
Weighted Fuzzy Genetic Programming
Algorithm for Structure and Parameters
Selection of Fuzzy Systems for Nonlinear
Modelling

Krystian Łapa and Krzysztof Cpałka

Abstract In this paper a weighted fuzzy genetic programming algorithm for
selection of structure and parameters of fuzzy systems for nonlinear modelling is
proposed. This method is based on fuzzy genetic programming and innovations in
this method concern, among the others, using weights of fuzzy aggregation oper-
ators, using weights of fuzzy rules, using fitness function criteria designed for fuzzy
genetic programming and using dynamic links between fuzzy rules and fuzzy rules
base. The proposed method was tested with use of typical nonlinear modelling
problems.

Keywords Genetic programming � Weights � Fuzzy system � Nonlinear mod-
elling � Dynamic systems

1 Introduction

The aim of nonlinear modelling is to obtain model with behaviour as close as
possible to the testing object. Nonlinear modelling can concern many area of
interest, such as physics, engineering, biology, chemistry, etc. and it is an important
topic in the literature [16]. One of the mostly used systems for nonlinear modelling
are fuzzy systems [20]. These systems can achieve high accuracy and interpretable
knowledge in a form of fuzzy rules [9]. Most papers in the literature concerns
selecting parameters of fuzzy system with specified structure of the system. For
example, genetic algorithms [14], population-based algorithms [5], differential
evolution [8], etc. are used to achieve that. From the other hand, an interesting group
of methods for solving nonlinear modelling are genetic programming methods [21].

K. Łapa (&) � K. Cpałka
Institute of Computational Intelligence, Częstochowa University of Technology,
Częstochowa, Poland
e-mail: krystian.lapa@iisi.pcz.pl

K. Cpałka
e-mail: krzysztof.cpalka@iisi.pcz.pl

© Springer International Publishing AG 2017
L. Borzemski et al. (eds.), Information Systems Architecture and Technology: Proceedings of 37th
International Conference on Information Systems Architecture and Technology—ISAT 2016—Part I,
Advances in Intelligent Systems and Computing 521, DOI 10.1007/978-3-319-46583-8_13

157

These methods allow obtaining system structures in a form of computer programs
(trees). These systems can also achieve high accuracy. However, disadvantage of
typical genetic programming methods is lack in interpretability.

1.1 Fuzzy Systems

Fuzzy systems [20] are based on fuzzy logic and fuzzy rules. Each fuzzy rule
consists of fuzzy sets which can represent linguistic values ‘low’, ‘medium’, ‘high’,
etc. Fuzzy rules take interpretable form {IF … THEN …}. The interpretability can
result not only from the low number of fuzzy rules and fuzzy sets, but also from the
semantic of appropriate selected parameters of fuzzy sets [9]. The semantic clarifies
understanding of how the systems (models [9], classifiers [12], control systems
[13]) work. It is worth to mention that in the nonlinear modelling problems the
interpretability is an important issue [9]. It emerges from possibilities of under-
standing how the current object works and it allows us to model the typical states of
the object.

1.2 Genetic Programming

Genetic programming (GP) is, in a general, a computational intelligence method for
designing systems (structures) in a form of computer programs for solving opti-
mization problems [21]. These systems can be used as controllers, models of
objects, classifiers, etc. The main difference between genetic programming and
other computational intelligence methods is a possibility of creation tree structures
with use of mathematical operators. GP and other evolutionary algorithms (like
evolutionary strategies [20], evolutionary programming [17], genetic algorithm [7],
etc.) rely on a population of solutions. These methods are based on a natural
evolution (using mechanisms like natural selection, inheritance, survival, etc.)
which gives them an advantage over other methods used for optimization problems
like analytic methods, gradient methods and random methods (see e.g. [20]).

1.3 Genetic Programming Trees

Typical genetic programming tree contains nodes and leafs (both of them are noted
as tree elements in further part of this paper). Each node contains mathematical
operator which decides how node works and usually has two child tree elements
(see Fig. 1). Each leaf contains a real number value or connection to real number
value from the system input (see Fig. 2). The whole tree structure is represented by
the root (main node) and child tree elements (see Fig. 3). The output of the system

158 K. Łapa and K. Cpałka

(tree) is calculated recursively starting from the root node with use of defined
mathematical operators. The mathematical operators are divided into: single argu-
ment operators (e.g. “cos �ð Þ”), two argument operators (e.g. “+”) and multi argu-
ments operators (e.g. “avg �ð Þ”).

1.4 Fuzzy Genetic Programming

In the fuzzy genetic programming a mathematical operators are replaced by fuzzy
operators (such as AND, OR, etc.) and leaves can be connected not to the system
inputs but to the input of fuzzy sets. In [4] standard fuzzy operator AND was used,
in [7] additional fuzzy operators: OR, NOT, ‘greater’, ‘lesser’ and ‘near’ were
used. In [14] operators AND, parent operators OR and fuzzy set operator NOT were
used. In paper [18] a selected group of operators was used (with multiple versions
of AND and OR operators).

1.5 Paper Aim

The aim of this paper is, among the others, to present impact of used weights in
proposed weighted fuzzy genetic programing algorithm and to provide accurate and

N

EE

mathematical operator: +, -, etc.Fig. 1 GP node N and two
connected tree elements E

L
or operator (deciding if

output is system input or
number value)

system inputnumber value

Fig. 2 GP leaf L connected
with number value and
system input

N
root node

NN

L1 N L4 L5

L2 L3

+

+⋅

-

deep lvl
0

1

2

3

Fig. 3 An example of GP
tree with randomly assigned
structure and mathematical
operators and output
calculated as:
ðL1 � ðL2 þ L3ÞÞ � ðL4 þ L5Þ

Weighted Fuzzy Genetic Programming Algorithm for Structure … 159

interpretable fuzzy rules for considered simulation problems. The proposed method
is based on fuzzy genetic programming. This method can be distinguished by:
(a) use of flexible triangular norms with weights of arguments as fuzzy operators
AND and OR, (b) use of weights of fuzzy rules, (c) use of operator NOT for fuzzy
sets, (d) use of new encoding of the system, (e) use of fitness function with com-
plexity of the system and new criteria of correct notations of fuzzy rules and (f) use
of population algorithm adapted to the proposed system to select GP tree structure
and parameters. The full description of the method and learning algorithm is pre-
sented in Sect. 2.

1.6 Paper Structure

The structure of the proposed paper consists of: Sect. 2 with description of the
proposed method, Sect. 3 with presentation of simulation results and Sect. 4 with
conclusions.

2 Proposed Method Description

2.1 Description of Fuzzy System

In this paper a Mamdani type fuzzy system [20] was used, where fuzzy rules can be
defined as:

Rk :
IF �x1 IS½NOT�A1;k
� �

AND/OR . . .AND/OR �xn IS½NOT�A1;k
� �

THEN y1 ISB1;k
� �

; . . .; ym ISBm;k
� �� �

; ð1Þ

where n is the number of inputs, m is the number of outputs, �x ¼ �x1; . . .;�xn½ � 2 X,
y ¼ y1; . . .; ym½ � 2 Y, A1;k; . . .;An;k are input fuzzy sets and B1;k; . . .;Bm;k are output
fuzzy sets. In the proposed method fuzzy rules (1) are represented by GP trees (see
Fig. 4). Using genetic programming trees creates the need of using fuzzy sets’ base,
which allows fuzzy sets to connect to the leaves of trees. Proposed fuzzy sets’ base
C (stored for each input or output) is defined as:

N

EE

μN ()xroot

L

Ai,r

N
w1 w2

xi

μN()x

μ ()xiAi,r

μN()x

μN ()xL μN ()xP

(a) (b) (c)Fig. 4 Proposed structure of:
a tree, b leaf, c node

160 K. Łapa and K. Cpałka

C ¼ A1;1; . . .;A1;R; . . .;An;1; . . .;An;R;B1;1; . . .;B1;R; . . .;Bm;1; . . .;Bm;R
� �

: ð2Þ

Each input fuzzy set Ai;r from fuzzy set base (2) is represented by the mem-
bership function lAi;r

�xð Þ, while each output fuzzy set Bj;r is represented by the
membership function lBj;r

�yð Þ. Each element of the tree (see Table 1) is described by

a set of parameters: l; o; i; r; w1;w2;NL and NP. The parameter l decides how the
element is treated (as node or leaf—see Table 1). The parameter o indicates
operator of a given element: o ¼ 0 for l ¼ 1 stands for ‘IS’, o ¼ 1 for l ¼ 1 stands
for ‘IS NOT’, o ¼ 0 for l ¼ 0 stands for ‘AND’ and o ¼ 1 for l ¼ 0 stands for ‘OR’
(see Table 2). The parameter i (for leaf) stands for input index of associated fuzzy
set. The parameter r (for leaf) stands for index of associated fuzzy set Ai;r (see
Fig. 4b). The parameter w1 stands for weight of left child node, w2 stands for
weight of right child node (see Fig. 4c), NL stands for left child node and NP stands
for right child node. Taking into consideration mentioned parameters the output of
any element of the tree can be calculated according to Table 2 (in these calculations
a T�ð�Þ triangular t-norm with weights of arguments and S�ð�Þ triangular t-conorm
with weights of arguments [20] were used).

The activation (firing) level of each fuzzy rule based on the structure presented in
Fig. 4 is calculated as follows:

sk �xð Þ ¼ lNroot
k

�xð Þ; ð3Þ

where Nroot
k stands for root of the tree of kth fuzzy rule (k ¼ 1; . . .;K, K stands for

the number of fuzzy rules). Crisp output values of the system for each output j can
be calculated (for example) with center of area method [20]:

Table 1 Parameters of proposed tree elements (‘-’ stands for parameters not used in the current
type of tree element)

Tree element Set of parameters

E (element) l o i r w1 w2 NL NP

L (leaf) l ¼ 1 o i r – – – –

N (node) l ¼ 0 o i – w1 w2 NL NP

Table 2 Output of proposed tree elements (leaves and nodes)

Output value lN �xð Þð Þ o l Operator name

lAi;r
�xið Þ 0 1 IS

1� lAi;r
�xið Þ 1 1 IS NOT

T� lNL �xð Þ;lNP �xð Þ;w1;w2f g 0 0 AND

S� lNL �xð Þ;lNP �xð Þ;w1;w2f g 1 0 OR

Weighted Fuzzy Genetic Programming Algorithm for Structure … 161

�yj �xð Þ ¼
PR
r¼1

yBj;r � S
K

k¼1
T� sk �xð Þ; lk;j yBj;r

� 	n o
;wrule

k

n o
PR
r¼1

S
K

k¼1
T� sk �xð Þ; lk;j yBj;r

� 	n o
;wrule

k

n o ; ð4Þ

where yBj;r are centres of output fuzzy sets Bj;r, wrule stands for fuzzy rule weight and

lk;j yBj;r
� 	

stands for membership function value of output fuzzy set Bj;k calculated

for discretization point yBj;r. This value can be calculated (using proposed encoding
of the system) as:

lk;j yBj;r
� 	

¼ lBj;nB
j;k

yBj;r
� 	

; ð5Þ

where nBj;k stands for index connecting k-th fuzzy rule with jth output fuzzy set (for
example nBj¼1;k¼2 ¼ 3 means that the second fuzzy rule is associated with the third
set of the first output B1;3).

2.2 Encoding of the System

In the proposed approach encoding of the system (4) is based on the encoding of a
tree elements N (see Table 1 and Fig. 4) as sets of parameters:

N ¼ l; o; i; r;w1;w2;NL;NP� �
; ð6Þ

where NL and NP encodes recursively child tree elements (these values are set to
“no value” in case of leaves). The encoding of fuzzy system (4) is defined as:

Xch ¼ Xfsets
ch ;Xrules

ch

� �
: ð7Þ

The part Xfsets
ch encodes parameters of fuzzy sets’ base (represented by Gaussian

membership functions) (2):

Xfsets
ch ¼ xA1;1; r

A
1;1; . . .; x

A
1;R; r

A
1;R; . . .; x

A
n;1; r

A
n;1; . . .; x

A
n;R; r

A
n;R;

yB1;1; r
B
1;1; . . .; y

B
1;R; r

B
1;R; . . .; y

B
m;1; r

B
m;1; . . .; y

B
m;R; r

B
m;R

 �
; ð8Þ

thus the part Xrules
ch encodes fuzzy rules:

Xrules
ch ¼ Nroot

1 ; nB1;1; . . .; n
B
m;1;w

rule
1 ;Nroot

2 ; nB1;2; . . .; n
B
m;2;w

rule
2 ; . . .;Nroot

K ; nB1;K ; . . .; n
B
m;K ;w

rule
K

n o
;

ð9Þ

162 K. Łapa and K. Cpałka

where Nroot
k is a root of the tree of k-th rule, nBj;k is an index connecting k-th fuzzy

rule with fuzzy set of j-th output, wrule
k is weight of the rule. In the proposed method

the part Xfsets
ch encoding parameters of fuzzy sets is processed by a genetic algorithm

and the part Xrules
ch encoding fuzzy rules is processed by a genetic programming (for

details see Sect. 2.5).

2.3 Initialization of the System

The parameters of fuzzy sets encoded in Xfsets
ch are initialized randomly with

adjustments to the considered simulation problems. Next, the number of fuzzy rules
K 2 Kmin;Kmax

�
is chosen randomly. After the number of fuzzy rules is chosen,

parameters of part Xrules
ch are initialized as follows:

Xrules
ch ¼

init Nroot
1 ; 0; 0

� �
;Uc 1;Rð Þ; . . .;Uc 1;Rð Þ;Ur 0; 1ð Þ;

init Nroot
2 ; 0; 0

� �
;Uc 1;Rð Þ; . . .;Uc 1;Rð Þ;Ur 0; 1ð Þ; . . .;

init Nroot
K ; 0; 0

� �
;Uc 1;Rð Þ; . . .;Uc 1;Rð Þ;Ur 0; 1ð Þ

8<
:

9=
;; ð10Þ

where Uc a; bð Þ returns random integer value from the set fa; . . .; bg, Ur a; bð Þ
returns random number value from the range ½a; b�, initðN; d; eÞ (d stands for “deep
lvl” of the tree—see Fig. 3, e stands for type of tree element) is an initialization
function for tree elements. The function initð�Þ for nodes initialization (when e ¼ 0
and d\dmax, where dmax is maximum “deep lvl” of the tree) takes the following
form:

initðN; d; 0Þ ¼ 0;Uc 0; 1ð Þ;Uc 1; nð Þ;Uc 1;Rð Þ;Ur 0; 1ð Þ;Ur 0; 1ð Þ;
init N NL

� �
; d þ 1;Uc 0; 1ð Þ� �

; init N NP
� �

; d þ 1;Uc 0; 1ð Þ� �
 �
;

ð11Þ

where notation N af g refers to gene a encoded in N. It is worth to mention that this
function initializes child elements of the tree recursively with increased value of
deep of the tree (d). This process can stop if new element is a leaf or when deep of
the tree reaches maximum lvl dmax. The function initð�Þ for leaves initialization
(when e ¼ 1 or d ¼ dmax) takes the following form:

initðN; d; 1Þ ¼ 1;Uc 0; 1ð Þ;Uc 1; nð Þ;Uc 1;Rð Þ;Ur 0; 1ð Þ;Ur 0; 1ð Þ; null; nullf g ; ð12Þ

where null stands for genes with no assigned values.

Weighted Fuzzy Genetic Programming Algorithm for Structure … 163

2.4 System Evaluation

For evaluation of the system (4) the following fitness function was used:

ff Xchð Þ ¼ T�F

f¼1
ffcf Xchð Þ;wffc

f

n o
; ð13Þ

where F stands for the number of fitness function components, component
ffc1 Xchð Þ ¼ ffacc Xchð Þ specifies the accuracy of the system (4), component
ffc2 Xchð Þ ¼ ffcom Xchð Þ specifies complexity of the system (4), component
ffc3 Xchð Þ ¼ ffsam Xchð Þ stands for a penalty for using the same fuzzy set multiple
times by fuzzy rules (which is non-desired), component ffc4 Xchð Þ ¼ ffmul Xchð Þ
stands for a penalty for using the same input multiple times by single fuzzy rule
(with is non-desired), wfacc

f (f ¼ 1; . . .;F) are weights of components, T�f�g is a
n-argument extension of algebraic triangular norm with weights of arguments. The
components aliases (ffcom, ffacc, ffsam, ffmul) were used to increase readability of
the paper and presentation of the results.

The component ffc1 Xchð Þ of function (13) is defined as:

ffc1 Xð Þ ¼ 1
m

Xm
j¼1

1
Z

PZ
z¼1 dz;j � �yz;j
�� ��

max
z¼1;...;Z

dz;j
� �� min

z¼1;...;Z
dz;j
� �; ð14Þ

where Z is the number of rows of a learning sequence, dz;j is the desired output
value of output j for input vector z (z ¼ 1; . . .; Z), �yz;j is the real output value
j calculated for the input vector �xz. Equation (14) takes into account the normal-
ization of errors at different outputs of the system (4), which allows us to use
function (14) in triangular norm used in function (13) (Table 3).

The component ffc2 Xchð Þ of function (13) is defined as:

ffc2 Xchð Þ ¼ 1
K

XK
k¼1

cm Nroot
k

� �
2lvlmax � 1

; ð15Þ

where Nroot
k is by default a part of structure Xrules

ch of Xch (this notation will be used
in further part of this paper), denominator stands for maximum number of tree
elements (Mersenne’s number [15]), numerator stands for actual number of tree
elements calculated according to the Table 4.

Table 3 Output of the cmð�Þ
function

cm Nð Þ N lf g
1þ cm N NL

� �� �þ cm N NP
� �� �

0

1 1

164 K. Łapa and K. Cpałka

The component ffc3 Xchð Þ of function (13) is defined as:

ffc3 Xchð Þ ¼

Pn
i¼1

PR
r¼1 max 0;

PK
k¼1 sa Nroot

k ; i; r
� �� 1

� �þ
þ Pm

j¼1

PR
r¼1 max 0;

PK
k¼1 sb nBj;k; j; r

� 	
� 1

� 	 !
K � 2dmax�1 þmð Þ ð16Þ

where denominator stands for maximum number of leaves and output fuzzy sets for
all K fuzzy rules, numerator stands for penalty for using specified fuzzy set more
than 1 time by any fuzzy rule, function saðNk; i; rÞ stands for number of used input
fuzzy set Ai;r by kth rule, function sbðnB; j; rÞ stands for number of used output
fuzzy set Bj;r by k-th rule. The output of function saðN; i; rÞ from Eq. (16) is
calculated according to Table 4 and the function sbðnB; j; rÞ output is calculated as
follows:

sb nB; j; r
� � ¼ 1 for nB ¼ r

0 for nB 6¼ r

: ð17Þ

The component ffc4 Xchð Þ of function (13) was defined with assumption that one
fuzzy rule cannot use multiple fuzzy sets which are connected to the same input:

ffc4 Xchð Þ ¼ 1
n � K

Xn
i¼1

max 0;
XK
k¼1

mul Nroot
k ; i

� �� 1

 ! !
; ð18Þ

where function mul N; ið Þ stands for penalty for multiple use of fuzzy sets connected
to i-th input calculated according to Table 5. The penalty resulting from using OR
operator in minimization of fitness function (13) is smaller than penalty for using
AND operator. Using the OR operator (see Nfog ¼ 1 in Table 5) for the same
inputs is acceptable (opposed to AND operator), but it complicates readability of
fuzzy rules.

Table 4 Output of the sað�Þ
function

sa N; i; rð Þ N lf g N if g N rf g
1 0 i r

0 0 not i or not r

sa N NL
� �

; i; r
� �þ sa N NP

� �
; i; r

� �
1 – –

Table 5 Output of the mulð�Þ
function

mul N; ið Þ N lf g N if g N of g
mul N NL

� �
; i

� �þmul N NP
� �

; i
� �

0 – 0
1
2 mul N NL

� �
; i

� �þmul N NP
� �

; i
� �� �

0 – 1

0 1 not i –

1 1 i –

Weighted Fuzzy Genetic Programming Algorithm for Structure … 165

The aim of fitness function is to minimize values of all fitness function com-
ponents which allow us to obtain accurate system (ffc1) with simple structure (ffc2)
and consistent interpretable fuzzy rules (ffc3 and ffc4).

2.5 Description of Learning Algorithm

The learning algorithm purpose is to select parameters of the fuzzy sets stored in
base (2) and to select the structure of the fuzzy rules. The taken into consideration
algorithm designed for proposed system structure and encoding works according to
the following steps:

• Step 1. In this step Npop individuals of the population P are initialized according
to description from Sect. 2.3.

• Step 2. This step involves evaluation of the individuals of the population P by
fitness function (13).

• Step 3. In this step Npop of child individuals are generated and stored in the
temporary population P. Genes Xfsets

ch of these individuals are initialized with use
of genetic algorithm crossover operator. The individuals for crossover are
selected by roulette wheel method from the population P. The genes Xrules

ch of
these individuals are initialized by choosing randomly genes nBj;k , weights wrule

k
and root nodes from preselected parents.

• Step 4. This step purpose is to mutate individuals from the population P (each
individual is mutated with probability pm1 2 ð0; 1Þ). Genes Xfsets

ch are mutated
(with probability pm2 2 ð0; 1Þ) with use of standard genetic mutation operator.
Genes Xrules

ch are mutated (with probability pm3 2 ð0; 1Þ). This mutation is based
on random changes of parameters N if g, N rf g and nBj;r. Independent mutation
probabilities pm1 6¼ pm2 6¼ pm3 (where pm1 � pm2 [pm3) balance the mutation
in the following way: (a) mutation should be processed on the greater part of the
population P0 (pm1) which provides a proper diversity of the population, (b) from
the other hand, genes mutation probability (pm2) cannot be high due to degen-
eration of the population, (c) changes in connection between leafs and nodes
(pm3) should be rarely performed, because too intense changes in relationships
between the fuzzy rules and fuzzy sets could hinder the convergence of the
algorithm.

• Step 5. Next, the individuals from the population P0 are pruned. This process is
based on replacing randomly selected node of each genetic programming tree
(with probability px 2 ð0; 1Þ) by randomly generated leaf (initðN; 0; 1Þ).

• Step 6. In this step extension of genetic programming trees from population P0 is
performed. This process is based on replacing randomly selected leaf of each
genetic programming tree (with probability pl 2 ð0; 1Þ) by randomly generated
node (initðN; lvl; 0Þ). The lvl stands for actual height of leaf, which prevents
excessive growth of the tree.

166 K. Łapa and K. Cpałka

• Step 7. In this step for each individual from the population P0 a new fuzzy rule is
added (with probability pd and only when K\Kmax) or existing randomly
chosen fuzzy rule is removed (with probability pu and when K[Kmin).

• Step 8. After modification of individuals from the population P0 (Steps 3–7)
each individual is evaluated by fitness function (13).

• Step 9. Next, the individuals from populations P and P0 are merged and only
Npop best individuals are chosen to replace the population P.

• Step 10. In the last step of the algorithm the purpose is to check if stop condition
is met (for example if the number of executed iterations of algorithm reaches
specified value). If this condition is met, the algorithm stops. Otherwise, algo-
rithm goes back to the Step 3.

2.6 Fuzzy Rules Notation

As it was mentioned earlier, in the proposed system (4) a varied fuzzy operators
were used to aggregate antecedences of fuzzy rules and to process the fuzzy sets.
Due to this and using genetic programming tree structure, the notation of fuzzy rules
is defined as:

Rk : IF zp Xrules
ch Nroot

k

� �� �zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{definitionbyfunction

jXrules
ch wrule

k

� �
THEN

y1ISB1;Xrules
ch nB1;kf g; . . .;

ymISBm;Xrules
ch nBm;kf g

 !0
B@

1
CA; ð19Þ

where function zpðNÞ defines antecedences of fuzzy rules according to the Table 6.
It is worth to mention that values of weights w1 and w2 from Eq. (6) and wrule from
Eq. (9) can be replaced by their linguistic equivalents: n (not important) for values
lower than 0.25, i (important) for values from the range ½0:25; 0:75� and v (very
important) for values higher than 0.75. The fuzzy rule notation may be written as
the following example:

R1 : IF
x4ISNOTA4;5jv

AND
x6ISA6;2jn

0
@

1
AjnAND

x1ISA1;4ji
OR

x2ISA2;2jn

0
@

1
Aji

0
@

1
AjiTHEN y1ISB1;4

� �
:

0
@

1
A;

ð20Þ

or in a shorter form as:

R1 : IF
ðx4ISNOTA4;5jvANDx6ISA6;2jnÞjn
ANDðx1ISA1;4jiORx2ISA2;2jnÞji

� �
ji

� �
THEN y1ISB1;4

� �
: ð21Þ

Weighted Fuzzy Genetic Programming Algorithm for Structure … 167

3 Simulation Results

Simulation was performed using the following benchmarks (for details see
Table 7): airfoil self-noise problem [3] (ASN), Box Jenkins gas furnace problem [2]
(BJG), chemical plant problem [22] (CPP), concrete slump test [23] (CST), servo
data set [19] (SDS). The simulations were executed for four cases:

• case 1—case without using weights (in this case all weights values w1, w2 and
wrule were set to 1).

• case 2—case with using rule weights (in this case weights values w1, w2 were
set to 1).

• case 3—case with using fuzzy operators weights (in this case weights values
wrule were set to 1).

• case 4—case with using rule weights and fuzzy operators weights.

This way of testing allowed precise determination of the impact of using weights
in the system (4) on the results.

3.1 Simulation Parameters

Values of parameters of the algorithm were experimentally selected as follows:
number of fuzzy sets in fuzzy sets’ base (2) for each input and output R ¼ 5,
minimum number of fuzzy rules Kmin ¼ 3, maximum number of fuzzy rules
Kmax ¼ 5, maximum height of the tree lvlmax ¼ 5, weights of fitness function

Table 6 Notation output of the zpð�Þ function
zp N; ið Þ N lf g N of g
zp N NL

� �� �jN w1f gANDzp N NP
� �� �jN w2f g� �

0 0

zp N NL
� �� �jN w1f gORzp N NP

� �� �jN w2f g� �
0 1

xN if gISAN if g;N rf g 1 0

xN if gISNOTAN if g;N rf g 1 1

Table 7 Considered simulation problems

Problem Label Inputs Outputs Rows

Airfoil self-noise ASN 5 1 1503

Box and Jenkins gas furnace BJG 6 1 290

chemical plant problem CPP 3 1 70

concrete slump test CST 7 3 103

servo data set SDS 4 1 167

168 K. Łapa and K. Cpałka

components (13) wffacc ¼ 1:0, wffcom ¼ 0:5, wffsam ¼ 0:2, wffmul ¼ 0:1, number of
individuals in population Npop ¼ 100, number of algorithm iterations
Nstep ¼ 1000, individual mutation probability pm1 ¼ 0:7, genes mutation proba-
bility pm2 ¼ 0:2, rules mutation probability pm3 ¼ 0:1, pruning of tree probability
px ¼ 0:3, extending of tree probability pl ¼ 0:2, adding new fuzzy rule probability
and removing fuzzy rule probability to pu ¼ 0:3. For each benchmark and case,
simulations were repeat 100 times and results were averaged.

3.2 Obtained Results

Obtained results for all simulation problems are presented in Table 9. The nor-
malized and averaged results for all simulation problems are presented in Fig. 5 and
in Table 8. The example of obtained fuzzy rules and fuzzy sets are presented in
Fig. 6 and in Table 10.

1.0

co
m

pl
ex

ity
 (l

ow
er

 -
be

tte
r)

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0
accuracy (lower - better)

case 1
case 2

case 3

case 4

Fig. 5 Obtained accuracy
and complexity normalized
and averaged for all
considered simulation
problems

Table 8 Obtained accuracy
and complexity, normalized
and averaged for all
considered simulation
problems (see also Fig. 5)

Rule weights Norm weights ffacc ffcom

No No 0.6675 0.8334

Yes No 0.0574 0.8888

No Yes 0.6292 0.1671

Yes Yes 0.2994 0.5785

Weighted Fuzzy Genetic Programming Algorithm for Structure … 169

1.00

0.00
-6180.65 24263.29x1

μ x()1 1A1, 2A1,

1.00

0.00
-0.08 0.44x3

μ x()3 1A3, 2A3,

1.00

0.00
-0.04 0.1x5

μ x()5 1A5, 4A5,

1.00

0.00
100.79 150.69y1

μ y()1 1B1, 3B1, 5B1,

1.00

0.00
41.57 64.65x1

μ x()1 1A1, 2A1, 4A1,

1.00

0.00
45.44 62.88x2

μ x()2 1A2, 2A2,

1.00

0.00
36.93 67.35x3

μ x()3 5A3,

1.00

0.00
-6.97 2.7x6

μ x()6 1A6, 2A6,

1.00

0.00
36.96 64.6y1

μ y()1 1B1, 3B1, 5B1,

1.00

0.00
3.54 7.47x1

μ x()1 1A1, 3A1, 4A1,

1.00

0.00
-0.45 0.4x2

μ x()2 5A2,

1.00

0.00
-304.09 7370.89x3

μ x()3 2A3, 3A3, 4A3,

1.00

0.00
-0.15 0.87y1

μ y()1 1B1, 3B1, 5B1,

1.00

0.00
598.65 925.47x7

μ x()7 4A7,

1.00

0.00
-11.49 43.18y1

μ y()1 1B1, 2B1, 4B1, 5B1,

1.00

0.00
-12.59 111.56y2

μ y()2 1B2, 2B2, 4B2, 5B2,

1.00

0.00
-4.26 56.74y3

μ y()3 1B3, 3 B3, 4B 3, 5B3,

1.00

0.00
1.12 5.42x1

μ x()1 3A1, 5A1,

1.00

0.00
0.18 7.93x2

μ x()2 2A2, 5A2,

1.00

0.00
1.8 7.02x3

μ x()3 1A3,

1.00

0.00
0.11 5.87x4

μ x()4 1A4, 5A4,

1.00

0.00
-3.65 9.13y1

μ y()1 1B1, 3B1,

(a) ASN (b) BJG

1.00

0.00
3.95 392.48x1

μ x()1 2A1,

1.00

0.00
-62.09 204.01x2

μ x()2 2A2, 5A2,

1.00

0.00
125.91 233.76x4

μ x()4 1A4, 4A4, 5A4,

1.00

0.00
544.54 1177.35x6

μ x()6 4A6,

(e) CST

(c) CPP

(d) SDS

Fig. 6 Fuzzy sets obtained for simulation problems corresponding to fuzzy rules presented in
Table 10. Grey fuzzy sets stands for fuzzy sets from fuzzy set base not used by any fuzzy rules

170 K. Łapa and K. Cpałka

3.3 Simulation Conclusions

The simulation conclusions are following: (a) using rule weights allowed us to
obtain better accuracy and similar complexity in a comparison to case without using
weights (see Tables 8, 9 and case 2 on Fig. 5), (b) using fuzzy operators weights
allowed us to obtain lower complexity and similar accuracy in a comparison to case
without using weights (see Tables 8, 9 and case 3 on Fig. 5), (c) using fuzzy
operators weights and fuzzy rules weights allowed us to obtain both the lower
complexity and better accuracy in a comparison to case without using weights (see
Table 8, 9 and case 4 in Fig. 5), (d) obtained results do not differ from the results of
other authors (see Table 9). It is worth to mention that other authors’ results are
concentrated mostly on accuracy or on using more complex systems (see e.g. [1,
10]), (e) proposed approach is characterized by clear and interpretable fuzzy rules
(see Fig. 6 and Table 10).

Table 9 Obtained simulation results in comparison with the best results (aimed on accuracy)
obtained by other authors [1, 6, 10, 11]

Label Rule
weights

Norm
weights

avg.ff avg.K avg.
RMSE

RMSE Best RMSE
(other authors)

ASN No No 0.1601 3.7778 4.4576 4.1256 From 2.4280
to 5.270Yes No 0.1585 4.0000 4.3578 3.9965

No Yes 0.1529 3.5556 4.3882 3.8559

Yes Yes 0.1566 3.6000 4.3459 4.1694

BJG No No 0.0831 4.4500 0.4315 0.3720 From 0.2190
to 0.4490Yes No 0.0854 4.7500 0.4123 0.3633

No Yes 0.0746 3.7000 0.5124 0.4470

Yes Yes 0.0778 4.0588 0.4894 0.4036

CPP No No 0.0676 4.6000 0.0087 0.0065 From 0.0042
to 0.0092Yes No 0.0719 4.5882 0.0082 0.0069

No Yes 0.0631 4.0500 0.0085 0.0071

Yes Yes 0.0770 4.7000 0.0081 0.0065

CST No No 0.1193 3.1500 13.9072 12.8881 From 11.9410
to 15.3440Yes No 0.1193 3.1579 13.7611 12.1798

No Yes 0.1186 3.0588 13.7612 12.6257

Yes Yes 0.1159 3.0588 13.7616 13.3177

SDS No No 0.1016 3.8000 0.4188 0.2976 From 0.1177
to 0.7480Yes No 0.0961 3.5500 0.4007 0.3280

No Yes 0.1098 3.4167 0.5248 0.3858

No No 0.1601 3.7778 4.4576 4.1256

Weighted Fuzzy Genetic Programming Algorithm for Structure … 171

4 Conclusions

In this paper a weighted fuzzy genetic programming algorithm for selection of the
structure and the parameters of the fuzzy systems for nonlinear modelling is pre-
sented. In presented approach fuzzy rules take the form of binary trees where nodes
of these trees decide on aggregation operators (AND/OR) and the leaves of these
trees are connected to the input fuzzy sets. The proposed method allows us to obtain
accurate fuzzy systems with clear and interpretable fuzzy rules. The obtained
accuracy is similar to the accuracy obtained by other authors, achieved using
systems which usually do not take into account interpretability. The use of the
system weights shown possibilities in increasing the system accuracy (with use of
rule weights), decrease the system complexity (with use of fuzzy operators’

Table 10 Obtained examples of fuzzy rules for all simulation problems

Label Fuzzy rules notation RMSE

ASN
R1 : IF

x1ISA1;1jv
AND x3 ISA3;1jn

 !
jiTHEN y1ISB1;5

� �
R2 : IF x1 ISA1;1jvAND x5 ISA5;1jn

� �jvTHEN y1 ISB1;3
� �

R3 : IF
x5 ISA5;4jv

AND x3 ISNOTA3;2jn

 !
jvOR x1 ISA1;2jn

 !
jvTHEN y1 ISB1;1

� �

8>>>>>><
>>>>>>:

4.2719

BJG
R1 : IF x6 ISA6;1jvAND

x3 ISA3;5ji
OR x1 ISA1;2jn

 !
jv

 !
jiTHEN y1 ISB1;5

� �
R2 : IF x1 ISA1;1jvOR x2 ISA2;1ji

� �jvTHEN y1 ISB1;1
� �

R3 : IF x1 ISA1;4jvORx6 ISA6;2ji
� �jvTHEN y1 ISB1;3

� �
R4 : IF x1 ISA1;1jvOR x2 ISA2;2ji

� �jvTHEN y1 ISB1;1
� �

8>>>>><
>>>>>:

0.4725

CPP R1 : IF x3 ISA3;4jiAND x3 ISA3;3ji
� �jvTHEN y1 ISB1;5

� �
R2 : IF x3 ISA3;2jvOR x1ISA1;4ji

� �jvOR x1 ISA1;3ji
� �jiTHEN y1 ISB1;1

� �
R3 : IF x3 ISA3;3jiOR x3 ISA3;4ji

� �jiOR x2 ISA2;5jn
� �jiTHEN y1 ISB1;3

� �
R4 : IF x1 ISA1;1jiAND x3 ISA3;3ji

� �jvTHEN y1 ISB1;5
� �

8>><
>>:

0.0082

CST R1 : IF x7 ISA7;4jiOR x2 ISA2;5jv
� �jvTHEN y1 ISB1;1; y2ISB2;2; y3ISB3;4

� �
R2 : IF x1ISA1;2jiANDx4ISA4;5jv

� �jiTHEN y1ISB1;4; y2ISB2;4; y3 ISB3;1
� �

R3 : IF x6 ISA6;4jiOR x4 ISA4;4jn
� �jiTHEN y1 ISB1;2; y2 ISB2;1; y3 ISB3;3

� �
R4 : IF x4 ISNOTA4;1jiAND x2 ISA2;2ji

� �jvTHEN y1 ISB1;5; y2 IS

B2;5; y3 ISB3;5

 !
8>>>>><
>>>>>:

13.4402

SDS R1 : IF x3 ISNOTA3;1jvAND x1 ISA1;5jn
� �jiTHEN y1 ISB1;1

� �

R2 : IF

x3 ISNOTA3;1jv

AND

x1 ISA1;3jv

OR
x4 ISA4;5ji

AND x2 ISA2;2jn

0
@

1
Ajv

0
BBB@

1
CCCAjn

0
BBBBBB@

1
CCCCCCAjiTHEN y1 ISB1;1

� �

R3 : IF x2 ISNOTA2;5jiOR x4ISNOTA4;1jn
� �jnTHEN y1 ISB1;3

� �

8>>>>>>>>>><
>>>>>>>>>>:

0.4251

The corresponding fuzzy sets are shown in Fig. 6

172 K. Łapa and K. Cpałka

weights) or improve both accuracy and complexity (with use of both weights). The
proposed approach was tested on typical nonlinear modelling benchmarks and it
can be said that obtained results are satisfying.

Acknowledgment The project was financed by the National Science Centre (Poland) on the basis
of the decision number DEC-2012/05/B/ST7/02138.

References

1. Bosnic, Z., Kononenko, I.: Correction of regression predictions using the secondary learning
on the sensitivity analysis outputs. Comput. Inform. 20, 1–17 (2001)

2. Box, G., Jenkins, G.: Time Series Analysis: Forecasting and Control. Holden-Day, San
Francisco (1970)

3. Brooks, T.F., Pope, D.S., Marcolini, A.M.: Airfoil self-noise and prediction. Technical report,
NASA RP-1218 (1989)

4. Carmona, C.J., Ruiz-Rodado, V., del Jesus, M.J., Weber, A., Grootveld, M., González, P.,
Elizondo, D.: A fuzzy genetic programming-based algorithm for subgroup discovery and the
application to one problem of pathogenesis of acute sore throat conditions in humans. Inf. Sci.
298, 180–197 (2015)

5. Cheng, S., Shi, Y., Qin, Q., Zhang, Q., Bai, R.: Population diversity maintenance in brain
storm optimization algorithm. J. Artif. Intell. Soft Comput. Res. 4(2), 83–97 (2014)

6. Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy
systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217
(2014)

7. Edmonds, A.N., Kershaw, P.S.: Genetic programming of Fuzzy logic production rules with
application to financial trading. In: Proceedings of the IEEE World Conference on
Computational Intelligence, Orlando, Florida (1994)

8. Gabryel, M., Woźniak, M., Damaševičius, R.: An application of differential evolution to
positioning queueing systems. Lect. Notes Comput. Sci. 9120, 379–390 (2015)

9. Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: an
overview of interpretability measures. Inf. Sci. 181(20), 4340–4360 (2011)

10. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications.
Neurocomputing 70, 489–501 (2006)

11. Łapa, K.: Algorithms for extracting interpretable expert knowledge in nonlinear modeling
issues. Ph.D. thesis (in polish), Czestochowa University of Technology (2015)

12. Łapa, K., Cpałka, K., Galushkin, A.I.: A new interpretability criteria for neuro-fuzzy systems
for nonlinear classification. Artif. Intell. Soft Comput. Lect. Notes Comput. Sci. 9119, 448–
468 (2015)

13. Łapa, K., Cpałka, K.: On the application of a hybrid genetic-firework algorithm for controllers
structure and parameters selection. Adv. Intell. Syst. Comput. 429, 111–123 (2015)

14. Mendes, R.R.F., Voznika, F.B., Freitas, A.A., Nievola, J.C.: Discovering fuzzy classification
rules with genetic programming and co-evolution. In: De Raedt, L., Siebes, A. (eds.) PKDD
2001, LNAI 2168, pp. 314–325 (2001)

15. Robinson, M.R.: Mersenne and Fermat numbers. Proc. Am. Math. Soc. 5, 842–846 (1954)
16. Motulsky, H.J., Christopoulos, A.: Fitting models to biological data using linear and nonlinear

regression. A practical guide to curve fitting. GraphPad Software Inc., San Diego, CA (2003)
17. Nallasamy, K., Ratnavelu, K.: Optimal control for stochastic linear quadratic singular

Takagi-Sugeno fuzzy delay system using genetic programming. Appl. Soft Comput. 12,
2085–2090 (2012)

Weighted Fuzzy Genetic Programming Algorithm for Structure … 173

18. Preen, R.J., Bull, L.: Fuzzy dynamical genetic programming in XCSF. In: GECCO’11, July
12–16, 2011, pp. 167–168

19. Quinlan, J.R.: Learning with continuous classes. In: Adams, A., Sterling, L. (eds.)
Proceedings 5th Australian Joint Conference on AI, World Scientific, Singapore (1992)

20. Rutkowski, L.: Computational Intelligence. Springer (2008)
21. Stanimirovic, Z., Maric, M., Bozovic, S., Stanojevic, P.: An efficient evolutionary algorithm

for locating long-term care facilities. Inf. Technol. Control 41(1), 77–89 (2012)
22. Sugeno, M., Yasukawa, T.: A fuzzy-logic based approach to qualitative modelling. IEEE

Trans. Fuzzy Syst. 1, 7–31 (1993)
23. Yeh, I.C.: Modeling slump flow of concrete using second–order regressions and artificial

neural networks. Cement Concr. Compos. 29(6), 474–480 (2007)

174 K. Łapa and K. Cpałka

	13 Weighted Fuzzy Genetic Programming Algorithm for Structure and Parameters Selection of Fuzzy Systems for Nonlinear Modelling
	Abstract
	1 Introduction
	1.1 Fuzzy Systems
	1.2 Genetic Programming
	1.3 Genetic Programming Trees
	1.4 Fuzzy Genetic Programming
	1.5 Paper Aim
	1.6 Paper Structure

	2 Proposed Method Description
	2.1 Description of Fuzzy System
	2.2 Encoding of the System
	2.3 Initialization of the System
	2.4 System Evaluation
	2.5 Description of Learning Algorithm
	2.6 Fuzzy Rules Notation

	3 Simulation Results
	3.1 Simulation Parameters
	3.2 Obtained Results
	3.3 Simulation Conclusions

	4 Conclusions
	Acknowledgment
	References

