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Abstract. The process of classifying scholarly outputs is crucial to ensure timely
access to knowledge. However, this process is typically carried out manually by
expert editors, leading to high costs and slow throughput. In this paper we present
Smart Topic Miner (STM), a novel solution which uses semantic web technolo‐
gies to classify scholarly publications on the basis of a very large automatically
generated ontology of research areas. STM was developed to support the Springer
Nature Computer Science editorial team in classifying proceedings in the LNCS
family. It analyses in real time a set of publications provided by an editor and
produces a structured set of topics and a number of Springer Nature Classification
tags, which best characterise the given input. In this paper we present the archi‐
tecture of the system and report on an evaluation study conducted with a team of
Springer Nature editors. The results of the evaluation, which showed that STM
classifies publications with a high degree of accuracy, are very encouraging and
as a result we are currently discussing the required next steps to ensure large-scale
deployment within the company.

Keywords: Scholarly data · Ontology learning · Bibliographic data · Scholarly
ontologies · Data mining · Conference proceedings · Metadata

1 Introduction

The process of classifying and annotating scholarly publications is crucial to enable
scholars, students, companies and other stakeholders to easily discover and access this
knowledge. To facilitate this classification process, a number of scholarly ontologies
(e.g., SWRC1, BIBO2, BiDO3, PROV-O4, AKT5, FABIO6) and bibliographic reposito‐
ries in the Linked Data Cloud [1–3] have been proposed in the past decade, while at the
same time the major publishing companies are starting to adopt richer data models [4, 5].

1 http://ontoware.org/swrc/.
2 http://bibliontology.com.
3 http://purl.org/spar/bido.
4 https://www.w3.org/TR/prov-o/.
5 http://www.aktors.org/publications/ontology.
6 http://purl.org/spar/fabio.
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In this paper, we present Smart Topic Miner (STM), a novel application, developed
in collaboration with Springer Nature (SN), which classifies scholarly publications
according to an automatically generated ontology of research areas.

STM analyses in real-time a collection of publications and returns a description of
the given corpus in terms of (i) a taxonomy of research topics drawn from a large schol‐
arly ontology and (ii) a set of Springer Nature Classification tags – see Fig. 1. This
information is then used for a variety of tasks such as: (i) classifying proceedings in
digital and physical libraries; (ii) enhancing semantically the metadata associated with
publications and consequently improving the discoverability of the proceedings in both
the Springer digital library, SpringerLink, as well as third-party sites such as
Amazon.com; (iii) deciding where and when to market a specific book; and (iv) detecting
novel and promising research areas that may deserve more attention from the publisher.

Fig. 1. The STM interface.

Traditionally, when classifying proceedings, editors choose a list of related terms
and categories according to their own experience, a visual exploration of titles and
abstracts, and, optionally, a list of keywords given by the curators or derived by calls
for papers. However, this is a complex and time-consuming process and it is easy to
miss the emergence of a new topic or assume that some topics are still popular when
this is no longer the case. In addition, the keywords used in the call of papers are often
a reflection of what a venue aspires to be, rather than the real contents of the proceedings.
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For these reasons, there is a real need for more objective and scalable methods for
identifying the research areas relevant to a proceedings book.

In this kind of scenario, it is critical for the editors to build confidence in the tool by
being able to analyse the rationale behind the outcomes and understand why a certain
research area or classification tag was chosen. Hence, we designed STM to produce
intuitive explanations and to give the user full control over the granularity and nature of
the topic characterization. Actually, one of the main advantages of adopting semantic
web technologies is that they make it easier to generate a user-friendly explanation, as
discussed in Sect. 2.3. Of course, the final decision of which topics and tags to associate
with the proceedings still rests on SN editors.

In this paper, we describe STM in terms of its knowledge bases, algorithm and user
interface. We also report the outcome of an evaluation study performed with eight
Springer Nature editors with expertise in a variety of different fields, as well as a
coverage study on a set of 200 proceedings. Finally, we conclude by discussing the steps
required for large-scale deployment of the technology within the company.

2 Smart Topic Miner

Smart Topic Miner (STM) was designed to automatically classify proceedings and more
in general any collection of articles by tagging them with a number of research areas
and SN classification labels. It can be used for supporting editors in classifying new
books and for quickly annotating a large number of proceedings, thus creating a compre‐
hensive knowledge base to assist the analysis of venues, journals and topic trends. In
this paper, we focus on the classification/annotation task.

STM can take as input either an XML file containing metadata about a publication
or a ZIP including multiple XML files. Each XML file represents a paper in a proceedings
volume published in the LNCS family of book series and contains title, abstract, the
keywords provided by the authors, section title and book title. Springer books are thus
usually represented as collections of XML files.

STM analyses the publication metadata and returns:

– A taxonomy (or optionally a plain list) of the most significant topics annotated with
the number of relevant papers/chapters, structured according to an automatically
generated ontology of research areas;

– A taxonomy of Springer Nature Classification tags;
– A number of analytics to allow the editors to further analyse the content of a proceed‐

ings volume, including the list of terms and topics associated to each paper;
– Optionally, an explanation for each topic, in term of the keyword distributions that

triggered the topic recognition. For instance, the Semantic Web may have been
inferred as a research area for a book by recognizing terms such as “linked data”,
“ontology matching”, and “semantic web services”.

Figure 1 shows the main interface and how the tool classified the Springer Nature
book “HCI International 2015 - Posters’ Extended Abstracts”. Figure 2 shows the STM
architecture, which consists of four main components: (1) the user interface, (2) the
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parser, which elaborates the input files, (3) the back-end API, and (4) the knowledge
bases. Every time the user uploads a file and submits it to the system using the GUI, the
parser analyses the XML files and extracts the relevant metadata. This data are sent as
a JSON file to the background API via a POST query. The API analyses the data and
returns the results either as a JSON or HTML file, which is in turn visualized by the
interface. The API and the parser are realized in PHP and save cached data in a
MariaSQL7 database, while the front-end uses HTML5 and Javascript.

Fig. 2. The STM architecture.

In the next sections we will discuss the system in detail. In Sect. 2.1 we will elaborate
on the knowledge bases, in Sect. 2.2 we will discuss the approach to infer research areas
and Springer Nature Classification tags from the metadata and finally in Sect. 2.3 we
will describe the user interface and the options available to the users.

2.1 Background Data

STM uses two knowledge sources: the Klink-2 Computer Science Ontology (CSO) and
the Springer Nature Classification for Computer Science (SNC).

CSO was created and subsequently updated every 6 months by applying the Klink-2
algorithm [6] on the Rexplore dataset [7], which consists of about 16 million publica‐
tions, mainly in the field of Computer Science. The Klink-2 algorithm combines semantic
technologies, machine learning and knowledge from external sources (e.g., DBpedia,
calls for papers, web pages) to automatically generate a fully populated ontology of
research areas, which uses the Klink data model8. This model is an extension of the
BIBO ontology9 which in turn builds on SKOS10. It includes three semantic relations:

7 https://mariadb.org/.
8 http://technologies.kmi.open.ac.uk/rexplore/ontologies/BiboExtension.owl.
9 http://purl.org/ontology/bibo/.

10 http://www.w3.org/2004/02/skos/.
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relatedEquivalent, which indicates that two topics can be treated as equivalent for the
purpose of exploring research data – e.g., Ontology Matching and Ontology Mapping;
skos:broaderGeneric, which indicates that a topic is a sub-area of another one – e.g.,
Linked Data is considered a sub-area of Semantic Web; and contributesTo, which indi‐
cates that the research outputs of one topic significantly contribute to research into
another. For instance, research in Ontology Engineering contributes to the Semantic Web,
but arguably Ontology Engineering is not a sub-area of the Semantic Web – that is, there
is plenty of research in Ontology Engineering outside the context of Semantic Web
research. The current version of STM uses the first two relationships.

An important characteristic of the CSO ontology is that it allows for a research topic
to have multiple super-areas – i.e., the taxonomic structure is a graph rather than a tree.
This is a very important difference with respect to other taxonomies of research areas
notably because research topics often derive from multiple areas and can be categorized
under a variety of fields. For example, it can be argued that a topic such as Inductive
Logic Programming should be a sub-area of both Machine Learning and Logic Program‐
ming. Hence, a representation that forces a research area to be subsumed by only one
other area fails to capture adequately the network of relationships between research
topics.

The current version of the CSO ontology comprises about 17 k topics linked by 70 k
semantic relationships and includes 8 levels of granularity. The main root is the topic
Computer Science, however CSO includes also a number of secondary roots, such as
Geometry, Semantics, Linguistics and so on. STM uses CSO for a variety of tasks,
including (i) inferring a list of well-defined and human readable semantic topics from
the very large distributions of terms extracted from publications, (ii) supporting the set-
covering algorithm, and (iii) structuring the outcome as a taxonomy, in order to help the
editors to understand the relationships between research areas.

CSO presents two main advantages over the classic manually crafted categorizations
used in Computer Science, such as the well-known 2012 ACM Classification11. Firstly,
it is able to recognize a very large number of terms which do not appear in these other
classifications. In fact, it is about seventeen times larger than ACM in terms of number
of concepts and about seventy times larger in terms of number of relationships. For this
reason, it is able to characterize higher-level research areas by means of hundreds of
sub-topics and related terms, which allows STM to effectively map specific terms from
research publications to higher-level research areas. Secondly, the ontology can be easily
updated to include novel research areas simply by adding the most recent publications
to the dataset and running Klink-2 over again. Conversely, human crafted classifications
cannot keep up with the evolution of the research domain and tend to age very quickly,
especially in rapidly changing fields such as Computer Science. A more comprehensive
discussion of the advantages of adopting an automatically generated ontology in the
scholarly domain can be found in [6].

The Springer Nature Classification for Computer Science is a three level classifica‐
tion, containing 76 categories characterizing both research fields (e.g., I23001 –
Computer Applications) and domains (e.g., I23028 - Computer App. In Social and

11 http://www.acm.org/about/class/2012.
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Behavioral Sciences). It is an internal company classification, which is used in order to
categorize proceedings, books, and journals. This helps to appropriately channel the
contents. For instance, users browsing the Springer Nature website can retrieve all
contents on Computer Science or its sub-disciplines. These codes are also used in the
metadata describing the contents for third parties (libraries, bookshops).

We integrated CSO and SNC by means of 349 relationships, so that every SNC tag
is now associated to a set of related topics. For example, we mapped the systems and
data security category to topics such as Cryptography, Security Of Data, Network
Security, Computer Crime, Data Privacy and so on.

The mapping was performed in three phases. First, we used Klink-2 to generate
automatically a number of relatedEquivalent and skos:broaderGeneric relationships
between the SN label and the topics. Then, we manually cleaned these links and created
additional ones by analysing the 158 topics at the first two levels of the CSO ontology.
Finally, these links were revised by a Springer editor with extensive experience in using
SNC for classifying conference proceedings.

Algorithm 1. The STM algorithm 

2.2 The STM Approach

The STM approach for generating topics and tags associated to a set of publications
consists of three phases:

– Topic extraction, in which the metadata of the publications are analysed and each
publication is mapped to a list of semantic topics in the CSO ontology;

– Topic selection, in which a greedy set-covering algorithm is used to reduce the topics
to a user-friendly number, usually 10–20;

– Tag inference, in which the selected topics are used to infer a number of SNC tags,
using the mapping between CSO ontology and SNC.
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Figure 3 illustrates the steps of STM for inferring significant topics. The first panel
shows the keywords provided by the authors, the second one shows the set of enriched
keywords that include also the keywords extracted from titles and abstracts, the third
one shows the output taxonomy.

In the next sections we will discuss the details of each step.

2.2.1 Topic Extraction
In the first step, STM extracts the title, the abstract, the list of keywords and the chapter
name from the XML denoting each publication. It analyses the text and extracts frequent
keyphrases and the terms that coincide with the topic labels in the CSO ontology. The
publication ID is then associated to a set of keywords which include these terms, the
original keywords, and optionally some keywords suggested by the editor.

Fig. 3. Example of author keywords, enriched keywords and topics from CSO.

In this phase, the proceedings can also be represented as a distribution of keywords,
as shown in the second panel of Fig. 3. However, this representation is usually very
noisy: many terms are redundant and consist of different labels for the same topics and
the keyword distribution contains a long tail of terms associated with a single paper. The
editors who tried STM (see Sect. 3.1) usually considered this representation unfriendly
and very time consuming to browse.

For this reason, STM uses the CSO ontology to infer a list of semantic topics from
these keywords. To do so it normalizes the terms, by eliminating plural, genitive forms
and common affixes and postfixes [8], and then it identifies the terms with the same label
as the ontology concepts and associates to each publication tagged with them also all
the relevant super areas. For example, a publication associated with the term SPARQL
will be tagged with higher-level topics such as RDF, Linked Data, Semantic Web, World
Wide Web, and Computer Science. Finally, it generates the topic distribution of all input
publications.
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The keywords for which it was not possible to find a related concept in the ontology
are not included in the topic distribution, unless the user checks the “Include keywords
not in the ontology” checkbox in the GUI (see Sect. 2.3).

The drawback of this method is that an erroneous semantic connection in the
ontology can sometimes lead to inferring a wrong topic and the error will then be propa‐
gated to the higher-level topics. For example, if the ontology were to state that Genetic
Algorithms is a sub area of Genetics, the resulting high-level topics may include Biology,
even if the proceedings do not address Natural Sciences at all. Although Klink-2 is
actually able to infer semantic relationships with very high precision (>90 %, see [6]),
incorrect links may still be present. However, the probability of having multiple incorrect
links to the same node is quite low and the probability of multiple errors regarding all
nodes in the path to the roots is extremely low. We thus addressed this problem by
discarding from the topic distribution any research area which is not supported by at
least n direct sub-topics. This prevents isolated errors in the lower levels of the ontology
from easily propagating to the upper nodes. However, as n grows, the result set becomes
smaller, since many high-level topics may be discarded. Hence, in a realistic setting it
makes sense to adopt either n = 1, equivalent to switching off this functionality, or n = 2,
potentially sacrificing recall for precision. We labelled this functionality ‘robust mode’.
Editors preferred n = 2 as default, but they also have the option of turning it off in the
user interface.

The output of this process is a large set of topics associated with the relevant papers.

2.2.2 Topic Selection
The list of topics returned in the previous step is richer and more human-friendly than
the term distribution, but in most cases will still suffer from prolixity, being composed
of a very large number of topics. For this reason, we apply a greedy covering-set algo‐
rithm with the aim of selecting a smaller set of topics that could be easily handled by
Springer Nature editors.

Since we want a comprehensive representation of the corpus given as input, which
will include both high level fields and very granular research areas, we run the algorithm
separately on the set of topics at each level of the ontology. The level of a topic is
computed as 1 + the shortest path from the Computer Science root to the topic in ques‐
tion. For example, high-level fields, such as Human Computer Interaction and Artificial
Intelligence, are at level 2 in the ontology, while more specific areas, such as Gesture
Recognition and Speech Analysis, are at level 4. The maximum number of topics to be
selected at any level depends on the granularity preferred by the user (see Sect. 2.3). The
keywords that were not mapped to the ontology are considered in a level of their own.

The greedy covering-set algorithm assigns an initial weight equal to 1 to each paper,
and at each iteration selects the topic which covered the publications with the highest total
weight and reduces the weight of every covered paper (by a 0.5 factor in the prototype).

We chose this solution because the simplest version of the greedy set-covering algo‐
rithm [9], which selects at each iteration the category which covers the largest number
of uncovered items, did not work well in this domain. In fact, the proceedings of a
conference tend to be related to a number of topics that are often at the intersection of
two or more high level topics. For example, in a Semantic Web conference the topics
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Artificial Intelligence and Ontology will probably cover a very similar set of publica‐
tions. Hence, an algorithm that simply selects the topic that covers the larger number of
uncovered publications may discard one of them. In addition, when a prominent research
area has multiple super topics, the algorithm may exclude all its super topics but one.
Our implementation solves this problem, by allowing topics associated to already
covered publications to be chosen when they appear in enough papers to be significant.

The output of the set-covering algorithm depends on the maximum number of topics
for each level and the robust mode factor, and can be further filtered by defining a
minimum number of publications that a topic should cover to be taken into consideration.
The user can control these settings by switching the ‘granularity level’ in the GUI
between 1 and 5. Each granularity level is associated to a number of settings that will
yield a more succinct or richer topic characterization. A granularity level of 1 will result
in very few high level topics, while a granularity of 5 will result in a very long and
comprehensive list of the topics in the proceedings.

In some cases, an unusual input, such as a book with few chapters or associated
keywords, may produce very few topics when using the normal granularity settings. For
this reason, STM uses by default a mechanism for adjusting the settings to the input. It
checks that the output meets some minimal requisites in terms of number of topics and
number of covered publications and, if this is not the case, it automatically changes the
granularity settings and re-runs the topic selection process. This modality can be disabled
by changing manually the granularity or deselecting the ‘automatic settings’ checkbox
in the user interface.

The result of the summarization process can either be represented as a plain list or
a taxonomy of topics. The second solution makes it easier to understand the context of
each topic and why each topic was inferred; it is therefore used as default. In both cases
the topics are associated to the number of papers they cover and, optionally, they are
annotated with the weight computed by the set-covering algorithm.

2.2.3 Tag Inference
In the final step, STM uses the mapping between the SNC and CSO to infer the SNC
tags. It does so by inferring each tag that subsumes one of the selected topics according
to the previously discussed mapping. For example, if the Cryptography topic was yielded
by the previous step, STM will infer the tags ‘I15033 - Data Encryption’ (at the third
level of SN Computer Science Classification), ‘I15009 - Data Structures, Cryptology
and Information Theory’ (second level) and ‘I00001 - Computer Science, general’
(root). It then associates to each tag the total number of publications covered by the
associated topics, so as to help the editor to assess how representative it is.

2.3 User Interface

Figure 1 shows the user interface of STM. Using the pane on the left, the user can upload
the metadata, input some additional keywords and customise different settings, while
the pane on the right displays the output of the process.
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The interface was iteratively improved according to the feedback of experienced
Springer Nature editors. In particular, the editors explained that they need a flexible tool
for investigating the proceedings and for producing different kinds of annotations, rather
than an automatic pipeline for annotating books. Hence, STM offers two kinds of
options: those for investigating the output and those for modifying it according to the
editor’s needs.

The editors can control the outcome by changing the granularity of topics/tags, the
metric used to order them (e.g., number of covered papers, the weight assigned by the
set-covering algorithm) and the visualization style (tree list or plain list). The most used
setting is the granularity value, which goes from 1 to 5 (default is 3) and, as discussed
in Sect. 2.2.2, allows users to choose how comprehensive should be the classification.
It is mostly used to ‘zoom’ into the topic taxonomy, especially when the editor suspects
that some significant topics may have been left out by the default visualization. In addi‐
tion, the editors can choose to allow in the classification also frequent keywords that
could not be mapped to the CSO ontology. This functionality allows STM to take in
consideration also terms outside the Computer Science field or terms that are not strictly
research areas, but may be important for assessing the content of a book, such as
“commercial applications” or “empirical evaluation”. The output becomes noisier, but
potentially more informative.

The main tool for exploring a proceedings book and assessing the quality of the
classification is the advanced analytics functionality, which shows (1) the title of each
paper/chapter, (2) the list of keywords and the percentage of publications which are not
covered by the produced classification, and (3) the title and ID of each paper and its
associated list of keywords and topics. Figure 4 shows a detail of its output. The list of
uncovered terms is particularly useful since it reveals how complete is the representation
yielded by STM. The advanced analytics functionality is often used when editors find
out that a topic that they would have normally assigned to a conference does not appear
in the output. In many occasions, the resulting analysis lead to the discovery that a topic,
which used to be prominent, was not so popular anymore in the conference under anal‐
ysis or that some topics mentioned in the call for papers were almost absent in the
proceedings.

Similarly, sometimes editors find some topics in the output that seem inconsistent
with their previous experience of the conference and need a way to assess them. For this
reason, we included the show explanation checkbox, which displays near each topic the
full list of terms used to infer it and how many papers they cover. For example, this
functionality could show that the topic Semantic Web was inferred because the system
found the terms “linked data”, “semantic similarity”, “RDF” and so on. During the tests
conducted in Springer Nature, the editors used often this functionality and in most cases
they discovered that the proceedings actually contained a number of terms that suggested
the emergence of that topic. They were able to further confirm this intuition by examining
the related papers with the advanced analytics functionality. In addition, the user can
also inspect the full keyword distribution extracted from the text of the proceedings by
checking the show input keyword distribution checkbox.

Finally, the users can configure more complex settings by means of the ‘expert
setting’ menu, which allows them to switch on and off: (1) the order of the topics
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according to the ontology level, (2) the text-mining from titles, abstracts and SN meta‐
data, (3) the robust mode, (4) the automating setting, and (5) the suggestion of SNC tags.

3 Evaluation

3.1 User Study

We conducted a qualitative study on STM to assess the quality of its output, the clarity
of the explanations, the impact on the editor workflows and the usability of the user
interface12. To this end, we organized individual sessions with eight experienced SN
editors. We introduced STM and its main functionalities for about 15 min and then asked
them to use the application for classifying a number of proceedings in their fields of
expertize for about 45 min. Every session was recorded to further analyse their interac‐
tions with the GUI, as well as their reactions and feedbacks. After the hands-on session
the editors filled a three-parts survey about their experience. The first part assessed the
editor background and expertise, the second part included 8 open questions, and the third
part was a standard SUS questionnaire to assess the usability of the application. A demo
version of STM used in this evaluation is available at http://rexplore.kmi.open.ac.uk/
STM_demo. The reader can try it by using the ‘Example Springer Nature Proceedings’
option, which allows testing the application by using six default SN proceedings
covering a variety of distinct fields.

On average, the users had 13 years of experience as editors, with seven out of eight
of them having at least 5 years. All of them stated to have extensive knowledge of the
main topic classifications in their fields and seven an extensive knowledge of Springer
Nature Classification. Four of them considered themselves also experts at working with
digital proceedings. The expertise of the editors covered a variety of Computer Science

12 The data collected for the evaluation and the publication coverage study are available at http://
technologies.kmi.open.ac.uk/rexplore/iswc2016/stm/.

Fig. 4. Fragment of the advanced analytics section.
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topics, including but not limited to Theoretical Computer Science, Computer Networks,
Software Engineering, HCI, AI, Bioinformatics, and Security. The open question survey
consisted of five questions about the strengths and weaknesses of STM and three about
the quality of the results. We will first summarize the answers to the first set of questions.

Q1. How do you find the interaction with the STM interface? Five editors
considered it “good and straightforward” to use, two of them found some minor issues,
and one was neutral about it. The issues included the need to re-click the ‘submit’ button
every time the user changed a setting and the fact that the checkboxes did not have
explanatory tooltips.

Q2. How effectively did STM support you in classifying books/publications?
Three editors stated that the application had an extremely positive effect on their work,
commenting that it was “really effective”, “very good, it saved me lots of time” and “it
helps a lot”. Four of them assessed it positively, stating it worked well for them and the
result looked correct, and one was neutral. When asked to assess the accuracy of the
results the estimates varied between 75 % and 90 %.

Q3. What were the most useful features of STM? The most useful features
included: the ability to produce taxonomies of semantic topics (7 editors), the mapping
to the SNC tags (5), the ability to explore topics at different granularities (2) and the
speed of the analysis (1).

Q4. What are the main weaknesses of STM? The main issues suggested by the
editors were: the scope is limited to the Computer Science field (2 editors), the occasional
noisy results when examining books with very few chapters/keywords (2), and the wrong
capitalization of some topics (1). Two editors also commented that they would like to
use STM on the full text of publications, while at the moment the system can only process
SN metadata.

Q5. Can you think of any additional features to be included in STM? The
suggested features were: being able to produce analytics about the evolution of a venue
or a journal in terms of significant topics (4 editors); allowing users to find the most
significant proceedings for a certain topic (3); improving the SNC (1); and mapping the
topic ontology also to the ACM classification (1).

We mapped the three remaining questions on a 1 to 5 scale, where 1 is the most
negative assessment and 5 the most positive. Figure 5 shows the quality of SNC tags
and topics, the usability (according to the SUS statement “I thought the system was easy
to use”), and the willingness of the users to use the application regularly for their work.
These features obtained a similar average score: quality of SNC tags 4.0 ± 0.8, quality
of topics 3.9 ± 0.8, usability 4.0 ± 0.5, and willingness to use it regularly 4.0 ± 0.8.
Interestingly, the quality of the topics was considered generally higher by the three
editors working exclusively with proceedings (4.7 ± 0.6).

The SUS questionnaire confirmed the good opinion of the editors, scoring a 77/100
(the average system scores a 68), which places STM in the 80 % percentile rank in term
of usability.
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3.2 Assessing Publication Coverage

Editors need a topic summarization that is succinct but covers most of the publications.
We thus performed a study about how the semantic topics produced by STM compare
with keywords in terms of coverage.

To this end, we selected a dataset of 200 SN proceedings and generated for each of
them three sets of categories: (1) the keywords defined by the authors, originally asso‐
ciated with each publication, (2) the enriched set of keywords, which also included
additional terms extracted from abstracts, titles, and SN metadata (as discussed in
Sect. 2.2.1), and (3) the semantic topics produced by STM. Then, for each proceedings
book, we computed the average number of papers covered by each member of the first
n-th category, using the three sets. We used the average coverage rather than the total
coverage, since the latter grows monotonically with the number of descriptors and thus
the top level categories (e.g., Computer Science), that often cover most of the papers,
would obscure the more fine-grained ones.

Table 1 shows the average result across the proceedings. The topics produced by
STM performed significantly better than the enriched keywords (the Wilcoxon test for
two correlated distributions yielded p < 0.0007), which in turn outperformed the author
keywords (p < 0.0007). Hence, we can conclude that while extracting keywords from
text allows for a more representative set of categories, adding semantic to this repre‐
sentation produces a much more complete set of categories.

Table 1. Average number of papers covered by the first n descriptors.

1 2 3 4 5 10 20 30
Author keywords 2.83 2.42 2.18 2.04 1.92 1.57 1.33 1.25
Enrich. keywords 8.27 6.95 6.11 5.56 5.14 3.95 2.92 2.44
Topics 25.26 21.08 18.83 17.19 15.93 12.03 8.62 6.93

Fig. 5. STM performance according to the editors (labelled 1–8).

Automatic Classification of Springer Nature Proceedings 395



4 Plans for Large Scale Deployment

While the tool was very well received in Springer Nature, making it part of the daily
workflow of the editors requires additional steps. Before outlining these, let us take a
closer look at the context of the Computer Science proceedings in Springer Nature. Every
year Springer Nature publishes about 1,200 proceedings volumes. Almost 800 of these
are published in Computer Science, more specifically in the Lecture Notes in Computer
Science (LNCS) series family. This includes LNCS itself, its subseries Lecture Notes
in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI), as well
as more recently launched series, such as Lecture Notes in Business Information
Processing (LNBIP), and Communications in Computer and Information Science
(CCIS). Last but not least, there are also two series in cooperation with the IFIP and
ICST/EAI societies (IFIP-AICT and LNICST, respectively).

In order to deploy STM at such a large scale (classifying 800 proceedings/year) we
have to connect STM with existing production systems. In an ideal case, STM could
receive inputs already from the conference submission system used by the conference.
This could happen during the preparation of the material for publication by the confer‐
ence chairs. In practice, however, the diversity of the submission systems and the lack
of commonly accepted standards used beyond the Semantic Web community makes it
difficult to expect each of the existing conference management systems to adopt a
standard for exporting the data about abstracts, titles, and keywords required by STM.
Therefore, we are going to explore the integration of STM with the Springer Nature’s
own submission system, OCS (Online Conference Service13).

For the proceedings not using OCS, the data required for STM will be provided
during the production process, after the metadata about individual papers have been
finalized and before the proceedings are published. Depending on how STM performs
and the overall metadata strategy of Springer Nature, STM might be used for annotating
already published contents (roughly 10,000 proceedings volumes). In combination with
the data already available at the Springer LOD portal,14 this would allow editors to
analyse the evolution of conference topics.

We are also looking into how STM could be used to improve the existing Springer
Nature Classification. One possible way of approaching this problem would be to set up
periodic updates of the SNC based on the most recently published material. During such
updates new categories could be added, corresponding to the emerging topics, while the
categories corresponding to disappearing topics could be deprecated.

Finally, we also plan to expand the scope of the research area ontology to fields other
than Computer Science, to support the classification of books and proceedings in other
domains as well.

13 https://ocs.springer.com/ocs/.
14 http://lod.springer.com.
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5 Related Work

STM identifies research areas from a corpus of metadata by using an automatically
generated ontology of topics. In this regard, it can be considered a classic name-entity
linking approach. In particular, many historical approaches focus on linking entities to
general knowledge bases, such as Wikipedia or DBpedia. For example, Mihalcea and
Csomai [10] and Bunescu and Pasca [11], introduced some of the first approaches for
mapping text to Wikipedia pages. Since then, we saw the creation of a number of systems
for name-entity linking which exploited DBpedia or Wikipedia, including DBPedia
Spotlight [12], Microsoft Entity Linking15, BabelFly [13], Illinois Wikifier [14], KORE
[15], AGDISTIS [8] and many others. DBpedia Spotlight is also used by the Klink-2 [6],
the algorithm which generated the CSO ontology, for linking keywords to DBpedia
entities and informing the identification of semantic relationships between research
topics. However, using directly DBpedia as source for research areas presents some
issues, since the research fields taxonomy in DBpedia is quite coarse-grained: it does
not contain some of the most recent or specific topics and lacks a number of links between
them. Another alternative is the Machine Aided Indexer16, a rule-based document
indexer that can map the full text of a document to a taxonomy of topics. However, this
method requires the manual definition of a number of rules for the mapping.

Similarly to STM, a number of methods for topic detection extract topics from a
corpus of documents. The best-known technique is the Latent Dirichlet Allocation
(LDA) [16], which considers each document as a distribution of topics and each topic
as a distribution over words. This approach is applicable to any kind of documents and
has been influential in the topic detection community in the last decade. For this reason,
we saw the emergence of a number of solutions tailored to the scholarly domain. For
example, He et al. [17] introduced an approach which makes use of the citation graph
while the Author-Conference-Topic (ACT) model used by AMiner [18] exploits also
information about authors, conferences and journals. However, LDA and similar
methods are a good solution mainly in scenarios where a very large numbers of docu‐
ments need to be classified, there is no good domain knowledge, fuzzy classification is
acceptable and it is not important for users to understand the rationale of a classification
or customise the output. None of these tenets apply to our case.

A number of digital libraries (e.g., ACM, Springer Nature, Scopus17) and academic
search engines (e.g., Microsoft Academic Search18) rely on taxonomies of topics for
supporting the classification of research publications. STM uses a similar solution by
adopting the CSO ontology. Indeed, ontologies of research topics have proved to be very
useful to enrich semantically a number of analytics models [7], as well as supporting
trend detection [19] and community detection [20, 21].

15 https://www.microsoft.com/cognitive-services/en-us/entity-linking-intelligence-service.
16 http://www.dataharmony.com/services-view/mai/.
17 https://www.elsevier.com/solutions/scopus.
18 http://academic.research.microsoft.com/.
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6 Conclusions

In this paper, we have presented Smart Topic Miner, a novel Semantic Web application
designed to assist Springer Nature editors in classifying conference proceedings. The
evaluation, performed with a number of experienced Springer Nature editors, showed
that STM produces accurate and useful results. In particular, the semantic model on
which STM builds was considered very helpful since it allows the editors to obtain a
more concise representation, which can be easily analysed. A key lesson learned during
the STM development regards the critical value of producing human-friendly explana‐
tions and the value of an explicit semantic representation for supporting this task.

We are planning to integrate the STM tool into Springer Nature workflows, in
particular those used for publishing Computer Science proceedings. The use of such
controlled topic vocabulary will improve discoverability and navigation of the contents
of Springer Nature proceedings, as well as enable new applications. In addition, STM
could be extended to indicate the emergence of new topics, as well as the fading of some
traditional ones. Finally, we also plan to explore the possibility of using STM for directly
supporting authors in defining the set of topics which best describe their paper.

Acknowledgements. We would like to thank the Springer Nature editors for assisting us in the
evaluation of STM.
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