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Abstract. The automatic extraction of entities and their types from text, coupled
with entity linking to LOD datasets, are fundamental challenges for the evolution
of the Semantic Web. In this paper, we describe an approach to automatically
process natural language definitions to (a) extract entity types and (b) align those
types to the DOLCE+DUL ontology. We propose SPARQL patterns based on
recurring dependency representations between entities and their candidate types.
For the alignment subtask, we essentially rely on a pipeline of strategies that
exploit the DBpedia knowledge base and we discuss some limitations of
DBpedia in this context.

1 Introduction

The growth of the Semantic Web depends on the ability to handle automatically the
extraction of structured information from texts and the alignment of this information to
linked datasets. The first OKE Challenge competition [1] targeted these two issues and
is a welcome initiative to advance the state of the art of open information extraction for
the Semantic Web. In this paper, we present our service for entity typing and linking
using SPARQL patterns and DBpedia1. This service is the winner of the OKE chal-
lenge 2016 Task 2.

Besides a participation to the OKE challenge, one aim of this research is to provide
a task-based evaluation of the DBpedia knowledge base. Hence our linking strategies
exploit both the DBpedia ontology and the DBpedia knowledge base to extract
rdfs:subClassOf relationships between natural language types and DBpedia types.

This paper is structured as follows: Sect. 2 presents some related work. Sections 3
and 4 describe the two subtasks of our service: type recognition and extraction from
text, and type alignment using the ontology Dolce+DUL. In Sect. 5, we present the
evaluation of our system. We discuss our results in Sect. 6.

1 http://westlab.polymtl.ca/OkeTask2/rest/annotate/post.
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2 Related Work

Several tasks are related to the challenge of entity typing and alignment, among which
we can cite named entity recognition [2], relation extraction [3–5], ontology learning
[6] and entity linking [7–9]. Due to space constraints, this state of the art will be limited
to the participants of the previous OKE challenge [1].

2.1 Type Extraction

The automatic extraction of taxonomical and instance-of relations from text has been a
long-term challenge. Overall, state-of-the-art approaches that target the extraction of
relations from text are mainly pattern-based approaches. In the first edition of the 2015
OKE challenge, there were three participating systems for the task of type extraction
from natural language definitions: CETUS [10], OAK@Sheffield [11] and FRED [12].
CETUS relies on grammar rules based on parts of speech (POS) to extract an entity
type from text. OAK uses machine learning to learn to recognize the sentences’ por-
tions that express the entity type, and then uses a POS pattern grammar for type
annotation. FRED uses the system Boxer [13] and Discourse Representation Theory,
and thus relies on a complex architecture for ontology extraction that is not limited to
type extraction. Compared to previous pattern-based approaches in the OKE compe-
tition [10, 11], our system differs by the nature of the patterns, which exploit a
dependency grammar representation. One particular novelty is the use of SPARQL to
model and search for patterns occurrences. Overall, we believe that our approach
represents a middle ground between patterns based on a superficial representation of
sentences (usually parts of speech) and approaches such as FRED [12] which depend
on complex first-order logic and frame semantics.

2.2 Type Alignment

In the context of the Semantic Web, the challenge of entity typing is coupled with the
difficulty of finding an alignment with linked datasets. Among the three systems of the
OKE challenge 2015 mentioned previously, the authors of CETUS [10] developed an
alignment between Yago and Dolce + DnS Ultralite; FRED [12] uses an already
existing API that exploits Dolce, WordNet and VerbNet; OAK [11] relies on the
existence of dul types in DBpedia, using a method similar to our method 2 (see
Sect. 4.1). In our approach, we chose to use the existing mappings DBpedia -
Dolce + DnS Ultralite [14] and Yago wordnet - Dolce + DnS Ultralite [15].

Our main contribution in this subtask is the exploitation of several strategies that
consider either the DBpedia ontology (T-box) or the DBpedia knowledge base (A-box)
to find a DBpedia type. We exploit both the knowledge about the entity and the type
given as input. When there is not any direct type information linked to the DBpedia
ontology or Yago, we revert to type inference methods. Among the strategies described
in Sect. 4.1, method 6 is based on our previous work [16] to infer types using predi-
cates’ domain and range, while method 2 is similar to the one used by OAK [11].
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However, we also introduce a novel approach based on DBpedia categories and pro-
pose a pipeline of strategies that aggregates several methods.

3 Entity Type Extraction

Entity type extraction consists in finding the natural language type of an entity, given
its textual definition. Our approach relies on pattern extraction using a dependency-
based syntactic analysis. The extraction of an entity type is processed in two steps:
sentence representation in RDF and pattern occurrence identification using SPARQL
queries.

3.1 Sentence Graph Representation

First, we extract grammatical dependencies from the definitions using the Stanford
parser [17] and build an RDF graph representing each sentence. Before the parsing
step, we identify the input DBpedia entity in the sentence and aggregate multi-words
entities with an underscore between the words. For instance, in the sentence All’s Well
That Ends Well is a play by William Shakespeare, we identify All’s Well That Ends
Well (the input DBpedia resource) as one single entity and simply modify the sentence
to obtain All’s_Well_That_Ends_Well is a play by William Shakespeare.

We then construct an RDF graph representing the dependency structure of the
definition. Thus we specify the label and part of speech of each word in addition to its
grammatical relations with the other words. This RDF graph allows us to look for
pattern occurrences using SPARQL requests in the following step. Figure 1 presents
the RDF graph of the definition Skara Cathedral is a church in the Swedish city of
Skara.

Fig. 1. The RDF Representation of the definition of Skara Cathedral.
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3.2 Pattern Identification

As for the detection of patterns, based on the train dataset2 distributed in the OKE
challenge, we manually identified several recurring syntactic and grammatical struc-
tures between the entities and their respective types. Table 1 presents the most common
patterns that we identified in the dataset.

We created a pipeline of SPARQL requests with a specific processing order as
shown in Table 1. In fact, Pattern 1 has a higher priority than Pattern 2. For example, in
the sentence Sant’Elmo is the name of both a hill and a fortress in Naples, located near
the Certosa di San Martino, if the second pattern was processed before the first one, we

Table 1. Most frequent patterns describing an entity/type relationship.

Frequent patterns

(1) :nsubj :cop

Entity X Z     Type

:prep_of
Where X = { “name”, “nickname”, “alias”, “one”, “species”, “form” }

Sant'Elmo is the name of both a hill and a fortress in Naples, located near the Certosa di San Martino.
Entity = Sant'Elmo ; Type = Hill

(2) :nsubj :cop

Entity Type      Z
El Oso, released in 1998, is an album by the New York City band Soul Coughing.
Entity = El Oso ; Type = Album

(3) :nsubjpass :auxpass

Entity V Z      Type

:prep_as
Bromius in ancient Greece was used as an epithet of Dionysus/Bacchus.
Entity = Bromius ; Type = Epithet

(4) x

Entity Type

Where x = { :amod, :appos, :nn}
The AES11 standard published by the Audio Engineering Society provides a systematic approach to 
the synchronization of digital audio signals.
Entity = AES11 ; Type = Standard

2 https://github.com/anuzzolese/oke-challenge-2016/blob/master/GoldStandard_sampleData/task2/
dataset_task_2.ttl.
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would wrongly extract the type name. Similarly, Pattern 4 is the pattern with the lowest
priority, which is executed only after all the other patterns are tested.

Each pattern is modeled using a single SPARQL request. The following is an
example of the SPARQL implementation of Pattern 2:

As this SPARQL request shows, we search for the type of an entity, where the
entity’s label is a perfect match with the input DBpedia entity’s label. We first execute
all the SPARQL patterns in this “full match” mode. In case all requests fail to return a
type, we then look for occurrences of the same patterns using a partial match of the
entity’s label.

Once we find a candidate type, we create an OWL class representing this type. We
remove all the accents and special characters and extract the lemma of the types in
plural form. Overall, we adopted the singular as a convention for our entity types. For
instance, in Alvorninha is one of the sixteen civil parishes that make up the munici-
pality of Caldas da Rainha, Portugal, we extract the type oke:Parish from the string
parishes. Finally, we create a rdf:type relation between the entity and the returned type.

4 Type Alignment

In this paper, we refer to the namespaces http://dbpedia.org/ontology/ and http://dbpedia.
org/page/ as dbo and dbr respectively. The ontologies http://www.ontologydesign
patterns.org/ont/dul/DUL.owl and http://ontologydesign-patterns.org/ont/wikipedia/d0.
owl are represented by the prefixes dul and d0 respectively. Besides, we use “Dolce” as a
shortcut for “Dolce + DnS Ultralite”.

Once the natural language type of a given DBpedia entity is identified, for instance
[dbr:Brian_Banner, oke:Villain], where the first element represents the entity and the
second element the natural language type, the second part of the OKE challenge task 2
is to align the identified type to a set of given types in the Dolce ontology3. The
objective is to link the natural language type to a super-type in the ontology using an
rdfs:subClassOf link. For instance, dul:Person would be a possible super-class for oke:
Villain.

3 https://github.com/anuzzolese/oke-challenge-2016#task-2.
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Our alignment strategy relies only on the DBpedia knowledge base and its links to
external knowledge bases, when applicable, and exploits available mappings between
DBpedia and Dolce, and Yago and Dolce. In fact, besides the OKE challenge in itself,
one objective of this research is to determine whether the DBpedia knowledge base,
one of the main hubs on the Linked Open Data cloud, is a suitable resource for the
entity linking task. Thus our goal is to find a link, either directly or indirectly, between
the oke type (e.g. oke:Village) returned by the first subtask and the DBpedia ontology
and/or Yago and/or Dolce.

4.1 DBpedia Type Identification

Our global alignment strategy first queries the DBpedia ontology (http://dbpedia.org/
ontology/[Input Type]). If the type is not found as a DBpedia class, we query DBpedia
resources (http://dbpedia.org/resources/[Input Type]) and either find direct types or
infer candidate types using several strategies. Our queries result in three possible
outputs:

1. There is a dbo resource for the input type. In our dataset, this case occurred in 83
out of 198 cases (42 %).

2. There is only a dbr resource for this type. In this case, we attempt to find a predicate
rdf:type between the natural language type and some type that can be aligned with
Dolce + DnS Ultralite, i.e. a type in the DBpedia ontology, Yago-Wordnet or DUL.
In our dataset, this case occurred in 68 % of the cases.

3. There is neither a dbo nor a dbr resource for this type (e.g. oke:Villain). In this case,
we cannot infer any type and we rely solely on the entity page (dbr:Brian_Banner)
to identify a potential type when possible. In our training data set, this case never
occurred.

Next, we assign a score to our candidate types based on the number of instances
available for these types. Finally, we return the Dolce + DnS Ultralite type that is
equivalent or is a super-type of the chosen DBpedia type. The following sections
describe the various implemented strategies for type alignment.

Method 1: Alignment Based on the DBpedia Ontology: The first method checks if
there is full match between the natural language type and a class in the DBpedia
ontology (e.g. for the input “oke:Villain”, we look for the URI dbo:Villain). If such a
class exists, we simply align this type with Dolce.

Method 2: Alignment Based on the Type of Instances: In this step, the idea is to
exploit the “informal” types available in the dbr namespace using the predicate
dbo:type. For instance, even though dbr:Village is not defined as a class, we can find
the triple dbr:Bogoria,_Poland dbo:type dbr:Village. Thus, given that dbr:Bogoria,
_Poland is also of type dbo:Place, our general hypothesis is that we can consider dbr:
Village to be a subclass of dbo:Place. To choose among all the candidates, we consider
all the instances (using dbo:type) of dbr:Village, and assign a score to each of their
types (available through rdf:type) depending on the number of times in which they
appear in relation with the instances of dbr:Village.
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Method 3: Alignment Based on the Entity Type: In this strategy, we exploit the
information available in the DBpedia entity page itself. In fact, if the given natural
language type does not have any DBpedia page, or if that page does not contain any
information that could allow us to infer a valid type, we search for a direct rdf:type
relation in the entity description. For instance, for the input [dbr:Adalgis, oke:King],
our assumption is that the triple: dbr:Adalgis rdf:type dul:NaturalPerson implies oke:
King rdfs:subClassOf dul:NaturalPerson. All the (rdf) types of the entity represent our
candidate types with an initial score of 1.

Method 4: Alignment Based on Direct Types: Here we query the DBpedia resource
corresponding to the natural language type (e.g. dbr:Club) and find the triples of the
form dbr:Club rdf:type [Type] and return [Type]. Like in Method 3, all the candidates
returned by this method have an initial score of 1.

Method 5: Alignment Based on Categories: This strategy exploits Wikipedia cate-
gories represented by the http://dbpedia.org/page/Category: namespace (dbc). Cate-
gories are indicated in most pages using the predicate dct:subject. The idea here is to
look at all the categories in which a given type is included (for instance dbc:Admin-
istrative_divisions, dbc:Villages, etc. for dbr:Village), and then find the type(s) of all
the elements in each of these categories. In this example, the category dbc:Villages
contains several villages (such as dbr:Mallekan) of type dbo:Place. dbo:Place is
therefore a candidate type for dbr:Village. Like in previous methods, this approach
returns many candidates. Each type is given a score equal to the number of triples in
which it appears.

Method 6: Alignment Based on Predicates’ Domain and Range: This method
infers a type for an entity by examining the rdfs:domain and rdfs:range of predicates
that are used in the description of the DBpedia page associated with the natural lan-
guage type. For instance, the two triples:

dbr:Marko Vovchok dbo : birthplace dbr : Village
dbo : birthPlace rdfs : range dbo : Place

allow us to infer dbr:Village rdf:type dbo:Place using the information available in the
range of the predicate. In this approach, we only take into account the dbo predicates,
as the dbp (http://dbpedia.org/property) predicates typically do not have any domain or
range specified. Like in method 2, we give each inferred type a score equal to the
number of triples in which the type is used.

4.2 Dolce+DUL Alignment

Following all our type identification methods, we obtain a set of candidate types with a
score. Next, we rely on the alignment between the DBpedia ontology and Dolce + DnS
Ultralite to replace each dbo type with their dul/d0 counterpart. The same is done to
replace yago types with dul/d0 types. However, as the set of types used by the OKE
challenge does not include all dul types, we modify this alignment in the following
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way: if a dul type is not included in the set of OKE challenge types, we replace it by its
closest ancestor that is included in the set. For instance, dul:SocialPerson is not an
element of the OKE challenge set, but its super class, dul:Person, is available.
Therefore, if our alignment returns dbo:Band rdfs:subClassOf dul:SocialPerson, our
final output is dbo:Band rdfs:subClassOf dul:Person. In our experiments on the OKE
dataset, this strategy did not work well only with the dul types dul:Concept and dul:
Agent, which do not have any parent in the OKE challenge set.

Next, the obtained set of dul candidates is very often a set of classes that have some
taxonomical link among themselves. Given that our objective is to find the most precise
candidate, the score of each candidate is modified by adding the score of its ancestors
among this set, thus effectively favoring classes that are deeper in the taxonomy.
Finally, the chosen candidate is the dul type with the highest score.

Here is a full example of our process for method 2 (instances) with the input (dbr:
Calvarrasa_de_Abajo, “oke:Village”). First, we retrieve all the URIs that appear in a
triple of the form [subject] dbo:type dbr:Village. Then, we retrieve all the types
(rdf:type) of URIs of the form: [subject] rdf:type [dbo_type]. Each of these types’ score
increases by 1 every time it appears. In this example, the final list contains 26 types,
with the best (score-wise) being: dbo:Place (480), dbo:Location (480), dbo:Popu-
latedPlace (480), dbo:Settlement (480), dbo:Village (460), yago:location (436) and
yago:object (436). After the DOLCE alignment, this list becomes d0:Location (1905),
dul:PhysicalObject (437), dul:Object (436) and dul:Region (436). During this step, if
several types are aligned to the same dul/d0 type, their scores are combined.

Finally, we check if our candidates include dul types that are not available in the
OKE challenge set, and replace them by their equivalent (if available) or closest
ancestor type that is available in the OKE set. Here, dul:Region is replaced by d0:
Characteristic. We end up with d0:Location (1905), dul:PhysicalObject (873), dul:
Object (436) and d0:Characteristic (436). The type with the highest score is d0:
Location (1905), therefore we return oke:Village rdfs:subClassOf d0:Location.

5 Evaluation

5.1 Type Extraction Evaluation

Our first evaluation calculates the precision and recall of the natural language type
identification subtask. We consider a type as a true positive only when its lemmatized
oke type is a perfect match with at least one of the lemmatized oke types of the OKE
gold standard (See footnote 2). Using this evaluation method on the 2016 train dataset,
our precision and recall for the type extraction subtask is 87 % as shown in Table 2a,
and 80 % on the evaluation dataset as shown in Table 2b. Table 4 presents the official
evaluation on the 2016 train dataset using Gerbil4 [18]. We can notice some decrease in
performance using Gerbil (Tables 2a and 4), some of which can be explained by the
existence of OKE types in plural form in the gold standard (e.g. oke:Awards versus

4 http://gerbil.aksw.org/gerbil.
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oke:Award). In fact, contrary to Table 4, the results in Table 2a take into account the
lemmatization of both the natural language types and the gold standard types.

We performed an analysis of the unsuccessful sentences and identified few
potential sources of errors. A good proportion of errors arise from grammatical
ambiguities and incorrect syntactic analyses of sentences. This is the case for sentences
like Brad Sihvon was a Canadian film and television actor, for which we find the type
oke:Film instead of oke:Actor, due to an error in the parsing process. Similar errors can
also occur, in some rare cases, for long sentences like Bradycardia, also known as
bradyarrhythmia, is a slow heart rate, namely, a resting heart rate of under 60 beats
per minute (BPM) in adults for which we extract the type oke:Heart instead of oke:
Rate. In some cases, the errors are debatable. We list as examples the sentence Gimli
Glider is the nickname of an Air Canada aircraft that was involved in an unusual
aviation incident, for which we extract the type oke:Aircraft instead of oke:Nickname,
or Caatinga is a type of desert vegetation, and an ecoregion characterized by this
vegetation in interior northeastern Brazil, for which we find the type oke:Vegetation
instead of oke:TypeOfDesertVegetation.

We also evaluated the precision and recall of our patterns separately. Given that the
precision and recall are the same, Tables 2a and b show the results for each pattern
based on the 2016 OKE train and evaluation datasets.

5.2 Type Alignment Evaluation

To assess the efficiency of each type alignment method, we compared the obtained
types to those present in the gold standard. Table 3 shows the number of returned
types, the number of correct types, as well as the precision, recall and F-measure for
each method on the OKE challenge train dataset. Taken individually, most methods
achieve limited or poor performance. However, we also implemented a pipeline
strategy to combine these methods, thus increasing the recall of our approach. The
pipeline is based on the most successful to the least successful strategies (in terms of

Table 2a. Statistics for the type extraction evaluation on the train dataset

Pattern (1) (2) (3) (4) Total

Found types 10 156 2 4 172
Total occurrences 14 173 2 9 198
Precision/recall 71 % 90 % 100 % 44 % 87 %

Table 2b. Statistics for the type extraction evaluation on the evaluation dataset

Pattern (1) (2) (3) (4) Total

Found types 1 39 0 0 39
Total occurrences 1 47 0 2 50
Precision/recall 100 % 82.98 % – 0 % 80 %
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precision) based on the results of individual methods. In this pipeline, a strategy is
executed only if the previous one was unsuccessful in returning a type.

5.3 Overall Results

The overall results of the task of entity typing and alignment on the OKE training
dataset using the evaluation framework Gerbil are shown in Table 4. These results rely
on the pipeline strategy for the type alignment subtask.

We can notice a slight decrease in performance compared to our local evaluation on
the 2016 train dataset.

The system was also tested on the 2016 test dataset; the result for this dataset are
presented in Table 5.

For comparison purposes, we also report the results of two competing systems on
the evaluation dataset in Table 6. These systems are Mannheim [19], a participant to
the OKE 2016 challenge and CETUS [10], the baseline system and the winner of the

Table 3. Comparison of each method for type alignment on the OKE challenge train dataset

Method Returned types Correct types Precision Recall F-measure

1: ontology 83 59 71 % 30 % 42 %
2: instances 57 38 67 % 19 % 30 %
3: entity 140 67 48 % 34 % 40 %
4: direct type 17 6 35 % 3 % 6 %
5: category 130 22 15 % 10 % 12 %
6: predicates 89 11 12 % 6 % 8 %
Pipeline 1–6 172 96 56 % 48 % 52 %

Table 4. Overall precision, recall and F-measure computed using Gerbil on the 2016 train
dataset

Task Micro
precision

Micro
recall

Micro
F-measure

Macro precision Macro
recall

Macro
F-measure

Type extraction 82.32 % 75.81 % 78.93 % 82.32 % 78.96 % 80.05 %
Type alignment 49.63 % 45.47 % 47.45 % 49.62 % 45.42 % 46.47 %
Total (average) 65.97 % 60.64 % 63.19 % 65.97 % 62.19 % 63.26 %

Table 5. Overall precision, recall and F-measure computed using Gerbil on the 2016 test dataset

Task Micro
precision

Micro
recall

Micro
F-measure

Macro precision Macro
recall

Macro
F-measure

Type extraction 81.63 % 73.39 % 77.29 % 80.81 % 76.60 % 77.95 %
Type alignment 46.46 % 42.51 % 44.40 % 46.46 % 42.51 % 43.53 %
Total (average) 64.05 % 57.95 % 60.85 % 63.64 % 59.55 % 60.74 %
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OKE 2015 challenge. Mannheim uses taxonomical relation (“isa”) extraction based on
Hearst-like patterns in text to find the entity type, then chooses one of these isa relations
and exploits a mapping between OntoWordnet, Wordnet and DOLCE to infer the super
class in the OKE types set. CETUS uses pattern extraction to identify potential types,
then creates a hierarchy between these types. Finally, it proposes two approaches to
align the type with DOLCE: the first one is based on a mapping with Yago, and the
second on an entity recognition tool (FOX).

Our system WestLab obtains satisfying results in terms of precision for the type
extraction task; we obtain a Micro and Macro values of 86 %, whereas the baseline
CETUS obtains 68.75 % (micro) and 72 % (macro), and Mannheim obtains 77.27 %
(micro) and 63 % (macro).

As for the recall, we obtain 86 % (micro and macro), which is better than Man-
nheim’s recall of 68 % (micro and macro), but lower than CETUS which obtains 88 %
(micro and macro).

Our Micro and Macro F-Measures are both 86 %. These results are higher than
CETUS’, which are 77.19 % and 77.33 % respectively, and Mannheim’s, that obtains
72.34 % and 64.67 % respectively, for the type extraction.

Thus, we can conclude that we outperform other systems when taking into account
precision but we note that our recall is lower than the one obtained by the baseline
CETUS. These results also show that our patterns do not always detect and extract the
type of the entity, which is an indicator that the patterns set must be extended in our
future work. However, our patterns rarely extract types that are false positives, which
shows that they are well defined and accurate.

Concerning the type alignment, there have been some issues with the test dataset
distributed by the OKE challenge organizers at the time of the evaluation, which have
been corrected later. This explains the very low performance shown in Table 6 for the
type alignment subtask. Given this modification, we are able to provide results only for
our system and the CETUS baseline on the corrected evaluation dataset. At the time of
this publication, we don’t have the updated results for the Mannheim system. Table 7

Table 6. Overall precision, recall and F-measure for the two participating systems and the
baseline CETUS on the test dataset

System Task Micro Macro
Precision Recall F1 Precision Recall F1

CETUS Extr. 68.75 % 88.00 % 77.19 % 72.00 % 88.00 % 77.33 %
Align. 22.17 % 24.47 % 23.26 % 22.17 % 24.47 % 19.89 %
Total 45.46 % 56.24 % 50.23 % 47.08 % 56.24 % 48.61 %

Mannheim Extr. 77.27 % 68.00 % 72.34 % 63.00 % 68.00 % 64.67 %
Align. 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
Total 38.64 % 34.00 % 36.17 % 31.50 % 34.00 % 32.33 %

WestLab Extr. 86.00 % 86.00 % 86.00 % 86.00 % 86.00 % 86.00 %
Align. 8.00 % 6.67 % 7.27 % 8.00 % 6.67 % 7.00 %
Total 47.00 % 46.33 % 46.64 % 47.00 % 46.33 % 46.5 %
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provides our results on the updated dataset, compared with the baseline. Overall, we
can notice a huge improvement on the corrected dataset. In fact, the WestLab system
obtains an F-Measure of 44.4 % (micro) and 43.53 % (macro) for the type alignment
subtask, whereas CETUS obtains 23.26 % and 19.89 %. These results constitute a
considerable improvement for the type alignment task, even though they are still under
the threshold of 50 %.

For the overall results including both type extraction and alignment, we outperform
all systems and obtain F-Measures of 60.85 % (micro) and 60.74 % (macro), whereas
CETUS obtains F-Measures of 50.23 % (micro) and 48.61 % (macro). We cannot
compare our system with Mannheim on the corrected test dataset, except on the type
recognition subtask, for the reasons mentioned in the previous paragraph.

6 Discussion

Type Extraction. One limitation of our approach for natural language type identifi-
cation is the small number of implemented patterns, which does not guarantee to find
an entity type. However, our proposal of SPARQL patterns, coupled with an RDF
representation of definitions, represents an elegant and simple solution which facilitates
the addition of new patterns. Another limitation comes from the fact that our system
relies on a syntactic analysis. Thus, errors that occur in the parsing process also affect
our system. However, according to our preliminary results, this approach displays a
satisfactory precision and recall values compared to previous approaches in the OKE
competition.

DBpedia for Type Alignment. Task alignment requires the discovery of rdfs:-
subClassOf links between natural language types and ontological classes. One of our
research objectives was to assess how well a type alignment could be performed based
on the structured knowledge available in the DBpedia ontology and resources. Some of
our methods exploit the grey zone around the notion of subclass and instance in
DBpedia. In fact, DBpedia resources (A-box) cannot be normally expected to use the
rdfs:subClassOf predicate. However, some of the resources employ the predicate
dbo:type. For example, dbr:Bogoria,_Poland dbo:type dbr:Village. Thus dbr:Village
can be effectively considered as a class based on RDFS semantics. There were 57 (out

Table 7. Overall precision, recall and F-measure for the two participating systems and the
baseline CETUS on the corrected test dataset

System Task Micro Macro
Precision Recall F1 Precision Recall F1

CETUS Extr. 68.75 % 88.00 % 77.19 % 72.00 % 88.00 % 77.33 %
Align. 22.17 % 24.47 % 23.26 % 22.17 % 24.47 % 19.89 %
Total 45.46 % 56.24 % 50.23 % 47.08 % 56.24 % 48.61 %

WestLab Extr. 81.63 % 73.39 % 77.29 % 80.81 % 76.60 % 77.95 %
Align. 46.46 % 42.51 % 44.40 % 46.46 % 42.51 % 43.53 %
Total 64.05 % 57.95 % 60.85 % 63.64 % 59.55 % 60.74 %
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of 198) similar cases in our train dataset. Based on this line of thought, if we found dbr:
Village rdf:type dbo:Place, we inferred dbr:Village rdfs:subClassOf dbo:Place. These
examples show that DBpedia resources (A-box) are also described using an informal or
implicit schema. This further highlights the need of describing these resources in the
ontology rather than in the knowledge base.

Due to the lack of directly exploitable type information in DBpedia, we relied on
type inference methods (M2 - instances, M6 - predicates, M5 - categories) in few cases
(27 out of 172 types are retrieved using these methods). More specifically, we
employed these strategies when an input type does not have a dbo page or when its dbr
page does not contain any rdf:type predicate. However, these methods often give poor
results. Finally we did not process the disambiguation pages (e.g. dbr:Motion) that are
sometimes returned by our methods. Altogether, our system failed to return any type in
14 % of the cases. In this case, it returns owl:Thing.

Examples of Problematic Cases. Most of our errors boil down to two error sources:
(a) inaccurate, noisy, or plain false information and (b) unavailable information in
DBpedia. In the following, we give a few examples of problematic cases in some of the
alignment methods.

M2 – instances: According to the gold standard, dbr:Court should be a dul:Organi-
zation. However, in DBpedia, dbr:Court instances, as depicted by the rdf:type
predicate, are inaccurate (e.g. dbr:Mansion_in_Grabowo_Krolewskie) or refer to
broken links. Our type alignment based on these links wrongly concludes that dbr:
Court is a d0:Location.

M6 – predicates: dbr:Season should be a dul:Situation. However, in DBpedia, there is
a confusion between a season (time of the year) and seasonal music (such as
Christmas songs) which does not have a dbr resource. Therefore, the resource dbr:
Season is used erroneously instead of the non-existing dbr:Seasonal_Music page.
This leads to triples such as dbr:Christmas _(Kenny_Rogers_album) dbo:genre
dbr:Season. Given that the predicate method exploits dbo:genre rdfs:range dbo:
Genre, we erroneously conclude that a dbr:Season is a subclass of dbo:Genre.

M5 – categories: dbr:Tournament is part of only one category, dbc:Tourna-
ment_systems, containing pages such as dbr:Round-robin_tournament or dbr:
Double-elimination_tournament. All of these resources have a type in Yago (arti-
fact) that is aligned to dul:PhysicalObject, which makes us conclude that a dbr:
Tournament is a dul:PhysicalObject. Here, the error is double: dbr:Tournament
should not be in the category dbc:Tournament_systems, and the resources should
not be typed as yago:Artifact.

In all the above examples, the correct answer is never present in our candidates list.
This observation confirms that DBpedia resources are often poorly described [16].
Despite these limitations, our pipeline, which is based on a set of methods ordered from
the most trustworthy to the least one, obtains a micro precision of 49.6 % on the
training dataset and 46.5 % on the test dataset, and micro recall of 45.5 % on the
training dataset and 42.5 % on the test dataset, which we consider as reasonable given
the complexity of the task.
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Gold Standard. We had some issues when comparing our results with the gold
standard. Quite often, our results could be considered as correct, but are different from
the ones in the gold standard as they are based on the DBpedia ontology. For instance,
we infer that a oke:Meeting is a subclass of dul:Event (dul:Event: “Any physical,
social, or mental process, event, or state”), but the gold standard states that a oke:
Meeting is a subclass of dul:Activity. Both answers could be acceptable. In the OKE
train dataset, we identified 20 “borderline” cases out of 198 in the alignment subtask. In
the natural language type extraction subtask, we identified some potentially ques-
tionable types in the gold standard of the form “Set_Of_X” or “Type_Of_X”. For
instance, in the sentence Caatinga is a type of desert vegetation… our position is that
the type could be oke:DesertVegetation rather than oke:TypeOfDesertVegetation.

Future Work. For the type alignment sub-task, our next step will consider the
problem of the disambiguation pages. Such pages represent a non-negligible portion of
the data set (26 %), and systematically constitute a source of errors. The objective is to
choose the correct type among all the possible disambiguations. For instance, given the
input [dbr:Babylonia, oke:State], the returned type dbr:State is a disambiguation page,
linking to pages such as dbr:Nation_state, dbr:State_(functional_analysis) or dbr:
Chemical_state.

7 Conclusion

This paper describes our approach for the extraction of entity types from text and the
alignment of these types to the Dolce+DUL ontology. The patterns used to extract
natural language types from textual definitions achieved high precision and recall
values. As for the type alignment, the strength of our approach is based on the mul-
tiplicity of strategies which exploit both the DBpedia ontology and knowledge base and
rely on DBpedia large coverage. Our experiments highlight the necessity of a better
linkage between DBpedia resources and the DBpedia ontology and the need for
restructuring some DBpedia resources as ontological classes.
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