eq. (16) is to promote solutions with low number of low height
oscillations of the controller.

4.2 Simulation Parameters

In the simulations the following values of parameters were set experimentally:
fitness function components weights w1 ¼ 0:1, w2 ¼ 10, w3 ¼ 0:01, w4 ¼ 0:1,
crossover probability pc ¼ 0:75, mutation probability pm ¼ 0:75, number of algo-
rithm iterations iterationmax ¼ 1000, number of individuals in populations
N ¼ 100. In the simulations four cases presented in Table 1 were tested to show the
effectiveness of the proposed controller and learning algorithm (case 1 corresponds
to solution presented in [9]). For each case simulations were repeat 100 times and
results were averaged.

4.3 Obtained Results

The averaged simulations results are presented in Table 2, the best simulations
results are presented in Table 3, Figs. 4 and 5.

Table 1 Simulation cases

Case Controller type Filters k;l always active

1 PID (FOPID with k ¼ �1; l ¼ 1) no no

2 PID (FOPID + FIR with k ¼ �1; l ¼ 1) yes no

3 proposed elastic FOPID + FIR yes no

4 proposed elastic FOPID + FIR yes yes

Elastic FOPID+FIR Controller Design Using Hybrid … 23

Table 2 Averaged simulation results

Case ff(�) ffcom1(�)
complexity

ffcom2(�)
accuracy

ffcom3(�)
oscillations

ffcom4(�)
overshooting

1 3.628 0.437 0.162 31.743 1.190

2 3.080 0.502 0.144 13.767 1.160
3 2.382 0.640 0.114 14.468 1.195

4 2.373 0.664 0.107 27.651 1.221

Table 3 Best simulation results

Case ff(�) ffcom1(�)
complexity

ffcom2(�)
accuracy

ffcom3(�)
oscillations

ffcom4(�)
overshooting

1 2.438 0.467 0.103 28.572 1.294

2 1.807 0.533 0.076 21.885 1.157

3 1.705 0.680 0.074 26.230 1.155

4 1.307 0.840 0.059 19.689 1.062

0 2 4
t
6 8 10

1.5

-0.5

s1

0 2 4
t
6 8 10

0.5

0.0

|s
-s

 |
*

1

0 2 4
t
6 8 10

2.0

-2.0

u

0 2 4
t
6 8 10

1.5

-0.5

s1

0 2 4
t
6 8 10

0.5

0.0
0 2 4

t
6 8 10

2.0

-2.0

u

0 2 4
t
6 8 10

1.5

-0.5
0 2 4

t
6 8 10

0.5

0
0 2 4

t
6 8 10

2

-2

u

0 2 4
t
6 8 10

1.5

-0.5
0 2 4

t
6 8 10

0.5

0
0 2 4

t
6 8 10

2

-2

u

s1

s1

(a)

(b)

(c)

(d)

|s
-s

 |
*

1
|s

-s
 |

*
1

|s
-s

 |
*

1

Fig. 4 Best simulations results for: a case 1, b case 2, c case 3, d case 4. s1 stands for position of
the mass m1, js� � s1j stands for difference with desired position of mass m1, u stands for output of
the controller

24 K. Łapa

4.4 Simulation Results

Conclusions from the simulation are as follows: (a) adding filters allowed for reduce
impact of feedback signals noise (see Fig. 4a), Fig. 4b) and ffð�Þ values in Table 2);
(b) proposed elastic FOPID structure allowed for increase controller accuracy by
around 20 % with increase of controller complexity by around 10 % (see Fig. 4b,
c) and ffcom1ð�Þ, ffcom2ð�Þ values in Table 2); (c) using static active k, µ elements
in FOPID structure allowed for next 5 % improvement in controller accuracy with
slighter increase in controller complexity (see Fig. 4c, d) and ffcom1ð�Þ, ffcom2ð�Þ
values in Table 2); (d) the best obtained accuracy of the controller (see Table 3—
case 4) is better than accuracy obtained by hybrid multi-population algorithms
without noise of the signals under consideration (see our previous work [6]); (e) the
obtained controller structures are simple and clear (see Fig. 5).

fb2()t f b3()t

fb1()t
+ + + +

++
u t()

FIR FIR

PI

PID

PI

P

fb2()t fb3()t

fb1()t
+ + + +

++
u t()I

P

PID

P

I

FIR FIR

CB

fb2()t fb3()t

fb1()t
+ + + +

++
u t()

FIR FIR

CB

PID

PID

D

PID

fb2()t fb3()t

fb1()t
+ + + +

++
u t()

FIR FIR

P

PID

PID

ID

ID
λ μ

λ μ

λ μ

λ μλ μ

λ

μ

μ

(a) (b)

(d)(c)

Fig. 5 Best simulations structures obtained for: a case 1, b case 2, c case 3, d case 4. Gray
rectangles stands for reduced elements of the controller

Elastic FOPID+FIR Controller Design Using Hybrid … 25

5 Conclusions

In this paper a new method for elastic H∞-optimal fractional order PID with FIR
filters (FOPID + FIR) controller design using hybrid population-based algorithm
was proposed. The proposed elastic structure of the controller (FOPID + FIR)
allowed to obtain overall good controllers (with good accuracy, small number of
oscillations, low overshooting) with taking under consideration feedback signal
noise and discretization. Moreover, the proposed training algorithm, which allows
reduction of any component of the controller and simultaneously selection of its
parameters, allowed to obtain a very good results in terms of accuracy. It can be
said that the proposed elastic FOPID + FIR controller is superior in comparison to
typical PID/FOPID controllers.

Acknowledgment The project was financed by the National Science Centre (Poland) on the basis
of the decision number DEC-2012/05/B/ST7/02138.

References

1. Alia, M.A.K., Younes, T.M., Alsabbah, S.A.: A design of a PID self-tuning controller using
LabVIEW. J. Softw. Eng. Appl. 4, 161–171 (2011)

2. Astrom, K.J., Hagglund, T.: PID Controllers: Theory, Design, and Tuning. Instrument Society
of America: Research Triangle Park, book (1995)

3. Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic
programming. Inf. Technol. Control 44(4), 433–442 (2015)

4. Ho, S.J., Ho, S.Y., Shu, L.S.: OSA: Orthogonal simulated annealing algorithm and its
application to designing mixed H2 = H1 optimal controllers. IEEE Trans. Syst. Man Cybern.
34(5), 588–600 (2004)

5. Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of
dynamic systems. Lect. Notes Artif. Intell. 7895, 523–534 (2013)

6. Łapa, K., Szczypta, J., Venkatesan, R.: Aspects of structure and parameters selection of control
systems using selected multi-population algorithms. Artificial Intelligence and Soft Computing.
Lecture Notes in Computer Science, vol. 9120, pp. 247–260 (2015)

7. Rutkowski, L.: Computational Intelligence. Springer (2008)
8. Szczypta, J., Łapa, K., Shao, Z.: Aspects of the selection of the structure and parameters of

controllers using selected population based algorithms. In: Artificial Intelligence and Soft
Computing. Springer International Publishing, pp. 440–454 (2014)

9. Szczypta, J., Przybył, A., Cpałka, K.: Some aspects of evolutionary designing optimal
controllers. Artif. Intell. Soft Comput. part II 7895, 91–100 (2013)

26 K. Łapa

Optimization of Read-Only Memory
Program Models Mapping into the FPGA
Architecture

Viktor Melnyk and Ivan Lopit

Abstract The problem of mapping the read-only memory program models, being
the components of the application-specific processors, into the programmable
logical integral circuit architecture will be considered. The existing approaches to
the data compression in the read-only memory devices are analyzed and, alterna-
tively, a new approach is suggested allowing a high degree of compression to be
achieved and the FPGA resources to be used more rationally.

Keywords FPGA � Application-specific processors program models � Read-only
memory � Data compression

1 Introduction

Given a modern state of computer component base, the computer system perfor-
mance is being growing mostly extensively, i.e. in a way of increasing the number
of general-purpose processor cores and their operating frequency. At the same time,
the approach of using general-purpose processors to achieve high performance
indices has principal shortcomings. The main of them are high power consumption
and low efficiency of hardware use. To overcome the above shortcomings the
computer systems are created with application-specific processors, however, they
are efficient for the narrow classes of algorithms only, whereas their development
requires substantial efforts and resources. One of the variants of solving this
problem relates to generating the application-specific processor program models
(ASPPM) from a high-level presentation of their operation algorithm and their
implementation in the field-programmable gate arrays (FPGA). This results in the

V. Melnyk (&)
The John Paul II Catholic University of Lublin, Lublin, Poland
e-mail: vmelnyk@kul.pl

V. Melnyk � I. Lopit
Lviv Polytechnic National University, Lviv, Ukraine
e-mail: lopit.i.i@gmail.com

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_3

27

application-specific processors used as the computer system accelerators with
functions varied by the FPGA reconfiguration and creation of another
application-specific processor (ASP) in it.

One of the frequently used ASPPM components is the read-only memory
(ROM). It is used for storing constant values and commands, implementing the
tabular and tabular-algorithmic computing devices etc. One of the problem issues in
realizing ROM in FPGA is not rational use of its resources related to the excessive
character of data representation. Compression of the data contained in ROM is one
of the possible solutions of this problem.

Data compression is a set of rules for presenting the above data in another form,
in which they occupy the less volume. In fact, data compression means their
recoding. The lossless data compression algorithms are divided into two principal
classes: data coding using a dictionary and entropic data coding.

The most widely used algorithms in the dictionary-related coding class are the
Lempel–Ziv–Welch (LZW) one [1] and its variations, while in the entropic coding
class these are the Huffman code-based ones [2].

2 Research and Publications Survey

The Lempel–Ziv–Welch algorithms are described in [1], whereas the Huffman ones
—in [2]. In [3], implementation of the data decompression function in FPGA
through the embedded memory units according to the LZW algorithm is described.
The hardware Huffman decoder implemented in FPGA is described in [4].

3 Problem Stating

Modern compression algorithms described in [1, 2] demonstrate high compression
ratio, but their hardware implementation complexity and low speed restrict their
wide use for the data compression in ROM. The analysis of the variants of decoder
hardware implementation [3, 4] has shown a series of shortcomings in their char-
acteristics, namely:

• low operating clock frequency;
• significant delay with access to the next memory cell: for [3]—6 cycles, for [4]—

4 cycles of synchronization signal.

The above shortcomings affect essentially the efficiency of ASPPM with ROM
components. Searching for solutions free from the above disadvantages was the
goal of study carried out in this paper.

28 V. Melnyk and I. Lopit

4 Algorithm of Optimizing the ROM Program Model
Mapping into the FPGA Architecture by the Data
Group Compression

When generating ASPPM from the high-level programming language, the ROM
content is usually foreknown. Therefore, the generating system may produce any
necessary content transformations at the moment of the program model synthe-
sizing. Data rearrangement is one of the simplest data transformations in the
hardware implementation. It requires no hardware expenses and could be done by
changing the order of port connecting. Using the above specific features, the authors
have suggested the data group compression algorithm that uses the dictionary
method. This algorithm could be conditionally divided into two parts described
below, i.e. compression by methods simple to be hardware implemented and search
for the optimal data group these methods are executed over.

4.1 Data Compression by the Dictionary Method

Data compression method using dictionary includes the fixed-length value set coding
into the coded value set and the table of keys for their recovery. Figure 1 illustrates
schematically the principle of the hardware implementation of this method.

The operation principle is as follows. First, the access to key takes place, this key
enables the access to the unique value. The time of waiting for new value is 2
synchronization cycles.

The compression ratio for this method could be calculated by the following
formula:

g ¼ ½log2 u� � hþ u � w
h � w ; ð1Þ

where u is a number of unique values in the primary table, w is the word length of
the data in this table, h is its height.

Fig. 1 Principle of the hardware implementation of data compression by the dictionary method

Optimization of Read-Only Memory Program Models … 29

This method is characterized by a relatively low compression degree, but its
hardware implementation is simple and ensures high speed.

4.2 Data Compression by the Sequence Length Coding
Method

Sequence length coding is the data compression algorithm that replaces the repet-
itive symbols (data blocks) by the repetitive symbol (data block) and by the number
of its repetitions. The principle of the hardware implementation of this method is
schematically shown in Fig. 2.

The operation principle of this device is as follows. The index counter contains a
current address and the content is read from the sequences table and the values table
according to the above address value. The content received from the sequences
table comes to the SC counter. When the content of all the SC counter cells
becomes 0, the index value is increased by 1 and the new values are read from the
sequences and values tables.

The compression coefficient for this method may be calculated as:

g ¼ ½log2 Smax� � us � þw � us
h � w ; ð2Þ

where Smax is the largest sequence length, us is the number of unique sequences in
the original table, w is the original table capacity, h is the original table height.

One of the shortcomings of this method is the possible misbalance of the
sequences table. Such situation takes place when one of the sequences is much
longer than the other one and this is illustrated in Fig. 3.

The above disadvantage could be eliminated by the preliminary balancing of the
sequences table. Here under balancing we mean a process of searching such rep-
resentation of sequence at which the size of the table is minimal.

Fig. 2 Principle of the hardware implementation of data compression by the sequence length
coding method

30 V. Melnyk and I. Lopit

4.3 Data Compression by the Combined Method
of Sequence Length and Dictionary Coding

This method is the combination of the above data compression methods, i.e. the
dictionary and the sequence length coding methods. According to it, first the set of
the fixed-length values is coded into the coded values set and the key table for their
recovery. Then the repeated key sequence lengths are coded. Figure 4 illustrates
schematically the principle of this method hardware implementation.

The operation principle is as follows. The index counter contains a current
address and the content is read from the sequences table and the keys table
according to the above address value. The content received from the sequences

Fig. 3 Example of misbalanced sequences table

Fig. 4 Principle of the hardware implementation of the data compression by the combined
method of sequence length and dictionary coding

Optimization of Read-Only Memory Program Models … 31

table comes to the SC counter. The content received from the keys table is used to
receive the value from the unique values table, and this is a result. When the content
of all the SC counter cells becomes 0, the index value is increased by 1 and the new
values are read from the sequences and keys tables.

The compression ratio for this method could be calculated by the following
formula:

g ¼ ½log2 Smax� � usþ ½log2 u� � usþ u � w
h � w ; ð3Þ

where Smax is the longest sequence length, us is the number of unique sequence in
the original table, u is the number of unique values in the original table, w is the
original table capacity, h is the original table height.

4.4 Data Grouping Algorithm

Data grouping algorithm includes searching the optimal groups with the use of
rearrangements. The rearrangement unit is the column in the memory unit.

The algorithm input data are: memory unit content for compression; w is the
original memory unit capacity; h is the number of cells in the memory unit, wc is
the subunit capacity after compression, max_c is the maximal value of possible
combinations per step; min_c is the minimal value of possible combinations per
step.

The output algorithm data is: a set of the memory subunits after compression.
The algorithm criteria are: “speed”—the compression speed is preferred,

“compression”—the maximum compression ratio is preferred.
This algorithm includes execution of the following steps:

1. If w/wc is not integer, for compression add the last column to the original
memory unit.

2. Create a set of columns R on the basis of the original memory unit.
3. Assign the maximally possible number to the variable-result Gor.
4. Generate a set of substeps S. If the number of Cwc

w > max_c, then expand wc into
the simple factors that may create a set S, otherwise, w becomes a single element
of the set S.

5. For each s from the set S:

(a) If the number of CS
R > min_c, choose the next simple factor and multiply it

by the existing one. Go to step 5.
(b) Using CS

R form all the possible combinations of the group placement—P.
(c) On the basis of combination of P choose the columns with the relevant

indices from R and form a set of possible groups G.
(d) For each group g in G execute the compression algorithm.

32 V. Melnyk and I. Lopit

(e) Search for the optimal group Go from the set G obtained at the step 5 (d). If
the optimization criterion is “speed”, use the greedy algorithm of search
(step 5 (f)). If the optimization criterion is “compression”, use the expanded
greedy algorithm of search (step 5 (g)).

(f) Greedy algorithm of search. Until the number of groups reaches R/wc,
search for the minimal group, for which the following equality holds true:
g\Go ¼ ;.

(g) Expanded greedy algorithm of search. For each group g in the set G execute
greedy search (step 5 (f)) with the following exception: instead of the first
iteration the minimal element should be the current element g.

6. If the size of Go obtained from step 5 (f) 5(g) is less than Gor, assign Go for
Gor.

7. Form a new set of elements-columns R, taking as a basis the set Gor obtained in
step 5 (f) or 5(g).

8. End.

This algorithm includes iteration search for the optimal placement of groups with
the goal of their maximum compression. Each iteration could be divided into two
main parts: generation of possible combinations of element placements and search
for the optimal placement in the set of possible combinations of placements.

Generation of possible combinations of placements is the problem from the field
of combinatorics that has a factorial complexity. The number of possible place-
ments could be calculated by the following formula:

Ck
n ¼

n!
k!ðn� kÞ : ð4Þ

For example, if the memory has n = 100 columns, and the memory unit size is
k = 2, then the number of possible placements is 4950. If k = 4, the number of
possible placements is 3,921,225. If k = 6, the number of possible placements is
1,192,052,400. One may conclude that this problem could not be solved by the
complete enumeration method. Therefore, to achieve the goals laid above, the
authors decided to use the approximation algorithm.

Searching for the possible combinations of optimal placements in the set is a
partial case of the travelling salesman problem. This problem belongs to the class of
NP-hard ones and has a factorial complexity. It could be solved by the
branch-and-bound method or similar, however, the authors decided not to use the
above methods giving preference to the greedy algorithms due to their simplicity
and high speed.

Algorithm accuracy and speed are controlled by the values max_c and min_c.
The requirements to them are as follows: min_c must not be larger than max_c, but
not less than C2

R. Otherwise, this algorithm will have no convergence, and, hence,
will last forever. If one at each step puts max_c and min_c equal to the number of
combinations C2

R then we obtain the fastest variant of this algorithm.

Optimization of Read-Only Memory Program Models … 33

5 Data Grouping Algorithm Complexity Assessment

Algorithm complexity is one of the most principal characteristics of any algorithm.
Consider the data grouping algorithm complexity in the case when the values
max_c and min_c are equal to C2

R.
If at each step max_c and min_c are equal to C2

R, then the number of combi-
nations at each step becomes equal to � R2=2 from formula (1).

The greedy algorithm complexity could be assessed on the basis of its compo-
nents as follows:

• search for the minimal group g. The search complexity is linear, in the worst
case one needs R=2 operations to find the minimal group;

• provide execution of the condition g\Go ¼ ; as follows: mark groups g that
contain used elements in the set Go. To do this, it is necessary to execute
additionally R=2 operations to set an appropriate flag after finding the minimal
element;

• if the values max_c and min_c are equal to C2
R, the value s will be 2, hence, we

have to find R=2 minimal groups.

Thus, the total number of operations for the greedy search at the worst scenario
could be written as:

R
2

R2

2
þ R2

2

� �
¼ R3

2
: ð5Þ

For the expanded greedy algorithm, this number of operations must be multi-
plied by the number of elements R2=2:

R2

2
R3

2

� �
¼ R5

2
: ð6Þ

Let us denote the number of operations as n. Because at each next step the value
R will be less twice, n will also decrease 2 times. This allows the above sequence of
steps to be presented as a finite decreasing geometric progression with the number
of elements equal to log 2wc, in which the first element is b1 ¼ n whereas the
determinant is q ¼ 1=2:

nþ n
2
þ . . .þ n

2log2 wc�1 : ð7Þ

Inserting the data into the geometric progression formula:

S ¼ b1=ð1� qÞ; ð8Þ

34 V. Melnyk and I. Lopit

we determine the number of operations according to the following expression:

S ¼ n
ð1� 1=2Þ ¼ 2n: ð9Þ

Substitute n by the number of commands at each iteration taking into account
that at each step we have to calculate additionally R2=2 compression operations
with the complexity C. For each of them we obtain the further complexity values.

Thus, the complexity of the data grouping algorithm with the use of the greedy
algorithm could be described by the following expression:

O 2
R3

2
þ R2

2
C

� �� �
¼ OðR3 þR2CÞ: ð10Þ

The complexity of the data grouping algorithm with the use of the expanded
greedy algorithm could be described by the following expression:

O 2
R5

2
þ R2

2
C

� �� �
¼ OðR5 þR2CÞ: ð11Þ

For other variations of the data grouping algorithm, when the values max_c and
min_c are equal to the other ones, the complexity is calculated in the similar
manner.

6 Results of Experimental Studies

In order to confirm the efficiency of the suggested algorithm, the authors have
carried out the experimental studies. The idea of this experiment was as follows: the
ROM models obtained as a result of generation by the high-level design tool
Chameleon [5] were processed, and the optimized ROM models were synthesized
in the target FPGA. The logic synthesis environment Quartus II 13.1 and FPGA
Cyclone V 5CGXFC9E7F35C8 from Altera were used in this study.

The results of the experimental studies for the 143-bit capacity ROM with the
51,200 cells height using data compression by the dictionary method are given in
Table 1, those using the sequence length coding method are given in Table 2, while

Table 1 Results of data compression using the dictionary method

No Subunit
size

Compression
ratio
with no
grouping, %

Compression ratio
using greedy
algorithm, %

Compression ratio
using expanded greedy
algorithm, %

1 16 57.06 53.61 48.38

2 32 44.41 49.70 37.69

3 36 40.01 44.17 32.79

Optimization of Read-Only Memory Program Models … 35

those using a combined sequence length coding and dictionary method are quoted
in Table 3. Comparison of the results of the hardware implementation of suggested
algorithm and the LZW [3] and Huffman [4] ones is shown in Table 4. The results
of the optimized model synthesis are presented in Table 5.

Table 2 Results of data compression using the sequence length coding method

No Subunit
size

Compression
ratio
with no
grouping, %

Compression ratio
using greedy
algorithm, %

Compression ratio
using expanded greedy
algorithm, %

1 16 109.52 51.31 49.87

2 32 112.09 71.57 70.77

3 36 100.00 55.34 54.60

Table 3 Results of data compression using the combined method

No Subunit
size

Compression
ratio
with no
grouping, %

Compression ratio
using greedy
algorithm, %

Compression ratio
using expanded greedy
algorithm, %

1 16 57.07 32.47 32.33

2 32 43.88 38.01 33.76

3 36 40.06 42.64 28.80

Table 4 Comparison of the results of the hardware implementation of the compression
algorithms

Comparison criterion Dictionary Sequences Combined LZW Huffman

Frequency, MHz 165 150 180 300.661 100

Logical cells N/A N/A 99 287 + 283 13,824

Word size 144 144 144 8 16

Embedded RAM
memory, KB

N/A N/A 2620 252 34.56

Units required 1 1 1 18 9

Additional storage for
compressed memory

No No No Yes Yes

Time of access to the
memory cell, cycles

2 2 3 unstable 4

Method compression
ratio, %

32.79 49.87 28.80 19.39 39.18

Random access Yes No No No No

End device maximum
frequency

550 550 550 700 491

36 V. Melnyk and I. Lopit

7 Conclusions

The problems of the efficient mapping of ROMs, being the ASPPM components,
into the FPGA architecture have been considered. Suggested algorithm includes
optimization of the ROM mapping into the FPGA architecture by compressing the
data groups with the use of the methods described in Sects. 4.1–4.3.

As the results of synthesizing into the Cyclone V 5CGXFC9E7F35C8 FPGA
show, the optimized ROM model uses 2,682,880 bits of embedded memory and 99
logic elements and operates at the 180 MHz frequency. The compression ratio
before the synthesis was 28.80 %, that after it—29.53 %. Such reduction of the
above ratio is due to the necessity to place the memory content into the fixed-size
units (embedded memory units).

The clock frequency of the embedded memory units and their organization have
a decisive effect on the performance of devices synthesized in FPGA. The maxi-
mum clock frequency of the embedded units for FPGA used by us was 240 MHz,
the maximum unit height was 8192 cells. This leads to the necessity to use an
additional logic to combine the memory units. In the case when the memory unit
could be fully placed into the embedded memory unit, the speed will be maximum,
and the frequency of the optimized model will equal to that of the embedded
memory units.

References

1. Welch, T.A.: A technique for high-performance data compression. Computer 6(17), 8–19
(1984)

2. Huffman, D.A.: A Method for the construction of minimum-redundancy codes. In: Proceedings
of the I.R.E., pp. 1098–1102, September 1952

3. Zhou, X., Ito, Y., Nakano, K.: An Efficient Implementation of LZW Decompression Using
Block RAMs in the FPGA (Preliminary Version). Bull. Network. Comput. Syst. Softw—www.
bncss.org, 5(1), 12–19 (2016). ISSN 2186–5140

4. Acasandrei, L., Neag, M.: Fast parallel Huffman decoder For FPGA implementation. Acta
Technica Napocensis: Electron Telecommun. 49(1) (2008)

5. Chameleon—ASIC Design Automatic Generation Tool. Retrieved: May 30, 2016, from http://
www.intron-innovations.com/?p=sld_chame

Table 5 Comparison of the characteristics of the initial and optimized ROM models

Comparison criterion Capacity,
bit

Power consumption
(without static consumption), W

Frequency, MHz

Original model 9,082,880 0.713 (0.173) 150

Optimized model 2,682,880 0.694 (0.160) 180

Optimization of Read-Only Memory Program Models … 37

http://www.bncss.org
http://www.bncss.org
http://www.intron-innovations.com/%3fp%3dsld_chame
http://www.intron-innovations.com/%3fp%3dsld_chame

Simple Rule-Based Human Activity
Detection with Use of Mobile Phone
Sensors

Mariusz Fraś and Mikołaj Bednarz

Abstract The human activity recognitionwith use of new generation of smartphones
equipped with various sensors became widely used technique lately. Many works
concern especially one type of incidents—fall detection. This paper concerns detec-
tion of different activities. The proposed approach is based on use of simple rules that
make possible to distinct considered events. The rules are defined with use of mea-
sured acceleration and phone orientation and take into account moments of event
occurrences. The values of parameters used in rules were defined by experiment
performed with use of implemented application on Android system. Finally, the
accuracy of presented method is examined in the paper.

Keywords Mobile phone � Activity detection � Sensors � Accelerometer

1 Introduction

The new generations of mobile phones (or smartphones) are equipped with various
sensors such as a gyroscope, accelerometer, GPS, proximity sensor, and many
others. We live in the era when most people uses smartphones and many of them all
the day. This permits to use such devices in many areas involved in human health,
security, information and so on. There are many devices on the market dedicated to
older people, which are based on the readings from connected sensors and are able
to monitor different health parameters. That is very expensive solutions, however.
Using smartphones we can do such monitoring easier and cheaper.

One of the very often investigated area is human activity recognition. Many
works take into account one very important type of incidents—fall detection. But

M. Fraś (&) � M. Bednarz
Wroclaw University of Technology, Wroclaw, Poland
e-mail: mariusz.fras@pwr.edu.pl

M. Bednarz
e-mail: mki.1990@hotmail.com

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_4

39

also detection of other types of activities—walking, jogging, etc. are very useful
and are considered, lately.

This paper concerns detection of several selected activities: walking, jogging,
sitting, jumping and falling. One of the main goal of presented approach was the
simplicity of the method—in consequence the simplicity of implementation. This
permits to use few resources of programmed device and make it work longer.
Android is the most popular mobile system in the world. The possibility of
implementation of proposed methods on Android-based systems is also necessary
nowadays. Simplicity of application is important feature for such a systems.

The paper is organized as follows. Section 2 introduces some basics of the
considered subject. Section 3 presents proposed method for activity detection.
Results of experiments performed with the use of the application implementing
proposed approach are presented in Sect. 4. Finally, concluding remarks are given
in Sect. 5.

2 Related Works

A lot of works relate to one special incident recognition i.e. fall detection. It is very
important from medical monitoring point of view. Most of the works utilize one
sensor—accelerometer—and the acceleration parameter A calculated according to
formula (1).

A ¼
ffi
A2
x þA2

y þA2
z

q
ð1Þ

where Ax, Ay, Az, are accelerations measured for three axis’s of 3D space. The early
works, as e.g. in [1–3], assume fall recognition when parameter A excides some
threshold value. After short time of free fall phase during which parameter A draws
near 0 value, the acceleration’s amplitude rises to the characteristic high level, and
then stabilize near the value of 1 g (acceleration of gravity). In [3] the acceleration
threshold is assumed as 2.3 g. In [2] the threshold value for fall detection is
determined according to user’s sex and BMI factor. Apart from maximal threshold
there is also considered minimal threshold. According to sex and BMI thresholds
are slightly modified and detection is performed against to assumed time window.
The approach permitted increase the accuracy of fall detection (called sensitivity
and defined as the number of detected falls to the number of all falls ratio) from
86.75 to 92.75 %. Numerous expansions concern data acquisition and prepro-
cessing, activity diversifying and use of additional factors or rules to recognition
process. In [4] the filtering of data with median filter. In [5, 6] phone orientation is
also taken under consideration. In [5] the acceleration at the absolute vertical
direction is calculated with use of Ax, Ay, Az and azimuth, pitch and roll angles.
Additionally forward lateral and backward falls are distinguished, and placement
the phone on chest, waist and thigh is considered. The percentage of not detected
falls was about from 2 to 10 % and the percentage of detected other activities as

40 M. Fraś and M. Bednarz

falls was about from 9 to 11 %. [6] considers four categories of falls depending of
what user currently does: hold by hand while typing SMS, hold by hand while
normal talk, wearing in chest pocket, wearing in paints pocket. The total accuracy
for forward backward and aside falls was 85 %.

The works that takes into account other activities are more complex and demand
advanced data analysis. The work [7] defines eight characteristic features of mea-
sured uses signal and neural network to for activity pattern classifier. In the work [8]
a lot of data is collected first, and a number of parameters as e.g. standard deviation,
binned distribution, time between peaks, etc. are calculated for 10-second intervals
to induce a predictive models for activities. Different learning algorithms are
considered. In [9] human postures are classified using principles of kinematical
theory and hierarchical rule-based algorithm. All above approaches increase
accuracy of activity recognition, however demand more advanced processing
devices which not always are efficient enough.

3 Detection Method

3.1 The General Procedure of Activity Recognition

Our aim is to detect the following activities:

– walking,
– jogging (running),
– fall,
– jump,
– sitting down.

The “sitting down” we detect as single short time behavior—not sitting as long
time behavior. We assume that sitting lasts as long as next activity (which ends the
previous one) is detected. This approach can be applied to other activities too. It is
convenient for the activity that have difficult to detect feature (or parameter(s))
when it lasts, but easier characteristic to detect when it starts, and it is obvious that
when it finishes then detected characteristic distinctly changes. For instance when
sitting down is detected then e.g. standing or running will not start without clear
change of monitored parameters. As we assumed when next activity is detected
(e.g. walking in our example) then we know that sitting down is finished.

The general scheme of proposed approach is the following:

– the detection process is performed in regular phases (usually two or three),
– during first phase the first characteristic occurrence for given activity is dis-

covered—the detected feature can be shared by more than one activity,
– when the occurrence is detected the flag of first phase detection is set and second

phase begins,

Simple Rule-Based Human Activity Detection with Use … 41

– during second phase the next characteristic of given activity is tested—this can
make a distinction of detected activity from the set of activities determined by
the first phase,

– when the next characteristic is detected the flag of the second phase is set and if
necessary next phase begins,

– the number of phases depends on the discovered characteristics and activity,
– after detection of given activity all flags can be reset and detection may start

again.

The detection of second and optionally next characteristics must occur in given
strictly defined period of time. The intervals depend on detected characteristic in
previous phase—i.e. it depends on what activity is being recognized.

All rules are defined assuming that the phone is kept in pocket in trousers and its
usual position is vertical. However, most of rules will work in other cases when we
change terms in rules “horizontal” and “vertical” with the term “90° change of
orientation”.

3.2 Rules for Activity Detection

Sitting down
The sitting down activity is quite simple to detect when we do it as the process of
short time behavior detection. As shown in Fig. 1 the monitoring records only one
large rapid change of acceleration.

After one single short increase of acceleration no change is detected. The ori-
entation of the phone is vertical at t0 and horizontal at t1 and t2. The highest
measured value of acceleration of vigorous sitting down was 2.1 g. The rest of
peaks were within 1.2�1.5 g.

The detection rule is the following:

1. Phase1
In t = t0: Thmin < A < Thmax

2. Phase2
In t = t1: t1 − t0 >= DtS,1 and phone orientation is horizontal

3. Phase3
In t = t2: t2 − t1 >= DtS,2 and phone orientation is still horizontal

The phone orientation is checked twice in order to distinguish other similar
activities. The values of time periods were chosen on the basis of performed
experiments.

The values of thresholds Thmin and Thmax define the interval for highest peaks
for all activities (one for sitting down, fall, and jump, and repetitive peaks for
walking and jogging). They are unique for all activities and are presented in Sect. 4.
In rules they are noted the same way, however.

42 M. Fraś and M. Bednarz

The time intervals in all cases (i.e. for all activities) are derived from initial
experiments. For sitting down the values are: DtS;1 ¼ 1s, DtS;2 ¼ 2s.

Walking
The walking graph presented in Fig. 2 is not very regular but we can extract some
repetitive schema—during step of one leg the acceleration value is about 1.5 g and
then decreases to about 0.5 g and next increases to about 2 g (during step of second
leg). The phone orientation remains constant (usually vertical when the phone is in
the pocket). The highest measured value was below 3 g. The time between repet-
itive peaks for the same leg is similar. That’s why we try to detect these points.

The detection rule is the following:

1. Phase1
In t = t0: Thmin < A < Thmax

2. Phase2
In t = t1: Thmin < A < Thmax and t1 − t0 >= DtW,1 and phone orientation is
vertical

3. Phase3
In t = t2: Thmin < A < Thmax and t2 − t0 >= DtW,2 and phone orientation is
vertical

If three consecutive fulfilling of above rules are detected then walking activity is
recognized. The experimental time interval values are: DtW;1 ¼ 1s, DtW;2 ¼ 2s.

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

20
,8

80
20

,9
51

21
,0

83
21

,1
65

21
,2

86
21

,3
65

21
,4

89
21

,5
67

21
,6

89
21

,8
01

21
,8

87
21

,9
57

22
,0

91
22

,1
71

22
,2

96
22

,3
72

22
,4

99
22

,5
73

22
,6

99
22

,7
76

22
,9

03
22

,9
65

23
,0

95
23

,1
78

23
,3

01
23

,3
80

23
,5

03
23

,5
82

23
,7

04
23

,7
83

23
,9

05
23

,9
85

24
,1

08

A
cc

el
er

at
io

n
[g

]

Time [s]

Sitting down

t2

Th max

Th min

t1t0

Fig. 1 Acceleration graph for sitting down activity

Simple Rule-Based Human Activity Detection with Use … 43

Jogging
The Fig. 3 shows that characteristic of jogging is very similar to walking, apart
from that the frequency of peaks is higher, the decrease of acceleration is when we
step the other leg (in case the phone is in the pocket on the other side/leg) and the
values of acceleration are distinctly higher.

0,00

0,50

1,00

1,50

2,00

2,50

22
,0

27
22

,2
56

22
,4

97
22

,7
66

23
,0

37
23

,2
66

23
,5

03
23

,7
74

24
,0

44
24

,2
55

24
,5

12
24

,7
89

25
,0

48
25

,2
74

25
,5

17
25

,7
84

26
,0

64
26

,2
80

26
,5

24
26

,7
93

27
,0

62
27

,2
88

27
,5

31
27

,8
03

28
,0

72
28

,2
98

28
,5

37
28

,8
05

29
,0

88
29

,2
79

29
,5

44
29

,8
17

30
,0

87
30

,2
98

30
,5

57

A
cc

el
er

at
io

n
[g

]

Time [s]

Walking
t0 t1

Th max

Th min

t2

Fig. 2 Acceleration graph for walking activity

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

12
,9

02
13

,0
93

13
,3

06
13

,5
12

13
,6

97
13

,9
00

14
,1

00
14

,3
06

14
,5

03
14

,7
15

14
,9

11
15

,1
13

15
,3

16
15

,5
14

15
,7

16
15

,9
17

16
,1

16
16

,3
27

16
,5

17
16

,7
23

16
,9

24
17

,1
22

17
,3

24
17

,5
35

17
,7

37
17

,9
29

18
,1

30
18

,3
34

A
cc

el
er

at
io

n
[g

]

Time [s]

Jogging
t0 t1Thmax

Thmin

t2

Fig. 3 Acceleration graph for jogging activity

44 M. Fraś and M. Bednarz

The detection rule is the same as for walking except the values of parameters i.e.
thresholds and time intervals DtR,1 instead DtW,1 and DtR,2 instead DtW,2 are dif-
ferent. The detection rule is the following:

1. Phase1
In t = t0: Thmin < A < Thmax

2. Phase2
In t = t1: Thmin < A < Thmax and t1 − t0 >= DtR,1 and phone orientation is
vertical

3. Phase3
In t = t2: Thmin < A < Thmax and t2 − t0 >= DtR,2 and phone orientation is
vertical

The time interval values chosen to distinct different speed of walking and jog-
ging are the following: DtR;1 ¼ 0; 7s, DtR;2 ¼ 1; 4s.

Jump
The Fig. 4 shows the graph for two jumps with short interval without any activity
between them. The jump consists of three phases: first—takeoff with the acceler-
ation up to about 2�3 g, second—when acceleration drops down to almost 0 g, and
third—touchdown, when acceleration increases to 4�5 g. The graph is a little
similar to sitting down but the phone orientation is constant (usually vertical in case
the phone is in the pocket) and acceleration values are distinctly higher.

Taking into account above notes, the detection rule is the following:

1. Phase1
In t = t0: A < 0,2 g

2. Phase2

0,00

1,00

2,00

3,00

4,00

5,00

6,00

00
,0

00
00

,2
71

00
,5

41
00

,7
43

01
,0

08
01

,2
77

01
,5

47
01

,7
49

02
,0

15
02

,2
17

02
,4

85
02

,7
56

02
,9

60
03

,2
23

03
,4

97
03

,7
71

03
,9

77
04

,2
30

04
,5

03
04

,7
80

04
,9

72
05

,2
38

05
,5

11
05

,7
77

05
,9

94
06

,2
47

06
,5

13

A
cc

el
er

at
io

n
[g

]

Time [s]

Jump
t0 t1

Thmax

Thmin

t2

Fig. 4 Acceleration graph for jump activity

Simple Rule-Based Human Activity Detection with Use … 45

In t = t1: Thmin < A < Thmax and t1 − t0 <= DtJ,1 and phone orientation is
vertical

3. Phase3
In t = t2: 0.8 g < A < 1.2 g and t2 − t0 >= DtJ,2 and phone orientation is
vertical

The experimental time interval values are: DtJ;1 ¼ 0; 7s, DtJ;2 ¼ 2s.
If three consecutive fulfilling of above rules are detected then jump activity is

recognized. The condition in phase 3 for parameter A assumes that after jump there
is no activity period and within it acceleration stabilize near 1 g. The simplified rule
for jump detection consist of phase 2 and 3 only.

Fall
One of the most investigated activity is falling. The graph of acceleration (presented
in Fig. 5) is similar to jump with similar values of acceleration, however there are
some differences. There is no takeoff phase. The falling phase is shorter. The most
important (usually utilized in most works) is that phone orientation changes to
horizontal and remains horizontal for some time. The recorded peak values of
acceleration were about 2.7–4.6 g. during falling the values decreased to 0.2 g.

The detection rule for the fall is the following:

1. Phase1
In t = t0: A < 0.7

2. Phase2
In t = t1: Thmin < A < Thmax and t1 − t0 <= DtF,1 and phone orientation is
horizontal

3. Phase3

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

00
,0

00
00

,1
34

00
,2

69
00

,4
06

00
,6

06
00

,7
38

00
,8

72
01

,0
10

01
,2

09
01

,3
42

01
,4

77
01

,6
13

01
,8

12
01

,9
47

02
,0

81
02

,2
18

02
,4

18
02

,5
51

02
,6

85
02

,8
22

03
,0

24
03

,1
58

03
,2

93
03

,4
38

03
,5

58
03

,6
94

03
,8

42
04

,0
29

04
,1

66
04

,3
00

04
,4

54
04

,6
34

04
,7

73
04

,9
08

A
cc

el
er

at
io

n
[g

]

Time [s]

Fallt0 t1

Th max

Thmin

t2 t3

Fig. 5 Acceleration graph for fall activity

46 M. Fraś and M. Bednarz

In t = t2: 0.8 g < A < 1.2 g and t2 − t0 >= DtF,2 and phone orientation is
horizontal

4. Phase4
In t = t3: 0.8 g < A < 1.2 g and t3 − t0 >= DtF,3 and phone orientation is
horizontal

The experimental time interval values are: DtF;1 ¼ 1s, DtF;2 ¼ 2s, and
DtF;3 ¼ 4s.

After the fall usually the posture remains the same for some time and the
condition in phase 4 increases accuracy of fall detection. Similarly as for jump the
value of parameter A stabilize near 1 g.

4 Evaluation Experiment

The evaluation experiments were performed with use of LG Nexus 4 smartphone
with Android 5.0 Lollipop system. The device is equipped with different sensors
among the others accelerometer, gyroscope, proximity sensor and others. The
phone was kept in the pocket in pants. All experiments were performed by one
26 year old man (the comment about this fact is in final remarks).

The first series of experiments consist in testing of each activity separately to
discover the range of characteristic values of acceleration and time for given
activity. There was performed a dozen or so executions and the results are given in
Table 1.

The threshold values in all rules were used according to values given in Table 1.
The second part of the experiment was performed to test accuracy of recognition.

For every activity it was tested accuracy of recognition defined as:

S ¼ TR
TRþNRþFR

� 100% ð2Þ

Table 1 Characteristic values of acceleration for tested activities

Activity Min. value of
threshold Thmin (g)

Max. value of
threshold Thmax (g)

Min. value of
threshold
(fall phase)

Max. value of
threshold
(fall phase) (g)

Sitting
down

1.2 2.1 – –

Walking 1.5 2.9 – –

Jogging 2.9 4.2 – –

Jump 3.2 4.9 0.1 g 0.15

Fall 2.7 4.6 0.2 g 0.7

Simple Rule-Based Human Activity Detection with Use … 47

where: TR is correctly recognized activity, NR is not recognized activity, and FR is
false recognized activity. There was performed 20 tests of every activity and TR,
NR, and FR probes were counted. All activities were performed differently. For
instance the “sitting down” was performed as well gently as very rapid. The results
of experiment is presented in Table 2.

The overall accuracy is equal 84 %. This value is similar to many methods and
slightly worse than most advanced methods.

5 Final Remarks

The proposed method of human activity detection with use of ordinary mobile
phones equipped with accelerometer and gyroscope uses very simple rules, easy to
implement, and consuming few device resources. It was one of the main goal of our
investigations. There are three important issues worth to mention in conclusion i.e.
comparison to other solutions, recognition of activities during ADL (Activities of
Daily Living) and some remarks about measured characteristics.

The overall accuracy of proposed approach is slightly worse than most advanced
methods. But two issues are to consider. First: the proposed approach is simple and
uses much less device resources then methods performing complex analysis of data.
Second: two cases: jump, and fall, were implemented in simplified form—without
first phase detection. We expect that full implementation will increase accuracy.

The recognition concerning all ADLs should take into account full set of pos-
sible activities. Here we assume that when other activity is detected, it means that
the previous lasts to this moment. If it would be a problem of detection some kind
of activity than such monitoring will produce be false results.

Last but not least is that we noticed that some characteristic values of some
activities are slightly different than in other works. This is probably caused by the
fact, that sensors in different devices are differs (in the sense of sensitivity and
calibration). This also suggests that threshold values should be always tuned
individually. In our experiment method was tested by one man. But assuming that
some adaptation of threshold values method will be applied the results of overall
accuracy should be similar.

Table 2 The results of accuracy evaluation experiment

Sitting down Walking Jogging Jump Fall

TR 18 16 18 16 16

NR 2 0 0 3 0

FR 0 4 2 1 4

Accuracy 90 % 80 % 90 % 80 % 80 %

48 M. Fraś and M. Bednarz

References

1. Sposaro F., Tyson G.: iFall: An android application for fall monitoring and response. In:
Proceeding of the Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC 2009), Saint Paul, MN, USA, pp. 6119–6122 (2009)

2. Cao Y., Yang Y., Liu W.H.: E-FallD: A fall detection system using android-based smartphone.
In: Proceeding of the 9th International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD 2012), Chongqing, China, pp. 1509–1513 (2012)

3. Tacconi C., Mellone S., Chiari L.: Smartphone-based applications for investigating falls and
mobility. In: Proceeding of the 5th International Conference on Pervasive Computing
Technologies for Healthcare (Pervasive Health 2011), Dublin, Ireland, pp. 258–261 (2011)

4. He Y., Li Y., Bao S.: Fall detection by built-in tri-accelerometer of smartphone. In: Proceeding
of the IEEE EMBS International Conference on Biomedical and Health Informatics (BHI
2012), Hong Kong, China, pp. 184–187 (2012)

5. Dai J., Bai X., Yang Z., Shen Z., Xuan D.: PerFallD: A pervasive fall detection system using
mobile phones. In: Proceedings of the 8th IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOM Workshops), Mannheim, Germany,
pp. 292–297 (2010)

6. Viet V.Q., Lee G., Choi D.: Fall detection based on movement and smart phone technology. In:
Proceedings of the IEEE International Conference on Computing and Communication
Technologies, Research, Innovation, and Vision for the Future (RIVF 2012), Ho Chi Minh
City, Vietnam, pp. 1–4, (2012)

7. Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., Vecchio, A.: A
smartphone-based fall detection system. Pervasive Mob. Comput. 8, 883–899 (2012)

8. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerom-
eters. ACM SigKDD Explor. Newsl. 12, 74–82 (2011)

9. Zhang, S., McCullagh, P., Zhang, J., Yu, T.: A smartphone based real-time daily activity
monitoring system. Cluster Comput. 17, 711–721 (2014)

Simple Rule-Based Human Activity Detection with Use … 49

Part II
Systems Security Issues

Timed Analysis of Security Protocols

Sabina Szymoniak, Olga Siedlecka-Lamch and Mirosław Kurkowski

Abstract This paper presents some remarks on the analysis of security protocols
taking into account their time properties. Usually untimed or timed protocols are
investigated with security properties, such as the secrecy of some data or the
allowance of mutual authentication. These properties are independent of time. In this
paper we investigate different executions, sometimes executed simultaneously, of a
protocol and different types of times: ciphering and deciphering time, step execution
time, whole protocol execution time, and delays in the network. Taking this into
account we can investigate how these times can be chosen regardless of the possi-
bility of an attack execution. As part of the work we have implemented a tool that
helps us in the mentioned work and allows to present some experimental results.

Keywords Security protocols � Modeling and verification � Time analysis

1 Introduction

Today servers, terminals or other devices used for network communication use
specially designed protocols for achieving important security goals. Every con-
scious network user realizes that inside such protocols safeguards are included to

S. Szymoniak (&) � O. Siedlecka-Lamch
Institute of Computer and Information Sciences, Czestochowa University
of Technology, Dabrowskiego 69/73, 42-200 Czestochowa, Poland
e-mail: sabina.szymoniak@icis.pcz.pl

O. Siedlecka-Lamch
e-mail: olga.siedlecka@icis.pcz.pl

M. Kurkowski
Institute of Computer Sciences, Cardinal Stefan Wyszynski University,
Woycickiego 1/3, 01-938 Warsaw, Poland
e-mail: m.kurkowski@uksw.edu.pl

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_5

53

ensure that data transmission will be safe—data will reach the destination and will
not be decoded, or taken over. On the other hand, administrators have an
increasingly difficult task, because there are more and more users and data. The data
often contain more and more sensitive information. The number of necessary
encryption keys is growing. New protocols appear. Many parameters should be
competently chosen: network protocols, security, and users so that secure com-
munication is available within a reasonable time.

So far, the analysis of the security protocols focused mainly on one issue—
whether the Intruder can carry out the attack upon some honest user or the whole
network. Using different verification methods: simulation or formal modeling (in-
ductive [11], deductive [2] and model checking [4]), it was proven whether the
considered protocol is correct and resistant to the attack. There are several
high-profile projects linked with model checking of security protocols such as
Avispa [1], SCYTHER [3] or native VerICS [7].

However, the mentioned methods and tools usually ignore one extremely
important parameter in their analysis—the time. Suppose that we have a simple
protocol consisting of three steps, and it was discovered that the attack upon this
protocol can be executed in ten steps. It can be concluded that the protocol is not
safe. However, the protocol can be secure using a time limit calculated for three
correct steps. Many protocols designers intuitively began to add timestamps and
IDs to protocols. But in fact, maybe it is sufficient that the administrator possesses
the knowledge: at what time or interval the protocol will be safe.

In [8] a new formal model of the protocols executions was proposed through
which it is possible to test time-dependent security protocols correctness. This
model is used by authors to study the authentication parameters. In Penczek and
Jakubowska papers [5, 6] the network delays were taken into account. Their method
was associated with the communication session proper time calculation. Tested
time constraints allow the indication of the time influence on the protocol security.
Mentioned studies of Penczek and Jakubowska involved only a single session and
have not been continued.

In our work we develop the above considerations by analyzing the time of
composing a message, the transmission time interval, the delay time in the network,
and the time required to decrypt the message. All these types of time form the total
time during which the protocol should be performed—the Timeout. We also ana-
lyze the attack on the protocol and how much time it will take to perform a full
attack, or just a man in the middle attack.

For this study, a tool was implemented, which for a protocol given on the input,
returns information about the proposed protocol execution time (so that only honest
users can execute it), and about a possible attack and the time necessary to carry out
the attack.

The rest of the paper is organized as follows. In the second section, we present
the description of the execution’s formal model, and the computational structure. In
the third one, the implementation and experimental results are described and dis-
cussed. The paper ends with a summary.

54 S. Szymoniak et al.

2 Formal Model and Computational Structure

Time plays an important role in protocols execution. Time dependent protocols
specificity shows that the protocol must be executed in a certain period of time, and
time dependencies have an impact on the security. With these protocols the fol-
lowing concepts are related: the timestamp, the timestamp lifetime, the time of
composing the message, the delay in the network and the session time.

The timestamp is a unique identifier of message generation, the value of which is
set by the unit clock which sends this message. The timestamp is strongly related to
its lifetime notion, which determines how long, starting from the generation
moment, you can use every item in the message being sent. The time of composing
the message is associated with all operations execution time, such as encryption and
random number generation. The delay in the network is the time of message
transmission between the sender and the recipient via a computer network, and the
session time is the expected time to perform all the protocol steps.

The time conditions are related with these concepts. They define the depen-
dencies hat relate the times of individual operations during the protocol steps
execution. The inductive definition of time conditions is presented in [12]. In the
same article, the protocol steps definitions were also included. We took into account
the delay in the network, as well as the protocol participants’ knowledge sets.

To determine the Timeout value in the individual steps as well as the maximum
and the minimum session time, the following designations will be needed:

• n—the number of protocol steps,
• Tses—the session time—the total time of all protocol steps,
• Tsesmax—the maximum session time,
• Tsesmin—the minimum session time,
• Te—the time of encryption—is the time it takes for a user to encrypt the

message,
• Td—the decryption time—is the time it takes the user to decrypt the received

message,
• Tg—time of generating confidential information needed to send the message,
• D—the delay in the network,
• Dmin—minimum delay in the network—the minimum value of adopted network,

delay range,
• Dmax—maximum delay in the network—the maximum value of adopted net-

work delay range,
• Tout—the timeout,
• Tcom—the time of composing the message,
• Tk—the kth step time,
• Tkmin—the kth step minimum time,
• Tkmax—the kth step maximum time.

Timed Analysis of Security Protocols 55

The message composing time is the sum of the sensitive information generation
time and the message encryption time, and will be calculated from the formula:

Tcom ¼ Te þ Tg ð1Þ

The k-th step minimum time is the shortest time during which all the kth step
components should be performed, taking into account the minimum delay in the
network. Similarly, the kth step maximum time is the longest duration of this step,
taking into account the network delay upper limit.

The k-th step time will obviously be calculated considering the various opera-
tions necessary to execute this step (encryption, generation, decryption), taking into
account the current delay value in the network. The individual parameters values
will be calculated using the following formulas:

Tk ¼ Te þ Tg þDþ Td ð2Þ

Tkmin ¼ Te þ Tg þDmin þ Td ð3Þ

Tkmax ¼ Te þ Tg þDmax þ Td ð4Þ

The minimum session time is the shortest time it should take a single session for
the given protocol. This parameter value is associated with the minimum network
delay value and is obtained by adding up the minimum durations for all protocol
steps. Similarly, the maximum session time is the longest time a single session for
the given protocol should last. This parameter value depends on the maximum
network delay value and is calculated by summing up the maximum durations of all
protocol steps. The session time is the sum of all protocol steps times. The indi-
vidual parameters values are calculated using the following formulas:

Tses ¼
Xn
k¼1

Tk ð5Þ

Tsesmin ¼
Xn
k¼1

Tkmin ð6Þ

Tsesmax ¼
Xn
k¼1

Tkmax ð7Þ

The Timeout value for each step should be chosen so that the honest user will
have enough time to execute a step and in order to prevent the Intruder to run the
attack. However, we should also remember that in the real network a disruption
may appear that will have influence on the transmission time. It may also influence
step correctness. The Timeout value for a single step is the sum of the maximum

56 S. Szymoniak et al.

values of the durations of all subsequent steps and the current step. The Timeout in
a single step will be calculated according to the following formula:

Tkout ¼
Xn
i¼k

Timax ð8Þ

where:

• k—the number of the protocol step,
• i—takes values i = k; k + 1, …, n,
• n—the number of steps,
• Timax—is the maximum time of the given step execution.

The protocol execution is deemed correct if all the time conditions imposed on
the protocol steps are met, and the duration of the entire session, including the time
to perform possible additional steps, will range between the minimum and maxi-
mum time of the session.

3 Implementation and Experimental Result

For experiments, an asymmetric protocol was used, which is a modification of the
well-known Needham Schroeder Public Key Authentication Protocol [10], and it
aims at mutual authentication of users. The scheme of this protocol in the Common
Language is as follows:

a1 A ! B : Tah iKb; iðAÞ ;
a2 B ! A : i Bð Þ; Tbh iKa;
a3 A ! B : Tb; i Að Þh iKb:

ð9Þ

In the above protocol there are two users, A and B, who want to communicate
with each other. A user starts the communication by sending B its generated
timestamp encrypted with the public key Kb, and its identifier i(A) is sent in the
plain text.

In response, user B sent A its identifier i(B) and generated timestamp Tb, both
encrypted by public key Ka. In the last protocol step, user A sends back to B the
timestamp decrypted from the previous message and its ID, encrypting them by
public key Kb (authenticates to B).

For the purposes of conducting the experiments, a special tool has been
implemented. This tool allows the automatic modeling and generation of the
security protocols executions including delays in the network. The program has
been implemented in C++ using the standard library and the Standard Template
Library (STL). The application includes all the assumptions described in this article,
as well as in the earlier publications of the authors [7, 9, 12].

Timed Analysis of Security Protocols 57

The implemented tool includes a number of classes and functions. Classes reflect
all cryptographic objects, and functions enable the protocol preparation and its
testing. The first step is to select the protocol for the study, then this protocol is
loaded from a text file (in a ProToc format [9]), using the implemented parser. In
the next step, all the possible protocols executions in the considered bounded space
are generated (in different configurations, including the Intruder). For the prepared
executions set, it is possible to define and use the function “ExecuteSubstitution” in
order to run one of each of the generated executions.

It is also possible to limit the number of tested executions to those that represent
the attack upon this protocol. The function “ExecuteSubstitution” allows to analyze
the run of one of the executions, taking into account the users’ knowledge, and
examine such execution time. It also checks the time conditions imposed on the
protocol steps.

Using the implemented tool we examined the test protocol described by
expression 9. These protocol studies have been divided into three stages. In the first
stage, we found an attack (the protocol is not secure). In the second stage, the
encryption time impact on vulnerability to the Intruder attack was tested. In the last
step, the effect of the delay on susceptibility to attack was examined. Of course,
only the attacking runs have been tested.

The obtained results for this protocol are presented in Table 1. The column
“Send.—Rec.” contains information about the execution participants in the order in
which they appear in the first protocol step. Symbols A and B indicate the honest
users. I means the Intruder who appears as himself, and marks I(A) and I(B) stand
for the Intruder, who pretends to be honest user. In the column “Parameters”,
information about the objects used by the Intruder in the execution has been posted.
These objects can be random numbers, timestamps and cryptographic keys. In
executions in which the Intruder is not present, the value in this column is left
blank.

Table 1 Summary of the test protocol executions

No. Send.—Rec Parameter No. Send.—Rec Parameters

1 A ! B 10 B ! I(A) Ta, Ka

2 B ! A 11 I ! A Ti, Ki

3 I ! B Ti, Ki 12 I ! A Tb, Ki

4 I ! B Ta, Ki 13 I(B) ! A Ti, Kb

5 I(A) ! B Ti, Ka 14 I(B) ! A Tb, Kb

6 I(A) ! B Ta, Ka 15 A ! I Ti, Ki

7 B ! I Ti, Ki 16 A ! I Tb, Ki

8 B ! I Ta, Ki 17 A ! I(B) Ti, Kb

9 B ! I(A) Ta, Ka 18 A ! I(B) Tb, Kb

58 S. Szymoniak et al.

For the second stage of research, the following assumptions for the time
parameters have been made:

• the generation time assume the value of 1 time unit ([tu]),
• the network delay range is 1–3 [tu],
• the encryption and decryption time is changed for each test series from 1[tu] to

10[tu].

The time unit can be adjusted by the administrator as a given input parameter. In
the case of the tested protocol, the attacking executions are those with numbers: 8,
10, 16 and 18. Executions number 10 and 18 represent the “man in the middle”
attack.

Let us analyze the execution number 5:

8:1 B ! I : Tbh iKi; iðBÞ;
11:1 I ! A : Tih iKa; iðIÞ ;
11:2 A ! I : i Að Þ; Tah iKi;
8:2 I ! B : i Að Þ; Tah iKb;
8:3 B ! I : Ta; iðIÞh iKi;
11:3 I ! A : Ta; iðIÞh iKa :

ð10Þ

In Table 2 an attacking execution along with its time analysis was presented. We
assume the following values for specific times: Te = Td = 2 [tu], Tg = 1 [tu], D = 1
[tu]. The delay time range is 1–3 [tu].

In the 8.1 step user B sends the Intruder a message in which he put a timestamp
generated by himself. For this step, we count time as a sum of: Te, Tg, D, Td. To
execute the second step of this run (8.2) the Intruder must possess the timestamp of
user A. That is why he has to execute two steps from another run (11.1 and 11.2).
The time of those steps will be added to the 8.2 step time. In the 11.1 step the
Intruder does not generate his timestamp because he possesses a set of prepared
objects (according to the Dolev-Yao Intruder model assumptions). In response, A
generates its own timestamp and sends it along with his identifier to the Intruder.
The total time consists of encryption, generation, delay and decryption times.

When the Intruder possesses the needed knowledge, he can prepare cipher for
8.2 step. The time for this step consists of 11.1 and 11.2 steps times, encryption

Table 2 Times for the execution number 8

Basic step Additional step Time [tu] Comment

8.1 2 + 1 + 1 + 2 = 6 ok

11.1 2 + 0 + 1 + 0 = 5 ok

11.2 2 + 1 + 1 + 2 = 6 ok

8.2 11 + 2 + 0 + 1 + 2 = 16 [T2out

8.3 2 + 0 + 1 + 2 = 5 ok

11.3 5 + 2 + 0 + 1 + 2 = 10 [T3out && >Tout

Timed Analysis of Security Protocols 59

time, delay and decryption time. All of this together equals 16 which is more than
the Timeout for 8.2 step (T8:2out = 12). In this case, the honest user should break
contact. If we consider another further possible scenario, then we can see that the
Intruder has to collect the required knowledge for step 8.3, so that he can execute
step 11.3. Both steps times give more than T8:3out = 6 but also more than the
maximum time of the session. The attack is not possible.

18:1 A ! IðBÞ : Tah iKb; iðAÞ;
6:1 IðAÞ ! B : Tah iKb; iðAÞ ;
6:2 B ! IðAÞ : i Bð Þ; Tbh iKa;
18:2 IðBÞ ! A : i Bð Þ; Tbh iKa;
18:3 A ! IðBÞ : Tb; iðBÞh iKb;
6:3 IðAÞ ! B : Tb; iðBÞh iKb:

ð11Þ

The second example shows “man in the middle attack”. In the 18.1 step user A
sends to the Intruder, impersonating on B his timestamp encoded by public key Kb

together with his identifier. The total time of this step consists of generation,
encoding and delay times. Because it is “man in the middle attack” the Intruder
does not even try to decode message (Td = 0). The Intruder needs some additional
knowledge to execute the 18.2 step. He gains this knowledge in the 6.1 and 6.2
steps of another run, but he consistently does not encode, generate or decode. That
is why all steps are of short duration. As was shown in table the time for every step
is smaller than its timeout (Table 3).

For different times of encryption it has been shown that the Intruder can easily
carry out the “man in the middle” attack. In all ten series of test executions numbers
10 and 18 were completed correctly (the time conditions in the individual steps
have been met and the duration of the session was in the range of 〈Tsesmin ; Tsesmax〉).
Other attacking executions (8 and 16) ended incorrectly (Fig. 1).

To prevent the Intruder from carrying out the “man in the middle” attack, we
should change the Timeout in the second step of the tested protocol. Performing the
second step requires the Intruder to gain additional knowledge. In Fig. 2 a graph
depicting the range of changes in the value of Timeout in the second step is shown.

Table 3 Times for the execution number 18

Basic step Additional step Time [tu] Comment

18.1 2 + 1 + 1 + 0 = 4 ok

6.1 0 + 0 + 1 + 2 = 3 ok

6.2 2 + 1 + 1 + 0 = 4 ok

18.2 7 + 0 + 0 + 1 + 2 = 10 ok

18.3 2 + 0 + 1 + 0 = 3 ok

6.3 3 + 0 + 0 + 1 + 2 = 6 ok

60 S. Szymoniak et al.

After making changes in the values of Timeout and re-testing, it was proved that
the Intruder would not have sufficient time to carry out the attack.

Study of the effects of network delay on the possibility of attack was held in
seven series of tests. In each series the upper limit of the delay time in the network
has been changed. Of course, the lower limit of network delay has always been one
unit of time—1 [tu]. In each test series the upper limit was increased by 1 [tu] from
the value 4 to 10 [tu]. The fixed encryption time of 2 [tu] and the fixed value of
confidential information generation time—1 [tu] was adopted.

These studies have brought interesting results: when the upper limit of the
network delay ranged between 6 and 10 [tu], all attacking executions finished
correctly. In turn, for delays ranges 1–4 and 1–5 the executions number 8 and 16
(attacking) were unsuccessful.

Fig. 1 Session times

Fig. 2 Timeout changes in the second step of tested protocol

Timed Analysis of Security Protocols 61

4 Summary

The analysis of the correctness of security protocols should not be restricted only to
studying the capacity of a possibility to perform an attack upon it. Each protocol
can be analyzed also in terms of execution time and the possibility of carrying out
an attack during the time of the honest execution. In this paper we have presented a
method of investigating time properties of many different executions, sometimes
executed simultaneously, of the security protocols. Using this we can investigate
how time parameters can be chosen regardless of the possibility of carrying out an
attack execution.

We argue that weak protocols often can be safe if we properly select the time
parameters connected with its executing. Using the presented in this paper tool
networks, an administrator can analyze the quality of a considered protocol and
choose the time for which it can guarantee the security of communication. It is
sufficient to select the right Timeout, or establish a low level of the network delay
so that the threshold for the Intruder will be difficult to jump. Looking on the other
hand, knowing the delays in our own network, we can examine whether the given
protocol guarantees our safety at all.

References

1. Armando, A., et. al.: The AVISPA tool for the automated validation of internet security
protocols and applications. In: Proceedings of 17th International Conference on Computer
Aided Verification (CAV’05), vol. 3576 of LNCS, pp. 281–285, Springer, Berlin (2005)

2. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. ACM Trans. Comput.
Syst. 8(1), 18–36 (1990)

3. Cremers, C.: The Scyther tool: verification, falsification, and analysis of security protocols. In:
Proceedings of the 20th International Conference on Computer Aided Verification, Princeton,
USA, pp. 414–418 (2008)

4. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory 29(2),
198–207 (1983)

5. Jakubowska, G., Penczek, W.: Modeling and checking timed authentication security
protocols. In: Proceedings of the International Workshop on Concurrency, Specification
and Programming (CS&P’Z06), Informatik-Berichte 206(2), str. 280–291, Humboldt
University (2006)

6. Jakubowska, G., Penczek, W.: Is your security protocol on time? In: Proceedings of FSEN’07,
vol. 4767 of LNCS, pp. 65–80. Springer, Berlin (2007)

7. Kurkowski, M., Penczek, W.: Applying timed automata to model checking of security
protocols. In: Wang, J. (ed.) Handbook of Finite State Based Models and Applications,
pp. 223–254. CRC Press, Boca Raton (2012)

8. Kurkowski M.: Formalne metody weryfikacji wlasnosci protokolow zabezpieczajacych
w sieciach komputerowych, wyd. Exit, Warszawa (2013)

9. Kurkowski, M., Grosser, A., Piatkowski, J., Szymoniak, S.: ProToc—an universal language
for security protocols specification. Adv. Intell. Syst. Comput. 342, 237–248 (2015)

62 S. Szymoniak et al.

10. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large networks of
computers. Commun. ACM 21(12), 993–999 (1978)

11. Paulson L.: Inductive analysis of the internet protocol TLS, TR440, University of Cambridge,
Computer Laboratory (1998)

12. Szymoniak, S., Kurkowski, M., Piatkowski, J.: Timed models of security protocols including
delays in the network. J. Appl. Math. Comput. Mech. 14(3), 127–139 (2015)

Timed Analysis of Security Protocols 63

Some Remarks on Security Protocols
Verification Tools

Mirosław Kurkowski, Adam Kozakiewicz and Olga Siedlecka-Lamch

Abstract The problem of security protocols correctness is one of the main security
problems connected with communication in computer networks. Several automatic
tools for verifying properties of such protocols have been proposed and used. These
tools allow to find weaknesses in many variants of the protocols proposed so far.
However, these tools are not entirely bug-free. In this paper, we investigate some
selected problems of well known, and widely used tools for protocols verification
such as AVISPA, Scyther, VerICS or PathFinder. In our considerations, we propose
a few examples of protocols that cannot be used in practice or do not ensure security
goals, but are positively verified by some tools. We discuss problems connected with
these observations and compare how different verification tools can solve them.

Keywords Security protocols � Verification � Correctness

1 Introduction

The average network user often does not realize that under a usual exchange of
views and information via the Internet complex mechanisms that protect its data are
hidden. Communication protocols, and in fact their central part—the security
protocols—provide communicating parties with identification (authentication), new

M. Kurkowski (&)
Institute of Computer Sciences, Cardinal Stefan Wyszynski University,
Warsaw, Poland
e-mail: m.kurkowski@uksw.edu.pl

A. Kozakiewicz
Military Communication Institute, Warsaw, Poland
e-mail: a.kozakiewicz@wil.waw.pl

O. Siedlecka-Lamch
Institute of Computer and Information Sciences, Czestochowa University
of Technology, Czestochowa, Poland
e-mail: olga.siedlecka@icis.pcz.pl

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_6

65

session keys distribution, data encryption, and data security. The user not only does
not have to, but also sometimes shouldn’t even know about this. It is sufficient that
no one overhears, or takes over the user’s data. Meanwhile, protocols invented for
the needs of new tools and systems conceal construction errors. Each such protocol,
before being applied, must be properly verified, and for that purpose, properly
described (specified). For protocols verification, appropriate specification languages
(expressing all the features of the protocol), formal models and appropriate com-
putational structures are needed. In the last twenty years, several such tools have
been introduced and used, so maybe we can consider the problem resolved.
However, who can guarantee that these tools work properly?

In this paper, we examine some of today’s most popular verification tools that use
dedicated specification languages. Let’s start with the largest of them—the AVISPA
tool (Automated Validation of Internet Security Protocols and Applications) [1]. The
project was carried out by several large academic centers (Genoa, Zurich, Nancy)
and Siemens company. The main result of their research is a free and accessible
protocol verification tool. The tool uses its own specification language HLPSL (High
Level Protocol Specification Language)—a language based on roles. Protocols
specification is later translated into low-level Intermediate Format (IF). The verifi-
cation is performed using one of the four offered tool modules: CL-ATSE [14],
OFMC [3], SAT-MC [2], TA4SP [4]. AVISPA allows to examine whether the
protocol ensures information confidentiality, and authenticates users.

Another tested tool is Scyther developed by Cremers [5, 6]. The tool uses its
own protocol specification language: SPDL. Scyther can be used in several ways: to
verify the parameters established in the description of the security protocol, to
generate and verify the security parameters of the input protocol, or for complete
protocol analysis. The Scyther’s author ensures that the tool correctly verifies
protocols regardless of the existence of an attack. It provides an analysis of different
classes of attacks, as well as the so-called multi-protocol analysis when we analyze
the parallel submission of several subprotocols.

We also analyze the VerICS tool implemented by researchers at Polish scientific
institutions [7, 8, 9]. The system has a module verifying security protocols, both
timeless and timed protocols. The system allows testing of different execution
protocol interlaces. The constructed approach examines the different executions of
the same protocol as simple substitutions of different component configurations
(users, keys, nonces, timestamps) to the protocol perceived as an abstract object.
Formalism was designed in such a way to be able to accurately determine the correct
sequences of protocol steps executions, consisting of execution interlaces. Before
verification, investigated protocol should be specified in the ProToc language [8]—
specially constructed for the VerICS tool. The same language is used by the
PathFinder tool [12] which examines interlaces of protocol executions by using a
model built on chains of states. This innovative model allows a very simple, fast and
accurate analysis of security parameters, and is well suited for parallelization [13].

In the article, on the basis of two protocols, we investigate the behavior of these
tools and their ability to detect incorrectness in the construction of protocols. Using
this we try to stress the importance that the problem of investigation and verification

66 M. Kurkowski et al.

of correctness of tools constructed and devoted for automatic verification of security
protocols properties is very important.

An additional goal of this paper is to show the complexity of the formal pro-
tocols description written in specially created for the presented tools specification
languages. The examples show that the language HLPSL used in the AVISPA tool
is very complicated and it is not intuitive. Much simpler specification language is
SPDL developed for Scyther tool. The presented examples show that the ProToc
language is comparable with the SPDL.

2 Automatic Verification of Correct and Incorrect
Protocols

In this section we present an example of well known and correct protocol. We
describe a scheme of the Needham Schroeder Public Key Authentication Protocol
(NSPK), its specification in several languages and results of automatic verification
done by mentioned tools.

Next we present and investigate two another protocols examples. Firstly we
propose an incorrect protocol that just cannot be executed at all. A scheme of this
protocol includes a bug that does not allow to executing it in real-world network
environment. As the second protocol example we propose a scheme that can be
executed but it does not achieve authentication goal because there exist simple
attacks upon it. In both cases we show protocols schemes, their specification in
several specification languages and then present results of automatic verification
using the tools have done.

Example 1 Let us start by presenting a simple example: the specification and
verification results of a short version of the well-known NSPK Protocol, using the
aforementioned tools. This protocol consists of three steps that proceed as follows:

1: A ! B : Na; iðAÞh iKb

2: B ! A : Na;Nbh iKa;
3: A ! B : Nbh iKb:

ð1Þ

In the first message of the protocol, user A sends to user B a message which
contains his own identifier i(A) and a newly generated pseudorandom number Na,
both encrypted under a public key of the user B. In the second message, the user B
in response to A sends Na and a newly generated by himself number Nb, both
encrypted using public key Ka. In the third message, A sends a message to B which
contains value Nb encrypted again using public key Kb.

It is well known that there exists an attack upon this protocol discovered by
Lowe [10]. After this attack, secret data Na and Nb are not secure, and the process of
mutual authentication fails.

Some Remarks on Security Protocols Verification Tools 67

The specification of this protocol in SPDL language is as follows:

protocol nspk(A,B)
{
role A
{
fresh Na: Nonce;
var Nb: Nonce;
send_1(A,B,{Na,A}pk(B))

;
recv_2(B,A, {Na,
Nb}pk(A));
send_3(A,B, {Nb}pk(B));

claim_A1(A,Secret,Na);
claim_A2(A,Secret,Nb);
claim_A3(A,Nisynch);

 }

role B
{
fresh Nb: Nonce;
var Na: Nonce;

recv_1(A,B,{Na,A}pk(B));
send_2(B,A,{Na,Nb}pk(A));
recv_3(A,B,{Nb}pk(B));
claim_B1(B,Secret,Nb);

claim_B2(B,Secret,Na);
claim_B3(B,Nisynch);
}

Observe that it is rather a simple and clear specification, easy to write by
beginner users of the tool. Of course, Scyther reports the known from Lowe paper
attack. No we try to verify NSPK using the AVISPA tool, therefore we need
protocol’s specification in the HLPSL language. This specification is much more
complicated. Here we can see a fragment of the specification of one honest user: A

role alice (A, B: agent,
Ka, Kb: public_key,
SND, RCV: channel (dy))

played_by A def=
local State : nat,

Na, Nb: text
init State := 0

transition
0. State = 0 /\ RCV(start) =|>

State':= 2 /\ Na' := new() /\ SND({Na'.A}_Kb)
 /\ secret(Na',na,{A,B})
 /\ witness(A,B,bob_alice_na,Na')
2. State = 2 /\ RCV({Na.Nb'}_Ka) =|>

State':= 4 /\ SND({Nb'}_Kb)
 /\ request(A,B,alice_bob_nb,Nb')
end role

In this case, all four subtools of AVISPA found the attack mentioned before.

68 M. Kurkowski et al.

In the ProToc language the specification is clear like in SPDL, but here we don’t
need to repeat information about messages sent by different users. This specification
is here:

u=2;
p=3;
s=3;
n=1;
protocol;
A,B; i(A), nA, k+B; nA; <k+B,i(A)|nA>;
B,A; nA, nB, k+A; nB; <k+A,nA|nB>;
A,B; nB, k+B; ; <k+B,nB>;

Of course VerICS and PathFinder discovered Lowe’s attack upon NSPK
Protocol.

NSPK is an example of an incorrect protocol. Lowe proposed its corrected
version in [11]. The change is in the second step, which is:

2: B ! A : Na;Nb; iðBÞh iKa; ð2Þ

Adding identifier of the user B into the second message makes this protocol
correct.

Example 2 In this example we propose and investigate a protocol that cannot be
executed at all by honest users. We have specified and verified this protocol with
the all investigated tools. The results obtained are sometimes unexpected.

Consider a protocol named here AP1 (Aberrant Protocol 1) whose description in
Common Language is as follows:

1: A ! B : Na; iðAÞh iKb

2: B ! A : Na;Nbh iKb;
3: A ! B : Nbh iKb:

ð3Þ

As in the previous example, in the first message user A sends a message to user
B which contains the user’s own identifier i(A) and a newly generated pseudo-
random number Na, both encrypted using public key of the user B. In the second
message, B in response to A sends back Na and Nb, both again encrypted using his
own public key Ka. In the third message, A tries to send a message to B which
contains value Nb encrypted again using public key Kb. Notice that the third pro-
tocol message was intended impossible to be sent. A cannot decrypt Nb after
receiving the second message from B wrongly encrypted by the public key Kb.

It seems to be that a correct verification tool should notice this fact, and answer
with the information that this protocol is incorrect, meaning that it cannot be
executed by honest users at all.

We have checked how the aforementioned verification tools try to verify cor-
rectness of the AP1 protocol. Firstly, we have specified this protocol in SPDL

Some Remarks on Security Protocols Verification Tools 69

language, and we used the Scyther tool. In the SPDL specification, each user is
defined as a role. The full AP1 protocol specification in SPDL is given below.

protocol AP1(A,B)
{
role A
{
fresh na: Nonce;
var nb: Nonce;
send_1(A,B,{na,A}pk(B))

;
recv_2(B,A, {na,
nb}pk(B));
send_3(A,B, {nb}pk(B));
claim_A1(A,Secret,na);
claim_A2(A,Secret,nb);
claim_A3(A,Nisynch);

 }
role B
{
fresh nb: Nonce;
var na: Nonce;
recv_1(A,B,{na,A}pk(B));
send_2(B,A,{na,Nb}pk(B));
recv_3(A,B,{nb}pk(B));
claim_B1(B,Secret,Nb);
claim_B2(B,Secret,na);
claim_B3(B,Nisynch);
}
}

Here Scyther finds no attack and generates no attack graph. All the claims used
to verify the security properties with a status (OK) are verified as secure. Scyther
has no clue that the protocol cannot be executed.

We will now check how the AVISPA tool verifies the AP1 protocol.
A specification of the AP1 protocol in HLPSL is too big for presentation. Here we
show only specification of the role B:

role bob(A, B: agent,
Kb: public_key,
SND, RCV: channel (dy))

played_by B def=
local State : nat,

Na, Nb: text
init State := 1
transition
1. State = 1 /\ RCV({Na'.A}_Kb) =|>

State':= 3 /\ Nb' := new() /\ SND({Na'.Nb'}_Kb)
 /\ secret(Nb',nb,{A,B})
 /\ witness(B,A,alice_bob_nb,Nb')

3. State = 3 /\ RCV({Nb}_Kb) =|>
State':= 5 /\ request(B,A,bob_alice_na,Na)

end role

SATMC, one of AVISPA modules, reported an attack upon this protocol.
By SATMC this attack is as follows:

70 M. Kurkowski et al.

ATTACK TRACE
1. a -> i : {na.a}_kb
2. i -> b : {na.a}_kb
3. b -> i : {na.nb}_kb
4. i -> a : {na.nb}_kb
5. a -> i : {nb}_kb
6. i -> b : {nb}_kb

The same attack is reported by CL-ATSE and OFMC. It is important to note that
this run cannot be named as an attack. It is well known and trivial man-in-the-middle
trivial-attack when the Intruder only receives and forwards messages, doesn’t possess
any secrets, nor does it destroy the authentication process. Consequently, we can state
that these three modules discovered a run which is not an attack. It is interesting that
the fourth subtool of AVISPA TA4SP reports that this protocol is safe.

Only one subtool of AVISPA OFMC reported that this protocol cannot be exe-
cuted. It seems to be contradictory with the OFMC statement about an existing attack.

At the end of investigations of the AP1 protocol, we examined it with VerICS
and PathFinder. Both these tools reported that this protocol is incorrect, meaning
that this protocol cannot be executed.

Example 3
In the previous example we have examined a protocol that cannot be executed, but
by some verification tools it is verified as correct. In this section we present
a protocol that can be executed, and is claimed to be correct by almost all inves-
tigated tools (for example, the authentication process is correct). However, we are
able to show two simple attacks upon this protocol. We prove that even the
authentication cannot be achieved using this protocol.

Let us consider an example protocol named AP2 (Aberrant Protocol 2) whose
description in Common Language is as follows:

1: A ! B : Na; iðAÞh iKb;
2: B ! A : Na;Nbh iKb;� Nb [Kb; i Bð Þ[Ka;
3: A ! B : Nbh iKb:

ð4Þ

In the first message, a user A sends a message to B which contains a value Na and
his own identifier i.e. i(A), both encrypted using public key Kb. In the second
message, B responds to A with Na and Nb encrypted again using public key Kb. In
this message, user B also sends to user A the value Nb encrypted by Kb, and then
encrypted both with identity B by public key Ka. In the third message, A sends a
message to B which contains value Nb encrypted again using public key Kb. In this
case, we can see that the structure of this protocol allows for its execution.
However, in the second step A does not know B’s identity because A cannot
confirm Na when A receives a message. After receiving the third message from B,
wrongly encrypted by public key Kb, A cannot make an authentication.

This protocol can be executed, but authentication is not allowed. User B cannot
authenticate with the user A because A doesn’t see the number Na in the second

Some Remarks on Security Protocols Verification Tools 71

step. User A cannot authenticate with the user B because A doesn’t know the
number Nb.

It is important to note that there exists a simple attack upon this protocol dis-
covered by VerICS and PathFinder. This attack proceeds as follows:

A1: A ! IðBÞ : hNa; iðAÞiKb;
B1: IðAÞ ! B : hNa; iðAÞiKb;

A2: B ! IðAÞ : hNa; NbiKb;� Nb [Kb; i Bð Þ[Ka;
B2: IðBÞ ! A : hNi1; Ni2iKb;� Ni1[Kb; i Bð Þ[Ka

B3: A ! IðBÞ : hNi1iKb:

ð5Þ

Here we have an another attack where user B is not needed.

A1: A ! IðBÞ : Na; iðAÞh iKb;

A2: IðBÞ ! A : Ni1;Ni2h iKb;� Ni1[Kb; i Bð Þ[Ka;

A3: A ! IðBÞ : Ni1h iKb:

ð6Þ

Now, like previously, we examine this protocol using all the investigated tools.
In SDPL language the specification is given below.

protocol AP2(A,B)
{
role A

 {
fresh na: Nonce;
var nb: Nonce;
send_1(A,B,{na,A}pk(B));
recv_2(B,A, {na, nb}pk(B), {{nb}pk(B),B}pk(A));
send_3(A,B, {{nb}pk(B)}pk(A));
claim_A1(A,Secret,na);
claim_A2(A,Secret,nb);
claim_A3(A,Nisynch);

 }
role B

 {
fresh nb: Nonce;

var na: Nonce;
recv_1(A,B,{na,A}pk(B));
send_2(B,A,{na,nb}pk(B), {{nb}pk(B),B}pk(A));
recv_3(A,B,{{nb}pk(B)}pk(A));
claim_B1(B,Secret,nb);
claim_B2(B,Secret,na);

claim_B3(B,Nisynch);
 }}

72 M. Kurkowski et al.

Scyther finds no attacks and generates no attack graph. All the claims used to
verify the security properties with a status (OK) are verified as secure.

Now we try to verify this protocol using the AVISPA tool. A specification of
user B in HLPSL language is as follows:

role bob(A, B: agent,
Ka, Kb: public_key,
SND, RCV: channel (dy))

played_by B def=
local State : nat,

Na, Nb: text
init State := 1
transition
1. State = 1 /\ RCV({Na'.A}_Kb) =|>

State':= 3 /\ Nb' := new() /\
SND({Na'.Nb'}_Kb.{{Nb'}_Kb.B}_Ka)
 /\ secret(Nb',nb,{A,B})
 /\ witness(B,A,alice_bob_nb,Nb')

3. State = 3 /\ RCV({{Nb}_Kb}_Ka) =|>
State':= 5 /\ request(B,A,bob_alice_na,Na)

end role

All of AVISPA’s modules: SATMC, OFMC, TA4SP, CL-ATSE stated that the
AP2 protocol is safe and there are no attacks upon it.

Summarizing this Example is important to note that only VerICS [8, 9] and
PathFinder [12, 13] discovered attacks upon AP2 protocol.

3 Results

In the article, the different behaviors of several protocol verification tools were
examined. We showed this by examining two incorrect protocols. In the first case,
we have a protocol that cannot be executed at all (some message is impossible to be
constructed by the sender). In the second one, the protocol can be executed, but it
does not preserve mutual authentication, and there exists some simple attacks upon
it. Experimental results show that not all the investigated tools are working prop-
erly. Some of them report that these protocols are safe and correct. Some of these
tools report a wrong example of an attack. Remember that the OFMC module
reported that the AP1 protocol cannot be executed at all, but there exists an attack
upon them.

Table 1 shows a comparison of experimental results presented below. In this
table A denotes an existing attack, N—no existing attack, WA denotes a wrong
attack, IP—incorrect protocol (cannot be executed).

Some Remarks on Security Protocols Verification Tools 73

We can see that not only the problem of protocols correctness is important in the
area of automatic software verification, but it is also the problem of the correctness
of (protocols verification) tools. It seems to be that this problem is significant.

In the next work we will explore models of protocols executions used in veri-
fication tools mentioned in the article to answer in detail the question why these
tools in different ways evaluate the correctness of the same protocols, which are
sometimes known, they are not properly constructed.

References

1. Armando, A., et. al.: The AVISPA tool for the automated validation of internet security
protocols and applications. In: Proceedings of 17th International Conference on Computer
Aided Verification (CAV’05), vol. 3576 of LNCS, pp. 281–285. Springer, Berlin (2005)

2. Armando, A., Compagna, L.: An optimized intruder model for SAT-based model checking of
security protocols. In: Armando, A., Vigan‘o, L. (eds.) ENTCS, vol. 125, pp. 91–108.
Elsevier Science Publishers, Amsterdam (2005)

3. Basin, D., Modersheim, S., Vigano, L.: An on-the-fly model-checker for security protocol
analysis. In: Proceedings of ESORICS’03, vol. 2808 of LNCS, pp. 253–270. Springer, Berlin
(2003)

4. Boichut, Y., Heam, P.-C., Kouchnarenko, O., Oehl, F.: Improvements on the Genet and Klay
technique to automatically verify security protocols. In: Proceedings of AVIS’04 (2004)

5. Cremers, C.: The Scyther tool: verification, falsification, and analysis of security protocols. In:
Proceedings of the 20th International Conference on Computer Aided Verification,
pp. 414–418. Princeton, USA (2008)

6. Cremers, C.: Unbounded verification, falsification, and characterization of security protocols
by pattern refinement. In: Proceedings of 15th ACM Conference on Computer and
Communications Security (CCS 2008), pp. 119–128. ACM (2008)

7. Dembinski, P., Janowska, A., Janowski, P., Penczek, W., Polrola, A., Szreter, M., Wozna, B.,
Zbrzezny, A.: VerICS: A tool for verifying timed automata and estelle specifications. In:
Proceedings of the 9th International Conference TACAS’03, vol. 2619 of LNCS,
pp. 278–283. Springer, Berlin (2003)

8. Kacprzak, M., Nabialek, W., Niewiadomski, A., Penczek, W., Polrola, A., Szreter, M.,
Zbrzezny, A.: Verics 2008—a model checker for high-level languages. Artif. Intell. Stud.
5(28), 131–140 (2008)

9. Kurkowski, M., Penczek, W.: Verifying security protocols modelled by networks of
automata. Fundamenta Informaticae 79(3–4), 453–471 (2007)

10. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol. Inf.
Process. Lett. 56(3), 131–133 (1995)

11. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using fdr. In:
TACAS, LNCS, pp. 147–166. Springer, Berlin (1996)

Table 1 Experimental results for three protocols and seven verification tools/modules

Protocol CL-ATSE OFMC TA4SP SATMC Scyther VerICS PathFinder

NSPK A A A A A A A

AP1 WA WA/IP N WA N IP IP

AP2 N N N N N A A

74 M. Kurkowski et al.

12. Siedlecka-Lamch, O., Kurkowski, M., Piech, H.: A new effective approach for modeling and
verification of security protocols. In: Proceedings of 21st International Workshop on
Concurrency, Specification and Programming (CS&P 2012), pp. 191–202. Humboldt
University Press, Berlin (2012)

13. Siedlecka-Lamch, O., Kurkowski, M., Szymoniak, S., Piech, H.: Parallel bounded model
checking of security protocols. In: Proceedings of PPAM’13, vol. 8384 of LNCS. Springer,
Berlin (2014)

14. Turuani, M.: The CL-ATSE protocol analyzer. In: Proceedings of RTA’06, vol. 4098 of
LNCS, pp. 277–286. Springer, Berlin (2006)

Some Remarks on Security Protocols Verification Tools 75

Algorithmic Complexity Vulnerability
Analysis of a Stateful Firewall

Adam Czubak and Marcin Szymanek

Abstract Algorithmic complexity vulnerabilities are an opportunity for an
adversary to conduct a sophisticated kind of attack i.e. on network infrastructure
services. Such attacks take advantage of worst case time or space complexity of
algorithms implemented on devices in their software. In this paper we address
potential risks introduced by such algorithmic behavior in computer networks in
particular on a stateful firewall. First we introduce the idea and theoretical back-
ground for the attack. We then describe in full detail a successfully conducted attack
which takes advantage of the worst case computational complexity ofO(n2) of a hash
table data structure used to store active sessions. The attack at hand is initiated from a
network protected by an stateful firewall router feature to a remote server causing a
DoS (Denial of Service) on an industry grade router. Our experimental results using a
real life network topology show that by generating undetected low bandwidth but
malicious network traffic causing collisions in the firewall’s hash table we cause the
firewall to become unreachable or even announce a segmentation fault and reboot
itself.

Keywords Computer networks � Complexity attack � DoS, Denial of service �
Security � Network vulnerabilities � Computational complexity

1 Introduction

The problem of guaranteeing reliability and high availability of network services is
a hot research issue. Computer network devices, such as routers or servers are at
risk of attacks carried out by using automated software and that is why many

A. Czubak (&) � M. Szymanek
Institute of Mathematics and Informatics, Opole University, ul. Oleska 48,
45-052 Opole, Poland
e-mail: adam.czubak@math.uni.opole.pl

M. Szymanek
e-mail: marcin.szymanek@math.uni.opole.pl

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_7

77

studies have addressed issues of malicious software detection and prevention [1–3].
A particular big threat is posed by DoS (Denial of Service) attacks which are to
slow down or even block operation of a network device [4, 5]. Our research
concerns a special kind of DoS attacks, i.e. algorithmic complexity attacks.

2 Algorithmic Complexity

Algorithmic complexity or in other words the computational complexity, being one
of theoretical computer science fields of interest gives us the means to calculate
time and space complexities of given algorithm [6]. Most commonly we denomi-
nate the computational complexity using the big and little O, Theta and Omega. For
those mentioned we understand informally that:

• T(n) is O(f(n)) means that f(n) describes the upper bound for T(n)
• T(n) is X(f(n)) means that f(n) describes the lower bound for T(n)
• T(n) is H(f(n)) means that f(n) describes the exact bound for T(n)
• T(n) is o(f(n)) means that f(n) is the upper bound for T(n) but that T(n) can never

be equal to f(n)

To simplify the expression of algorithm with the big O notation we most
commonly use the best, average and worst case behavior to describe the resource
usage of a given algorithm dependent on the input data. Many of algorithms cur-
rently in use have decisively different average to worst computational cost. Exactly
this characteristic makes algorithms vulnerable to the so called algorithmic com-
plexity attacks [7].

2.1 Algorithmic Complexity Attacks

Algorithmic complexity attacks introduce a new attack vector [7–10]. Attacks as such
take advantage of the worst case behavior of an algorithm by providing a malicious
data input forcing computational complexity exceeding either expected running time
or even device capabilities. If properly executed this inevitably leads to system
overload resulting in most cases in DoS which is second largest cause of monetary
loss according to a survey conducted in 2014 by PricewaterhouseCoopers [11].

A task at hand for an adversary is to determine whether and what kind of
potentially vulnerable algorithms are used in the attacked system. Good examples
of algorithms that have significantly different average to worst computational cost
are the following: binary search tree, Cartesian tree, hash table, skip list, quick sort,
bucket sort, hashing, pattern matching [7]. In some cases the process of determining
potentially vulnerable algorithms may be a challenge in itself (e.g. proprietary

78 A. Czubak and M. Szymanek

solutions), in others (e.g. open source applications) the exact implementation is
available at hand.

In this paper we focus on a hash table data structure vulnerability exploitation of
a proprietary networking device.

3 Hash Table Data Structure

A hash function [12] in essence maps the universe of space of keys to a finite set. It
reduces the key space. A hash function should be fast and have good distribution
properties. It is not required for a hash function used in this data structure to provide
any means of security.

A hash table is a data structure which is a kind of an association table used to
store objects, popular for its data access speed. Associations to the stored objects
are made possible thanks to the usage of a key that identifies a given object or
information. The key may be the whole object or a carefully chosen part of the
object, in the end the key is just a sequence of bits. High access speed is not
correlated with the table size or the element position in the table. Hash tables use
hash function to generate a resulting hash value, which serves as a table index.

In most cases the hash function is not complex, to avoid additional computation
cost for hashing operations. In a perfect scenario a unique hash value generated by
hash function is assigned to a unique information or data stored in the table. If this
condition is met, the search operation has the time complexity of O(1). On the other
hand, if the condition is not met, we encounter a collision which means the hash
function has assigned the same hash value to two or more data in the table. So one
hash value corresponds to numerous keys. In this case the hash value points to “a
bucket” and in some cases the term hash and bucket may be used interchangeably.
The problem of collisions can be avoided by using a perfect hash function or
minimal perfect hashing [13]. Usage of such functions would unfortunately impose
higher computation time and space requirements than for example modular hashing
[12], used in many applications for hash generation.

Dealing with collisions in hash tables can be addressed in various ways within a
bucket: separate chaining with linked lists, head cells or other structures; open
addressing; coalesced hashing, cuckoo hashing, Hopscotch hashing, robin hood
hashing, 2-choice hashing and others [14]. All of those solutions impose additional
computation on hash table operations. Generally speaking in case of collision the
colliding data is put into the same bucket within a linked list attached to the bucket.
While operation of inserting a single element in a hash table has the computational
complexity is O(1) (regardless of whether a collision occurred or not), if we try to
search for a specific item and the bucket has n items stored within, we end up with
the computational complexity of O(n). It must be noted, that the search operation is
invoked every time we wish to remove or update an object (Table 1).

Algorithmic Complexity Vulnerability Analysis … 79

In some cases we may even encounter the worst case complexity of O(n2)
[12, 13].

The medial solution for hash tables complexity is to achieve an uniform or close
to uniform distribution of hash values to minimize the impact of searching through
computationally more complex buckets. Unfortunately such solution, even if
empirically evaluated and proven by i.e. Perason’s chi-squared test [15], does not
provide significant improvements for hash table complexity vulnerabilities.

Load factor of a hash table is of the form a ¼ n
m where n is the number of stored

objects and m is the number of buckets utilized. A growth of the load factor
indicates that the hash table becomes less efficient and eventually in some cases
may lead to software failure, Denial of Service or even memory segmentation
faults.

In this paper we describe an experiment in which we try to force the hash table
used in a networks router to place all session objects in one single bucket, resulting
in a ¼ n and respectively for the computational complexity of any remove/update
operations on this table to achieve O(n).

3.1 Exploiting Hash Table Data Structure Computational
Complexity

As mentioned, the goal of the attack on a hash table is feeding the algorithm with
malicious data which would cause all data to be put into a single bucket, increasing
the computational complexity of any operation from O(1) to O(n).

A commonly suggested counter-measure to protect hash tables against collisions
is to randomize the hash table [10] by i.e. adding a secret value, as a parameter to
the hash function. This solution makes the attack harder to perform but does not
protect the algorithm [10].

Other possible countermeasures are:

1. using data structures with better pessimistic computational complexity such as:
B-Tree, Red-Black Tree, Play Tree, AVL Tree [6];

2. early attack detection and prevention by dropping malicious data;
3. using cryptographically secure hash functions with additional reinforcement.

Unfortunately only the first solution removes the threat completely by accepting
higher uniform O(1og n) complexity for all input cases.

Table 1 Hash table data structure time and space complexities evaluation [6]

Time complexity Space
complexityAverage Worst

Access Search Insertion Deletion Access Search Insertion Deletion

– O(1) O(1) O(1) – O(n) O(n) O(n) O(n)

80 A. Czubak and M. Szymanek

4 Stateful Firewalls

A network router is a device which forwards layer 3 traffic (i.e. packets) according
to its routing table rules. A stateful firewall is a device which, in addition to
forwarding traffic,1 is aware of the state of connections that it propagates. A firewall
is capable of examining layer 4 (transport layer) to layer 7 (application layer)
protocols and performs evaluation of the protocol conformance, blocking malicious
traffic and in case of some more sophisticated firewall solutions to modifying the
traversing traffic on-the-fly [16].

In order to perform stateful inspection and filtering, the firewall keeps track of
connections and their states in a session table. So in essence a stateful firewall
inspects all packets against a rule set, allowing or dropping these accordingly. If a
packet is allowed to pass through, then the state of the connection this packet
belongs to is being recorded in the object in the session table for the duration of the
connection or until a predefined timeout expires. For example, the session object for
a TCP connection must keep track of at least:

• Source and destination IP addresses;
• Source and destination ports;
• State of the connection;
• Connection timeout.

Each time a packet arrives it is asserted against the objects it the session table. If
an according object is found, an arriving packet is identified as one that belongs to a
previously initiated connection, the state and timeout fields are updated and the
packet is allowed to pass through. If it is identified as initiating a connection, it
triggers creation of a new session object, filling it with the above details, and adding
the object to the session table.

4.1 Session Table

The session table must be implemented by a data structure which allows for rapid
lookups. The performance of the firewall depends greatly on the ability to perform
fast session table lookups and updates. A successful attack on this piece of firewall
architecture might influence and degrade the session lookup process and other
functions of this network device as well.

1A dedicated router usually has a wider range of features regarding tampering with routing tables
and routing process in general then a dedicated firewall. On the other hand a dedicated firewall has
more features regarding security then a router.

Algorithmic Complexity Vulnerability Analysis … 81

In case of industry grade routers and firewalls, for security reasons it is often not
disclosed by vendors how the session table functions. In this paper we try to reverse
engineer the state session table mechanics behind the Cisco® CBAC firewall feature
[17].

4.2 Cisco® Context-Based Access Control

Context-Based Access Control or in short CBAC is one of features available on
Cisco® routers. It allows to implement stateful firewall capabilities on routes.
Generally speaking, stateful firewalls allow to monitor and track states and char-
acteristics of network traffic passing it. In such firewall only known and active
connections stored in routers memory are allowed to pass through the firewall.
CBAC filters TCP and UDP packets using protocol session information gathered
from the application layer. Based on information provided by Cisco® documenta-
tion [17] the CBAC as a context based firewall allows to:

• inspect traffic in one direction for network, transport, and application layer
information;

• extract relevant port information;
• dynamically create access list entries for return traffic;
• close ports at the end of a connection;
• force protocol conformance for some protocols;
• implement denial-of-service (DoS) prevention mechanisms.

The commands used to get insight into the CBAC process are the following
(Fig. 1).

4.3 CBAC Limitations

This mechanism has some limitations as well, for example the protocols it can
inspect are limited to the following:

• Transmission Control Protocol (TCP);
• User Datagram Protocol (UDP);

router#debug ip inspect object-creation
router#debug ip inspect object-deletion
router#debug ip inspect events
router#debug ip inspect function-trace

Fig. 1 List of CBAC event
monitoring and debug
commands

82 A. Czubak and M. Szymanek

• File Transfer Protocol;
• HTTP Protocol;
• CUSeeMe Protocol;
• H.323 Protocol (for example Microsoft NetMeeting or Intel Video Phone);
• R commands (r-exec, r-login, r-sh);
• Real Audio Protocol;
• Remote Procedure Call Protocol;
• Simple Mail Transfer Protocol;
• SQL Net Protocol;
• StreamWorks Protocol;
• TFTP Protocol;
• VDOLive Protocol.

By default the size of CBAC session state table is set to 1024, with the possi-
bility of increasing it to 2048, 4096, or 8192.

4.4 Exploring Cisco® CBAC Mechanism and Its Session
Table

In order to get some insight into the inners of CBAC the Cisco® IOS debug
environment will be used (see Fig. 2). In particular the set of debug ip inspect
* commands. In Fig. 3 follows a debug captured for creation of an allowed flow.

In the last line there is a hint, that the object for this particular connection was
placed in bucket 0. The deletion of object is depicted in Fig. 4.

The debug ip inspect object-creation allowed us to verify which
connection parameter or parameters are being used by the CBAC hash function as
its keys. In order to reverse engineer the bucket association process multiple con-
nections were generated with different source, destination IP addresses, source and
destination ports. It turned out that the only variable that had influence on the
bucket association process was the destination IP address. So connections targeting
the same destination IP address are placed always into the same bucket, so the key
used by the hash function is simply the destination IP address. At this point we did
not know yet, how exactly the hash is being computed but what we know is enough
to conduct a complexity attack which causes collisions in the CBAC hash table.

All that is to do is to generate a lot of connections to the same destination IP
address, which will be placed in the same bucket of the hash table. Adding a single

router#debug ip inspect object-creation
INSPECT Object Creations debugging is on
router#debug ip inspect object-deletion
INSPECT Object Deletions debugging is on
router#

Fig. 2 List of CBAC debug
commands for object creation

Algorithmic Complexity Vulnerability Analysis … 83

object to the table should have O(1) complexity. So just by filling it with n objects,
we will not achieve substantial delays. But later on, after the session table achieves
the desired size, we will drop all the connections at once, which will impose the
workload of O(n2).

5 Experimental Results

5.1 Primary Goals and Assumptions

The main idea is to perform a silent attack on a router, without ringing any bells,
without any notification being sent to the system administrator via SNMP, syslog,
command-line interface (CLI) or any other network management tool during the
whole procedure. The attack should also leave no trace whatsoever on the router as
well.

The malicious traffic flowing through the router should be recognized as per-
fectly legitimate traffic and it should consume negligible percent of bandwidth.

*Jul 19 01:51:50.455: CBAC Pak 84C65548 sis 84E9A388 ini-
tiator_addr (172.16.0.2:60252) responder_addr
(1.1.1.1:21)
initiator_alt_addr (172.16.0.2:60252) responder_alt_addr
(1.1.1.1:21)
*Jul 19 01:51:50.459: CBAC OBJ_CREATE: create sis
84E9A388
*Jul 19 01:51:50.459: CBAC OBJ-CREATE: sid 84EA694C acl
EXTERNAL_INT_ACL Prot: tcp
*Jul 19 01:51:50.459: Src 1.1.1.1 Port [21:21]
*Jul 19 01:51:50.459: Dst 172.16.0.2 Port [60252:60252]
*Jul 19 01:51:50.459: CBAC OBJ_CREATE: create host entry
84EA4250 addr 1.1.1.1 bucket 0

Fig. 3 Debug output of CBAC object creation and bucket assignment

*Jul 19 01:51:50.591: CBAC OBJ_DELETE: delete host entry
84EA4250 addr 1.1.1.1
router#
*Jul 19 01:52:26.071: CBAC OBJ_DELETE: delete sis
84E9A388
*Jul 19 01:52:26.071: CBAC OBJ-DELETE: sid 84EA694C on
acl EXTERNAL_INT_ACL Prot: tcp
*Jul 19 01:52:26.071: Src 1.1.1.1 Port [21:21]
*Jul 19 01:52:26.071: Dst 172.16.0.2 Port [60252:60252]

Fig. 4 Debug output of CBAC object deletion

84 A. Czubak and M. Szymanek

Router’s configuration should be correct and without any modifications making
it easier for the attacker to perform the procedure.

The attacked router should not be under heavy load from its other functions and
have all its resources available to handle the malicious traffic. For this reason the
topology of the environment is trivial: there are only two hosts on the network and
the firewall rules are enabled on a single interface in only one direction.

5.2 Analyzing CBAC Hash Function

Next, out of pure curiosity, we decided to reverse engineer the hash function used
by CBAC, as it is not disclosed in the literature. We expected, that the function
would be a sequence of bitwise assembly operations like AND, OR XOR with a
final modulo operation (%) against the default (1024) number of buckets. But it
turned out we were almost completely wrong.

Again the debug ip inspect object-creation command proved invaluable for this
purpose. Destination IP address to bucket associations that we observed are pre-
sented in first list in Table 2.

The first hint was the fact that the first octet of the IP address was contained
within the resulting bucket number. It turned out not to be always true but it put us
on the right track. To see more in detail how the inners work we decided to switch
to simpler IP address scheme: the natural choice were 0.0.0.0–0.0.0.255 addresses.
But these A class IP addresses are reserved and not allowed, so we turned to
1.1.1.1–1.1.1.255 subnet instead (second list in Table 2).

It is easy to see that the last bit of the IP address is somehow correlated with the
last bit of the bucket ID, it seems to be cleared in the process. If we take the last bit
of the third octet and perform a bitwise XOR with the last bit of the fourth octet, we

Table 2 Observed class B destination IP-to-bucket assignments; Observed class A destination
IP-to-bucket assignments; Observed destination IP-to-bucket 0 assignments

Destination IP
address

Bucket Destination IP
address

Bucket Destination IP
address

Bucket

172.31.0.2 177 1.1.1.1 0 170.85.170.85 0

172.31.0.3 176 1.1.1.2 3 1.2.1.2 0

172.31.0.4 183 1.1.1.3 2 2.1.1.2 0

172.31.0.5 182 1.1.1.4 5 1.255.170.85 1

172.31.0.6 181 1.1.1.5 4

172.31.0.7 180 1.1.1.6 7

172.31.0.8 187 1.1.1.7 6

172.31.0.9 186 1.1.1.8 9

172.31.0.10 185 1.1.1.9 8

172.31.0.11 184 1.1.1.10 11

Algorithmic Complexity Vulnerability Analysis … 85

get the last bit cleared and get the last bit of bucket ID correct. Now let’s XOR the
whole third octet with the fourth. In doing so we get the bucket ID.

Just to make sure we are right, let’s take the 17010 = 101010102 and
8510 = 010101012 (the last row in the third list in Table 2). The result of (170 XOR
85) is clearly 255. And the debug confirms that the bucket 255 was selected for this
flow.

So what about the first two octets? Why do these seem not to be taken into
account? Let’s modify the first two octets and take a look at resulting bucket IDs.
Some non-arbitrary IPs were selected by intuition (the third list in Table 2).

If we take a closer look at data in the third list in Table 2, it turns out, that the
first two octets are correlated by performing XOR operation as well. Now the
resulting zeroes are clearly an outcome of a third XOR operation and this is the
reason why these cancel each other out. So we deduced that the hash function for
the CBAC firewall feature and bucket assignment must be of the form:

Hash DestIPð Þ
¼ Hash DestIP:Octet1;DestIP:Octet2;DestIP:Octet3;DestIP:Octet4ð Þ
¼ ðDestIP:Octet1XOR DestIP:Octet2Þ XOR ðDestIP:Octet3XOR DestIP:Octet4Þ

ð1Þ

The final though on this result is, that there are only 255 buckets and not 1024 by
default as documentation lets us assume. We decided to increase the size of the hash
table with the following command.

Then we repeated the experiments for the IPs in Table 2. The question to answer
was, how will the function discovered in (1) change under the new table size
condition. It was presumed that since this command increases the size of the hash
table, it would increase the number of buckets and the Table 2 would contain
different IP-to-bucket associations making the function in (1) no longer valid, since
the bucket amount would increase.

But it turned out this did not happen. After the hash table size was increased, the
IP-to-bucket associations remained exactly the same. The hash function did not
change at all. There were still only 255 buckets available. The conclusion is, that
the command from Fig. 5 does not increase the amount of buckets and it is unclear
what exactly its purpose is.

router(config)#ip inspect hashtable-size ?
<1024-8192> Hash table size allowed values:

<1024/2048/4096/8192>
router(config)#ip inspect hashtable-size 8192

Fig. 5 Increasing CBAC hash table size

86 A. Czubak and M. Szymanek

5.3 Environment Design and Configuration

First it was experimentally verified, that the following procedure has no effect on
the router without CBAC enabled.

In order for the procedure to yield sound results, it was decided not to use any
form of simulation, emulation or virtualization whatsoever. Simulations do not
reflect real-life hardware behavior. Emulating hardware would limit the procedure
to a set of devices that have an emulator available. Virtualization is a very appealing
solution for creating a lab environment, since it allows for rapid lab deployment and
snapshot/rollback features.

Additionally recently available NFV (Network Function Virtualization) solu-
tions supported by virtualized platforms seem to be a plausible option.
Nevertheless, in real-life networks a router (or a L3 switch) is still a hardware
appliance located in the data center, since only a hardware appliance offers hard-
ware acceleration and in some cases even line-speed packet forwarding. Thus, it
was decided in the end to use commonly available networking devices.

Network lab topology is shown in Fig. 6. Elements of the topology include:

1. Attacker host: Linux kali 4.3.0-kali1-amd64 #1 SMP Debian 4.3.3-5kali4
(2016-01-13) x86_64 GNU/Linux2

2. FTP server: Linux mint 3.19.0-32-generic #37 * 14.04.1-Ubuntu SMP x86_64
GNU/Linux

Fig. 6 Network lab topology

2During the creation of the lab a host with Microsoft Windows operating system was first con-
sidered as well. It turned out, that originating more than 2000 connections from the Windows host
using the ftp console command is problematic and makes the system unstable. So in attempt to
tackle the problem a dedicated program for the FTP client was written in MS Visual Studio. The
embedded optimization methods for managing connections in .NET Framework made the program
to reuse exiting connections instead of creating new ones. Shortly after this all attempts to use
Microsoft Windows as an attack platform were discontinued.

Algorithmic Complexity Vulnerability Analysis … 87

3. Router: Cisco® MSR 2621XM,3 Cisco IOS Software, C2600 Software
(C2600-ADVENTERPRISEK9-M), Version 12.3(11)T)

4. Layer 2 switches: Cisco® Catalyst 2950 WS-C2950-24, Cisco IOS (tm) C2950
Software (C2950-I6K2L2Q4-M), Version 12.1(22)EA14, RELEASE
SOFTWARE (fc1)

The attacking host was Kali Linux default installation with a script for the
connection generation. The operating system was slightly tweaked to allow for
more than the default 8192 outgoing TCP connections. The bash scripts for FTP
connection generation are as follows.

In the script in Fig. 7 the “SYSTEM” FTP command was used for FTP session
refresh. The command “NOOP” seams more appropriate but it is disabled in most
servers, the command “PWD” generated unnecessary disk read access on the ser-
ver, so the “SYSTEM” turned out to be the best, since it only sends a short string of
characters to the client (Fig. 8).

In the script above a distinct delaywas implemented of 0.12 s. The reason for this is
to throttle down the connection generation rate to 500 per minute. It turns out that
above this value the Cisco® CBAC sends a log message of the form shown in Fig. 9.

#!/bin/bash
if [[$# != 3]] ; then

echo "Run the program with three parameters, oth-
erwise setting default configuration -
./SingleFTPConnection 172.31.0.2 anonymous x@x.com"
IP=172.31.0.2
USER=anonymous
PASSWORD=x@x.com

else
IP=$1
USER=$2
PASSWORD=$3

fi
ftp -in <<EOF
open $IP
!sleep 3300
user $USER $PASSWORD
!sleep 3300
system
!echo "Conected SingleFTPConnection PID: $$"
!sleep 3300
system
EOF

Fig. 7 The script SingleFTPConnection.sh for setting up a single FTP connection

3The Cisco 2621XM Multiservice Router was in production till 2007 and its support was dis-
continued as of 2013. This device was chosen deliberately, because it was never the intension of
authors to show product vulnerabilities of any particular vendor. We realize that similar mecha-
nisms are applied by other manufacturers as well. Taking a no longer offered and supported device
seamed the right choice to show that the issue is of importance, while, at the same time, not
causing any damage whatsoever to the manufacturers reputation.

88 A. Czubak and M. Szymanek

So to make the attack more stealth, the delay of 0.12 s was introduced between
distinct connection attempts. Another reason to slow down the connection rate is
the fact that the router was dropping new connections exceeding the 500 limit.

The layer 2 switches were standard off-the-shelf Cisco® Catalyst 2950 managed
switches without any configuration; the default out-of-the box configuration was
used so all fast Ethernet ports were contained in a single VLAN. During the attack
procedure no significant drop in switching performance was noticed, the CPU usage
was below 5 %, since the switching process was performed by the hardware ASICs.

The topology might be simplified if these switches were removed but those were
needed to avoid the interface flapping of the FTP server, host or router. If the hosts
or router resets its interface during the attack, this event is shielded from other
devices thanks to the switches. If, for example, the attacking host and the router
were connected directly, an interface reset on either side would have resulted in
session drops or FTP client connection drops on the other side of the cable, since
the operating system would have detected an interface flap and removed established
connections. Another argument is that an attacker is usually not connected directly
to its target, there is always a number of L2 or L3 devices along the way.

The router was configured simply to forward traffic and additionally the CBAC
functionality was enabled. The inspection for the following protocols was enabled:
TCP,UDP, HTTP, FTP, TFTP, ICMP. In the procedure the FTP protocol inspection
was used to perform the attack (Fig. 10).

The router’s state was monitored directly via a console serial connection to the
minicom application on the diagnostic host. The console connection was chosen for
monitoring, because any remote connections, including SSH, were dropped during
the attack.

%FW-4-ALERT_ON: getting aggressive, count (2/500) current
1-min rate: 501
%FW-4-ALERT_OFF: calming down, count (0/400) current 1-
min rate: 169

Fig. 9 Syslog alert generated during session creation process at high rate

#!/bin/bash
if [[$# != 1]] ; then

echo "Run the program with an amount parameter, ie.
- ./go 10 - for 10 connections"
else
for ((i=1;i<=$1;i++))
do
./SingleFTPConnection.sh &
sleep 0.12

done
fi

Fig. 8 The script GenerateConnections.sh for generating FTP connections

Algorithmic Complexity Vulnerability Analysis … 89

The FTP server was a Linux Mint default installation with vsftpd service
added. The modification were:

• Enabling access for anonymous users;
• The default value for idle_session_timeout for FTP connections was increased

from 300 to 6000;
• The default value for data_connection_timeout for FTP connections was

increased from 300 to 2000.
• The processor load of the FTP server never exceeded 30 %.

5.4 Procedure

The procedure was to generate a lot of connections that would be stored as objects
in the CBAC hash table in a single bucket. In order to cause collisions the same
destination address was used. Adding new connections is not a calculation intensive
operation, as it is adding a new object at the end of the bucket, thus being harmless
to the router. But after the bucket is filled with objects we close all of them at the
same time. The deletion of a single object requires searching for this object in the
bucket first, with presumed complexity of O(n) for a single object and O(n2) for
n objects. In order to do so, all of the open TCP sockets on attacker host were forced
to send a TCP RST message with a simple pkill command. For this purpose the
script in Fig. 11 was used.

It was anticipated that with the increasing number of connection objects hashed
to a single bucket, forcing the router to make a lot of O(n) operations would make
the device become overloaded and maybe even unreachable.

Verification of the amount of sessions stored in the hash table is performed on
the diagnostic PC by the command shown in Fig. 12.

Detailed attack procedure steps were the following:

1. Reboot: router, attacker PC. Restart the vsftpd service on the FTP server
2. Verify on the diagnostic host that the router is fully operational

ip inspect name EXT_INSP_RULES tcp
ip inspect name EXT_INSP_RULES http
ip inspect name EXT_INSP_RULES tftp
ip inspect name EXT_INSP_RULES icmp
ip inspect name EXT_INSP_RULES udp
ip inspect name EXT_INSP_RULES ftp
ip access-list extended EXTERNAL_INT_ACL
deny ip any any

interface FastEthernet0/1
ip access-group EXTERNAL_INT_ACL in
ip inspect EXT_INSP_RULES out

Fig. 10 CBAC configuration

90 A. Czubak and M. Szymanek

3. Generate the required amount of connections with the script in Fig. 8
4. Verify on the diagnostic host that the router has the expected amount of sessions

objects in the session table with the commands in Fig. 12
5. Start the reachability test (via ICMP ping) from attacker host to the FTP server,

note the time stamps.
6. Flood the router with TCP RST with the script in Fig. 11
7. The reachability test fails at this point, wait for the reachability test to succeed

and note the timestamp.
8. Continue to monitor the reachability test until the round-trip time achieves

regular values of around 1.5 ms (from before the attack) for consecutive 10 s.
Note the timestamp.

The time until the reachability test was successful again will be the first attribute.
It denotes the amount of time in seconds it took for the router’s routing function to
operate again, later on denoted by unreachability time.

The time (in seconds) until the round-trip time achieves regular values is the
second attribute of the attack process as it shows when the router returns to its fully
functional state, later on denoted by instability time.

The procedure was performed 5 times for each of the following amount of
session objects stored in a single bucket: 〈1000,2000,3000,(…),10,000〉.

The traffic generated by the Attacker PC was at 30 kbit/s input rate (42 packets
per second) and 25 kbit/s output rate so negligible in practice.

5.5 Results

Figures 13 and 14 illustrate the time required for the router to recover after the
attack. Two characteristic attributes were chosen:

#!/bin/bash
pkill ftp
pkill Single
pkill Generate

Fig. 11 The script used for generating a TCP RST flood

router#sh ip inspect statistics
(...)
Current session counts (estab/half-open/terminating)
[0:0:0]
(...)

Fig. 12 CBAC statistics output

Algorithmic Complexity Vulnerability Analysis … 91

– the time it took for the router’s routing function to operate again (i.e. the FTP
server reachability test was successful again) (Fig. 13).

– the time it took for the routing functions to perform as expected again, i.e. the
round trip time for the FTP reachability test was below 1.5 ms for consecutive
10 s (Fig. 14).

The first attribute does not convey the fact, that the network was still practically
unusable. The routing function returned, but the quality of this service was unac-
ceptable. In Fig. 15 we see this very situation. The ping should return within
*1.5 ms, instead it fluctuates randomly.

It is clear, that even for a small amount of connections like 1000, forcing the
router to remove those causes a 3 s of complete unavailability of the router, which
is unacceptable in corporate network infrastructures.

So an attack that lasts for 120 s causes a 3 s of successful DoS. A 20 min attack
results in a *2 min unavailibilty (10 % of total network unavailablity). In general,

3 8

16

35 36 40 49 78

102

1053 9 15

41 35 39
49

78

107 114

0

20

40

60

80

100

120

0

20

40

60

80

100

120

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

G
eom

etric m
ean tim

e in seconds
M

ed
ia

n
tim

e
in

 se
co

nd
s

No. of established connections
Geometric mean Median

Fig. 13 Median and geometric mean times of routing service unavaliabilty

6 24 40 65 88 95 10
2

96 10
7

11
36

25
43

65

94
101 99 97

109
123

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

G
eom

etric m
ean tim

e in seconds
M

ed
ia

n
tim

e
in

 se
co

nd
s

No. of established connections
Geometric mean Median

Fig. 14 Median and geometric mean times of routing service unstability

92 A. Czubak and M. Szymanek

in Fig. 16 we see that an attack of duration above 4 and up to 10 min provides best
results. Above the 10 min boundary there is no advantage in increasing the attack
duration.

In Fig. 16 we can also see that a 10-min attack causes on average *1.8 min of
device instability and thus the network function unavailability.

Now we will explore the condition in which the CBAC session state table was
after the attack. Figure 17 shows the amount of connection objects that the router
was unable to remove from the connection state table while the attack was per-
formed. The rapid rate of TCP RESET messages sent by the attacker’s PC was too
high for the router to process.

[1461692031] 64 bytes from 172.31.0.2: icmp_seq=704
ttl=63 time=222 ms
[1461692031] 64 bytes from 172.31.0.2: icmp_seq=705
ttl=63 time=46.7 ms
[1461692031] 64 bytes from 172.31.0.2: icmp_seq=706
ttl=63 time=1.40 ms
(...)
[1461692034] 64 bytes from 172.31.0.2: icmp_seq=716
ttl=63 time=1018 ms
[1461692034] 64 bytes from 172.31.0.2: icmp_seq=717
ttl=63 time=827 ms
[1461692034] 64 bytes from 172.31.0.2: icmp_seq=718
ttl=63 time=1215 ms
[1461692034] 64 bytes from 172.31.0.2: icmp_seq=719
ttl=63 time=1007 ms

Fig. 15 Fluctuating routing operation

0.00%

5.00%

10.00%

15.00%

20.00%

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16 18 20

Proportion of attack preparation tim
e

to instability or unreachability tim
e

In
st

ab
ili

ty
or

un
re

ac
ha

bi
lit

y
tim

e
in

 m
in

ut
es

Time in minutes
Geometric mean of routing function instability

Geometric mean of unreachability time

Proportion of attack time preparation to instability

Proportion of attack time preparation to unreachability

Fig. 16 DoS duration period

Algorithmic Complexity Vulnerability Analysis … 93

Figure 18 depicts the amount of successfully removed sessions by the router. It
is worth mentioning that the router was capable of processing correctly no more
than around 4000 sessions; above this limit session delete requests are ignored. It is
not clear why; either it is an expected behavior to ignore delete requests above some
safety threshold, or the router ingress queue simply cannot process that many
requests and some get dropped.

As we can see, the CBAC was unable to fully recover from the attack above the
4000 connection threshold.

5.6 Observations and Notes

During the tests, as the amount of stored sessions reached and exceeded 7000 the
TCP RST flooding caused not only the router to hang for some time, but sometimes
spontaneously reboot itself with the following log output (Fig. 19).

The time it took the router to successfully reboot and return to its fully functional
state was around 10 min. Unfortunately, we could not determine a pattern that
would always trigger a reboot.

Further analysis revealed that simply turning the CBAC off on the router
(Fig. 20), while the collisions achieved as little as 3000 session objects amount,
caused the same reboot effect at every attempt (Fig. 20).

The main conclusion here is, that above 3000 objects in a single bucket
boundary the CBAC mechanism is unstable and unpredictable and it is only a
matter of time when it causes a segmentation fault and router reboot.

We also noticed that the longer the router was running and performing regular
routing functions during our experiments with CBAC above 6000 connection
threshold, the sooner a crash and reboot happened. During the experiments depicted
in Figs. 14, 15, 16, 17 and 18 the router crashed just as many and as much as twice,

1 1 1 22
6

10
70 2,

06
5

3,
45

5

4,
91

5

5,
79

8

7,
14

7

1 1 1
267 1301

2373
3256

4548

5761

7095

0
1000
2000
3000
4000
5000
6000
7000
8000

0
1000
2000
3000
4000
5000
6000
7000
8000 G

eom
etric m

ean no. of sessions
after attack

M
ed

ia
n

no
. o

f s
es

si
on

s a
fte

r
at

ta
ck

No. of established connections
Geometric mean Median

Fig. 17 Number of connections stored in memory after the attack

94 A. Czubak and M. Szymanek

10
0%

10
0%

10
0%

94
%

79
%

66
%

51
%

39
%

36
%

29
%

99
9

19
99

29
99

37
74

39
30

39
35

35
45

30
85 32
02

28
53

0
500
1000
1500
2000
2500
3000
3500
4000
4500

0%

20%

40%

60%

80%

100%

120% A
verage no. of successfully deleted

sessions
A

ve
ra

ge
 p

er
ce

nt
 o

f d
el

et
ed

 se
ss

io
ns

No. of established connections
Average percent of deleted sessions

Average no. of successfully deleted sessions

Fig. 18 Average number and percent of successfully deleted sessions

router(config)#
Unexpected exception to CPUvector 1200, PC = 0x821203AC,
LR = 0x821203A0
-Traceback= 821203AC
CPU Register Context:
(...)
Writing crashinfo to flash:crashinfo_20120718-225826

Unexpected exception to CPUvector 1200, PC = 0x821203AC,
LR = 0x821203A0
(...)
Nested write_crashinfo call (2 times)
=== Flushing messages (22:58:26 UTC Wed Jul 18 2012) ===
Queued messages:
*** System received a SegV exception ***
signal= 0xb, code= 0x1200, context= 0x8460a988
PC = 0x821203ac, Vector = 0x1200, SP = 0x8460bb2c

Fig. 19 Router reset log output

router(config)#
router(config)#no ip inspect
router(config)#
Unexpected exception to CPUvector 1200, PC = 0x821203AC,
LR = 0x821203A0
(…)

Fig. 20 Induced router reboot by CBAC shutdown

Algorithmic Complexity Vulnerability Analysis … 95

because the first step of the procedure was to reboot the equipment at startup. When
the first step of the procedure was omitted, the crash and reboot happened every
time the amount of objects exceeded 800.

6 Conclusions and Future Work

We have described the algorithmic complexity attacks as a possible vector which
can be used for inflicting a DoS attack on computer systems. We have focused on
the hash table data structure.

We have conducted and described in detail a successful DoS attack, performed
on an industry-grade router using stateful firewall functionality provided by Cisco®

Context-Based Access Control (CBAC). We discussed an attack scenario, all
necessary scripts, commands and tools to conduct such an attack and potentially
replicate our results. The attack required as little bandwidth as 24 kbit/s to perform.

Our experiments showed that it is possible to cause severe network outage of a
couple of minutes or even router’s crash and reboot, without leaving any trace
whatsoever of the attack ever taking place. An industry grade equipment is vul-
nerable to algorithmic complexity attacks just as open source solutions are.

Conducted research has proven that even with corporate equipment, such as
Cisco® routers, algorithmic complexity attacks are a serious threat. The behavior of
an exemplary device was analyzed.

We believe that in the presented case there is a possibility to use more uniformly
distributed hash function and a different key to lower the threat or impact of
complexity attack without any significant increase in computational complexity of
firewalls session table algorithm. We also believe that it is possible, and in some
cases mandatory, to use algorithms with slightly higher computational complexity
which are invulnerable to algorithmic complexity attacks without a major loss in
performance. Software prone to such attacks should not be used for firewalls, IDS
and IPS systems unless properly secured or used for a very narrow spectrum of
controlled input.

As a follow-up we intend to develop a modified hash table data structure,
customized for storing session objects representing connections in firewalls, that
would be invulnerable to algorithmic complexity attacks.

References

1. Miao, R., Yu, M., Jain, N.: NIMBUS: cloud-scale attack detection and mitigation. In:
Proceedings of the ACM Conference on SIGCOMM, pp. 121–122 (2014)

2. Stevanovic, D., Vlajic, N., An, A.: Unsupervised clustering of Web sessions to detect
malicious and non-malicious website users. Procedia Comput. Sci. 5, 123–131 (2011)

96 A. Czubak and M. Szymanek

3. Suchacka, G., Sobków, M.: Detection of internet robots using a Bayesian approach. In:
Proceedings of the 2nd IEEE International Conference on Cybernetics, Gdynia, Poland,
pp. 365–370 (2015)

4. Tan, Z., Jamdagni, A., He, X., Nanda, P., Liu, R.P.: A system for denial-of-service attack
detection based on multivariate correlation analysis. IEEE Trans. Parallel Distrib. Syst. 25(2),
447–456 (2014)

5. Tao, Y., Yu, S.: DDoS attack detection at local area networks using information theoretical
metrics. In: Proceedings of the 12th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, pp. 233–240 (2013)

6. Thomas, H.C., Charles, E.L., Ronald, L.R., Clifford, S.: Introduction to algorithms, 3rd edn.
ISBN: 9780262033848

7. Crosby, S.A., Wallach, D.S.: Denial of service via algorithmic complexity attacks. In:
Proceedings of the 12th USENIX Security Symposium, pp. 29–44. USENIX Association,
Berkeley, CA USA (2003)

8. Bar-Yosef, N., Wool, A.: Remote algorithmic complexity attacks against randomized hash
tables. In: Filipe, J., Obaidat, M.S. (eds.) E-business and telecommunications ICETE 2007.
CCIS, vol. 23, pp. 162–174. Springer, Heidelberg (2007)

9. Klink, A., Walde, J.: Efficient denial of service attacks on web application platforms (2011).
https://events.ccc.de/congress/2011/Fahrplan/events/4680.en.html

10. Quynh, H.: Recommendation for applications using approved hash algorithms. NIST
technical report SP 800-107. National Institute of Standards and Technology Gaithersburg,
MD, US (2009)

11. US cybercrime: Rising risks, reduced readiness key findings from the 2014 US State of
Cybercrime Survey, PricewaterhouseCoopers LLP (2014). http://www.pwc.com/
cybersecurity

12. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley Professional, Boston
(2011)

13. Mehlhorn, K.: Data structures and algorithms 1: sorting and searching, vol. 1. Springer,
Heidelberg (1984)

14. Babka, M.: Properties of universal hashing. Master thesis, Charles University in Prague
Faculty of Mathematics and Physics (2010). http://ktiml.mff.cuni.cz/*babka/hashing/thesis.
pdf

15. Plackett, R.L.: Karl Pearson and the chi-squared test. Int. Stat. Rev. (International Statistical
Institute, ISI) 51(1), 59–72 (1983)

16. Tanenbaum, A.S., Wetherall, D.J.: Computer Networks, 5th edn. Pearson, Boston (2010)
17. Cisco IOS Security Configuration Guide: Securing the data plane. Release 12.4, Cisco

Systems (2014). http://www.cisco.com/c/en/us/td/docs

Algorithmic Complexity Vulnerability Analysis … 97

https://events.ccc.de/congress/2011/Fahrplan/events/4680.en.html
http://www.pwc.com/cybersecurity
http://www.pwc.com/cybersecurity
http://ktiml.mff.cuni.cz/%7ebabka/hashing/thesis.pdf
http://ktiml.mff.cuni.cz/%7ebabka/hashing/thesis.pdf
http://www.cisco.com/c/en/us/td/docs

Analysis of the Minutia Groups Base
of Currents Algorithms ‘Pasterns’
Database

Michał Szczepanik, Ireneusz J. Jóźwiak, Karol Stasiński
and Paweł Wichary

Abstract In this paper authors use their own fingerprint recognition algorithm in
existing biometric system. Most of current systems use insecure algorithms, which
can be easily broken and they not tolerate fingerprint damage. As most of new
algorithms use different representation of fingerprints pattern than old one, authors
present their own algorithm, which can work with existing database of fingerprints’
patterns and also without changes of sensors.

Keywords Biometric � Fingerprint � Minutia group � Access controls

1 Introduction

Nowadays fingerprints recognition is one of the most popular biometric method to
authorize or identify users of a system [11]. Unfortunately, existing systems based
on old algorithms. As every day, people are exposed to cuts, wounds and burns; it is
important that algorithms in that system are resistant to this type of damage.
Existing fingerprint recognition systems usually use one of two popular algorithms’
family: Minutiae Adjacency Graph (MAG) or Elastic Minutiae Matching
(EMM) [2, 8]. These types of algorithms, not tolerate damages of fingerprint. Even
small cut can change structure of data extracted from it [7, 12]. New algorithms
which based on few types of features cannot be easily ported to existing biometric

M. Szczepanik (&) � I.J. Jóźwiak � K. Stasiński � P. Wichary
Department of Informatics, Faculty of Computer Science and Management,
Wrocław University of Technology, Wrocław, Poland
e-mail: michal.szczepanik@pwr.edu.pl

I.J. Jóźwiak
e-mail: ireneusz.jozwiak@pwr.edu.pl

K. Stasiński
e-mail: Karol.stasinski@gmail.com

P. Wichary
e-mail: wicharypawel@gmail.com

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_8

99

system, as users’ data store only information about minutiae and sensors were not
designed to detect them [14]. This caused that big biometric systems which existing
in companies, mobile phones, or even in US visa systems need to use algorithms
which are unsecured and with low level of usability. There were few concepts of
updating these types of algorithms [9, 10], but each time the final solution was
reregister of all users. For many big fingerprint database systems this type of
solution is almost impossible. Authors’ algorithm uses also only minutiae to rec-
ognize fingerprints, so based on existing data representation it should be able to
convert it and recognize same fingerprints.

2 Quality Assessment of Biometric Algorithms

There are two most important performance metrics for biometric systems FAR and
FRR [11, 18].

False Accept Rate (FAR), also called False Match Rate (FMR), is the probability
that the system incorrectly matches the input pattern to a non-matching template
from the database. It measures the percent of invalid inputs which are incorrectly
accepted.

False Reject Rate (FRR), also called False Non-Match Rate (FNMR), is the
probability that the system fails to detect a match between the input pattern and a
matching template from the database. It measures the percent of valid inputs which
are incorrectly rejected. They can be presented mathematically as:

FAR Tð Þ ¼ Z1

Th

g xð Þdx ð1Þ

FAR Tð Þ ¼ ZTh

0

g xð Þdx ð2Þ

where Th is the value of a threshold used in the algorithm and g(x) is function of
algorithm that analyzed all samples with pattern. Both FAR and FRR are functions
of a threshold T. When T decreases, the system has more tolerance to intraclass
variations and noise, however, FAR increases. Similarly, if T is lower, the system is
more secure and FRR decreases.

3 Current Algorithms

Both compared algorithms based on minutiae which are characteristic points rep-
resent ridge ending and bifurcation. Each minutia is represented by coordinates
(x, y) and orientation (H). Orientation path is average or traces of ridges which

100 M. Szczepanik et al.

create the minutiae. Orientation of bifurcation is presented on Fig. 1. Typically,
systems recognize only two basic minutiae types ridge ending and bifurcation, and
ignore combinations.

3.1 Minutiae Adjacency Graph (MAG)

The most popular fingerprint recognition algorithm is based on local and global
structures represented by graphs of characteristic points, see Fig. 2. In this type of
algorithms, local structures to find corresponding points to align feature vector are
used first, then global structures are matched [3, 4]. This type of algorithm was used
by He and Ou [5], Ross et al. [15, 16]. They also use thin-plate spline (TPS) model
to build an average deformation model from multiple impressions of the same
finger. Owing to iteratively aligning minutiae between input and template
impressions, a risk of forcing an alignment between impressions originating from
two different fingers arises and leads to a higher false accept rate. Typically, a
minutia matching has two steps: registration aligns fingerprints, which could be
matched, as well as possible and evaluation calculates matching scores using a
tolerance box between every possibly matched point (minutiae) pairs.

Database store set of vertices and set of edges, presented by Eq. 3.

G ¼ V ;Eð Þ; ð3Þ

where:

V– a set of vertices representing the set of minutiae,
E– a set of edges,
G– graph of fingerprint,
Vertex (v) represent one of minutiae according to the Eq. 4.

v ¼ ðx; y;HÞ ð4Þ

Fig. 1 Minutiae’s orientation
for bifurcation type

Analysis of the Minutia Groups Base of Currents Algorithms … 101

where:

x, y– coordinates of minutiae,
H– minutiae’s orientation.

Edges are represented by vertices which they are connecting, distance and ori-
entation, according to the Eq. 5.

e ¼ ðu; v; rad; rc;UÞ ð5Þ

where:

u, v– vertices connected by edge e,
rad– Euclidean distance between vertices u and v,
rc– number of ridges between vertices u and v,
U– angle between the edge and the axis x.

3.2 Elastic Minutiae Matching (EMM)

The EMM algorithm typically uses only global matching where each point
(minutia) which has a type, like ending or bifurcation, needs to be matched to a
related point in the second fingerprint image. Based on elastic deformations which
are used to compare minutiae pairs, see Fig. 3. That are further apart because of
plastic disrotations, and therefore to decrease the False Rejection Rate, so in most
popular algorithms authors increase the size of bounding boxes [12, 13] to reduce
this problem, but as side effect they got higher False Acceptation Rate (FAR). In
this type of algorithms, for elastic match, TSP [1] also can be used, which provides
better performance than only threshold of deformation. Each minutia is represented
in similar way as in MAG algorithm. This is shown in Eq. 6

Fig. 2 Graph of minutiae used by MAG algorithm

102 M. Szczepanik et al.

v ¼ ðx; y;HÞ ð6Þ

where:

v– minutia,
x, y– coordinates of minutiae,
H– minutiae’s orientation.

4 Fingerprint Recognition Algorithm Based on Minutia’
Groups

The proposed solutions, in contrast to other algorithms, are more resistant to
damage and it based on minutiae’ groups instead on single minutia point, and was
described in details in Author publication [17].

Fig. 3 Elastic Minutiae
matching deformations

Analysis of the Minutia Groups Base of Currents Algorithms … 103

In this algorithm minutiae, known as Minutiae’ Groups Matching, image is
divided into segments. Each segment is corresponding minutiae’s group and it is
described by parameters (x, y, nom), where x and y are the coordinates of segment,
and nom determines the number of minutiae in the group. Additionally, one of
implementation uses an additional parameter specifying the probabilities of damage
in a given segment, which is estimated by adjacent groups, based on the distribution
of areas rejected by the mask of valid fingerprint image. Current algorithm
implementation searches small groups of minutiae that that contain up to 5 minutiae
(see Fig. 4). Then, based on the neighboring groups (max 4) creates a new large
group. For each, the orientation parameters and the number of characteristic points
are recalculated. The last step is to create a matrix of Euclidean distances between
the largest groups.

Groups are compared with two parameters: dx—the distance defining the dif-
ference between groups in the pattern and tested fingerprint, px—the threshold of
damage occurrence probability (determined by whether the group is under con-
sideration in the analysis). System decide which groups should be compared and set
the priority for them based on numbers of minutiae in group. After that the com-
parison of the groups is done. Groups are divided according to the priority, that is
defined by the number of minutiae in the group and selective attention algorithms
[6], which are based on probabilities of damage in a group segment. This provides
quick verification of whether the analyzed fingerprint is consistent with the pattern
(Fig. 5).

Fig. 4 Fingerprint divided
into segments (Source Own
work)

104 M. Szczepanik et al.

Developed algorithm is based on minutiae groups where each group is basically
represented by the coordinates—x, y and the number of minutiae—nom contained
in the group. Group covers an area equal to 2.5 the width of the furrow, its
coordinates are in the middle of the square which blundering this area. Number of
minutiae in the group determines its priority, additionally stored parameter
describing the probability of damage—pd in the area represented by the group. In
conclusion the group is defined in Eq. 6.

Mg : x; y; nom; pdf g ð7Þ

Based on these data a matrix of Euclidean distances between the groups can be
created. Data on the characteristic point is limited to its weight (nom) and the
probability of damage pd. Finally, Eqs. 7 can be obtained for groups relation

MgdistIJ : MgI ;MgJ ; distðMgI ;MgJÞ
� � ð8Þ

where distðMgI ;MgJÞ is Euclidean distances between the groups MgI and MgJ.
Data stored for analysis to prevent reproduction of the original fingerprint image.

Additional storage parameters to estimate the damage Allows you to better match
fingerprints in the event of damage.

Fig. 5 Detecting relations
between minutiae groups
(Source Own work)

Analysis of the Minutia Groups Base of Currents Algorithms … 105

5 Conversion of Fingerprints’ Data

Minutiae Adjacency Graph and Elastic Minutiae Matching use representation of
fingerprints minutiae, see Eqs. 4 and 6. Based on that we can easily create groups
representation, which are needed by Minutiae’ Groups Matching algorithm.

Fingerprints area is defined by minutiae set most of the top, bottom, left and right
of the image based on coordinates. Based on coordinates data are divided to seg-
ments. Each segment includes minutiae from specific area defines by parameter s,
which is size of minutiae. Decision that minutia should be included in this segment
is defined by Eq. 9

DaddðvÞ ¼ 1
0
when xg\x\xg þ s and yg\y\yg þ s

otherwise

�
ð9Þ

where:

Dadd(v)– decision that minutiae v should be added to group (1 add, 0 do not add),
x, y– coordinates of minutia v,
xg, yg– coordinates of group,
s– size of group.

Both algorithm (MAG and EMM) doesn’t verify fingerprints damages during
template creation, this caused that it can have additional minutiae (created by
incorrectly processing damaged area of fingerprint. Based on typical distribution of
minutia, anomaly is a group which has 7 or more minutiae, so these types of group
are ignored and marked as damaged.

6 The Experiment

Test were done using FVC2004 [11] fingerprint databases. For each of four data-
bases, a total of 120 fingers and 12 impressions per finger (1440 impressions) were
gathered. Unfortunately, most of the publicly available databases of fingerprints do
not include the problem of physical damage, so additionally small damage such as
cuts and burns has been generated on each sample. In most cases artificially applied
damages cover 5–20 % of the fingerprint. For 10 % of the samples they cover
approximately 50 % of the area to simulate severe damage. First experiment, in
Table 1, shows errors probability for native implementation of algorithms. Each of

Table 1 The result of
experiment using FVC2004
database with originals
representations

Algorithm FRR (%) FAR (%)

MAG 0.80 0.63

EMM 1.20 1.15

MGM 1.70 0.86

MGM SA 0.28 0.16

106 M. Szczepanik et al.

them create their own representation of fingerprint pattern. The best values provide
authors algorithm and it is three times better than MAG.

In second experiment MAG data representation was used for other algorithms,
see Table 2. For each algorithms values of errors was worse than in first test, but the
order of algorithms’ quality stays the same.

Table 3 presents result of experiment for EMM representation of fingerprint
data. For each algorithm value of False Rejection Rate grow, but only 0.05 %. The
data representation of EMM stores more minutiae than MAG. In second algorithms
only minutiae that create graph, so they are near to each other, are stored.

7 Conclusion and Future Work

The proposed algorithm enables the identification of fingerprints in places where
they are exposed to frequent damage, without changing whole infrastructure like
sensors. Proposed algorithm can be easily adopted in places where Minutiae
Adjacency Graph (MAG) or Elastic Minutiae Matching (EMM) algorithms are
used. The way how proposed solution stores fingerprint data makes it impossible to
recreate the original structure as it only provides information about the minutiae
clusters and their frequency. As future work design of algorithm, which detect
anomalies in fingerprints data patterns, is planned.

References

1. Bazen, A.M., Gerez, S.H.: Fingerprint matching by thin plate spline modelling of elastic
deformations. Pattern Recogn. (2003)

2. Cappelli, R., Lumini, A., Maio, D., Maltoni, D.: Fingerprint classification by directional
image partitioning. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 402–421 (1999)

Table 2 The result of
experiment using FVC2004
database with representation
created from MAG algorithm
database

Algorithm FRR (%) FAR (%)

MAG 0.80 0.63

EMM 1.52 1.15

MGM 1.75 0.92

MGM SA 0.35 0.55

Table 3 The result of
experiment using FVC2004
database with representation
created from EMM algorithm
database

Algorithm FRR (%) FAR (%)

MAG 0.95 0.63

EMM 1.25 1.15

MGM 1.75 0.86

MGM SA 0.31 0.16

Analysis of the Minutia Groups Base of Currents Algorithms … 107

3. Chikkerur, S., Govindaraju, V., Cartwright, E.: NK-plet and coupled bfs: a graph based
fingerprint representation and matching algorithm. LNCS pp. 309–315 (2006)

4. Grzeszyk, C.: Forensic fingerprint examination marks (in Polish). Wydawnictwo Centrum
Szkolenia Policji, Legionowo (1992)

5. He, Y., Ou, Z.: Fingerprint matching algorithm based on local minutiae adjacency graph.
J. Harbin Inst. Technol. 10(05), 95–103 (2005)

6. Huk, M., Szczepanik, M.: Multiple classifier error probability for multi-class problems.
In: Eksploatacja i Niezawodnosc—Maintenance and Reliability, vol. 3, pp. 12–17 (2011).
doi:10.17531/ein.2011

7. Hicklin, A., Watson, C., Ulery, B.: How many people have fingerprints that are hard to match,
NIST Interagency Report 7271? (2005)

8. Hong, L., Wan, Y., Jain, A.K.: Fingerprint image enhancement: algorithm and performance
evaluation. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 777–789
(1998)

9. Indovina, M., Uludag, U., Snelick, R., Mink, A., Jain, A.: Multimodal Biometric
Authentication Methods: A COTS Approach. In: Proceedings of MMUA (2003)

10. Jain, A.K., Ross, A., Nandakumar, K.: Introducing to biometrics, Springer, Berlin (2011)
11. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition, 2nd

edn. Springer, Berlin (2009)
12. Pankanti, S., Prabhakar, S., Jain, A.K.: On the individuality of fingerprints. In: Proceedings of

Computer Vision and Pattern Recognition (CVPR) (2001)
13. Parziale, G., Niel, A.A.: Fingerprint matching using minutiae triangulation. In: Proceedings of

ICBA (2004)
14. Ratha, N.K., Govindaraju, V.: Advances in Biometrics: Sensors, Algorithms and Systems.

Springer, Berlin (2007)
15. Ross, A., Dass, S.C., Jain, A.K.: A deformable model for fingerprint matching. Pattern

Recogn. 38(1), 95–103 (2005)
16. Ross, A., Nandakumar K., Jain, A.K.: Handbook of Multibiometrics. International Series on

Biometrics. Springer, Berlin (2011)
17. Szczepanik, M., Szewczyk, R.: Fingerprint identification algorithm (in Polish). KNS 1, 131–

136 (2008)
18. Wayman, J.L., Jain, A.K., Maltoni, D., Maio, D.: Biometric Systems, Technology, Design

and Performance Evaluation, 1st edn. Springer, Berlin (2005)

108 M. Szczepanik et al.

http://dx.doi.org/10.17531/ein.2011

Part III
Computing and Service Systems

Architectures

Self-organizing Agents for Dynamic
Network- and QoS-Aware Service
Composition in Cloud Computing

Leila Helali and Zaki Brahmi

Abstract Cloud computing plays a vital role in distributed systems used by
Internet users. It provides a flexible environment in which data, equipment and
services can be shared among end users in order to save time and cost. Cloud
service composition is still one of the most important issues related to this para-
digm. Indeed, Dynamic Cloud Service Composition (DCSC) is the process of
combining a chain of connected atomic Cloud services together in order to create a
more complex and value-added composite service. In this work, we present a new
method of cloud service composition guided by QoS of services (execution time
and cost) and network QoS (data transfer cost and latency). The latency is estimated
by the Euclidean distance calculated based on the coordinates of Cloud services that
are based on a network coordinate system called GNP (Global Network
Positioning). The proposed solution is based on the paradigm of agents where
autonomous entities cooperate together to generate an optimal composition within a
reasonable time. Experimental results confirm the modesty of our approach.

Keywords Cloud � GNP � Composition � Qos � Agent

L. Helali (&)
Higher Institute of Applied Science and Technology of Sousse, Sousse University,
Sousse, Tunisia
e-mail: leilahelali.ing@gmail.com

Z. Brahmi
RIADI Laboratory, Manouba University, Manouba, Tunisia
e-mail: zakibrahmi@yahoo.fr

Z. Brahmi
Higher Institute of Computer Sciences and Communications Techniques of Hammam,
Sousse University, Sousse, Tunisia

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_9

111

1 Introduction

Cloud computing has emerged as a new paradigm for the next generation of dis-
tributed computing. It has attracted much attention in academia and industry. The
vision of cloud computing is that computing will not be conducted on local com-
puters in the future, but in distributed installations operated by third parties IT
services. Several companies like Amazon [1], Microsoft [2] and IBM [3] have
already proposed cloud computing solutions on the market [4]. Indeed, cloud
computing is to uniformly expose the hardware and software as a service that can be
rented on demand. In this new paradigm, organizations no longer need large capital
expenditure or equipment to deploy their services or software.

Thus, all the cloud resources are accessed as services, which can be classified
into application services (SaaS) and utility computing services (PaaS and IaaS).
Web services is a SaaS, which represent software components encapsulating units
of well-defined business functionalities. Utility computing services are software or
virtualized hardware that support the application services, as virtual machines,
network services, etc. Indeed, in many cases self-Cloud service represents a partial
solution which is not enough to meet the applicant’s requirements. Thus, a service
composition processes is necessary for the purpose of providing a single composite
service to Cloud consumers. The Dynamic Cloud Service Composition (DCSC)
problem is made to select a set of interrelated services to achieve complex func-
tionality by combining basic services. However, DCSC is subject to several issue:
(i) multiple services with equivalent functionality are available, (ii) the same service
is deployed in different Clouds, (iii) highly dynamic environment like Cloud
computing. Thus, finding a feasible and optimal composition in terms of time and
cost, services and network perspective is an NP-complete problem [5].

We propose, in this paper, a composition approach taking into account: exe-
cution time of service, network latency and energy consumption in cloud services
and network. It was based on a network coordinate system “Global Network
Positioning (GNP)” [6] to estimate the network latency and multi-agent systems
(MAS) to generate the optimal composition. Indeed, intelligent agents cooperate
together to find dynamically optimal solutions while maintaining the distributed
nature and rapidly evolving cloud environments. They self-organize according to
the inputs and outputs of services to form a social network of agents.

The rest of the paper is structured as follows: Sect. 2 illustrates a study of the
related work as well as their potential limitations. Section 3 elaborates the basic
used concepts and the social network composition Cloud service formulation
problem. We focus in Sect. 4 on the details of the proposed approach. Section 5
shows the experiment results of our approach. Finally, in Sect. 6, we conclude this
paper and highlight some future work.

112 L. Helali and Z. Brahmi

2 Related Work

There is many approaches to treat cloud services composition problem. Some of
them adopt the QoS of Cloud services as a criterion like [4]. The major drawback of
this approach is that the penalty factor in the adaptation function is static [4].
However, cloud environments are highly dynamic. In [7, 8] the authors propose a
cloud service composition approach taking into account the network QoS (latency
and transfert rate). Both [7, 8] are centralized methods, treat only the selection
process based on a predefined composition. In [9], a multi-Cloud service compo-
sition method is presented. The service composition problem is translated into a
combinatorial optimization problem. Then, by using artificial intelligence planning
techniques, a service composition solution is provided. However, this solution is
also based on a predefined composition and do not treat the network QoS. Other
methods based on multi-agent systems took place [10, 11]. They allow you to select
the most appropriate services to create a composite solution. In the solution
described in [11] no QoS attribute is taken into account. These two approaches are
based on a predefined composition as well and do not allow to consider the network
QoS. Finally, the solution proposed in [12] provides a set of service composition
encapsulated in a middleware. It seems difficult to implement and adapt them to the
cloud platforms already developed and functional.

To summarize, all the mentioned approaches are based on a predefined com-
position where this latter is reduced into a selection problem to choose the best
concrete service that will run every abstract task. Most of these approaches do not
take into account the network QoS that has a significant impact on the performance
of the composition. Thus, most cited approaches are less answered in our case
where we treated composition in a distributed environment, open and rapidly
changing. In this case, a distributed dynamic solution that addresses the specifics of
the environment in question will be our favor.

In this paper, we adopted a composition solution based on the MAS. Thus our
approach is based on four basic principles: (i) QoS-awareness: Cost and execution
time of services, (ii)Network-awareness: the number of Cloud services and their
distributions across the network increasing rapidly, it increases the impact of the
network on the QoS of the composition, (iii) No predefined composition is con-
sidered: most work is based on static composition techniques defined using busi-
ness process. Due to the ongoing development of the service offering and
capabilities, a static description of the composition is difficult to maintain. Our
approach overcomes this limitation and to adjust the composition to the expecta-
tions of the user and therefore not to be constrained by a priori composition, iv)
MAS based: our approach is based on autonomous and dynamic agents that
cooperate together to enable a distributed decision-making and generate the optimal
composition within a reasonable time.

Self-organizing Agents for Dynamic Network- and QoS-Aware … 113

3 Dynamic Network- and QoS-Aware Cloud Service
Composition

In our solution, we consider a user request that needs to have a response as a Cloud
service composition. The completion of a composition yields a certain value, and it
requires varying numbers of Cloud services of different functionalities and QoS.
A user request task can be completed only if all required user constraints are
fulfilled.

In our approach, Cloud services with similar functionalities are grouped in a
Service Class (SC). Each SC is managed by an agent named Class Agent. In
addition, each agent is connected to a limited number of other agents yielding a
social network. For the completion of her task, an agent may enlist the resources of
other agents, but only those she’s connected to in the network. More formally, let
S ¼ Sij1� i� nf g denote a set of n Cloud services.

Definition 1 (Cloud service) For our approach, a Cloud service Si is characterized
by its Inputs ISi ; Outputs OSi ; QoS QSi and Clouds CSi .The Inputs represent the
information (preconditions) needed to use the service. The Outputs represent
the information (effects) generated from the use of the service. The Clouds represent
the set of Clouds where services deployed. Formally a Cloud service Si is defined
as (1):

Si ¼ ðISi ;OSi ;QSi ;CSiÞ: ð1Þ
Definition 2 (Query) A query R = (IR, OR) is a virtual web service. The Inputs IR

represents information that the user can provide. The Outputs OR represents the
results required by the user. As example IR can be a document “.WORD” and a file
“.PDF”. As OR we want to convert the input parameters format images “.GIF”.

Definition 3 (Class Agent) A Class Agent CAi is an agent managing a set CWSi �S
of Cloud services that provide similar functionalities (Input and Output) with
possibly different QoS; formally (2):

CAi ¼ ðIDi;CWSi; ICAi ;OCAiÞ ð2Þ
Definition 4 (Social network) An agent social network SN = (V, ACE) is a
dependency graph; where vertices V are agents class, and each edge (i, j) 2 ACE
indicates the existence of a social connection between agents class i and j.

Definition 5 (Social connection) Two agents CA1 and CA2 are connected by a
social connection according to the following rule: CA1 is matched to the agent CA2

if and only if there exist, some outputs of CA1 that can match some inputs of CA2,
formally: OCA1 \ ICA2 6¼ ;
Definition 6 (Cloud Service Composition) A Cloud services Composition b is
defined by the tuple b = (WSb, Pb, QoSb), where WSb ¼ Sij1� i�mf g� S a
sub-set of selected Cloud service to form the composition and Pb define an

114 L. Helali and Z. Brahmi

invoking order overWSb. The two Cloud services S1 and Sm represent, respectively,
the start and the end node of the composition. The invocation order among these
services can be in any patterns form: sequence, split, and join. b is feasible if it
satisfies the following conditions:

Ir
[m�1

i¼1

OSi

()
�ISiþ 1

[m
i¼1

OSi

()
�Or

Definition 7 (Efficient Cloud service composition) we say a Cloud Services
Composition b is efficient if it is feasible and optimal (the QoSb is the best).

Definition 8 (Dynamic Cloud Service Composition problem) Generally, the
dynamic QoS and network- Aware Cloud service composition problem (DCSCP)
can be formally defined as a tuple DCSCP = < S, R, b, u>, Where: S is a set of
Cloud services. R represents the user query, u the function (algorithm or approach)
that compute the efficient composition b; u(S, R): S � R! b

Definition 9 (local composition) A local composition bLi of class agent CAi is a
composition (Definition 6) where its end node Cloud service Sj 2 CAi. CWSi. More
formally (3):

bLi ¼ ðSLi ; PLi ;QoSLi Þ ð3Þ

4 Cooperative Agents Based-Dynamic Cloud Service
Composition

In this Section, we introduce the whole process of solving dynamic network and
QoS-aware Cloud service composition problem. The core of our approach is a
cooperative protocol among class agent CA. The proposed approach is based on a
cooperative Multi-Agent System (MAS). Our idea is to distribute the computing of
the optimal Cloud services composition among a set of cooperatives agents. Our
main motivation in using MAS is to take advantage of autonomous, and
self-organization agents to manage Cloud services and composition dynamicity.

4.1 Structural Description

Our approach is based on three main ideas: (i) network coordinate system (GNP) to
estimate the network latency (ii) self-organization of agents in a social network

Self-organizing Agents for Dynamic Network- and QoS-Aware … 115

agent in a design-time. This allows, finding efficient Cloud service composition and
manager Cloud service dynamicity in polynomial time. (iii) Composition algorithm
to generate the optimal composite service in a reasonable time. The proposed
approach is composed of four main layers (Fig. 1).

The Infrastructure Layer: This layer is used to calculate network latency by
applying the GNP which will be presented. Second layer is Agents Layer; it’s
composed by a set of service agents, each of which handles a set of functionally
equivalent Cloud services. The main role of a service agent is to ensure any changes
in non-functional properties of a Cloud service. Third layer is the Composition
Layer which is the main layer. It represents the service composition engine and
contains two types of agents: Class Agent and Composer Agent. Finally,

Fig. 1 Architecture

116 L. Helali and Z. Brahmi

Application Layer contains the user agent and has an intermediary role between the
user and the composition layer. It facilitates the communication between these two
parties. Each layer is composed by a number of agents (except the infrastructure
layer).

User Agent (UA): This agent has two main roles: (i) presents the user with a
graphical interface allowing it to create the request. (ii) It triggers the composition
process by communicating to the composer agent the user request. Service Agent
(SA): This Agent is responsible of Cloud service changes. Each birth of a new
service, a SA is created. Class Agent (CA): Our approach is composed by a set of n
CA agents that cooperate together to compute the efficient composition. Each CA
has two roles: (i) managing a service class (Definition 3) and (ii) performing its
local composition (Definition 9).

Composer Agent (COA): This agent is the main entity in our approach. It
initializes the composition process to fulfill the client request announced by User
Agent by trigging the set of class agents to start the computing of composition
process. The second role is computing the global optimal composition by selecting
the best local composition sent by a set u of class agent:u :¼ fCAijCAi:OCAi

¼ OR and 1� i� ng. In the next section, we describe the solution formalization of
our approach.

4.2 Solution Formalization

Our composition problem is treated as a search in the service dependency graph
(social network) while respecting the precedence constraints. In made, a service Sj,
of CAi agent can not be launched if all pre-conditions are fully met. That is to say
that the services of an agent must wait for the arrival of the data provided by
predecessors agents. To do this, choosing the best service in the CAi agent, we must
first choose an optimal service of each predecessor agent. So our goal is to deter-
mine the optimal service Sj of CAi agent based on services (Sk) chosen from each
predecessor agent. The Sj service must be the best in terms of: (i) time (run time
services and network latency) and (ii) cost (cost of services and data transfer cost).
All these QoS attributes are descendants attributes, that is to say low values are
better, they aggregated by the sum. For each service Sj, the agent calculates the
accumulated QoS value and compares it with those of the other services in his
group to choose the best. This calculated value represents the optimal local com-
position of the agent in question. The latter, after selecting the best services, sends
the value of the optimal local composition to all his successors’ agents carrying out
the same way. To generalize, given a CAi agent and a service Sj such as Sj 2 CAi, 8
Sk 2 Pred ðCAiÞ; j eM ¼ 1; . . .;mf g; i eN ¼ 1; . . .; nf g. We note (Table 1)

Self-organizing Agents for Dynamic Network- and QoS-Aware … 117

Let:

Xkj ¼ Tej þTlkj
� � � xk if Pred ðCAiÞ 6¼ ;
Tej otherwise

�
ð4Þ

Ykj ¼ CSj þCtrkj

� � � xk if Pred ðCAiÞ 6¼ ;
CSj otherwise

�
ð5Þ

With:

Tlkj ¼
ffi
ðabsj � abskÞ2 þðordj � ordkÞ2

q
ð6Þ

Ctrkj ¼ size tagkj
� �

� tcost ð7Þ

ðabsj; ordjÞ are the coordinates of the service Sj estimated by the GNP. Xkj andYkj

are two intermediate variables used in the calculation of the function ðfSCjÞ of the
time, cost and local composition fSCk aggregated in service Sj. This function is given
by:

fSCj ¼ Xkj þ Ykj þ fSCk ð8Þ

fSCj represents the cumulative QoS value to each service Sj. Predecessors class
agents of an agent may have either the same tag or others with different tags. Two
predecessors with the same tag provide the same data, so we must choose the
predecessor having the minimum cumulative QoS from this list. Then, we take the
maximum between the latter and the accumulated QoS services of other agents
(those with different predecessors) as a service must have all its preconditions met
for it to run. So there is f1 and fij, two intermediate variables that are used to
calculate respectively: (i) the optimum value of accumulated QoS forservices

Table 1 Notations

Variable Description

Tej Execution time of service Sj
Tlkj Latency between service Sj and its predecessor Sk
CSj The cost of service Sj

Ctrkj The data transfert cost resulting from the execution of Sj

Size tagkj
� �

The size of data transferred between Sk and Sj

tcost The cost per unit of data transfer for a link

xk A binary variable that indicates that a single service (Sk) is selected from each
class agent (xk = 1)

118 L. Helali and Z. Brahmi

belonging to the list of predecessors with the same tag and (ii) the value of overall
QoS for each service Sj.

f1 ¼ Min
Sj� CAið Þ

fSCj

� � 8Sk � Pred CAið Þ ð9Þ

f1 deals with list of predecessors with the same tag

fij ¼ Max
Sj� CAið Þ

fSCj ; f1
� � 8Sk � Pred CAið Þ ð10Þ

fij deals with list of predecessors with different tags
In this case, our composition problem leads to the minimization of the function fi

given by:

fi ¼ Min fij
� � ð11Þ

Subject to:

x � 0; 1f gX
Sj�CAi

xj ¼ 1 8i �N ¼ 1; . . .:; nf g ð12Þ

sizeðtagkjÞ	 0 ð13Þ

tcost	 0 ð14Þ

4.3 Functional Description

The composition process requires two steps: self-organization of class agent and
computing the optimal composition by a cooperative protocol among agents. First,
we present below the network coordinate system as we used to provide Cloud
services coordinates.

Global Network Positioning (GNP). GNP system can calculate the distance
between any two nodes in the network. It models the Internet as a 2-dimensional
Euclidean space and characterizes the position of a node in the Internet by a
position in this space [6]. The distance between two nodes is then provided as the
geometric distance between their coordinates without explicit measures. The
strategy is to set nodes “Landmarks” for references and whether they are being
broadcast at any node that wants to participate in GNP. So there are two types of
nodes (Fig. 2).

The landmarks: the reference points in Euclidean space. Working in a
two-dimensional Euclidean space: D = 2, one must choose a minimum D + 1

Self-organizing Agents for Dynamic Network- and QoS-Aware … 119

Landmark points and ordinary nodes: They are any other network nodes. The
distance measured for points “landmarks” (Fig. 2a) is the minimum number of RTT
“Round-Trip Times” using ICMP ping “Internet Control Message Protocol”. The
distance between landmarks i and j, Li and Lj is denoted by dLiLj. Inter-Landmark
Distances are transmitted to a central node (landmark). It then calculates the
coordinates of the points and sends them to the Landmarks (Fig. 2b). The coor-
dinates of N Landmarks, CL1 … CLN, are the result of minimizing the following
objective function:

Fobj1 ðcL1; . . .; cLNÞ ¼
X

i;j21;...;Nji[j

eðdLiLj; d̂LiLjÞ ð15Þ

where dLiLj is the geometric distance between cLi and cLj: dLiLj = fðcLi; cLjÞ and e(.)
is the error measure function (.):

e dLiLj; d̂LiLj
� � ¼ ðdLiLj � d̂LiLj

dLiLj
Þ2 ð16Þ

Once the coordinates of Landmarks, CL1; . . .;CLN are calculated, they are
transmitted with the corresponding distance function d̂LiLj to any ordinary node that
wants to participate in GNP. It uses the Downhill Simplex algorithm [30] to solve
the optimization problem.

Self-organization of Class Agent Agents are organized as a social network agent
in the design-time. This is, in order to accelerate the time of computing the optimal
composition. As defined in Definition 3, class agents are linked based on Input and
Output of their services. The self-organization processes beyond the scope of this
work.

a : Landmark mesureddistance b : Landmark calculateddistance

Fig. 2 Calculation of network coordinates

120 L. Helali and Z. Brahmi

Computing Optimal Cloud Services Composition In run-time, class agent and
composer agent cooperate together to generate the efficient composition. This step
is based on computing a set of local composition (Definition 9) by class agent and
the global composition by the composer agent. Computing the local composition:
each class agent maintains a list of all his predecessors’ class agents at design-time.
It sorts out this list based on the data they provide (tag) to the agents providing the
same data in contiguous spaces. Then, it calculates the cumulative QoS to each of
its services based on selected services of each predecessor, and selects the best. For
lists of the same tag predecessors, it selects the minimum value and then, for the rest
it selects the maximum value because each agent awaits the results of all his
predecessors. After calculating the cumulative values optimal QoS for each service
it manages, the CAi agent selects the service with the best cumulative QoS value
(minimal). Computing the global composition: The global Cloud service compo-
sition process is based on the flowing cooperative protocol:

1. The UA constructs and sends the query R to the composer agent.
2. The COA builds the set h of Class agents that their Input ICA matches the user

query Input RI : h ¼ f CAijICAi \ IR 6¼ ;g: The composer agent checks whether
the set h is empty. If it is true, then notify the user that its query R cannot be
achieved. Otherwise, it sends the message request (IDcA, R) to the each agent
CAi 2 h.

3. If class agent CAi receives the message request, then it computes its local
composition (or sub-composition)bLi ¼ ðSLi ;PL

i ;QoS
L
i Þ. In this step, SLi ¼

S1jS1 2 CAi:CWSif g is the best Cloud service from the set of services CWSi in
the class managed by CAi. Then, it sends the message MyComposition
(CAi; b

L
i ;R) to all successors agent based on its social network.

4. If the class agent receives a set of MyComposition message, it computes its local
composition. If the output of its class matches the output of the user query, then
sends its composition to the composer agent. Else, it sends its local composition
to its successor and Go to 3).

5. Finally, the composer agent computes the global composition and sends it to the
user agent which forwards it to the end user through the interface of the
application layer.

5 Experimental Results

To implement our system, we use the Multi-Agents platform JADE with Eclipse
framework. The resulting graphs are generated using java library JFreeChart. We
have created n agent class, m Cloud services shared on all agent class and k Clouds
containing services. The execution time values and cost of services are generated
randomly. We evaluate the performance of our approach using several configura-
tions. The results of the first configuration are represented by the Fig. 3a.

Self-organizing Agents for Dynamic Network- and QoS-Aware … 121

We can deduce that by increasing the number of services per class, the execution
time varies at the beginning and then stabilizes. In Fig. 3a, it varies between 470
and 620 ms. From a 50 number of services per class is almost constant (500 ms). In
the second configuration, the results are represented by the Fig. 3b. Similarly, when
we increase the number of Cloud; the execution time varies at the beginning and
then stabilizes. Note that the computing time in the same class agent is negligible
compared to the overall time, and the change in the number of services per class or
number of cloud containing the services does not affect much the overall execution
time since the structure of the social network of agents has not changed.

In contrast to previous figures, we see that in Fig. 4 the overall execution time
grows with the number of class agents. Made in, when increasing the number of
agents, added nodes of the social network of agents and the size of the search graph

a : Execution time per number of services per class

b : Execution time per number of Clouds

Fig. 3 Tests of our approach

122 L. Helali and Z. Brahmi

increases. Therefore the problem size increases, but the overall calculation time
increases slowly. Thus, our algorithm has an ability to be adapt to the increased size
of the problem, and the results prove its performance and scalability.

6 Conclusion and Future Works

In our present work, we propose an efficient Cloud service composition approach
based on Multi-Agents System. Our solution is based on three ideas: (i) Network
Coordinate System, named GNP, used to estimate accurately the coordinates of
Cloud services, is to calculate an estimation of the network latency, (ii) Self-
organization of agents as a social network (Each class agent managed a set of
services sharing the same functional proprieties.) This is, in order to minimize the
time computing and distribute the Cloud services composition computing among
class agents. (iii) Computing the optimal composition based on the protocol pre-
sented above. This approach is characterized by accuracy and reacts to dynamicity
of Cloud services. Our approach is scalable while keeping the constraint of mini-
mization the QoS. In our future works, we will plan to use Case-based reasoning
(CBR) concept to improve our approach.

References

1. Amazon S3. Amazon simple storage service cloud computing platform: http://aws.amazon.
com/s3/

2. Windows Azure Platform. Microsoft cloud computing platform: http://www.microsoft.com/
windowsazure/

3. http://www.ibm.com/us/en/

Fig. 4 Execution time of our approach per number of Classes

Self-organizing Agents for Dynamic Network- and QoS-Aware … 123

http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/
http://www.ibm.com/us/en/

4. Ye, Z., Zhou, X., Bouguettaya, A.: Genetic Algorithm Based QoS-Aware Service
Compositions in Cloud Computing. Springer, Berlin (2011)

5. Pisinger, D.: Algorithms for Knapsack Problems. PhD thesis, University of Copenhagen,
Department of Computer Science (1995)

6. Ng, T.S., Zhang, H.: Towards Global Network Positioning. New York USA (2001)
7. Klein, A., Ishikawa, F., Honiden, S.: Towards network-aware service composition in the

cloud. In: WWW 2012, Lyon, France, 16–20 Apr 2012
8. Klein, A., Ishikawa, F., Honiden, S.: A scalable distributed architecture for network- and

QoS-aware service composition. In: IJAWS 2012, Japan (2012)
9. Zou, G., Chen, Y., Yang, X., Huang, R., Xu, Y.: «AI planning and combinatorial

optimization for web service composition in cloud computing. In: CCV Conference 2010,
Singapore, 17–18 May 2010

10. Gutierrez-Garcia, J.O., Sim, K.-M.: Self-Organizing Agents for Service Composition in Cloud
Computing. doi:10.1109/CloudCom.2010.10

11. Gutierrez-Garcia, J.O., Sim, K.-M.: «Agent-based service composition in cloud computing».
In: Kim, T.-h., et al. (eds.) GDC/CA 2010, CCIS 121, pp. 1–10 (2010)

12. Zhou, J., Athukorala, K., Gilman, E., Riekki, J., Ylianttila, M.: Cloud architecture for
dynamic service composition. Int. J. Grid High Perform. Comput. 4(2), 17–31 (2012)

124 L. Helali and Z. Brahmi

http://dx.doi.org/10.1109/CloudCom.2010.10

Distributed Computing Architecture
on Epiphany MIMD Accelerators

Łukasz Faber

Abstract Last few years have seen introduction of more and more advanced
manycore processors. Both very well known devices like GPGPU and Intel MIC
and less popular, but still very interesting, like Epiphany. There is also a growing
popularity of cheap, credit-card-sized devices offering advanced features and high
computational power. One of this kind of devices is the Parallella board that focuses
on the parallel computing and features the Epiphany coprocessor. In this paper we
propose an architecture for distributed computational systems based on Parallella
and the “multiple instruction, multiple data” (MIMD) coprocessor Epiphany. This
manycore processor consists of sixteen cores connected by a mesh network-on-a-
chip. The presented architecture enables the usage of multiple Parallella boards in a
single system with a possibility to also use other computing units. The target usage
of this system are multi-agent systems (MAS) and we present selected scenarios
that could be easily implemented and would benefit from the properties provided by
multiple MIMD devices.

Keywords Distributed computing � Parallel computing � Epiphany � Multi-agent
systems

1 Introduction

There are several available solutions offering the manycore highly parallel pro-
gramming environments, for example, GPGPU (General-purpose computing on
graphics processing units) devices with CUDA and OpenCL [1] or Intel Xeon Phi
(Intel MIC) [2]. However, even with these devices becoming faster with each new
product, there are still attempts to use multiple instances of them in a single,

Ł. Faber (&)
AGH University of Science and Technology, Kraków, Poland
e-mail: faber@agh.edu.pl

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_10

125

distributed architecture. There are many reasons for this approach: costs [3]
(more advanced versions of GPGPUs and Xeon Phi usually cost much more than
simpler ones), requiring more computational power than a single device can provide
[4], etc.

On the other hand, there is a growing popularity of the small integrated, power
consumption- and cost-oriented computing boards (for example, Raspberry Pi).
Few years ago, the manycore approach was successfully implemented on such a
simple board—Parallella1 [5] created by Adapteva. It is a small (credit card-sized)
board comprising of 16-core Epiphany coprocessor and the main dual-core ARM
processor.

Such boards are interesting for researchers due to their low costs, simplicity, and
low level requirements for starting to work with them. Parallella has its benefits of
being a standalone, plug-and-play type of a coprocessor similar to Intel Xeon Phi.
“Standalone” in case of Parallella means that it’s a completely separate computer
unit that can run independently of any other nodes. On the other hand, it’s
plug-and-play, because all it takes, to connect to it, is attaching an Ethernet cable.

We have been working on using multiple Parallella boards for more advanced
computation and, in this paper, we want to present an architecture of the system that
uses multiple devices to provide a computational environment for multi-agent
systems. The proposed architecture is distributed, scalable and flexible as it depends
solely on connecting boards as needed using the Ethernet network. We also show
the advantages gained by the MIMD nature of the Epiphany coprocessor (in
comparison to mostly SIMD GPGPUs). Thanks to this solution we can gain a
cheap, highly-parallel and distributed environment that can be created ad hoc in any
place that has an Ethernet network.

In the following sections, we briefly introduce the Parallella platform and
Epiphany manycore processor (Sect. 2), its memory and programming models.
Then, in Sect. 3, we present the logical architecture of the system. In Sect. 4 we
discuss the implementation extensively. In Sect. 5 we present the sample scenario
that can be run in the system. And, finally, we discuss the consequences and future
steps in Sect. 6.

2 Parallella

Parallella is a hardware platform built on top of the manycore Epiphany [5]
coprocessor, created by Adapteva in 2011. It was funded by the Kickstart cam-
paign.2 The board was first presented in June 2014.

The Epiphany processor consists of a 2D array of nodes (so-called “eNodes”)
connected by a mesh network-on-a-chip. Each node consists of a single RISC core

1https://www.parallella.org/.
2https://www.kickstarter.com/projects/adapteva/parallella-a-supercomputer-for-everyone.

126 Ł. Faber

https://www.parallella.org/
https://www.kickstarter.com/projects/adapteva/parallella-a-supercomputer-for-everyone

(called “eCore”), a DMA engine, 32 kB of memory and network interface. Each
core includes a 32-bit floating point RISC CPU, local memory, a DMA engine, an
event monitor and a network interface. The mesh connections on a 16-core
processor are shown in Fig. 1. Each “eCore” contains a floating-point unit (FPU),
an arithmetic logic unit (ALU) and a 64-word register file, as shown in Fig. 2.

The address space in Epiphany is flat and consists of 232 bytes. Each node has
32 kB of its own local range of memory. However, memory of each node can be
accessed by prefixing the address with the globally addressable ID.

eMesh architecture has two important properties: writes are preferred over reads
—for a single read there need to be two transactions: one for a read request and one
for an answer, and non-local memory accesses are weakly ordered.

Main goals of the Epiphany architecture are: power efficiency (a single 16-core
Epiphany processor consumes maximum 2 W, the whole Parallella board requires
around 5 W), scalability, easy programming model, high performance (2 GFLOPS
per single core).

Currently, there are 16- and 64-cores Epiphany processors available. However,
64-core versions were only produced in limited numbers and not reachable through
any other way than directly from Adapteva.

Fig. 1 eMesh Network-on-a-Chip. The blue lines are cMesh (used for on-chip writes), green—
xMesh (off-chip writes), red—rMesh (read requests)

Distributed Computing Architecture on Epiphany … 127

The Parallella board uses a 16-core Epiphany processor (E16G301), a Xillinx
Zynq (models 7010 or 7020 with two ARM cores) and 1 GB of RAM. Additional
components include: 1 Gbit Ethernet interface, USB and HDMI ports, MicroSD
slot. The standard operating system (in this case—Linux) boots from the MicroSD
card onto ARM processor and can communicate with the Epiphany using an e-Link
interface. 32 MB of memory are shared between ARM processors (host) and
Epiphany eCores can use it in the same way as internal memory.

The memory size usable for the programmer is dependent on many factors. In
the most common linker configuration the internal memory (32 kB) contains:
program code, global variables, stack. And the fragment of the external memory
(32 MB) is used for the C standard library code, data and stack [6].

Programming on the Epiphany side is done in a usual way. The SDK supports
the standard C library with mathematics functions. The “workgroup” concept is
supported and each of created workgroups can have different code loaded. The
important part to remember is that Epiphany is a MIMD processor and each core
can execute completely different code. Alternative approaches to using the basic
SDK are MPI [7] and OpenMP [8].

Fig. 2 eNode components. Each eNode has an eCore and 32 kB of local memory, network router,
DMA engine and two event timers. Each eCore has a 64-word register file, FPU, ALU, interrupt
controller, sequencer and debug unit

128 Ł. Faber

3 Architecture

There are four logical node types defined in the system, as shown in Fig. 3. Each of
them has a specific role and tasks to perform in the system:

1. Data nodes provide a backing distributed data storage.
2. Control nodes provide management over other nodes. They perform command

requests to computational nodes then collect results. Moreover, they also need to
split tasks for computational nodes on the basis of the task definition.

3. Computational nodes perform the real work in the system by executing the
algorithms. In the presented case we use only Parallella-based computational
nodes. Each logical unit is mapped directly to a single Parallella board and a
single Epiphany processor. However, in the later stages of the project we plan to
add more computational types of units. Especially full JVM-based units.

4. Console nodes are I/O units providing code to execute and collecting results.

There is nothing preventing a single physical node from performing all roles.
However, Parallella has a limited computational resources (especially memory) and
that may create a problem with sharing computational, data and control roles.

The system also introduces a term “workgroup” that describes any number of
adjacent Epiphany cores. This is mainly for easier exploitation of MIMD nature, as
each workgroup can execute different code. Workgroups can share any data.

4 Implementation

The current version of the system was implemented in Java 8, as it is the language
most fitting our purposes. The work was centered on four areas: network com-
munication, node implementation, interface to Epiphany, and a way to define tasks.
The general overview of how nodes are connected is shown in Fig. 4.

Fig. 3 Logical architecture
of the proposed system. Four
node roles are visible:
computational, data, control,
console. The arrows shows
the connectivity between
active nodes. All
computational and data nodes
are always active. There is
only one (red) control node
active (active-passive model).
There is only one console
node in the system

Distributed Computing Architecture on Epiphany … 129

4.1 Network

For network communication we used Hazelcast,3, an in-memory data grid. It pro-
vides a large set of distributed data structures and mechanisms, for example: dis-
tributed maps, queues, topics, locks, executor services. Moreover, it can be adapted
to most network configurations. By default it performs service discovery and
communication using multicast. However it can also use a central registry or direct
IP addressing (usually for non-local networks).

In our system we required the following communication channels:

• a command request channel from a console node to control nodes,
• a command request channels from control nodes to computational nodes,
• results channels from computational nodes to control nodes,
• results channels from control nodes to computational nodes.

We have implemented command request channels as queues (Hazelcast’s
IQueue). There is one task queue for sending tasks from console and it is handled
by the active control node. Then, there is a single task queue created for every
computational node in the system.

For the results channels we decided to use a distributed map (key-value store).
This gives us flexibility to access results by any node at any time.

Fig. 4 Implementation of the system using Hazelcast. Data/control nodes are connected in a
single Hazelcast cluster and hold distributed maps and queues. Only one control node is active but
any can become active in case the current one fail. The console and computational nodes are
implemented as clients connecting to the cluster

3http://hazelcast.org/.

130 Ł. Faber

http://hazelcast.org/

4.2 Node Implementation

We implemented separate console and computational nodes and a single application
for data and control roles. This decision was directly influenced by the facilities
offered by Hazelcast and the aforementioned fact, that the Parallella board has low
computational resources.

Console and computational nodes are implemented as Hazelcast clients. It means
that they do not participate in the data cluster—they do not have any copy of data.
However, it does not mean that it is impossible for them to access data and use
communication facilities. They just need to connect (transparently) to any of data
nodes to use them. It is easy to see why this decision has merit for the console node:
it is started only for sending commands or receiving results and is should execute
quickly. It would be counter-productive for it to connect to all other nodes and
synchronize data with them. On the other hand, the fact that we decided not to
attach the Parallella nodes to the cluster may look counter-intuitive—these nodes
are running all the time. Our decision was dictated by the small RAM size available
on Parallella. However it would be possible and worthy of further tests to fine-tune
the Hazelcast configuration in order to have a Parallella node to have a local copy
only of required data.

Data and control nodes were implemented as a single application and are
fully-participating Hazelcast cluster nodes.

It is required for at least a single Parallella (computational) node and a single
data/control node to exist in the system.

The way the system handles changes in nodes presence is dependent on the node
types:

• For data nodes appearance is automatically handled by Hazelcast. Node dis-
appearance is also automatically handled and no data is lost, however, the failure
resiliency is dependent on the configuration.

• Control nodes need to elect the active node. It is easily done using Hazelcast-
provided identifiers. In case of the active node disappearing the election is
performed again. If there is no control nodes left, the system is dysfunctional.

• Computational nodes appearance and disappearance is detected by all control
nodes using Hazelcast-provided events and services.

4.3 Epiphany Interface

The main problem to solve was to make a usable interface to the Epiphany pro-
cessor and provide a way to push data and code to it. We have reviewed several
choices regarding a way to access the Epiphany HAL library. We considered using,

Distributed Computing Architecture on Epiphany … 131

for example, OpenCL implementation,4 JNI (Java Native Interface), JNA (Java
Native Access).5 We have chosen the last one mainly due to flexibility. Although
each of these methods has its own problems:

• OpenCL although general Java OpenCL support is good (for example, [9]), this
particular implementation for Epiphany is not supported by any of known
bindings. It was the main problem, as we wanted to provide as seamless inte-
gration as possible.

• JNI—it seemed to be a better approach than using (more universal) OpenCL. It
would provide us a direct interface to the library. However, using it requires
preparing a lot of the “glue” code.

• JNA—in short, it is a wrapper around JNI that basically removes the need to
write glue code (it is generated automatically) but loses performance.

As we did not require a high performance of the bridging code and wanted to
keep things simple, we used JNA. This way we have one-to-one mapping of the
HAL library for Epiphany to the Java code.

We also created a wrapper around the Epiphany C compiler (e-gcc). This was
required in order for nodes to compile incoming C source code by themselves. It is
possible to compile it once for all nodes but it would be less flexible, as all nodes
would be required to have an identical configuration and the SDK version.

4.4 Task Definition

The most basic task must provide answers for the following questions:

1. How many and what kind of units to use?
2. How should be they grouped together?
3. What sub-task should each of the group run?
4. What is the input and the output?

In an answer for the first question we need to provide a info whether we want to
use the full JVM node or Epiphany cores. And, in the second one, how they will be
working together. It is especially important for Epiphany cores, as the corre-
sponding workgroups need to be created. As for now we do not allow grouping
together units of different type (JVM and Epiphany).

The answer to the third question requires us to provide the code to run: a Java
class (for JVM nodes) or an Epiphany C source code file (for Epiphany nodes). It is
a single code for each unit group (workgroup).

4There is an OpenCL library targeting Epiphany: http://www.browndeertechnology.com/coprthr.
htm.
5Available at: https://github.com/java-native-access/jna.

132 Ł. Faber

http://www.browndeertechnology.com/coprthr.htm
http://www.browndeertechnology.com/coprthr.htm
https://github.com/java-native-access/jna

For the last one, we need to provide input data—both contents and target
variables—and define which values should be collected after the successful run. For
Epiphany units it will be described by the memory address, the values to copy and
the size of the target variable.

5 Sample Scenarios

The very obvious scenarios matching this architecture are all island-based evolu-
tionary algorithms that do not require the global knowledge. For example,
Evolutionary Multi-Agent Systems (EMAS) which merge evolutionary algorithms
with a multi-agent system [10]. In these systems agents represent individuals that
are subject to evolutionary processes. Agent populations are located on separate
islands and there is no need for the global knowledge or synchronization. When
needed, agents can migrate to other islands. One of advantages of such model is
easier distribution of the implementations.

This scenarios perfectly matches the architecture, as we can model each popu-
lation (island) on a single Parallella board. Depending on the needs of the particular
algorithm, we may implement agents in vertical or horizontal fashion.

• Vertical implementation makes use of the MIMD nature of Parallella—each
agent is completely separate entity (or code) running on a separate core. Agents
still can communicate with each other.

• Horizontal implementation treats the Parallella more like a stream processor
where all cores split a large population into smaller chunks and process them in
SIMD fashion.

Another scenario we are planning to implement and use with the presented
architecture are hybrid particle-MAS simulations [11]. Dissipative particle
dynamics simulations benefit from highly parallel environments and, in case of
Parallella, they can co-execute with agent simulations on a single processor sharing
the memory. Separate boards can be used for simulating adjacent parts (sections) of
a blood vessel.

6 Conclusions and Future Work

In this paper, we have presented the initial version of a distributed computational
system based on Ethernet-connected “multiple instruction multiple data” (MIMD)
Epiphany processors. We wanted to show that it is perfectly reasonable to build a
complex system comprising of multiple small, independent, highly parallel units.
The implementation has particular benefits related to the high speed local memory
access of Epiphany cores [12]. In case when it is possible to split the computation

Distributed Computing Architecture on Epiphany … 133

into independent parts that communicate only in sparse synchronization points, it
can be easily mapped to this architecture.

This system benefits from the MIMD-nature of the Epiphany processor and
makes it possible to multiple small independent (but sharing memory) agents on a
single board. However, it does not stop one from writing the processing in another,
for example, stream-like way.

The initial version of the presented work has some shortages that can and will be
improved in later stages. For example, the implementation lacks the full JVM node
version and the task definition is very imperative and verbose. Another problem is
the fact that Epiphany code needs to be written in C. It could be beneficial not only
for our project to provide a way to use a Java syntax for writing the coprocessor
code.

Our next plans is to profile our system, based on the aforementioned scenarios,
in order to test our assumptions regarding the performance of the system.

Acknowledgments The research reported in the paper was supported by the grant “Hybrid model
of the early detection of internal diseases based on the paradigm of interacting particles and
multi-agent system” (No. DEC-2013/09/N/ST6/01011) from the Polish National Science Centre.

References

1. Stone, J.E., Gohara, D., Shi, G.: Opencl: a parallel programming standard for heterogeneous
computing systems. Comput. Sci. Eng. 12(3), 66–73 (2010)

2. Chrysos, G.: Intel Xeon Phi TM Coprocessor-the Architecture. Intel Whitepaper (2014)
3. Harding, S.L., Banzhaf, W.: Distributed genetic programming on GPUs using CUDA. In:

Workshop on Parallel Architectures and Bioinspired Algorithms. Raleigh, USA. Citeseer
(2009)

4. Heinecke, A., Vaidyanathan, K., Smelyanskiy, M., Kobotov, A., Dubtsov, R., Henry, G.,
Shet, A.G., Chrysos, G., Dubey, P.: Design and implementation of the linpack benchmark for
single and multi-node systems based on Intel Xeon Phi coprocessor. In: IEEE 27th
International Symposium on Parallel Distributed Processing (IPDPS), pp. 126–137 (May
2013)

5. Olofsson, A., Nordström, T., Ul-Abdin, Z.: Kickstarting High-performance Energy-efficient
Manycore Architectures with Epiphany, 2–5 Nov 2014

6. Epihany SDK Reference, rev. 5.13.09.10, http://adapteva.com/docs/epiphany_sdk_ref.pdf
7. Ross, J.A., Richie, D.A., Park, S.J., Shires, D.R.: Parallel programming model for the

epiphany many-core coprocessor using threaded MPI. In: Proceedings of the 3rd International
Workshop on Many-core Embedded Systems, pp. 41–47. ACM (2015)

8. Papadogiannakis, A., Agathos, S.N., Dimakopoulos, V.V.: OpenMP: Heterogenous execution
and data movements. In: Proceedings of 11th International Workshop on OpenMP, IWOMP
2015, Aachen, Germany, 1–2 Oct 2015, chap. OpenMP 4.0 Device Support in the OMPi
Compiler, pp. 202–216. Springer International Publishing, Cham (2015), http://dx.doi.org/10.
1007/978-3-319-24595-9_15

9. Pratt-Szeliga, P.C., Fawcett, J.W., Welch, R.D.: Rootbeer: seamlessly using GPUs from Java.
In: 2012 IEEE 14th International Conference on High Performance Computing and
Communication 2012 IEEE 9th International Conference on Embedded Software and
Systems (HPCC-ICESS), pp. 375–380 (2012)

134 Ł. Faber

http://adapteva.com/docs/epiphany_sdk_ref.pdf
http://dx.doi.org/10.1007/978-3-319-24595-9_15
http://dx.doi.org/10.1007/978-3-319-24595-9_15

10. Byrski, A., Dreżewski, R., Siwik, L., Kisiel-Dorohinicki, M.: Evolutionary multi-agent
systems. Knowl. Eng. Rev. 30(02), 171–186 (Mar 2015), http://www.journals.cambridge.org/
abstract_S0269888914000289

11. Faber, Ł., Boryczko, K., Kisiel-Dorohinicki, M.: Hybrid architecture for simulation of blood
flow with foreign bodies. In: ECMS, pp. 523–529. Brescia, Italy (2014), http://www.scs-
europe.net/dlib/2014/ecms14papers/dis_ECMS2014_0138.pdf

12. Varghese, A., Edwards, B., Mitra, G., Rendell, A.P.: Programming the Adapteva Epiphany
64-core network-on-chip coprocessor. Int. J. High Perform. Comput. Appl. (2015)

Distributed Computing Architecture on Epiphany … 135

http://www.journals.cambridge.org/abstract_S0269888914000289
http://www.journals.cambridge.org/abstract_S0269888914000289
http://www.scs-europe.net/dlib/2014/ecms14papers/dis_ECMS2014_0138.pdf
http://www.scs-europe.net/dlib/2014/ecms14papers/dis_ECMS2014_0138.pdf

A Fail-Safe NVRAM Based Mechanism
for Efficient Creation and Recovery
of Data Copies in Parallel MPI
Applications

Artur Malinowski, Paweł Czarnul, Maciej Maciejewski
and Paweł Skowron

Abstract The paper presents a fail-safe NVRAM based mechanism for creation
and recovery of data copies during parallel MPI application runtime. Specifically,
we target a cluster environment in which each node has an NVRAM installed in it.
Our previously developed extension to the MPI I/O API can take advantage of
NVRAM regions in order to provide an NVRAM based cache like mechanism to
significantly speed up I/O operations and allow to preload large files and operate
efficiently on them. In this work, we show how to provide fail safe data write to
such files using NVRAM and how to recover from failures. This provides an
efficient alternative to costly checkpointing provided an application can store its
consistent state in a file.

Keywords NVRAM � Parallel MPI I/O extension � Fail safe � Distributed cache

The research in the paper was supported by a Grant from Intel Technology Poland.

A. Malinowski (&) � P. Czarnul
Department of Computer Architecture, Faculty of Electronics Telecommunications
and Informatics, Gdansk University of Technology, Narutowicza 11/12,
80-233 Gdansk, Poland
e-mail: artur.malinowski@pg.gda.pl

P. Czarnul
e-mail: pczarnul@eti.pg.gda.pl

M. Maciejewski � P. Skowron
Intel Technology Poland Sp. z o.o, Gdansk, Poland
e-mail: maciej.maciejewski@intel.com

P. Skowron
e-mail: pawel.skowron@intel.com

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_11

137

1 Introduction

Nowadays, high performance computations (HPC) typically run on clusters that
consist of hundreds or thousands of nodes or more for a total of millions of cores
according to the top500.org list. In such huge environments, failures are inevitable and
application designers should reduce a resulting negative impact. One popular solution
to this problem is to use checkpointing, that is usually composed of three steps:

1. Stop/synchronize application execution.
2. Copy the data into storage/non-volatile media.
3. Continue execution.

Unfortunately, for applications that operate on large data, copying the data can
consume a significant amount of time—some studies prove, that even more than
50 % [1]. Another drawback of checkpointing is usually connected to the overhead
of a development process [2]. Even though researchers proposed some automated
solutions that are even transparent to programmers, these usually require compat-
ibility of environment components and additional configuration.

With smaller cluster environments, when the probability of a hardware failure is
lower, many applications do not include checkpointing at all. In many cases, exe-
cution time overhead and the requirement for an additional development effort pre-
vail over benefits from system fail-safeness. Not all applications require a high level
of fault tolerance. However, we believe that if disadvantages of introducing protec-
tion against some type of failures were reduced, such solution would be really useful.

In the report based on data collected for over 9 years at Los Alamos National
Laboratory, Schroeder and Gibson distinguished five root causes of HPC systems
failures: hardware, software, network, environment and human [3] induced. Although
the hardware issues were reported to be the most frequent, protection against this type
of failures usually involves incorporation of expensive checkpointing.

Prevention from data being damaged after a failure requires persistent storage. In
most cases, SSD or HDD file systems are used, but development of new storage
techniques is already underway. From the perspective of this article, an interesting
alternative for classical storage devices is Non-volatile Random Access Memory
(NVRAM). Hardware components with performance at the level between RAM and
modern SSD, with data persistence and byte level access, are expected to be
released soon [4]. We believe, that NVRAM devices could be utilized in HPC
environments in order to provide better fault tolerance.

A comprehensive HPC solution requires not only a sophisticated hardware, but also
software adapted to the hardware features. The Message Passing Interface (MPI) is a
widely usedAPI that helps create HPC distributed applications for multi-node clusters.
A wide range of functions and availability of several stable implementations make it a
reasonable choice not only for development, but also as a popular subject of research
on fail-safeness in HPC. Within this paper, we present an easy-applicable and a low
overheadMPI solution, with the use of NVRAM, that allows to recover from software,
some hardware, network and environment caused failures.

138 A. Malinowski et al.

2 Related Work

As checkpointing is probably the most popular method of providing fault-tolerance
to MPI applications, many research papers focus on its improvements. An inter-
esting example is Berkeley Lab Checkpoint/Restart (BLCR) platform [5, 6]. The
library aims to be transparent to the developer, have a wide application/system
coverage, and should not significantly increase execution time of application.
Although the implementation fulfilled those requirements, we rejected this idea
mainly because of the overheads related to creating a checkpoint.

One of the main features of NVRAM is persistence and it was also used in many
checkpointing improvements [7–9]. Despite the fact that NVRAM is expected to
outperform classical storage, the level of additional execution time for preparing a
checkpoint could be still unsatisfying. In [10] we presented how NVRAM can be
used within implementation of MPI one sided I/O to be used for checkpointing.

Apart from checkpointing, several methods for fault-tolerant applications,
written using MPI, were proposed. In 2002, Gropp and Lusk [11] distinguished and
described in details four different techniques. The list of approaches, together with
the comparison to the solution described in this paper, is as follows:

1. Checkpointing—described in the previous paragraph.
2. Using intercommunicators to reduce the failure impact—applicable only for

worker/manager applications, requires usage of dynamic process management.
3. Modification of MPI API semantics in order to provide fault tolerance—such

proposal is unacceptable in generic solutions, because it could make most of
existing applications incompatible with modified MPI.

4. Extending MPI specification—rejected because of the need for using an addi-
tional set of functions that would complicate development process.

Our solution may seem to be similar to the third approach, but the semantics of
API functions stay untouched—the proposed solution is only an additional guar-
antee of a consistency of a file being accessed.

Another mechanism was investigated by Fagg and Dongarra [12]. Their solu-
tion, called FT-MPI, focused not on data recovery after the application has crashed,
but on rebuilding an application structure at runtime. To achieve this goal, they
introduced several additional states of communicators together with different han-
dling strategies. Performance results were promising, however, the implementation
is not popular, probably because of incompatibility with the MPI standard.

3 Proposed Solution

We first refer to an MPI I/O extension using NVRAM that we developed previously
and then propose a new fail-safe mode of this solution.

A Fail-Safe NVRAM Based Mechanism for Efficient … 139

MPI I/O supported by NVRAM cache
In our previous research we provided MPI I/O extension1 based on in-system
distributed cache with data located in NVRAM [13]. The extension is transparent to
the developer, because the API stayed unmodified. The main goal of the research
was not only to increase input and output operations performance, but also to ease
the development process by making access of small data chunks reasonably fast (a
programmer can avoid implementation of data staging, buffering, etc.). In the
extension, each computing node is equipped with its own NVRAM device. An
accessed file is split into continuous parts managed by cache managers and pre-
fetched into NVRAM regions in the initialization phase. MPI I/O calls, such as
write and reads, operate on NVRAM regions, either from the same or other nodes.

The extension, tested using three applications, obtained better performance than
the regular MPI I/O if only certain criteria were fulfilled:

1. Application was running long enough to compensate the overhead for cache
initialization and deinitialization.

2. Application was data intensive and accessed data chunks were small.

Fail-safe mode
NVRAM cache described and tested in the previous research was also persistent,
but did not ensure file consistency, therefore it could not be considered as fail-safe.
This section is an original extension of a previous research. Many data-intensive
applications operate on a file. The proposed extension provides a mechanism, that
keeps a file in a consistent state at the level of a single write operation. The state
could also be recovered in case of an application’s crash. To benefit from the
solution, it is required that an application stores its current state in a file. In case of
an error, all pending write requests are buffered and can be completed in the
provided fail recovery routines after application rerun. The application should also
be able to start computations from its previous state. Table 1 shows main differ-
ences between using typical checkpointing mechanisms and the proposed solution.
At the application level, checkpointing is a more general approach that can handle
messages in transit as an element of an application state. Our approach requires a
consistent state written to a file which is often fulfilled e.g. geometric SPMD
applications or when an application operates on many files such as in image pro-
cessing [14]. In a wider context, it can also be used during workflow execution [15]
for computational MPI based services.

The fail-safe mode ensures consistency by buffering data in a file on an NVRAM
device before writing into a cache. If the write procedure ends with success, the
recovery buffer is removed. Otherwise, it is possible to reopen the cache and retry
the write operation. Figure 1 presents the lifecycle of the cache and the recovery
buffer. Recovery process proceeds as follows: initialize cache structures as when

1https://github.com/pmem/mpi-pmem-ext/tree/master/mpiio_extension2.

140 A. Malinowski et al.

https://github.com/pmem/mpi-pmem-ext/tree/master/mpiio_extension2

opening a file, but using existing NVRAM range instead of new memory allocation;
for each unfinished write request stored in file, try performing it again.

In the optimized version, at the phase of cache initialization, a buffer—single file
with preallocated space, is created to store initiated write operations. Figure 2
presents the structure of a buffer with an activity flag (which informs whether an
operation stored in the buffer is not completed), size and offset of data within the
whole file, and data itself. If the size of a processed data is equal or lower than the
buffer capacity, instead of new file creation the buffer is used. To ensure that data is
synchronized, fast pmem_memcpy_persist operation from the libpmem library is
used. Eventually, the buffer is removed in a cache deinitialization phase.

The fail-safe mode is not only beneficial in a case of write operations. Although
initialization of NVRAM cache can consume a lot of time due to prefetching of
data, recreation of a cache after a failure is a relatively cheap operation. This
advantage, together with insignificant execution time overhead, leads to the con-
clusion, that usage of a fail-safe extension is also recommended for files opened in
read-only mode. The solution completed successfully a set of functional tests,
where the application was stopped at random moments in time.

Table 1 Differences between checkpointing and fail-safe mode of MPI I/O NVRAM extension

Checkpointing NVRAM fail-safe mode

Environment
requirements

Optional additional
library

NVRAM + MPI I/O extension

Application requirements Development overhead Consistent state stored in a file

Time overhead Noticeable Negligible

Fault tolerance All failure causes All failure causes except hardware

Fig. 1 Diagram of possible cache and recovery buffer states

Activity flag size offset data

Fig. 2 Structure of a write request buffer. Meta-data is kept minimal

A Fail-Safe NVRAM Based Mechanism for Efficient … 141

4 Experiments

Experiments are focused on showing fail-safe mode overhead, scalability of the
solution and recovery time. The aim of overhead measurement was to compare the
proposed solution to the unmodified and unextended MPI I/O with no check-
pointing (further called “regular”). Results of NVRAM cache were obtained
including fail-safe mode (called “fail-safe mode on”), as well as without any
fault-tolerance mechanisms (called “fail-safe mode off”). Input data and performed
computations in all three cases were identical. Test cases do not include forced
failures—otherwise it would be impossible to compare fails-safe mode with regular
MPI I/O and plain NVRAM cache.

Testbed environment
Tests were performed on two clusters: Lap06 (equipped with NVRAM simulation
platform), and K2 (composed of about a hundred of nodes). Those different envi-
ronments were used in order to provide more comprehensive results: hardware
simulation platform in Lap06 is able to accurately reproduce expected NVRAM
parameters, while the bigger K2 allows to show scalability. Table 2 provides
detailed specification of clusters and nodes. Since NVRAM is slower than regular
RAM, its simulation is based on the idea of adding additional delays for read and
write operations on certain ranges of RAM addresses. The operating system can see
simulated NVRAM as an ext4 file system using Direct Access for files (DAX),2

together with the ability to omit page cache mechanisms for memmap’d files.
Results in this paper are obtained with MPICH 3.2, Orange-FS 2.8.7 as PFS and the
following configuration of simulated NVRAM:

• RAM bandwidth limited four times, which limits it at the level of about
9.5 GB/s,

• additional read latency at the level of 600 ns,
• additional write latency at the level of 2000 ns.

Applications
Firstly, results were obtained with a random walk microbenchmark—an application
created for the purpose of measurement of I/O performance. In contrary to popular
I/O benchmarks, it also makes the CPU work under heavy load in order to simulate
high performance computations. Tests with no computations were unrealistically
optimistic in favor of the NVRAM cache. The algorithm operates as follows:

1. Read a single data chunk.
2. Perform some iterations of Collatz conjecture.
3. Write a single data chunk.
4. Choose a new location (random distance and direction) and return to the first

step.

2https://www.kernel.org/doc/Documentation/filesystems/dax.txt.

142 A. Malinowski et al.

https://www.kernel.org/doc/Documentation/filesystems/dax.txt

State of the application contains the whole file the algorithm operates on.
Secondly, we benchmarked a 2D map search application in which a potentially
large map is searched for in parallel for objects by processes of an MPI application.
The map is partitioned into distinct subdomains each of which is assigned to a
distinct MPI process. Each of these searches for pixels meeting a certain criteria
(color) and if found, searches its immediate surrounding for occurrence of a certain
number of objects or until a predefined radius has been reached. This can be used
for simulation of spreading of diseases in smart agriculture, in military applications
searching for enemy vehicles in close proximity to important objects etc. The map,
together with markers on selected locations, creates application state that could be
recreated after a failure.

Fail-safe mode overhead
For test purposes, Fig. 3 presents a random walk microbenchmark parameterized
with a 10 GB input file, 1 kB of single data chunk, 1.5 millions of Collatz con-
jecture iterations and various numbers of algorithm iterations. Results of 2D map
search are shown in Fig. 4 and were obtained with different map sizes and a buffer
of 512 B.

Table 2 Testbed environment

Lap06 K2

Number of computing nodes 6 96

Number of PFS nodes 1 3

CPU 2 � Intel® Xeon®E5-4620 2 � Intel® Xeon E5345

RAM (GB) 15 8

Network 40 Gb/s Infiniband 10 Gb/s Ethernet

Storage SSD HDD

NVRAM simulation 17 GB, hardware simulation 4 GB, tmpfs

algorithm iterations (in thousands)

Fig. 3 Random walk microbenchmark, comparison of approaches

A Fail-Safe NVRAM Based Mechanism for Efficient … 143

Both graphs prove, that the overhead introduced in the proposed fail-safe mode
is negligible—a few microseconds per request/iteration per cache manager in the
two applications. Moreover, the overhead does not depend neither on amount of
access operations (represented by iterations of random walk algorithm), nor on the
size of an input file (showed with different map sizes in Fig. 4). Results from this
experiments also indicate that, if only an application meets certain criteria such as a
high enough number of file operations per file open operation, unmodified MPI I/O
implementation has a lower performance than proposed NVRAM cache based
extension.

Scalability
Scalability of the solution was also tested with the random walk microbenchmark
(10 GB of input file size, 1 kB of single data chunk, 13.5 millions of algorithm
iterations, each iteration consisted of 1.5 millions of Collatz conjecture steps) and
2D map search (map of 10 GB). For both applications, the referential value of
execution time running on a single process was obtained with a reduced file size,
and then scaled according to computational complexity of the algorithm. This
operation was required because a single node was not able to simulate enough
NVRAM for storage of 10 GB file. The results presented in Fig. 5 show a nearly
linear speedup of the random walk microbenchmark. Although connecting more
nodes resulted in an increased intensity of I/O operations, each additional node
participated in a distributed cache and the load was divided between more
machines. Scalability of 2D map search was linear up to 168 processes, which is
shown in Fig. 6. The speedup drop for higher numbers of processes is caused by
too small an amount of computations—the implementation of searching through the
map is not computationally demanding and after a certain number of processes is
reached, the overhead for spawning and managing additional processes is higher
that gain from parallel execution. What could be also noticed in this chart is that the
solution performs better when data chunks are smaller.

input file size [MB]

Fig. 4 2D map search, comparison between unmodified MPI IO and proposed extension

144 A. Malinowski et al.

Recovery time
Recovery time results, measured on the Lap06 cluster, are shown in Table 3. When
a simulated failure occurred, about 25 % of processes were sending 1 kB write
requests. Recreation of a cache after a failure is a relatively cheap operation,
because it does not require memory allocation or much data transmission.
Moreover, execution time of this process does not depend on the size of a file.

Fig. 5 Scalability illustrated with random walk microbenchmark on K2 cluster

Fig. 6 Scalability illustrated 2D map search on K2 cluster

Table 3 Recovery times for
applications and various
cache sizes

Size of NVRAM cache

100 MB 1 GB 10 GB

Random walk
microbenchmark (s)

9.899 10.016 9.922

2D map search (s) 10.001 9.809 9.926

A Fail-Safe NVRAM Based Mechanism for Efficient … 145

5 Summary and Future Work

In this paper, we presented a solution, that allows to recover from failures caused by
software, network and the environment. The solution is based on the MPI I/O
extension supported by NVRAM cache. With persistence of NVRAM and the
architecture of this extension, the overhead related to fail-safe mode is negligible,
which was shown for two applications run in a real cluster environment. Experiments
confirmed, that the extension is scalable, although it is strongly dependent on a
specific application. We firmly believe, that the solution is an interesting alternative
to checkpointing in environments, that do not need the highest level of fault tolerance.

In the future we would like to focus on testing the NVRAM based solution with
a wider range of applications such as parallel graph search algorithms and geo-
metric SPMD type applications. We also plan to further tune the method’s ini-
tialization, experiment with replacement of threads with dynamically invoked MPI
processes.

References

1. Rajachandrasekar, R., Moody, A., Mohror, K., Panda, D.: A 1 PB/s file system to checkpoint
three million MPI tasks (2013)

2. Czarnul, P., Fraczak, M.: New user-guided and ckpt-based checkpointing libraries for parallel
MPI applications. In: 12th European PVM/MPI Users’ Group Meeting Sorrento, Italy.
Springer LNCS 3666, pp. 351–358, 18–21 Sept 2005

3. Schroeder, B., Gibson, G.A.: Understanding failures in petascale computers. In: SciDac 2007:
Scientific Discovery Through Advanced Computing. Volume 78 of Journal of Physics:
Conference Series. Boston, MA, 24–28 June 2007

4. Smith, R.: Introducing Intel Optane Technology—Bringing 3D XPoint Memory to Storage
and Memory Products (July 2015) https://newsroom.intel.com/presskits/introducing-intel-
optane-technology-bringing-3d-xpoint-memory-to-storageand-memory-products/

5. Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (BLCR) for Linux clusters. In:
SciDAC 2006. Volume 46 of Journal of Physics Conference Series, pp. 494–499 (2006)

6. Sankaran, S., Squyres, J., Barrett, B., Sahay, V., Lumsdaine, A., Duell, J., Hargrove, P.,
Roman, E.: The LAM/MPI checkpoint/restart framework: system initiated checkpointing. Int.
J. High Perform. Comput. Appl. 19(4), 479–493 (2005)

7. Dong, X., Muralimanohar, N., Jouppi, N., Kaufmann, R., Xie, Y.: Leveraging 3D PCRAM
technologies to reduce checkpoint overhead for future Exascale systems. In: Proceedings of
the Conference on High Performance Computing Networking, Storage and Analysis. SC’09,
vol. 57, pp. 1–57:12. New York, ACM (2009)

8. Narayanan, D., Hodson, O.: Whole-system persistence with non-volatile memories. In:
Seventeenth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2012), ACM (2012)

9. Gao, S., He, B., Xu, J.: Real-time in-memory checkpointing for future hybrid memory
systems. In: Proceedings of the 29th ACM on International Conference on Supercomputing,
pp. 263–272. ICS’15, New York, ACM (2015)

10. Dorozynski, P., Czarnul, P., Malinowski, A., Czurylo, K., Dorau, L., Maciejewski, M.,
Skowron, P.: Checkpointing of parallel MPI applications using MPI one-sided API with

146 A. Malinowski et al.

https://newsroom.intel.com/presskits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storageand-memory-products/
https://newsroom.intel.com/presskits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storageand-memory-products/

support for byte-addressable non-volatile ram. ICCS 2016. Procedia Comput. Sci. 80, 30–40
(2016)

11. Gropp, W., Lusk, E.: Fault tolerance in MPI programs. Spec. Issue J. High Perform. Comput.
Appl. 18, 363–372 (2002)

12. Fagg, G., Dongarra, J.: Building and using a fault-tolerant MPI implementation. Int. J. High
Perform. Comput. Appl. 18(3), 353–361 (2004)

13. Malinowski, A.., Czarnul, P.: Extension of MPI parallel i/o API (2015) https://github.com/
pmem/mpi-pmem-ext/blob/master/mpiio_extension2/doc/mpiio_extension.pdf

14. Czarnul, P., Ciereszko, A., Fraczak, M.: Towards efficient parallel image processing on
cluster grids using GIMP. In: Computational Science—ICCS 2004, Krakow, Poland. Lecture
Notes in Computer Science 3037, pp. 451–458. Springer (2004)

15. Czarnul, P.: A model, design, and implementation of an efficient multithreaded workflow
execution engine with data streaming, caching, and storage constraints. J. Supercomput. 63
(3), 919–945 (2013)

A Fail-Safe NVRAM Based Mechanism for Efficient … 147

https://github.com/pmem/mpi-pmem-ext/blob/master/mpiio_extension2/doc/mpiio_extension.pdf
https://github.com/pmem/mpi-pmem-ext/blob/master/mpiio_extension2/doc/mpiio_extension.pdf

Towards Effective Allocation of Resources
in Service-Oriented Systems

Łukasz Falas and Krzysztof Juszczyszyn

Abstract The article focuses on the problem of computing resource management
in systems offering data processing methods in service-based model. It proposes a
new model for service requests processing based on a concept of dynamic service
selection in such a way, which meets client’s requirements, while minimizing the
service delivery cost for the service provider. The key innovation of the described
approach is the utilization of machine learning methods for effective estimation of
non-functional parameters and resource allocation decision-making.

Keywords Resource allocation � Service oriented architecture � Qos-aware service
composition � Web services

1 Introduction

Dynamic development of Internet-based Web services had tremendous impact on
service delivery strategies and, at the same time, influenced users’ expectations
which tend to be more focused on service quality. As for now, the base model of
delivery is Software-as-a-Service (SaaS), which allows access from any device
with Internet connection. Implementation of SaaS within the Service Oriented
Architectures (SOA) greatly impacts the importance of service quality guarantees,
service contracts and Service Level Agreements (SLAs). At the same time, details
of the implementation are hidden from the users, who interact with services via
standard, dedicated interfaces [4, 5]. In result, clients are unaware of implementa-
tion techniques, resource allocation schemes (CPU, memory, disk, and communi-
cation link usage).

Ł. Falas (&) � K. Juszczyszyn
Chair of Computer Science, Wrocław University of Technology,
Wyb. Wyspiańskiego 27, 50-357 Wrocław, Poland
e-mail: lukasz.falas@pwr.wroc.pl

K. Juszczyszyn
e-mail: krzysztof.juszczyszyn@pwr.wroc.pl

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_12

149

In this situation, a new challenges emerge in the context of resource allocation
methods in SaaS systems. We expect that new types of service contracts, containing
non-functional requirements will become common within the next few years.
Service requests will be enriched with information about expected response time,
service availability, security requirements etc. On the other hand, today’s solutions
based mainly on various strategies for task distribution between servers seem
clearly inadequate to address these challenges and guarantee new types of SLAs.
Recently released report “Computing Systems: Research Challenges Ahead: The
HiPE-AC Vision 2011/2012” [10], together with numerous publications, indicate
that key research areas connected with SOA and SaaS systems will be associated
with quality and effectiveness guarantees. Within these areas, the management of
computational and communication resources are being defined as key factors for the
quality of Service guarantees [1, 17, 18]. The problem seems even more important
in many real-world cases where services are responsible for computational tasks,
intense data processing, decision support etc. In these cases, the actual values of
non-functional parameters of services are directly dependent on resources allocated
to services, and the size of data being processed. To make things more complicated,
in most SOA and SaaS systems tasks may be executed by composite services, and
there exist multiple instances of certain services which may differ in terms of
allocated resources, response times etc. Each of these services may be chosen as a
component of composite service which generates non-trivial optimization problems
—allocation of resources to services which then take part of composite service
execution plan should be done in a way guaranteeing the SLA.

This paper addresses the above challenges by proposing a new approach to the
execution of composite services. Our approach assumes the application of several
methods from machine learning and probabilistic models in order to estimate
non-functional parameters of atomic and composite services, and to support optimal
resource allocation. The preliminary experimental results will be also presented and
discussed.

2 Related Work

Resource management in service-oriented systems was discussed in many works.
But, in most cases, they were concentrated on fulfilling the functional requirements
of the users (service composition), and non-functional requirements were addressed
only in context of service provider’s cost and the problem of the configuration of
his computational resources. There are many papers covering the problem of
composite service configuration, which means static binding of atomic services to
certain composite services (as parts of their execution plan) [2, 3, 8, 14, 16]. The
key problem with this approach is that it simplifies the dynamic nature of service

150 Ł. Falas and K. Juszczyszyn

systems and does not address any type of resource reallocation (which may be
sometimes inevitable). One of the first publications addressing dynamic service
allocation during service request processing was [9], describing solutions imple-
mented in eFlow system. This approach was, however, limited to the scenario of
changing specific SLAs by the user. It was further developed within the e-health
system based on composed Web services [13]. This work introduces the concept of
service version, with service versions differing only in terms of non-functional
parameters. Additionally, connection between resource allocation and service
quality is discussed in this work.

In other work, the necessity of addressing changes in non-functional service
parameters is discussed [19]. There is also a probabilistic model proposed for their
estimation. Other probabilistic models were also proposed in [12, 15].

Our work stems from the solutions proposed in [6, 7] and offers their significant
extension—a new model for service requests processing based on a concept of
dynamic service selection, which meets client’s requirements, while minimizing the
service delivery cost for the service provider. The key component of the described
approach is the utilization of machine learning methods for effective estimation of
non-functional parameters and resource allocation decision-making.

3 Resource Allocation Task

Resource allocation task in service oriented systems is a problem which integrates
access control, guarantees of non-functional service parameters, and service cost
optimization (on service provider side). The pool of resources consists of various
versions of services (with different non-functional characteristics), computational
resources (processor time, memory, disk space), and communication resources
(network links through which services communicate). Service requests, generated
by users, come in a stream which is sequentially processed.

Dynamic service allocation task is executed when the request reaches the sys-
tem, and involves the following stages:

• verification of availability of resources,
• computation of optimal resource allocation for composite service request
• decision about request acceptance or rejection (in case requirements cannot be

met)
• allocation of resources and composite service execution.

Request response process in a dynamic resource allocation SaaS system is
presented in Fig. 1.

Towards Effective Allocation of Resources … 151

4 Service System Model

In service-oriented systems, according to SOA reference architecture [1], we dis-
tinguish four layers: users, composite services, Web services, and infrastructure. In
this architecture users generate requests and send them to the system, each of the
composite services is composed of atomic services and has its own execution plan.
We should note, that only atomic services are directly connected with infrastructure
level—composite services are represented by their execution plans, which are
processed by dedicated execution engines. Solution described in this paper is in fact
a middleware placed between user and Web service layer. In order to solve the
dynamic allocation of resources problem, we developed a mathematical model of
service system, with the representation of non-functional parameters of services. It
will be shortly described below.

Systems’ resources are defined as a tuple:

SYSTEM ¼ total cores; total memoryf g ð1Þ

where total_cores is total number of computational cores in the system, while
total_memory stands for memory resources. A request is defined as a tuple:

Ri ¼ ti; di; SLAif g ð2Þ

where i is the request number, ti is request time, di is amount of data connected with
the request, and SLAi is a vector of non-functional requirements, defined as:

SLAi ¼ nf1; nf2; . . .; nfj; . . .; nfJ
� � ð3Þ

verifica on of
resource

availability

no

Request SLA contract renego a on enabled ?

SLA contract renego a on request rejec on

resource
alloca on

request execu onrequest

computa on of
op mal resource

alloca on for
request

yes

Request accepted
for execu on ?

Fig. 1 Request processing in service-oriented system with optimization of resource allocation

152 Ł. Falas and K. Juszczyszyn

where nfj stands for a constraint for jth non-functional parameter, and J is total
number of non-functional parameters. The set of all servers available is defined as:

H ¼ h1; h2; . . .; hk; . . .; hKf g ð4Þ

where k is the number of server, and K is the number of all servers available. The
number of available cores on server k, (at the moment the request is submitted)
which may be allocated to the request is a function:

coreðk; tiÞ ð5Þ

The amount of free memory on server k, (at the moment the request is submitted)
which may be allocated to the request is a function:

memoryðk; tiÞ ð6Þ

A set of all atomic services in the system is defined as:

S ¼ fs1; s2; . . .; sl; . . .; sLg ð7Þ

where l is the number of a service, and L is the number of all atomic services
available. The set of all versions of an atomic service l is defined as:

SVl ¼ fsvl1; svl2; . . .; svlm; . . .; svlMg ð8Þ

where m is the number of a service version, M jest the number of all services
(including versions) available in the system, and svlm is a pair:

svlm ¼ corelm;memorylmf g ð9Þ

where corelm is the number of cores used by version m of service l, and memorylm is
memory used by version m of service l. Available link throughput between versions
of services is defined as:

bandwidth ti; svlmk; svopr
� � ð10Þ

where svlmk is version m of service l executed on server k, and svopr is version p of
service o executed on server r. A function (using regression method) which returns
random variable SNPijlm describing the value if jth non-functional parameter for
service version svlm at the time moment ti is defined as:

SNPijlm ¼ fsnfj svlm; tið Þ

Towards Effective Allocation of Resources … 153

Graph representing all possible execution plans of composite service executed in
result of request Ri is defined as:

GSi VSi ¼ VSTART;VC1;VC2; . . .;VCn;VENDf g;ESið Þ ð11Þ

where node VCn is being mapped into set svn1; svn2; . . .; svnmf g, which is a set of all
versions of service n, which may be chosen to be the part of execution plan of
composite service. Nodes VSTART and VEND represent start and shutdown of
composite service execution plan. VSi is a set of all nodes of the composite service
graph relevant to the request i, and ESi is a set of all links in the graph, representing
data flow between atomic services responding to request i as parts of executed
composite service. Execution plan of composite service for request i is a defined as:

GiðVi;EiÞ ð12Þ

where Vi represents all versions of services chosen to be executed as parts of the
plan and Ei represents data flow between versions of services. Now we can define:

Gif Vif ;Eif
� � 2 FGi ð13Þ

where FGi is a set of all possible execution plans of composite service responding
to request i (built from available services, on the basis of GSi), and Gif Vif ;Eif

� �
is

fth execution plan for a request i from the set FGi. For each non-functional
requirement from SLAi we can define a function aggregating the values of
non-functional parameters of the fth execution plan for request i, which will return a
random variable GNPijf describing the jth non-functional parameter:

GNPijf ¼ fgnfj Gif Vif ;Eif
� �

; ti
� � ð14Þ

The cost of service delivery may be defined as:

DC Gif Vif ;Eif
� �

; SYSTEM
� �

It returns a percentage value describing what part of total system’s resources are
resources allocated to the realization of request i by the execution plan of composite
service f. Finally, basing on the above model we can define optimization criterion,
allowing optimal allocation of resources within a composite service execution plan:

GiðVi;EiÞ min
Gif Vif ;Eifð Þ

DC Gif Vif ;Eif
� �

; SYSTEM
� �

154 Ł. Falas and K. Juszczyszyn

Fulfilling constraints:

fgnfj Gif Vif ;Eif
� �

; ti
� �� nfj; for requirements with upper constraint

fgnfj Gif Vif ;Eif
� �

; ti
� �� nfj; for requirements with lower constraint

�

The above model was used in the development of system allowing for optimal
resource allocation and was implemented for the tests on real-life service reposi-
tories. Results are presented in the next section. Note, that this solution was
developed for service systems using costly computational services for executing
composite algorithms and decision making. It is also dedicated for systems
applying the structural project pattern of the Façade [11], and introduces middle-
ware responsible for processing of all queries and allocation of system’s resources.
It also uses the concept of dynamic resource allocation via virtualization on the
operating system’s level (like in Docker technology). In result, by default, no
services are running when the request arrives, the virtualized container with a
service is started on demand with time cost of 50–100 ms, with allocated resources
determined by the machine learning algorithm.

5 Experiments

Experiments were focused on verification of machine learning methods applied to
estimation of non-functional parameters of services taking into account the amount
of data being sent, the number of processor cores being used and the allocated
memory. Our method was compared with most prominent approaches found in
literature (assuming that the average values of non-functional parameters are being
used). The results shown below address primarily the most important
non-functional parameter—the time. Two servers were used in the experiments, one
in the role of management server (running our optimization middleware) and the
second with Docker software which allows virtualization on operating system level.
Each was equipped with 8 processor cores and 64 GB of RAM.

For the tests a special Web service was prepared for acquiring the current state of
the processor cores and for precise allocation of them to specific services. The
service was tested in three versions:

• Version I: 1 core and 1.5 GB of RAM
• Version II: 4 cores and 6 GB of RAM
• Version III: 8 cores and 12 GB of RAM

For experiments, a set of 200 requests was prepared, divided in proportions of
60:40 (learning set and test set for evaluating predictions). We have assumed, that
for any request only one version of service is chosen, and then executed. The times
of execution and processing of each request are recorded and stored. Our method

Towards Effective Allocation of Resources … 155

chooses a version of service, for which the estimated time of execution is being
closely met by the user’s requirements defined in the SLA. At the same time
algorithm guarantees that this result is achieved with the minimum cost (amount of
resources allocated to service).

Two runs were performed during the tests—one using standard methods of
estimating non-functional parameters (average values), and the second using
machine learning approach proposed here. The tests compared the two of the above
approaches by using three measures (the results are presented below (Figs. 2 and 3):

• accuracy, defined as difference between estimated time of service execution and
the actual time of execution,

• the number of requests which were served in accordance with the SLA,
• the amount of system’s resource consumed.

The experiments proved that, in the case of data-processing services, the size of
input data is an important factor, influencing estimation of execution time. As seen
on the charts estimation based only on mean execution times (which neglects data
size) results in significant inaccuracy. On the other hand, prediction of execution

0

2000

4000

6000

8000

10000

12000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

m
e

[m
s]

request
Measured execu on me Mean value method Machine learning method

Fig. 2 Service execution time and time prediction for different methods (Version I)

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

m
e

[m
s]

request
Measured execu on me Mean value method Machine learning method

Fig. 3 Service execution time and time prediction for different methods (Version III)

156 Ł. Falas and K. Juszczyszyn

time based on polynomial regression returns much better results. More detailed
analysis of results is presented below. We can also note (Fig. 4) that in many cases
time estimation based on mean values leads to the violation of SLAs (real execution
time of services exceeds the value defined in SLA), while machine learning cor-
rectly estimates execution time and allows to choose appropriate versions of ser-
vices (with more allocated resources) (Table 1).

The SLAs are not violated, which is a key feature of reliable and effective
service system. Percentages of service requests processed in accordance with their
SLAs are shown in the Table 2.

Figure 5 presents the utilization of processor cores by the services during the
experiment, for both methods of service’s execution time prediction methods. We
can notice, that in some cases machine learning method allocates significantly more
cores to the services, but, at the same time, no SLA is violated, while in the case of
mean-based prediction the requirements of 45 % of SLAs were not met. Even more,
machine learning method resulted in more effective resource allocation—in 50 % of
cases it assigned less resources to the services than mean-based method (which was
more effective only in 22.5 % of cases) (Table 3).

Summing up, our experiments have shown, that the machine learning method
led to more effective allocation of system’s resources, and significantly impacted
service quality—no violations of SLAs were recorded. These results form the basis

0

2000

4000

6000

8000

10000

12000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

m
e

[m
s]

request
SLA execu on me constraint Mean value method Machine learning method

Fig. 4 Difference between measured and estimated service execution time

Table 1 Mean error of service execution time estimation

Service version Mean value method Machine learning method

I 2572.316 143.503

II 647.949 18.66

III 421.13 60.543

Table 2 Percentage of
services processed in
accordance with their SLAs

Method Value (%)

Mean value method 55

Machine learning method 100

Towards Effective Allocation of Resources … 157

for our next experiments, which will involve more composite services, and the
development of dedicated algorithms and methods for the optimization of resource
allocation in service systems.

6 Conclusions

This paper presents a new approach for processing requests in service-oriented
systems. It was developed especially for systems, where services are responsible for
composite computational and decision-supporting tasks, with processing of large
volumes of data. Our approach implements the idea of dynamic allocation of
resources at the moment of request submission and assumes virtualization (on the
operating system level) with container technology (i.e. Docker). It may be also used
in systems which utilize standard virtualization methods, but may be ineffective in
such cases (starting virtual machine is time-costly). A new feature is the application
of machine-learning methods for estimation of the values of non-functional
parameters of Web services. Another important feature is allocation of resources to
particular requests taking into account parameters like: computational resources,
availability of communication links, the volume of data.

Our approach was tested on real-life examples of service repositories, and it was
shown that it allows for better allocation of resources and minimizes the usage of
computational infrastructure, at the same time guaranteeing the SLA agreements.

Further research will be concentrated on adaptation of the developed methods to
more composite service requests and the development of dedicated algorithms for

Table 3 Utilization of system’s resources

Measure Value (%)

Mean value method—requests with better resource allocation 22.5

Machine learning method—requests with better resource allocation 50.0

Requests with the same resource allocation for both methods 27.5

0.00%

20.00%

40.00%

60.00%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79
request

Mean value method Machine learning method

Fig. 5 Utilization of processor cores during experiment

158 Ł. Falas and K. Juszczyszyn

faster decisionmaking for resource allocation. The next experiments will be run using
bigger service repositories and basing of the resources of recently set up Laboratory of
Computing Clouds which is a part of national Polish PL-LAB2020 infrastructure.

References

1. Aazam, M., Khan, I., Alsaffar, A.A., Huh, E.-N.: Cloud of things: integrating internet of
things and cloud computing and the issues involved. In: 11th International Bhurban
Conference on Applied Sciences and Technology, pp. 414–419 (2014)

2. Bao, H., Dou, W.: A.: QoS-aware service selection method for cloud service composition. In:
Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),
pp. 2254–2261 (2012)

3. Blanco, E., Cardinale, Y., Vidal, M., Graterol, J.: Techniques to produce optimal web service
compositions. In: IEEE Congress on Services, pp. 553–558 (2008)

4. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.: Web
Services Architecture, W3C Working Group Note, 11 Feb 2004 http://www.w3.org/TR/ws-
arch, 2004

5. Brown, P.F., Metz, R., Hamilton, B.A.: Reference model for service oriented architecture 1.0,
OASIS (2006)

6. Canfora, G., Di Penta, M., Esposito, R., Villani M.L.: A lightweight approach for QoS-aware
service composition. In: 2nd International Conference on Service Oriented Computing
ICSOC’04 (2004)

7. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: Qos-aware replanning of composite web
services. In: IEEE International Conference on Web Services (ICWS’05), pp. 121–129 (2005)

8. Cao, H., Feng, X., Sun, Y., Zhang, Z., Wu, Q.: A service selection model with multiple QoS
constraints on the MMKP. In: Network and Parallel Computing Workshops, pp. 584–589
(2007)

9. Casati, F., Shan, M.C.: Dynamic and adaptive composition of e-services”. Inf. Syst. 26(3),
143–163 (2001)

10. Duranton, M., Black-Schaffer, D., Yehia, S., de Bosschere, K.: Computing systems: research
challenges ahead: the HiPEAC vision 2011/2012 (2011)

11. Erl, T.: Service Façade, SOA Design Patterns (1st edn.), pp. 333–343 (2009)
12. Falas, Ł., Stelmach, P.: Web Service composition with uncertain nonfunctional parameters.

In: Technological Innovation for the Internet of Things, pp. 45–52 (2013)
13. Grzech, A., Świątek, P., Rygielski, P.: Dynamic resources allocation for delivery of

personalized services. In: IFIP Advances in Information and Communication Technology:
Software Services for e-World 341, pp. 17–28 (2011)

14. Huang, A.F.M., Lan, C., Yang, S.J.H.: An optimal QoS-based Web service selection scheme.
Inf. Sci. 179(19), 3309–3322 (2009)

15. Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling and
estimating the QoS of web-services-based workflows. Inf. Sci. 177, 5484–5503 (2007)

16. Juszczyszyn, K., Stelmach, P., Grzelak, T.: A method for the composition of semantically
described Web services. In: Information Systems Architecture and Technology: Networks and
Networks’ services, pp. 27–37 (2010)

17. Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Key challenges in cloud computing:
enabling the future internet of services. IEEE Internet Comput. 17(4), 18–25 (2013)

18. Sadiku, M.N.O., Musa, S.M., Momo, O.D.: Cloud computing: opportunities and challenges.
IEEE Potentials 33(1), 34–36 (2014)

19. Silva Cardoso, A.J.: Quality of Service and Semantic Composition of Workflows. PhD
Dissertation, University of Georgia (2014)

Towards Effective Allocation of Resources … 159

http://www.w3.org/TR/ws-arch
http://www.w3.org/TR/ws-arch

Part IV
Communication Systems

Transient Processing Analysis
in a Finite-Buffer Queueing Model
with Setup Times

Wojciech M. Kempa and Dariusz Kurzyk

Abstract A finite-buffer queueing model with Poisson arrivals and generally dis-
tributed processing times is investigated. Every time when the service station restarts
the operation after the idle period, a random-length setup time is needed to achieve
full readiness for the work, during which the service process is suspended. A system
of integral equations for time-dependent departure process, conditioned by the initial
buffer state, is built. The solution of the corresponding system written for double
transforms is obtained in a compact form. Hence the mean number of packets
completely processed up to fixed time epoch can be easily found. The analytical
approach is based on the idea of embedded Markov chain, total probability law and
integral equations. The considered queueing system can be successfully used in
cellular networks or WSNs modelling, where the setup time corresponds to leaving
the sleep mode in energy saving mechanism. Numerical utility of analytical formulae
is shown in a network-motivated computational example.

Keywords Departure process � Finite-buffer queue � Integral equation � Setup
time � Transient state

1 Introduction

Evidently, queueing models with finite buffer capacities have wide network
applications, especially in modelling some processes occurring in network nodes,
like IP routers or nodes of WSNs. As it seems, systems with different-type limi-

W.M. Kempa (&) � D. Kurzyk
Silesian University of Technology, Institute of Mathematics, ul. Kaszubska 23,
44-100 Gliwice, Poland
e-mail: wojciech.kempa@polsl.pl

D. Kurzyk
e-mail: dariusz.kurzyk@polsl.pl

W.M. Kempa � D. Kurzyk
Institute of Theoretical and Applied Informatics, Polish Academy of Sciences,
ul. Bałtycka 5, 44-100 Gliwice, Poland

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_13

163

tations in the access to the service station are of particular importance, due to their
potential adoptions as models of energy saving mechanisms. Typically, each busy
period of the queueing system may correspond to the active mode and any idle
period—to the sleep mode. In practice, when a packet (job, call, etc.) arrives into
the empty system, it is impossible to start its operation immediately. Predominantly,
it takes some time (called a setup time) for the server to achieve the full readiness
for processing.

The steady-state behavior of the M/M/1-type queue with “queued” waking up
and setup times is investigated in [2]. A Markovian system with server setups
preceding the first service in a new busy period is analyzed in [13]. In [15] (see also
[1]) an equilibrium threshold strategy for customers’ behavior in a queue with setup
times is derived. Applications of queueing systems with setup periods in WSNs can
be found, e.g. in [16], where a sleep/wakeup protocol in the IEEE 802.15.4 standard
is modelled. In [3] a queueing system in modelling the IMS session re-setup delay
in WiMAX/LTE heterogeneous networks is applied. A BS sleeping mode in cel-
lular networks is in [14] modelled via the M/G/1-type queueing system with server
vacations and setup times. In [4] a model of data center with servers having
independent setup times after idle periods is considered. The system is mathe-
matically described by a two-dimensional Markov chain and some performance
measures are found using a generating function approach.

As one can observe, analytical results obtained for different-type queueing
models with server setup times relate, mainly, to the stable queues, i.e. to the
stochastic characteristics in the case of t ! 1: However, quite often
time-dependent analysis of the system behavior seems to be more desired, in par-
ticular due to the high variability network traffic, e.g. in TCP/IP connections.
Moreover, in rare traffic (like in some WSNs) the system stabilizes longer, so the
investigation of its performance shortly after the opening or the application of a new
control mechanism requires transient analysis (at fixed time t). Transient analysis of
the queue-size distribution in the M/G/1-type queueing model with arrivals in
random batches, N-policy and server setup times can be found in [7]. In [5] a
similar model is considered with additional multiple vacation policy.
Time-dependent solution for the queue-size distribution in a model with Poisson
arrivals and setup/closedown times is obtained in [11].

In the paper we deal with the finite-buffer queueing model of the M/G/1 type in
which the first processing in each new busy period (after finishing the idle time) is
preceded by a generally-distributed setup time, during which the service process is
still suspended (the arriving packets accumulate in the buffer queue). Using the idea
of embedded Markov chain, a system of integral equations for the distribution of
the number of packets completely processed up to the fixed time t (departure
process), conditioned by the initial buffer state, is built. The solution of the cor-
responding system written for double transforms is obtained via linear algebraic
approach and presented in a compact form by using a certain recursively defined
sequence.

In [9, 10] new results for departure process in the model with “queued” waking
up (N-policy) can be found. The same characteristic in the finite-buffer system with

164 W.M. Kempa and D. Kurzyk

auto-correlated input stream modelled by the BMAP process is studied in [8]. In [6]
time-dependent results for departure process can be found for the model with
multiple vacation policy.

2 Description of the Model and Auxiliary Results

In the paper we investigate a single-server finite-buffer queueing model in which
packets arrive according to a Poisson process with rate k and are being served
individually with a general-type CDF (=cumulative distribution function) Fð�Þ of
the processing time, according to the FIFO service discipline. The maximal number
of packets present in the system simultaneously equals K, i.e. we have K � 1 places
in the buffer queue and one place “in service station”. Obviously, packets arriving
during the buffer overflow period (when the server is occupied and the buffer is
saturated) are being lost. We assume that the buffer may contain a number of
packets being accumulated before the start of the system at time t ¼ 0: Each busy
period, which is initialized together with the first arrival after the idle time, is
preceded by a setup time, which is a random variable with a general-type CDF G �ð Þ:
The server needs a setup time to achieve full operational readiness. If the system is
empty before the opening, then it also starts a setup time at the moment of the first
arrival. We assume independence of all inter-arrival, processing and setup times in
the evolution of the system.

Let us denote by hðtÞ the (random) number of packets completely processed up
to the fixed time t; and define the distribution function of h tð Þ; conditioned by the
initial level of buffer saturation, as follows:

Hn t;mð Þ ¼def P h tð Þ ¼ mjX 0ð Þ ¼ nf g; ð1Þ

where t[0;m� 0; 0� n�K and Xð0Þ stands for the number of packets present in
the system at the opening (at time t ¼ 0). The (conditional) departure process
defined in (1) is one of the most important operating characteristics of each
queueing system, illustrating its performance. Moreover, in network applications,
the output stream of packets transmitted from one node of the network becomes the
arriving stream of packets into another node.

We are interested in finding the explicit representation for the PGF (=probability
generating function) of the LT (=Laplace transform) of Hn t;mð Þ, i.e. for the
functional

~hnðs; zÞ ¼def
X1
m¼0

zm
Z1
0

e�stHn t;mð Þdt; ð2Þ

Transient Processing Analysis in a Finite-Buffer Queueing Model … 165

where zj j\1 and < sð Þ[0: In further analysis we use the following result from
linear algebra which can be found in [12]:

Lemma 1 Introduce two number sequences akð Þ; k� 0; and wkð Þ; k� 1; with the
assumption a0 6¼ 0: Each solution of the following system of linear equations with
respect to xn; n� 0 :

Xn
k¼�1

akþ 1xn�k � xn ¼ wn; n� 0; ð3Þ

can be written in the form

xn ¼ CRnþ 1 þ
Xn
k¼0

Rn�kwk; n� 0; ð4Þ

where C is a constant independent on n, and Rkð Þ is the sequence (called a
potential in [12]) connected with the akð Þ in the following way:

X1
k¼0

hkRk ¼ 1
Pa hð Þ � 1

; ð5Þ

where

Pa hð Þ ¼def
X1
k¼�1

hkakþ 1; hj j\1: ð6Þ

Moreover, in [12] it is proved that successive terms of the sequence Rnð Þ can be
found recursively as follows:

R0 ¼ 0;R1 ¼ a�1
0 ;Rkþ 1 ¼ R1 Rk �

Xk
i¼0

aiþ 1Rk�i

 !
; k� 1: ð7Þ

In the further analysis we use the nomenclature �L xð Þ ¼def 1� L xð Þ; where Lð�Þ
stands for arbitrary CDF, and the notation IfA} for the indicator of the random
event A: Moreover, let us define

f ðsÞ ¼def
Z1
0

e�stdF tð Þ; ð8Þ

gðsÞ ¼def
Z1
0

e�stdG tð Þ;< sð Þ[0: ð9Þ

166 W.M. Kempa and D. Kurzyk

3 Integral Equations for Conditional Departure Process

In this section, by using the idea of embedded Markov chain and the continuous
version of the formula of total probability, we find a system of integral equations for
Hn t;mð Þ t[0;m� 0; 0� n�Kð Þ; defined in (1). Next, we build the corresponding
system written for double transforms of conditional departure process, i.e. for
functionals ~hnðs; zÞ 0� n�K;R sð Þ[0; zj j\1ð Þ, given in (2).

Assume, firstly, that the system is empty before the opening, so its evolution
begins with idle period and the setup time begins simultaneously with the arrival
epoch of the first entering packet. We can, in fact, distinguish three mutually
excluding random events:

1. the first packet occurs before the moment t and the setup time also completes
before t (we denote this event by E1ðtÞ);

2. the first packet arrives before t but the setup time ends after t (E2ðtÞ);
3. the first arrival occurs after time t (E3ðtÞ).

Let us introduce the following additional notation:

H ið Þ
0 t;mð Þ ¼def P h tð Þ ¼ mð Þ \Ei tð ÞjX 0ð Þ ¼ 0f g; ð10Þ

where t[0;m� 0 and i ¼ 1; 2; 3: Obviously

P h tð Þ ¼ mjX 0ð Þ ¼ 0f g ¼ H0 t;mð Þ ¼
X3
i¼1

H ið Þ
0 t;mð Þ ð11Þ

and

~h0 s; zð Þ ¼
X3
i¼1

X1
m¼0

zm
Z1
0

e�stH ið Þ
0 t;mð Þdt: ð12Þ

According to the random event E1ðtÞ, we obtain the following representation:

H 1ð Þ
0 t;mð Þ ¼

Z t

x¼0

ke�kxdx
Zt�x

y¼0

XK�2

i¼0

kyð Þi
i!

e�kyHiþ 1 t � x� y;mð Þ
"

þHK t � x� y;mð Þ
X1
i¼K�1

kyð Þi
i!

e�ky

#
dGðyÞ

ð13Þ

Indeed, the first summand on the right side of (13) relates to the situation in
which the buffer does not become saturated during the setup time, while the second
one—to the case of the buffer overflow occurring during this time. Similarly,
considering E2 tð Þ; we obtain

Transient Processing Analysis in a Finite-Buffer Queueing Model … 167

H 2ð Þ
0 t;mð Þ ¼ I m ¼ 0f g

Z t

0

ke�kx �G t � xð Þdx: ð14Þ

Evidently, if the setup time completes after t, the service at time t is still blocked,
so the only possibility is m ¼ 0: Similar argumentation explains the last case,
namely

H 3ð Þ
0 t;mð Þ ¼ I m ¼ 0f ge�kt: ð15Þ

From (13)–(15) we get, referring to (11),

H0 t;mð Þ ¼
Z t

x¼0

ke�kxdx
Zt�x

y¼0

XK�2

i¼0

kyð Þi
i!

e�kyHiþ 1 t � x� y;mð Þ
"

þHK t � x� y;mð Þ
X1
i¼K�1

kyð Þi
i!

e�ky

#
dGðyÞ

þ I m ¼ 0f g
Z t

0

ke�kx �G t � xð Þdxþ e�kt

0
@

1
A:

ð16Þ

Let us consider now the case of the system being non-empty at the opening (i.e.
1� n�K). Since successive departure epochs are Markov (renewal) moments in
the evolution of the M/G/1-type system, then, applying the continuous version of
the formula of total probability with respect to the first departure epoch after t ¼ 0,
we obtain the following system of integral equations:

Hn t;mð Þ ¼ I m� 1f g
Z t

0

XK�n�1

i¼0

kxð Þi
i!

e�kxHnþ i�1 t � x;m� 1ð Þ
"

þHK�1 t � x;m� 1ð Þ
X1
i¼K�n

kxð Þi
i!

e�kx

#
dF xð Þþ I m ¼ 0f g�F tð Þ;

ð17Þ

where 1� n�K. Let us explain in a short form successive summands on the right
side of (17). The first summand under the integral describes the situation in which
there are some free places in the buffer before the first departure occurring at time
0\x\t, while the second one corresponds to the case of the buffer saturation
occurring before time t: In the last summand the first packet leaves the system after
t: Introducing the double transforms ~hnðs; zÞ, defined in (2), and utilizing the fol-
lowing identities:

168 W.M. Kempa and D. Kurzyk

X1
m¼0

zm
Z1
t¼0

e�stdt
Z t

x¼0

ke�kxdx
Zt�x

y¼0

kyð Þi
i!

e�kyHj t � x� y;mð ÞdG yð Þ ¼ ai sð Þ~hj s; zð Þ;

ð18Þ

where we define

ai sð Þ ¼def k
kþ s

Z1
0

kyð Þi
i!

e� kþ sð ÞydG yð Þ; ð19Þ

and

X1
m¼0

zmI m ¼ 0f g
Z1
t¼0

e�st
Z t

x¼0

ke�kx �G t � xð Þdxþ e�kt

2
4

3
5dt

¼ k 1� gðsÞ½ � þ s
s kþ sð Þ ¼def b s; zð Þ ¼ b sð Þ; ð20Þ

we transform the Eq. (16) to the following one:

~h0 s; zð Þ ¼
XK�2

i¼0

ai sð Þ~hiþ 1 s; zð Þþ ~hK s; zð Þ
X1
i¼K�1

ai sð Þþ b sð Þ: ð21Þ

Putting

aiðs; zÞ ¼def z
Z1
0

e� kþ sð Þx kxð Þi
i!

dF xð Þ; ð22Þ

where < sð Þ[0 and zj j\1; we rewrite now (17) in the form

~hn s; zð Þ ¼
XK�n�1

i¼0

aiðs; zÞ~hnþ i�1 s; zð Þþ ~hK�1 s; zð Þ
X1
i¼K�n

ai s; zð Þþ 1� f ðsÞ
s

; ð23Þ

where 1� n�K:
Let us apply to equations of the system (21) and (23) the following substitution:

~dn s; zð Þ ¼def ~hK�n s; zð Þ; 0� n�K: ð24Þ

Transient Processing Analysis in a Finite-Buffer Queueing Model … 169

Now we obtain from (23) the following equations:

Xn
i¼�1

aiþ 1 s; zð Þ~dn�i s; zð Þ � ~dn s; zð Þ ¼ /n s; zð Þ; ð25Þ

where 0� n�K � 1 and functionals /n s; zð Þ are defined as follows:

/n s; zð Þ ¼def anþ 1 s; zð Þ~d0 s; zð Þ � ~d1 s; zð Þ
X1

i¼nþ 1

ai s; zð Þ � 1� f sð Þ
s

: ð26Þ

Similarly, introducing (24) into (21), leads to the following representation:

~dK s; zð Þ ¼
XK�2

i¼0

aiðsÞ~dK�i�1 s; zð Þþ ~d0 s; zð Þ
X1
i¼K�1

ai sð Þþ b sð Þ: ð27Þ

4 Compact-Form Solution for Transforms

In this section, utilizing Lemma 1, we find the solution of the system (25) and (27)
in the compact form. Let us note that the system (25) has the same form as (3) with
unknowns ~dn s; zð Þ; n� 0; but with functional coefficients, namely aiþ 1ðs; z) and
/i s; zð Þ; i� 0: Hence, the solution of (25) can be found by applying (4). Moreover,
observe that the number of equations in (25) is finite comparing to (3). This fact can
be used to find the value of C ¼ Cðs; zÞ explicitly, treating the Eq. (27) (written for
n ¼ K) as a specific-type boundary condition.

Thus, for 0� n�K the following formula holds true [compare (4)]:

~dn s; zð Þ ¼ C s; zð ÞRnþ 1 s; zð Þþ
Xn
i¼0

Rn�iðs; zÞ/i s; zð Þ; ð28Þ

where n� 0; and [see (7)]

R0 s; zð Þ ¼ 0;R1 s; zð Þ ¼ a�1
0 s; zð Þ;Rkþ 1 s; zð Þ

¼ R1 s; zð Þ Rk s; zð Þ �
Xk
i¼0

aiþ 1 s; zð ÞRk�i s; zð Þ
" #

; k� 1;
ð29Þ

and the functional sequence aiþ 1 s; zð Þ was defined in (22). Substituting n ¼ 0 into
(28), we get

~d0 s; zð Þ ¼ C s; zð ÞR1 s; zð Þ: ð30Þ

170 W.M. Kempa and D. Kurzyk

Next, taking n ¼ 1 in (28) and applying (26) and (30), we obtain

~d1 s; zð Þ ¼ C s; zð ÞR2 s; zð ÞþR1 s; zð Þ/0 s; zð Þ

¼ C s; zð ÞR2 s; zð ÞþR1 s; zð Þ
"
a1 s; zð ÞR1 s; zð ÞC s; zð Þ

�~d1 s; zð Þ
X1
i¼1

ai s; zð Þ � 1� f sð Þ
s

ð31Þ

and hence

~d1 s; zð Þ ¼ h s; zð Þ C s; zð Þ R2 s; zð Þþ a1 s; zð ÞR2
1 s; zð Þ� �� R1 s; zð Þ 1� f sð Þ

s

� �
; ð32Þ

where

h s; zð Þ ¼ h sð Þ ¼def 1þR1 s; zð Þ
X1
i¼1

ai s; zð Þ
" #�1

¼ f kþ sð Þ
f sð Þ : ð33Þ

From representations (30)–(33) follows that /i s; zð Þ [defined in (26)] for any
fixed i� 0 can be written as a function of C s; zð Þ; which is the only unknown
functional. To find the formula for Cðs; zÞ, let us, firstly, write (27), applying on the
right side of identities (26), (28), (30) and (32), and utilizing the fact that

XK�2

i¼0

ai sð Þ~dK�i�1 s; zð Þ ¼
XK�1

i¼1

aK�i�1ðsÞ~di s; zð Þ: ð34Þ

We obtain

~dK s; zð Þ ¼
XK�1

i¼1

aK�i�1 sð Þ C s; zð ÞRiþ 1 s; zð Þþ
Xi
j¼0

Ri�jðs; zÞ/j s; zð Þ
" #

þC s; zð ÞR1 s; zð Þ
X1
i¼K�1

ai sð Þþ b sð Þ

¼
XK�1

i¼1

aK�i�1 sð Þ
"
C s; zð ÞRiþ 1 s; zð Þ

þ
Xi
j¼0

Ri�j s; zð Þ ajþ 1 s; zð Þ~d0 s; zð Þ � ~d1 s; zð Þ
X1

r¼jþ 1

ar s; zð Þ � 1� f sð Þ
s

 !#

þC s; zð ÞR1 s; zð Þ ¼ W1 s; zð ÞC s; zð Þþ v1 s; zð Þ;
ð35Þ

Transient Processing Analysis in a Finite-Buffer Queueing Model … 171

where we denote

W1 s; zð Þ ¼def
XK�1

i¼1

aK�i�1 sð Þ Riþ 1 s; zð Þþ
Xi
j¼0

Ri�j s; zð Þ R1 s; zð Þajþ 1 s; zð Þ�"

�h sð Þ R2 s; zð Þþ a1 s; zð ÞR2
1 s; zð Þ� � X1

r¼jþ 1

ar s; zð Þ
!#

þR1 s; zð Þ
X1
i¼K�1

ai sð Þ

ð36Þ

and

v1 s; zð Þ ¼def
XK�1

i¼1

aK�i�1 sð Þ
Xi
j¼0

Ri�j s; zð Þ R1 s; zð Þ 1� f sð Þ
s

h sð Þ
X1

r¼jþ 1

ar s; zð Þ � 1� f sð Þ
s

" #
þ b sð Þ:

ð37Þ

Now let us substitute n ¼ K in (28) and utilize representations (26), (30) and
(32). We obtain

~dK s; zð Þ ¼ C s; zð ÞRKþ 1 s; zð Þ

þ
XK
i¼0

RK�i s; zð Þ
(
aiþ 1 s; zð ÞR1 s; zð ÞC s; zð Þ

�hðsÞ C s; zð Þ R2 s; zð Þþ a1 s; zð ÞR2
1 s; zð Þ� �� R1 s; zð Þ 1� f sð Þ

s

� � X1
j¼iþ 1

aj s; zð Þ � 1� f sð Þ
s

)

¼ W2 s; zð ÞC s; zð Þþ v2 s; zð Þ;
ð38Þ

where

W2 s; zð Þ ¼def RKþ 1 s; zð Þ

þ
XK
i¼0

RK�i s; zð Þ aiþ 1 s; zð ÞR1 s; zð Þ � h sð Þ R2 s; zð Þþ a1 s; zð ÞR2
1 s; zð Þ� � X1

j¼iþ 1

aj s; zð Þ
" #

ð39Þ

and

v2 s; zð Þ ¼def
XK
i¼0

RK�i s; zð Þ h sð ÞR1 s; zð Þ 1� f sð Þ
s

X1
j¼iþ 1

aj s; zð Þ � 1� f sð Þ
s

 !
: ð40Þ

172 W.M. Kempa and D. Kurzyk

From (35) and (38) follows immediately

C s; zð Þ ¼ W1 s; zð Þ �W2 s; zð Þ½ ��1 v2 s; zð Þ � v1 s; zð Þ½ �: ð41Þ

Now the representations (24), (26), (28) and (41) lead to the following main
theorem:

Theorem 1 The representation for the PGF of the LT of the conditional departure
process in the M/G/1/K-type model with generally distributed server setup times is
following:

~hn s; zð Þ ¼
X1
m¼0

zm
Z1
0

e�stP h tð Þ ¼ mjX 0ð Þ ¼ nf gdt

¼ W1 s; zð Þ �W2 s; zð Þ½ ��1 v2 s; zð Þ � v1 s; zð Þ½ �
(
RK�nþ 1 s; zð Þ

þ
XK�n

i¼0

RK�n�i s; zð Þ aiþ 1 s; zð ÞR1 s; zð Þ � hðsÞ R2 s; zð Þþ a1 s; zð ÞR2
1 s; zð Þ� � X1

j¼iþ 1

aj s; zð Þ
" #)

þ
XK�n

i¼0

RK�n�iðs; zÞ h sð ÞR1 s; zð Þ 1� f sð Þ
s

X1
j¼iþ 1

aj s; zð Þ � 1� f sð Þ
s

 !
;

ð42Þ

where the formulae for ai s; zð Þ;Ri s; zð Þ; h sð Þ;W1 s; zð Þ; v1 s; zð Þ;W2 s; zð Þ and v1 s; zð Þ
are given in (22), (29), (33), (36), (37), (39) and (40), respectively.

Remark 1 Let us note that from (42) the formula for the conditional mean number
EnhðtÞ of packets completely processed until the fixed time epoch t (where
0� n�K) can be found. Namely, we have

Enh tð Þ ¼ @

@z
L�1 ~hn s; zð Þ� �� �

z¼1; ð43Þ

where the notation L�1 �½ � stands for the inverse Laplace transform.

5 Numerical Results

Let us consider the stream of packets of average sizes 100 B, arriving into the node
of a wireless sensor network according to a Poisson process. Consider three dif-
ferent arrival intensities 300, 400 and 500 Kb/s, which give k ¼ 375; k ¼ 500 and
k ¼ 625 packets per second, respectively. Moreover, let us assume that a radio
transmitter/receiver of the node is switched off during an idle period and needs an
exponentially distributed setup time with mean 4 ms to become ready for pro-
cessing. Besides, let packets are being transmitted with speed 500 Kb/s according

Transient Processing Analysis in a Finite-Buffer Queueing Model … 173

to 2-Erlang service distribution, that gives the mean processing time 1.6 ms (hence
the parameter of the 2-Erlang service distribution is l ¼ 1250). Under the
assumptions about arrival and serving rates, the utilization factor q of the system
equals to 0.6, 0.8 and 1.0, respectively. Mean number EnhðtÞ of packets completely
processed until the fixed time epoch t can be found from (43). Moreover, we can

estimate the transient loss ratio function as LRn tð Þ � 1� Enh tð Þ
kt ; where kt is mean

number of packets in the arrival stream up to the time t: Transient evolutions of the
mean number E0h tð Þ of completely processed packets and the estimations of
the loss ratio LR0 tð Þ for given values of system parameters are presented in Figs. 1
and 2, respectively.

Fig. 1 Transient mean number E0h tð Þ of completely processed packets for q = 0.6, 0.8 and 1.0

Fig. 2 Estimation of transient loss ratio LR0 tð Þ for q = 0.6, 0.8 and 1.0

174 W.M. Kempa and D. Kurzyk

References

1. Burnetas, A., Economou, A.: Equilibrium customer strategies in a single server Markovian
queue with setup times. Queueing Syst. 56(3–4), 213–228 (2007)

2. Chen, P.S., Zhou, W.H., Zhou, J.W.: Equilibrium customer strategies in the queue with
threshold policy and setup times. In: Mathematical Problems in Engineering. Optimization
Theory, Methods, and Applications in Engineering, Hindawi Publishing Corporation (2015)

3. Edward, E.P.: A novel seamless handover scheme for WiMAX/LTE heterogeneous networks.
Arab. J. Sci. Eng. 41(3), 1129–1143 (2016)

4. Hu, J.N., Tuan, P.D.: Power consumption analysis for data centers with independent setup
times and threshold controls. In: AIP Conference Proceedings, vol. 1648 (2015)

5. Kempa, W.M.: The transient analysis of the queue-length distribution in the batch arrival
system with N-policy, multiple vacations and setup times. In: AIP Conference Proceedings,
vol. 1293 (2010), 235–242 (Proceedings of 36th International Conference Applications of
Mathematics in Engineering and Economics (AMEE’10), Sozopol, Bulgaria, 2010)

6. Kempa, W.M.: Analysis of departure process in batch arrival queue with multiple vacations
and exhaustive service. Commun. Stat. Theory Methods 40(16), 2856–2865 (2011)

7. Kempa, W.M.: On transient queue-size distribution in the batch arrival system with the
N-policy and setup times. Math. Commun. 17(1), 285–302 (2012)

8. Kempa, W.M.: Study on time-dependent departure process in a finite-buffer queueing model
with BMAP-type input stream. In: Proceedings of the IEEE 2nd International Conference on
Cybernetics (CYBCONF 2015), Gdynia, Poland (2015)

9. Kempa, W.M.: Time-dependent analysis of transmission process in a wireless sensor network
with energy saving mechanism based on threshold waking up. In: Proceedings of the IEEE
16th International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC 2015), Stockholm, Sweden (2015)

10. Kempa, W.M., Kurzyk, D.: Transient departure process in M/G/1/K-type queue with
threshold server’s waking up. In: Proceedings of the 23rd International Conference on
Software, Telecommunications and Computer Networks (SoftCOM 2015), Split—Bol (Island
of Brac), Croatia, pp. 32–36 (2015)

11. Kempa, W.M., Paprocka, I.: Analytical solution for time-dependent queue-size behavior in
the manufacturing line with finite buffer capacity and machine setup and closedown times. In:
Applied Mechanics and Materials, vol. 809–910, 2015, pp. 1360–1365 (Selected, peer
reviewed papers from the 19th Conference on Innovative Manufacturing Engineering (IManE
2015), Iasi, Romania, 2015)

12. Korolyuk, V.S.: Boundary-Value Problems for Compound Poisson Processes. Naukova
Dumka, Kiev (1975)

13. Ma, Q.: Analysis of a clearing queueing system with setup times. RAIRO—Oper. Res. 49(1),
67–76 (2015)

14. Niu, Z.S., Guo, X.Y., Zhou, S., Kumar, P.R.: Characterizing energy-delay tradeoff in
hyper-cellular networks with base station sleeping control. IEEE J. Sel. Areas Commun. 33
(4), 641–650 (2015)

15. Sun, W., Guo, P.F., Tian, N.S.: Equilibrium threshold strategies in observable queueing
systems with setup/closedown times. Central Eur. J. Oper. Res. 18(3), 241–268 (2010)

16. Yue, W.Y., Sun, Q.T., Jin, S.F.: Performance analysis of sensor nodes in a WSN with
sleep/wakeup protocol. Lect. Notes Oper. Res. 12, 370–377 (2010)

Transient Processing Analysis in a Finite-Buffer Queueing Model … 175

Analysis of Routing Protocols Metrics
for Wireless Mesh Networks

Piotr Owczarek, Maciej Piechowiak and Piotr Zwierzykowski

Abstract The article presents the survey of routing protocols for wireless mesh
networks and their efficiency including the impact of routing metrics. Routing
protocols are crucial element for performance of mesh networks, they ensure even
flow of data packets and reduce negative influence of interferences. The article
contains an overview of routing protocols used in the network mesh. As part of the
research includes a comparative analysis of representative routing protocols carried
out in the OMNeT++ environment. Results of simulation has been presented and
compared.

Keywords Wireless mesh networks � Routing protocols � OMNeT++

1 Introduction

The popularity of wireless mesh networks is rapidly growing as it can be an answer
for the last mile problem, a solution for rugged terrains or developing regions and
countries. Wireless mesh networks are a promising technology, which is used for
services such as client access to broadband Internet, monitoring systems,
agglomeration, handling mass events and provide communications on the battle-
field [1, 2]. This also allow to connect customers, which are not able to commu-
nicate with access device directly (non line of sight, NLOS).

Wireless mesh networks can reduce the transmit power through the use of
directional antennas and accurate steering of the beam. This enables energy-efficient

M. Piechowiak
Kazimierz Wielki University, Bydgoszcz, Poland
e-mail: mpiech@ukw.edu.pl

P. Owczarek (&) � P. Zwierzykowski
Poznan University of Technology, Poznan, Poland
e-mail: piotr.owczarek@verbicom.pl

P. Zwierzykowski
e-mail: piotr.zwierzykowski@put.poznan.pl

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_14

177

equipment and reducing the coefficient of inter-channel interference. It is also
possible to increase the transmission capacity and the rate of re-use of frequencies.
By redundancy of transmission paths wireless mesh networks are characterized by
high reliability, which is due to the possibility of quick reconfiguration in case of
failure.

Unlike traditional wireless networks, based on a small number of access points
connected by a cable infrastructure, mesh networks are composed of multiple nodes
exchanging information with each other mainly by radio. The network nodes are
acting as client nodes and routing nodes that direct packets to destinations and are
responsible for maintaining and managing communication with neighbors.

Mesh networks also allow for integration with other networks (including the
Internet) using gateways. Despite the above advantages wireless mesh networks
still need to be refined in terms of MAC layer scalability and routing protocols used
for routing packets between nodes. An important problem is the attack protection
for protocols belonging to the four lowest layers of the reference model [3].

Mesh network routers have typically multiple network interfaces that allow for
communication with a number of neighboring nodes. At the lower level of the
transmitted signal power mesh network nodes provide the same coverage as
infrastructure type known from WLAN topology. Client nodes usually have only
one interface without built-in router functionality, which considerably simplifies the
construction of the client platform [3].

Mesh networks are dynamically self-organizing, so that reduced the need for a
central point of network management. Customers equipped with access radio card
have the ability to connect directly to the mesh network, while others can take
advantage of the bridges for the integration of both individual clients as well as
entire networks operating in other technology than the mesh network, e.g. Ethernet,
WiMAX and UMTS [3].

The article focuses on the efficiency of routing protocols in wireless mesh net-
works. The authors have selected the following set of parameters as the measure of
the efficiency: packet loss ratio, packet delivery delay, average energy consumption
of all network nodes and number of collisions in network. The article consists of six
sections. In Sect. 2 representative routing protocols for wireless mesh networks are
presented. Sect. 3 presents routing metrics while Sect. 4 describes the methodology
used in the efficiency analysis presented in Sect. 5. Finally, Sect. 6 concludes the
article.

2 Routing Protocols

Routing protocols use algorithms and optimization techniques forming the optimal
path through the network [4–6] or minimum distribution tree [7–9]. Routing pro-
tocols for wireless mesh networks can be divided into two main types: proactive
and reactive. Proactive protocols continuously maintain information in the routing
tables about available routes by which the network node is achieved. It causes the

178 P. Owczarek et al.

necessity of a continuous information exchange, updating the status of routing
tables, which introduces additional fixed network traffic associated only with the
process of routing. However, when there is a need for packet transmission, this type
of protocols do not introduce delay needed to select the optimal transmission path.

Reactive protocols operate on demand and introduce additional delay required to
locate the destination network node with the most effective path to the desired point
of the network. The advantage of this approach is the lack of additional permanent
datagram transmission delay, which is important especially for time-sensitive ser-
vices such as speech transmission.

One of the most popular protocol used for both reactive MANET networks and
wireless mesh networks is AODV protocol [10]. The AODV protocol is based on
the DSDV protocol [11] and similarly uses the sequence numbers to determine the
optimal path of the package. During the determination of the path to the destination
node it checks the current routing table. If the address of the target device is not in
routing table, RREQ message is sent to all neighbors. This procedure continues
until the destination node is reached. Each router stores information about the
sender of the message and ignore it in case of the copy of the same information. The
reply to the source router is passed in a RREP message along the return path.

The AODV protocol manages the entries in the routing tables using HELLO
messages, and when it detects a link failure it generates Unsolicited Route Reply
message. AODV protocol does not require a broadcast transmission, which is its
unquestionable advantage compared to DSDV. It also minimizes the number of
nodes that do not participate in the transmission, contributing to the reduction of
energy consumption.

The DYMO protocol [12] is based on two basic operations: route discovery and
route maintenance. The first of these procedures are initiated when a source node
wants to send a packet to the target device, which does not appear in the routing
table. For this purpose, the route request message is broadcast on the network.
When the destination node receives an addressed message—it transmits feedback
information containing the cumulative path. Each intermediate node stores in its
routing table the following information: the address of the destination node, the
sequence number, the number of hops, next hop address, the name of the interface
on the next hop, gateway and storage time of path in the table. The route main-
tenance is triggered when there is a change in the network topology [13].

The OLSR [14] protocol uses the concept of multipoint relays (MPs), which
limit the network traffic and the number of link state updates. Each node operates in
a minimum group of MPRs spaced by one hop. The set of MPR is formed by a rule
providing availability of each of the nodes spaced apart by two hops. The infor-
mation necessary for the operation of the network are exchanged only by the nodes
that are in the group of MPR—other nodes do not broadcast protocol messages.
HELLO messages sent periodically between routers are used to obtain information
about nodes spaced about two hops. All devices in the network are periodically
informed of the MPR group in Communications Topology Control messages. One
of the features of the OLSR protocol is the redundancy of routes.

Analysis of Routing Protocols Metrics … 179

A key feature of the B.A.T.M.A.N. protocol [15] is a decentralized management
system of routing path. Namely, none of the nodes do not have any information
about the entire path the package travels. This eliminates the need to disseminate
information concerning changes in the network to all nodes that are involved in
communication. A single router stores only the information about the interface, the
packet will be sent to the recipient. In this way, the routing process is run
dynamically until it is received at the destination. This protocol also detects new
network nodes and informs the neighboring routers. The quality of links is deter-
mined on the basis of Transmit Link Quality and Receive Quality factors for par-
ticular channels (used further in the deciding process of the optimal path routing).

The HWMP hybrid protocol is described in the 802.11 s standard for wireless
mesh networks. It is a combination of a proactive routing and pro-active tree
method. It uses a modified AODV protocol, which defines the metric based on the
link parameters of the physical layer. The pro-active tree method builds a spanning
tree from the root, which is usually a gateway while AODV protocol finds shortest
path between nodes (HWMP supports two kinds of path selection protocols) [16].

3 Routing Metrics

A key element of each routing protocol are the metrics that enable the determination
of the optimal transmission path. Metrics used in wireless mesh networks can be
classified according to several criteria, which are widely discussed in the literature
[17, 18]. The metrics that have been proposed for mesh networks can be divided as
follows [19]:

• metrics related to the number of hops (hop count),
• metrics that determine the quality of a connection (link quality),
• metrics that are based on network load rate (load-dependant metrics),
• multi channel metrics.

Due to the simplicity and obsolescence of hop-count metric more attention
should be given then to the remaining metrics. One can distinguish seven metrics
based on the link quality [20]: Expected Transmission Count (ETX) [21], Minimum
Loss (ML) [22], Expected Transmission Time (ETT) [21], Expected Link
Performance (ELP) [21], Per-Hop Round Trip Time (RTT), Per-Hop Packet Pair
Delay (PPD) and Expected Transmission on a Path (ETOP). Load-Dependent
Metrics include: Distribution Based Expected Transmission Count (DBEXT) and
Bottleneck Aware Routing Metric (BATD). The following multi-channel metrics
stand out among other multi-channel metrics:Weighted Cumulative ETT (WCETT),
Metric of Interference and Channel-switching (MIC) [17], Modified ETX (mETX)
[23], Effective Number of Transmissions (ENT) [23], iAWARE [24] and Exclusive
Expected Transmission Time (EETT) [25]. The comparison of the selected char-
acteristics of metrics used in the majority of routing protocols for wireless mesh

180 P. Owczarek et al.

networks is presented in [26]. The results were obtained by the authors from
literature studies and the characteristics given on [19, 27].

4 Simulation Study

In order to conduct a comparative analysis, the authors selected simulation envi-
ronment OMNeT++, which offers a wide range of configurations and implements
the components of each layer of the reference model [28]. The graphical interface
allows to create transparent network configuration. The functionality of wireless
mesh networks and propagation conditions approximating actual transmission
conditions have been implemented in the OMNeT++ in the form of INET and
INETMANET libraries [29].

Library INETMANET includes protocols and components useful for modeling
wireless network transmission, such as:

• propagation models,
• mobility models,
• data link layer standards 802.11,802.15.4, 802.16e,
• support of multiple radio interfaces,
• modeling operation on battery power,
• routing protocols specific to wireless networks (i.e. OLSR or AODV).

Network topology used in the study was developed on a rectangular plane with
dimensions 2000 � 2000 m. It consists of 16 stationary nodes forming a backbone
network used to route packets sent over a wireless hosts located on opposite sides of
the rectangle. Each of the nodes has a limited transmit power, so it can only
communicate with neighboring devices with one of the three available radio
channels in a band of 5.2 GHz, according to the IEEE 802.11a. This reduces the
power consumption, the level of interference between devices and expands the
available spectrum resources. Each node has a radio channel data rate of 54 Mbps.
Similar relation between parameters used for efficiency evaluation may be observed
for different network topologies and data rates of radio channel [30].

5 Simulation Results

Figure 1 shows the average ratio of packet loss for all devices on the network
depending on the routing protocol for wireless mesh network. Among the con-
sidered protocols the smallest average value (1.8 %) was obtained for OLSR pro-
tocol, because of its proactive way of functioning (it prevents from packet loss). At
the opposite extreme are reactive protocols AODV, DYMO and HWMP with the
loss rate of 2.7–3.7 % of all sent packets. It also confirms that the reactive routing
protocols should be used in the case when the reliability of delivery in the network
is required.

Analysis of Routing Protocols Metrics … 181

Figure 2 shows the average packet delivery delay in the WMN networks. The
highest value of delay is typical for reactive AODV protocol, for which the average
delay is about 1.5 ms. The result of the simulation shows that DYMO and HWMP
protocols are characterized by a delay of more than three times smaller than in
AODV protocol and is approximately 0.4 ms. The value obtained for the OLSR
protocol is 0.7 ms and is higher than for the DYMO and HWMP protocols. The
expected delay value should be less than those obtained for the two reactive routing
protocols, due to the fact that the protocol has a proactive knowledge of the routing
path and does not require additional time for setting routes.

Average energy consumption for all devices on the network for the selected
routing protocols is presented on Fig. 3. The values in the histogram represent the
total value of the units of simulation in which the radio interfaces in the network
have been in use. In the case of the AODV protocol the resulting value is highest.

Fig. 1 Packet loss ratio for the selected routing protocols

Fig. 2 Packet delivery delay for the selected routing protocols

182 P. Owczarek et al.

The usage of other protocols resulting in lower energy consumption. The DYMO
protocol (forming the simplification of AODV protocol) results are reduced by one
third. For other protocols the energy consumption, with respect to the AODV, is
reduced by 30 % for HWMP and 20 % for OLSR. The usage of the proactive
routing protocols require continuous exchange of information between network
nodes, which translates into a constant energy consumption, even when the trans-
mission of user data is not carried out. The obtained results show that although the
AODV protocol belongs to a group of reactive protocols, the energy consumption
on the network is greater than the energy consumption of OLSR proactive protocol.

Figure 4 shows the total number of collisions on the network for each routing
protocol used in the wireless mesh network. The number of collisions illustrates the
effectiveness of transmission path differentiation. The best results were obtained for
DYMO and OLSR protocols, for which the total number of collisions in the net-
work does not exceed the value of 2200. The AODV protocol causes twice as many

Fig. 3 Average energy consumption of network nodes for the selected routing protocols

Fig. 4 Number of collisions occurs in network for the selected routing protocols

Analysis of Routing Protocols Metrics … 183

collisions than other considered protocols. The reason for generating more colli-
sions than other protocols is the reactive mode, which calculates routes on demand.
On the other hand, the AODV protocol uses a metric based on the number of hops,
which means that it always selects the same shortest path. This translates directly to
the number of collisions, due to the limited resources of time and spectral.

In order to determine the value of a metric, the network node measures the
number of lost packets on the downlink and uplink and calculates the probabilities
in the respective directions. The metric of the entire path is calculated as the sum of
the ETX of all links involved in packet transmission from the sender to the recipient
and the path with the minimal total value of ETX is chosen. Calculations are
performed assuming the independence of the packet loss rate of its size.

Table 1 shows the comparative results of OLSR protocol with two types of
metrics. The first of these metrics counts the number of hops and calculates the
shortest path then. The second metric (ETX) bases on the number of lost packets.
The following parameters were taken into account: packet delivery delay, packet
loss ratio, number of collisions and volume of network traffic.

The implementation of ELX metric reduces the average value of the packet
delivery delay and packet loss ratio decreases twice. The total amount of traffic is
greater in the case of ETX metric. It is caused by the transmission of additional
packets used for approximating the value of ETX metric.

6 Conclusions

In this article we studied the efficiency of network routing protocols for wireless
mesh networks with OMNeT++. For this purpose, a unified model of the network
configuration for both, reactive and proactive protocols was create. This will help to
develop a consistent methodology of these protocols. The only variable in the
simulation process was the routing protocol. The results indicate a lower latency in
packet delivery and lower values of packet loss factor using proactive protocols.
This is done by higher overhead of data sent over the network and higher energy
consumption. However, due to the relatively wide bandwidth and lack of restric-
tions on battery power as is the case with network ad hoc networks, mentioned type
of routing can be implemented in wireless mesh networks.

Table 1 The impact of the type of metrics on the basic transmission parameters of OLSR routing
protocol

Transmission parameter OLSR protocol
with hop-count

OLSR protocol
with ELX

Packet delivery delay (ms) 0.78 0.54

Packet loss ratio (%) 1.86 0.9

Number of collisions 2163 1352

Volume of network traffic (kB) 331 361

184 P. Owczarek et al.

References

1. Kiedrowski, P.: Toward more efficient and more secure last mile smart metering and smart
lighting communication systems with the use of PLC/RF hybrid technology. Int. J. Distrib.
Sens. Netw. 2015, 1–9 (2015)

2. Kiedrowski, P., Dubalski, B., Marciniak, T., Riaz, T., Gutierrez, J.: Energy greedy protocol
suite for smart grid communication systems based on short range devices. In: Choraś, R.S.
(ed.) Image Processing and Communications Challenges 3. Advances in Intelligent and Soft
Computing, vol. 102, pp. 493–502. Springer, Berlin (2011)

3. Akyildiz, I.F., Wang, X.: Wireless Mesh Networks. Wiley, London (2008)
4. Czerniak, J.M., Dobrosielski, W., Apiecionek, Ł., Ewald, D.: Representation of a trend in

OFN during fuzzy observance of the water level from the crisis control center. In: Proceedings
of the Federated Conference on Computer Science and Information System FedCSIS 2015,
Łódź, Poland, 2015, Annals of Computer Science and Information Systems, vol. 5, pp. 443–
447. doi:10.15439/2015F217

5. Prokopowicz, P.: Flexible and simple methods of calculations on fuzzy numbers with the
ordered fuzzy numbers model. In: Rutkowski, L. et al. (eds) Artificial Intelligence and Soft
Computing. Proceedings of ICAISC 2013, Zakopane, Poland, Part I. LNAI, vol. 7894,
pp. 365–375. Springer, Berlin (2013)

6. Głąbowski, M., Musznicki, B., Nowak, P., Zwierzykowski, P.: An algorithm for finding
shortest path tree using ant colony optimization metaheuristic. In: Choraś, R.S. (Ed.) Image
Processing and Communications Challenges 5, Advances in Intelligent Systems and
Computing, vol. 233, pp. 317–326 (2014)

7. Bartczak, T., Zwierzykowski, P.: Lightweight PIM—a new multicast routing protocol. Int.
J. Commun. Syst. 27(10), 1441–1458 (2014)

8. Piechowiak, M., Zwierzykowski, P., Stachowiak, K., Bartczak, T.: Quality of multicast trees
in ad-hoc networks with topology control. In: 9th International Symposium on
Communication Systems, Networks & Digital Signal Processing, CSNDSP 2014,
Manchester, UK, July 23–25, pp. 7–11 (2014)

9. Piechowiak, M., Zwierzykowski, P.: How to simulate and evaluate multicast routing
algorithms. In: Pathan, A.K., Monowar, M.M., Khan S. (eds.) Simulation Technologies in
Networking and Communications: Selecting the Best Tool for the Test, pp. 229–264. CRC
Press (2015)

10. Perkins, C., Belding-Royer, E., Das, S.: Ad Hoc On-Demand Distance Vector (AODV)
routing. IETF. RFC 3561 (2003)

11. Perkins, C., Bhagwat, P.: Highly dynamic Destination-Sequenced Distance-Vector routing
(DSDV) for mobile computers. In: SIGCOMM’94 Proceedings of the conference on
communications architectures, protocols and applications, pp. 234–244 (1994)

12. Chakeres, I.D., Perkins, C. E.: Dynamic MANET on demand (DYMO) routing protocol.
Internet-Draft Version 06, IETF (2006)

13. Bisoyi, S.K., Sahu, S.: Performance Analysis of Dynamic MANET On-demand (DYMO)
Routing protocol. Special Issue of IJCCT, 1.2 (2010):3 (2010)

14. Clausen, T., Jacquet, P.: Optimized Link State Routing Protocol (OLSR). RFC 3626 (2003)
15. Neumann, A., Aichele, C., Lindner, M., Wunderlich, S.: Better Approach To Mobile Ad-hoc

Networking (B.A.T.M.A.N.). Internet-Draft (2008)
16. Bari, S.M.S., Anwar, F., Masud, M.H.: Performance study of hybrid wireless mesh protocol

(HWMP) for IEEE 802.11s WLAN Mesh Networks. In: 2012 International Conference on
Computer and Communication Engineering (ICCCE), IEEE (2012)

17. Yang, Y., Wang, J., Kravets, R.: Designing routing metrics for MESH networks. IEEE
Workshop on Wireless MESH Networks (WiMESH) (2005)

18. Entezami, F., Politis, C.: Routing protocol metrics for wireless MESH networks. Wireless
World Research Forum (2013)

Analysis of Routing Protocols Metrics … 185

19. Mogaibel, H.A., Othman, M.: Review of routing protocols and it’s metrics for wireless mesh
networks. In: Conference on Computer Science and Information Technology-Spring, pp. 62–
70 (2009)

20. De Couto, D.S.J., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path metric for
multi-hop wireless routing. Wireless Netw. 11(4), 419–434 (2005)

21. Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh networks. In:
Annual International Conference on Mobile Computing and Networking, pp. 114–128 (2004)

22. Passos, D. et al.: Minimum loss multiplicative routing metrics for wireless mesh networks.
J. Internet Serv. Appl. 1(3), 201–214 (2011)

23. Koksal, C.E., Balakrishnan, H.: Quality-aware routing metrics for time-varying wireless mesh
networks. J. Sel. Areas Commun. 24(11), 1984–1994 (2006)

24. Subramanian, A.P., Buddhikot, M.M., Miller, S.: Interference aware routing in multi-radio
wireless mesh networks. In: 2nd Workshop on Wireless Mesh Networks, pp. 55–63 (2006)

25. Jiang, W. et al.: Optimizing routing metrics for large-scale multi-radio mesh networks. In:
International Conference on Wireless Communications, Networking and Mobile Computing,
pp. 1550–1553 (2007)

26. Owczarek, P., Zwierzykowski, P.: Routing protocols in wireless mesh networks—a
comparison and classification. In: Information Systems, Architecture and Technology,
Network Architecture and Applications, pp. 85–95 (2013)

27. Campista, M., Elias, M.: Routing metrics and protocols for wireless mesh networks. Network
22(1), 6–12 (2008)

28. https://omnetpp.org
29. https://github.com/inetmanet/inetmanet/wiki
30. Wasłowicz, M.: Routing in Wireless Mesh Networks. M.Sc. Thesis. Poznan University of

Technology, Poznan (2014)

186 P. Owczarek et al.

https://omnetpp.org
https://github.com/inetmanet/inetmanet/wiki

Energy Efficient Dynamic Load Balancing
in Multipath TCP for Mobile Devices

Michał Morawski and Przemysław Ignaciuk

Abstract Over the last few years, one can observe a shift in preferences to use
wireless media, including WiFi and cellular, rather than wired technologies for the
communication purposes. On the other hand, a variant of TCP that allows for
simultaneous transmission over different paths has been developed. This paper
addresses the problem of optimal load distribution among the interfaces available at
a networking device, e.g. mobile phone, with the objective of minimizing the
overall energy consumption. A dynamic allocation algorithm, adapting to current,
time-varying channel capacity is designed. Comparison with earlier approaches is
provided and superiority of the proposed solution is demonstrated in numerical
tests.

Keywords Multipath TCP � Load balancing � Energy efficiency

1 Introduction

Since its deployment three decades ago TCP continues to provide the core of
communication capabilities in the Internet data transfer. In order to properly
respond to new demands appearing over the years the protocol has evolved. The
traditional TCP employs a single path (SPTCP) to effectuate data transfer even
though multiple paths may be available in the network. Nowadays, servers have
installed many network interfaces (NICs), use different routers, and client terminals
are equipped with diverse connectivity solutions, e.g. Ethernet, WiFi, cellular, or
WiMAX. However, due to the design restrictions of TCP, additional paths are
employed only in case of failure. Multipath TCP (MPTCP) [1] has the potential to
elevate the end-point transfer efficiency, and thus the user application performance,

M. Morawski (&) � P. Ignaciuk
Institute of Information Technology, Lodz University of Technology, Lodz, Poland
e-mail: michal.morawski@p.lodz.pl

P. Ignaciuk
e-mail: przemyslaw.ignaciuk@p.lodz.pl

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_15

187

by incorporating simultaneously multiple paths between the communicating parties.
Even though the fundamental framework of MPTCP has been standardized [2],
some research problems remain unresolved. One of such open research challenges
is the development of methods of MPTCP stream splitting into multiple
sub-streams, controlled by SPTCP.

The popularity of smartphones, tablets, mobile computers, and associated
increase of their functional capabilities, have outgrown the progress in battery
design. Those devices suffer from fast energy depletion rate which limits the overall
user experience. The most energy-consuming part of hardware is the display,
together with CPU/GPU efforts required to render the dynamic content of web-sites
when staying on-line. Therefore, in order to improve the energy economy while
effectuating the Internet connectivity, one should shorten the time of data transfer
and allow the users to switch off the display. The paper proposes a new
load-balancing solution, particularly well-suited for battery-powered devices
equipped with a few independent interfaces. Although addressing similar problems
as in the current literature [3–5], the idea presented here differs both in the
objectives and in the way the traffic is distributed among the interfaces. It con-
centrates on specifying the operation of MPTCP scheduler. In the proposed
approach, the way the MPTCP stream is separated into sub-streams by the
scheduler is determined as a solution of the optimization problem formulated for the
mathematical model of power consumption. The results of numerical comparison
show that the presented—non-heuristic—method allows for substantial (as high as
50 %) savings in energy usage as compared to recent approaches.

2 Multipath Data Transfer

The considered architecture is illustrated in Fig. 1. The research objective is to
design a load-balancing algorithm for the traffic scheduler. The scheduler acquires
all the information necessary for the algorithm implementation from NICs and
observation of the link layer activities.

Internet

TCP for
subchannel #1

Scheduller

TCP for
subchannel #n

MPTCP
Controller

NIC #1

NIC #n

Radio network #1

Radio network #n

Peer
MPTCP

Controller

Fig. 1 MPTCP architecture

188 M. Morawski and P. Ignaciuk

In the analyzed communication scenario, the user application seeks to send B
bits of data to a remote peer. The data is placed in the TCP output buffer held by the
local MPTCP controller. The MPTCP controller opens n sub-channels and dis-
tributes the traffic among the corresponding sub-streams that are controlled by the
ordinary TCP. The ordinary SPTCP control is executed separately for each
sub-channel. In the standardized MPTCP implementation, the unweighted
round-robin algorithm is used, although other schedulers have also been tested [4].
In the subject literature, e.g. [6], one can find claims that the data distribution ratio
in the load balancing procedure should be proportional to the sub-channels
capacity. In this paper, it is shown that this claim is not always true.

The proposed solution incorporates the observation of NIC dynamic parameters
(power consumption and throughput) to decide about the moment of extracting
subsequent segments from the data buffer and to direct the segments to an appro-
priate sub-channel. The standard behavior of MPTCP (e.g. OILA) [7] and ordinary
TCP (e.g. Cubic, Compound, Reno) [8] remains intact. The developed method
governs the operation of the traffic scheduler.

3 Energy Considerations and Optimal Load Distribution

The display in mobile devices consumes more energy than the network interfaces.
The NIC energy expenditure depends on transmission power, noise level, number
of retransmissions, and control plane activity. These factors differ among interfaces
and their mode of operation. In general, for WiFi the transmit power vary from
0 dBm to 10–15 dBm, and for the cellular interfaces from 10 dBm to 20–50 dBm
[9, 10]. Additionally, certain amount of energy is dissipated by the NIC electronics
[3].

In order to reduce the overall energy consumption, the following optimization
problem can be considered: introduce an efficient load balancing method that
minimizes Eo given by

Eo ¼
Xn
i¼1

Ei þPD max
i

Ti ð1Þ

subject to Ti [0, where

Ei ¼
Z Ti

0
piðtÞdt[0 ð2Þ

is the total energy dissipated by interface i 2 ½1; n�, piðtÞ[0 is the power necessary
to transmit data through this interface at time t, Ti is the total transmission time, and
PD [0 is the power consumed by the display. piðtÞ [W] is a function of the power
efficiency of NIC—~piðtÞ (W/bit) and the number of bits sent through channel i—bi:

Energy Efficient Dynamic Load … 189

piðtÞ ¼ ~piðtÞbi þ popi ; ð3Þ

where popi is the power necessary to keep the NIC in the operational state. ~piðtÞ and
popi are functions of:

• the distance from the end-point to the hub (access point, head-end, or BTS),
• the mode of operation, which includes selection standard “b”, “g”, “n”, “ac”,

band, RTS, or CCA mode in WiFi and band, GPRS, or revision of UMTS class
in the case of cellular interfaces.

~piðtÞ and popi profiles can be obtained using the chipset datasheets as function of
the parameters stated above, or can be directly measured by the end-point (such
approach is suggested e.g. in [3]). The profile varies with time as a result of node
mobility, or controller activity. Here, piece-wise constant evolution is assumed.

Since both the objective function and the constraints (Ti [0) are convex,
minimization of (1) is a convex problem [11]. In the nominal case, i.e. when
piðtÞ ¼ pi ¼ const, the problem may be solved analytically.

Lemma 1 Eo is minimum for T1 ¼ T2 ¼ � � � ¼ Tn.

Proof Assume T1 � T2 � � � � � Tn. Then (1) can be expressed as

Eo ¼p1T1 þ
Xn
i¼2

piTi þPDT1 ¼ p1 þPDð ÞT1 þ
Xn
i¼2

piTi

¼ p1 þPDð Þ T1 � T2ð Þþ p1 þPDð ÞT2 þ
Xn
i¼2

piTi:

ð4Þ

By definition, all the elements in (4) are non-negative. Therefore,

Eo � p1 þPDð ÞT2 þ
Xn
i¼2

piTi; ð5Þ

i.e. when T1 � T2 vanishes from (4). Consequently, applying T1 ¼ T2 in (5), one
has

Eo � p1 þ p2 þPDð Þ T1 � T3ð Þþ p1 þ p2 þPDð ÞT3 þ
Xn
i¼3

piTi

� p1 þ p2 þPDð ÞT3 þ
Xn
i¼3

piTi:

ð6Þ

Continuing this reasoning for subsequent Ti, one arrives at the minimum of Eo

for T1 ¼ T2 ¼ � � � ¼ Tn. This conclusion ends the proof.

Ti can be modeled as Ti ¼ bi=�ci þ si with �ci ¼ 1
Ti

R Ti
0 ciðtÞdt being the average

capacity of channel i, ciðtÞ—the capacity of channel i at time t, and si—the

190 M. Morawski and P. Ignaciuk

round-trip time at the end of transmission. Except for a very short transmission,
bi=�ci � si, so Ti � bi=�ci. The granularity of bi is neglected. On the other hand,
ciðtÞ� cmax

i ðtÞ, where cmax
i ðtÞ is the maximum capacity of channel i. With this

notation, and setting Ti ¼ T , the minimum of (1) can be expresses as

Eo
min ¼

Xn
i¼1

piT þPDT ¼
Xn
i¼1

piT þ
Xn
i¼1

PD

n
T ¼

Xn
i¼1

pi þ PD

n

� �
bi
�ci

¼
Xn
i¼1

~pibi þ popi þ PD

n

� �
bi
�ci
: ð7Þ

Let Bj ¼ B�Pj�1

i¼1
bi. Then, bn þ bn�1 ¼ Bn�1, and using (3) and (7), the mini-

mum energy consumed by these two channels can be evaluated as (assuming all the
constraints are satisfied)

E0
n�1 ¼ ~pn

b2n
�cn

þ PD

n
þ popn

� �
bn
�cn

þ ~pn�1
b2n�1

�cn�1
þ PD

n
þ popn�1

� �
bn�1

�cn�1

¼ ~pn
b2n
�cn

þ PD

n
þ popn

� �
bn
�cn

þ ~pn�1
Bn�1 � bnð Þ2

�cn�1
þ PD

n
þ popn�1

� �
Bn�1 � bn

�cn�1
:

ð8Þ

The optimum is found by solving @Eo
n�1=@bn ¼ 0 for bn, i.e.

bn ¼
PD
n þ popn�1

� �
�cn þ PD

n þ popn
� �

�cn�1

2~pn�cn�1 þ 2~pn�1�cn
� Bn�1�cn~pn�1

~pn�cn�1 þ ~pn�1�cn
: ð9Þ

bn�1 ¼ Bn�1 � bn and subsequent bi can be evaluated in the same way by
substituting bn�1 ! bn�2, bn ! Bn�1 in (8).

The obtained solution is precise for the nominal operating conditions but
impractical from the perspective of the actual communication process. Expression
(9) is too complex for real-time implementation and the values need to be con-
strained to satisfy the assumption 0� bi �Bi. Besides, some quantities (especially
�ci) are not accessible ahead of time and the optimal energy consumption and load
balancing strategy would need to be learned a posteriori. For that reason, the online
scheduler should be organized in a different—dynamic—way.

4 Dynamic Load Balancing

Solution (9) of problem (1) is obtained under the assumption of perfect knowledge
of the communication system behavior. Moreover, if approximations are not
applied, the optimal load distribution can be determined using numerical solvers

Energy Efficient Dynamic Load … 191

only, which is inadequate for real-time implementation. In order to circumvent
these obstacles, a suboptimal solution will be introduced. In the paper, it is pro-
posed to replace PD by a term ~PDB, where ~PD is the power efficiency of display. In
the design, the power consumed by the display is assumed to depend on the volume
of transmitted data. Additionally, popi are neglected in the evaluation of power (3).

Introducing ~Pi ¼ ~pi þ ~PD=n, one may simplify (7) as

Es ¼
Xn
i¼1

~Pi
b2i
�ci
; ð10Þ

where Es denotes the suboptimal energy consumption. Conducting the same rea-
soning as in (8) and (9), one obtains

bn
B

¼
~Pn�1

�cn�1
=

~Pn�1

�cn�1
þ

~Pn

�cn

� �
;

bn
bn�1

¼
~Pn�1

�cn�1
=
~Pn

�cn
; ð11Þ

and a good approximation of Eo when

8
i;j2½1;n�

bi
bj

¼
~Pj�ci
~Pi�cj

: ð12Þ

When ~Pi ¼ ~Pj (or ~PD � ~pi) and �ci ¼ cmax
i , (12) coincides with the traditional

way of traffic distribution. However, these assumptions are justified only when the
end-point is equipped with homogenous and non-congesting interfaces (e.g.
Ethernet). Generally, in the case of mobile devices, one should assume neither
~Pi ¼ ~Pj nor �ci ¼ cmax

i .

5 How to Measure Sub-channel Capacity

The following method of measuring the current capacity of channel i is proposed.
After a successful transmission of a data piece associated with the class of service
selected by the user application at time ta (including MAC procedure, scrambling,
fragmentation, retransmissions, and acknowledgements), NIC signals that it is
ready to send the next piece. The application inserts the data in the NIC queue. Just
after cwnd value permits sending the next segment, the associated sub-stream
prepares an m-bit size packet. The packet is placed in the NIC queue at time tt. The
corresponding frame is acknowledged at time taþ 1. The current channel capacity
can be estimated as ciðtaþ 1Þ ¼ m=ðtaþ 1 � ttÞ. The value of ci fluctuates with time
in the bounded range ð0; cmax

i ðtÞ�. cmax
i ðtÞ is approximately known and depends on

192 M. Morawski and P. Ignaciuk

the link layer parameters of the associated interface, e.g. for CCA 802.11g, it varies
from 40 % for long frames to about 10 % for short frames of the physical layer
speed [9]. cmax

i ðtÞ changes stepwise depending on SINR or RSSI and can be
obtained from datasheets and norms [9].

6 Channel Capacity Prediction

The energy-efficient traffic distribution among NICs (12) requires the knowledge of
average capacities, but these values are not known in real time. They can be
determined by filtering the highly variable ciðtÞ. The most common way to measure
the channel capacity is through the low-pass filter ĉiðtaþ 1Þ ¼ ð1� aÞĉiðtaÞþ
aciðtaþ 1Þ, typical in TCP implementations. Parameter a 2 ½0; 1� influences the
adaptation speed. Unfortunately, due to node mobility, it is possible to obtain
ĉiðtaþDaÞ[cmax

i ðtaþDaÞ In such situation, the information about traffic intensity is
erroneous, yet after some time, ĉiðtÞ adjusts to new conditions. Unfortunately, the
described case is not infrequent, as illustrated in Fig. 2, which presents typical RSSI
fluctuations in a 3-min interval. The changes of power imply changes of cmax

i ðtÞ [9]
and frequent fluctuations of cmax

i ðtÞ may cause the state of optimal distribution
never to be reached.

Therefore, the following estimation of the average channel capacity is proposed:

ĉiðtaþ 1Þ ¼ cmax
i ðtaþ 1Þ
cmax
i ðtaÞ ð1� aÞĉiðtaÞþ aciðtaþ 1Þ½ �: ð13Þ

The scaling factor introduced in (13) allows for constraining the capacity esti-
mate to a feasible interval.

Fig. 2 Typical fluctuations of RSSI obtained from GSMSignalMonitoring

Energy Efficient Dynamic Load … 193

7 Experimental Evaluation

The algorithm is implemented using ‘credits’ as in common implementations of
AQM. The on-line computational effort is negligible. In order to analyze the
effectiveness of the proposed approach, several simulation experiments are con-
ducted. In the tests, the MPTCP buffer holds 10,000 segments, each of the size of
1500 bytes. The data is to be sent through two channels with properties indicated in
Fig. 3. The channels correspond approximately to WiFi (left) and UMTS (right)
specifics. The display power PD ¼ 20 W. The purpose of experiments is to transmit
content of the MPTCP buffer through both channels and compute the energy
consumed by the end-point device. Table 1 presents the numerical values when
only one channel is used (it corresponds to SPTCP) ((a)—only the first channel,
(b)—only the second channel), implemented in the MPTCP official kernel
round-robin scheduling (c), channel capacity proportional scheduling (d), and
finally, proposed power-efficient scheduling when PD is neglected (e), and its full
version (PD included) (f). The epoch is the time between taking subsequent
scheduler decisions.

The data gathered in Table 1 shows that MPTCP is in general not an
energy-efficient solution for mobile devices (c). It does not outperform SPTCP
using a ‘greener’ technology, e.g. WiFi (a) over UMTS (b). In the considered case,
SPTCP results in approximately 3 times lower battery depletion than the standard
round-robin MPTCP implementation—(a) vs. (c). In turn, the proposed algorithm
(e), and particularly in its full version (f), allows for more than 50 % energy savings
at a negligible computational cost giving 20 % lower energy consumption than the
capacity proportional scheduling (d).

The results displayed in Table 1 are obtained for the nominal channel capacities,
i.e. the capacity measurement is influenced neither by fluctuations, nor by delays
and (13) responds with the maximum value. Therefore, another series of experi-
ments are conducted for a more realistic situation where the capacities vary
according to the Poisson process with k ¼ 4, scaled to 0:33cmax

i ðtÞ and longer on-off
traffic variations (also scaled to 0:33cmax

i ðtÞ) complemented by slowly-changing
trends, depicted in Fig. 4.

Fig. 3 Channel capacity and power profile (in logarithmic scale)

194 M. Morawski and P. Ignaciuk

The channel capacity is averaged by low-pass filter (13) using different a values
and different delays. Table 2 presents the relative impact of these parameters on the
overall device energy consumption. As a reference, a ¼ 1 (no filtering) and
delay = 1 epoch (marked) is applied. Because the proposed algorithm uses “the
best” channel to full extent, and only supplements the communication by “worse”
ones, the delay between subsequent evaluation of the “worse” channels increases
(assuming no other traffic is present). For such channels the correct results require
averaging using different smoothing coefficients. This property can be employed in
the design of a control strategy for the simultaneous download process—a next step
in the research work on the subject.

Table 1 Comparison of different MPTCP scheduling methods

a b c d e f

T1 (s) 43.01 0 22.4 17.87 19.52 16.04

T2 (s) 0 208.8 104.4 17.92 8.83 11.28

E1 (J) 95.04 0 49.5 43.67 48.98 41.32

E2 (J) 0 1140 570 102.50 50.10 63.29

b1 (kB) 15,000 0 7500 10,315.5 11287.5 10603.5

b2 (kB) 0 15,000 7500 4684.5 3712.5 4396.5

Total energy (J) 955.2 5316 2708 504.66 489.58 425.37

Fig. 4 Channel capacity and power profile for congested channels: real profile—upper graph,
estimated profiles—lower graphs

Energy Efficient Dynamic Load … 195

8 Summary and Conclusions

The paper presents a new algorithm for MPTCP traffic scheduler. It distributes the
load over the network interfaces of mobile, battery-powered devices, like tablets or
smartphones, to achieve low energy consumption. The algorithm is formulated on
the basis of a model-based optimization problem and mathematical analysis of
channel properties. It dynamically adjusts the channel usage depending on their
current characteristics (congestion at the first hop and distance from the hub). The
conducted simulation experiments show that the proposed solution allows for as
high as 50 % decrease in the consumed energy as compared to the typically applied
round-robin scheduling. Further work on the problem will be focused on improving
the energy efficiency while concurrent upload and download operations are in
progress.

Acknowledgments P. Ignaciuk holds a scholarship of the Polish Ministry of Science and Higher
Education for outstanding young researchers.

References

1. Peng, Q., Walid, A., Hwang, J., Low, S.H.: Multipath TCP: analysis, design, and
implementation. IEEE/ACM Trans. Netw. 24(1), 596–609 (2016)

2. Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP Extensions for Multipath Operation
with Multiple Addresses. RFC 6824, IETF (2013)

3. Deng, S., Netravali, R., Sivaraman, A., Balakrishnan, H.: WiFi, LTE, or both? Measuring
multi-homed wireless internet performance. In: Proceedings ACM IMC, Vancouver, pp 181–
194 (2014)

4. Paasch, C., Ferlin, S., Alay, O., Bonaventure, O.: Experimental evaluation of multipath TCP
schedulers. In: Proceedings of ACM SIGCOMM CSWS, Chicago, pp 27–32 (2014)

5. Hwang, J., Yoo, J.: Packet scheduling for multipath TCP. In: Proceedings of 7th International
Conference on Ubiquitous and Future Networks, Sapporo, Japan, pp. 177–179 (2015)

6. Park, S.Y., Joo, C., Park, Y., Bank, S.: Impact of traffic splitting on the delay performance of
MPTCP. In: Proceedings of IEEE International Conference on Communications (ICC),
Sydney, Australia, pp. 1204–1209 (2014)

7. Khalili, R., Gast, N., Popovic, M., Boudec, J.-Y.L.: MPTCP is not pareto-optimal:
performance issues and a possible solution. IEEE/ACM Trans. Netw. 21(5), 1651–1665
(2013)

Table 2 Influence of
averaging coefficient on
algorithm effectiveness

Delay/a 1 10 50 100 500

1 1 1.01 1.04 1.08 1.07

1/2 1.01 1.01 1.03 1.05 1.03

¼ 1.01 1.02 1.03 1.03 0.99

1/8 1.02 1.03 1.03 1.03 0.96

1/16 1.02 1.02 1.02 1.01 0.94

196 M. Morawski and P. Ignaciuk

8. Abdeljaouad, I., Rachidi, H., Fernandes, S., Karmouch, A.: Performance analysis of modern
TCP variants: a comparison of Cubic, Compound and New Reno. In: Proceedings of 25th
biennial symposium on communications (QBSC), Kingston, pp. 80–83 (2010)

9. Gast, M.: 802.11ac: A Survival Guide. O’Reilly, Sebastopol (2013)
10. Hämäläinen, S., Sanneck, H., Sartori, C. (Eds.) LTE Self-organizing Networks (SON).

Network Management Automation for Operational Efficiency. Willey, Chichester (2012)
11. Boyd, S., Vandenberghe, L.: Convex Optimization, 7th edn. Cambridge University Press,

Cambridge (2009)

Energy Efficient Dynamic Load … 197

Part V
Data Processing Tools

Mutation Testing in Model Accuracy
Assessment

Joanna Strug

Abstract Abstract models built during a development of software systems play an
important role in producing a high quality system. Any modeling mistakes, if not
corrected, will propagate to the further development stages decreasing the quality of
the final system and increasing costs of correcting them. It is of primary importance
to make sure that the model conforms to all requirements of the stakeholders and
ensures proper work of the future system under various conditions. This paper
describes a mutation testing based approach to accuracy assessment of conceptual
models built at the beginning of a system development. The approach focuses on
providing test cases for assessing and measuring accuracy of such model with
respect to its ability to handle unexpected and erroneous situations. Mutation testing
is usually used to assess quality of test cases, but it can also help to provide, in a
systematic and human-unbiased way, a number of test cases representing wide
range of unexpected situations.

Keywords Model evaluation � Mutation testing � Software modeling � UML �
OCL

1 Introduction

Abstract models, focusing on different characteristics of a system to be designed,
are built at all stages of the system development process [1]. Such model, if being
accurate reflections of system characteristics of interest for a particular level of
abstraction, contributes to successful development of a flawlessly working system.
However, modeling involves taking decisions regarding elaboration and even
refinement of requirements, definition of the system structure and operations,
selection of components performing these operations, and so on. As modeling

J. Strug (&)
Faculty of Electrical and Computer Engineering, Cracow University of Technology,
Kraków, Poland
e-mail: pestrug@cyf-kra.edu.pl

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_16

201

activities are errors prone, accuracy of models cannot be taken for granted. Thus,
time and effort should be invested into developing models conforming to require-
ments of the stakeholders and ensuring proper work of the system under various
conditions [2].

Development of a model can be seen as an iterative process involving, after
building an initial model, iterative assessment of the model accuracy and its
improvements. The assessment step is essential in determining the degree to which
the model fulfills the expectations and in providing useful data for its improvement.

Main causes of inaccuracy of a conceptual model include missing and incor-
rectly modeled requirements, as well as lack of proper handling of unexpected,
erroneous situations and data. Faults caused by any of the first two of them can
usually be detected by positive test cases reflecting, in a representative way, the
intended ways of using the system that are given by a system specification [3].
However, due to the fact that early prediction of unexpected and potentially erro-
neous situations is limited to some obvious cases, the test cases ability to check if a
model can handle them properly is very limited [4]. Thus, an effective approach to
an assessment of a model accuracy should also provide a subset of negative test
cases [3] designed specifically for checking how the model handles the unexpected
situations.

A general approach to mutation testing based negative testing was presented in
[5] and in [6] a concept of applying mutation testing to assess a model accuracy,
focusing on this second aspect of the accuracy, was introduced. This paper builds
on the concept by adding more details, shows how to use information coming from
the evaluation to improve a model, and presents a real life case study.

The paper is organized as follows. Section 2 briefly presents background
information and related works. The approach to an evaluation of a model accuracy
is described in details in Sect. 3, and Sect. 4 presents the case study. In the last
section conclusions and directions for future works are given.

2 Background and Related Work

A great number of research deals with various problems related to software testing,
but only some of them regard negative testing [3, 7–9]. Techniques, such as
equivalence partitioning [8] or stress testing [7, 9] provide advises on selecting test
cases with invalid input values or on creating and testing some extreme conditions
for the system. However, test cases selected by mean of such techniques may not be
able to reflect a wide range of unexpected, but not necessarily extreme, situations.

Mutation testing, a technique that in general serves the derivation of faulty
artifacts from correct ones, seems to be adequate for contributing to the solving the
problem of providing negative test cases. The technique was originally introduced
to evaluate quality of test suites provided for programs [10]. Its application involved
generation of a number of faulty version of a correct program (called mutants) by
introducing small syntactic changes into the code of the original program and then

202 J. Strug

running the mutants with tests from the evaluated test suite. The ratio of the number
of mutants detected by the tests over the total number of non-equivalent mutants
generated for the original program (called a mutation score), determined the quality
of the evaluated test suite in terms of its ability to detect faults.

A test quality assessment is still the main application area of mutation testing,
but works showing its application at different levels of abstractions and to different
artifacts are more and more common (examples of such works are given in [11]).
However, papers on using mutation testing for deriving negative test cases are still
rare. To the author’s best knowledge only a few other researchers have also studied
this topic [12–14]. The authors of the work in [13] mutated a model of a system and
used model-checking techniques to generate counter-examples showing violation of
certain properties. The counter-examples made a set of negative test cases, but due
to the fact that mutants of the model represent incorrect behaviour of the system,
some of the test cases may in fact detect specification related inconsistencies that
can also be detected by positive test cases. Another example of an approach, where
tests cases were derived from mutated model was presented in [14]. The approach
described in [12] is the most relevant to the one presented in this paper, as it also
aims at modifying tests directly. However, the modifications proposed by the
authors are random and affect only data processed by a program. The approach
presented in [5] and the one presented here provide much wider range of changes
introduced in a controlled way by using a set of mutation operators defined by the
author specifically to target test cases [5, 6].

3 An Approach to Model Accuracy Assessment

A conceptual model is built upon requirements that specify what a system is
expected to do, what kind of data it should process, under which conditions it
should operate, and so on. The requirements do not provide a clear answer to a
question of how the system should behave when subjected to conditions and data
out of its normal scope of operations. Issues arising from such a question need to be
resolve during development of the conceptual model, otherwise they will propagate
to further development stages and finally would make the final system vulnerable to
failures.

Development of an accurate model, handling properly various unexpected and
erroneous situations, is not easy, because a developer’s ability to predict situations
that may lead to failures is rather limited. Thus, it is necessary to run the model with
negative test cases being able to trigger a wide range of unexpected use scenarios
for the system and observe how the model behaves in these situations.
Unfortunately, test cases selected basing on requirements are positive, that is they
represent only intended ways of using the system and do not support detection of
this kind of problems.

The approach presented here focuses on assessing a model, during its devel-
opment, with the aim to detect its weaknesses caused by lack of proper handling of

Mutation Testing in Model Accuracy Assessment 203

unexpected situations. It deals with this problem by providing and using negative
test cases that trigger such situations. The main idea behind this approach is to use
mutation testing to generate a number of test cases, each being a modified version
of any of the positive test cases. Each mutant is a negative test case, as it represents
some unintended use scenario for the system. The model, when run with a mutant,
will either behave as if the mutant represented some expected use scenario, or it will
fail showing its ability to recognize the fact that the mutant triggered an unexpected
way of using the system.

The following subsections outline the approach to a model evaluation and
describe its main stages in details.

3.1 An Outline of the Approach

Before the assessment of a conceptual model starts the model, representing
requirements defined for a system, and a suite of test cases selected basing on these
requirements, have to be provided. The assessment is carried out in three stages
(Fig. 1):

1. generation of mutated test cases,
2. execution of mutated test cases, and
3. analysis of assessment results.

The first stage involves generation of mutated test cases. The mutants are
obtained by introducing small changes into the original test cases accordingly to a
predefined rules, called mutation operators. Then, in the second stage, each mutant
is executed against the model and a verdict (accepted or rejected) is assigned to it.
Finally, in the last stage, accuracy of the model is calculated basing on the number
of mutants accepted and rejected by the model and the mutants are analyzed to
provide feedback for improving the model.

Fig. 1 Outline of the approach

204 J. Strug

3.2 Stage 1—Generation of Mutated Test Cases

The expected input artifact for the first stage is a suite of positive test cases rep-
resenting all intended ways of using a system, as given by the requirements.
A single test case should specify conditions, data and steps (usually represented by
operations calls) needed to force a model to behave in a particular way, as well as
expected results that the model should produce after executing the test case.

To generate mutants of the test cases a set of mutation operators is needed. Here,
a mutation operators is a rule specifying an element of a test case that can be
changed and defining the ways it can be changed. A set of mutation operators
applicable to test cases consists of the following 9 operators [5, 6]:

• Condition Part Deletion (CPD)—deletes a part of a condition expected to hold
before executing a test case,

• Condition Part Replacement (CPR)—replaces a part of a condition by another,
compatible element of a condition,

• Operation Call Deletion (OCD)—deletes an operation call (i.e. a step) from a
sequence of operation calls in a test case,

• Operation Call Replacement (OCR)—replaces an operation call in a sequence of
operation calls in a test case by another operation call,

• Operation Call Insertion (OCI)—inserts an extra operation call in a sequence of
operation calls,

• Operation Call Swap (OCS)—changes the order in which two subsequent
operation calls should be performed,

• Operation Parameter Replacement (OPR)—replaces a value of a parameter in an
operation call (i.e. data passed within a given step) with another, compatible
value,

• Operation Parameter Swap (OCS)—changes the order of two values of
parameter in a given operation call,

• Operation Target Replacement (OTR)—replaces a target of an operation call
with another one.

The mutation operators cover all elements of a typical test case, so the set can be
seen as sufficient for generating mutants triggering wide range of unintended ways
of using a system. Algorithms outlined in [5] can be used to generate the mutants.

3.3 Stage 2—Execution of Mutated Test Cases

The expected input artifacts for the second stage are: the set of mutants generated in
the first stage and the model of system undergoing the assessment.

In general the model may represent a system at any level of abstraction, but in
this approach a focus is on a conceptual model built at an early stage of the system
development. It is therefore expected that the model represents requirements

Mutation Testing in Model Accuracy Assessment 205

specified for the system by giving conceptual architecture and functionality of the
designed system. The model has to be executable, thus the formalism used to
describe the model should include means to define processing. The model, before
being assessed with respect to its handling of unexpected situations, should be
tested with all original test cases to ensure that the specified requirements have been
modeled correctly.

Once the prerequisites concerning the model are satisfied the model is run with
each mutated test case. When a mutant is executed its execution trace is generated
and linked to the mutant, and after it has been executed a verdict is assigned to the
mutant. A verdict rejected is assigned to a mutant when the model fails, otherwise a
verdict accepted is assigned to the mutant.

3.4 Stage 3—Analysis of Assessment Results

The third stage uses the results obtained in the second stage: the verdicts assigned to
mutants and the execution traces of mutants, to determine the accuracy degree of
the assessed model and to provide feedback for refining the model.

The accuracy of a model, in term of its ability to recognized unexpected situation
[6], is indicated by a mutation score. Let’s for the rest of this paper M denotes the
assessed model, T0 denotes the set of mutants generated for a set of positive test
cases denoted by T, T0

A and T0
R denote subsets of T0 consisting of accepted and

rejected mutants respectively, and T0
E denotes a subset of equivalent mutants [11].

The mutation score (denoted by MS) for a model M is defined as follows
[Eq. (1)]:

MS Mð Þ ¼ jT 0
Rj

ðjT 0
A þ jT 0

Rj jÞ � jT 0
Ej

ð1Þ

where:

T0
A

�� �� is the number of mutants accepted by the model M,

T0
R

�� �� is the number of mutants rejected by M, and

T0
E

�� �� is the number of equivalent mutants.

The mutation score expresses, in a quantitative way, the degree of a model
accuracy. Basing on the value of mutation score one can decide whether the
development of the model should be continued or may be finished. The highest
possible value of mutation score is 1—it means that all mutants were rejected.

When the mutation score implies that the model accuracy is not acceptable yet,
the mutants and their execution traces should be analyzed. An execution trace of a
mutant shows, in details, what the model really did when it was run with the
mutant. So, an examination of an execution trace of a mutant should help to find out
why the mutant was rejected or accepted and prepare a report describing the results
of examination.

206 J. Strug

Rejection of a mutant shows that an evaluated model poses the ability to rec-
ognize an unexpected situation defined by the mutant and fails to work. Thus, an
examination of an execution trace of the rejected mutant helps to identify the
operations that drove the model to fail and to decide (possibly together with
stakeholders) what the proper handling of a class of erroneous situations repre-
sented by the mutant should be like.

When an evaluated model accepts a mutant, it shows that the model is not able to
recognize an unexpected situation and works further producing some, seemingly
correct, results. Examination of an execution trace of the accepted mutant helps to
identify faulty constraints specifying applicability range of operations performed
when the model is run with the mutant, and thus suggests ways of improving the
model.

Once, a model has been improved accordingly to the suggestions, it should be
assessed again to see if the mutation score has reached an assumed level.

4 Case Study: A HVAC System

The case study demonstrates application of the described approach to evaluation of
conceptual models on a software controlling a Heating, Ventilation and Air
Conditioning system (HVAC) [15].

In general, the HVAC system maintains the room temperature within an
assumed range. A user of the system can turn it on and off and set the temperature
range. The system, when turned on, displays its current status, check the temper-
ature in the room and, basing on the current value of the temperature, cools or heats
the room.

The approach, as described in Sect. 3 can be applied to assess models described
by means of various formalisms, but this work is aimed at models of object-oriented
systems. Thus, UML/OCL class diagram was used to model the system [16, 17].
The class diagram describes structure of a system by giving elements (classes) of
the system, their properties (attributes), functionalities (operations) and relations
between these elements [16], as well as constraints specifying the operations in the
form of their pre-conditions and post-conditions [17]. The pre- and post-conditions,
are here of particular importance. They define conditions that should hold before an
operation starts and when it ends, respectively. Missing or incorrectly specified pre-
and post-conditions make the model vulnerable to unexpected behavior. The class
diagram representing structure of the HVAC system is given in Fig. 2. The con-
straints defined for the system are not depicted in this figure for clarity, but an
example pre-condition of the operation regulate() in class Controller is shown as an
annotation in the Fig. 2.

A suite of test cases, the second element required by the assessment approach,
was prepared manually. In the case study the suite consisted of only one test case,
shown in Fig. 3a. It is given in a format required by the USE simulator [18].

Mutation Testing in Model Accuracy Assessment 207

4.1 Generation of Mutants

The test case (denoted by t) used in the case study describes a scenario for checking
if the model makes it possible to turn on and off the system, and to turn on and off
the Heater and the AC, when the temperature rises and then falls down.

For the test case 51 mutants were generated. Detailed information on the number
of mutants generated by applying each of the mutation operators is given in the
second column of Table 1. Two of the mutants generated for t are shown in Fig. 3b, c.

4.2 Execution of Mutants

The mutants generated for test case t were executed within a USE environment [18].
The USE allows to run a model with a specified test case by simulating calls of the
model operations (according to a scenario provided by the test case). While running
the model, the tool checked if the pre- and post-conditions of called operations were

Fig. 2 A class diagram for HVAC system (screenshot from USE)

Fig. 3 a An example test case t for HVAC, b and c examples of mutants for t

208 J. Strug

satisfied. An unexpected situation represented by a mutated test case was recog-
nized if a violation of any condition was reported or the model failed. After exe-
cuting a mutant, depending on the simulation results, a verdict rejected or accepted
was assigned to it. Table 1 summarizes results of running the mutants. It gives, for
each mutation operator, the number of accepted, rejected and equivalent mutants.

The results of executing mutants were presented within the USE in a form of a
sequence diagrams [16]—these diagrams show the execution traces for the mutants.

4.3 Analysis of the Assessment Results

While most activities of the two previous stages of the model assessment can be
automated, the analysis has to be performed manually.

First the accepted mutants were analyzed to identify and remove the equivalent
mutants and the mutation score for the initial model was calculated as given by
Eq. (1). Here, a mutation score of 0.35 was reached, what indicates rather low
accuracy of the initial model and need for improvements.

To provide a feedback for the necessary improvements the execution traces of
the remaining accepted mutants were analyzed to find out why they were accepted
and what the model did wrong. For example, the mutant given in Fig. 3b was
accepted. It represents a situation when the room temperature rises, in an instance,
from below the lower threshold to above the upper threshold. While such situation
seems unlikely to occur it is not entirely impossible. The examination of the mutant
showed that the model turned on the AC, but it did not turn off the Heater. It is
clearly an erroneous behavior of the model that needs to be fix, as both the Heater
and the AC should never be working at the same time.

The rejected mutants were also analyzed to identify the operation that caused the
model to fail. The mutant from Fig. 3c was rejected. It represents a situation when
the user did not set the thresholds. The precondition defined for the regulate()

Table 1 Statistics by operators for mutants generated for t

Mutation
operator

of mutants
for t T0j jð Þ)

of rejected
mutants T0

R

�� ��� � # of accepted
mutants T0

A

�� ��� � # of equivalent
mutants T0

E

�� ��� �
CPD 3 0 3 0

CPR 5 3 2 0

OCD 6 1 5 2

OCR 7 2 5 4

OCI 14 5 9 2

OCS 5 2 3 1

OPR 10 0 10 5

OPS 1 0 1 0

OTR 0 0 0 0

Mutation Testing in Model Accuracy Assessment 209

operation was violated, so the model was able to recognized erroneous situation but
the model developer (or stakeholders) should still propose some solution that would
allow the model to handle this situation.

Although the analysis performed in this stage are quite laborious, especially in
case of accepted mutants, a careful inspection of the execution traces of mutants
helps to gather information that in turn helps to improve the model, and thus the
final systems that is to be developed basing on the model.

5 Conclusions and Future Work

A high quality system should always work flawlessly, thus it should never, in any
situation, provide incorrect results and should be able to manage some unexpected
situation without crashing, so early modeling of proper handling of such situations
will significantly contribute to improvement of the quality of the final system. The
approach presented in this paper contributes to the domain of developing models, as
it provides a way to assess their accuracy with regard to their ability to recognized
erroneous situations. This aspect of a model accuracy is rarely considered [13].

The approach uses mutation testing to generate, in a systematic and
human-unbiased way, a number of test cases being able to trigger a wide range of
unexpected situations. While mutation testing is a very effective assessment tech-
nique, it is also quite expensive in term of costs of generating and executing
mutants [11]. Several cost reduction techniques were proposed, so far (a survey is
given in [19]). A study on applying such techniques, especially the selective and
structure dependant ones [20–24], in this context should also be a part of future
work. Another problem that needs to be addressed is the identification of equivalent
mutants [25]. It may also be worth to explore the possibility to use higher order
mutations [11, 25] that could help to overcome both above problems.

In this paper the approach was studied in the context of models represented by
means of UML and OCL. Still, the general approach to mutation testing based
negative testing [5] may be easily adapted for other modeling formalisms or to other
levels of system descriptions, as the general structure of a test cases will remain
unchanged.

References

1. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice.
Morgan & Claypool Publishers, San Rafael (2012)

2. Schamai, W., Helle, P., Fritzson, P., Christiaan, J., Paredis, J.: Virtual verification of system
designs against system requirements. In: Models in Software Engineering. LNCS, vol. 6627,
pp. 75–89. Springer, Heidelberg (2010)

3. Roman, A.: Testing and Software Quality. PWN, Warsaw (2015) (in polish)

210 J. Strug

4. Fernandez, J.-C., Mounier, L., Pachon, C.: A model-based approach for robustness testing. In:
Testing of Communication Systems. LNCS, vol. 3502, pp. 333–348. Springer, Heidelberg
(2005)

5. Strug, J.: Mutation testing approach to negative testing. J. Eng. 2016, 13 p. (2016)
6. Strug, J.: Mutation testing approach to evaluation of design models. Key Eng. Mater. 572,

543–546 (2014)
7. Briand, L.C., Labiche, Y., Shousha, M.: Stress testing real-time systems with genetic

algorithms. In: Conference on Genetic and Evolutionary Computation, pp. 1021–1028,
Washington, DC (2005)

8. Reid, S.C.: An empirical analysis of equivalence partitioning, boundary value analysis and
random testing. In: International Software Metrics Symposium, pp. 64–73, Albuquerque, NM
(1997)

9. Zhang, J., Cheung, S.C.: Automated test case generation for the stress testing of multimedia
systems. Softw. Pract. Exp. 32, 1411–1435 (2002)

10. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for the
practicing programmer. Computer 11, 34–41 (1878)

11. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE
Trans. Softw. Eng. 37, 649–678 (2011)

12. Bolazar, K., Fawcett, J.W.: Measuring component specification-implementation concordance
with semantic mutation testing. In: International Conference on Computers and Their
Applications, pp. 102–107, New Orleans (2011)

13. Fraser, G., Wotawa, F.: Using model-checkers for mutation-based test-case generation,
coverage analysis and specification analysis. In: International Conference on Software
Engineering Advances, pp. 16–21, Tahiti (2006)

14. Belli, F., Budnik, C.J., Hollmann, A., Tuglular, T., Wong, W.E.: Model-based mutation
testing—approach and case studies. Sci. Comput. Program. 120, 22–48 (2016)

15. Bahill, T., Daniels, J.: Using objected-oriented and UML tools for hardware design: a case
study. Syst. Eng. 6, 28–48 (2003)

16. Unified Modeling Language http://www.omg.org/spec/UML/2.5
17. Object Constraint Language http://www.omg.org/spec/OCL/2.4
18. Gogolla, M., Buttner, F., Richters, M.: USE: a UML-based specification environment for

validating UML and OCL. Sci. Comput. Program. 69, 27–34 (2007)
19. Usaola, M.P., Mateo, P.R.: Mutation testing cost reduction techniques: a survey. IEEE Softw.

27, 80–86 (2010)
20. Strug, J.: Classification of mutation operators applied to design models. Key Eng. Mater. 572,

539–542 (2014)
21. Ammann, P., Delamaro, M.E., Offutt, J.: Establishing theoretical minimal sets of mutants. In:

IEEE International Conference on Software Testing, Verification and Validation, pp. 21–30,
Cleveland Ohio, USA (2014)

22. Strug, J., Strug, B.: Machine learning approach in mutation testing. In: Software and Systems.
LNCS, vol. 7641, pp. 200–214. Springer, Heidelberg (2012)

23. Strug, J., Strug, B.: Using structural similarity to classify tests in mutation testing. Appl.
Mech. Mater. 378, 546–551 (2013)

24. Strug, J., Strug, B.: Classifying mutants with decomposition kernel. In: Artificial Intelligence
and Soft Computing. LNCS, vol. 9692, pp. 644–654. Springer, Heidelberg (2016)

25. Madeyski, L., Orzeszyna, W., Torkar, R., Józala, M.: Overcoming the equivalent mutant
problem: a systematic literature review and a comparative experiment of second order
mutation. IEEE Trans. Softw. Eng. 40, 23–42 (2014)

Mutation Testing in Model Accuracy Assessment 211

http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/OCL/2.4

Generating Source Code Templates
on the Basis of Unit Tests

Mariusz Nyznar and Dariusz Pałka

Abstract This paper describes the solution for supporting Test-driven develop-
ment (TDD) methodology with the help of code analysis and generation. By
automation of the creation of stub implementation, it helps to accelerate the process
of passing a red phase of Red/Green/Refactor (RDR) cycle. The tool described in
the paper performs a semantic analysis of the test methods defined in a subjected
Java class. It uses the information gathered during a process for further generation
of unit stubs. The proposed solution describes the way in which the Abstract Syntax
Tree (AST) is analyzed by the statements tree decomposition. The paper also
presents possible ways of preventing and resolving unit types conflicts. The tool
used for stub generation of units was defined in one of the test methods imple-
mented in a Log4J Java framework. The results obtained are compared to a real
class definition, and possible ways for further extensions of the solution are
suggested.

Keywords Code generation � Test-driven development � Abstract syntax tree �
Semantic analysis

1 Introduction

Test-driven development (TDD) is a software development methodology in which
creating a fragment of a code is preceded by creating a test for this particular
fragment. In its current form, TDD originated in Extreme Programming
(XP) software development paradigm, and, since 2003, when it was rediscovered
by Ken Back [2], it has been widely used in agile software development methods.

M. Nyznar (&) � D. Pałka
AGH University of Science and Technology, 30 Mickiewicza Av, 30-059 Kraków, Poland
e-mail: mnyznar@student.agh.edu.pl

D. Pałka
e-mail: dpalka@agh.edu.pl

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_17

213

A software development process in TDD is based on the red/green/refactor cycle
(RGR cycle) [2], which consists of the following steps [7] (see Fig. 1):

1. Think—On the basis of the predictions regarding the behaviour of the code, a
test is planned which fails until this behaviour is obtained.

2. Red bar—A short test is written which requires the code to perform the desired
behaviour. The test is written under the assumption that the code already exists.
Because the desired behaviour is not present in the code yet, running this test
will show errors indicated by the red progress bar in typical testing tools.

3. Green bar—Enough production code is written to make the test pass. After the
test is run in testing tools, the success will be typically indicated by the green
progress bar.

4. Refactor—During this step improvements are introduced into the design and
the implementation of the program—because now the tests pass, the refactor of
the code can be made without worrying about spoiling anything.

5. Repeat—The cycle is repeated to add new behaviour to the program.

For statically typed compiled languages, for example Java, in step 2 (’Red bar’)
two additional phases can be distinguished:

– Non-compiling phase—the program contains compilation errors because the
method for obtaining the desired behaviour is not present in the production code
but is called from the test code.

– Compiling phase with errors in tests—after adding the production code stub,
the code can be compiled but tests indicate errors because the desired behaviour
has not been implemented yet (only the code stub is present).

This paper demonstrates the implemented tool which makes it possible to
automatically (or semi-automatically) generate the code stubs on the basis of pre-
pared unit tests for Java language. So, this tool can significantly accelerate working

Fig. 1 RGR Cycle

214 M. Nyznar and D. Pałka

of the RGR cycle by automatically passing from the ‘non-compiling’ phase to the
‘compiling phase with errors in tests’.

2 Gathering Information from Unit Tests

All data required to generate a source code templates are obtained during the code
analysis process. As a base for the analysis there are used a formal grammars. Code
analysis can be explained as a transformation from the text form of the source code,
to some hierarchical structure, e.g. Abstract Syntax Tree (AST) [5]. This process
can be divided into the 3 main parts—a lexical, syntactic and semantic analysis. The
first one is used to convert input defined as a code, to a lexical symbols. These are
used as a base for the syntactic analysis, which produces the AST. The last part
uses the AST to acquire information required for further code generation.

2.1 Syntactic Analysis

The syntactic analysis process uses the sequence of tokens to build a syntax tree,
conforming to the set of production rules, defined by analyzed formal grammar of
a language.

There are many parsing methods, like a Cocke-Younger-Kasami [6], or Earley’s
[3] algorithm, which can be used for any context-free grammar [1]. However, these
methods are not commonly used because of their low efficiency. The most com-
monly used types of syntactic analysis are Top-down and Bottom-up parsers. Their
names indicates the direction of the analysis. The most efficient methods for these
types use LL and LR grammar subclasses [1].

The structure of the AST depends on the type of the analyzed instruction. For
example, the structure of the variable declaration in Java language is presented in
Fig. 2.

Fig. 2 The structure of
variable declaration.
Figure on the basis of [4]

Generating Source Code Templates on the Basis of Unit Tests 215

2.2 Semantic Analysis and Generating Source Code
Templates

The process of the semantic analysis is used to check semantic correctness of the
program’s code instructions. A semantic verification based on the AST structure is
created as a result of parsing. The typical parts of static control are [1]:

– Types check,
– Program’s flow verification (e.g. if the break statement is used correctly in the

code),
– Identifier uniqueness check.

As a result of this process, the previous AST is expanded with additional data
collected during analysis. These data could be e.g. information about used and
declared classes, attributes or methods, as it is implemented in the tool described in
this paper.

Fig. 3 An example of data extraction from the single statement implemented in the Log4J test
method. The context block stores the information about the local variables which are already
declared. Both context blocks represent the same instance of the storing object (the references to
the same object)

216 M. Nyznar and D. Pałka

An example of the single line analysis is presented in Fig. 3. Every statement is
partitioned, and data are extracted from the parts. Parts are parsed in order from
right to left.

Partitioning process is realized recursively till the moment when the parts
become atomic statements, from which it is possible to obtain data, e.g. in the
instruction from Fig. 3, the full statements can be divided into 2 parts: the method’s
invoker (loggerA.getLogger()) and the method’s invocation
(addAppender(count-ingAppender)).

The first part will be divided into the loggerA invoker (which is already an
atomic identifier), and the getLogger() method invocation. During the data
extraction specific for an atomic statement, we can obtain the following information
by parsing this statement:

– method addAppender(countingAppender) has declared an argument,
which has the same type as countingAppender variable,

– method addAppender(countingAppender) is called by the invoker part,
so the method is declared in the invoker’s class,

– there were no information about the return type, which implies that the method
possibly does not return any value (void),

– the type of the invoker’s statement is the type returned by getLogger()
method, but there is no data about the name of this type,

– method getLogger() is invoked by the class instance, which is represented
by the LoggerA local variable.

With this knowledge, and the information about the types of the mentioned local
variables, we can specify definitions of used units (see Fig. 3).

The pattern of the data collecting realization differs between many types of the
statements structure. However, the main structure of the statement decomposition is
the same as the one described above—the first step is to decompose the instruction.
The differences could be e.g. in the control instructions (like if–else) where the
analyzer requires the Boolean statement as a condition (see Fig. 4), etc.

When the unit appears in more than one line of code, and the types required in
the statements are different, a type conflict occurs. A problem of the conflicts during
the analysis is solved using some simple rules:

– When both types are not known before (and will be generated as a result), the
mutual base type will be created, and the unit’s conflicted type will be converted

Fig. 4 Example of the attribute stub generated from the if statement

Generating Source Code Templates on the Basis of Unit Tests 217

to the base class. Previously detected classes will be defined as a child class of
the new class,

– In the situation when one of the types is already defined, the unit will be
adjusted to the defined type, and a new one will be declared as a child class of
the existing one,

– When there is a conflict between two existing classes, which have the same
parent, the unit will be placed in the parent class,

– In other cases, e.g. when both classes exist and they have different bases, the
analysis is interrupted with an error (Fig. 5).

2.3 Existing Solutions

Currently, an Integrated Development Environment (IDE) like Eclipse, or Intellij
IDEA offers the solutions for the missing units generation. They allow for choosing
the package where the generated class will be located or for changing the suggested
types.

Tools like these usually work in the context of the single instruction, with
consideration of the already existing units. They do not provide the utility for the
full code analysis. This approach is better if the user requires better control of the
generation process, but it requires more time for realization.

The solution presented in this paper uses a holistic approach for code processing.

3 Tool Implementation

The application was designed to support the process of development in Java lan-
guage. It is composed of two main modules:

– Analyzer—which obtains the data from the AST, and works only with the
method with JUnit’s @Test annotation,

– Generator—which converts the data to the source code.

Fig. 5 An example of the method stub generated from the method invocation statement

218 M. Nyznar and D. Pałka

As a base for the project, the Java compiler (javac) was used. It allows to easily
build the AST from the code. For further exploration of the syntax tree, the Java
Compiler API is used, which is defined by the JSR 199 specification [8]. Java
Compiler API is a set of interfaces, which describe the utilities available from the
Java compiler. The first version of the API was defined in Java 6 (Fig. 6).

The analyzer module works in two phases: the test method detection phase and
the data extraction phase. The first one is realized by the extension of the
TreePathScanner class defined in Java Compiler API.

The second phase module implements the strategy design pattern for specific
statement handling. Each type has defined a class, which controls the process of
statement partition and data acquiring.

Figure 7 presents the declaration of the method declared in the
StatementParserStrategy, which is the base class for all statement han-
dling class. The second and third arguments of the parse method allow for
suggesting what type of the parser should be returned by the method (e.g. when the
if statement is processed, the statement should return the boolean value)
(Fig. 8).

The general algorithm of instruction analysis is defined as follows:

1. In case of the new code block (code nested between the curly brackets) the new
context is created,

2. Statement partitioning,
3. Recursive analysis for each part (in this step the information about the types is

obtained),
4. In case of the block end—returning to the previous context.

The context mentioned above is the structure for storing information about the
local variables declared in the current block. Variables are visible only in the range
of the block.

Fig. 6 An example of the compiler process invocation

Fig. 7 Declaration of the StatementParserStrategy class main method

Generating Source Code Templates on the Basis of Unit Tests 219

4 Case Study

As an example of code templates generation, a test class from the logging frame-
work for Java—Log4J will be used.

In the study one of the methods defined in LoggerTest class will be analyzed
and the results will be compared to actually implemented solution. The method will
be tested separately (it will be excluded from the Log4J framework), which means
that every unit used in the analyzed code have to be stubbed for successful project
compilation.

Figure 9 presents the implementation of the method and the results of the
generation. As we can see, the information about 3 new classes was obtained from
the source method. One of them has an undefined name, because the analyzer’s
algorithm was not able to predict its type. The name of this class was not explicitly
defined in any statement where it was used.

Fig. 8 Main application screen

220 M. Nyznar and D. Pałka

4.1 Results Comparison

When we compare the code generated after the process with the real classes
implementation, the results are acceptable. It allows to compile the code and to
accomplish the red phase of RGR cycle. Additionally, the detected classes are
similar to the real ones (implemented in Log4J framework).

However, there are some differences, like the real name of the
UnnamedClass_3. In the framework implementation, the method getLogger
() is defined in the Logger’s base class. The return type of this method is defined
as org.apache.logging.log4j.core.Logger, which is the class with
the same name as the one detected during the analysis, but placed in a different java
package. It was impossible to obtain this kind of data during the analysis, because
none of identifiers has occurred in the test code.

Fig. 9 Analyzed class and the results of the generation

Generating Source Code Templates on the Basis of Unit Tests 221

5 Conclusions

The paper presents the concept of the Test-driven development (TDD) and a
possible way for using the semantic analysis and code generation to support this
methodology. A tool described in previous sections allows for reducing time
required to pass the red phase of the RGR cycle by semi-automatic code stubs
generation. The tool implements the concepts presented in the previous sections.

Described approach is semi-automatic, because in some situations it is impos-
sible to identify the correct semantic from statements, and for the correct results it
requires actions to take by the programmer. As an example, when some class has
two attributes, which types are not possible to predict (but the programmer wants
them to be declared with the same type), there will be generated two different
classes for these. If the programmer wants to achieve his intent, he has to do it
manually. The solution for the problem is to use annotations to control the gen-
eration process, which concept is mentioned later as a possible improvement.

In many IDE software tools for the stubs generation are used. The main dif-
ference between them and the solution presented in this paper is that it uses a
holistic approach for code processing. In these utilities, the code generation is
realized only in the local context, i.e. if we use these tools in the context of the
statement, it will match the types only to become valid in this statement. In the
solution presented here, the tool will try to match the unit types to be valid in all
statements of the test method.

In the current state, the parser operates only on the syntactic and semantic
analysis of some statement types. Currently, the tool does not handle all possible
instructions of Java language. Even then, the results of the analysis and generation
stubs for Log4J test allow for compiling the code. By the stubs generation, time
required for passing the red phase is reduced. Thanks to that, the Test-driven
development methodology becomes even more efficient.

There are many possible ways to improve the presented solution. Because the
tool does not support the full grammar of the Java language, some instruction do
not provide any information during the analysis. By increasing grammar coverage
level, the tool will be able to obtain more data from the new statements. With this
extension, the accuracy of the semantic analysis results will certainly increase.

The second idea for the tool improvement is to add special Java annotation
handling. It will allow for controlling the process of semantic analysis by predefined
annotations. For example, one of the possible ways of annotation usage is to disable
some test methods from the process of parsing. In the current version of the tool,
every method marked with JUnit’s @Test annotation is processed. Additionally,
the annotation can be used to suggest the type of some unit and can have an
influence on further results.

222 M. Nyznar and D. Pałka

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools,
2nd edn. Addison-Wesley, Boston (2007)

2. Beck, K.: Test-Driven Development by Example. The Addison-Wesley Signature Series,
Addison-Wesley, Boston (2003)

3. Earlay, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2), 94–102 (1970)
4. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Language Specification.

Java SE 8 Edition. Oracle America, Inc. (2015), [http://docs.oracle.com/javase/specs/jls/se8/
jls8.pdf]

5. Grune, D., van Reeuwijk, K., Bal, H., Jacobs, C., Langendoen, K.: Modern Compiler Design.
Springer, Berlin (2012)

6. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation, 3rd edn. Addison Wesley, Boston (2006)

7. Shore, J., Warden, S.: The Art of Agile Development. O’Reilly, Beijing (2007). [http://my.
safaribooksonline.com/9780596527679]

8. Sun Microsystems, Inc: JSR 199: Java Compiler API (2006). [https://jcp.org/en/jsr/detail?id=
199]

Generating Source Code Templates on the Basis of Unit Tests 223

http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://my.safaribooksonline.com/9780596527679
http://my.safaribooksonline.com/9780596527679
https://jcp.org/en/jsr/detail?id=199
https://jcp.org/en/jsr/detail?id=199

Decomposition and Reduction of Indexing
Structures with Use of the GPU
Computations

Damian Raczyński and Włodzimierz Stanisławski

Abstract The purpose of this article is to determine the usefulness of the K-means
method applied to decompose and reduce the TERM-BY-DOCUMENT matrix
with use of the GPU computations. The reduction based on the truncated SVD
decomposition is a long-term process for large matrices. The computational com-
plexity of the SVD decomposition is O(n3). The use of the K-means decomposition
before reduction should reduce the computational complexity. In addition, the use
of the GPU should reduce the time of the whole process. In the article there is
comparison of the times and the correctness of the results for the computing
environments associated with the GPU.

Keywords LSI � K-means � GPU � Reduction � Parallel computing � SVD

1 Introduction

The modern LSI (Latent Semantic Indexing) methods, using the truncated SVD
decomposition, are very popular for small homogenous collections of documents.
For large non-homogenous collections of documents, computational complexity of
methods based on the SVD decomposition prevents data reduction [1].

In the article we present the methodology for the application of the LSI method
to a large collection of text documents. The TERM-BY-DOCUMENT matrix is
decomposed, with use of K-means method, to set of matrices which have smaller
sizes. The decomposed blocks are reduced with use of the truncated SVD
decomposition. The presented methodology has been applied to reduce generally
available set of TERM-BY-DOCUMENT matrices, containing the following doc-
uments: CACM, CISI, CRAN, MED.

D. Raczyński (&) � W. Stanisławski
Państwowa Wyższa Szkoła Zawodowa w Nysie, Nysa, Poland
e-mail: damian.raczynski@pwsz.nysa.pl

W. Stanisławski
e-mail: wlodzimierz.stanislawski@pwsz.nysa.pl

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_18

225

The environment, used in the experiment, related to GPU, are the programs
developed in C++ language, with use the CUDA, CULA [2] and CULYA [3]
libraries.

2 The LSI Method

The LSI method, introduced in [4], is a method for automatic text indexing. The
retrieval systems based on the LSI are able to return a list of documents related in
meaning to the words entered by the user, despite of the difference in the used
keywords.

The LSI is a mathematical method, which is able to designating a simplified
model based on spatial clustering of similar objects. The SVD decomposition is a
crucial method, which provides the effectiveness of the LSI, however, the process
of determining the decomposition is a major problem associated with the compu-
tational complexity. In the literature it is obvious, that the use of the original LSI
method for large documents collection is practically not possible.

The proposed solution may consist of the performance of the TERM-BY-
DOCUMENT matrix decomposition into smaller portions. Then, the reduction
based on the LSI method is performed on the separated fragments. The advantage
of this approach is possibility of independent simultaneous reduction of each
element.

3 The K-Means Method

The K-means method belongs to the classification algorithms group. The clustering
with use of the K-means has been known since 1967 [1]. This method is one of the
simplest methods of grouping based on the unattended learning.

The algorithm is based on a grouping data into a certain number of clusters. Each
cluster is associated with so-called centroid that represents the average value of all
points belonging to the group. The centroids of all the clusters should be separated
from each other by the maximum possible distance.

In the case of text documents, a document is assigned to that group which
represents the centroid of the greatest similarity in relation to that document. In each
iteration, the assignment of the document to the certain group can be changed. The
process is repeated until centroids do not change their coordinates.

The K-means algorithm in MATLAB language is shown in Fig. 1. The
k_means function takes 3 parameters—the TERM-BY-DOCUMENT matrix, the
number of clusters and initial coordinates of the centroids. The function performs
the following operations:

226 D. Raczyński and W. Stanisławski

LINES: OPERATIONS:

7–11 Determining the similarity of documents’ vectors with the centroids. The
measure of similarity used in the article is the cosine distance

13–16 The shortest distance vector-centroid is determined with use of the
min_index function. The index of the nearest centroid is used to create
the binary matrix of connections G. The formed matrix determines which
document belongs to which group (which vector is assigned to which
centroid)

17–19 Checking the condition whether any vector of document changed group
with compare to the previous iteration. If the change does not occur, the
algorithm is finished and the result is the last G matrix

20–22 In case, where a change has occurred, the function update_centroids is
invoked which updates the coordinates of the centroids.

The K-means algorithm is very sensitive to the initial selection of the centroids’
coordinates. In order to determine the final solution, it should be executed many

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

function x=k_means(matrix, clusters, centroids)
 y=size(matrix,2);
 G_old=zeros(clusters,y);
 finish = 0;
 while(finish~=1)
 dist = zeros(clusters, y);
 for i=1:clusters
 for j=1:y
 dist(i,j)=sim(matrix(:,j), centroids(:,i));
 end
 end
 G=zeros(clusters,y);
 for i=1:y
 index_min=min_index(dist(:,i));
 G(index_min, i)=1;
 end
 if(max(max(abs(G-G_old)))==0)
 finish=1;
 x=G;
 else
 G_old=G;
 centroids = update_centroids(matrix, G);
 end
 end
end

Fig. 1 The source code of the K-means algorithm in MATLAB

Decomposition and Reduction of Indexing Structures with Use … 227

times with different initial coordinates. A common method used to determine the
initial centroids is a random selection a certain number of vectors from the
TERM-BY-DOCUMENT matrix. The K-means does not determine the optimal
number of groups, which will be divided into a set of documents. Their number is
determined arbitrarily before the start of the algorithm. In order to determine the
optimal number of clusters in a given set of documents, the algorithm should be
performed repeatedly for different values of this parameter [5].

4 Decomposition and Reduction

A large collection of documents can be divided into a number of smaller collec-
tions, each of which contains documents related to a certain subject. Reduction with
use of the SVD decomposition is characterized by high computational complexity
(O(n3)). The decomposition of the TERM-BY-DOCUMENT matrix into m blocks,
assuming equal size of divided blocks, reduces the computational complexity to a

level of O m n=mð Þ3
� �

. In addition, the decomposition of the matrix into a number

of parts allows the simultaneous reduction with the use of the cluster system. Each
block can be a separate reduction task performed on a separate cluster node.

For the original TERM-BY-DOCUMENT matrix (1)

A ¼ a1; a2; a3; . . .; an½ � ð1Þ

where ai denotes document’s vectors, decomposition into p parts causes the
secretion of blocks (of smaller size than the original matrix), satisfying dependences
(2) [1].

[p
i¼1

ai ¼ a1; a2; a3; . . .; anf g

ai \ aj ¼ ; if i 6¼ j

ð2Þ

After the decomposition, the original order of the vectors in the
TERM-BY-DOCUMENT matrix changes (3)

A0 ¼ a1; a2; a3; . . .; ap
� � ¼ a01; a

0
2; a

0
3; . . .; a

0
n

� � ð3Þ

for each of the blocks the corresponding centroid is obtained (4) [1].

C ¼ c1; c2; c3; . . .; cp
� � ð4Þ

For a given query vector it is possible to determine the nearest cluster by
comparing the measure of the similarity between the query vector and the centroid
vectors. If only a part of the specified clusters are taken into account when

228 D. Raczyński and W. Stanisławski

searching for documents that match a user’s query, it causes the speed up of the
searching process.

Gao and Zhang in [1] present three main strategies available for use in a retrieval
system.

• NC+SVD (Nonclustered retrieval)—operations are performed on the
TERM-BY-DOCUMENT matrix, which has been only reduced with the use of
the SVD method.

• FC+SVD (Full clustered retrieval)—after decomposition, with the use of
K-means algorithm, the obtained blocks are reduced. The search for the most
matching documents is performed by determining the similarity measure of the
reduced query vector with the all reduced documents’ vectors.

• PC+SVD (Partial clustered retrieval)—decomposition and reduction are per-
formed in the same manner as in the FC+SVD strategy. Searching the most
matched documents in this case is based on comparing the reduced query vector
with the centroids belonging to the reduced blocks. In this way, the blocks
which are entirely dissimilar to the query are ignored. The set of clusters, in
which the search is performed, is less than the number of all clusters.

5 Experiment

The K-means algorithm takes the initial parameter which is a collection of cen-
troids. In this article, the initial centroids are randomly selected set of vectors from
the TERM-BY-DOCUMENT matrix. This way of selection centroids entail two
significant drawbacks. The first one is related to the possibility of selecting the same
vector several times. The second one is associated with the possibility of determine
the vectors which are close to each other. The value of the cosine similarity varies
form −1 (no similarity) to 1 (a hundred percent similarity). In the case of the
method used in the article, the initial centroids differ from each other by at least 0.1
(in the sense of the cosine distance).

The algorithm has been developed for the GPU environment with use of the
CUDA, CULA and CULYA libraries. Due to the fact that the method is a heuristic
algorithm, subsequent calls may return different solutions. The size of each part of
the decomposed matrix is not constant on the subsequent algorithm calls (the
heuristic is associated with the random initial centroids).

The structures of the TERM-BY-DOCUMENT matrix before and after the
decomposition, for selected cases, are presented in the Figs. 2, 3, 4 and 5.

In the Figs. 6, 7, 8, 9, 10 and 11, there are presented sizes of decomposed parts
of the TERM-BY-DOCUMENT matrix, depending on the considered reduction
case (for calculation on single precision).

In the Fig. 12, there is presented the mean square error of reduction, expressed
by the formula (5).

Decomposition and Reduction of Indexing Structures with Use … 229

MSE ¼ 1
n2

Xn
i¼1

Xn
j¼1

COS ORGij � COS REDij
� �2 ð5Þ

where: n = 7095, COS ORGij—the cosine distance between the i’th and j’th
documents in original TERM-BY-DOCUMENT matrix, COS REDij—the cosine
distance between the i’th and j’th documents in reduced TERM-BY-DOCUMENT
matrix.

The final evaluation of the used methodology has been determined in the fol-
lowing way. For the 100 randomly generated user’s query vectors, the most mat-
ched document are determined from the original TERM-BY-DOCUMENTS

0 2000 4000 6000

0

1000

2000

3000

4000

5000

DOCUMENT

TE
R

M

Fig. 2 Matrix structure for
n = 1

0 2000 4000 6000

0

1000

2000

3000

4000

5000

DOCUMENT

TE
R

M

Fig. 3 Matrix structure for
n = 2

230 D. Raczyński and W. Stanisławski

matrix. Then, for the same query vector, p (where p = 1, 10, 20, 30 …, 100) the
most matched documents in the reduced TERM-BY-DOCUMENT matrix are
determined. The precision is computed as a percentage of the same documents in
both collections. The obtained results are shown in Figs. 13, 14, 15, 16, 17 and 18.

The average time required to reduce the TERM-BY-DOCUMENT matrix,
depending on the number of decomposed parts, is shown in Fig. 19. Each column
shows the average data for the reduction to 1, 2… 20, 100, 200,… 1000 rows, for
single precision calculations.

In a particular case of reduction, the reduction of the computation time with the
number of blocks cannot be assumed (due to the heuristic K-means). The overall
trend, however, is visible. The minimum and the maximum reduction time, for the
particular case, is shown in Fig. 20.

0 2000 4000 6000

0

1000

2000

3000

4000

5000

DOCUMENT

TE
R

M

Fig. 4 Matrix structure for
n = 3

0 2000 4000 6000

0

1000

2000

3000

4000

5000

DOCUMENT

TE
R

M

Fig. 5 Matrix structure for
n = 4

Decomposition and Reduction of Indexing Structures with Use … 231

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

REDUCTION TO THE SIZE

S
IZ

E
 (k

)

k1

k2

Fig. 6 Reduction to 1–20
rows, n = 2

100 200 300 400 500 600 700 800 9001000
0

1000

2000

3000

4000

5000

6000

REDUCTION TO THE SIZE

S
IZ

E
 (k

)

k1

k2

Fig. 7 Reduction to
100–1000 rows, n = 2

0 5 10 15 20
0

1000

2000

3000

4000

5000

REDUCTION TO THE SIZE

S
IZ

E
 (k

)

k1

k2
k3

Fig. 8 Reduction to 1–20
rows, n = 3

232 D. Raczyński and W. Stanisławski

100 200 300 400 500 600 700 800 9001000
0

1000

2000

3000

4000

5000

REDUCTION TO THE SIZE

S
IZ

E
 (k

)

k1

k2
k3

Fig. 9 Reduction to
100–1000 rows, n = 3

0 5 10 15 20
0

1000

2000

3000

4000

5000

REDUCTION TO THE SIZE

S
IZ

E
 (k

)

k1

k2
k3

k4

Fig. 10 Reduction to 1–20
rows, n = 3

100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

REDUCTION TO THE SIZE

S
IZ

E
 (k

)

k1

k2
k3

k4

Fig. 11 Reduction to
100–1000 rows, n = 4

Decomposition and Reduction of Indexing Structures with Use … 233

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

k

M
S

E
 (d

ou
bl

e)
n=2
n=3
n=4

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

k

M
S

E
 (s

in
gl

e)

n=2
n=3
n=4

Fig. 12 The MSE errors of reduction

0

50

100

02004006008001000

0

20

40

60

80

100

k

p

P
R

E
C

IS
IO

N

0

10

20

30

40

50

60

70

80

90
Fig. 13 n = 2 (double)

0

50

100

02004006008001000

0

20

40

60

80

100

k

p

P
R

E
C

IS
IO

N

0

10

20

30

40

50

60

70

80

90
Fig. 14 n = 3 (double)

234 D. Raczyński and W. Stanisławski

0

50

100

02004006008001000

0

20

40

60

80

100

k

p
P

R
E

C
IS

IO
N

0

10

20

30

40

50

60

70

80

90
Fig. 15 n = 4 (double)

0

50

100

02004006008001000

0

20

40

60

80

100

k

p

P
R

E
C

IS
IO

N

0

10

20

30

40

50

60

70

80

90
Fig. 16 n = 2 (single)

0

50

100

02004006008001000

0

20

40

60

80

100

k

p

P
R

E
C

IS
IO

N

0

10

20

30

40

50

60

70

80

90

100Fig. 17 n = 3 (single)

Decomposition and Reduction of Indexing Structures with Use … 235

0

50

100

02004006008001000

0

20

40

60

80

100

k

p
P

R
E

C
IS

IO
N

0

10

20

30

40

50

60

70

80

90
Fig. 18 n = 4 (single)

1 2 3 4
0

10

20

30

40

50

n

TI
M

E
 [s

]

Fig. 19 The average time
required to reduce the
TERM-BY-DOCUMENT
matrix, depending on the
number of decomposed parts

n=2 n=3 n=4
0

5

10

15

20

25

30

35

40

n

TI
M

E
 [s

]

minimum time
maximum time

Fig. 20 The minimum and
the maximum reduction time

236 D. Raczyński and W. Stanisławski

6 Conclusions

The use of the K-means algorithm, in order to decompose the TERM-BY-
DOCUMENT matrix, reduces the time needed for reduction. In a particular case,
taking into consideration the minimal reduction times, the use of decomposition
allowed reduce the reduction time by almost half (to 62 %). As also shown in the
article, the GPU computing environment is suitable for the reduction of the
TERM-BY-DOCUMENT matrices.

The main drawback of the presented methodology is unpredictability of the
K-means algorithm. Should be remembered that the greatest reduction in compu-
tational complexity is achieved when the algorithm determines blocks which having
a similar sizes. When the decomposed blocks vary much in size, the whole process
will give a small reduction in computational complexity.

References

1. Gao, J., Zhang, J.: Clustered SVD strategies in latent semantic indexing. Inf. Process. Manage.
41(5), 1051–1063 (2005)

2. Raczyński, D.: Matrix computations using GPU. In: Information Systems Architecture and
Technology. Contemporary Approaches to Design and Evalutionary of Information Systems,
pp. 39–48. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (2014)

3. Raczyński, D., Stanisławski, W.: Controllability and observability gramians parallel compu-
tation using GPU. J. Theor. Appl. Comput. Sci. 6(1), 47–66 (2012)

4. Deerwester, S., Dumais, S.T., Furnas, G.W., Landeuer, T.K., Harshman, R.: Indexing by latent
semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

5. MacQueen, B.J.: Some methods for classification and analysis of multivariate observations. In:
Proceedings of 5th Berkley Symposium on Mathematical Statistical and Probability, pp. 281–
297. University of California Press (1967)

Decomposition and Reduction of Indexing Structures with Use … 237

Social-Media Data Analysis Using Tessera
Framework in the Hadoop Cluster
Environment

Martin Sarnovsky, Peter Butka and Jakub Paulina

Abstract The presented paper describes the design and implementation of R
functions for twitter feeds analysis and visualization based on a combination of
analytical technologies with big data processing tools. The main idea was to utilize
the Hadoop processing framework and its storage and computational capabilities in
analytical tasks designed and implemented in R language. For such purposes, we
decided to use the Hadoop HDFS and MapReduce v2 for storage and handling of
the processing logic connected via Tessera framework to analytical functions
written in R. The results of the analysis were presented as the graph visualizations.
Visualizations were implemented using the Trelliscope framework for flexible
visualizations of large complex data in R environment in fast and effective fashion.

Keywords Hadoop � Mapreduce � Distributed computing � Data analysis

1 Introduction

The volume of the data available in various databases is significant. The rate how
the data volume is increasing and greatly exceeds the rate computational processing
power growth of the computers. One of the main challenges of data processing
nowadays is except their storage (using the distributed filesystems and databases)
also distributed data processing and analysis. Problems with big datasets include

M. Sarnovsky (&) � P. Butka � J. Paulina
Department of Cybernetics and Artificial Intelligence, Faculty of Electrical
Engineering and Informatics, Technical University of Kosice, Letna 9/A,
04200 Kosice, Slovakia
e-mail: martin.sarnovsky@tuke.sk

P. Butka
e-mail: peter.butka@tuke.sk

J. Paulina
e-mail: jakub.paulina@tuke.sk

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9_19

239

also its recording, storage, searching, and analysis. In addition, each analysis pro-
duces another new data.

To process and analyze the big data it is necessary to use the computing tools
capable of fast and efficient handling of the previously mentioned tasks. Without
designing of the new models and using suitable software and hardware resources, a
solution of the majority of these tasks would not be possible. Usually, these tasks
involve the distributed data and distributed processing. One of the most commonly
used computation models in that area is MapReduce [1], aimed at parallel pro-
cessing of the big distributed datasets and was successfully used in various appli-
cations. Using this computational model, problem solution is divided into the two
steps—Map and Reduce [2]. Each step is executed in parallel and distributed
fashion on multiple computing nodes. Its main advantage is (besides speed) a fact,
that the distribution logic, load balancing, fault tolerance and similar issues are
handled by the framework itself and not by the developer. MapReduce moves the
processing to the data. Its most familiar open source implementation is Apache
Hadoop. Limitations of Hadoop include the problems with iterative tasks, where the
most of the machine learning tasks belong [3]. Several limitations were removed in
MapReduce v2 implementation, which used YARN (Yet another resource nego-
tiator) as the resource manager [4]. The limitations also lead to alternative solutions
including various in-memory frameworks such as GridGain or Spark. Apache Spark
is 100-times faster in memory and 10-times faster od disk than Hadoop, which
makes it an ideal tool for big data processing tasks since it supports cyclic data
flows and in-memory computation [5].

Based on these platforms, numerous big data processing, and analytical tools
were developed for example Impala, Hive, HBase, Stratosphere, etc., which extend
the Hadoop platform with database functionalities. Another set of tools are aimed at
machine learning, such as Mahout, which is basically a distributed alternative based
on Hadoop to already existing standard machine learning and statistical analysis
tools such as Weka or R. Besides Mahout, some other approaches exist, for
example MLlib as the similar platform on the Spark platform, Radoop, which
enables to work with the big data in the popular knowledge discovery tool
RapidMiner, where Hadoop cluster serves as a storage capacity and to perform the
computations.

On the other hand, several tools enabling connection of R to Hadoop clusters are
available. RHadoop provides the MapReduce interface and Hadoop distributed
filesystem to analytical applications developed in the R language [6]. RHadoop
consists of several R packages providing Hadoop stack functionality to the R such
as rhdfs (HDFS access from R), rhbase (HBase connector to R), rmr2 (MapReduce
v2 operations). Another one is Tessera, open source environment for analysis of
large datasets, which will be described in more detail in the next chapter.

240 M. Sarnovsky et al.

2 Tessera

In this paper, we describe the system implemented and tested on selected
cloud-based infrastructure with the usage of Tessera1 software, which provides an
open-source computing environment for analysis of large complex data. The main
advantage of the environment is the combination of Big Data technologies, specific
visualization framework for the complex exploration of data, and connection to R2

statistical tool (and its packages).
Tessera provides an opportunity for the data analyst to code his/her analysis

directly in R, while in the backend a distributed parallel computational environment
is used (like Apache Hadoop). The way how the implementation of analysis is
realized in Tessera is called Divide&Recombine (D&R) [7]. While the basic idea is
similar to MapReduce technique, the details show more differences where D&R
goes further in analytical tasks. First, the analyst will divide the data into subsets
and writes them to disk (so-called S computation), series of analytical methods is
then applied to subsets independently (W computations). The analytical methods are
statistical methods with categorical or numeric output or visualization methods with
visual output. No communication is used during this step between analytical threads
used for subsets. Then recombine is applied (B computations) in order to achieve
combined view of result for particular type output. The recombination methods can
be of different types and granularity. Types are statistical recombination (the result
is a value-based combination from complex data), visual recombination (combi-
nation of visuals on data with different granularity—we can see summarized
visualization or detailed data view), or analytic recombination (which provides new
data subset for other analysis).

In order to provide D&R Tessera contains three main components:

• datadr3—provides an interface to D&R operations, with the possibility to
connect it to different distributed computing technology (currently supports
in-memory, local disk, multicore, Hadoop, some preliminary version for Apache
Spark). Programming is available in R and data is represented as R objects. In
datadr are two basic data types—distributed data frames (DDF) and distributed
data objects (DDO). DDF can be described as data frame divided into small
parts, each of them contains a subset of rows and can be in the different cluster
node. DDO is more general representation where each subset can be an object
with arbitrary structure. Every DDF is also DDO.

• RHIPE (R and Hadoop Integrated Programming Environment)4—this package
allows programmers to run Hadoop MapReduce jobs directly from R. The
package is used by datadr if Hadoop is used for the backend.

1Tessera—http://tessera.io/.
2R project—https://www.r-project.org/.
3Datadr—http://tessera.io/docs-datadr/.
4RHIPE—http://tessera.io/docs-RHIPE/.

Social-Media Data Analysis Using Tessera Framework … 241

http://tessera.io/
https://www.r-project.org/
http://tessera.io/docs-datadr/
http://tessera.io/docs-RHIPE/

• Trelliscope5 [8]—provides flexible visualization of large complex data in
selected detail from R environment. The main advantage is in the scalable
division of data to small parts and application of plot functions, arrange par-
ticular plots to grid with the possibility to interactively sort, filter, query them for
specific information. Trelliscope supports multipanel displays with a large
number of subsets and views them interactively and meaningfully. An important
feature of Trelliscope is the organization of its displays and other visual artifacts
into so-called visualization database, which can be easily shared by other
analysts.

Regarding the data flow within the Tessera environment, we have to say that
data structure which persists all DDO and DDF objects are matched as key-value
pairs. For our purposes the key is usually identificator for specific subset and value
is the subset of data corresponding to this key. Therefore, DDO and DDF is actually
a list, where every element contains a key-value pair. Another important feature of
data management is in persistent storage for datasets. The specific case is when
larger datasets could not be stored in memory and should be stored to disk
(localDiskConn function) or HDFS (function hdfsConn) using backend connection.

Finally, datadr provides functions for data operations which can be applied to
datasets. These operations can be divided into three parts: (1) Data operations based
on specific subsets (based on MapReduce computations, e.g., implemented func-
tions like divide, recombine, drlapply, drfilter, drjoin, etc.), (2) Data operations
independent from specific subsets (quantile and aggregation functions), (3) Read
data operations (extended functions for import of datasets). Trelliscope functions
are related to visualization aspects and include the connection to visualization
database, display functions (makeDisplay, view, prepanel) and their inputs, panel
functions and a specific type called cognostic functions—these are applied on each
subset and returns list included into dataframe (contains any useful information for
later display).

3 Design of the Proposed System

The following chapter will be focused on the underlying infrastructure used in
described system and how it was utilized in the proposed solution.

3.1 Hadoop Cluster Infrastructure

Big data processing requires computational resources capable of handling and
storage of big data. In our solution, we used a small-sized cluster consisting of a

5Trelliscope—http://tessera.io/docs-trelliscope/.

242 M. Sarnovsky et al.

http://tessera.io/docs-trelliscope/

master node and three worker nodes. Master is equipped with 64 GB RAM and
contains 8 CPU cores, workers are equipped with 32 GB RAM and 4 CPU cores.
Cluster nodes operate CentOS operating system and run Cloudera Hadoop distri-
bution in version 5.6.0. Hadoop cluster uses HDFS (Hadoop distributed file system)
as a file storage and uses YARN (Yet another resource negotiator, or MapReduce v.
2.0) as a task processing paradigm. Hadoop cluster was also configured with several
other related tools and packages such as HBase, Hive, Pig, Hue GUI, but those were
not directly used in proposed work. Cluster configuration had to be upgraded to
support distributed processing of R scripts. For that purposes, on each node R and R
packages related to distributed processing (described in Chap. 2) were configured.
Master was also extended witch Rstudio and Shiny server.

3.2 Architecture of Proposed Solution

Figure 1 describes the architecture and data flow of proposed solution. HDFS is
used as a data storage, contains input data and stores the results. Data in HDFS are
divided into the blocks and replicated across the cluster (replication factor set to
default value—3). Implemented R functions are applied on distributed data using
datadr. Datadr sends a request to the Rhipe package. Rhipe loads user-defined job
settings and specifies Hadoop job settings according to them. YARN allocates the
available resources according to those settings, locates the data blocks stored in
HDFS and starts the map tasks of the whole job. Intermediate results produced by
the mappers are stored into the cache or HDFS. Mappers perform combine method
(local aggregation) after mappers are finished. After all map tasks are finished,
YARN executes reduce phase, which aggregates the results of the whole job.
Results are stored in HDFS, YARN sends job execution confirmation to Rhipe and
output data are visualized by Trelliscope.

Fig. 1 Architecture of the
system

Social-Media Data Analysis Using Tessera Framework … 243

http://dx.doi.org/10.1007/978-3-319-46586-9_2

3.3 Design of the Visualizations

Visualization is handled by the Trelliscope package, which the main purpose is to
provide the graph visualizations in fast and effective fashion. We decided to
implement those visualizations:

• visualization of tweets counts in New York area using Rbokeh and leaflet library
—the goal of the visualization is to show the tweets daily frequency in hourly
intervals for different languages, our aim was to use two different libraries for
the same task.

• visualization of the popularity of most frequently used Twitter accounts—in this
visualization, the goal was to extract the most frequently used accounts, com-
bined them with the location of the tweets and ordering them according to the
favorites and followers count.

• visualization of most popular hashtags—the goal of this visualization is to
extract the most popular hashtags in particular language and location and
visualize them in bubble-chart style.

4 Implementation of Visualizations and Experiments

In this section, we describe selected dataset based data from the Twitter network,
necessary preprocessing steps, as well as implementation and experiments with the
proposed visualizations.

4.1 Description of Input Data and Preprocessing

For our experiments, we have decided to select Twitter network data, which is a
microblogging network for exchange and sharing of the short public messages
called tweets. This messages are limited to 140 characters and may contain links to
blogs, web pages, pictures, videos, etc. Using the follower functionality, it is
possible to create a data source with some specific interest. The Twitter network
connects more than 200 million users and provides hundred millions of contribu-
tions per day.

Selected data were extracted using data stream platform developed within the
UrbanSensing project,6 for our purposes we used some subpart of data from New
York (more than 60,000 tweets). In order to clean the data, we had to implement

6UrbanSensing project—http://urban-sensing.eu/.

244 M. Sarnovsky et al.

http://urban-sensing.eu/

and apply some preprocessing filters: TimeSeparator (identifies and separates
date/time inputs), ListFixer (extracts important attributes included in encapsulated
lists), TimeHourMinSeparator (extracts exact time attributes), dateMaker (extracts
exact date attribute in the correct format).

Preprocessing steps were also implemented within Tessera environment and
applied using Hadoop jobs on dataset divided into 10 subparts, which helps to
reduce the time for preprocessing by more than 5 times.

After preprocessing step, Twitter data were stored in distributed data frames
based on two aspects. First, data were divided and cleaned to have particular tweets,
which contains attributes presented in Table 1. Then, data were also prepared in a
form representing data on users, which contains attributes presented in Table 2.

Then, data were also prepared in a form representing data on users, which
contains attributes presented in Table 2.

Table 1 Attributes extracted by preprocessing steps for particular tweets

Attribute Type Description

id numeric Unique identification of user

lang factor Identifies language of tweet (“und” if not identified)

text character Text of tweet

place character Place where tweet was created

day factor Day of creation date from {“Mon”, Tue, …, “Sat”, “Sun”}

month factor Month of creation from {“Jan”, “Feb”, …, “Nov”, “Dec”}

dayNumber numeric Day of creation as number in particular month

time character Time of tweet within 24 h day

year numeric Numeric representation of year of tweet’s creation

created date Full date in Date format in R (unseparated)

coordLong numeric Place of creation—coordinates (longitude)

coordLat numeric Place of creation—coordinates (latitude)

hashtagText list List of texts of hashtags used in tweet

media_url list List of links to different media (pictures, videos, etc.)

media_type list List of type of media in tweet

Table 2 Attributes extracted by preprocessing steps for particular users

Attribute Type Description

id numeric Unique identification of user

screen_name character Displayed name of user

followers_count numeric Number of user’s followers

favourites_count numeric Number of user’s favourite tweets

statuses_count Numeric Number of user’s used statuses

Social-Media Data Analysis Using Tessera Framework … 245

5 Implementation of Selected Visualizations
and Experiments

Finally, we provide the details on particular visualizations and example of the
experiments with them according to processed dataset with tweets from New York
and New Jersey area.

Application for the visualization of tweets counts using different libraries

As a first experiment, we decided to count tweets from different perspectives.
First, we identified tweets written in different languages, as well as divided data
according to places where tweets were created. Thanks to Tessera functions within
flexible D&R, preprocessed frames can be reused for other recombination od data
for new evaluation. As visualization result, we were able to provide tweets counts
according to languages, places, time, in any combination. Moreover, the main
advantage of Trelliscope is the possibility to use functionality for visualization of
many subparts of data with backend prepared for a fast and effective change of
visualized data and perspective. Therefore, the user is then ready to search in data,
but also change panel layouts (setup number of rows/columns for subparts), select
properties according to which subparts are shown (filter by properties of data), show
global statistics using univariate or bivariate filters, sort panel tables. An example of
tweets count visualization per place of creation is shown in Fig. 2.

Due to the fact that Trelliscope supports the usage of any available visualization
library for particular graphs, we have also decided to use other opportunities. First,

Fig. 2 Visualization of tweets counts per places using Trelliscope

246 M. Sarnovsky et al.

we tried to reuse bokeh library,7 which has its interface to R through a package
called Rbokeh.8 In this we provide interesting visualization able to show the analyst
(user) tweets counts during the time in day in particular graphs (realized using
Rbokeh chart type), where each graph (subpart) was identified by day and language,
i.e., we have aggregated counts into three dimensions—particular day (like
Wednesday), time (hours), and language. An example of the application interface is
shown in Fig. 3.

The last application we have prepared for visualization of tweets counts was
specific reuse of library for maps. In this case we decided to reuse leaflet library.9

One disadvantage of this visualization was in fact, that many points can be shown
in the map for tweets, thanks to leaflet feature it is possible to aggregate also dots in
some area (depending on current zoom) and show a larger circle with a number.
Hence, we have prepared leaflet based visualization with subparts as maps con-
taining the counts of tweets in particular map per day and language (and according
to zoom), where circles of different color show the counts for particular part of
current maps zoom (blue icon is one tweet if aggregation is not needed). An
example is shown in Fig. 4.

Application for the visualization of popularity of most frequently used
accounts

For another visualization, we have used preprocessed data and extracts infor-
mation on users, with followers and favorites counts. Pre-analysis of users shows

Fig. 3 Visualization of tweets counts per day, language and time, particular graphs are visualized
using graph type from bokeh library in Trelliscope environment

7http://bokeh.pydata.org/.
8http://hafen.github.io/rbokeh/.
9http://leafletjs.com/.

Social-Media Data Analysis Using Tessera Framework … 247

http://bokeh.pydata.org/
http://hafen.github.io/rbokeh/
http://leafletjs.com/

that favourites_count has larger “weight” (1.5� larger count in average). Therefore,
we decided to create a new attribute for this visualization called the score, which is
counted as summary favourites_count and 1.5*followers_count. While Trelliscope
has no problem to show many graphs for a large number of users, it is more
interesting to show users which have at least some number of tweets in particular
days. Here we decided to filter out users with less than 10 tweets. Then we prepared
visualization of score according to the user. As an interesting feature, we also added
through cognostic function also a most frequent place of creation of tweet, link to
Wikipedia page related to this place, (user can also add other). The example of a
particular user popularity (score) graph in time (with placed tweets in time and their
popularity) is shown in Fig. 5.

Similarly, as in the previous case, Trelliscope environment can be used for setup
of visualization of graphs on users and their popularity changes, including the
selection of what should be on axis, graph, etc. An example of Trelliscope interface
with more graphs on the popularity of users is shown in Fig. 6.

Application for the visualization of most popular hashtag words

For the last visualization, we decided to prepare an application which shows
most popular hashtag words in data based on the bubble visual technique (bubbles
with different size have a different value of the variable, bigger bubbles with larger
value are in the middle of a visual display).

Of course, similar to bubble technique wordcloud can be used. For the purpose
of this visualization, we have decided to show mostly used hashtags for particular
languages. Figure 7 shows the example of bubble diagram of most popular hashtags
in New York data for Korean and English language.

Fig. 4 Visualization of tweets counts per language and day, with maps (based on leaflet library)
where the place of tweets creation is shown (numbers are aggregated numbers of tweets for smaller
zoom, blue icon are particular tweets if zoom is large). Here, we can see places of tweets during the
weekend in English (at parts of Manhattan)

248 M. Sarnovsky et al.

Fig. 5 Visualization of user’s popularity (score) in time (with tweets as blue circles) based on
favorites and followers counts, including the name, most common place from which tweets were
sent, or link to the wiki page for this place

Fig. 6 Visualization of popularity (score) of more users in time using Trelliscope

Social-Media Data Analysis Using Tessera Framework … 249

Trelliscope functionality allows us then to compare more languages using
multipanel view and see differences, or similarities (we will find of course that
many English words or names are used, see Korean example). In general, all of our
implemented visualizations on tweets from New York area shows very flexible
opportunities in Tessera for a preparation of the interesting application for a data
analyst. The main advantages are in aforementioned flexibility and effectiveness of
applications in Tessera, possibility to provide many extensions for visualizations
into Trelliscope. In the future, we would like to provide more detailed experiments
with the scalability of Tessera on real data, and study its possibility to provide a
flexible application for visualization of active data streams.

6 Conclusion and Future Work

The main objective of the paper was to introduce the solution for twitter feed
analysis and visualization based on R and big data analysis technologies. We used
the Tessera framework which was deployed in a small-sized Hadoop cluster
environment. Designed visualizations were implemented using Trelliscope and
other libraries and available as Shiny web applications. Utilization of the compu-
tational capabilities provided by the Hadoop cluster in a wide range of data
cleaning, preprocessing and visualization tasks proved to be useful and well-suited
for such analytical task performed in R environment. On the other hand, Tessera
provides a rich set of functions, scalable on various levels. Trelliscope then proved
to be a useful tool for large-scale data visualizations.

Fig. 7 Visualization of popular hashtags within different languages (left Korean, right English)

250 M. Sarnovsky et al.

Acknowledgments The work presented in this paper was supported by the KEGA project under
grant No. 025TUKE-4/2015 and also by the VEGA project under grant No. 1/0493/16.

References

1. White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media, Inc. (2009)
2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters, In Sixth

Symposium on Operating System Design and Implementation, OSDI’04, pp. 107–113. San
Francisco, CA (2004)

3. Tan, Y.S.: Hadoop framework: impact of data organization on performance. J. Softw. Pract.
Exp. (2011). ISSN: 0038-0644

4. Vavilapalli, V.K., et. al.: Apache Hadoop YARN: yet another resource negotiator. In:
Proceedings of the 4th Annual Symposium on Cloud Computing (SOCC’13). ACM, New
York, Article 5 (2013)

5. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing
with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing (HotCloud’10). Berkeley, CA (2010)

6. Mittal, A., Pathak, S., Bannard, T.: RHadoop: An Improved Execution Environment for
Restricted MapReduce Programs (2013)

7. Guha, S., Hafen, R., Rounds, J., Xia, J., Li, J., Xi, B., Cleveland, W.: Large complex data:
divide and recombine (D&R) with RHIPE. Stat 1, 53–67 (2012)

8. Hafen, R., Gosink, L., McDermott, J., Rodland, K., Kleese-Van Dam, K., Cleveland, W.S:
Trelliscope: a system for detailed visualization in the deep analysis of large complex. In:
Proceedings of the 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization
(LDAV), pp. 105–112 (2013)

Social-Media Data Analysis Using Tessera Framework … 251

Author Index

B
Bednarz, Mikołaj, 39
Brahmi, Zaki, 111
Butka, Peter, 239

C
Czarnul, Paweł, 137
Czubak, Adam, 77

D
Drabowski, Mieczysław, 3

F
Faber, Łukasz, 125
Falas, Łukasz, 149
Fraś, Mariusz, 39

H
Helali, Leila, 111

I
Ignaciuk, Przemysław, 187

J
Jóźwiak, Ireneusz, 99
Juszczyszyn, Krzysztof, 149

K
Kempa, Wojciech, 163
Kozakiewicz, Adam, 65
Kurkowski, Mirosław, 53, 65
Kurzyk, Dariusz, 163

L
Łapa, Krystian, 15
Lopit, Ivan, 27

M
Maciejewski, Maciej, 137
Malinowski, Artur, 137
Melnyk, Viktor, 27
Morawski, Michał, 187

N
Nyznar, Mariusz, 213

O
Owczarek, Piotr, 177

P
Pałka, Dariusz, 213
Paulina, Jakub, 239
Piechowiak, Maciej, 177

R
Raczyński, Damian, 225

S
Sarnovsky, Martin, 239
Siedlecka-Lamch, Olga, 53, 65
Skowron, Paweł, 137
Stanisławski, Włodzimierz, 225
Stasiński, Karol, 99
Strug, Joanna, 201
Szczepanik, Michał, 99
Szymanek, Marcin, 77
Szymoniak, Sabina, 53

W
Wichary, Paweł, 99

Z
Zwierzykowski, Piotr, 177

© Springer International Publishing AG 2017
A. Grzech et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part II,
Advances in Intelligent Systems and Computing 522, DOI 10.1007/978-3-319-46586-9

253

	Preface
	ISAT 2016 Conference Organization
	General Chair
	Program Co-Chairs
	Local Organizing Committee
	International Program Committee
	ISAT 2016 Reviewers

	Contents
	Embedded Systems Design and Applications
	1 Modification of Concurrent Design of Hardware and Software for Embedded Systems—A Synergistic Approach
	Abstract
	1 Introduction. Coherent Co-synthesis of Computer Systems—Model and Method
	1.1 General Model for the Problem of System Synthesis
	1.2 Process of System Synergic Co-synthesis
	1.3 Adaptation of Ant Colony Optimization Algorithm to Solve the Problems of Par-Synthesis

	2 Customization of the Branch and Bound Greedy Algorithm to Synthesis Problems Solving
	3 Calculative Experiments
	3.1 Optimization of Scheduling Length and System Cost
	3.2 Power Consumption and System Cost Optimization

	4 Conclusion
	References

	2 Elastic FOPID+FIR Controller Design Using Hybrid Population-Based Algorithm
	Abstract
	1 Introduction
	2 Description of Proposed FOPID + FIR Controller
	3 Description of the Proposed Hybrid Algorithm
	3.1 Encoding of the Controller Parameters
	3.2 Proposed Algorithm Description

	4 Simulation Results
	4.1 Problem Evaluation
	4.2 Simulation Parameters
	4.3 Obtained Results
	4.4 Simulation Results

	5 Conclusions
	Acknowledgment
	References

	3 Optimization of Read-Only Memory Program Models Mapping into the FPGA Architecture
	Abstract
	1 Introduction
	2 Research and Publications Survey
	3 Problem Stating
	4 Algorithm of Optimizing the ROM Program Model Mapping into the FPGA Architecture by the Data Group Compression
	4.1 Data Compression by the Dictionary Method
	4.2 Data Compression by the Sequence Length Coding Method
	4.3 Data Compression by the Combined Method of Sequence Length and Dictionary Coding
	4.4 Data Grouping Algorithm

	5 Data Grouping Algorithm Complexity Assessment
	6 Results of Experimental Studies
	7 Conclusions
	References

	4 Simple Rule-Based Human Activity Detection with Use of Mobile Phone Sensors
	Abstract
	1 Introduction
	2 Related Works
	3 Detection Method
	3.1 The General Procedure of Activity Recognition
	3.2 Rules for Activity Detection

	4 Evaluation Experiment
	5 Final Remarks
	References

	Systems Security Issues
	5 Timed Analysis of Security Protocols
	Abstract
	1 Introduction
	2 Formal Model and Computational Structure
	3 Implementation and Experimental Result
	4 Summary
	References

	6 Some Remarks on Security Protocols Verification Tools
	Abstract
	1 Introduction
	2 Automatic Verification of Correct and Incorrect Protocols
	3 Results
	References

	7 Algorithmic Complexity Vulnerability Analysis of a Stateful Firewall
	Abstract
	1 Introduction
	2 Algorithmic Complexity
	2.1 Algorithmic Complexity Attacks

	3 Hash Table Data Structure
	3.1 Exploiting Hash Table Data Structure Computational Complexity

	4 Stateful Firewalls
	4.1 Session Table
	4.2 Cisco® Context-Based Access Control
	4.3 CBAC Limitations
	4.4 Exploring Cisco® CBAC Mechanism and Its Session Table

	5 Experimental Results
	5.1 Primary Goals and Assumptions
	5.2 Analyzing CBAC Hash Function
	5.3 Environment Design and Configuration
	5.4 Procedure
	5.5 Results
	5.6 Observations and Notes

	6 Conclusions and Future Work
	References

	8 Analysis of the Minutia Groups Base of Currents Algorithms ‘Pasterns’ Database
	Abstract
	1 Introduction
	2 Quality Assessment of Biometric Algorithms
	3 Current Algorithms
	3.1 Minutiae Adjacency Graph (MAG)
	3.2 Elastic Minutiae Matching (EMM)

	4 Fingerprint Recognition Algorithm Based on Minutia’ Groups
	5 Conversion of Fingerprints’ Data
	6 The Experiment
	7 Conclusion and Future Work
	References

	Computing and Service Systems Architectures
	9 Self-organizing Agents for Dynamic Network- and QoS-Aware Service Composition in Cloud Computing
	Abstract
	1 Introduction
	2 Related Work
	3 Dynamic Network- and QoS-Aware Cloud Service Composition
	4 Cooperative Agents Based-Dynamic Cloud Service Composition
	4.1 Structural Description
	4.2 Solution Formalization
	4.3 Functional Description

	5 Experimental Results
	6 Conclusion and Future Works
	References

	10 Distributed Computing Architecture on Epiphany MIMD Accelerators
	Abstract
	1 Introduction
	2 Parallella
	3 Architecture
	4 Implementation
	4.1 Network
	4.2 Node Implementation
	4.3 Epiphany Interface
	4.4 Task Definition

	5 Sample Scenarios
	6 Conclusions and Future Work
	Acknowledgments
	References

	11 A Fail-Safe NVRAM Based Mechanism for Efficient Creation and Recovery of Data Copies in Parallel MPI Applications
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Solution
	4 Experiments
	5 Summary and Future Work
	References

	12 Towards Effective Allocation of Resources in Service-Oriented Systems
	Abstract
	1 Introduction
	2 Related Work
	3 Resource Allocation Task
	4 Service System Model
	5 Experiments
	6 Conclusions
	References

	Communication Systems
	13 Transient Processing Analysis in a Finite-Buffer Queueing Model with Setup Times
	Abstract
	1 Introduction
	2 Description of the Model and Auxiliary Results
	3 Integral Equations for Conditional Departure Process
	4 Compact-Form Solution for Transforms
	5 Numerical Results
	References

	14 Analysis of Routing Protocols Metrics for Wireless Mesh Networks
	Abstract
	1 Introduction
	2 Routing Protocols
	3 Routing Metrics
	4 Simulation Study
	5 Simulation Results
	6 Conclusions

	15 Energy Efficient Dynamic Load Balancing in Multipath TCP for Mobile Devices
	Abstract
	1 Introduction
	2 Multipath Data Transfer
	3 Energy Considerations and Optimal Load Distribution
	4 Dynamic Load Balancing
	5 How to Measure Sub-channel Capacity
	6 Channel Capacity Prediction
	7 Experimental Evaluation
	8 Summary and Conclusions
	Acknowledgments
	References

	Data Processing Tools
	16 Mutation Testing in Model Accuracy Assessment
	Abstract
	1 Introduction
	2 Background and Related Work
	3 An Approach to Model Accuracy Assessment
	3.1 An Outline of the Approach
	3.2 Stage 1—Generation of Mutated Test Cases
	3.3 Stage 2—Execution of Mutated Test Cases
	3.4 Stage 3—Analysis of Assessment Results

	4 Case Study: A HVAC System
	4.1 Generation of Mutants
	4.2 Execution of Mutants
	4.3 Analysis of the Assessment Results

	5 Conclusions and Future Work
	References

	17 Generating Source Code Templates on the Basis of Unit Tests
	Abstract
	1 Introduction
	2 Gathering Information from Unit Tests
	2.1 Syntactic Analysis
	2.2 Semantic Analysis and Generating Source Code Templates
	2.3 Existing Solutions

	3 Tool Implementation
	4 Case Study
	4.1 Results Comparison

	5 Conclusions
	References

	18 Decomposition and Reduction of Indexing Structures with Use of the GPU Computations
	Abstract
	1 Introduction
	2 The LSI Method
	3 The K-Means Method
	4 Decomposition and Reduction
	5 Experiment
	6 Conclusions
	References

	19 Social-Media Data Analysis Using Tessera Framework in the Hadoop Cluster Environment
	Abstract
	1 Introduction
	2 Tessera
	3 Design of the Proposed System
	3.1 Hadoop Cluster Infrastructure
	3.2 Architecture of Proposed Solution
	3.3 Design of the Visualizations

	4 Implementation of Visualizations and Experiments
	4.1 Description of Input Data and Preprocessing

	5 Implementation of Selected Visualizations and Experiments
	6 Conclusion and Future Work
	Acknowledgments
	References

	Author Index

