
Advances in Intelligent Systems and Computing 511

Jan Janech
Jozef Kostolny
Tomasz Gratkowski Editors

Proceedings of the 2015
Federated Conference on
Software Development
and Object Technologies

Advances in Intelligent Systems and Computing

Volume 511

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Advances in Intelligent Systems and Computing” contains publications on theory,
applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually
all disciplines such as engineering, natural sciences, computer and information science, ICT,
economics, business, e-commerce, environment, healthcare, life science are covered. The list
of topics spans all the areas of modern intelligent systems and computing.

The publications within “Advances in Intelligent Systems and Computing” are primarily
textbooks and proceedings of important conferences, symposia and congresses. They cover
significant recent developments in the field, both of a foundational and applicable character.
An important characteristic feature of the series is the short publication time and world-wide
distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156

Jan Janech • Jozef Kostolny
Tomasz Gratkowski
Editors

Proceedings of the 2015
Federated Conference
on Software Development
and Object Technologies

123

Editors
Jan Janech
Faculty of Management Science and
Informatics

University of Zilina
Zilina
Slovakia

Jozef Kostolny
Faculty of Management Science and
Informatics

University of Zilina
Zilina
Slovakia

Tomasz Gratkowski
Institute of Metrology, Electronics
Zielona Góra
Poland

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-3-319-46534-0 ISBN 978-3-319-46535-7 (eBook)
DOI 10.1007/978-3-319-46535-7

Library of Congress Control Number: 2016959397

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The second annual international scientific conference SDOT 2015 (Federated
Conference on Software Technologies and Object Technologies) was held at the
premises of the University of Žilina, Faculty of Management Sciences and
Informatics, Slovak Republic in November 19, 2015. The conference was estab-
lished as a joint event of two predecessor local conferences—Software
Development (formerly Programming) and Objects conferences.

Let us briefly recall their history. Previously for a longer time both of them were
part of Software Development conference, which reached its 41st year this year;
however, it should be recalled that Software Development Conference is directly
connected to its predecessor—Programming Conference. The Programming
Conference reached top with maximum participants between 1985 and 1995. The
years 1995 to 2005 were associated with the conversion of the original
practice-oriented conference, i.e. from IT data centers attended mainly by experts to
academic conference attended mostly by scientists and Ph.D. students from uni-
versities. In such form this continued until 2013, and then the joint conference
SDOT began.

Objects Conference was founded in 1996. The topics of this conference were
directly associated with the beginning and development of object-oriented pro-
gramming. For the first seven years, this conference was held at the premises of the
Live Sciences University—Prague, with interested participants from both academia
and industry. Since 2003, the conference has been organized by organizers from
various universities, both in the Czech Republic and Slovakia.

This year's host of SDOT conference was the University of Žilina, Faculty of
Management Sciences and Informatics. Several factors can be considered as a great
success this year. First, the conference has become truly an international event both
in terms of the amount of foreign contributions and in terms of composition of
steering and scientific committees. Furthermore, the number of participants was
twice more than last year; hence, it was possible to select only high-quality
contributions.

Finally, I would like to thank the team of organizers from the University of
Žilina who worked under the direction of Ján Janech for the excellent preparation

v

of the conference and its organization. Also thanks to all others who contributed to
organizing the conference, particularly members of the steering and scientific
committees. I believe that all conference participants enjoy this year’s SDOT 2015
conference and that their participation in it will bring an inspiration in their sci-
entific and professional works.

On behalf of steering, scientific and organizing committees,

November 2015 Martin Molhanec
Chair of steering committee of SDOT 2015

vi Preface

Organization

Proceedings of the Federated Conference on Software
Development and Object Technologies 2015

November 19–20, 2015, Žilina, Slovakia

Organized by

vii

Under Patronage

Scientific Partners

Steering Committee of the Federated Conference on Software
Development and Object Technologies 2015

Chairman

Martin Molhanec Czech Technical University in Prague, Czech Republic

Members

Michal Bejček College of Information Management, Business
Administration and Law, Prague, Czech Republic

Ján Janech University of Žilina, Slovakia
Branislav Lacko Brno University of Technology, Czech Republic
Jan Voráček College of Polytechnics, Jihlava, Czech Republic

viii Organization

Scientific Committee of the Federated Conference on Software
Development and Object Technologies 2015

Chairman

Ján Janech University of Žilina, Slovakia

Members

Anna Bobkowska Gdańsk University of Technology, Gdańsk, Poland
Alena Buchalcevová University of Economics, Prague, Czech Republic
Vladimír Burčík Robert Morris University, USA
Jerzy Buriak State University of Applied Sciences in Elblag, Poland
Constantina

Costopoulou
Agricultural University of Athens, Greece

Alexandre Fonte School of Technology of the Polytechnic Institute
of Castelo Branco, Portugal

Hartmut Fritzsche Hochschule für Technik und Wirtschaft Dresden,
Dresden, Germany

František Huňka University of Ostrava, Czech Republic
Igor Jurisica University of Toronto, Canada
Wojciech Korneta PWSIP Lomza, Poland
Tomáš Kozel University of Hradec Králové, Czech Republic
Emil Kršák University of Žilina, Slovakia
Russell Lock Loughborough University, UK
Vojtěch Merunka Czech Technical University, Czech Republic
Boris Misnev Transportation and Communication Institute Riga,

Latvia
Paul Newton IBM Software Development, USA
Maria Ntaliani Technological Educational Institute of Sterea Ellada,

Greece
Artur Opalinski Gdańsk University of Technology, Gdańsk, Poland
Rudolf Pecinovský University of Economics, Prague, Czech Republic
Robert Pergl Czech Technical University in Prague, FIT,

Czech Republic
Tomáš Pitner Masaryk University, Brno, Czech Republic
Krešimir Pripužić University of Zagreb, Croatia
Jaroslav Ráček IBA CZ, s.r.o., Czech Republic
Karel Richta Czech Technical University in Prague, FEL,

Czech Republic
Tomáš Richta College of Polytechnics, Jihlava, Czech Republic
Victor Romanov Russian Plekhanov University of Economics, Russia
Radi Romansky Technical University of Sofia, Bulgaria
Petr Šaloun VŠB-Technical University of Ostrava, Czech Republic

Organization ix

Antonín Slabý University of Hradec Králové, Czech Republic
Václav Snášel VŠB-Technical University of Ostrava, Czech Republic
Michal Valenta Czech Technical University in Prague, FIT,

Czech Republic
Miroslav Virius Czech Technical University in Prague, FJFI,

Czech Republic
Michal Vopálenský College of Polytechnics Jihlava, Czech Republic
Kaloyan Yankov Trakia University, Stara Zagora, Bulgaria
Krzysztof Zieliński AGH Kraków, Poland

Scientific Committee of Workshop on Design and Analysis
of Embedded Systems

Chairman

Tomasz Gratkowski University of Zielona Góra, Poland

Co-chairmen

Michał Doligalski University of Zielona Góra, Poland
Jacek Tkacz University of Zielona Góra, Poland

Members

Grzegorz Borowik Warsaw University of Technology, Poland
Arkadiusz Bukowiec Orbis Software, UK
Luis Gomes Universidade Nova de Lisboa, Portugal
Wolfgang Halang University of Hagen, Germany
Zbigniew Huzar Wrocław University of Technology, Poland
Ka Lok Man Jiaotong-Liverpool University, China
Joao Monteiro University of Minho, Portugal
Ann Pławiak-Mowna University of Zielona Góra, Poland
Alfredo Rosado-Muňoz University of Valencia, Spain
Rybski Ryszard University of Zielona Góra, Poland
Bernd Steinbach Freiberg University of Mining and Technology,

Germany

x Organization

Organizing Committee of the Federated Conference on Software
Development and Object Technologies 2015

Chairman

Viliam Tavač University of Žilina, Slovakia

Members

Iveta Belošovičová University of Žilina, Slovakia
Miroslav Gábor University of Žilina, Slovakia
Tomasz Gratkowski University of Zielona Góra, Poland
Ján Janech University of Žilina, Slovakia
Jozef Kostolný University of Žilina, Slovakia
Emil Kršák University of Žilina, Slovakia
Matej Meško University of Žilina, Slovakia

Organization xi

Contents

IoT-Based Smart Monitoring System Using Automatic
Shape Identification . 1
Stanisław Deniziak, Tomasz Michno, and Paweł Pieta

Memory Analysis and Performance Modeling for HPC Applications
on Embedded Hardware via Instruction Accurate Simulation 19
Alexander Ditter, Dominik Schoenwetter, Anton Kuzmin, Dietmar Fey,
and Vadym Aizinger

Model Checking in Parallel Logic Controllers Design and Verification 35
Michał Doligalski, Jacek Tkacz, and Tomasz Gratkowski

Fuzzy Logic for Optimized Path Establishment in Optical Networks 54
Miroslav Dulik and Gabriel Cibira

Providing Extensible Mobile Services to Car Owners Based
on On-Board-Diagnostics . 65
Richard Hable and Gerhard Brugger

A New Architectural Design Pattern of Distributed Information
Systems with Asynchronous Data Actualization . 80
Patrik Hrkut, Ján Janech, Emil Kršák, and Matej Meško

The Economics and Data Whitening: Data Visualisation 91
Radek Hrebik and Jaromir Kukal

Kopenograms and Their Implementation in BlueJ 102
Marek Chadim and Rudolf Pecinovský

Simulation of Hydrological Processes by Optimization Algorithm
Using Continuous Function . 110
Martin Chlumecky

xiii

http://dx.doi.org/10.1007/978-3-319-46535-7_1
http://dx.doi.org/10.1007/978-3-319-46535-7_1
http://dx.doi.org/10.1007/978-3-319-46535-7_2
http://dx.doi.org/10.1007/978-3-319-46535-7_2
http://dx.doi.org/10.1007/978-3-319-46535-7_3
http://dx.doi.org/10.1007/978-3-319-46535-7_4
http://dx.doi.org/10.1007/978-3-319-46535-7_5
http://dx.doi.org/10.1007/978-3-319-46535-7_5
http://dx.doi.org/10.1007/978-3-319-46535-7_6
http://dx.doi.org/10.1007/978-3-319-46535-7_6
http://dx.doi.org/10.1007/978-3-319-46535-7_7
http://dx.doi.org/10.1007/978-3-319-46535-7_8
http://dx.doi.org/10.1007/978-3-319-46535-7_9
http://dx.doi.org/10.1007/978-3-319-46535-7_9

Cache Module for the Dictionary Writing System 122
Kamil Barbierik, Martin Bodlák, Zuzana Děngeová, Vladimír Jarý,
Tomáš Liška, Michaela Lišková, Josef Nový, and Miroslav Virius

Control Process Management by Means of Evolutionary Algorithm 133
Roman Kielec and Michał Doligalski

On Parallel Versions of Jumping Finite Automata 142
Radim Kocman and Alexander Meduna

SD2DS-Based Datastore for Large Files . 150
Adam Krechowicz, Arkadiusz Chrobot, Stanisław Deniziak,
and Grzegorz Łukawski

Temporal Context Manager . 169
Michal Kvet and Karol Matiaško

Scalable Distributed Datastore for Real-Time Cloud Computing 193
Maciej Lasota, Stanisław Deniziak, and Arkadiusz Chrobot

Application of Statistical Classifiers on Java Source Code. 208
Matej Mojzes, Michal Rost, Josef Smolka, and Miroslav Virius

Contribution to Teaching Programming Based on “Object-First”
Style at College of Polytechnics Jihlava. 219
Marek Musil and Karel Richta

The Survey of Current IPFRR Mechanisms . 229
Jozef Papán, Pavel Segeč, Peter Palúch, Ľudovít Mikuš,
and Marek Moravčík

Synthesis of Low-Power Embedded Software Using Developmental
Genetic Programming . 241
Stanisław Deniziak, Leszek Ciopinski, and Grzegorz Pawinski

BlueJ as the NetBeans Plugin. 264
Rudolf Pecinovský

Integration of Inertial Sensor Data into Control
of the Mobile Platform . 271
Rastislav Pirník, Marián Hruboš, Dušan Nemec, Tomáš Mravec,
and Pavol Božek

Measuring Maintainability of OO-Software - Validating
the IT-CISQ Quality Model . 283
Johannes Braeuer, Reinhold Ploesch, and Matthias Saft

Interface-Based Software Requirements Analysis 302
Aziz Ahmad Rais and Rudolf Pecinovský

xiv Contents

http://dx.doi.org/10.1007/978-3-319-46535-7_10
http://dx.doi.org/10.1007/978-3-319-46535-7_11
http://dx.doi.org/10.1007/978-3-319-46535-7_12
http://dx.doi.org/10.1007/978-3-319-46535-7_13
http://dx.doi.org/10.1007/978-3-319-46535-7_14
http://dx.doi.org/10.1007/978-3-319-46535-7_15
http://dx.doi.org/10.1007/978-3-319-46535-7_16
http://dx.doi.org/10.1007/978-3-319-46535-7_17
http://dx.doi.org/10.1007/978-3-319-46535-7_17
http://dx.doi.org/10.1007/978-3-319-46535-7_18
http://dx.doi.org/10.1007/978-3-319-46535-7_19
http://dx.doi.org/10.1007/978-3-319-46535-7_19
http://dx.doi.org/10.1007/978-3-319-46535-7_20
http://dx.doi.org/10.1007/978-3-319-46535-7_21
http://dx.doi.org/10.1007/978-3-319-46535-7_21
http://dx.doi.org/10.1007/978-3-319-46535-7_22
http://dx.doi.org/10.1007/978-3-319-46535-7_22
http://dx.doi.org/10.1007/978-3-319-46535-7_23

Object Metamorphism: Type-Safe Modeling of Protean Objects
in Scala . 311
Zbyněk Šlajchrt

Using Interactive Card Animations for Understanding of the Essential
Aspects of Non-recursive Sorting Algorithms . 336
Ladislav Végh and Ondrej Takáč

An Incremental Approach to Semantic Clustering Designed
for Software Visualization . 348
Juraj Vincúr and Ivan Polášek

Feature Extraction Methods in JEM-EUSO Experiment 362
Michal Vrabel, Jan Genci, Jozef Vasilko, Pavol Bobık,
Blahoslav Pastircak, and Marian Putis

Author Index . 385

Contents xv

http://dx.doi.org/10.1007/978-3-319-46535-7_24
http://dx.doi.org/10.1007/978-3-319-46535-7_24
http://dx.doi.org/10.1007/978-3-319-46535-7_25
http://dx.doi.org/10.1007/978-3-319-46535-7_25
http://dx.doi.org/10.1007/978-3-319-46535-7_26
http://dx.doi.org/10.1007/978-3-319-46535-7_26
http://dx.doi.org/10.1007/978-3-319-46535-7_27

IoT-Based Smart Monitoring System Using
Automatic Shape Identification

Stanisław Deniziak, Tomasz Michno, and Paweł Pieta(&)

Department of Information Systems Division of Computer Science,
Kielce University of Technology, Kielce, Poland

{s.deniziak,t.michno,p.pieta}@tu.kielce.pl

Abstract. In conventional monitoring systems video previews from stationary
cameras are overseen only by a human supervisor, who may easily overlook
alarming events recorded by a camera. Because surveillance system must be
reliable, its capabilities can be improved by applying computer vision algo-
rithms to a video signal in order to detect objects in an automated fashion. Also
its autonomy can be extended by the use of mobile robots capable of monitoring
tight and occluded areas and by the use of smart cameras with integrated
embedded systems. In this paper we introduce an architecture of the autonomous
monitoring system based on object shape detection. Our approach is con-
formable with the concept of Internet of things. It consists of the set of smart
objects with video sensors, controlled by the Shape Identification Cloud. Our
work is aimed at building the real-time system efficient at reliable recognition of
objects on the basis of their approximate shape and with the option to be used as
a web service in a cloud. To monitor the environment the system uses mobots
equipped with video sensors as well as surveillance cameras capable of remote
position control. For object identification task we use the Query by Shape
(QS) method which decomposes objects into simple graphical primitives like
lines, circles, ellipses etc. and then it identifies them in a shape database.

1 Introduction

Traditional monitoring systems mainly consist of a large number of video cameras
deployed within an entire environment. These cameras are wired to a central control
room where previews from all of them are available for inspection by an operator who
supervises such a system. But the process of analyzing simultaneously multiple video
feeds in real-time is a very challenging and discouraging task for a human being. The
operator might easily overlook an important event recorded by a camera due to tem-
porary distraction or inattention caused by an external factor, exhaustion, or simply
because of concentration on the image from a wrong camera etc. The system con-
structed that way, with the human supervisor trusted with a task of identification of
alarming events, might be highly unreliable.

Let’s consider a few methods of improving monitoring system capabilities. First of
all, computer vision algorithms can be applied to a video signal. Individual video
frames can be analysed by means of digital image processing and a fully automated
detection of new objects in the environment can be implemented (e.g. intruders,

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_1

burglars, hazardous events such as fire etc.). For every detected object an alert is sent to
the operator to his terminal, which enormously simplifies and enhances his work. The
whole system becomes significantly more reliable, provided it is well calibrated and
algorithms used for object detection and recognition are of high precision. Secondly, in
order to extend autonomy of the monitoring system, different kinds of sensors and
devices can be used, for example mobile robots and smart cameras. The high cost of the
system and its maintenance comes mainly from the amount of hardware needed to be
deployed in the environment (e.g. cameras and wiring), especially when the area being
monitored is cluttered, which would require a significant number of conventional
cameras to be employed. Instead of installing more cameras to ensure that the envi-
ronment is left without blind spots, which would considerably increase the price of the
system, the mobots can be used to substantially expand system ability to detect objects
in tight areas. Mobile robots equipped with video sensors can be sent out on patrol, and
because they can move freely through the environment, they can drive directly to those
occluded areas and perform object detection on-the-go. Then they can communicate
their findings to the control system through a wireless network. Another example of
distributed processing is the use of smart cameras which are equipped with integrated
embedded systems capable of automatic motion detection.

Lastly, the monitoring system might also be implemented as a web service in a
cloud, which entails several new capabilities. Such a system could be used simulta-
neously by many different users from several remote locations through a simple web
interface. For instance, it could be utilized by smaller companies which own some
imaging devices capable of monitoring the environment, but do not necessarily possess
nor want to invest at the time in the infrastructure needed to build a proper surveillance
system with object detection and identification modules. In addition, the cloud provides
easy scalability of the system, also in terms of the cost. Moreover, web interface can
also be implemented as an application available from a mobile device.

The monitoring system presented in this paper is a generalization of the system
proposed in [1] and it is focused on services in the cloud for Internet of things. Also this
paper builds upon our previous work regarding shape identification problem [2].

The paper is organized as follows: in Sect. 2 the research done in the area of
autonomous surveillance systems as well as object detection and querying of multi-
media databases is presented. Section 3 summarizes the goals of our work and high-
lights the main characteristics of the proposed system. Section 4 introduces a concept
of the autonomous monitoring system and the Shape Identification Cloud. Section 5
describes the main idea of our approach regarding the object recognition task and
Sect. 6 presents the experimental results of our method. Section 7 concludes the paper
and indicates further development directions.

2 Related Works

During the last two decades the task of building and assessing performance of auton-
omous surveillance systems has been an active area of research involving many sci-
entists. The continuous increase in computational power has allowed them to deal with
the problem of designing reliable monitoring systems through the use of more and more

2 S. Deniziak et al.

advanced computer vision algorithms. An overview of technical development of
intelligent surveillance systems is presented in the work done by M. Valera and S.A.
Velastin in [3], another review is shown in the paper of P. Kumar et al. in [4]. The first
generation of monitoring systems consisted of analogue CCTV (closed-circuit televi-
sion) cameras placed in several remote locations and connected to a set of monitors
located in a single control room. Human supervisor’s role was only limited to investi-
gating events which have already happened, provided they have been recorded. The
invention of digital cameras and high performance computers have allowed to construct
the second generation systems. Computer vision algorithms were applied to analyze
individual video frames and semi-automatic systems, capable of real-time proactive
detection and tracking of alarming events, were developed. The third generation focused
on improving precision by acquiring more accurate information from multiple different
sensors (e.g. fixed, active and smart cameras, mobile robots etc.) and integrating it by
means of the technique known as Data Fusion. It was also aimed at the design of huge,
distributed and heterogeneous systems for vast environments. Because of a fully
automated understanding of a video signal, as well as distribution of processing
capacities over the network and the use of embedded signal processing devices, a single
human operator was finally able to efficiently supervise such large and complex areas.

Work done by A. Hampapur et al. in [5] characterizes three types of architectures
for smart monitoring systems. The first one, which was described there, is the Basic
Smart Surveillance Architecture (BSSA). A video signal from fixed video cameras is
digitally recorded by the Digital Video Recorder and simultaneously processed by the
Smart Surveillance Server, producing a rich video index and real-time alerts (which
types and parameters are user configurable). The cameras are wired to a central location
because all processing is centralized. The second type of the monitoring system is the
Active Smart Surveillance Architecture (ASSA). It extends the previous one by adding
the Active Camera Server which investigates images from active cameras. It not only
tries to understand the situation in the scene, but it also attempts to selectively pay more
attention when and where it is needed. Every time an event of interest is detected,
Active Camera Server is able to reposition (move or zoom) active cameras in order to
monitor it closely. The third characterized architecture is the Distributed Smart
Surveillance Architecture (DSSA). In order to minimize the cost of system installation
and its infrastructure, smart cameras can be deployed in the environment. They can
analyze a video signal with an on-board embedded system and are able to communicate
with a Distributed Camera Coordinator through a wireless network. Substantial cost
savings come from reduced components needed to build the system, i.e. less wiring
required to transfer video signals to the main server. A large number of examples of
commercial monitoring systems are depicted in [3, pp. 5–9].

Building blocks of an autonomous surveillance system and functions that they
perform are characterized in [3–6]. Video processing pipeline can be decomposed into
several main components:

1. object detection,
2. object recognition,
3. object tracking,
4. behavior and activity analysis.

IoT-Based Smart Monitoring System Using Automatic Shape Identification 3

Object detection can be further fragmented into more specific, specialized parts:

1. data fusion,
2. background modelling,
3. foreground/background (FG/BG) detection,
4. object extraction.

Workload analysis of a video monitoring system performed in [6] by T.P. Chen
et al. provided a few interesting and important conclusions. The most computationally
intensive module proved to be the FG/BG estimation which holds up to 95% of
execution time. The next most significant was the object tracking component which
occupies up to 20% of CPU time.

The object detection problem has been a subject of many researches that result in
two groups of methods. The first group comprises methods based on algorithms for
detection of geometrical shapes. They are mostly focused on very fast algorithms for
detection of circles and lines like [7]. In this work a two step algorithm is described,
known as Hough Transform, which consists of converting an image into parameter
space and voting. The first step is based on the line (Hough Line Transform) or circle
(Hough Circle Transform) properties. In the second step, the line or circle candidates
with the highest number of votes are chosen. Another example is the algorithm
described by Guido M. Schuster and Aggelos K. Katsaggelos [8]. They used the mean
square error estimator and weights for detecting a circle, solving an optimization task.

The second group of researchers are focused on detecting more complex objects.
Recent algorithms are based mostly on learning systems. One of the most significant
works in this group was done by Viola and Jones [9]. They presented an algorithm
based on cascades of Harr-like features. First, it uses more general ones, then the
precision is increased in the following steps. As a learning classifier the AdaBoost was
used. This algorithm is designed for the face and human body detection. The example
of an algorithm which tries to detect different classes of objects could be the [10]. In the
proposed object detection system, the multiscale and deformable part models are used.
As a representation of the model object, a set of star-like HOG (Histogram of Oriented
Gradients) based features are used.

All of the learning based algorithms in the second group provide ones of the most
precise results, but need a long time to create learning set and learning process. Also
some of them are time consuming and cannot be used in real-time. Moreover, adding a
new class of objects is very complicated and may require performing the learning
process again.

The alternative to learning base algorithms is the approach based on a database of
images of all known objects. The object identification may be performed by querying
the database using the image of the object. The system may be easily extended to
identify new types of objects, simply by adding new images to the database. The
querying of the multimedia database was also a subject of many researches. As far as it
concerns the Content Based Image Retrieval (CBIR) methods, the low level and high
level algorithms may be distinguished [11].

The low level algorithms refer to image features like lightness or color histogram,
e.g. using L1 Norm for color histogram comparisons [12]. Sometimes a spatial domain
representation is used [13] or a normalized color histogram [14]. Sivakamasundari et al.

4 S. Deniziak et al.

proposed a CBIR framework which can be applied to retinal image retrieval for the
identification of diabetic retinopathy [15]. As a preprocessing step, the Kirsch template
is applied to image in order to detect blood vessels. Then the following image features
are computed: energy, entropy, contrast, homogeneity, maximum probability, standard
deviation and ratio of vessel to vessel free area. There were also attempts to use
Error-Diffusion Block Truncation Coding for the image representation [16].

Because all this algorithms computes features for the whole image, they are not
very effective. Most often objects are placed on different background in different
surroundings. One of the idea to overcome this problem was based on dividing image
into smaller parts, called regions, which connect similar pixels. Regions are connected
into graphs and are compared with input image graph, e.g. using Maximum Likelihood
estimation [17]. As an improvement of region-based graphs, the algorithm called
iPURE [18] includes a new color image segmentation algorithm. It is based on
region-growing approach, which incorporates elimination or modification of region
edges as a result of testing contrast, gradient and shape of the region boundary. There is
also a method which uses DCT for region representation and can be used for com-
pressed images [19].

All mentioned CBIR algorithms require an image as an input during querying a
database. This can be a problem because sometimes a user does not have any good
sample image, or even do not know what kind of object he is looking for. This problem
may occur in case when the operator will want to verify if a given type of object
already exists in the database. One of the algorithms which tries to overcome this
problem was presented by Kato et al. [20]. It is based on querying the database by a
rough sketch drawn by a user. First, images preprocessed by edge detection method are
converted into 64 × 64 pixels and then they are compared using 8 × 8 pixels blocks.
Another algorithm was described in [21]. The work detects features like corners,
symmetric arcs, ellipses and parallelograms in order to extract regions from grayscale
fixed-resolution images. After detection, region map is created, storing each left and
right links for each region. There are many differences with our method, for example as
a query can be given any resolution color image, even without all relevant details. Also
shape primitives are used for objects skeleton building, not extracting regions.

There are also algorithms which try to join both Keyword Based Image Retrieval
(KBIR) and CBIR advantages in order to supply the semantic search, for example
methods based on automatic image annotation and region based inverted file [22].
Firstly, to create the inverted file, all training images are segmented into regions
containing objects, creating visual dictionary with annotations. Then a dictionary tree is
being built and learned. Next, the file is created by assigning to each object images in
which it is present. The algorithm also stores the relations between objects existing in
the same images. As a query, the user gives the composition of annotation names e.g. a
‘red car’.

IoT-Based Smart Monitoring System Using Automatic Shape Identification 5

3 Motivation

The main aim of the monitoring system proposed in Sect. 4 is to recognize objects and
then optionally perform some actions. Mobile robots, which are part of the system,
have very limited computational capabilities. Therefore they cannot perform recogni-
tion step themselves, but they should delegate it to the remote server. Moreover, they
may operate in an environment without reliable and fast network connection, which
does not allow them to send whole frames for processing. On the other hand, the
stationary cameras which are also a part of the system, are only able to send images.
Therefore there is a need of a relatively fast object recognition method which will be
able to handle both types of devices and communication schemas. In order to do so, we
propose a dedicated multimedia database which as a result of the query will return
object’s class.

One of the most important problems is the proper representation of the searched
objects. Most often there is a semantic gap between the low-level features of the detected
image and its high-level semantic meaning [11]. The Keyword Based Image Retrieval
algorithms represent image as a textual description, e.g. keywords. Most often they are
not effective because they strongly rely on a subjective human based annotations and are
very hard to use without human interaction. According to the proverb “a picture is worth
a thousand words”, much better results provide Content Based Image Retrieval algo-
rithms [11]. Most often they are efficient for automatic image queries where a sample
image is given as a query. Despite their good performance, they are still problematic for
situations where there is no full knowledge about searched object.

We expect that a fully-fledged multimedia database should support CBIR queries in
order to be used as a part of object recognition system. Because of the limited mobile
robots resources, the searched pattern may not be available, thus the most suitable
method for specifying the query will be a simple sketch, extracted from the captured
image frame. Sketch retrieval methods usually are based on exact matching of complex
sketches [20, 23, 24] or images. Due to limited computational power of mobile robots,
queries should be represented by the simplified or approximated shape of the searched
object. Summarizing, an efficient CBIR method should reliably find images containing
objects specified as a simplified sketch. It should also recognize objects that are slightly
distorted or incompletely specified.

The main motivation of our research is to provide a new CBIR-based object
recognition method which is able to provide results for both an image and an object
sketch. Since the method will search objects specified as an approximate shape, the
result classification reliability should be defined by the precision coefficient which can
be easily used to determine if it is correct, even automatically. Moreover, the results
should be obtained with regard of a limited mobile robots environment, e.g. without too
much data transfer.

To summarize, we motivate our work as follows:

• the surveillance system should represent the third generation of monitoring systems
and should incorporate different kinds of hardware like smart cameras and mobile
robots; also in order to reduce its cost and extend its autonomy, the DSSA archi-
tecture should be implemented,

6 S. Deniziak et al.

• computer vision algorithms used for image processing should be relatively simple,
i.e. mainly based upon edge detection, because mobile robots have limited com-
putational capabilities,

• extracted objects should be represented with the use of approximated geometrical
shapes like lines, circles, ellipses and rectangles,

• object recognition should be adjustable by some level of similarity,
• efficient work of the monitoring system in real-time is our first priority, even at the

cost of accuracy; false positive matches are permitted, but a human supervisor must
intervene in such situations to help the system with the object identification task.

4 Monitoring System Overview

Proposed architecture of the monitoring system is depicted in Fig. 1. From a hardware
point of view it is composed of stationary surveillance cameras capable of remote
position control (some of which may be smart cameras with integrated embedded
systems carrying out automatic motion detection), mobile robots equipped with video
sensors, a cluster server with a database and a terminal for a human supervisor. The
cameras and mobots monitor the environment and for each video frame object
extraction is performed (we are currently investigating the best algorithms suitable for
this task, see Sect. 7). Mobile robots extract objects on their own, but for the cameras it
can be done in the cluster. When a new object which does not belong to the known
environment is detected, it is decomposed into features as described in Sect. 5 and it is
sent to the cluster through a wireless network. In the cluster, the object identification is
performed using the Query by Shape (QS) method [2] (for details also see Sect. 5).
Each node in the cluster is devoted to a single mobot or camera, so all operations are
being executed in parallel. The cluster is using two databases, one which stores
information about familiar shapes, and the second one with new objects. If shape
identification fails, the object is added to the second database and more accurate
learning methods can be used to identify it, e.g. Support Vector Machines (SVMs).
Also each time when a new object is detected, the notification with a picture of that
object is sent from the cluster to the supervisor’s terminal. Moreover, a special alert is
raised when the object has not been identified. Despite the possible use of more
advanced machine learning, an unidentified object can also be recognized and
described by the operator and added to the database with familiar shapes. Furthermore,
the human supervisor is able to make some decisions and communicate them through
the cluster back to the cameras or mobots, e.g. he or she can reposition a particular
camera, or order a mobile robot to perform some action (for instance drive somewhere,
extinguish a fire or tease an intruder) [1].

The Monitoring System may be used in the Internet of things environment as a
cloud service. Figure 2 shows the main idea. Mobots and cameras are defined as things
and operators are clients. The proposed architecture extends greatly the possible usage
of such a system, because it may be used for monitoring environment e.g. when a
company have only cameras or other devices which are able to capture images and does
not have a proper objects identification system or need it only occasionally. Moreover,

IoT-Based Smart Monitoring System Using Automatic Shape Identification 7

there are situations when the number of capturing devices should be extended, e.g.
during mass events, which implies the need of much higher computational capabilities
of servers. In that situations the cloud system allows managing the cost of such systems
more efficiently, which is very important for many companies. The cloud service may

Fig. 1. Architecture of the monitoring system

8 S. Deniziak et al.

also be used by private users which need e.g. to monitor their homes when they are
abroad. Because the cloud identification system allows to process shapes which are
send to it, it may be used not only to monitor areas, but also to recognize objects on
photos or pictures. In order to improve the efficiency, for some clients there also may be
added dedicated databases, or it may be run as a private cloud.

The Shape Identification system as an interface may offer a web service, e.g.
providing a method with list of shapes to detect as a parameter. The usage of such an
interface allows easy access from any place with network connection. Moreover, the
usage of web services simplifies adding new devices or applications, because they only
need to invoke its methods. Because some devices are able only to send frames without
any shape extraction, there can be added a proxy module as a part of the system, which
will perform that process and then execute command from the cloud web service. The
operators may be available as a web applications or desktop applications. Because they
have to be informed immediately when new image appears into detection, they may
also implement a web service interface which may be invoked by the Shape Identifi-
cation Cloud. The Cloud may have a database of video devices and operators, which
are connected in order to send proper detection results to the operators, and then send
back commands for devices if they are able to execute them.

The example system execution may be as follows. Firstly, the device captures a
frame which is send to the proxy if shape extraction cannot be performed (cameras), or
processed in order to extract shapes (mobots). Next, the Identify web service method is
executed, sending extracted shapes and device identifier to the cloud. Next, the cloud
sends data to the Shape Identification module which was described in the first part of
this chapter. After processing, information about recognized objects is transferred into
Operator Informer module which communicates with operators. Each operator may

Fig. 2. The shape identification cloud overview

IoT-Based Smart Monitoring System Using Automatic Shape Identification 9

perform some actions or send back commands to the device (change camera position or
execute commands on a mobot).

The IoT monitoring system working as a web service in the cloud may find a wide
range of applications. Lets consider a few examples. Such a system may prove to be
very helpful for a seriously ill person who due to illness is not able to move inde-
pendently. When this person is left unattended, he or she has very limited capabilities
to react whenever an alarming event happens. By using the system via a mobile device
and a simple web interface, for example after hearing a strange noise, he/she could send
a robot on patrol in order to verify what has happened, e.g. whether an intruder has
entered the house. Mobot could also perform more specific actions, for instance after
uploading a photo of a book, it may identify it lying on a shelf and bring it back to the
patient. Instead of a book, one can easily imagine another objects like a glass of water
or a medication. Obviously the system is not able to replace medical care provided by a
professional nurse, however it can substantially increase comfort of the patient by
providing him/her with a certain degree of autonomy and a sense of independence,
which may also influence his/her healing process in a positive way.

Finding lost items could also be performed on the basis of an approximate shape of
an object, entered through the application available for a mobile touch device such as a
tablet. For example, before leaving a house someone is not able to find keys to a car.
After drawing the sketch of the object, mobot starts to scan the environment in search
of the keys. After finding them, the user receives an indication about this fact on the
mobile device through the web interface along with the picture of their location.

5 Object Recognition Algorithm

The object recognition algorithm is based on the Query by Shape method which
consists of three elements: object representation, matching algorithm and database
structure. The processing pipeline is shown in Fig. 3.

Fig. 3. The object recognition algorithm overview.

10 S. Deniziak et al.

The main idea of the object representation is based on decomposing an object into
features. The features may consists of shapes, colors or textures. Relations between
features are represented by a graph associated with the object. After query image
decomposition, all detected shape object features should be surrounded by the
bounding box. As a shape features, a line and an ellipse is used, but other primitives
(e.g. triangles or rectangles) may also be taken into account. Each shape feature has the
following attributes:

• for ellipse feature, a ratio between its radii to the diagonal of the bounding box
(relative sizes, if both diameters are equal, store only one),

• for line feature, a ratio between its width and height (the line slope computed by
dividing line height by line width),

• (optional) shape’s average color.

The color feature for the object may be defined as a three most frequent color
values. The texture features may be extracted from the interior of any shape feature. For
shape detections different algorithms may be used, e.g. Linear and Circular Hough
Transform or even artificial intelligence methods. Because during experiments for real
photos many detected lines were split, we added line merging stage. It compares the
distances between endings of the lines and if it is smaller than chosen threshold value,
they are merged. The example graph is showed in Fig. 5. The graph building algorithm
is as follows:

1. Detect shapes (e.g. lines, circles, ellipses) and store their position and size (for lines
– the ending points, for circles – the center and radius, etc.).

2. For lines perform line merging:
(a) find lines for which the distances between their ending points is smaller than

given threshold,
(b) for each found line pairs check if the difference between their slopes is smaller

than given threshold, if yes, merge them.
3. Find the bounding box which surrounds all shapes.
4. For each shape compute its attribute value.
5. Construct the graph:

(a) from each detected shape create nodes,
(b) if the distance between two shapes is smaller than minimal distance coefficient,

create a link (an edge) between them.

Because features detection may produce some inaccuracies when building a graph,
the minimal distance is used as a threshold. The example result of feature detection
(limited to shape features) is presented in Fig. 4.

The next step incorporates classical graph matching problem using modified and
simplified approach described in [25, 26]. In the future work, more efficient algorithm
should be taken into consideration.

During matching, the comparison between graphs is made in two steps: graph’s
nodes level and features level (using two thresholds: 2N for nodes step and 2F for
features step). The parameters values were chosen experimentally 2N ¼ 0:7; 2F ¼ð
0:4Þ. As the first step a test is executed, which checks if the numbers of nodes are the
same and if nodes are of the same type. If the similarity is equal or greater than 2N ,

IoT-Based Smart Monitoring System Using Automatic Shape Identification 11

the next step is performed for the same subgraphs. For ellipse nodes the algorithm
checks if the difference between their sizes is equal or smaller than 2F . For line nodes
the line angles are compared in the same way. If tests performed in both steps are
successful, then the subgraphs are considered as the same. In order to achieve better
accuracy, for each node the relative locations of the connected other nodes to it are
stored for X-axis (“left” or “right” value) and for Y-axis (“top” or “bottom” value). The
similarity coefficient is defined as a ratio of correct nodes to all nodes. In order to
achieve more precise detection results, two thresholds are defined as follows:

• 2H – above this level the objects are treated as the same,
• 2L – under this level the objects are treated as different.

If the similarity coefficient has value between 2H and 2L, then the object is reported
as similar (but not the same). For the graphs containing only shape features, we
developed the matching algorithm which is as follows:

1. Clear the similarity coefficient value for the query graph gq: sim := 0.
2. For each i-th node of gq gqi

� �
:

(a) clear the variables which are used for storing the value and node number of the
most similar node in gm: nodeSim := 0 and nodeNum := 0,

Fig. 4. The example of detection of shape features. As result, a graph is created. (a) The input
object image. (b) The created graph. The connection between shape features are marked as a
green line. Bike image source: openclipart.org

Fig. 5. The example bicycle graph: (a) the object after shape detection (the dotted rectangle
shows object’s bounding box), (b) shape graph adjacency matrix (note that node 5 is connected
with 6 because of a minimal distance threshold), (c) parameters for each primitive [2].

12 S. Deniziak et al.

(b) for each j-th node of the database graph gm gmj
� �

:
(i) if gmj is marked as matched, check next gm node,
(ii) nodeLevelSim := 0,
(iii) if gqi shape type is the same as gmj then nodeLevelSim := 1, else go to 2b

and check another node,
(iv) divide the number of gqi links by the number of gmj links; if the number

is greater than 1, saturate it to 1,
(v) add the number from the previous step to nodeLevelSim,
(vi) divide nodeLevelSim by 2 to normalize the value,
(vii) if nodeLevelSim < 2N then go to 2b and check another node,
(viii) featureLevelSim := 0,
(ix) compare parameters values for gqi and gmj: if the difference is smaller

than F then go to 2b, else featureLevelSim := 1 − difference,
(x) for each gqi link match the corresponding gmj link; compute their

parameters difference, check if they are located in the same direction
and add to featureLevelSim in the same way as in the previous step,

(xi) divide featureLevelSim by the number of gqi links + 1,
(xii) if nodeLevelSim ∗ featureLevelSim ≥ nodeSim then nodeSim := node-

LevelSim ∗ featureLevelSim and nodeNum := j,
(c) mark gmnodeNum node as matched,
(d) add nodeSim to sim.

3. Divide sim by number of gq nodes.
4. Return sim as the similarity coefficient value for gq and gm objects comparison.

The gq denotes the graph which is used as a query, the gm the graph from the
database with which a comparison should be done. Currently the query graph is
compared with each graph in a database with the matching algorithm.

For CBIR database query the results after comparing all images are then grouped
into two sets: certain (with sim > = 2H) and rough (sim < 2H AND sim > 2L). We
assume that if the query object cannot achieve any results grater than 2L it can be added
to the database as a new object class.

For CBIR-based object recognition, which is the aim of this article and the research,
after each comparison the resulted sim value is compared with the stored maximum sim
value. If it is higher, then it is stored as a new maximum. Moreover, the graphs in the
database store not only the nodes and edges, but also the object class name which may
be used e.g. for making an annotation on the input image.

All of the matching algorithm parameters values are chosen experimentally. The
dependency between their values and the precision of the results will be examined
during further research. The algorithm is designed to detect objects which are placed on
the different backgrounds than examples in the database.

The third part of the Query by Shape method is the database structure. Because it
should store only graphs, we propose a tree structure, which should allow faster
querying. Moreover, a more general comparisons could be prepared in the higher tree
levels and more precise in the lower levels, similarly to some of the learning algorithms
[9, 10]. Also in order to improve the performance of the system, a distributed database
structure should be taken into account, for example using Scalable Distributed Data

IoT-Based Smart Monitoring System Using Automatic Shape Identification 13

Structures [27]. In [28] we proposed the preliminary approach to the database structure
which is based on them.

6 Experimental Results

The proposed image storage method and matching algorithm was initially tested with
real life images of a bicycle, a motorbike and a car. As a query image, a bicycle object
drawn by a human was given. The algorithm parameters had the following values:
2H ¼ 0:6; 2L ¼ 0:4; 2N ¼ 0:7; 2F ¼ 0:4: During detection stage, only shape fea-
tures were used. The test results are presented in Table 1.

The results show that the highest sim values (near 1) were obtained for the most
similar objects. If objects are different, the values of sim are significantly lower. The
sim value could be used to classify objects, choosing the proper threshold. Moreover, it
could give information about the detection reliability.

Another experiments were performed using a C++ application and OpenCV library
for image handling and processing. For shape detection the Circular and Linear Hough
Transform algorithms provided by OpenCV were used. As a database of images, the
total number of 1240 images were used including:

• 101 images from web-crawled database of cars, bicycles, motorbikes, scooters,
chairs and tanks were used (Fig. 6),

• 921 Caltech101 images (cars side and motorbikes sub-sets),
• 215 cars and bicycles images from The TU Darmstadt Database.

Table 1. The results for the initial test, using a bicycle object (with 11 graph nodes) as a query.
Each line shows the ns or fs coefficient value for the comparison of queried bicycle graph node
and corresponding node in tested object from database. Obtained precision and recall is 1.

Node A bicycle A motorbike A car A car

1 1 0 0 0,25
2 1 0 0,6666666667 0,6666666667
3 1 0,6666666667 0 0
4 1 0,5 0,3333333333 0,5
5 1 0,5 0,5 0
6 1 0,5 0,25 0
7 1 0 0,25 0
8 1 0,3333333333 0,25 0,25
9 1 0 0
10 0,5 0
11 0,5 0
sim =
add to query results?

1
yes

0,125
no

0
no

0
no

14 S. Deniziak et al.

All images from the web-crawled subset had an uniform background and a side
view of objects was used. The rest of the test images had different background and
object orientations. The summarized results are presented in Table 2. The algorithm
results were compared with the implementation of Color Histogram CBIR algorithm
described in [12]. As a performance evaluation the precision coefficient was used,
defined as follows [15]:

precision ¼ number of relevant result images
total number of result images

The results shows that the Query by Shape algorithm is much more precise than
Color Histogram based [12] one. The Caltech and TUD data sets were very demanding
for the QS implementation because all images were in a very low resolution which was
problematic for Circular Hough Transform. For many images it was unable to detect
any circles, decreasing sim value and graph size. Also Linear Hough Transform
sometimes had problems. Despite that fact, the algorithm was successful for many
images with other objects in the background. Moreover, the sim coefficient value could
be used as a measurement of the certainty of the recognition, and if it is small, other
methods could be applied for the image. Choosing more precise and efficient shape
detection algorithms should highly increase the precision value.

Fig. 6. Some of the images used in the C++ application test. Source: (a), (b), (c) from
OpenClipart.org, (d), (e), (f) from mercedes-benz.pl

Table 2. The precision value for query by shape and color histogram algorithms

Data set Number of images QS precision CH precision

Web-crawled own data set 104 0.8076923077 0.1826923077
Caltech 101 cars side 123 0.7317073171 0.1788617886
Caltech 101 motorbikes 798 0.4930434783 0.3045112782
TUD cars 100 0.72 0.3
TUD motorbikes 115 0.4695652174 0.2347826087

Total: 1240 images
Average: 0.6444016641 0.2401695966

IoT-Based Smart Monitoring System Using Automatic Shape Identification 15

7 Conclusions

In this paper the idea of an IoT-based cloud monitoring system was proposed which is
able to manage many devices and operators. Moreover, as a part of the system, the
shape identification algorithm was described with more details. It uses the represen-
tation of an object as a graph of associated features, e.g. shapes, colors or textures. Also
the matching algorithm was presented. Because of the usage of shapes like lines,
circles, triangles or rectangles, the method would be especially suitable for human
designed, artificial objects. The initial tests showed that the method gives high number
of positive results despite being at a very early stage of development. The initial tests
showed that the method gives high number of positive results despite being at a very
early stage of development.

The future research should include further development of matching algorithm to
incorporate color or texture features during the first algorithm stage. Furthermore, more
advanced shape comparison methods will be considered, e.g. based on decision-making
problem proposed in [29]. As a result of the research we would like to obtain a reliable
and precise matching algorithm. Moreover, more work should be done in order to
achieve more accurate results for objects with different orientations. The database
structure should be chosen after some tests in order to produce the best results. The
scalability of the database should also be taken into account.

Future work also involves finding the most suitable algorithm for the object
extraction component of the monitoring system video pipeline. As the first step, simple
morphological operations like erosion and dilation can be used to preprocess images in
order to reduce noise and the amount of detail [3–5, 30]. Method based on Top-Hat
Transform can be applied to crop individual objects form the image [30]. Segmentation
of the image into regions based on colors may also be performed [31, 32]. After that,
these regions may be modeled by a mixture of Gaussian distributions and then shapes
can be localized by minimizing the corresponding Gibbs field [32]. Moreover, by
utilizing a 3D map of the whole environment stored directly in the mobots, background
subtraction task can easily be realized.

Another field of research should incorporate developing other parts of the cloud and
whole system. We believe that as a final result we will be able to obtain the cloud
method for fast object recognition that may be applied in a wide range of applications
like image retrieval from multimedia databases monitoring systems and other systems
based on object detection and object recognition. Also in order to increase system
reliability, a synthesis of real-time cloud applications for Internet of things may be
used, which provides a high quality of service [33].

16 S. Deniziak et al.

References

1. Deniziak, S., Michno, T., Pięta, P.: Autonomous monitoring system based on object
shapedetection. Measur. Autom. Monit. 61, 349−351 (2015). In: 18th Conference on
Reconfigurable Ubiquitous Computing.

2. Deniziak, S., Michno, T.: Query by shape for image retrieval from multimedia databases. In:
Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.)
BDAS 2015. CCIS, vol. 521, pp. 377–386. Springer, Heidelberg (2015). doi:10.1007/978-3-
319-18422-7_33

3. Valera, M., Velastin, S.A.: Intelligent distributed surveillance systems: a review. IEE Proc.
Vis. Image Signal Process. 152, 192–204 (2005)

4. Kumar, P., Mittal, A., Kumar, P.: Study of robust and intelligent surveillance in visible and
multimodal framework. Informatica (Slovenia) 32(1), 63–77 (2008)

5. Hampapur, A., Brown, L., Connell, J., Pankanti, S., Senior, A., Tian, Y.: Smart surveillance:
applications, technologies and implications. Inf. Commun. Signal Process. 2, 1133–1138
(2003)

6. Chen, T.P., Haussecker, H., Bovyrin, A., Belenov, R., Rodyushkin, K., Kuranov, A.,
Eruhimov, V.: Computer vision workload analysis: case study of video surveillance systems.
Intel Technol. J. 9, 109–118 (2005)

7. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in
pictures. Commun. ACM 15(1), 11–15 (1972). http://doi.acm.org/10.1145/361237.361242

8. Schuster, G., Katsaggelos, A.: Robust circle detection using a weighted MSE estimator. In:
International Conference on Image Processing, vol. 3, pp. 2111–2114, October 2004

9. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. I–511–I–518 (2001)

10. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with
discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9),
1627–1645 (2010)

11. Wang, H.H., Mohamad, D., Ismail, N.A.: Approaches, challenges and future direction of
image retrieval. J. Comput. 2(6), CoRR, abs/1006.4568 (2010)

12. Sharma, J.S.N., Rawat, P.: Efficient CBIR using color histogram processing. Signal Image
Process. Int. J. 2(1), 94 (2011)

13. Shih, T.K.: Distributed multimedia databases. In: Shih, T.K. (ed.) Distributed Multimedia
Databases, pp. 2–12. IGI Global, Hershey (2002)

14. Mocofan, M., Ermalai, I., Bucos, M., Onita, M., Dragulescu, B.: Supervised tree content
based search algorithm for multimedia image databases. In: 2011 6th IEEE International
Symposium on Applied Computational Intelligence and Informatics (SACI), pp. 469–472,
May 2011

15. Sivakamasundari, J., Kavitha, G., Natarajan, V., Ramakrishnan, S.: Proposal of a content
based retinal image retrieval system using kirsch template based edge detection. In: 2014
International Conference on Informatics, Electronics Vision (ICIEV), pp. 1–5, May 2014

16. Guo, J.-M., Prasetyo, H., Chen, J.-H.: Content-based image retrieval using error
diffusionblock truncation coding features. IEEE Trans. Circ. Syst. Video Technol. 25(3),
466−481 (2014)

17. Li, C.-Y., Hsu, C.-T.: Image retrieval with relevance feedback based on graph-theoretic
region correspondence estimation. IEEE Trans. Multimedia 10(3), 447–456 (2008)

18. Aggarwal, G., Ashwin, T., Ghosal, S.: An image retrieval system with automatic query
modification. IEEE Trans. Multimedia 4(2), 201–214 (2002)

IoT-Based Smart Monitoring System Using Automatic Shape Identification 17

http://dx.doi.org/10.1007/978-3-319-18422-7_33
http://dx.doi.org/10.1007/978-3-319-18422-7_33
http://doi.acm.org/10.1145/361237.361242

19. Belloulata, K., Belallouche, L., Belalia, A., Kpalma, K.: Region based image retrieval using
shape-adaptive DCT. In: 2014 IEEE China Summit International Conference on Signal and
Information Processing (ChinaSIP), pp. 470–474, July 2014

20. Kato, T., Kurita, T., Otsu, N., Hirata, K.: A sketch retrieval method for full color image
database-query by visual example. In: 11th IAPR International Conference on Pattern
Recognition. Conference A: Computer Vision and Applications, vol. I, pp. 530–533, August
1992

21. Lee, H.-C., Fu, K.-S.: Generating object descriptions for model retrieval. IEEE Trans.
Pattern Anal. Mach. Intell. PAMI 5(5), 462–471 (1983)

22. Zhang, D., Islam, M.M., Lu, G.: Structural image retrieval using automatic image annotation
and region based inverted file. J. Vis. Commun. Image Represent. 24(7), 1087–1098 (2013)

23. Del Bimbo, A., Pala, P.: Visual image retrieval by elastic matching of user sketches. IEEE
Trans. Pattern Anal. Mach. Intell. 19(2), 121–132 (1997)

24. Daoudi, M., Matusiak, S.: Visual image retrieval by multiscale description of user sketches.
J. Vis. Lang. Comput. 11(3), 287–301 (2000)

25. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)
26. Cordella, L., Foggia, P., Sansone, C., Tortorella, F., Vento, M.: Graph matching: a fast

algorithm and its evaluation. In: Proceedings of the Fourteenth International Conference on
Pattern Recognition, vol. 2, pp. 1582–1584, August 1998

27. Lukawski, G., Sapiecha, K.: Balancing workloads of servers maintaining scalable distributed
data structures. In: 19th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, pp. 80–84, February 2011

28. Greenspan, H., Dvir, G., Rubner, Y.: The scalable distributed two-layer content based image
retrieval data store. In: Federated Conference on Computer Science and Information
Systems, pp. 839–844 (2015)

29. Sitek, P., Wikarek, J.: A hybrid approach to the optimization of multiechelon systems. Math.
Prob. Eng. 2015, 1−12 (2015). Article ID 925675

30. Tajeripour, F., Saberi, M., Fekri-Ershad, S.: Developing a novel approach for content based
image retrieval using Modified local binary patterns and morphological transform. Int.
Arab J. Inf. Technol. 12, 574−581 (2014)

31. Greenspan, H., Dvir, G., Rubner, Y.: Region correspondence for image matching via
EMD flow. In: IEEE Workshop on Content-Based Access of Image and Video Libraries,
pp. 27–31. IEEE (2000)

32. Destrempes, F., Mignotte, M., Angers, J.-F.: Localization of shapes using statistical models
and stochastic optimization. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1603–1615
(2007)

33. Bąk, S., Czarnecki, R., Deniziak, S.: Synthesis of real-time cloud applications for internet of
things. Turk. J. Electr. Eng. Comput. Sci. 23(3), 913–929 (2015)

18 S. Deniziak et al.

Memory Analysis and Performance Modeling
for HPC Applications on Embedded Hardware

via Instruction Accurate Simulation

Alexander Ditter1(&), Dominik Schoenwetter1, Anton Kuzmin1,
Dietmar Fey1, and Vadym Aizinger2

1 Chair of Computer Science 3 (Computer Architecture),
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

{alexander.ditter,dominik.schoenwetter,

anton.kuzmin,dietmar.fey}@fau.de
2 Chair of Applied Mathematics (AM1), Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU), Erlangen, Germany
aizinger@math.fau.de

Abstract. The efficient usage and development of embedded multi- and
many-core systems is an important field of research for years and decades. In the
last decade, utilizing embedded and especially low-power architectures for high
performance computing (HPC) applications became an important part of
research. The reason for this are the constantly increasing energy costs along with
an increasing awareness of energy consumption in general. As suitable
low-power HPC architectures are not yet available at a larger scale, simulation of
new and appropriate architectures becomes an important factor for the success of
low-power systems and clusters. In order to speed up simulation, at the cost of
accuracy, different levels of abstraction were introduced. Currently the class of
instruction accurate simulations seems to yield the best trade-off between speed
and precision, especially when simulating complex multi- and many-core sys-
tems. In this paper we present our investigations about the accuracy of the
state-of-the-art instruction accurate embedded multi- and many-core simulation
environment Open Virtual Platforms (OVP) in comparison to an actual embed-
ded hardware system from Altera. Our investigations include the actual usage of
the same operating system running on both, the target hardware and the simu-
lation as well as serial and parallel software benchmarks. We analyze the current
accuracy of the simulation environment with respect to a performance model,
based on the execution time of the simulation and the actual embedded hardware
system. Using the instruction accurate simulation technology from OVP is for the
simulation of embedded/low-power HPC hardware architectures and applica-
tions. Furthermore, we point out first steps towards further possibilities for
obtaining a better performance model by the use of our simple memory model.

1 Introduction

Single-core processors have been replaced by multi-core, and in many areas of high
performance computing (HPC) to a significant extend by many-core processors, such
as general purpose GPUs (GPGPUs) or Intel’s many integrated core (MIC) system.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_2

While this development has progressed for well over a decade it has just reached its
slow pick-up phase in the field of embedded low-power systems during the last years.
Yet, the same restrictions and requirements, e.g., the thermal power wall along with
decreasing structures in the manufacturing process and that have been driving this
conversion for desktop, server and HPC systems become more and more important for
many applications in the embedded domain. The increasing cost for single-core sys-
tems, due to the low remaining stocks and production rates, but also and more
importantly their lack of performance, becomes more and more of a hindrance, e.g., for
driving assistance systems, where computational power is indispensable. Thus, the
transition to multi-core systems was necessary and unavoidable. Currently, as more and
more functionality is added to applications running on the embedded devices, as well
the steadily increasing interest in utilizing them for HPC applications, the additional
computing power is needed to satisfy the increasing performance requirements. This, in
turn, leads to the development of interconnected multi-core architectures and cluster
systems, mostly based on conventional and HPC network fabrics, as embedded
hardware developers abandon the use of the more traditional bus systems. Even if such
systems are currently not yet an established standard they will play an important role in
most embedded low-power application domains in the future. Due to the increasing
requirements for power and energy efficiency for HPC systems and architectures, a
significant amount of research has been put into the utilization of the afore mentioned
conventional multi- and many-core low-power architectures. Yet, as suitable
low-power architectures for HPC systems currently are still only scarcely available,
accurate simulations of these architectures are a key instrument for verification,
memory analysis, performance modeling, prediction and evaluation. It may even be
used to guide to development of new embedded hardware towards a more suitable
design for HPC applications. Historically, simulation techniques can be categorized in
different abstraction levels (cf. Table 1) [1], where the level of abstraction differentiates
two main aspects: (i) the speed of the simulation and (ii) the accuracy of the results. In
this classification the functional model corresponds to the highest level of abstraction,
resulting in the lowest simulation accuracy, but the highest simulation speed. The
lowest level of abstraction is the physical level, where even physical effects, e.g., of
transistor gate delays, are considered. Naturally, the physical level has the worst
simulation speed, yet the highest accuracy of simulation results. The functional level
does not distinguish between hard- and software. Thus, this level is too abstract for
evaluating combined soft- and hardware aspects. Yet, the instruction accurate level
does distinguish between hard- and software. Furthermore, it is even possible to obtain
information about non-functional properties like time and energy. At the same time the
simulation speed of instruction accurate simulations is very fast, as compared to all
more accurate modeling techniques (cycle accurate, RTL and physical level). In terms
of simulation speed, the cycle accurate simulation level is very slow in comparison to
the instruction accurate one. Weaver and McKee [2] showed that discrepancies of
hours up to days are possible and the simulation results are not mandatory more
accurate. As a consequence, cycle accurate simulations are not an option for the
simulation of multi- or large many-core systems. Ideally the simulation of large
embedded multi-core systems, has to be both: accurate and fast. Due to the large
number of processors, peripherals and network interconnects in such a system,

20 A. Ditter et al.

especially the simulation speed is an important aspect. A state-of-the-art instruction
accurate simulation technology is called Open Virtual Platforms (OVP) and provided
by Imperas [3]. This simulation environment shows excellent properties concerning to
simulation speed. Also, the scalability of the simulation results for different numbers of
cores was verified [4].

In this paper we investigate the accuracy of results from the state-of-the-art
instruction accurate simulation environment OVP along with their applicability for the
verification and evaluation of embedded HPC architectures and algorithms. Further-
more, we have developed an instrumentation mechanism for OVP that allows us to
track, record and trace memory access patterns within the simulation of whole appli-
cations as well as functions and instructions. Using this technique, we can provide a
better understanding for memory access patterns to analyze and compare different
algorithms and hardware systems and advice software and hardware developers about
potential improvements in their respective designs, allowing for an overall better
hardware-software co-design. We extend this capability with a first simple memory
model, allowing us to use this approach for a more accurate performance modeling than
conventional instruction accurate simulation techniques. For our analysis and evalua-
tion we compare the results of OVP to those obtained from our actual reference
hardware, the Altera Cyclone V sytem on chip (SoC) (cf. Sect. 3.2), as we emulated the
Altera SoC using OVP.

The rest of the Paper is structured as follows. Section 2 provides a comprehensive
survey of related work in the field. Section 3 gives an in depth overview of the OVP
simulation environment as well as the actual hardware system we compare our results
against. Section 4 explains our instrumentation for tracing memory access in OVP
along with the memory and performance modeling. Section 5 introduces the applica-
tions and benchmarks used for our investigations. Section 6 presents our findings and
quantitative results along with a conclusion and an outlook on future work in Sect. 7.

Table 1. Level of abstraction decreases from top to bottom, while accuracy increases.

Modeling technique Modeling language

Functional Model MATLAB/Simulink
Instruction Accurate Model Instruction Set Simulator (ISS)
Transactional Level without Time
(Programmers View without Time)

Un-Timed SystemC

Transactional Level with Time
(Programmers View with Time)

Timed SystemC

Cycle Accurate Model C model
Register Transfer Level (RTL) HDL like VHDL
Physical Level SPICE

Memory Analysis and Performance Modeling for HPC Applications 21

2 Related Work

There is a significant body of research in the field of utilizing low-power architectures
for HPC and in the optimization of energy efficiency for HPC applications. Rajovic et al.
investigated the usage of low-power ARM1 architectures and SoCs as means to reduce
the cost of HPC [5]. They conclude that low-power ARM-based SoCs have promising
characteristics for HPC. In 2013, Goeddeke et al. presented a paper on energy-to-
solution comparisons between different architectures for different classes of numerical
methods for partial different equations [6]. They showed that energy-to-solution and
energy-per-time-step improvements up to a factor of three are possible when using the
ARM-based Tibidabo cluster based on a setting with 96 ARM Cortex-A9 dual-core
processors [7], instead of an x86-based cluster. The x86 cluster used for the reference
measurements was the Nehalem sub-cluster of the LiDOng machine provided by TU
Dortmund [8]. A study comparing the performance as well as the energy consumption of
different low-power and general-purpose architectures was published by Castro et al.
[9]. Based on the Traveling-Salesman problem [10], they investigated time-to-solution
and energy-to-solution for an Intel Xeon E5-4640 Sandy Bridge-EP with 8 cores, 16
threads, i.e., hyper-threading support, a low-power Kalray MPPA-256 many-core pro-
cessor consisting of 256 user cores and 32 system cores [11], as well as for a low-power
CARMA board from SECO [12], consisting of a NVIDIA Tegra 3 and a NVIDIA
Quadro 1000M GPU. The results show, that the CARMA board and the MPPA-256
many-core processor achieve better results than the Xeon 5 measured in terms of energy
to solution. With regard to the time-to-solution metric, the Xeon 5 performed better than
the CARMA board but not as good as the low-power MPPA-256 many-core processor.
A work considering low-power processors and accelerators in terms of energy aware
HPC was published in 2013 [13]. There, a number of different HPC micro-benchmarks
was used to determine the energy-to-solution. The architectures evaluated were NVI-
DIA Tegra 2 [14] and Tegra 3 [15] SoCs. The results show that drastic energy to solution
improvements are possible on the newer Tegra 3 SoC in comparison to the Tegra 2 SoC
(reduction of 67% on average). Furthermore, the authors conclude that the usage of
integrated GPUs in low-power architectures, such as Tegra 2 and Tegra 3, can improve
the overall energy efficiency. All presented investigations emphasize, that lowpower
hardware architectures have promising characteristics for HPC. There is a range of tools
that allow memory modeling and simulation, e.g., Gem5 [16], DiskSim [17] or
DRAMSim2 [18]. The cycle accurate simulation environment Gem5 allows a com-
prehensive set of building blocks, ranging from caches, crossbars, to full-blown DRAM
controllers. DiskSim is an accurate and highly-configurable disk system simulator. It
was developed to support research into various aspects of storage subsystem architec-
ture, including modules that simulate intermediate controllers, buses, device drivers,
request schedulers, disk block caches, and disk array data organizations. DRAMSim2 is
a cycle accurate memory system simulator. The goal of DRAMSim2 is to be an accurate
DDR2/3 memory system model which can be used in tracebased and full system
simulations.

1 http://www.arm.com/.

22 A. Ditter et al.

http://www.arm.com/

3 Environment

3.1 Simulation Environment

The simulation technology from Open Virtual Platforms was developed for high per-
formance simulation. The technology enables debugging applications, which run on the
virtual hardware, as well as analysis of virtual platforms containing multiple processor
and peripheral models. The OVP simulation technology is extensible. Furthermore, it
provides the ability to create new processor models and other platform components by
writing C/C++ code that uses the application programming interface (API) and
libraries supplied as part of OVP [19]. The API defines a virtual hardware platform
which is called ICM (Innovative CPUManager Interface). This API includes functions
for setting up, running and terminating a simulation (icmInitPlatform, icmSimu-
latePlatform, icmTerminate), defining components for the simulation (e.g.,
icmNewProcessor) and loading application’s executable (icmLoadProcessorMemory).
Figure 1 shows an overview about how an OVP simulation with minimal effort works.
Minimal effort means, that one processor has to be defined for the simulation. The
example uses the language C for the hardware platform as well as the application to run
on that platform. The simulator included in OVP is an instruction accurate simulator.
This means, that the functionality of a processor’s instruction execution is represented
without regard to artifacts like pipelines. Instruction accurate simulation cannot make a
clear statement about time spent during pipeline stalls, due to cache misses and other
things that are not modeled, so any conversion to time will have limited accuracy
compared to actual hardware. OVP multi-processor platforms are not working simul-
taneously. For efficiency, each processor advances a certain number of instructions in
turn. So in multi-processor simulations a single processor is simulated until it has
signaled that it has finished its quantum. The quantum is defined as the time period in
which each component in turn simulates a certain number of instructions [19]. Simu-
lated time is moved forward only at the end of a quantum. This can create simulation
artifacts, for example where a processor spends time in a wait loop, while waiting for
the quantum to finish. To avoid this the quantum has to be set very low value
(potentially having a significant impact on the simulation performance) so that the
measurements will not be affected by this simulation artifacts. This can be adjusted in
the simulator settings [20]. The simulation environment can only provide the total
amount of instructions that were executed. Assuming a perfect pipeline, where one
instruction is executed per cycle, the instruction count divided by the processor’s
instruction rate, in million instructions per second (MIPS), yields the run time of the
program. The OVP simulator provides the possibility for measuring instruction counts
within a program. As a consequence, the instruction counts for specific code snippets
can be recorded. On singlecore platforms, assuming that no time-controlled peripheral
models are invoked, there is no need to set the quantum to one because the multi-core
scheduling algorithm does neither affect nor intervene the simulation.

Memory Analysis and Performance Modeling for HPC Applications 23

3.2 Reference Hardware

Embedded system developers have to satisfy multiple requirements such as a high
computational performance, support for a wide variety of communication interfaces
and protocols, execution of complex signal processing algorithms in realtime, low
power consumption. All these requirements have to be fulfilled with a very limited
amount of resources. Given a long lifetime of the deployed systems and ever changing
environmental conditions, the in-field support and upgrade is one of the most crucial
requirements. A common solution to these demands is the extensive use of field-
programmable gate arrays (FPGAs) for the hardware part and on the software side,
relying on a processor architecture with a well-established and active ecosystem. Just a
few years ago this approach implied at least two separate complex chips to be used in a
single system. However the situation has recently changed and several FPGA vendors

Fig. 1. Operating principle of open virtual platforms simulations.

24 A. Ditter et al.

came to market with integrated devices combining high-performance ARM CPUs, a
fast memory controller along with a rich set of peripheral devices and a programmable
logic unit. The integration of all these units into a single SoC provides developers with
multiple benefits and thus, we expect such systems to become established in many
embedded devices. For this reason we we chose Altera’s development kit board [21]
with a Cyclone V SX SoC-FPGA as our reference hardware platform to carry out our
benchmarking. This SoC-FPGA includes a hard processor system (HPS) consisting of
multiprocessor subsystem (MPU), multiport SDRAM controller with support for
double data rate 2 (DDR2), DDR3 and low-power DDR2 memory, a set of peripheral
controllers and a high-performance interconnect. The memory controller supports
command and data reordering, error correction code (ECC) and power management.
On the board 1 GiB of DDR3 SDRAM is connected to the memory controller via a
40-bit data bus operating at 400 MHz for a total theoretical bandwidth of over 25.6
Gbps. The multiprocessor subsystem of the HPS includes two ARM Cortex-A9
MPCore 32-bit processors with a NEON SIMD co-processor and double-precision
floating point unit (FPU) per processor, 32 KiB instruction and 32 KiB data level 1
(L1) caches and memory management unit (MMU) per processor, ARM level 2 (L2)
cache controller and shared 512 KiB L2 cache. The cache controller has a dedicated
64-bit master port connected directly to the SDRAM controller and a separate 64-bit
master port connected to the system level 3 (L3) interconnect. All blocks of the HPS
are connected with L3 multilayer AXI interconnect structure. Low-speed peripheral
controllers reside on the level 4 (L4) AXI buses working in separate clock domains for
efficient power management. Programmable logic part of the SoC is a
high-performance 28 nm FPGA. The HPS and FPGA part of the chip are connected via
high-bandwidth (> 125 Gbps) on-chip interfaces. All the benchmarks presented in this
paper use only the HPS part of the SoC-FPGA, while the FPGA part is not used. The
Cortex-A9 MPCore runs a Linux kernel version 3.16.0 and the user space software is
an ARM Arch Linux distribution utilizing a rolling release model.

3.3 Virtual Hardware

The virtual hardware platform implements just a part of the actual Altera Cyclone V
SoC [22]. Specific and not needed hardware parts, e.g., the FPGA block, are not
implemented. Anyway, all required components for running a Linux kernel and
guarantee correct hardware functionality for our test cases are available. Figure 2
shows the subset of implemented hardware components. The virtual hardware allows to
boot the same Linux kernel (3.16.0) as the actual hardware does. As a consequence, the
virtual and the actual hardware are binary compatible.

Memory Analysis and Performance Modeling for HPC Applications 25

4 OVP Instrumentation and Modeling

OVP, being an instruction accurate simulation environment, allows to track and trace
each individual instruction in the program flow, we utilize this functionality to capture
each memory access. For this purpose we designed a light weight library that allows to
start and stop the recording of memory access instruction from within the respective
application. This can simply be achieved by linking against our library. Since many
HPC applications are either written in C/C++ as well as Fortran, especially for legacy
application and as in our case the benchmark set, we have designed the library in C,
allowing to interface with both programming languages without any additional
requirements. The library offers the possibility to start and stop the recording of memory
accesses, thus, allowing to restrict the data acquisition to the respective region of
interest. This may be an entire application as well as a function call or an individual
instruction. Currently the library is capable to record the total number of read and write
accesses. We have also experimented with a more detailed recording, which is currently
not incorporated any more, as it slows down the entire simulation by one to two orders of
magnitude and creates memory access log files of several GiB within just a few minutes
of host run time. Nonetheless, we plan to extend the current capabilities by employing
techniques to reduces the memory consumption of trace files analogous to [23].

Using the results of our memory access recording library we obtained we designed
a first very basic memory model for OVP, which considers and distinguishes the
amount of read and write access to memory and weighs them with different factors.
This makes sense, as it is much less likely for a write access to be delayed as much as a

Fig. 2. Virtual Cyclone V SoC

26 A. Ditter et al.

read access, in case the data is not available in the cache. We use these factors to better
estimate the performance, i.e., run time of the applications and benchmarks in Sect. 5.

5 Benchmarks and Applications

Our investigations are based on one real world HPC application, one real world but
artificial problem and an extensive artificial benchmark set. All these individual
benchmarks resemble typical computational fluid dynamics (CFD) applications and
provide a wide range of typical HPC characteristics, such as compute and memory
bound kernels. We evaluate our approach for the well known 3D shallow-water solver
UTBEST3D, which is a typical high performance computing application and described
in detail in Sect. 5.1 as well as the computation of mandelbrot sets. Additionally we use
the NAS Parallel Benchmark suite (NPB). [24], i.e., the eight original benchmarks
specified in NPB 1, consisting of five kernels and three pseudo applications. We
cross-compiled the applications and benchmarks for both, the real hardware as well as
the OVP simulation to ensure binary equality and thus, best possible comparability of
the obtained results. For this, we used gfortran-arm-linux-gnueabihf for the Fortan
based and gcc-arm-linux-gnueabihf for the C based benchmarks (both in version 4.8.2).
The same binaries were used in the real and the virtual environment. The individual
characteristics of UTBEST3D, the mandelbrot set and the NAS benchmarks are
described in the following.

5.1 UTBEST3D – U3D

The numerical solution algorithm in the 3D shallow-water solver University of Texas
Bays and Estuaries Simulator - 3D (UTBEST3D) considers the system of hydrostatic
primitive equations with a free surface [25, 26]. A prismatic mesh is obtained by
projecting a given triangular mesh in the vertical direction to provide a continuous
piecewise linear representations of the topography and of the free surface. The vertical
columns are then subdivided into layers. If a bottommost prism is degenerate, it is
merged with the one above it. Due to the discontinuous nature of the approximation
spaces, no constraints need to be enforced on the element connectivity. Hanging nodes
and mismatching elements are allowed and have no adverse effects on stability or
conservation properties of the scheme. This flexibility with regard to mesh geometry is
exploited in several key parts of the algorithm: vertical mesh construction in areas with
varying topography, local mesh adaptivity and wetting/drying. The discontinuous
Galerkin (DG) discretization is based on the local discontinuous Galerkin method [27]
that represents a direct generalization of the cell-centered finite volume method, the
latter being just the piecewise constant DG discretization. One of the features of this
method is a much smaller numerical diffusion exhibited by the linear and higher order
DG approximations compared to the finite difference or finite volume discretization. The
method guarantees the elementwise conservation of all primary unknowns including
tracers, supports an individual choice of the approximation space for each prognostic
and diagnostic variable, demonstrates excellent stability properties, and possesses

Memory Analysis and Performance Modeling for HPC Applications 27

proven local adaptivity skills. UTBEST3D is written in C++ to provide clean interfaces
between geometrical, numerical, computational, and communication parts of the code.
The object-oriented coding paradigm is designed to enable a labor efficient development
lifecycle of the model. The programming techniques were carefully chosen and tested
with the view of guaranteeing a smooth portability to different hardware architectures,
operating systems, compilers, and software environments.

5.2 Mandelbrot Set – MB

A mandelbrot set is defined as the set of complex numbers in the complex plane where
the sequence c; c2 + c; (c2 + c)2 + c;… does not approach infinity, even if the iteration
counter tends to infinity [28]. Due to the characteristic of the sequence, it can be
defined as a complex quadratic polynomial of the form znþ 1 ¼ z2n þ c; with z0 = 0
Mandelbrot sets are often visualized by a mapping from the complex plane into an
image representation. For this purpose the imaginary and real part of each complex
number is considered as an image coordinate. Depending on how rapid the sequence
and quadratic polynomial, of each pixel diverges, the corresponding pixel gets a
defined color. If the sequence converges, the pixel is colored black. As each pixel can
be computed independently and requires few memory accesses for every iteration, the
mandelbrot set is a compute bound application.

5.3 NAS Parallel Benchmarks

The kernels considered in our benchmarking are CG (Conjugate Gradient with irregular
memory access and communication), MG (Multi-Grid on a sequence of meshes, long-
and short-distance communication), FT (discrete 3D fast Fourier Transform containing
all-to-all communication), EP (Embarrassingly Parallel) and IS (Integer Sort with
random memory access). LU (Lower-Upper Gauss-Seidel solver) are the defined
pseudo applications, BT (Block Tri-diagonal solver) as well as, SP (Scalar
Penta-diagonal solver).

Conjugate Gradient Benchmark – CG: This benchmark computes an estimate of the
largest eigenvalue of a symmetric positive definite sparse matrix using the conjugate
gradient method [29]. The run time of this benchmark is dominated by the sparse
matrix vector multiplication in the conjugate gradient subroutine. Due to the random
pattern of nonzero entries of the matrix this requires a high number of memory
accesses, leading to a low computational intensity of this memory bound benchmark.

Multi Grid Benchmark – MG: The MG benchmark is based on a multigrid kernel,
which computes an approximative solution of the three dimensional Poisson problem.
In each iteration the residual is evaluated and used to apply a correction to the current
solution. The most expensive parts of this algorithm are evaluation of the residual and
application of the smoother, both of which are stencil operations with constant coef-
ficients for the specified problem. The update of a grid point require the values of
neighboring points. Thus, even with an optimal implementation this requires in

28 A. Ditter et al.

between four and eight additional memory access operations per grid point. For con-
stant stencil coefficients the run time is dominated by memory access and not the
computational effort, meaning that the MG benchmark is memory bound.

Fourier Transform Benchmark – FT: The FT benchmark solves a partial differential
equation by applying a Fast Fourier Transform (FFT) to the original state array and
multiplying the result by an exponential. Then an inverse FFT is used to recompute the
original solution. Finally, a complex checksum is computed to verify the result [29].
The FFT is dominating the run time of this benchmark. As the implementation in the
benchmark uses a blocked variant of the Stockham FFT. This procedure is bound by
memory operations, but due to blocking the limiting factor is not directly the memory
but rather the cache bandwidth.

Embarrassingly Parallel Benchmark – EP: EP is an embarrassingly parallel kernel,
which generates pairs of Gaussian random deviates and tabulates the number of pairs in
successive square annuli, a problem typical of many Monte Carlo simulations [29].
The EP benchmark is computationally expensive, complex operations such as com-
putation of logarithms and roots make up a big portion of the total run time whereas
only very few memory operations are necessary for both random number generation
and calculation of the Gaussian pairs. The EP benchmark is compute bound.

Integer Sort Benchmarks – IS: This benchmark is able to sort N keys in parallel. The
keys are generated by a sequential key generation algorithm. The sorting operations
performed in this kernel are important in particle method codes. Both, integer com-
putation speed as well as communication performance are under test [29]. IS requires
ranking of an unsorted sequence of N keys. The initial sequence of keys will be
generated in a defined sequential manner, but the initial distribution of the keys can
have a significant impact on the performance of this benchmark.

Lower Upper Benchmark – LU: LU uses a Gauss-Seidel solver for lower and upper
triangular systems (regular-sparse, block size 5 × 5). It solves flows in a cubic domain,
and implements several real-case features, e.g., a dissipation scheme. This benchmark
represents the computations associated with the implicit operator of implicit CFD
algorithms [29].

Diagonal Block Matrix Benchmark – SP and BT: The SP benchmark solves multiple,
independent systems of scalar, non diagonally dominant, pentadiagonal equations. BT,
however, solves multiple and independent systems of non diagonally dominant, block
tridiagonal equations with block size 5 × 5. SP and BT are representative of compu-
tations associated with the implicit operators of CFD codes. Both, SP and BT, are
similar in many respects, the essential difference is the communication to computation
ratio [29].

6 Results

We have carried out extensive measurements for all NAS benchmarks, the mandelbrot
set as well as UTBEST3D and have obtained the following results.

Memory Analysis and Performance Modeling for HPC Applications 29

As described, we have analyzed all benchmarks with respect to their plain run time
behavior. This means that we compare the results from test runs on the real hardware
platform with the run times in the simulation environment. The observation is that
generally the prospective run time in the simulation is faster than the execution on the
real hardware. This is due to the fact that the simulation does not contain a proper model
for cache and memory access penalties as is the case for real hardware. The simulator
assumes a constant and too low latency for each memory access and thus yields a lower
run time. The degree of deviation is directly coupled to the total amount of memory
access within the individual benchmarks. As can be seen in Fig. 3 the total run time can
be as much as 4.9 times slower than the prospected run time of the simulation. In our
benchmark set this was the case for the CG benchmark of the NPB suite, i.e., a
benchmark with low computational complexity. The high deviation becomes not
directly visible, as we chose to display the ordinate in log scale to compensate the
varying run times across the whole of our benchmarks. We also scaled the benchmarks
to obtain an impression about impact on the relative error of the simulation and the
execution on real hardware. As the NPB suite offers several problem size classes we
analyzed the two smallest classes. This is on one hand due to the fact that the simulation
requires about on order of magnitude more to finish than the execution on the real
hardware. On the other hand the memory available on the SoC is limited and cannot fit
certain benchmarks beyond this class into memory. The results for both classes were
consistent with respect to number of memory accesses and the total run times.

Furthermore, we carried out the benchmarks in parallel using OpenMP and
observed a consistent speedup for both, the simulation as well as the execution on the
real hardware. The prognosis of the speedup was slightly overshooting in seven out of
ten cases, which was to be expected as the run times in the simulation are consistently
faster than on the real hardware.

Fig. 3. Comparisons of benchmark run times on real hardware and in simulation; ordinate in log
scale.

30 A. Ditter et al.

As we observed, the predicted run time in the simulation to be heavily dependent
on the type of kernel and thus the amount of memory access, we instrumented the
simulation model in a way that allows to measure the amount of reading and writing
memory access of the benchmark runs. Based on our observation (cf. Fig. 4), we
derived a memory model improving the prediction accuracy of the run time on the real
hardware in seven out of ten cases (cf. Fig. 5) using function (1), which we derived on
the basis of our data.

Fig. 4. Percentage and relation of read and write operations for each of the benchmarks, along
with the quotient of the predicted run time of the simulation, rt(sim) and the actual run time on
the hardware, rt(hw).

Fig. 5. Quotient of simulation run time, rt(sim) and run time on real hardware, rt(hw), in relation
with the relative error with and without our memory model.

Memory Analysis and Performance Modeling for HPC Applications 31

rt hwð Þ ¼ eð1=mÞ
2

lnð1=mÞ
m � rt simð Þ ð1Þ

where: m is the m quotient of the #writes/#reads, rt(hw) is the run time on real hardware,
which is to be predicted from, rt(sim), the run time obtained from the simulation.

Using this fitting function, the error margin reduces from a standard deviation of
close to 0.4 in the case with no memory model to 0.2, when our model is used for the
approximation of the run time on the real hardware.

7 Conclusions and Future Work

7.1 Conclusion

We carried out a comprehensive analysis of benchmarks on real and simulated hard-
ware in order to analyze the accuracy of simulations with respect to the execution on
real hardware platform. We found that a naive simulation model is not sufficient and
must be extended with a proper memory model to match the anticipated results for real
hardware runs. We developed such a model that allowed us to reduce the inaccuracy in
the prediction of the run time on the real hardware based on the simulation. Yet, we
show that the combination of an instruction accurate simulation is well suited as a basis
for abstract simulations of multi-core embedded systems. Simulations can be carried
out in an acceptable time frame and yield sufficiently accurate results.

7.2 Future Work

In addition to our first evaluation of one HPC application and benchmark a broader
range especially of applications has to be evaluated with respect to their computational
and memory requirements. Using these applications and benchmark information we
want to extend our memory model with information about parallel execution using
OpenMP as well as cache hierarchy its related latency, energy consumption and their
interaction. Furthermore, we will expand our models and investigations by the ARMv8
architecture (64-bit). Because instruction accurate simulation itself can never provide
precise timing information, beyond modeling it with one or several instructions, such as
L1-/L2-Cache accesses, displacement, cache miss rates and page faults we want to
introduce concepts of statistical memory modeling. An interesting concept about sta-
tistical memory modeling was published by Davy Genbrugge and Lieven Eeckhout in
2009 [30]. They extend statistical simulation methodology to model shared resources in
the memory subsystem of multi-processors as shared caches, off-chip bandwidth and
main memory. In a next step, we will examine how well suited this approach is for our
work and if there is an additional benefit. An interesting article about energy modeling
was published by Kerrision and Eder in 2015 [31]. They examine a hardware
multi-threaded microprocessor and discusses the impact such an architecture has on
existing software energy modeling techniques. Their multithreaded software energy
model used with Instruction Set Simulation can yield an average error margin of less

32 A. Ditter et al.

than 7%. This model could be also of benefit for us, even if the ARM architecture we
use does not support hardware multi-threading, because the base for the multi-threaded
energy model was a single threaded one.

References

1. Köhler, C.: Enhancing Embedded Systems Simulation: A Chip-Hardware-in-the-Loop
Simulation Framework. Vieweg+Teubner research. Vieweg+Teubner Verlag, Wiesbaden
(2011)

2. Weaver, V.M., McKee, S.A.: Are cycle accurate simulations a waste of time? In:
Proceedings of the 7th Workshop on Duplicating, Deconstructing, and Debunking, June
2008

3. Imperas Software Limited. Official Open Virtual Platforms Website. http://www.ovpworld.
org/. Accessed 27 April 2015

4. Schoenwetter, D., Schneider, M., Fey, D.: A speed-up study for a parallelized white light
interferometry preprocessing algorithm on a virtual embedded multiprocessor system. In:
ARCS Workshops (ARCS), pp. 1–6, February 2012

5. Rajovic, N., Carpenter, P.M., Gelado, I., Puzovic, N., Ramirez, A., Valero, M.:
Supercomputing with commodity CPUs: are mobile SoCs ready for HPC? In: Proceedings
of the International Conference on High Performance Computing, Networking, Storage and
Analysis, SC 2013, pp. 40:1–40:12. ACM, New York (2013). http://doi.acm.org/10.1145/
2503210.2503281

6. Göddeke, D., Komatitsch, D., Geveler, M., Ribbrock, D., Rajovic, N., Puzovic, N., Ramirez,
A.: Energy efficiency vs. performance of the numerical solution of PDEs: an application
study on a low-power ARM-based cluster. J. Comput. Phys. 237, 132–150 (2013). http://dx.
doi.org/10.1016/j.jcp.2012.11.031

7. Rajovic, N., Rico, A., Puzovic, N., Adeniyi-Jones, C., Ramirez, A.: Tibidabo: making the
case for an ARM-based HPC System. Future Gener. Comput. Syst. 36, 322–334 (2014).
http://www.sciencedirect.com/science/article/pii/S0167739X13001581

8. ITMC TU Dortmund. Official LiDO Website. https://www.itmc.uni-dortmund.de/dienste/
hochleistungsrechnen/lido.html. Accessed 26 March 2015

9. Castro, M., Francesquini, E., Nguele, T.M., Mehaut, J.-F.: Analysis of computing and
energy performance of multicore, NUMA, and manycore platforms for an irregular
application. In: Proceedings of the 3rd Workshop on Irregular Applications: Architectures
and Algorithms, IA3 2013, pp. 5:1–5:8. ACM, New York (2013). http://doi.acm.org/10.
1145/2535753.2535757

10. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: The Traveling Salesman Problem: A
Computational Study: A Computational Study. Princeton Series in Applied Mathematics.
Princeton University Press, Princeton (2011). http://books.google.de/books?id=
zfIm94nNqPoC

11. KALRAY Corporation. Official KALRAY MPPA Processor Website. http://www.kalrayinc.
com/kalray/products/#processors. Accessed 31 March 2015

12. NVIDIA Corporation. Official NVIDIA SECO Development Kit Website. https://developer.
nvidia.com/seco-development-kit. Accessed 31 March 2015

13. Rajovic, N., Rico, A., Vipond, J., Gelado, I., Puzovic, N., Ramirez, A.: Experiences with
mobile processors for energy efficient HPC. In: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE 2013, pp. 464–468. EDA Consortium, San Jose
(2013). http://dl.acm.org/citation.cfm?id=2485288.2485400

Memory Analysis and Performance Modeling for HPC Applications 33

http://www.ovpworld.org/
http://www.ovpworld.org/
http://doi.acm.org/10.1145/2503210.2503281
http://doi.acm.org/10.1145/2503210.2503281
http://dx.doi.org/10.1016/j.jcp.2012.11.031
http://dx.doi.org/10.1016/j.jcp.2012.11.031
http://www.sciencedirect.com/science/article/pii/S0167739X13001581
https://www.itmc.uni-dortmund.de/dienste/hochleistungsrechnen/lido.html
https://www.itmc.uni-dortmund.de/dienste/hochleistungsrechnen/lido.html
http://doi.acm.org/10.1145/2535753.2535757
http://doi.acm.org/10.1145/2535753.2535757
http://books.google.de/books?id=zfIm94nNqPoC
http://books.google.de/books?id=zfIm94nNqPoC
http://www.kalrayinc.com/kalray/products/%23processors
http://www.kalrayinc.com/kalray/products/%23processors
https://developer.nvidia.com/seco-development-kit
https://developer.nvidia.com/seco-development-kit
http://dl.acm.org/citation.cfm?id=2485288.2485400

14. NVIDIA Corporation. Official NVIDIA Tegra 2 Website. http://www.nvidia.com/object/
tegra-superchip.html. Accessed 27 March 2015

15. NVIDIA Corporation. Official NVIDIA Tegra 3 Website. http://www.nvidia.com/object/
tegra-3-processor.html. Accessed 27 March 2015

16. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J.,
Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.
D., Wood, D.A.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2), 1–7 (2011).
http://doi.acm.org/10.1145/2024716.2024718

17. Bucy, J.S., Schindler, J., Schlosser, S.W., Ganger, G.R.: The DiskSim Simulation
Environment Version 4.0 Reference Manual, May 2008

18. Rosenfeld, P., Cooper-Balis, E., Jacob, B.: DRAMSim2: a cycle accurate memory system
simulator. Comput. Architect. Lett. 10(1), 16–19 (2011)

19. Imperas Software Limited, OVP Guide to Using Processor Models, Imperas Buildings,
North Weston, Thame, Oxfordshire, OX9 2HA, UK, January 2015, version 0.5,
docs@imperas.com

20. Imperas Software Limited, OVPsim and Imperas CpuManager User Guide, Imperas
Buildings, North Weston, Thame, Oxfordshire, OX9 2HA, UK, January 2015, version 2.3.7,
docs@imperas.com

21. Altera Corporation. Cyclone V SoC Development Kit User Guide. https://www.altera.com/
content/dam/altera-www/global/enUS/pdfs/literaure/ug/ugcvsocdevkit.pdf. Accessed 07
May 2015

22. Imperas Software Limited. Description of Altera Cyclone V SoC. http://www.ovpworld.org/
library/wikka.php?wakka=AlteraCycloneVHPS. Accessed 29 April 2015

23. Janapsatya, A., Ignjatovic, A., Parameswaran, S., Henkel, J.: Instruction trace compression
for rapid instruction cache simulation. In: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE 2007, pp. 803–808. EDA Consortium, San Jose
(2007). http://dl.acm.org/citation.cfm?id=1266366.1266538

24. Hardman, J.: Official NAS Parallel Benchmarks Website. http://www.nas.nasa.gov/
publications/npb.html. Accessed 23 April 2015

25. Dawson, C., Aizinger, V.: A discontinuous Galerkin method for three-dimensional shallow
water equations. J. Sci. Comput. 22(1–3), 245–267 (2005)

26. Aizinger, V., Proft, J., Dawson, C., Pothina, D., Negjusse, S.: A three-dimensional
discontinuous Galerkin model applied to the baroclinic simulation of Corpus Christi Bay.
Ocean Dyn. 63(1), 89–113 (2013). https://www.math.fau.de/fileadmin/am1/users/aizinger/
AizingerPDPN2013.pdf

27. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent
convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998). http://dx.
doi.org/10.1137/S0036142997316712

28. Branner, B.: The mandelbrot set. Proc. Symp. Appl. Math. 39, 75–105 (1989)
29. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fatoohi, R.

A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The NAS parallel benchmarks
- summary and preliminary results. In: Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing 1991, pp. 158–165. IEEE (1991)

30. Genbrugge, D., Eeckhout, L.: Chip multiprocessor design space exploration through
statistical simulation. IEEE Trans. Comput. 58(12), 1668–1681 (2009)

31. Kerrison, S., Eder, K.: Energy modeling of software for a hardware multithreaded embedded
microprocessor. ACM Trans. Embed. Comput. Syst. 14(3), 56:1–56:25 (2015). http://doi.
acm.org/10.1145/2700104

34 A. Ditter et al.

http://www.nvidia.com/object/tegra-superchip.html
http://www.nvidia.com/object/tegra-superchip.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://doi.acm.org/10.1145/2024716.2024718
https://www.altera.com/content/dam/altera-www/global/enUS/pdfs/literaure/ug/ugcvsocdevkit.pdf
https://www.altera.com/content/dam/altera-www/global/enUS/pdfs/literaure/ug/ugcvsocdevkit.pdf
http://www.ovpworld.org/library/wikka.php?wakka=AlteraCycloneVHPS
http://www.ovpworld.org/library/wikka.php?wakka=AlteraCycloneVHPS
http://dl.acm.org/citation.cfm?id=1266366.1266538
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
https://www.math.fau.de/fileadmin/am1/users/aizinger/AizingerPDPN2013.pdf
https://www.math.fau.de/fileadmin/am1/users/aizinger/AizingerPDPN2013.pdf
http://dx.doi.org/10.1137/S0036142997316712
http://dx.doi.org/10.1137/S0036142997316712
http://doi.acm.org/10.1145/2700104
http://doi.acm.org/10.1145/2700104

Model Checking in Parallel Logic Controllers
Design and Verification

Michał Doligalski(&), Jacek Tkacz, and Tomasz Gratkowski

Institute of Metrology, Electronics and Computer Science, University of Zielona
Gora, Zielona Gora, Poland

{m.doligalski,j.tkacz,t.gratkowski}@imei.uz.zgora.pl

Abstract. The parallel logic controllers (PLC) developing process can be both,
simplified and improved by means of formal methods.
The paper presents approach based on Petri nets specification and model

checking techniques used for formal verification, synthesis and implementation.
Interpreted petri net (IPN) is selected as a formal behavioural model for parallel
logic controllers. It is proposed to use graphical modelling tools for formal
behavioural PLC modelling, authors ICPN is such example. The use of common
standard, like Petri Net Markup Language (PNML) enables integration with
formal analysis tools. The model is simplified (optimised) by means of formal
reasoning system (Gentzen). The transformation of the simplified model is made
automatically into VHDL description and NuSMV model. The resulting VHLD
model can be used for simulation and next for synthesis and implementation.
The reliability of the PLC is improved by formal verification. The paper presents
the application of the additional specification described in the temporal logic.
Model received from reasoning system can be verified by such specification.
The formal verification enables to locate deviations from the specification.
Proposed approach is useful especially in PLC rapid prototyping approach. The
changes in the specification can be verified immediately, towards general
specification requirements. Discrepancies between specification and the proto-
type are localised and can be removed before next iteration. Proposed approach
improves visual analysis and fast modifications, ensuring high reliability of the
constructed logic controller. The formal methods increases the reliability and
quality of the parallel logic controller.

1 Introduction

The rapid approach to logic controllers developing process requires tools which will
improve the quality of the system and reduce time to market. The reduction of mistakes
or defects increase the quality, the precision and early defects detection will decrease
time to market. The application of the formal models enables automatic verification and
optimisation of the controller. Unified Modelling Language (state machines, activity
diagrams) or Petri Nets are popular and acceptable models for behavioral logic con-
trollers specification [10, 16].

Typically the general design flow should be divided into two paths: design and
verification (Fig. 1). At each stage, the design should be verified: manually, by sim-
ulation, using formal methods or model checking techniques. The feedback from the

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_3

verification path to design path enables the defects correction. Typically, each path
should be carried out by independent teams or persons. The good example is the
situation during model checking, where there is no guarantee that one person (or team)
will not make the same mistakes describing the model and model requirements.
Especially when the general requirements are too general or ambiguous.

The model requirement should not be limited to project requirement but it should
also be extended to technology, security or domain requirements. Especially domain
requirements - the knowledge obtained during previous projects is very important.
Such requirements are not delivered with the project requirements directly, but as a
results of general rules of typical problem or previous solved tasks.

Fig. 1. Design flow towards formal verification, optimisation and implementation

36 M. Doligalski et al.

The paper presents the formal approach with automatic model and indirect model
generation. The designer uses proposed (iCPN) or other PNML compliant tool to
describe controller behaviour. The rule based specification (RBS) is generated and
loaded by Gentzen system. The input to model checker (SMV file for NuSMV) is
generated automatically. The SMV model is verified towards requirements - temporal
logic specification (TLS). If all requirements are met, the hardware description lan-
guage definition (VHDL, Verilog) is also generated automatically. Logic controller
description in HDL language can be implemented in the FPGA devices [2, 3, 13, 14].
The other techniques like: exceptions handling [10], optimisation [15], that improve the
quality of the controller are also important and closely related to the presented
approach.

2 Theoretical Introduction

The paper presents a formal approach to parallel logic controllers developing process,
where the formal behavioural specification is based on informal requirements. The
informal requirements are used for formal specification with Petri Net model, which is
one of the most popular formal model for behavioural specification. The application of
the PNML (Petri Net Markup Language) standard enables the use of graphical mod-
elling, model checking, optimisation and synthesis tools. The proposed approach use
three tools: iCPN, Gentzen and NuSMV. The automatic model transformation enables
the use of the proposed approach in rapid parallel logic controllers specification.

2.1 Petri Nets

The petri nets are considered as formal model for control system. A simple Petri net
[8, 12] is defined as a triple:

PN ¼ P; T ;Fð Þ; ð1Þ

where:
P is a finite non-empty set of places, P ¼ p1; . . .; pMf g
T is a finite non-empty set of transitions, T ¼ t1; . . .; tSf g
F is a set of arcs from places to transitions and from transitions to places:

F� P� Tð Þ [T � Pð Þ;
P\ T ¼ ;:

Sets of input and output transitions of a place pm 2 P are defined respectively as
follows:

�pm ¼fts 2 T : ts; pmð Þ 2 Fg;
pm� ¼fts 2 T : pm; tsð Þ 2 Fg:

Model Checking in PLC Design and Verification 37

Sets of input and output places of a transition ts 2 T are defined respectively as
follows:

�ts ¼fpm 2 P : pm; tsð Þ 2 Fg;
ts� ¼fpm 2 P : ts; pmð Þ 2 Fg:

A marking of a Petri net is defined as a function:

M : P ! N

It describes a number of tokens M (pm) situated in a place pm. When a place, or a set
of places, contains a token it is marked. A transition ts can be fired if all its input places
are marked. Firing of a transition removes tokens from its input places and puts one
token in each output place. From automata theory the initial marking M0 is taken. In
this case the Petri net is defined as a tupe:

PN ¼ P; T ;F;M0ð Þ: ð2Þ

An interpreted Petri net is enhanced with a feature for information exchange with
environment [8]. This exchange is made by using binary signals [9]. Two types of
interpreted Petri nets can be distinguished: Moore type and Mealy type.

The Boolean variables occurring in the interpreted Petri net can be divided into
three sets:
X is a set of input variables, X ¼ x1; : : : ; xLf g;
Y is a set of output variables, Y ¼ y1; : : : ; yNf g;
Z is a set of internal communication variables, typically it is not used and Z ¼ ;:

The interpreted Petri net has a condition (guards) φs associated to every transition ts.
The condition φs is defined as Boolean function of the input or internal variables form
sets X and Z. In particular case, the condition φs can be equal to 1 (always true). The
guarded (labeled) transition ts can be fired if all its input places (•ts) are marked and
current value of corresponding Boolean function φs is equal to 1. In case of Moore type
interpreted Petri net, ψm is an elementary conjunction of some output variables from the
set Y. Each of such conjunction ψm is associated to some of places pm. If the place pm is
marked the output variables from corresponding conjunction ψm are being set other-
wise they are being reset. When transition ts is fired, variables from corresponding
conjunction ψs are being set if their affirmation belongs to this conjunction and they are
being reset if their negation belongs to this conjunction. The value of non-used vari-
ables in corresponding conjunction ψs remains unchanged. Figure 2 presents example
of interpreted Petri net. The simple net will be used in next sections to present Gentzen
calculi (formal method of specification), calculi normalization (Sect. 2.4 and RBS
generation Sect. 2.3).

38 M. Doligalski et al.

2.2 iCPN System

The iCPN tool was developed because there was a need for system dedicated to
advanced Petri nets analysis, coloring algorithms and decomposition into automata
components in particular. The marked analysis shown that academic and commercial
system dedicated to Petri Nets are limited to simple functionality. The Tina and WoPed
software is such an example. There is possibility of net simulation and basic properties
analysis. Also it is possible to determine concurrency graphs as well as marking graphs
but that software tools operates on Petri nets simple class. The software adaptation to
logic controllers developing process is rather hard. The Jensen’s CPN software is the
most advanced tool, where the analysis of the interpreted Petri nets is possible. The
biggest disadvantage of the CPN software is the interface, which differs significantly
from the generally accepted standards.

The functionality and interoperability of the iCPN software is presented on
Figure 3. The PNML standard is used for data exchange with other system. The
standard defines main graph nodes like: place, transition, arc, initial marking. Also the
layout of the model can be described. PNML standard doesn’t contain any element for
interpreted net description however, the standard is extensible and dedicated extensions
can be provided. The special marker (node) <toolspecific/> enables extension specific
for particular CAD tool. Such an approach guarantees the possibility of extensions and
at the same time compatibility with other tools. The information included in special
marker, will be read and analysed only by tools which will need it. Thanks to that there
is a possibility of the Petri net modelling including all extensions required for logic
controllers. The PNLM net description with additional data can be loaded into other
tolls. Additional information will be omitted but still toll-specific functionality will be
possible. The good example is dynamic simulation or validation provided by WoPed or
Tina software.

Fig. 2. The interpreted Petri net example

Model Checking in PLC Design and Verification 39

2.3 Rule-Based Specification

The GENTZEN system accepts rule-based specification in the form of sequent calculi
as input data. The transition-based description is used for Petri net specification. The
sequent predecessor will define the product of the transition input places and transition
condition, the successor product of the places sum with generated outputs (3).

Yn

i¼1

pið Þ ^ condition ‘
Yk

j¼1

pj _
Xm

l¼1

ðylÞ
 !

ð3Þ

The automata design requires the register signal definition (REG) which corre-
sponds to Petri net places. Also the incitation of the initial places and transition are
required (INIT). The example of the Petri net specification according to Eq. (3) is
presented in Listing 1.

Fig. 3. iCPN software functionality and integration

IN: x1, x2;
OUT: y1, y2, y3;
REG: p1, p2, p3;
INIT: p1;

p1∗
∗ ∗

∗x1|−(p2+y1+y2) (p3+y3);
p2 p3 x2|−p1+y1;

Listing 1. Rule Based Specification example

40 M. Doligalski et al.

The RBS description is used as an input into GENTZEN system which generates
both SMV specification and VHDL description.

2.4 Gentzen System

The sequent is a formalized statement used for deduction and calculi [4]. In the sequent
calculus, sequents are used for specification of judgment that are characteristic to
deduction system. The sequent is defined as a ordered pair (Γ, Δ), where Γ and Δ are
finite sets of formulas, and Γ = {A1, A2, …, Am}, Δ = {B1, B2, …, Bn}. Instead of (Γ, Δ)
it is used notation with use of turnstile symbol Γ ‘ Δ.

Γ is called the antecedent and Δ is a succedent of the sequent. The sequent Γ ‘ Δ is
satisfiable for the valuation v iff for the same valuation v the formula

Vm
i¼1Ai !

Wn
j¼1Bj

is satisfied.
The Gentzen system is a CAD tool dedicated to Petri nets verification and opti-

misation. It implements sequent logic and rules of elimination of logic operators. For
each operator (negation, disjunction, conjunction, implication and equivalency), there
are defined two rules of its elimination. First rule is used when the operator is located in
antecedent and the second one when it is located in succedent. For each logic operator
there are two rules of the elimination. As an example the rule of the disjunction
operator elimination will be presented (4), it is one of the ten potential rules that can be
used. If the main logical operator in sequent is disjunction located in succedent then
two sequents will be produced. First sequent will contain the first comma separated
argument of disjunction in succedent, and the second sequent will contain the second
argument of disjunction also in succedent (4).

H; U _ W; C ‘ P
H; U; C ‘ P H; W; C ‘P ð4Þ

If the main logical operator in sequent is disjunction located in antecedent then in
the next step only one sequent is produced and a logic operator is replaced by the
comma in antecedent. Both of arguments of disjunction are separated by the comma in
antecedent (5).

K ‘ H; U _ W; C
K ‘ H; U W

ð5Þ

The elimination process is repeated, while only normalized sequents are received
(Fig. 4). The normalized sequent is the sequent without any logical operators. The
sequent is a tautology iff it has the same formula in an antecedent and a succedent. The
located tautology sequents could be removed from further normalization. Iff all nor-
malized sequents are tautologies the analysed root sequent is also a tautology. When
one of leafs in deduction tree (Fig. 4) is not a tautology it means that it is a coun-
terexample for analyzed sequent. The consensus method is included into formal
deduction (Gentzen cut rule).

Model Checking in PLC Design and Verification 41

The current version of implementation of Gentzen system “GENTZEN v6.7.2”
accepts many types of logical operators, taken from Palasm, VHDL, Verilog, Linear
logic and NuSMV [13]. Thanks to the PNML standard, the system enables integration
with other tools. The results of the developing process can be transformed to NuSMV
model. Also the implementation to VHDL, VERILOG description is possible. The
connection of the verification and synthesis in one tool accelerates the developing
process.

The example of the normalisation of the rule-based specification from Listing 1
which describes interpreted Petri net from Fig. 3.

p1; x1j � p2; y1; y2;
p1; x1j � p3; y3;

p2; p3; x2j � p1; y1;
ð6Þ

The redundant logic formula can be removed or partially reduced as a result of the
standardization process. As the presented example is simple, the logic formulas were
only normalised into the group of simple sequent, devoid logic conjunctions.

The particular sequent can be easily found in a new, normalised specification. The
normalisation is necessary for next steps - transformation into NuSMV model and HDL
synthesizable specification.

As an addition to presented process, the linear logic can be used to generate formal
description of the parallel logic controller. The linear logic specification [5, 11]

Fig. 4. Example of sequent normalization

42 M. Doligalski et al.

describes the same Petri net model (Eq. 3), and is coherent with the presented one but it
is more transparent. The specification in the form of sequent linear logic was presented
in Eq. 7 (the REG and INIT definition was intentionally omitted).

‘ p1 � x1ð Þ � � p2 � y1 � y2ð Þ � p3 � y3ð Þð Þ;
‘ p2 � p3 � x2ð Þ � � p1 � y1ð Þ; ð7Þ

The presented symbolic deduction system was used for solving the combinatorial
digital technology problems [15]. As an alternative to the approach presented in this
paper, the Gentzen system can be used to formal verification by checking the depen-
dency between minimal traps and syphons. As a result the information about liveness is
returned with the counterexample in case of net fault. The counterexample can be used
for failure localisation and correction. Also it can be used for the specification
reduction, logic simulation and verification of the implementation relative to full or
partial specification. As a result of carried out research the other applications of the
Gentzen in the area of concurrent logic controllers design were proposed [1].

2.5 NuSMV System

The controller specification can be verified by means of model checking techniques [6].
The paper presents approach based on Petri nets specification but other formal models
like UML diagrams can be verified formally as well [7]. The model verification enables
early project verification. From the designer point of view it enables fast changes to the
project and verification if the provided changes are compliant with the requirement or
not. Especially the model verification techniques is useful when the model for NuSMV
tool will be generated automatically. It also eliminates mistakes, possible when the
transformation is made manually. The model verification at the specification phase
limits its propagation into next phases. Thanks to that the design is more reliable and
the developing process time can be reduced. The paper presents the example of
automatic NuSMV model generation and verification (Sect. 3.2).

The verification of the model is done in relation to the requirements. The logic
controller is specified in the NuSMV format. There are two methods of specification:
lineal temporal logic (LTL) and computation tree logic (CTL). The requirements are
based on informal specification. It can describe overall requirements based on speci-
fication, technical requirements related to particular technical facilities or domain
requirements. The model checking techniques compare model and requirements and if
the requirements are not fulfilled then counterexample returns as a result. The coun-
terexample presents the place of inconsistency, the guide to a designer. The verification
is carried out only for specified requirements, the other ones that were unspecified will
be not verified. It means that the in the case of incomplete requirements the positive
result of the verification will not guarantee the proper work of the controller.

Model Checking in PLC Design and Verification 43

3 Formal Approach to PLC Design

This section presents practical approach to parallel logic controller design by means of
formal models and method. The example of behavioural specification will be trans-
formed automatically into the rule-based specification (RBS). The specification will be
then verified by means of NuSMV tool. After successful verification automatic syn-
thesis will result logic controller HDL description.

3.1 Control System

The controlled plant (Fig. 5) consists of three feeders, scales and content mixer. The
aim of the plant is to produce concrete with cement, aggregates and water. Scales is
used to measure required amount of friable ingredients. The proper amount of water is
delivered by means of water feeder and flow meter X F 2.The components are mixed
according to the recipe for a limited period of time, timer X F 2 steers the mixing time.
The logic controller has six inputs {X N1, X N2, X F1, X F2, X F3, X F4} and six outputs
{Y T1, Y T2, Y V1, Y V2, Y V3, Y M}.

The example of control-interpreted Petri net, which describes the behavioural of
control system is presented on Fig. 6. The Petri net places {P1, P2, …, P11} stand for
the local states of concurrent state machine. The transitions t1 … t9 describe events in
terms of local changes inside the Petri net state space. Boolean expressions X N1 … X
F4 called guards give the external conditions for transitions to be enabled and fired.

Fig. 5. Mechanical part of discrete control system

44 M. Doligalski et al.

The colored coordination places P12 and P13 in Fig. 6 are optional. The guarded events
are strongly related to transitions of the net (Table 1). The Moore type outputs Y T1 …
YM are attached to places (Table 2).

3.2 Formal Verification

Parallel logic controller Behavioral specification in the form of interpreted Petri net
presented in Fig. 6 was edited in iCPN tool and next saved into rule-based format
Listing 2. One of the most important advantage of the presented approach is that the
rule-based specification is generated automatically. There is no need to manually
describe the specification. Alternative approach [7] requires the use of an intermediate
format. There is no possibility of automatic conversion from commonly acceptable
formats like PNML.

Table 1. List of transitions and guards

Transition Guard Interpretation of guard

t1 XN1 Required value of aggregate is reached
t2 1 Always true
t3 XF1 The scale is empty
t4 XN2 Required value of cement is reached
t5 XF1 The scale is empty
t6 1 Always true
t7 XF4 Ingredients are intermixed
t8 XF3 Cement mixer is empty
t9 XF2 Required value of cement is reached

Table 2. List of places and outputs

Place Output Interpretation of place

P1 YT1 First dozing of cement
P2 – Waiting
P3 – Waiting
P4 YV1 First emptying the scale
P5 YT1 Second dozing of cement
P6 YV1 Second emptying the scale
P7 – Waiting
P8 – Waiting
P9 YV2 Dosing of water
P10 YM Mixing of compounds
P11 YV3 Emptying the mixer

Model Checking in PLC Design and Verification 45

IN: XN1, XN2, XF1, XF2, XF3, XF4;

OUT: YT1, YT2, YV1, YV2, YV3, YM;

REG: P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11;

INIT: P1, P2, P9;

P1 XN1|−P2;
P2 P3|−P4+YV1;
P4 XF1|−P5+YT2;
P5 XN2|−P6+YV1;
P6 XF1|−(P1+YT1) P7;

P7 P8|−P10+YM;
P10 XF4|−P11+YV3;
P11 XF3|−P3 (P9+YV2);

P9 XF2|−P8;

Listing 2. Rule Based Specification for control system

The Gentzen system generates logic controlled model by means of temporal logic
(Listing 3). The model will be verified towards design requirements fulfilment. Model
describes petri net structure. Places, input and output signals are treat as boolean
variables. The transitions and are described using next() := case…esac; construct.

In NuSMV tool model is verified towards design requirements meet. The
requirements for the control system were presented on Fig. 4. There are three groups of
requirements. Firs group checks the state reachability. If it’s not possible to reach the
particular state, the net has a structural defect. Second group checks the negation of a
conjunction of states marking, states that should never be active at the same time are
verified. For example, it is forbidden to empty and fill of the tank at the same time. It is
also forbidden to run the mixer when the vat is empty. Third group describes sequence
of events. The relationship of cause and effect between the occurrence of the event and
its aftermath is verified. An example is being checked if the tank valve is closed after
unloading.

46 M. Doligalski et al.

Fig. 6. Petri net model

MODULE main

VAR

XF1 : boolean; (...) XN2 : boolean;

YM : boolean; (...) YV3 : boolean;

P1 : boolean; (...) P11 : boolean;

ASSIGN

init(P1) := TRUE; init(P2) := FALSE;

(...) init(P9) := TRUE;

init(P10):= FALSE; init(P11):= FALSE;

init(XF1):= FALSE; (...) init(XN2):= FALSE;

init(YM) := FALSE; (...) init(YV3):= FALSE;

next(P1) := case

P1 & XN1 : FALSE;

P6 & XF1 : TRUE;

TRUE : P1;

esac;

next(P2) := case

Model Checking in PLC Design and Verification 47

P2 & P3 : FALSE;

P1 & XN1: TRUE;

TRUE : P2;

esac;

(...)

next(P11) := case

P11 & XF3 : FALSE;

P10 & XF4 : TRUE;

TRUE : P11;

esac;

next(XF1) := case

P4 | P6 :{FALSE,TRUE};

TRUE : FALSE;

esac;

next(XF2) :=case

P9 : {FALSE,TRUE};

TRUE : FALSE;

esac;

(...)

next(XN2):=case

P5 : {FALSE,TRUE};

TRUE : FALSE;

esac;

next(YM):=case

P10 : TRUE;

TRUE : FALSE;

esac;

next(YT1) := case

P1 : TRUE;

TRUE : FALSE;

esac;

(...)

next(YV3):=case

P11 : TRUE;

TRUE : FALSE;

esac;

Listing 3. NuSMV model generated by means of GENTZEN system

48 M. Doligalski et al.

The list of assertions can describe the requirements at the general level or it can go
deep in details. The result of the formal verification is boolean. Each assertion is
verified and TRUE or FALSE result is given. IF the result is FALSE, the counterex-
ample is given. It’s a very useful feature, because it directly indicates the place of
failure. A designer can correct the incompatibility with the specification at an early
stage without the need of additional simulation.

CTLSPEC EF P1;

(...)

CTLSPEC EF P11;

CTLSPEC AG !(YT1 & YV1);

CTLSPEC AG !(YT2 & YV1);

CTLSPEC AG !(XF1 & XN1);

CTLSPEC AG !(XF1 & XN2);

CTLSPEC AG !(YV1 & YV3);

CTLSPEC AG !(YM & XF3);

CTLSPEC AG !(YT1 & YT2);

CTLSPEC AG !(YV3 & YV2);

CTLSPEC AG (XN2 −> AF !YT2);
CTLSPEC AG (XF1 −> AF !YV1);
CTLSPEC AG (XF2 −> AF !YV2);
CTLSPEC AG (XN1 −> AF YT1);

Listing 4. Requirements based on informal specification

3.3 Synthesis to HDL

The normalised specification in the form of sequent is automatically transformed into
hardware description language VHDL (Listing 5), the Verliog specification is also
possible. From the specification definition section the input, output signal and internal
register signal are generated (P1 … Pn). The RESET signal initialises the module
according to Petri net initial marking. This data is also based on the specification
section. The architecture of the module describes transition between Petri net Places.
The transitions are fired in accordance with the rising edge of the clock signal.

The complex logic formula is based on the normalised specification. The reverse
deduction based on logic conjunction is performed. This process is reversed in relation
to the process described in Sect. 2.4.

Model Checking in PLC Design and Verification 49

library IEEE ;

use IEEE.stdlogic 1164.all;

entity controller is

port(

CLK,RESET: in STD LOGIC;

XF1: in STD LOGIC;

XF2: in STD LOGIC;

XF3: in STD LOGIC;

XF4: in STD LOGIC;

XN1: in STD LOGIC;

XN2: in STD LOGIC;

YM: out STD LOGIC;

YT1: out STD LOGIC;

YT2: out STD LOGIC;

YV1: out STD LOGIC;

YV2: out STD LOGIC;

YV3: out STD LOGIC

) ;

end controller;
architecture controller_arch of controller is

signal P1,P10,P11,P2,P3,P4,P5,P6,P7,P8,P9:STD LOGIC;

begin

FF : process (CLK, RESET)

begin

if RESET = ’1 ’ then

P1<=’1’; P10<= ’0’; P11<=’0’; P2<=’0’; P3<=’1’;

P4<=’0’; P5<=’0’; P6<=’0’; P7<=’0’; P8<= ’0’;

P9<= ’1’;

elsif rising_edge (CLK) then

P1<=P1 ; P10<=P10 ; P11<=P11 ; P2<=P2 ; P3<=P3 ;

P4<=P4 ; P5<=P5 ; P6<=P6 ; P7<=P7 ; P8<=P8 ; P9<=P9 ;

if P1 = ’1 ’ and XN1 = ’1 ’ then

P1<= ’0 ’; P2<= ’1 ’;

end if;

if P2 = ’1’ and P3 = ’1’ then

P2<= ’0’; P3<= ’0’; P4<= ’1’;

end if;

if P4 = ’1’ and XF1 = ’1 ’ then

P4<= ’0’; P5<= ’1’;

end if;

if P5 = ’1’ and XN2 = ’1’ then

P5<= ’0’; P6<= ’1’;

end if;

50 M. Doligalski et al.

if P6 = ’1’ and XF1 = ’1’ then

P6<= ’0’; P1<= ’1’; P7<= ’1’;

end if ;

if P7 = ’1’ and P8 = ’1’ then

P7<= ’0’; P8<= ’0’; P10<= ’1 ’;

end if ;

if P10 = ’1’ and XF4 = ’1’ then

P10<= ’0’; P11<= ’1’;

end if ;

if P9 = ’1’ and XF2 = ’1’ then

P9<= ’0’; P8<= ’1’;

end if ;

if P11 = ’1’ and XF3 = ’1’ then

P11<= ’0’; P3<= ’1’; P9<= ’1’;

end if ;

if P9 = ’1’ and XF2 = ’1’ then

P8<= ’1’; P9<= ’0’;

end if ;

end if ;

end process ;

YM<=P10; YT1<=P1; YT2<=P5; YV2<=P9;

YV3<=P11; YV1<=P4 or P6;

end controller_arch;

Listing 5. The Petri net description in VHDL language

4 Conclusion

The idea of rapid parallel logic controllers prototyping by means of formal methods
was presented in this paper. The application of the additional specification with the
requirements specification for model checking enables fast and constant verification of
the implementation model. Any move beyond the specifications, or lack of specifica-
tion of the particular item will be immediately captured by the model checking tools.
As a result, the counterexample will indicate exactly the places where a conflict occurs.
The proposed approach use accepted standard for Petri net specification (PNML), there
is a possibility of omitting PNML specification and using logic sequent which specifies
the controller directly. It’s proposed that other formal models can be transformed using
model transformation methods (QVT) into Petri net model, which will be intermediate
model transparent for a designer. The automatic rule-based specification generation
limits the errors and makes the presented method usable, especially in RSP techniques.
Such information greatly improves the process of designing and prototyping concurrent
logic controllers and will ensure the compliance of the implementation with the
specification.

Model Checking in PLC Design and Verification 51

References

1. Adamski, M., Tkacz, J.: Formal reasoning in logic design of reconfigurable controllers. In:
Proceedings of 11th IFAC/IEEE International Conference on Programmable Devices and
Embedded Systems PDeS 2012, Brno, Czech Republic, pp. 1–6 (2012)

2. Doligalski, M.: Behavioral specification of the logic controllers by means of the hierarchical
configurable Petri nets. In: Proceedings of 11th IFAC/IEEE International Conference on
Programmable Devices and Embedded Systems - PDeS 2012, Brno, Czechy, pp. 80–83
(2012)

3. Doligalski, M., Adamski, M.: UML state machine implementation in FPGA devices by
means of dual model and Verilog. In: 2013 11th IEEE International Conference on Industrial
Informatics (INDIN), pp. 177–184 (2013)

4. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving.
Harper & Row Publishers, New York (1985). http://www.cis.upenn.edu/*jean/gbooks/
logic.html

5. Girault, F., Pradin-Chezalviel, B., Kunzle, L., Valette, R.: Linear logic as a tool for reasoning
on a Petri net model. In: INRIA/IEEE Symposium on Emerging Technologies and Factory
Automation, ETFA 1995, vol. 1, pp. 49–57 (1995)

6. Grobelna, I.: Formal Verification of Logic Controller Specification by Means of Model
Checking. Lecture Notes in Control and Computer Science. University of Zielona Góra
Press, Zielona Góra (2013)

7. Grobelna, I., Grobelny, M., Adamski, M.: Model checking of UML activity diagrams in
logic controllers design. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T.,
Kacprzyk, J. (eds.) Proceedings of the Ninth International Conference on DepCoS-
RELCOMEX. AISC, vol. 286, pp. 233–242. Springer, Heidelberg (2014)

8. Karatkevich, A.: Dynamic Analysis of Petri Net-Based Discrete Systems. Lecture Notes in
Control and Information Sciences, vol. 356. Springer-Verlag, Berlin (2007)

9. Kozłowski, T., Dagless, E., Saul, J., Adamski, M., Szajna, J.: Parallel controller synthesis
using Petri nets. In: IEEE Proceedings – Computers and Digital Techniques, vol. 142, no. 4,
pp. 263–271 (1995)

10. Leroux, H., Andreu, D., Godary-Dejean, K.: Handling exceptions in Petri net based digital
architecture: from formalism to implementation on FPGAs. IEEE Trans. Ind. Inform. 99, 1
(2015)

11. Lincoln, P., Shankar, N.: Proof search in first-order linear logic and other cut-free sequent
calculi. In: Symposium on Logic in Computer Science, LICS 1994, pp. 282–291 (1994)

12. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)
13. Pereira, F., Gomes, L.: Automatic synthesis of VHDL hardware components from iopt Petri

net models. In: Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the
IEEE, pp. 2214–2219, November 2013

14. Rawski, M., Tomaszewicz, P., Borowik, G., Łuba, T.: 5 Logic synthesis method of digital
circuits designed for implementation with embedded memory blocks of FPGAs. In:
Adamski, M., Barkalov, A., Węgrzyn, M. (eds.) Design of Digital Systems and Devices.
LNEE, vol. 79, pp. 121–144. Springer, Heidelberg (2011)

52 M. Doligalski et al.

http://www.cis.upenn.edu/%e2%88%bcjean/gbooks/logic.html
http://www.cis.upenn.edu/%e2%88%bcjean/gbooks/logic.html

15. Tkacz, J., Adamski, M.: Logic design of structured configurable controllers. In: Proceedings
of IEEE 3rd International Conference on Networked Embedded Systems for Every
Application NESEA 2012, Liverpool, United Kingdom, p. 6 (2012)

16. Wiśniewski, R., Stefanowicz, Ł., Bukowiec, A., Lipiński, J.: Theoretical aspects of Petri nets
decomposition based on invariants and hypergraphs. In: Park, J.J.(.J.H.), Chen, S.-C.,
Gil, J.-M., Yen, N.Y. (eds.) Multimedia and Ubiquitous Engineering. LNEE, vol. 308,
pp. 371–376. Springer, Heidelberg (2014)

Model Checking in PLC Design and Verification 53

Fuzzy Logic for Optimized Path Establishment
in Optical Networks

Miroslav Dulik and Gabriel Cibira(&)

Faculty of Electrical Engineering, Institute of Aurel Stodola,
University of Zilina, Liptovsky Mikulas, Slovakia

{dulik,cibira}@lm.uniza.sk

Abstract. This article brings new approach to optical network optimization.
When routing data in fast optical networks, defined parameters of each path are
taken into account and evaluated to find optimized path for data routing. Our
fuzzy logic approach implements fuzzy weighed parameterization to achieve
optimal path setup in decision process, over WDM network structure. Complex
path evaluation and dynamic routing using fuzzy logic can provide better results
and faster decisioning for data transport in optical networks.

1 Introduction

Routing in WDM optical networks has been widely solved for different types of optical
networks. New solutions and approaches are based on measuring and evaluation of
several parameters, like:

• eye diagram (Q-factor)
• evaluation of optical signal-to-noise ratio (OSNR)
• power and spectrum dissipation
• evaluation of channel state
• bit error rate (BER)

By default, fiber networks provide node-to-node connections over long distances.
They include optical fibers, optical transmitters/receivers and amplifiers (if necessary).
If routing on higher layer is necessary, some optical-electrical and optical-electrical
converters must be deployed.

Cisco forecasted increasing data traffic rate of about 21% per year as well as
continually growing large number of mobile non-PC devices [1]. In WDM systems,
bandwidth is met by employing multiple carrier wavelength channels over a fiber. It
respects transmission limits [2], depending on route components [3], modulation
methods, operational modes and wavelength routing control abilities. Dynamic flexible
control approaches bring better bandwidth agility [4–10]. The most used routing and
wavelength assignment algorithms implement various methods to improve overall
throughput, like: a shortest path choosing within user-specified or network-specified
constraints, alternate routing creation, etc. Modern systems embrace highly sophisti-
cated automated processes, re-routing, advanced modulations [11, 12], wavelength
optimization [8, 10, 13–17] backup linking etc.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_4

In mesh networks, fuzzy control can provide these functions: wavelength recon-
figuration (based on defined parameters) [6, 9, 18], routes updating [19] and load
balancing to improve overall throughput. Cognitive light path optimization using
OSNR is proposed in [20, 21]. Such an important parameter must be considered during
fiber optics planning process [22, 23], too.

In this paper, we focus on data transportation routing optimization in WDM optical
network containing several transfer nodes and paths, deliberating various path
parameters. We used it for near future status estimation, over real network. We bring
data routing process implementing fuzzy logic evaluation and decision processing, by
link state parameters.

2 Model of Real Network

To achieve preset aim, we have considered SANET (Slovak Academic NETwork)
topology [24] that covers educational and government sectors among 23 Slovak towns.
SANET consists of two inter-linked main routes providing full redundancy with 5 ms
maximum delay. The national connectivity is linked to Slovak Peering Center SIX
placed in Computer Center of the Slovak Technical University (CVT STU) in Bra-
tislava, by Ethernet links at 10 Gbps speed. SANET infrastructure is based on leased
dark fibers terminated by Cisco Catalyst gigabit switches. The foreign connectivity is
realized through leased dark fiber at the speed 10 Gbps to ACOnet node in Vienna (AT),
CESNET node in Brno (CZ), Pioneer node in Bielsko-Biala (PL) and local link to
GEAT PoP in Bratislava (1 Gbps) and GTS PoP in Bratislava (2 Gbps) [24].

Current topology of the SANET network is shown in Fig. 1 [24]. As we follow
fuzzy optimal data routing aim among main nodes placed in Bratislava, Trnava, Nitra,
Zvolen, Ruzomberok, Presov and Kosice, the initial topology is simplified to its

Fig. 1. SANET network [24]

Fuzzy Logic for Optimized Path Establishment 55

topological skeleton, Fig. 2. Main nodes are responsible enough for correct routing
among covered towns.

3 Optical Network Parameters

When evaluating and calculating optimal path, several parameters describing state of
the path are taken into account.

3.1 Bit Error Rate, BER

When transmitting in any binary communication channel, true or false LOG1 or LOG0
detections occur at the channel output. False detections are often caused by signal
loss/damping, inter-channel interferences, or degradation processes within the link.
Thus, conditional probability P(1|0) is stated when false decision LOG1 is accepted or,
conditional probability P(0|1) is stated when false decision LOG0 is accepted at the
channel output.

BER ¼ p 1ð ÞP 0j1ð Þþ p 0ð ÞP 1j0ð Þ

¼ P 0j1ð ÞþPð1j0Þ
2

þ
erfc I1�ITHR

r1
ffiffi
2

p
� �

þ erfc ITHR�I1
r0

ffiffi
2

p
� �

4

ð1Þ

where
p(1) is detection probability of LOG1,
p(0) is detection probability of LOG0,
I1 is mean diode photocurrent by LOG1,
I0 is mean diode photocurrent by LOG0,
ITHR is decision threshold level of photocurrent,
r1 is photocurrent standard deviation by LOG1,
r0 is photocurrent standard deviation by LOG0

Fig. 2. SANET network – main nodes

56 M. Dulik and G. Cibira

3.2 Optical Signal – to – Noise Ratio, OSNR

The OSNR parameter defines ratio between the signal power and the noise power in a
given bandwidth. This parameter is measured with an optical spectrum analyzer.

3.3 Link Power, Power

The link power parameter defines signal output power level at the link end. Usually, it
is measured by terminal equipment while it can optimize link power level.

4 Control System for Path Evaluation

As the control parameters are defined in the previous part, we use them to obtain the
optimal path. Proposed complex optimization algorithm contains several steps to find
the most appropriate path between chosen input and output nodes, among list of
transport links. Control system properties are:

• Basic parameters (BER, OSNR, Power) measurement is required for each path.
Besides of basic parameters (system inputs) use, the system uses its mean value and
standard deviation for optimal path fuzzy calculation.

• These basic parameters are processed by fuzzy logic control subsystem and its
relationships assessed for each particular path. Here, membership functions and
fuzzy rules are defined by experienced user to obtain optimal links evaluation
(current cost along <0,100>).

• Fuzzy logic subsystem creates available paths full list between chosen input and
output nodes. As a result, final data transport path is selected from starting node to
end node through selected nodes.

5 Fuzzy Logic

Measured parameters, BER, OSNR and Power, are continuously fed by each node into
central fuzzy logic control subsystem. Its centralized diagnostics evaluates these
parameters, calculates its statistical means during measuring interval. Then, fuzzy logic
processing sequentially executes following typical processing steps, in pre-defined
blocks:

Measured parameters, BER, OSNR and Power, are continuously fed by each node
into central fuzzy logic control subsystem. Its centralized diagnostics evaluates these
parameters, calculates its statistical means during measuring interval. Then, fuzzy logic
processing sequentially executes following typical processing steps, in pre-defined
blocks:

1. Fuzzification – in this step, measured “crisp values” of BER, OSNR and Power are
evaluated using input membership functions. Pre-defined membership functions
intervals and shapes follow user experience. The result of this process is a fuzzy set.

Fuzzy Logic for Optimized Path Establishment 57

2. Fuzzy decision making – based on fuzzy rules set and current input fuzzy set
comparison in inference engine, it produces output fuzzy values.

3. Defuzzification – in this step, based on output membership function and output
fuzzy values comparison, output crisp parameters are obtained and crisp final values
are formulated. Ranked final values lead up to path choosing process.

Instead of numerical values, fuzzy logic evaluates numerical values coupled with
linguistic expressions, describing defined states and situations. Linguistic expressions
are divided into intervals, where a parameter of a membership functions represent
degree of truth by statements like “parameter occurs at very low … medium … high
level”. Some values and parameters can be “blurred” if they are uncertain. Examples of
input membership functions setup over input measured intervals are shown in Figs. 3, 4
and 5.

Fig. 3. BER fuzzy membership functions

Fig. 4. OSNR fuzzy membership functions

58 M. Dulik and G. Cibira

As it was mentioned above, we defined basic input parameters with their ranges, with
assigned appraisal. BER numerical value spans from 10e-12 to 10e-8, its linguistic
expressions for this parameter are Very Low, Low, Acceptable, High and Very High.

Fig. 5. Power fuzzy membership functions

Fig. 6. Fuzzy rules setup among input and output parameters

Fuzzy Logic for Optimized Path Establishment 59

OSNR numerical value spans from 10 to 1000 following linguistic expressions Very
Low, Low, Middle, Acceptable and High. Link power numerical value spans from
0,001 W to 1 W; linguistic expressions for this parameter are Low,Acceptable, andHigh.

An example of defined fuzzy rules is shown in Fig. 6. Here, relationships between
input parameters (SNR, BER and Power) and output parameter (QN, quality of par-
ticular path) are defined to obtain output fuzzy values.

To obtain particular path cost, we defined output crisp parameter QN representing
linguistic expressions Low, Substandard, Average and High, spanning along interval
<0,100>, Fig. 7. The QN parameter represents overall quality and suitability of each
particular path.

To prove membership functions setup and fuzzy rules setup, surface views of
input/output parameters relationships are available, Figs. 8, 9 and 10.

Fig. 7. QN fuzzy membership functions

Fig. 8. SNR and BER relationship to QN, at constant Power

60 M. Dulik and G. Cibira

6 Paths Evaluation and Route Ordering

After obtaining QN cost for each particular path, all possible routes located between
chosen input and output nodes are evaluated to specify routes stability and reliability.
Thus, two important statistical parameters are calculated over each available route: l
mean value and r standard deviation over incorporated paths QN costs. These l and r
parameters are computed using Eq. 2. Finally, the most appropriate route is chosen
using the highest l and, if its equality, by the lowest r.

l ¼
Pn

i¼1 QNi

n
; r ¼

ffiPn
i¼1 QNi � lð Þ2

n

s

ð2Þ

Fig. 9. SNR and Power relationship to QN, at constant BER

Fig. 10. Power and BER relationship to QN, at constant SNR

Fuzzy Logic for Optimized Path Establishment 61

To demonstrate evaluation of all paths, we simulated data transport from Bratislava
to Kosice (Figs. 1, 2) using randomly balancing OSNR, BER and Power values. Using
above described fuzzy logic processing, each path is assessed by its own cost. After
paths costs list completion (see example in Table 1), list of available routes between
input and output nodes is generated and weighed using Eq. (2), see Table 2, thus the
most appropriate route and alternate routes are ordered.

7 Discussion

Non-fuzzy algorithms don’t allow complex multi- parameters paths evaluation to
assign real route cost based on parameters fusion. Even if the fuzzy logic implemen-
tation might evocate concerns about routing stability but, as shown in the example, the
multi-input approach allows more precise routing to achieve stated data delivery time
even if some WDM network paths might be overloaded. Current real time parameters
determine the most appropriate route choice along the network and help to find optimal
transportation route.

8 Conclusion

In this article we have presented a new approach to find optimal route in fast optical
WDM network. Multi-input multi- path fuzzy logic control system allows real paths
parameters evaluation and all-paths assessment. Presented algorithm automatically

Table 1. Path cost between neighbouring nodes

Input node – Output node 1 - 2 1 - 3 1 - 4 2 - 3 2 - 5 3 - 4 4 - 5 4 - 7 5 - 6 6 - 7

Path cost [-] 20 10 30 15 45 65 85 75 35 40

Table 2. Mean value and standard deviation for all available routes, input node 1 to output
node7

Route (Input node – Transfer nodes – Output node) l r [-]

1 - 2 - 3 - 4 - 7 43.7500 30.6526
1 - 2 - 3 - 4 - 5 - 6 - 7 43.3333 26.9568
1 - 2 - 5 - 4 - 7 56.2500 29.5452
1 - 2 - 5 - 6 - 7 35.0000 10.8012
1 - 3 - 2 - 5 - 4 46.0000 33.9853
1 - 3 - 2 - 5 - 6 29.0000 15.5724
1 - 3 - 4 - 7 - 0 50.0000 35.0000
1 - 3 - 4 - 5 - 6 - 7 47.0000 28.8531
1 - 4 - 7 52.5000 31.8198
1 - 4 - 3 - 2 - 5 - 6 - 7 38.3333 16.6333
1 - 4 - 5 - 6 - 7 47.5000 25.3311

62 M. Dulik and G. Cibira

finds alternate routes. Such approach brings future optimizing opportunities for WDM
networks data transfer processes. Proposed fuzzy controlled routing system shows an
efficiency increase option in WDM optical networks.

Acknowledgment. This work was supported by VaV projects of the operational program
“Centre of excellence of power electronic systems and materials for the components”, project
code 2008/2.1/01-SORO, ITMS 26220120003, “Centre of excellence of power electronic sys-
tems and materials for the components II.”, ITMS 26220120046. Project is co-funded from EU
funds.

This paper was realized with the support of the APVV-0888-11 Project – The research of new
passive process structures on silicon basis.

This paper was realized thanks the support of the APVV-0025-12 Project – Mitigation of
stochastic effects in highbitratesall-optical networks.

This paper was realized with the support of the VEGA 1/0853/13, Study of micro structural,
electrical and optical properties of semiconductor-dielectric systems.

This work was supported by project ITMS: 26210120021, co-funded from EU sources and
European Regional Development Fund.

References

1. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-
generation-network/white_paper_c11-481360.html

2. Essiambre, R.-J., Tkach, R.W.: Capacity trends and limits of optical communication
networks. Proc. IEEE 100(5), 1035–1055 (2012). ISSN 0018-9219

3. Leuthold, J., Koos, C., Freude, W., Alloatti, L., Palmer, R., Korn, D., Pfeifle, J., Lauermann,
M., Dinu, R., Wehrli, S., Jazbinsek, M., Gunter, P., Waldow, M., Wahlbrink, T., Bolten, J.,
Kurz, H., Fournier, M., Fedeli, J.-M., Yu, H., Bogaerts, W.: Silicon-organic hybrid
electro-optical devices. J. Sel. Top. Quantum Electron. 19(6), 13 (2013). ISSN 1077-260X

4. Zapata-Beghelli, A., Bayvel, P.: Dynamic versus static wavelength–routed optical networks.
J. Lightwave Technol. 26(20), 3403–3415 (2008). ISSN 1558-2213

5. Gringeri, S., Basch, B., Shukla, V., Egorov, R., Xia, T.J.: Flexible architectures for optical
transport nodes and networks. IEEE Commun. Mag. 48(7), 40–50 (2010). ISSN 0163-6804

6. Gandhi, S.I., Vaidehi, V., Fernando, X.: Modified dynamic online routing algorithm and
regenerator placement in WDM networks. J. Commun. Technol. 2(1), 246–254 (2011).
ISSN 2229-6948

7. Leiva, A.L., Machuca, C.M., Beghelli, A.Z.: Upgrading cost modelling of
capacity-exhausted static WDM networks. In: 16th International Conference on Optical
Network Design and Modeling, Colchester, UK, 17–20 April 2012, p. 6 (2012). ISBN
978-1-4673-1441-1

8. Elbers, J.-P., Autenrieth, A.: From static to software-defined optical networks. In: 16th
International Conference on Optical Network Design and Modeling, Colchester, UK, 17–20
April 2012, p. 4 (2012). ISBN 978-1-4673-1441-1

9. Zhao, Y., Li, X., Li, H., Wang, X., Zhang, J., Huang, S.: Multi-link faults localization and
restoration based on fuzzy fault set for dynamic optical networks. Opt. Express 21(2), 1496–
1511 (2013). ISSN 1094-4087

10. Wang, M., Li, S., Wong, E.W.M., Zukerman, M.: Performance analysis of circuit switched
multi-service multi-rate networks with alternative routing. J. Lightwave Technol. 32(2),
179–200 (2014). ISSN 1558-2213

Fuzzy Logic for Optimized Path Establishment 63

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html

11. Von Lindeiner, J.B., Ingham, J.D., Wonfor, A., Zhu, J., Penty, R.V., White, I H.: 100 Gb/s
uncooled DWDM using orthogonal coding for low-cost data communication links. In:
Optical Fiber Communications Conference and Exhibition, San Francisco, CA, 9–13 March
2014, p. 3 (2014). ISBN 978-1-5575-2994-7

12. Wei, J., Cheng, Q., Cunningham, D.G., Penty, R.V., White, I.H.: 100-Gb/s hybrid multiband
CAP/QAM signal transmission over a single Wavelength. J. Lightwave Technol. 33(2),
415–423 (2015). ISSN 1558-2213

13. Frisken, S., Poole, S.B., Baxter, G.W.: Wavelength-selective reconfiguration in transparent
agile optical networks. Proc. IEEE 100(5), 1056–1064 (2012). ISSN 0018-9219

14. Koonen, A.M.J., Chen, H.S., Sleiffer, V.A.J.M., Van Uden, R.G.H., Okonkwo, C.M.:
Compact integrated solutions for mode (de-)multiplexing. In: Optical Fibre Technology,
OptoElectronics and Communication Conference, Melbourne, VIC, 6–10 July, pp. 164–166,
(2014). ISBN 978-1-922107-21-3

15. Chou, J., Lin, B.: Adaptive re-routing over circuits: an architecture for an optical backbone
network. In: Conference on Computer Communications, San Diego, CA, 15–19 March
2010, p. 5 (2016). ISBN 78-1- 4244-6739-6

16. Wang, S.-W., Wen, C.-Y.: Lightpath-level active rerouting algorithms in all-optical WDM
networks with alternate routing and traffic grooming. In: International Conference on
Information Networking, Bali, Indonesia, 1–3 February 2012, pp. 42–46 (2012). ISBN
978-1-4673-0250- 0

17. Kamamura, S., Shimazaki, D., Mori, H., Sasayama, K., Koizumi, Y., Arakawa, S., Murata,
M.: Optimization of light-path configuration order in IP over WDM networks using fast
traffic matrix estimation. In: Optical Fiber Communications Conference and Exhibition, San
Francisco, CA, 9–13 March 2014, p. 3 (2014). ISBN 978-1-5575-2994-7

18. Bhardwaj, N., Gupta, N.: A novel technique to minimize gain-transient time of cascaded
EDFA using fuzzy logic controller. Int. J. Emerg. Technol. Comput. Appl. Sci. 1(4), 569–
573 (2012). ISSN 2279-0055

19. Sardar, A.R., Sing, J.K., Sarkar, S.K.: Fuzzy logic based alternate routing scheme for the
minimization of connection set up time and blocking rate in WDM optical network. Int.
J. Soft Comput. Eng. (IJSCE) 3(1), 222–228 (2013). ISSN 2231-2307

20. Borkowski, R., Caballero, A., Arlunno, V., Zibar, D., Monroy, I.T.: Robust cognitive-GN
BER estimator for dynamic WDM networks. In: European Conference on Optical
Communications, Cannes, France, 21–25 September 2014, pp. 607–609 (2014). ISBN
978-1-4799-3066-1

21. Jiménez, T., Aguado, J.C., De Miguel, I., Durán, R.J., Angelou, M., Merayo, N., Fernández,
P., Lorenzo, R.M., Tomkos, I., Abril, E.J.: A cognitive quality of transmission estimator for
core optical networks. J. Lightwave Technol. 31(6), 942–951 (2013). ISSN 1558-2213

22. Freude, W., Schmogrow, R., Nebendahl, B., Winter, M., Josten, A., Hillerkuss, D., Koenig,
S., Meyer, J., Dreschmann, M., Huebner, M., Koos, C., Becker, J., Leuthold, J.: Quality
metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER. In: 14th
International Conference on Transparent Optical Networks, Coventry, England, 2–5 July
2012, p. 4 (2012)

23. Pastorelli, R., Bosco, G., Nespola, A., Piciaccia, S., Forghieri, F. Network planning
strategies for next-generation flexible optical networks. In: Optical Fiber Communications
Conference and Exhibition, San Francisco, CA, 9–13 March 2014, p. 4 (2014). ISBN 978-1-
5575-2994-7

24. SANET – Slovak Academic Network. http://samon.cvt.stuba.sk

64 M. Dulik and G. Cibira

http://samon.cvt.stuba.sk

Providing Extensible Mobile Services to Car
Owners Based on On-Board-Diagnostics

Richard Hable1(&) and Gerhard Brugger2

1 evolaris next level GmbH, Graz, Austria
richard.hable@evolaris.net

2 Porsche Informatik GmbH, Salzburg, Austria
gerhard.brugger@porscheinformatik.at

Abstract. Based on data fetched via the On-Board- Diagnostics interfaces of
cars, a comprehensive solution was created to provide functionality like auto-
matically maintained driver’s logbooks within a mobile phone application.
Advanced on-board hardware modules and a dynamic client/server architecture
allowed the design and implementation of an extensible system with optional
integration of third-party software and infrastructure. This includes a mobile
phone application which can be extended with new functionality according to
customer configuration settings and payments. The project posed challenges like
time and location independent availability, privacy and security issues, the
dynamic extension of mobile applications with platform-independent code, and
also economic restrictions. This paper contains a description of these challenges,
the technologies and concepts explored and utilized, and the final system
architecture and implementation decisions taken during product development.
First experiences gained during deployment and commercialization already
show the aptitude of the system and the impact of the design decisions taken.

1 Introduction

Modern cars contain an standardized On-Board-Diagnostics (OBD) socket which can
be used to communicate with the car’s internal electronic devices [1]. Commercial
hardware modules are available which plug into this socket and can be used to read
information about the current car status and also to make changes to the car’s
configuration.

Simple solutions require a mobile device to be connected to the module, either via
cable or a wireless protocol like Bluetooth, and to send commands to the car and
evaluate its responses. This means that a laptop or mobile phone has to be in the
proximity of the car all the time, if all available car information shall be utilized.

Advanced OBD modules, however, provide additional features like internal data
caching and long-distance data transfer via a built-in GSM module, enabling permanent
remote access to the car. It is then possible to stay connected with the car during its
entire operation time and provide features based on long-term information collection
and real- time control. Centralized collection of diagnostic car information can then be
used, for example, to centrally manage a fleet of cars, supporting maintenance and
repair tasks [2].

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_5

This paper shows the design and implementation of a comprehensive client/server
solution based on automatically fetched car information, which enables car owners to
get information about their cars at any time and any place via their mobile phones.
A flexible mobile application was created which supports a large variety of features,
from simple things like checking if the doors are closed and the lights are switched off
to advanced functionality like an automatically maintained driver’s logbook. Also
server software was developed, performing administrative tasks and efficiently pro-
viding the mobile application with all required data.

Support for efficient commercialization of the product was a major factor in the
design of the system: Instead of a monolithic application with fixed built-in features,
the customers should be proposed a flexible solution, allowing them to individually
subscribe to different functionality with different payment options. Also, third-party
companies should be enabled to take part in the development of new features for the
mobile application. Therefore, dynamic integration of third- party services and addi-
tional mobile application components had to be possible.

This led to a unique client/server architecture and a specially designed mobile
application structure, taking advantage of both native platform-specific development
and cross-platform web technology. Based on this design, a commercial product was
created for a large automotive company, proving that the chosen concepts work in
practice and also facilitate meeting general requirements like robustness, security, and
usability.

The following chapters start with a description of the requirements and challenges
faced in the project. Then, an overview of available technologies and their applicability
is given. Based on these preconditions, the final system architecture and implemen-
tation decisions taken can be described and motivated. In conclusion, the results of the
project are summarized, assessing the properties of the created product and giving an
outlook to possible future extensions and improvements.

2 Requirements and Challenges

Users should be able to access car information from their mobile phones. Thus, soft-
ware and hardware had to be made available to support this task. Hardware would be
installed in the user’s car by professionals, software should be provided via the usual
distribution channels: a special mobile application should be downloadable via the app
stores of the phone manufacturers.

2.1 Availability and Distribution

Technically, an ongoing stream of data would have to be fetched from the car in order
to be able to provide up-to-date information about a car’s current state and position.
This should also work when the mobile phone is located far away from the car, does
not have network connectivity, or is completely switched off. Inversely, the phone also
should be able to access car information while the car is at a remote position or
currently does not provide data via its interfaces. The collected car data itself is quite

66 R. Hable and G. Brugger

simple, consisting mainly of small integer values indicating, for example, the current
driving speed in kilometers per hour. However, due to a potentially large number of
users and the need for always available up-to-date information, data has to be
exchanged in high frequency and large accumulated quantities.

Also the distribution of the application’s functionality posed challenges: instead of
a fixed feature set for all users, different functionality should to be provided based on
user preferences and payments. Even completely new commercial features should be
possible without the user having to download new application versions. Therefore, the
application had to be highly configurable and extensible.

2.2 Privacy and Security

The mobile application would only read data about the current state of the connected cars
and thus never interfere with their normal operation. Nevertheless, there were severe
privacy and security concerns: the current location, speed, and other usage information
of a car provides a lot of private information about a car owner’s behavior. Even more
conclusions could be drawn from information collected over a longer time span.

Research has shown that diagnostic information transmitted by a smart phone over
a number of days can be used to identify users with high accuracy [3]. The diagnostic
information available from the multitude of sensors built into a modern car would allow
similar approaches, even when it is carefully avoided to transmit information about the
car owner’s identity.

Even more, unauthorized modification of transmitted and stored data could lead to
severe trouble if, for example, it is the basis for a driver’s logbook.

Therefore, it was important to make sure that only authorized parties may access car
and user information, and transmission and storage of data is performed in a secure way.

2.3 Economic Restrictions

Last but not least, implementation effort and required skills of the software developers
had to be considered. The application had to be available on different mobile phone
platforms: based on the market share of different mobile phone operating systems, it
was decided to immediately support phones with iOS and Android operating systems,
with the option to add support for other systems like Windows Phone later. It was not
acceptable to have to create separate implementations for each supported OS each time
a new feature should be added.

3 Available Technology and Solutions

3.1 Hardware

Off-the-shelf hardware modules are available which plug into the OBD socket of a car
and allow short-range wireless data transfer to a smart phone via the Bluetooth pro-
tocol. The smart phone has to send commands to such a module, which forwards them

Providing Extensible Mobile Services to Car Owners Based on OBD 67

to the car and returns response data. Of course, this only works as long as both the
smart phone application is running and the car is in a nearby position.

More complex modules are equipped with GSM hardware [4], enabling them to
transfer data to a remote server as soon as they are supplied with electrical power from
the car. This allows ongoing data transfer independently of the mobile phone’s state
and location. The server can collect the data and make it available to the mobile phone
via a defined service interface. Ready-to-use solutions providing both hardware
modules and server support are commercially available.

3.2 Server and Network Software

The state of the art in platform independent communication on the Internet is to provide
REST (Representational State Transfer) services via the HTTP protocol [5]. This
allows interchanging data both between two servers and between a mobile phone and a
server. It also has the advantage that standards for encryption and authentication based
on this technology are readily available.

Depending on the capabilities of the installed hardware modules, the car infor-
mation can be transferred to a server on the Internet directly or after being fetched by
the mobile phone.

HTTP services can be programmed with arbitrary technology and development
tools. For processor and operating system independence, the Java Platform, Enterprise
Edition (Java EE) standard [6] can be used as a basis.

3.3 Mobile Phone Software

Manufacturers of mobile phones generally support two ways of application develop-
ment: creating web applications hosted on a server, which use web technologies like
HTML and JavaScript within the mobile phones’ built-in web browsers, and native
applications distributed via an app store, which can access the capabilities of the
devices using their built-in framework APIs (Application Programming Interfaces).
Generally, users prefer downloadable native applications to web solutions [7].

In both cases, however, tight control of the operating system over resources like
processor time and I/O facilities imposes restrictions on what the application can be
programmed to do. Also, especially in the case of iOS devices, applications distributed
in the app store are limited by strict guidelines with regards to functionality like code
reloading and to the accepted content.

In addition to the manufacturers’ development environments, third-party solutions
are available, which try to combine the advantages of native and web-based
development.

(1) Pure Web Applications
A pure web application is hosted on an independent server and thus not downloadable
via the manufacturers’ app stores. However, this also means that these applications can
be changed centrally at any time. If users are logged in to a web application, the server
software can check their identities and automatically provide customized features

68 R. Hable and G. Brugger

according to their payments and preferences. It is also easy to make new functionality
available by extending the server software: all the users have to do is to reload the
application in their web browsers.

Web applications use vendor-independent, standardized technology (HTML,
JavaScript, CSS) for all platforms, and thus the same implementations can be used on
different platforms. However, the applications are limited by the capabilities of the web
browsers they are running in. Although browsers with HTML5 [8] support, as used in
current smart phones, provide access to built-in hardware like the camera and the GPS
sensor, direct access to the framework functions of the mobile phones’ operating
systems is not possible. As a consequence, even pure web applications which take
advantage of advanced browser functionality, may show unsatisfactory performance.
For example, a pilot study [9] on the mobile application described in [10] showed that
even re-development can be necessary in such cases.

(2) Wrapped Web Applications
Tools like Apache Cordova [11] support embedding web applications in a native
application frame and thus create stand- alone applications which can be distributed in
the app stores. In addition, they provide JavaScript APIs which allow web applications
to access some native framework functions of the operating systems.

However, with such a solution the central configurability and extensibility of pure
web applications gets lost: a fixed set of web resources is included in the app which
cannot be modified and extended without forcing the user to download a new version.

(3) Native Applications
With native applications the full power of the operating system frameworks can be
utilized. However, the frameworks, programming languages, and also development
environments provided by the vendors are very specific, forcing the programmer to
create separate implementations for each supported platform. Also, technical restric-
tions and app store guidelines allow adding new code to existing applications only by
providing new application versions which the user has to download from the app store.

(4) Cross-Platform Development Tools
With third-party development tools like Xamarin [12] and Appcelerator [13] native
applications can be created for different mobile platforms based on common source
code, thus supporting at least partial re-use of code. Applications are written in a
common programming language, like C# and JavaScript, and then automatically
transformed to code required by the target platforms. Wrapper APIs provide, to a
varying degree, unified access to the different operating system frameworks.

While it is possible to reduce implementation effort this way, cross-platform tools
also add an additional layer of complexity to the implementation, and compromises
concerning the application quality have to be made if only functionality common to all
supported operating systems shall be used.

(5) Comparison
There is no single application type which fulfills all requirements of the mobile
application, as can be seen in Table 1.

Providing Extensible Mobile Services to Car Owners Based on OBD 69

In addition to these primary criteria, it is also important to take into consideration
the different development skills required and the achievable quality and performance of
the implementation [14].

Generally, more developers with experience in native and web development are
available than developers for specific cross-platform tools. The best user experience is
possible with native applications, followed by cross-platform and wrapped web
applications [15]. Pure web applications are severely limited concerning both func-
tionality and performance.

Thus, a combination of different application types and technologies would have to
be found for the mobile application, carefully accounting for the advantages and dis-
advantages of the applied tools and methods.

4 Architecture and Implementation

4.1 Client/Server Architecture

The overall architecture of the system was derived straight- forwardly from the general
requirements: A hardware module (the on-board unit) is provided for each car and
plugged into its OBD socket. It then regularly transmits information via a built- in
GSM module to a central server. The server collects this information and makes it
available via web services. The mobile application uses these services to fetch infor-
mation needed to provide the functionality requested by the user.

In order to avoid having to develop low-level communication services between the
on-board units and custom server software, a ready-to-use solution of hardware
modules and central servers was selected to cover the information collection require-
ments. However, in addition to these existing servers it was also necessary to operate
an own server to handle configuration information, like subscriptions and payments.
Based on this information different features can be delivered to different users. This
server also provides a unified service interface, allowing the mobile application to fetch
both user information and car information required for the implementation of its
functionality.

For independent development of additional application functionality, third-party
servers can also take part in this server structure, communicating both with the mobile
application and the servers providing car and configuration information.

An overview of the complete infrastructure can be seen in Fig. 1.

Table 1. Application types and features

Application type
App store Code reuse Extensibility

Pure Web no yes yes
Wrapped Web yes yes no
Cross-Platform yes yes no
Native yes no no

70 R. Hable and G. Brugger

4.2 Authentication and Authorization

Confidential data is transmitted to and exchanged between different servers, including
those of third-party vendors, and mobile devices. It is also stored in databases and
processed in various ways before it is transmitted to the customers’ mobile devices.

As a comprehensive security solution for authentication, the OAuth 2.0 standard
[16] is used both on the server and on the client side, and all data transfer is performed
via secure HTTPS connections.

Therefore, the following guidelines had to be followed during development of both
client and server software:

Fig. 1. Client/Server infrastructure

Providing Extensible Mobile Services to Car Owners Based on OBD 71

• All communication is encrypted (HTTPS) with validated certificates proving the
identity of all communication partners.

• User names and passwords are never stored locally and only used to initially request
access and refresh tokens.

• All further services require authentication via an access token before sending
user-specific data.

• Third-party servers are only allowed to fetch car data after third-party authorization
via the mobile application.

Thanks to built-in OAuth 2.0 support of the utilized communication frameworks,
this did not require much additional implementation effort. However, a lot of testing
and security auditing of communication routines was necessary to make sure that all
security demands were met.

Access tokens are stored permanently within a safe area of the mobile phone, thus
allowing the user to start and stop the application at will without having to provide user
credentials each time. However, for security reasons, both access and refresh tokens
expire after a configurable amount of time, then requiring the user to provide user name
and password again.

In order to protect the identity of the users, no personal information about users is
transferred to third-party servers. They may access car data services after authorization
via the mobile application according to the permissions granted to the third-party
component, but cannot combine them with registration information of the users.

4.3 Server Software

(1) Fetching and Storing Car Data
Due to the selected hardware solution with vendor-provided servers no direct com-
munication between mobile phones and on-board units had to be implemented.
However, it was necessary to fetch collected data regularly from the vendor servers via
a pre-defined web service interface.

A web service client based on the Java API for XML Web Services (JAX-WS) was
therefore created, fetching car information and storing it in a local database. This local
availability of car data improves the response time for requests from the mobile
application and allows efficient server-side statistics and calculations.

(2) Services for the Mobile Application
For communication with the mobile application, customized REST services based on
the HTTP protocol and the JSON data format were implemented and deployed on a
web server using Java EE technology. These services provide selected car and con-
figuration information according to the needs of the mobile application and the sub-
scribed components of the customer. This way, the amount of data transferred to the
mobile phones could be minimized, and existing libraries for asynchronous HTTP
communication and JSON encoding and decoding could be utilized for the mobile
application implementation.

72 R. Hable and G. Brugger

Based on the stored configuration information, the server also coordinates access to
functionality implemented on third- party servers. It provides information about
available components to the mobile application and authorizes access to data required
by them.

(3) Web Pages for Customers
Web pages were created which enable customers to check and extend their subscrip-
tions to optional components within the mobile application. Similarly to the provided
REST services, Java EE technology is used to serve the web pages for the customers
and perform lower-level business logic handling subscriptions, payments and config-
uration of services.

Customers use their account information (user names and passwords) for authen-
tication both on the web pages and in the mobile application. This way, settings
concerning the mobile application can also be performed within a web browser on an
desktop computer.

(4) Administration Pages
Configuration of components and offered subscriptions is also done via web pages
hosted on the web server. Users with access rights for administrative web pages can
deploy and distribute third-party components. They can provide the information which
shall be visible to customers, like component names and descriptions, and technical
information, like third-party server credentials and car data dependencies.

4.4 Mobile Application

Contrary to the server side, no standard way of mobile application development ful-
filling all requirements of the project was available. Therefore, a project-specific
combination of existing technologies had to be utilized, and some compromises had to
be made to achieve a satisfying solution.

(1) Finding a Suitable Implementation Method
The following considerations were important for decision taking:

• An existing prototype of a wrapped mobile web application (using the Cordova
framework) showed that web technologies and platform-independent APIs for
native functionality were sufficient to implement an attractive user interface for the
customer.

• Server support was required not only to provide car information to the application
but also to perform monitoring tasks and send notifications to the user even while
the application is in the background.

• For efficiency reasons all communication with servers should be performed by
asynchronous native code.

• Some functionality visible to all users of the application, like information pages and
basic car status information, should be a fixed part of the application in order to
improve the user experience and meet the iOS app store directive, which requires
applications to provide more functionality than just remote web content.

Providing Extensible Mobile Services to Car Owners Based on OBD 73

• The application had to regularly fetch configuration information from the server and
dynamically show components with different functionality according to the cus-
tomer preferences and subscriptions.

• Third-party components had to be prevented from interfering with each other. This
required a strict separation of user interface components and a centralized handler of
application events like notifications concerning specific components.

It was therefore decided that the mobile application should consist of both built-in
native code and dynamically loaded web application code. The Cordova framework,
which supports static web code within a fixed, automatically generated native appli-
cation frame, was used as a basis for this endeavor.

(2) Adding Flexibility to Cordova Applications
The Cordova framework creates source code in the project format required by the
development environments of the mobile phone vendors. These projects contain
natively implemented platform-specific classes and cross-platform web components.
Additional native code can be added in the form of Cordova modules, which allow the
web components to access native framework functionality via the JavaScript pro-
gramming language.

The projects can then be opened and built in the development environments in
order to create executable applications ready for app store deployment. However, the
functionality of these applications is limited by the statically included web components,
with no support for modularity and extensibility.

Therefore, after creating such a project for each target platform (iOS and Android),
including carefully selected Cordova modules, it was necessary to add the required
flexibility:

• The native code had to be extended to provide the built-in features of the
application.

• Instead of a single web view containing the entire user interface, separate areas for
native functionality and for the dynamically added third-party components had to be
implemented.

• Instead of showing web content from within the application, all third-party content
had to be loaded dynamically according to the customer-specific configuration
information.

This actually required rewriting most of the automatically created native code. The
Cordova modules and the interface code between web and native code, however, could
be taken over almost without changes.

The included web content was replaced by a static start page, which immediately
fetches subsequent pages from a third-party server according to a dynamically retrieved
URL. This URL is part of the service response structure received after authentication of
third-party components.

(3) Putting it together
Figure 2 shows the principal division of dynamic and native content within the
app. The main screen contains a mixture of static and dynamic functionality, including

74 R. Hable and G. Brugger

a list of dynamically retrieved preview areas for third-party components. Touching one
of the preview areas usually leads to a dynamic detail view of this third-party com-
ponent. Note that these detail views can themselves contain a complete web application
with an arbitrary number of subpages and appropriate navigation facilities.

As an alternative to the embedded detail view, third-party components can also
provide a reference to a separate native application. Touching the preview area then
redirects the user to the app store download area for the application, or immediately
launches the application if it has already been downloaded.

The user navigates between the main page, built-in pages for information and
configuration, and the third-party detail pages via buttons, list items, and a slide-in menu.

Figure 3 shows a screen shot of the application’s main page with an open slide
menu. The slide menu overlaps the main page on the right side of the screen, allowing
quick navigation to the start page, the detail pages of available components, and a
settings page. On the left side of the screen, parts of the main page are visible: a back
button for navigation, a natively implemented door status indicator, a dynamically
loaded car picture, and preview areas of two components.

The mobile application can be put into background and foreground without losing
the current navigational position, allowing the user to work with a specific component
for a prolonged amount of time. If, however, the application is completely removed
from memory, e.g. because the phone is restarted, the next launch opens the main page.
Also, if at any time communication with the servers fails due to expired tokens, the user

Fig. 2. Screen layout with static and dynamic content

Providing Extensible Mobile Services to Car Owners Based on OBD 75

is automatically directed to a login screen, requesting user name and password for
OAuth 2.0 authentication.

In order to inform users about component-specific events, the push notification
service of the operating system vendors (Apple for iOS, Google for Android) is used.
Third-party component providers send application-specific messages via a vendor’s
server to the mobile phone of a specific user. The mobile phone operating system
shows the message to the user, even if the application is currently closed or in the
background. If the user opens the notification message, the operating system launches
the application or puts it into foreground, if necessary. The application then auto-
matically navigates to the full-screen view of the component responsible for the
notification. For this to work, each third-party component is assigned a unique com-
ponent ID, which has to be included in the push notification message. Based on this ID

Fig. 3. Screen shot of application main screen with slide-in menu

76 R. Hable and G. Brugger

and configuration information from the servers, the mobile application can then
automatically show the required third-party web application.

(4) Consequences and Experiences
The chosen client/server architecture and the dynamic behavior of the mobile appli-
cation posed challenges concerning reliability and usability:

• Compared to conventional (monolithic) applications, a lot of potentially slow and
unreliable server communication is necessary to provide the required functionality.

• The user interface has to be suitable for different subscriptions and preference
setting of the customers, thus requiring a dynamic screen design.

The key to meeting these challenges was to perform all network communication in
an asynchronous way. This allows several server requests to be processed in parallel,
and the user interface can dynamically add screen content according to received data,
while staying responsive to user input at all time.

When, for example, the application has to refresh the information on the main
screen, it fetches in parallel the current car status (tank filling etc.), the car’s image, and
the components available to the user. As soon as information is received from a server,
this information is updated on the screen, e.g. by updating the door status field or
adding a new component preview area. While network activity is in progress, the user
can continue navigating within the application via buttons and the slide-in menu, or
open the full-screen view of a component whose preview area has already been added.

This asynchronicity also makes the application robust against failure of individual
components, allowing the user to utilize most of the application’s functionality even if,
for example, one of the third-party servers is temporarily not accessible.

Nevertheless, especially in the case of large third-party components, the user of the
mobile application may experience clearly noticeable delays during network activity,
similar to using a web browser. This behavior was deemed acceptable for the time
being, but may have to be improved depending on user feedback in the future, e.g. by
means of sophisticated data caching mechanisms.

5 Conclusion

Design and implementation of the system showed that offering services to customers
based on automatically collected car information requires more than just fetching
information from a car and displaying it on a mobile device.

While built-in capabilities of modern cars and available hardware accessories
provide a readily available technical base, creating a comprehensive commercial
solution posed challenges both concerning the design of the system architecture and the
implementation of the required client and server software.

In this paper a flexible solution meeting these challenges was described, which
allows the creation and provisioning of services based on car information, including the
integration of third-party software and server infrastructure. The solution includes an
application which makes these services available to customers on their mobile phones

Providing Extensible Mobile Services to Car Owners Based on OBD 77

in a time and location independent way. Innovative implementation methods were
devised to provide a solution which allows platform- independent dynamic configu-
ration and extension of the application while taking account of app store restrictions
and development costs.

The deployment and commercialization of the system proved that the applied
concepts work well in practice. Drawbacks of the chosen system design, like the need
for extensive network communication between different clients and servers, were
alleviated by measures like the consequent utilization of asynchronicity and an
adherence to strict security standards. Nevertheless, the focus on portability and
dynamic extensibility caused some limitations concerning the achievable usability
compared to monolithic, platform-specific mobile applications.

The server infrastructure is now operational, and the mobile application is already
being used by customers. In addition to the built-in functionality providing information
like the current tank filling, first optional components created by a third-party company
are available, performing diverse tasks like helping the car owner to schedule repair
appointments or to just find the location of the car. More optional components will be
added soon, including also extended server support in the background.

Future research will require assessing customer acceptance of the offered func-
tionality, guiding the way to the development of new features. The utilization of the
mobile application itself will be monitored, with server statistics showing when and
how often the application and its optional components are used. Customer feedback
concerning the mobile application’s usability will tell about possible needs for
improvements and changes.

References

1. You, S., Krage, M., Jalics, L.: Overview of Remote Diagnosis and Maintenance for
Automotive Systems. SAE International, Warrendale, PA (2005). http://papers.sae.org/2005-
01-1428/. Accessed 21 Aug 2015

2. Lin, J., Chen, S., Shih, Y., Chen, S.: A Study on Remote On-Line Diagnostic System for
Vehicles by Integrating the Technology of OBD, GPS, and 3G. World Academy of Science,
Engineering and Technology (2009). http://www.waset.org/publications/13356

3. Quattrone, A., Bhattacharya, T., Kulik, L., Tanin, E., Bailey, J.: Is this you?: Identifying a
mobile user using only diagnostic features. In: Proceedings of the 13th International
Conference on Mobile and Ubiquitous Multimedia, pp. 240–243. ACM (2014). http://doi.
org/10.1145/2677972.2677999

4. Cai, J., Goodman, D.: General packet radio service in GSM. IEE Commun. Mag. 35(10),
122–131 (1997). http://doi.org/10.1109/35.623996

5. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures
(2000). http://www.ics.uci.edu/*fielding/pubs/dissertation/fielding_dissertation_2up.pdf

6. Java Platform, Enterprise Edition (Java EE). http://docs.oracle.com/javaee. Accessed 21 Aug
2015

7. Wong, S.H.R.: Which platform do our users prefer: website or mobile app? Ref. Serv. Rev.
40(1), 103–115 (2012). http://doi.org/10.1108/00907321211203667

78 R. Hable and G. Brugger

http://papers.sae.org/2005-01-1428/
http://papers.sae.org/2005-01-1428/
http://www.waset.org/publications/13356
http://doi.org/10.1145/2677972.2677999
http://doi.org/10.1145/2677972.2677999
http://doi.org/10.1109/35.623996
http://www.ics.uci.edu/%7efielding/pubs/dissertation/fielding_dissertation_2up.pdf
http://docs.oracle.com/javaee
http://doi.org/10.1108/00907321211203667

8. Pilgrim, M.: HTML5: Up and Running. O’Reilly Media Inc., Sebastopol (2010).
1005 Gravenstein Heighway North, CA 95472

9. Zbick, J., Nake, I., Jansen, M., Milrad, M.: mLearn4Web: a web-based framework to design
and deploy cross-platform mobile applications. In: Proceedings of the 13th International
Conference on Mobile and Ubiquitous Multimedia, pp. 252–255. ACM (2014). http://doi.
org/10.1145/2677972.2678007

10. Zbick, J., Jansen, M., Milrad, M.: Towards a web-based framework to support end-user
programming of mobile learning activities. In: 2014 IEEE 14th International Conference on
Advanced Learning Technologies (ICALT), pp. 204–208 (2014). http://doi.org/10.1109/
ICALT.2014.66

11. Apache Cordova. https://cordova.apache.org/. Accessed 21 Aug 2015
12. Mobile App Development & App Creation Software - Xamarin. http://xamarin.com/.

Accessed 21 Aug 2015
13. Mobile App Development Platform – Appcelerator. http://www.appcelerator.com/. Accessed

21 Aug 2015
14. Charland, A., Leroux, B.: Mobile application development: web vs. native. Commun. ACM

54(5), 49–53 (2011). http://doi.org/10.1145/1941487.1941504
15. Angulo, E., Ferre, X.: A case study on cross-platform development frameworks for mobile

applications and UX. In: Proceedings of the XV International Conference on Human
Computer Interaction, pp. 27:1–27:8. ACM (2014). http://doi.org/10.1145/2662253.
2662280

16. RFC 6749 - The OAuth 2.0 Authorization Framework. http://tools.ietf.org/html/rfc6749.html.
Accessed 21 Aug 2015

Providing Extensible Mobile Services to Car Owners Based on OBD 79

http://doi.org/10.1145/2677972.2678007
http://doi.org/10.1145/2677972.2678007
http://doi.org/10.1109/ICALT.2014.66
http://doi.org/10.1109/ICALT.2014.66
https://cordova.apache.org/
http://xamarin.com/
http://www.appcelerator.com/
http://doi.org/10.1145/1941487.1941504
http://doi.org/10.1145/2662253.2662280
http://doi.org/10.1145/2662253.2662280
http://tools.ietf.org/html/rfc6749.html

A New Architectural Design Pattern
of Distributed Information Systems

with Asynchronous Data Actualization

Patrik Hrkut(&), Ján Janech, Emil Kršák, and Matej Meško

Department of Software Technologies, University of Zilina, Zilina, Slovakia
{Patrik.Hrkut,Jan.Janech,Emil.Krsak,

Matej.Mesko}@fri.uniza.sk

Abstract. Rapid development of miniaturization technologies helps create
small and easily portable devices. This enables users to work with their infor-
mation systems (IS) almost anywhere. The only obstacle, however, may be a
poor network connection, which can make the system inaccessible. One of the
solutions is creating a distributed information system with asynchronous data
update. Then the user operates over the local data, and they do not necessarily
need an instant network connection through a server. Later, with a connection
available, the local data are merged with the rest of the system. This concept will
effectively solve the situations in which two users are editing the same data.
Below we present a new architectural pattern for designing such IS.

1 Introduction

The current information systems (IS) development clearly shows its priority in the
nearest future: mobility. Users want to work from home, when travelling, doing field
work or being on a business trip abroad.

Therefore, the multi-client information systems are required to be able to operate
fully also without a network connection (offline). The time of the connection
unavailability is limited, and at the time of re-connection the data need to be syn-
chronized. So, the client has to be able to work with locally stored data, operate over
them and, after re-connection, to synchronize them with the rest of the system.

The current architectural patterns cannot meet the above requirement fully. That is
why our work focuses on designing a new architectural pattern to solve the problematic
of distributed IS with asynchronous data synchronization.

2 Current State

The system views all data changes as part of a transaction. The transaction (also called
the business transaction) has to meet the following criteria:

• ACID properties (Atomicity, Consistency, Isolation and Durability)
• Consistency and isolation from other business transactions

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_6

If two various users are doing two mutually conflicting business transactions (with a
synchronous update), an alignment /conflict of two transactions occurs:

• Optimistic locking – it prevents conflicts between concurrent business transactions
by means of detecting the conflicts and sending off the transaction status [1]

• Pessimistic locking – it prevents conflicts between concurrent business transactions
by allowing only one business transaction to access the data [1]

Thus the synchronous synchronization normally allows only one user at a time to
change the data. The second user will not be allowed to do so. There are some hybrid
techniques [2, 3] which combine some of the approaches mentioned above.

The asynchronous update is more complicated, since the synchronization may
occur at a time not known in advance. It is vital to compare the changes of the local and
shared data. Merging such forms of data is not an easy task, and there are various
techniques how to do that. E.g., in [1], to merge the data, the authors used decision
trees.

However, this article focuses on designing an architecture, not on the data-merging
algorithm itself.

3 A New Design Pattern Proposal

In the systems with the asynchronous data update the situation becomes more com-
plicated by the fact that the user can work all the time without being connected to the
server. The IS client can run e.g. on a laptop without the internet connection, or the
server can be accessible only via a company intranet network. Therefore the server as a
component responsible for organizing the cooperation among clients does not have the
information about the running business transactions.

Due to these limitations, it was crucial to determine which basic qualities the IS
needs to have so that it can work successfully.

3.1 Basic Principles

The proposed new architectural pattern is based on the following assumptions:

• The user needs to have full access to the information system. It is not desirable for
them to be limited by anything else (e.g. technical limitations) than by the assigned
permissions. The user has to have the offline access to all necessary data to be able
to edit them.

• The connection to the computer network may be requested only for a data update.
The user needs to be able to work offline at all other occasions. Unless contacting
the server is absolutely necessary, the client must not use the connection to the
computer network.

• The data get updated at the user’s request exclusively. The user has to be in full
control of this important operation. Only they know when they finished their work
which they want to transmit to the server, and when the connection to the computer
network meets their needs.

A New Architectural Design Pattern 81

• The data administrated by the information system will be structured. Currently
there are only a few examples of information systems working solely with
unstructured data.

The above assumptions can be used to derive the following basic principles which
will influence the design of our architectural pattern.

Principle 1. Since full offline work is required, the architectural pattern has to be
based on the architecture of a distributed IS with a fat client. If the domain logic were a
part of the server implementation, working without a permanent client-server con-
nection would not be possible.

Principle 2. The system has to contain two separated data storages. One of them is
shared and accessible only through the server. It stores all data, regardless which user
has created them. In addition, every client needs an access to their own local data
storage. The user executes and saves all changes in their local storage only. The local
and shared databases are synchronized during the data update.

Principle 3. To enable a data update on both client and server sides, both storages
(local and shared) have to be able to return the list of changes made since the last data
update.

With the local storage it is quite simple. It is sufficient to save the information about
the nature of the change, i.e., which object has been changed and which object has been
created since last data update of the concerned client.

The situation is more complicated with the server. Each client can be doing an
update at a different moment, therefore they can each be using a different version of the
local data. That is why the server should remember the differences between the current
version and any of the previous versions.

Principle 4. The above assumptions also show the necessity of solving the align-
ment of business transactions only during the data update. Only then it is possible to
communicate with the server.

The locking used with the IS with synchronous data update (see Sect. 3.3) cannot
apply here. Instead, it is necessary to allow the alignment but to merge the changes
from various clients during the update.

Principle 5. The structured data requirement suggests that the record administrated
by the system will be a composite structure. That is why the network transmissions,
data merging and similar operations will be performed over these composite structures.

3.2 Pattern Structure

The listed principles allow us to derive the structure of the proposed architectural
pattern. Figure 1 shows its graphic design:

As we have mentioned in Principle 1, the basis is the IS architecture with a fat
client. Even though it is clear the design has been influenced by the traditional
n-layered architecture, in few places its basic principles have been violated. As
examples we can mention ‘Update layer’ or ‘Local database’ with which we cannot
speak about a higher and lower levels.

The layers of the new pattern are described as follows:

82 P. Hrkut et al.

• The communication and service layers enable IS to communicate over the computer
network. They are analogous to the same layers of the fat client IS architecture.
Nevertheless, since the architecture is used in a specific way, several basic services
have been defined which the service layer needs to provide clients with.

• The update layer covers the entire data update process on both server and client’s
sides. It receives the command to run the update from the domain layer. During the
update it has to solve all problems related to potentially concurrent business
transactions. To do so, it uses the data merging component.

• The data merging component deals with solving the alignment problem. As we have
mentioned before, a standard solution using data locks is not possible. Even if one of
the clients created a lock for a particular record, they would not be able to inform
others about it. By the time the lock would arrive to all system users, it might have
been changed by somebody else. The data merging principle is shown in Fig. 2.

Fig. 1. Layers of the design pattern

A New Architectural Design Pattern 83

Each data record enters the process in three different versions:

• Basic data – the common version of a record for both, the local and shared data-
bases. Both records are based on it. In fact, this is the version of the record that was
current at the latest data update.

• Local data – the local database record version.
• Updated data – the shared database record version.

The data merging process will find changes of the local as well as shared records
compared to the basic version, and it will merge them into one record version to be
stored in the local database.

• The local storage layer needs to provide two separate interfaces. The interface
accessible to the application is not expected to meet any specific requirements. The
particular IS is responsible for the operation principles of this interface. However,
the local database must provide a second interface, against the communication
layer. The layer has to be able to identify the local changes list and incorporate the
changes from the server.

• The domain and presentation layers represent the domain and presentation logic.
They run operations demanded by the user and show them the results. These layers
need not be designed with a regard to the fact that the way IS works is based on the
asynchronous update principle.

Fig. 2. Data merging process

84 P. Hrkut et al.

3.3 Data Update Process

The data update is divided into two phases. During the phase of taking over the changes,
the changes on the server are identified and they are transmitted to the client. The changes
have to be incorporated into the local database without disrupting the local changes.

The phase of handing over the changes constitutes sending the local changes to the
server. During the phase it is not possible to deal with the alignment problems,
therefore it is assumed that the local database has just been updated recently to the
latest version.

Depending on which phase the user decides to use for the update, we can distin-
guish three ways of updating the data with the server:

• The data update on the server – the user has the new changes in the local database,
and they want to transfer them into the shared storage. They use only the phase of
handing over the changes.

• The data update on the client’s side – the user wants to retrieve the changes from
the shared storage. They use only the phase of taking over the changes.

• The full data update – the user wants to update the local data as well as to transfer
the local changes to the server. They use both of the phases, starting with the phase
of taking over the changes.

Since the first way requires the local data to be updated by the latest version of the
shared database, from the user’s point of view it may seem complicated. That is why
we recommend to implement into IS only the last two update manners.

The phase of taking over the changes from the server runs as follows:

1. The user initiates the update. The domain layer requests the update layer to control
the process of taking over the changes.

2. Through the communication layer, the update layer connects to the server. It
informs the service layer on the latest data version retrieved from the server, and it
asks for the list of all changes.

3. The service layer requests the list of the changes from the shared data storage and
notifies the communication layer. It also adds the information about the current data
version for its future identification at the next update.

4. The update layer incorporates the list of the changes into the local database using
the data merging layer. It also saves the current data version.

5. The user is notified about the result of the data update.

Each object from the set of globally changed objects is detected as either new,
changed or deleted. If the object is new, it is stored into the local storage as it has
arrived from the server, without any modification. The deleted objects are treated
similarly – the local database is sent a request to delete them. The changed objects
bring along more complications. Before they can be stored in the local database, they
need to be checked for local changes. If there are not any, the object can be stored
directly, replacing the original version. However, if there have been any local changes,
first they need to be connected with the received changes and only then the object can
be stored into the local database.

A New Architectural Design Pattern 85

What makes the process of handing over the changes more simple is the fact that all
the changes from the server need to be taken over first. The process consists of the
following steps:

1. The user initiates the update. The domain layer asks the update layer to control the
process of handing over the changes.

2. The update layer connects to the server through the communication layer. It
announces the last retrieved data version to the service layer.

3. The service layer compares the versions of the local and shared data. If they are not
equal, the process of handing over the changes is terminated immediately.

4. The update layer requests the list of the local changes from the local database.
5. The update layer supplies the list of the local changes to the communication layer

which forwards it to the service layer. The service layer provides it to the changed
data storage to be incorporated.

6. The changed data storage makes sure the changes are correctly incorporated into the
database.

7. The service layer reports the identifier of the new global data version. The update
layer saves it.

8. The domain and presentation logic reads the new data version.
9. The user is notified about the result of the data update.

In this case, the process of integrating the changes is very simple because it is
sufficient to replace all objects by their new versions. The basic version of the local data
and the current version of the global data are identical, therefore no merging is
necessary.

4 Server-Side Services

As we have mentioned in the introduction, the communication between the client and
the server through the computer network can be done only during the update process.
According to the processes described in the previous section, we can identify the basic
services the service layer has to provide:

• The Client login service represents the operation of logging in. The particular
service implementation depends on the security requirements of the specific IS. It is
even the only one of the described services that is optional, and the service layer
does not have to implement it.

• The Start of taking over the data service indicates the beginning of the phase of
retrieving the changes from the server. The service needs to be implemented as pull,
i.e. it has to be initiated by the client and the server needs to reply to it. In their
request, the client sends the information about the current local data version. If the
client has got no data yet (it is the first data take-over), they indicate the fact by
a special zero version. The server’s reply must contain the confirmation of the
successful completion of the operation. If not mistake occurs, the client continues
using the Get changes service.

86 P. Hrkut et al.

• The Get changes service returns the list of the changed objects. The service can be
implemented as a pull or a push type. This means that the server can send the data
without being requested to do so by the client.

• The Start of data sending service denotes the beginning of the phase of handing
over the changes in the local database to the server. Having received the infor-
mation, the server creates a new database version and expects to receive the data for
it. The service needs to be implemented as pull. In their service request, the client
states the current local data version. The server’s reply is an error information. In
each implementation a specific error may occur: the local and shared databases
versions are not identical. If there has been no error, the client continues to use the
Incorporation of changes service.

• The Incorporation of changes service gradually incorporates the given data into the
current database version. The service needs to be implemented as pull. The only
reply is the information about an error. The changes incorporation can only be
carried out by one client at a time. If more clients try to incorporate their changes
into the shared database, the server has to allow only the first one of them to do so.
The other clients only receive the error notification.

• The Finish service denotes the end of reading and recording the changes from/to the
database. For the taking over phase, the service can be implemented as push. It
returns the current shared database version number to the client.

Other services can be implemented, too, however, the above services are required
for IS with the asynchronous data update to function correctly.

5 Conclusion

We used the described architectural design pattern to create the railway transportation
timetables, IS ZONA. Some of client applications are described in our previous papers
[4–6].

A lot of clients work in the system, participating in the process of creating train
schedules. The clients often travel and find themselves in the areas without a direct
access to servers through a data network. The network is either very slow or of poor
quality. The clients usually collected the data in written form and entered them into the
information system only after they had returned to their offices. The process generated
a lot of errors.

Our task was to make their work more effective and enable them not only to define
the basic train parameters but also all other data necessary for the creation of train
schedules.

The main parameters required for the new system for the mobile train schedule
creators were as follow:

• Recording all train path parameters in a well-arranged form
• Displaying all created train paths, even if they were created by other users, in both

tabular and graphical forms
• The client’s functionality being independent from a network connection to the

server

A New Architectural Design Pattern 87

We created a new information system with a three-layer architecture. We imple-
mented the above described architectural pattern.

5.1 Object Granularity Level

A train path consists of a large number of data. One might picture it as a tree structure.
The roots represent the basic data on the train (name, number, the carrier involved,
services, power supply, breaking…). Then the path with the list of transportation points
follows. Each of them contains the data on stops, engines, calendars, notes and plenty
of other technical parameters.

First, we needed to define the granularity level so that it was possible to work with
the objects as with a whole, so called bunch of grapes. On the grounds of the analysis
[7–10] of the data reusability in the object model, we established the following bunches
of grapes: train, note, calendar, user, group of users etc.

As we have said above, we implemented the Data update on the client and Full data
update. The data update between the client and the server runs on the basis of syn-
chronizing the whole bunches of grapes. The client has the information which bunches
of grapes have been modified and which have not. With the full data update only the
modified bunches of grapes are synchronized.

The modified bunches of grapes are highlighted red (Fig. 3). The user of the
application can see clearly which data are to be updated.

Fig. 3. Highlight of changes (red-tinged)

88 P. Hrkut et al.

5.2 Conflict Solving

Conflicts occur at data update operations. They arise when two users modify the same
bunch of grapes. Many of the conflicts are solved automatically by change merging. If
it is not possible, e.g. two users have changed one and the same attribute, the conflict
has to be solved by the user who was the second to carry out the update (Fig. 4).

To solve the conflicts we implemented the operations existing in version systems.

Acknowledgement. This contribution/publication is the result of the project implementation:
Centre of excellence for systems and services of intelligent transport, ITMS 26220120050

supported by the Research & Development Operational Programme funded by the ERDF.

Podporujeme výskumné aktivity na Slovensku/Projekt je spolufinancovaný zo zdrojov EÚ

Fig. 4. Solving the conflicts

A New Architectural Design Pattern 89

References

1. Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., Stafford, R.: Patterns of Enterprise
Application Architecture. Addison-Wesley, Upper Saddle River (2002)

2. Thomasian, A.: Distributed optimistic concurrency control methods for high-performance
transaction processing. IEEE Trans. Knowl. Data Eng. 10(1), 173–189 (2002)

3. Bakura, S.A., Mohammed, A.: Lock-free hybrid concurrency control strategy for mobile
environment. In: 2014 IEEE 6th International Conference on Adaptive Science &
Technology (ICAST), pp. 1–5, 29–31 October 2014

4. Bachratý, H., Janech, J., Ružbarský, J.: EDYN - new software for timetable construction for
Slovak railways. In: EURO - ŽEL 2014, Žilina (2014)

5. Krsak, E., Bachratý, H., Polach, V.: GTN - information system supporting the dispatcher and
remote tracks control. In: Communications: Scientific Letters of the University of Žilina,
Žilina (2010)

6. Bachratý, H., Ružbarský, J.: Information technologies for creating of railway transport
timetables. In: 14th International Symposium EURNEX - Žel 2006 Towards the Competitive
Rail Systems in Europe, pp. 59–67 (2006)

7. Tavač, M., Tavač, V.: DBRE and MDA integration. In: Objekty 2011 Proceedings of the
16th International Conference on Object-Oriented Technologies, pp. 52–65, 24–25
November 2011

8. Tavač, M., Tavač, V.: The general algorithm for the design of the MDA transformations
models. In: CICSyN2013 Fifth International Conference on Computational Intelligence,
Communication Systems and Networks, pp. 171–176, 5–7 June 2013

9. Gábor, M.: Creating of train timetable in system ZONA. In: Proceedings of Scientific
Contributions Žilinská univerzita (2007)

10. Andrzejak, A., Langner, F., Zabala, S.: Interpretable models from distributed data via
merging of decision trees. In: 2013 IEEE Symposium on Computational Intelligence and
Data Mining (CIDM), pp. 1–9, 16–19 April 2013

90 P. Hrkut et al.

The Economics and Data Whitening:
Data Visualisation

Radek Hrebik(&) and Jaromir Kukal

Faculty of Nuclear Sciences and Physical Engineering, Department of Software
Engineering, Czech Technical University in Prague, Prague, Czech Republic
Radek.Hrebik@seznam.cz, jaromir.kukal@fjfi.cvut.cz

Abstract. The paper deals with principal component analysis and data
whitening. The research is done in the area of main economic indicators. This
means the data preprocessing problem. The main aim of this paper is to present
and discuss the possible ways of data preprocessing. The paper deals with four
main approaches. There are compared the results from raw data, absolute dif-
ferences, relative differences and logarithmic differences. The classic principal
component analysis is also used with some improvement, there is described the
basement of data whitening. The main aim is to get the good data visualisation.
The next aim of such approach can be to identify the similarities between some
states and their main trends. For this reason there is presented the comparison of
states of Visegrad Group. At this moment there is no aim to deeply discuss the
reasons of development in detail. This paper suggests new point of view to time
series connected to economic development. The deep analysis of all relation-
ships is the topic for further research.

1 Introduction

The contribution deals with principal component analysis (PCA) and the additional
data whitening. The main aim is to discuss the possible ways of data preprocessing and
present the best way to get easily readable data representation. The main idea of
principal component analysis is reduction of dimensionality of some data set that
consists of a large number of interrelated variables. The reduction retains as much as
possible of the variation present in the data set. The aim is achieved by transforming to
a new set of variables called the principal components. These principal components are
uncorrelated and ordered so that the first few retain most of the variation present in all
of the original variables. [2]

The aim of this research is the reduction to two principal components (PC1 and
PC2). This means that all selected indicators used as explanatory variables are reduced
to two dimensional space to be easily interpreted from its graphical representation. The
results are presented on selected countries. As the representatives were selected
Visegrad group countries.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_7

2 Methodology

Paper deals with the basic economic data and shows the ways of possible interpretation
to serve as input for principal component analysis. The aim is to search the main
indicators, monitor the potential trend of concrete objects and find objects having
something in common. This approach as itself is nothing new. The data input and
expected conclusion are the new thing. The authors expectation is to get the graphic
representation of economic indicators in time that will be easily readable and
interpretable.

One of the first published use of PCA for the economic time series data was
presented in late forties by Stone ([2]). It also goes hand in hand for example with
principal component analysis goal defined by Abdi and Williams – extracting the
important information from the table to represent it as a set of new orthogonal variables
called principal components and to display the pattern of similarity of the observations
and of the variables as points in maps. [1]

The study dealing with principal component analysis to forecast a single time series
with many predictors was presented by Stock and Watson. [5] The use of principal
component analysis in connection with gross domestic product is discussed for
example in [6]. Favero deals with comparison of two competing methods to estimate
large-scale dynamic factor models based, respectively, on static and dynamic principal
components. [7] Principal component analysis as alternative way to predict gross
domestic product is presented in [8]. In our case, the question of main trends in
development of Visegrad countries will be shortly discussed.

Research is based on publicly available economic indicators. Thanks to dimension
reduction it gives a lot of possibilities which data can be used. This contribution
presents three basic ways of using principal component analysis to interpret economic
data. The way means in this case interpreting the data set as objects. These objects
represent different economic indicators through time and states. The prediction of future
country development can be also the reason for doing such research. It also opens the
door to new way of finding the position of state if we know the basic economic
prediction. The main thing is to capture some progress in time and easily read the
development in time. The basic approach used as pattern is represented by objects as
years. This means the number of explanatory variables can be very high. The ways of
preprocessing are discussed later.

The aim of research is to present a big chance to show some new way of economic
data interpretation. In this case indicators of Visegrad group play the key role. At this
point the presentation of individual components is not the aim. Contribution deals not
with the share of individual indicators in components. This will be the topic for our
next research to deeply analyse all ties on economics.

3 Data Pre-processing, Whitening

It is good to start with the possible kinds of processing of the raw data collected from
published statistics. Let N, m 2 N be dimensionality of object description and length of

92 R. Hrebik and J. Kukal

time series. Let yk in R
N be k-th sample of original data series for k = 1, 2, . . ., m.

Optional preprocessing (if any) will transform the data to time series xkf gMk¼1 where
M = m or M = m −1 m respectively. Omitted preprocessing as crucial case is repre-
sented by

xk ¼ yk ð1Þ

for k = 1, 2, 3, . . ., m. Therefore, the data are used as measured. This kind means no
added value and take just the data published by the institutions.

In the case of positive descriptors i.e. xk > 0, which is typical for macroeconomical
indicators, we can apply relative differences as

xk;j ¼ ykþ 1;j � yk;j
� �

=yk;j ð2Þ

rather use logarithmic differences

xk;j ¼ ln
ykþ 1;j

ykþ 1;j
ð3Þ

for k = 1, 2, . . ., m − 1, j = 1, 2, . . ., N.
The main processing and data visualisation operates only with time series xkf gMk¼1.
The main idea of research is focused on dimensionality reduction which is based on

Principal Component Analysis (PCA) [2]. Thanks to it there can be a lot of explanatory
variables and the way of possible visualization of results stays clear. We calculate mean
value vector as

x0 ¼ 1
M

Xm

k�1

xk ð4Þ

and covariance matrix estimate as

C ¼ 1
M � 1

Xm

k�1

ðxk � x0Þðxk � x0ÞT ð5Þ

Eigen-Value Decomposition (EVD) is based on equation

C� kIð Þv ¼ 0 ð6Þ

with constrain

vk k ¼ 1 ð7Þ

where I 2 R
NxN identifies matrix, λ ≥ 0 is eigenvalue and v 2 R

N is corresponding
eigenvector. Solutions of EVD can be ordered as λ1 ≥ λ2 ≥ … ≥ λN ≥ 0 with corre-
sponding eigenvectors v1, v2,…, vN.

The Economics and Data Whitening: Data Visualisation 93

3.1 Principal Component Analysis

Traditional PCA of order D 2 N is based on formula

pk ¼ W
T xk � x0ð Þ 2 R

D ð8Þ

where

W ¼ v1; v2; . . .; vDð Þ 2 R
NxD ð9Þ

3.2 Whitening

Data Whitening (DWH) [4] is a little bit improved process which guarantees unit
covariance matrix of resulting vector

yk ¼ L
�1=2

W
T xk�x0ð Þ 2 R

DÞ ð10Þ

where

L ¼ diagðk1; k2; . . .; kDÞ 2 R
DxD ð11Þ

under supposition λD > 0.

4 Explanatory Variables

The input data set plays the key role in this research based on principal component
analysis. It is based on some economic time series. Used economic data has been
selected from Statistical Annex of European Economy presented by European Com-
mission in autumn 2014 [3].

The selection of the indicators and period was the first task for the authors. There
has been selected time series representing data of nine descriptors. The selection of the
descriptors can be made as of the author of analysis needs. This is the advantage to
other model approaches. Thanks to dimensionality reduction there can be added more
indicators and result of analysis will be still same readable.

The input data set for this research is represented by the thirty five countries from
the whole world, majority are the European countries. The observation take place in
years 1993 to 2014. Selected indicators are the total population, unemployment rate,
gross domestic product at current market prices, private final consumption expenditure
at current prices, gross fixed capital formation at current prices, domestic demand
including stocks, exports of goods and services, imports of goods and services and
gross national saving. So totally nine indicators are monitored.

The first kind of data interpretation is by objects representing calendar year. So
there are only twenty one objects in this case so that N = 21. As the number of objects
is very low, the number of descriptors is quite high, so the total number of indicators

94 R. Hrebik and J. Kukal

m = 35 × 9, so each object is created by number of countries mal number of indicators.
The number of properties is totally over three hundreds. There is also possible to use
such representation on the each state. So the number of indicators is 9. This kind of
interpretation is used to demonstrate the data pre-processing in case of Czech republic.

In second case of possible use of principal component analysis the objects are
represented by each state. So the properties are made of indicators in selected years.
The number of objects is thirty five. The number of objects is small. So the repre-
sentation will be very simple and it will be clear which states are closed to each other.
From graphic representation is expected to easily notice the groups of states. One point
representing one state gives a unique chance to identify the groups of states with similar
type of economy. In this case N = 9 × 21 representing each macroeconomic indicator
in each year and m = 35 representing each of 35 states.

As third possible interpretation of the data set the object is represented by a state in
a given year. So the number of objects is relatively high. The total number of object is
in this case seven hundred and eighty, it represents number of states multiplied by the
number of observed years. As the number of object is high, the origin data set
dimensionality is relatively small. In this case N = 9 representing each macroeconomic
indicator and m = 21 × 35 representing 21 years in each of 35 states. There are
selected just Visegrad countries to keep the figures readable.

5 Data Analysis in Period 1993–2014

The data analysis is presented for all three basic approaches mentioned before repre-
senting the given economic data as objects. The input objects are represented by years,
states and states in given years. In the first case of analysing the years as objects there is
presented the role of preprocessing. The selected approach to preprocessing is then
used for the rest representations.

5.1 Years as Objects – Role of Preprocessing

Last 21 years were selected for the analysis to show the main trends and try to identify
the main milestones in this period. The next aim is to compare the development of
Czech Republic with others. As it is seen from Table 1 the best explanation of used
data gives the raw data.

Table 1. Principal Components

PCA1 PCA2

PCA of raw data 0,9281 0,9967
Absolute differences 0,9334 0,9740
Relative differences 0,6965 0,8645
Logarithmic differences 0,6652 0,8533

The Economics and Data Whitening: Data Visualisation 95

The same conclusion can be seen in graphical representation in Fig. 1. The research
is based on searching the clear data interpretation. Comparing four possible ways it is
clear that easily read can be raw data with whitening. The whitening is already doing
some preprocessing and comparing the results, the using of raw data gives the highest
level of explanation. The term easily read means the clear identification of trend based
on graphic representations of principal component analysis of objects represented as
years. So the intuitive trend identification is seen in case of whitening using raw data
set. For example development in time in horizontal ow vertical way.

5.2 Years as Objects

The Visegrad group countries were selected as example for data interpretation. The
result is captured in Fig. 2. There are counted always new principal components for
each state.

There is easily seen the trend of development in years 1993 to 2006 in the case of
Czech republic. This trend is typical with the movement down. In this time there is one
change around year 2000 which is represented as change from trend right and down to
the trend left and down. There is a big change from the year 2006 in trend. The last five
years are represented very close to each other.

Two main break points are identified in case of Slovakia, the year 2000 and 2012.
This means, that in the known year of crisis the economics was in the trend which
started already in 2000. The following research will explain these main changes in
trends. The aim of this paper is at first present the new way of data representation.

Poland shows the one big break point near year 2008. The last five years are as in
case of Czech republic represented close to each other. So the last development gives
the same marks as in case of Czech republic.

Hungarian break point is represented by year 2000. The rest of development is
represented by some blocks of four two five years. It can represents for example the
election cycle. This will be also the aim of future research, but the graphic represen-
tation gives interesting results already now.

Almost in all cases the last years after starting the debt crisis in Europe are rep-
resented close to each other without any significant trend in these years. As already
said, this means only first way of interpretation based on graphic representation. The
relevant analysis based on deep knowledge of all descriptors is the topic for further
research. Maybe already this graphic representation can lead to the ideas of coming lost
decade.

The advantage of this approach is that it gives the new way to identify the main
trends in the development of each country or group of countries in time. The disad-
vantage is that it is not the best way to make the comparison of the states each other
because of the other principal components. The next kind of object representation as
states in given years serves better for such comparison of states each other.

96 R. Hrebik and J. Kukal

Fig. 1. Year as Object of Macroeconomic Investigation

The Economics and Data Whitening: Data Visualisation 97

Fig. 2. Year as Object - Visegrad Group

98 R. Hrebik and J. Kukal

Fig. 3. PCA – State in Year as Object

The Economics and Data Whitening: Data Visualisation 99

5.3 States as Objects

The principal components are counted in this case from nearly two hundred indicators.
So the reduction of dimensionality is quite high in this case. The indicators are created
by the nine economy indicators in twenty one years. As in the previous case of using
principal component analysis also here the biggest weights are on gross domestic
product and population. In case of first principal component there is the population
values included with bigger weight than in case of gross domestic product. Second
principal component is preferring the values of gross domestic product in years. The
values of first principal component are in most cases very close to zero, following the
weights that implies that the population is without big changes having affect to com-
ponent values. Second principal component is mostly counted from gross domestic
product values. The results are captured in Fig. 4.

In this case the analysis ends with some outliers. Even if the outliers where omitted
in the new run of analysis with reduced number of indicators ended with the similar
results. In the second run of the analysis the United States and Turkey were omitted.
This led only to other group of outliers. The third attempt to attend the outliers ended
with the nearly same result. So objects defined in this way gave no clear result as
expected. This is the reason why this way is at this time not to be recommended.

5.4 States in Years as Objects

In this case the results are again presented on group of Visegrad four. The results as
graphical representation are presented in Fig. 3. It is the selective interpretation of the
whole analysis. The analysis was done with all the countries and to keep the figure
readable there are selected only these fours. Comparing to the previous representation
states as object, the same wights for each state are used. The development of Czech
republic, Poland and Hungary is represented by some trend. The trend is typical with
mainly vertical way of representation. In case of Slovakia there are some differences.

Fig. 4. PCA – States as objects

100 R. Hrebik and J. Kukal

6 Conclusion

Firstly the basic pre-processing methods were presented. The principal component
analysis was used in case of main economic indicators. The data whitening as some
upgrade on classic principal component analysis seems to be the best way for the aim
of data visualisation. The countries of Visegrad group were selected as the example of
data visualisation. It was shown that principal component analysis can be also very
useful in interpreting the economic data. It represents some other way of interpreting
time series and shows the states position in comparison to others. To fully interpret the
results there is need to study the weights of principal components to know what stands
behind the components values. The main of this paper was to use not a common way to
get good graphic representation of economic data set. The graphic representation is
intuitive, descriptive and easily interpretable in the most cases. So the main trends are
easily recognized from the graphic representation. This way serves mainly to interpret
the main development trends in each country. The identification of some breakpoints of
development in each country was discussed. The intuitive and easily readable approach
of development of Visegrad group countries was presented mainly in case of states in
years. This approach gives a possibility to compare directly the countries. Czech
republic, Poland and Hungary have the similar trend recognizable from its graphic
representation. The one country of Visegrad, Slovakia, has the other trend. This can be
in connection with its euro area membership. The deeper analysis based on deep
economics knowledge is the aim for further research.

Acknowledgment. The authors would like to acknowledge the support of the research grant
SGS14/209/OHK4/3T/14.

References

1. Abdi, H., Williams, L.J.: Principal Component Analysis (2010). http://www.utdallas.edu/
*herve/abdi-awPCA2010.pdf. Accessed 03 Feb 2015

2. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, Heidelberg (2002)
3. European Comission. Statistical Annex of European Economy: Autumn 2014. Economic and

Financial Affairs (2015). http://ec.europa.eu/economy_finance/publications/european_
economy/2014/pdf/statistical_annex_autumn_2014_en.pdf. Accessed 15 Jan 2015

4. Eldar, Y., Oppenheim, A.V.: MMSE whitening and subspace whitening. IEEE Trans. Inf.
Theor. 7, 1746–1851 (2003)

5. Stock, J.H., Watson, M.W.: Forecasting using principal components from a large number of
predictors. J. Am. Stat. Assoc. 97(460), 1167–1179 (2002)

6. Schumacher, C.: Forecasting German GDP using alternative factor models based on large
datasets. Bundesbank Discussion Paper 24/2005 (2005)

7. Favero, C., Marcellino, M., Neglia, F.: Principal components at work: the empirical analysis
of monetary policy with large datasets. J. Appl. Econometrics 20, 603620 (2005)

8. Chamberlin, G.: Forecasting GDP using external data sources. Econ. Labour Market Rev. 1
(8), 18–23 (2007)

The Economics and Data Whitening: Data Visualisation 101

http://www.utdallas.edu/%e2%88%bcherve/abdi-awPCA2010.pdf
http://www.utdallas.edu/%e2%88%bcherve/abdi-awPCA2010.pdf
http://ec.europa.eu/economy_finance/publications/european_economy/2014/pdf/statistical_annex_autumn_2014_en.pdf
http://ec.europa.eu/economy_finance/publications/european_economy/2014/pdf/statistical_annex_autumn_2014_en.pdf

Kopenograms and Their Implementation
in BlueJ

Marek Chadim and Rudolf Pecinovský(&)

Department of Information Technologies, University of Economics, Prague,
Prague, Czech Republic

marek.chadim@seznam.cz, rudolf@pecinovsky.cz

Abstract. Although currently the bulk of the most common algorithmic tasks is
included in libraries of programming languages, it is necessary to realize, that
upon completion of object oriented design of application, we still do not avoid
of using more complex algorithmic constructions. For its visual projection and
easier understanding several graphic languages are used. Architecture First
methodology for its purpose prefers kopenograms, as one of the most suitable
method of displaying structured algorithm. This paper deals with the tool, which
was added to IDE BlueJ in order to improve support of Architecture First
methodology by this IDE and which allows students to show kopenogram of
selected method in a simple manner in interactive mode.

1 Introduction

Object oriented programming languages are currently the most widely used around the
world. Simultaneously, everything indicates, that this situation will persist. It is
therefore natural, that the most widespread methodology of teaching programming is
Objects First. For this purpose educational IDE BlueJ was developed.

This IDE allows to start teaching programming in really objective way. It means
that teaching starts in interactive mode, which allows a better understanding of
object-oriented principles for students. Unfortunately, this methodology quickly
abandones its premise and interpretation is starting to go towards the syntax an algo-
rithmic constructions. So, even though the Objects First methodology is based on the
excellent idea, untapped potential is obvious at first sight.

Architecture First methodology, developed on the Department of Information
Technologies at the University of Economics in Prague, is trying to eliminate these
drawbacks. This methodology claims, that if students have to learn how to make really
good object oriented architecture of application, they have to come into contact with
this from the beginning, in order to have enough time to acquire thinking in objects.
Therefore students are on the layer of architecture since the first lessons. This ensures
that students are not unnecessarily distracted by syntax and programming construction,
so they can fully concentrate on architecture design of application.

All the code is created by code generator, which allows working in the interactive
mode [2]. Such generator is currently also integrated in BlueJ. However this code
generator is very simple, and therefore we developed its enhanced version in order to

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_8

better meet the needs of the Architecture First methodology. The textbook [4] can serve
as an example of how teaching is designed in accordance with this methodology.
However it is important to say, that in time, when this book was written, IDE BlueJ was
not modified for the needs of Architecture First methodology, so the book does not use
the advanced code generator features, which were added later.

Though the Architecture First methodology tries to postpone the explanation of
algorithmic construction as much as possible, it is obvious, that students will sooner or
later come into contact with it. After the object analysis is completed, it is often
inevitable to design more complex algorithmic construction.

In order to allow students to better absorb interpretation of algorithm, several method
of visualization of their structure are used. According to the Architecture First method-
ology the best way is to use kopenograms. The reasons are described in the next section.

2 Kopengrams

2.1 History of Kopenograms

Currently the most common form, which is used for representation of algorithm, is
flowchart. The disadvantage of flowcharts lies in the fact, that they do not coerce users
to construct algorithm in accordance with the principles of structured programming.

One of the responses to elimination of this drawback was the emergence of
Nassi-Schnneiderman diagrams that came with it, but brought another problem. For the
representation of the condition it uses oblique lines, which were difficult to display on
alphanumeric displays used, in that time. In the eighties this shortage motivated the
creation of kopenograms, which use for its representation colored rectangles.

2.2 Syntax of Kopenograms

The basic structural element of kopenogram is a block, which presents specific element
of the algorithm. This element is represented by a rectangle, filled with a color derived
from the meaning of the displayed element. Individual elements can contain other
elements in its bodies. It means that elements are nested into each other, which shows
structure of algorithm. The form of algorithmic block varies, depending on their
meaning. Individual elements can contain following parts [3]:

Header – forms the upper section of the block and is tinged with a darker shade of
its color. It also contains a text representing the name of this element or another form of
description of its meaning.

Body – it is the biggest part of the element and is filled with lighter shade of
appropriate color. It can contain another blocks. They are always displayed on the
given level bellow each other, which clearly show their sequential execution.

Footer – optional lower part of the block, which represents the end of the cycle
body. It uses a darker shade of the block color.

These parts are separated by horizontal parting line. Moreover some elements consist
of several separate parts, which are horizontally or vertically connected (whichmeans not
in the sense described above). An example of a kopenogram is shown on Fig. 1.

Kopenograms and Their Implementation in BlueJ 103

2.3 Basic Blocks

As was mentioned, one of the important characteristic of the kopenogram blocks is
their color. It carries the advantage of easy orientation in algorithm, even from the
distance, which means without having to read the labels of individual elements. The
base consists of following four colors [1]:

• Yellow, which shades illustrate methods (procedures/functions) and recursive calls.
• Green is used for representation of cycles.
• Blue shows conditional commands and switches.
• Red is used to tint blocks representing individual elements, except that in the form

of recursive call, as was mentioned.

2.4 Other Blocks

Blocks represented on Fig. 1 are basic, because they fully comply with structured
writing of algorithm. However, sometimes situations can occur, in which it is better to
violate principles of structured design of algorithm. Therefore were added represen-
tations of commands, which on the one hand violate principles of structured pro-
gramming, however on the other hand, they can often simplify the whole algorithm [1].

The premature termination of loop (command break or continue) and premature
termination of whole algorithm (command return) are two of them. Representation of
these elements in kopenogram shows Fig. 2, where the red rectangle with white tri-
angles oriented to the right represents the break command, for leaving endless while
loop in case of running is set to false.

The continue statement is usually drawn similarly, except that the white triangles
are facing upwards.

Fig. 1. Example of kopenogram

104 M. Chadim and R. Pecinovský

2.5 Exception Handling

With the advent of Java, work with exceptions has become a regular part of beginner
programming courses. Therefore, it was necessary to take this into account in kope-
nograms [1]. An exception-handling mechanism can be viewed as a special composite
block, consisting of a part, in which it can be expected, that exception will be thrown,
and of one or more block, which this exception catch and process. The kopenogram
showing the exception handling mechanism is on Fig. 3.

The block, in which we can expect exception throwing, is colored purple. Its header
is white, with black triangles, illustrating the entry into the body of this block, which
contain statements, potentially throwing exception. The deep red block with yellow text
means, that the exception is thrown, which is processed in an immediately downstream
orange block with white header.

3 Implementation in BlueJ

As was indicated in the introduction, for the purpose of improving support of the
Architecture First methodology in BlueJ IDE, functionality was added, which allows
users to show the algorithm of the selected method by a kopenogram. This should
support especially the last part of teaching, in which the more complex algorithmic

Fig. 2. Representation of premature loop termination

Fig. 3. Representation of exception throwing and catching

Kopenograms and Their Implementation in BlueJ 105

constructions that exceed the abilities of integrated code generator are designed. For
better support of the Architecture First methodology, this tool is integrated into BlueJ.

For this purpose, class and object context menus were enriched with the Show
kopenogram item (see Fig. 4), which invokes the dialog box, for selecting the method,
which kopenogram should be shown (see Fig. 5).

After selection, user can display kopenogram of the selected method by pressing
the Show kopenogram button. Each kopenogram is depicted in a separate window. It
allows comparing more algorithms, if necessary (for example in case of editing code of
displayed method).

Fig. 4. Class context menu with the Show kopengram menu item

Fig. 5. Choose method dialog

106 M. Chadim and R. Pecinovský

Kopenograms are created during compilation. Invocation dialog box from local
menu of data types in the class diagram and objects in object bench differs in the set of
offered methods: objects show only instance methods, whereas classes show all. For
that reason it is not necessary to create instance of appropriate class, in case of need to
show kopenogram of its instance method.

Regarding colors, their meaning is given, however it is possible to define own
colors for individual elements by editing configuration file bluej.defs.

In addition to elements described above, this tool can also display blocks, labels
and static blocks (which are in their principle the same as methods). An example of
complex method, which contains also empty blocks and a label, is shown on Fig. 6.

All of the included images were created in described tool and they are also an
example of its output.

The logic of building a kopenogram is based on the abstract syntax tree offered by
the compiler. It means that each element (besides element representing method) keeps a
link to its parent in itself and also to all its subelements. The width of the element is in
the base deducted of its title (in case of element without title default width is set).
Default height is sum of head height and body height of element. If the element
contains subelements in its body, it is necessary to reflect it in its dimensions. Before

Fig. 6. Kopenogram of a complex method

Kopenograms and Their Implementation in BlueJ 107

drawing of a kopenogram to the window, the right dimensions of each block have to be
set. The algorithm of calculating the size of kopenogram works as follows:

• If the element contains one or more subelements in its body, then it asks its first
descendant to prepare dimensions. This process is repeated until there is no
subelement left.

• Then determines whether or not is the descendant larger than parent. If so, parent
element will assume its size, plus the size of betting on both sides.

• Since all elements on the same layer are displayed below each other, they affect the
height of their parent, regardless of their size (it is because even in case of a smaller
element, its indentation exceeds the base height of the body of the parental
element).

However the knowledge of dimensions is not enough to draw the kopenogram. It is
necessary to prepare the position of each element. For adjusting position, the element
which is to be depicted has to know previous depicted element. It is public information,
so the element only has to determine, in what relationship with this element is, and on
the basis of it prepare its own position. The painting of elements is performed in the
reverse order than adjusting the dimensions. So the element, which sets its dimensions
last, is drawn first. This ensures that the elements do not overlap each other.

4 Future Plans

The kopenograms generator, described in previous section, works reliably, however
there is still place for several improvements. One of the first things, that should be
resolved, is that in case of long line of code, the final kopenogram is too large to fit on
the screen.

This shortage is currently most significant in case of streams. It is because kope-
nograms are based on parsing of abstract syntax tree, which means, that even if user
writes individual statements bellow each other, the tool represents them as one long
command and does not deal with the fact, that user wrote it differently. However, even
after this treatment, still a situation can occur that final kopenogram will be unable to fit
the screen. Solution for this could be to allow export kopenogram in form of picture,
which is than possible to adapt the screen.

Another feature, which will be good to implement, is possibility of settings,
allowing to choose whether to display full syntax of the blocks and statements, or
whether to show only simple description of meaning of individual elements. It would
be useful in the time, when students should not be distracted by syntax.

However, the most important future improvement is to allow program debugging
using the kopenograms. It means that particular element, which is executed, would be
highlighted. So the user would have much more vivid idea, how exactly the particular
algorithm works. And even without the knowledge of syntax.

108 M. Chadim and R. Pecinovský

5 Conclusion

The first section of this paper describes the reason of creation of Architecture First
methodology and mentions its main principles. It also reminds that we still do not avoid
design of more complex algorithm. The next section is about the history of kopeno-
grams and explains the reason for its creation. In the rest of this capture the syntax of
kopenograms is explained. The third section describes the tool, which was integrated
into BlueJ and which allows users to display kopenogram of the selected method. The
last capture suggests the future changes and improvements, which can be expected.

References

1. PecinovskýR.:Kopenograms and their implementation inNetBeans. In: Proceedings of the 38th
International Conference on Software Development, Ostrava 2012. ISBN:978-80-248-2669-1

2. Pecinovský R.: Principles of the methodology architecture first. In: Objekty 2012 –

Proceedings of the 17th International Conference on Object-Oriented Technologies, Praha
2012. ISBN:978-80-86847-63-4

3. Kofránek, J., Pecinovský, R., Novák, P.: Kopenograms – graphical language for structured
algorithms. In: Foundations of Computer Science, FCS 2012, pp. 90–96. CSREA Press, Las
Vegas (2012). http://world-comp.org/proc2012/fcs/papers.pdf ISBN:1-60132-211-9.

4. Pecinovský, R.: OOP – Learn Object Oriented Thinking and Programming. Eva&Tomas
Bruckner Publishing, Czech Republic (2013). http://pub.bruckner.cz/titles/oop. ISBN
80-904661-8-4

Kopenograms and Their Implementation in BlueJ 109

http://world-comp.org/proc2012/fcs/papers.pdf
http://pub.bruckner.cz/titles/oop

Simulation of Hydrological Processes
by Optimization Algorithm Using

Continuous Function

Martin Chlumecky(&)

Faculty of Electrical Engineering, Department of Computer Science,
Czech Technical University in Prague, Prague, Czech Republic

chlumma1@fel.cvut.cz

Abstract. The aim of hydrological models is to represent physical processes of
catchments. The models provide information about hydrological processes.
Evapotranspiration is a main model output. The quality of the model output is
highly dependent on a model calibration which is not a simple process.
SAC-SMA is one of rainfall-runoff models. In SAC-SMA, evapotranspiration is
defined by 12 discreet values. Optimization algorithms do not return valid
calibrations for specific basins or time periods because model parameters are
correlated or also, because the optimal solution found by the algorithm is not
applicable in hydrology. Some model parameters can be interpreted by a con-
tinuous function. It provides higher precision of evapotranspiration and a faster
optimization run than it is provided by the definition of evapotranspiration by 12
discreet values. The main goal of this article is to determine a continuous
function which can replace the 12 values definition of evapotranspiration. It
should make the optimization process faster because the continuous functions
are described by less than 12 parameters. Evapotranspiration is very similar to
the Gaussian function. Genetic algorithm has been modified to SAC-SMA
model optimization which uses the continuous functions for a description of
evapotranspiration. This modification has brought interesting results. The con-
tinuous definition of evapotranspiration provides better results for specific time
periods. The optimization speed can be up to a one third faster. The next step
will be to confirm the approach by another catchments and time periods.

1 Introduction

Hydrological knowledges and skills are gained and improved by mankind for hundreds
of years. In the 19th century, a bigger expansion of hydrology was noticed. Hydro-
dynamical models have been established at this time but they had been enough exact
before. Nevertheless, computation of the models and data collection was very
time-consuming.

Everything has changed when computers appeared. It caused a huge development
of mathematical and hydrodynamical models. Their broad use in practice became real
mainly due to personal computers which enabled to work with models more consis-
tently and operatively. Although, we could see a huge development of hydrological
models for last 35 years. Their common and practical use has just been dawning.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_9

The aim of hydrological models is to represent physical processes within each basin
of interest. The models create streamflow hydrographs at the basin outlet that reproduce
the appropriate observed hydrographs. The model, which we are interested in, is
generally called rainfall-runoff model.

Model components estimate basin states (e.g. snow pack liquid water equivalent,
snow pack energy properties, soil water volume and channel water volume) and outputs
(rain plus snow melt, runoff, and channel flow). The rainfall-runoff model estimates
states and outputs at each step of a model simulation.

The main output of the simulation is evapotranspiration. Evapotranspiration (ET) is
the sum of evaporation and plant transpiration from the Earth’s land and ocean surface
to the atmosphere. Evapotranspiration is a significant water loss from drainage basins
whereby a flow of a basin can be predicated [10].

It is not easy at all. It is necessary to calibrate the models in an effective way to be
usable in practice. Results of a simulation should correspond to the reality as much as
possible. The models are calibrated with historical data of a specific basin. The suc-
cessfully calibrated model is used for many purposes which are mentioned below, e.g.:

1. One of the main purposes are hydrological forecasts. Thanks to them, it is possible
to estimate behaviour of a basin during various precipitations and to estimate the
runoff. It is possible to detect probability of floods and to determine size of a flood
wave.

2. Environment influences a basin behaviour. The model outputs provide useful
information about stocks of groundwater. This allows to determine for instance,
how quickly vegetation of a basin can grow or probability of floods.

3. The model is also able to predicate the influence of vegetation cover changes to
capacity of groundwater stocks. As an example we could mention a dry standing
spruce forest remained after the bark beetle calamity on Šumava. The forest change
influenced the groundwater stocks [19] and it caused the flood in 2002 [20].

The model calibration is very demanding. Huge number of calibrated parameters is
needed. Users of models need to have large knowledge of hydrology and calibrated
basin. Also, it depends a lot on experience and intuition. “The model calibration is
more an art than a science” [21].

2 Problem Statement of the Model Calibration

There are many rainfall-runoff models available. The Institute of Hydrodynamics of the
Academy of Sciences of the Czech Republic (IH) uses the Sacramento Soil Moisture
Accounting (SAC-SMA) Model. This model is composed by three sub-models: snow
accumulation and ablation (SNOW-17), basin rainfall-runoff model (SAC-SMA) and
Unit-hydrograph channel routing procedures (UNIT-HG). These sub-models are
described more precisely in [22–25].

The model is parameterized by approximately 70 values. Distribution of parameters
between the sub-models is following: SNOW-17 is scaled with 24 parameters,
SAC-SMA with 38 parameters and UNIT-HG with 3 up to 20 parameters. The total
count of the UNIT-HG parameters is dependent on a simulated basin.

Simulation of Hydrological Processes by Optimization Algorithm 111

The goal of the calibration is to extract the information contained in calibrated data
effectively [11]. It follows that the main aim is to calibrate SAC-SMA model as
efficiently as possible. More precisely, the simulated flows should be as close as
possible to the observed flows. The simulated flow is a general output of the model.
Evapotranspiration is another important model output. The more precisely the model is
calibrated, the more accurate evapotranspiration is simulated [12].

2.1 Optimization Problems

The effective calibration brings a lot of attendant problems, not only hydrological
problems but also optimization ones.

The first problem is to find an acceptable compromise between optimization speed
and calibration quality. The more iterations are processed by an algorithm, the more
time it takes [1]. Count of interactions depends on simulated basin and/or time period.
The root cause can be a variety of surface watershed or the weather. In case of too high
variety, an algorithm needs more time for computation to find the best calibration.

The second problem is a validity of the calibration output. The algorithm is able to
find the calibration successfully and deterministically. However, the calibration could
contain model parameter settings not completely applicable in hydrological scope.
Even though the calibration is found by the algorithm, it is not usable at all.

The third problem is to determine a fitness function. The fitness function identifies
quality of the found solution (model calibration). This function uses several statistical
indicators for deviation measurement of simulated and observed flows. Root Mean
Square Error (RMSE) or Correlation Coefficient (CC) are the most common used.

The fourth problem is purely an optimization issue. Some parameters of SAC-SMA
model are in close correlation. It is important to note that the close correlation of
parameters is not connected with CC. It is completely different.

The presence of an experienced hydrologist is needed for all problems described
above. The hydrologist will decide about quality of the resulting calibration.

2.2 Optimization of Evapotranspiration

The original implementation of SAC-SMA model defines evapotranspiration discretely
through 12 monthly values. For each month, a value is determined to indicate evap-
otranspiration in the given month. For each day, daily evapotranspiration is computed
as a linear interpolation according to the formula [13]:

ETactualðm; dÞ ¼ ETm�1 þ d
ET0 � ETm

f ðmÞ ð1Þ

f(m) – count of days in the month m.
ETi – evapotranspiration value of the month i.
This discreet description of evapotranspiration can often cause unreal variations in a

waveform which should reflect a real evapotranspiration [18]. Then the waveform with
the variations described by 12 values does not correspond to the reality of the simulated
basin.

112 M. Chlumecky

3 Related Works

The total number of optimized parameters is really large. It is not possible to search the
whole state space of all solutions [14]. The largest representation of rainfall-runoff
model optimization is the Genetic algorithm (GA) [17].

The article [15] is aimed at a GA application on SAC-SMA model. It describes the
basic idea and derives the fitness function based on the sensitivity analysis of model
parameters. It uses two main statistical approaches for the fitness function. One of them
is the RMSE with regards to the median which allows a good agreement of the peak
flow with respect to time and volumes. The genetic algorithm has been successful in the
context of searching, optimization and teaching [2]. GA can also be applied to the
parameter calibration of conceptual rainfall–runoff models [3, 4]. The simple GA
consists of four steps: fitness, reproduction, crossover and mutation steps. These steps
allow flexibility, but make difficult to obtain the optimal model parameters. Addi-
tionally, they require more computation time in a complicated system associated with a
number of parameters. Numerous investigations are proposed to modify GA to fast
yield a more accurate optimum solution at order of magnitude [5, 6].

The results of the comparison of three different algorithms are described in [16].
There are compared the following optimization algorithms: Genetic Algorithm, Pattern
Search and Shuffled Complex Evolution. The analyses were conducted using a con-
ceptual rainfall-runoff model applied both to a single basin and to a complex basin. In
the real world case, its solutions were stable but characterized and produced a very
unstable set of parameters.

Duan in [17] deals with a global optimizing of general watershed models. He
describes local and global optimizing methods. The local methods were used in past
when the computing capacity was very limiting. Whereas, the global methods have
brought a great potential. The article discusses thirteen methods for model optimization
by the use of brute force and/or heuristic methods.

The aforesaid articles do not mention any procedure how to effectively optimize
model parameters for basins with inhomogeneous environment, unstable vegetation or
weather.

4 Approach

The challenge is to find and test a procedure for better and more realistic optimization
of evapotranspiration on inhomogeneous basins. There is an effort to minimize a count
of optimized SAC-SMA parameters. The main parameter which influences the quality
of calibration is evapotranspiration. It is defined by twelve discrete real values which
resemble the Gaussian curve with a slight deformation by their annual cycle.

The main objective is to identify the best continuous function which reproduces a
desired shape of evapotranspiration specified by 12 values in the best way. The issue is
evapotranspiration shape which is usually a bit different for each river basin or time
period. The Gaussian curve briefly described above and diffusion function are appli-
cable for this issue.

Simulation of Hydrological Processes by Optimization Algorithm 113

The benefit of these functions is their continuum which eliminates the linear inter-
polation (1). The definition of the Gaussian function prevents the unreal deflections
which can be caused by 12 values. It is described for Liz basin in [18]. The disadvantage
of the functions is ET shape unreality for specific time periods. The Fig. 1 presents a
course of evapotranspiration which is defined by 12 values and the Gaussian function.

The Gaussian function is defined analytically as follows:

fgaussðxÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p e
ðx�lÞ2
2r2 ð2Þ

The parameter σ is its standard deviation with its variance then σ2. The µ is the
mean or expectation of the distribution.

Diffusion function is similar to the Gaussian function with a symmetrical difference.
The symmetry can be deformed easily as illustrated in Fig. 2.

Fig. 1. The Gaussian function and the 12 values definition which define evapotranspiration

Fig. 2. Comparison of the Gaussian and the diffuse functions

114 M. Chlumecky

The Diffuse function is defined analytically as follows:

fdiff ðxÞ ¼ 1
4pK

D
ffiffiffiffiffi
x23

p e
ðCx�DÞ2

4Kx ð3Þ

where K is the density of the diffusing, C is the collective diffusion coefficient.
From the functions mentioned above, it is evident the both functions can be scaled

by 2 respectively 3 variables. It is less than the legacy definition of evapotranspiration
using 12 values. The analytic forms are in the normalized form. Two additional
variables have to be added due to field values. The variables change field values of
functions (2) and (3) form <0, 1> interval to <0, x> interval, where x is a maximal
evapotranspiration value of a simulated basin.

The primary candidates for the function which could represent evapotranspiration
are the Gaussian and the diffuse functions.

The analytic form of evapotranspiration has several advantages. The count of
optimized parameters is smaller and therefore the optimization algorithm is able to
search state space of possible solutions faster. Evapotranspiration values are more
precise because the linear interpolation (1) is not used. The linear interpolation is
always discreet essentially as the values are computed from discreet values.

The next step is to modify the Genetic algorithm which has been used and
described in [14]. The main variation is an input of evapotranspiration and a modifi-
cation of the fitness function. The article [14] uses Correlation coefficient (CC) as the
fitness function. CC is not suitable to be used in this way as indicated in [17].

Data of Elbe basin will be used to confirm results. Experiments with the Gaussian
function, the diffuse function and the 12 values ET definition will be performed on
1946–1965 time period. Only evapotranspiration will be optimized because it is
required to confirm benefit of evapotranspiration defined by the continuous function.
The remaining model parameters will not be optimized. Their values have been derived
from previous simulations described in [8].

4.1 Optimized Parameters

The (1) and (2) functions are optimized including the additive (a) and multiplicative
(m) variables which extend field values. The resulting optimized functions are as follows:

fgðxÞ ¼ aþm
1

r
ffiffiffiffiffiffi
2p

p e
ðx�lÞ2
2r2 ð4Þ

fdðxÞ ¼ aþm
1

4pK
D
ffiffiffiffiffi
x23

p e
ðCx�DÞ2

4Kx ð5Þ

For each parameter of Eqs. (4) and (5), it is necessary to determine the range of
optimized values used for the algorithm. Also, it is necessary to determine the default
values for the parameters. These default values and the range of the parameters are
determined of the evapotranspiration shape which is derived from [8].

Simulation of Hydrological Processes by Optimization Algorithm 115

4.2 Quality of Optimization

The RMSE focusing on the median is selected as a fitness function for a new version of
Genetic algorithm. It is defined as follows:

RMSEðxÞ ¼
ffi
1
n

Xn

i¼1
ðxi � �xÞ � ðyi � �yÞ½ �2

r

ð6Þ

The fitness function is advantageous especially for unstable time periods and
basins. It is discussed in [7]. This is the exact requirement for this purpose because it
reflects the median deviation of simulated and observed flows.

Another measure of the approach is sum of smaller differences between an
observed flow (Qobs) and simulated flows (Qsim), where Qsim are simulated flows
computed by using (4) and (5). The exact definition of measurement is following:

DET ¼
Xn

i¼1
f ðQobsðiÞ;QsimðiÞ;QgaussðiÞÞ ð7Þ

DET ¼
Xn

i¼1
f ðQobsðiÞ;QsimðiÞ;Qdiff ðiÞÞ ð8Þ

f ðo; s; xÞ ¼ 1 o� xj j\ o� sj j
0 other

�

Other metrics are based directly on SAC-SMA model described in [13]. The
metrics are focused on another time intervals such as daily and monthly intervals.

4.3 Optimization

The optimization will be performed on Elbe basin using the following evapotranspi-
ration definitions:

1. The 12 values definition
2. The Gaussian function
3. The Diffuse function

Results of the optimized simulations will be used to evaluate the approach which
defines evapotranspiration using the continuous function.

Basic parameters of the new Genetic algorithm are following:
POPULATION SIZE defines the count of solutions created during one iteration.

GENERATION LIMIT determines the count of created iterations. The other parame-
ters which scale the algorithm are described in [9].

Beyond the (6), (7) and (8) metrics, also purely optimization metrics are monitored.
One of the metrics is a speed of calculation and a count of searched solutions.

116 M. Chlumecky

5 Results

5.1 Statistical Results of SAC-SMA Model

The following Table 2 summarizes the results of the performed simulations. The major
statistical data representing the error models, respectively error between Qobs and Qsim

are monitored.
The Fig. 3 demonstrates deviations of simulated and observed discharges by (7).

It is an optimization defined by the 12 values definition and the Gaussian function (4).
The metric (7) returned a result 3680 which is 53% smaller count of differences in
comparison with the simulation using the 12 Values definition.

The Fig. 4 is similar to Fig. 3 but it is using the metric (8). It is an optimization
using the 12 Values definition and the diffuse function. The metric (7) returned a result
3497 which is 47% smaller count of differences in comparison with the simulation
using the 12 Values definition.

5.2 Optimization Algorithm

Calculation Speed defines time required for completion of the algorithm. It means
processing of all generations, see Table 1. Approach speed to optimum defines how

Fig. 3. Deviations of the Gaussian function and the 12 values definition

Fig. 4. Deviations of the diffuse function and the 12 values definition

Table 1. Settings of genetic algorithm for SAC-SMA model optimization

Parameter Value

POPULATION SIZE 100
GENERATION LIMIT 1000
Tournament Selector 60
One point crossover 0.39
Simple mutator 0.33
Elitism 5

Simulation of Hydrological Processes by Optimization Algorithm 117

long the algorithm must operate until the fitness function (6) is approaching to the limit
solution. Highest and Avg Score are statistical data for highest and average values of all
individuals which are generated across the whole algorithm run (Table 3).

6 Discussion

Overall, optimization results are interesting of the hydrological as well as of the
software perspective. Both the continuous functions (2) and (3), which define evapo-
transpiration, are valid and useful from the viewpoint of hydrology. The results of
SAC-SMA model, which use the continuous functions, are usable in real.

6.1 Comparison of Evapotranspiration Definitions

It is not possible to determine the most effective definition of evapotranspiration
clearly. The Gaussian function (2) seems to be the best solution. It is confirmed by
statistics in Table 2. There is an exception for Monthly volume RMS error that defines
a deviation worse for 1.8 compared to the best solution. In the terms of statistics, it is a
minor deviation because it is not at order of magnitude.

The diffusion function (3) seems to be the worst variant of evapotranspiration
definition. The deviation is acceptable at order of magnitude. The reason of greater
RMSE is a slight ET deformation in the months 9 up to 12. It follows that the realistic
shape of evapotranspiration is most similar to the Gaussian curve (2). It illustrates
Fig. 1.

The Figs. 3 and 4 confirm that different definitions of ET are preferred for different
time periods. Evapotranspiration defined by the Gaussian function gives the most
favorable results. The second ranking is the 12 Values definition and the last one is the

Table 2. Comparison of the simulations by evapotranspiration definitions

Metric 12 Values Gaussian Diffuse

Daily RMS error 9.295 9.246 9.352
Daily AVG ABS error 86.404 85.487 87.464
AVG ABS monthly volume error 2.289 2.045 4.713
RMSE 9.534 11.348 24.740
Correlation coefficient 0.8196 0.8220 0.8149

Table 3. Comparison of genetic algorithm metrics

Metric 12 Values Gaussian Diffuse

Calculation speed [ms] 1713414 1837857 1668371
Approach speed to optimum [iterations] 870 120 230
Highest score 133.4 318 223
Avg score 20.07 30.2 50.3
Calculation speed [ms] 1713414 1837857 1668371

118 M. Chlumecky

diffuse function. This implies that a modification of the algorithm would be beneficial.
The modification would apply to evapotranspiration calculating. The use of ET defi-
nition would adjust to a specific simulated time period. This would lead to intersection
of the best solutions.

6.2 Quality and Speed of Optimization

Both definitions of evapotranspiration do not affect the calculation speed at order of
magnitude. The calculation speed is approximately 28 min.

Approach speed to optimum is a more interesting metric. Evapotranspiration by the
12 values definition provides the worst results. The algorithm has to execute more
iterations at order of magnitude than the other evapotranspiration definitions. On the
other hand, the Gaussian definition or diffuse definition need a smaller number of
iterations. This implies that it is possible to reduce the GENERATION LIMIT
parameter almost for one third. It should accelerate the overall calculation time. In other
words, less time should provide the same quality of simulations.

Highest Score and Avg Score are in the opposite status. Individuals with a huge
error are created if the Gaussian or diffuse definitions are used. It is caused by the
multiplicative variable. Whereas, probability of large amplitude curve creation is larger
than the 12 values definition. However, because these simulations provide great results,
high values of these metrics are not so important.

7 Conclusion

SAC-SMA model uses a large number of calibration parameters. Evapotranspiration
defined by the symmetric continuous function reduces number of parameters which are
used for its definition.

Evapotranspiration defined by the Gaussian or the diffuse function provides better
results compared to the legacy definition in specific time periods. The continuous
functions are more effective from the viewpoint of quality indicators. Differences
between the indicators are not at order of magnitude so the continuous functions do not
deteriorate simulation results. A significant advantage of continuous ET definition is
more natural description of the natural process of evapotranspiration. Unreal evapo-
transpiration values caused by the linear interpolation (1) are eliminated. Evapotran-
spiration defined by the continuous function is more efficient from the viewpoint of the
optimization process. Approach speed to optimum is up to 80% faster. The continuous
definition allows to search faster in the state space of solutions. Optimized calibrations
provide valid results. Evapotranspiration defined by the Gaussian function returns
better results in comparison to the diffuse function.

7.1 Future Work

Definition of evapotranspiration by the continuous function appears to be a correct way
to improve and accelerate the optimization of SAC-SMA model. The approach is

Simulation of Hydrological Processes by Optimization Algorithm 119

generally applicable to all optimization problems whose input can be interpreted by the
continuous function.

The next step will be to confirm the approach on another catchments and other time
periods than Elbe catchment area. It will be necessary to check whether the simulations
using the new optimizing technique will be beneficial for different climate conditions as
well. Simulations on dry or flood plains and time periods might also be very interesting.

In case it is established that different evapotranspiration definitions are effective for
various time periods, then the algorithm will be modified so that it will choose an
optimal definition for each time period. Lastly, the optimal evapotranspiration com-
putation will be defined by the 12 values definition, the Gaussian function or the diffuse
function for each time period.

References

1. Okdem, S.: A simple and global optimization algorithm for engineering problems:
differential evolution algorithm. Turk. J. Elec. Eng. 12(1), 53–60 (2004)

2. Golberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addion
wesley, Boston (1989)

3. Wang, Q.J.: The genetic algorithm and its application to calibrating conceptual
rainfall-runoff models. Water Resour. Res. 27(9), 2467–2471 (1991)

4. Wang, Q.J.: Using genetic algorithms to optimise model parameters. Environ. Model Softw.
12(1), 27–34 (1997)

5. Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary function
optimization. In: 1989 Advances in Intelligent Robotics Systems Conference. International
Society for Optics and Photonics, pp. 289–296 (1990)

6. Franchini, M.: Use of a genetic algorithm combined with a local search method for the
automatic calibration of conceptual rainfall-runoff models. Hydrol. Sci. J. 41(1), 21–39
(1996)

7. Madsen, H.: Automatic calibration of a conceptual rainfall–runoff model using multiple
objectives. J. Hydrol. 235(3), 276–288 (2000)

8. Buchtele, J., Tesar, M.: Simulation of a rainfall - runoff process for the evaluation of
variability in the river flow regime in small basins with vegetation changes. Folia
Geographica 41, 103–110 (2010). ISSN 0071-6715

9. Whitley, D.: An executable model of a simple genetic algorithm. Found. Genetic Algorithms
2(1519), 45–62 (2014)

10. Allen, R.G., et al.: Crop evapotranspiration-guidelines for computing crop water require-
ments. In: FAO Irrigation and Drainage Paper, vol. 56, FAO, Rome (1998). 300.9: D05109

11. Gupta, H.V., et al.: Multiple criteria global optimization for watershed model calibration. In:
Calibration of Watershed Models, pp. 125–132 (2003)

12. Wagener, T., Wheater, H.S., Gupta, H.V.: Identification and evaluation of watershed models.
In: Calibration of Watershed Models, pp. 29–47 (2003)

13. Burnash, R.J.C., Ferral, R.L., Mcguire, R.A.: A generalized streamflow simulation system,
conceptual modeling for digital computers (1973)

14. Chlumecký, M.: Optimizing of parameters in model (SAC-SMA). In: 17th International
Student Conference on Electrical Engineering, POSTER 2013, Czech Technical University,
Prague, pp. 1–6 (2013). ISBN:978-80-01-05242-6

120 M. Chlumecky

15. Wu, S.-J., Lien, H.-C., Chang, C.-H.: Calibration of a conceptual rainfall–runoff model using
a genetic algorithm integrated with runoff estimation sensitivity to parameters. J. Hydroin-
form. 14(2), 497–511 (2012)

16. Franchini, M., Galeati, G., Berra, S.: Global optimization techniques for the calibration of
conceptual rainfall-runoff models. Hydrol. Sci. J. 43(3), 443–458 (1998)

17. Duan, Q.: Global optimization for watershed model calibration. In: Calibration of Watershed
Models, pp. 89–104 (2003)

18. Chlumecký, M., Tesař, M., Buchtele, J.: The appraisals of long time series of evapotran-
spiration using modelling rainfall-runoff with optimized parameters. In: International
work-Conference On Time Series: Proceedings ITISE 2014. Granada: University of
Granada, pp. 1280–1291 (2014). ISBN:978-84-5814-97-9

19. Pavlásek, J., Máca, P., Ředinová, J.: Analýza hydrologických dat z Modravských povodí.
J. Hydrol. Hydromech. 54(2), 207–216 (2006). (in Czech)

20. Buchtele, J.: Influence of the development of vegetation cover in the basin on the regime of
surface water and groundwater resources. The Institute of Hydrodynamics of the Academy
of Sciences of the Czech Republic, Prague (2011)

21. Westerberg, I.K., et al.: Calibration of hydrological models using flow-duration curves.
Hydrol. Earth Syst. Sci. 15(7), 2205–2227 (2011)

22. Georgakakos, K.P.: Analysis of model-calculated soil moisture. J. Clim. 9, 1350–1362
(1996)

23. NOAA: Modification of Sacramento soil moisture accounting heat transfer component
(SAC-HT) for enhanced evapotranspiration, 72 s. Technical report NWS, 53 (2010)

24. Anderson, E.A.: National weather service river forecast system: snow accumulation and
ablation model. US Department of Commerce, National Oceanic and Atmospheric
Administration, National Weather Service (1973)

25. Aron, G., White, E.L.: Fitting a gamma distribution over a synthetic unit hydrograph. J. Am.
Water Resour. Assoc. 18, 95–98 (1982)

Simulation of Hydrological Processes by Optimization Algorithm 121

Cache Module for the Dictionary
Writing System

Kamil Barbierik, Martin Bodlák, Zuzana Děngeová,
Vladimír Jarý(&), Tomáš Liška, Michaela Lišková, Josef Nový,

and Miroslav Virius

The Institute of the Czech Language, Czech Academy of Sciences,
Prague, Czech Republic

{kamil.barbierik,martin.bodlak,vladimir.jary,

tomas.liska,zjosef.novy}@foxcom.eu,

dengeova@ujc.cas.cz, liskova@fox1.cz,

miroslav.virius@fjfi.cvut.cz

Abstract. This paper focuses on implementation and benefits of the cache
module for the dictionary writing system (DWS) Alexis. At first, the DWS
Alexis that is being developed at the Institute of the Czech Language is intro-
duced. We shortly present architecture of the system and briefly describe its
main modules including list of entries, editing, or output modules. The main
emphasis of this contribution is put on the recently developed cache module. We
explain design and implementation of the cache, then we present its benefits for
the dictionary writing system. At first, we analyze performance improvement of
the output module, then we explain its roles in the fulltext search in the web
interface of the dictionary and source of offline data for mobile devices. We
conclude with a current state of development and plans for the nearest future.

1 Introduction

Currently, a new monolingual explanatory dictionary called Academic Dictionary of
the Contemporary Czech (Akademický slovník současné češtiny, see [4]) is being
prepared at the Institute of the Czech Language of the Czech Academy of Sciences.
The dictionary is targeted at the native speakers with secondary education; final version
is expected to contain approximately 150 000 lexical units. As a software support for
the project, a brand new dictionary writing system called Alexis is being developed.

At first, we will discuss existing DWS and reasons for development of the new
system. Then we will overview the architecture of the Alexis and software technologies
used during development. We will introduce main parts of the system including output
and editorial modules that strongly benefit from the recently implemented cache.

We present design and implementation of the caching facility. Originally, it served
for decrease of load times in the output module, therefore we analyze performance
improvement gained by caching. We also discuss other possible use cases of the cache
module in the context of the dictionary writing system.

Finally, we summarize the current state of the Alexis system and its cache module
and present some features planned for the nearest future.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_10

2 Motivation

At first, we needed to decide whether we use some existing dictionary writing system
or we develop a custom one. We have investigated (see [1]) several commercial and
open source system, some of them (e.g. DEB II, see [7]) also available for the Czech
language. After considering price required to obtain license, amount of needed
adjustments, we have decided for the development of custom system.

This decision allows us to fully respect demands of team of lexicographers; con-
sequently they will work with system that suits their needs. Moreover, we will have
control over source code and development cycle. On the other hand, development of
custom system involves lot of work.

Currently, approximately 20 000 lexical units have been partially or fully processed
and entered into the system. With increasing number of entries in the database, work
with several parts of the system such as an output module becomes slower and slower.
In this contribution we focus on design and implementation of the cache module that
serves mainly for decrease of loading times of the output module. However, the cache
is also used to simplify the fulltext search in the public web interface of the dictionary
and as a source of offline data for mobile applications.

3 Overview of the DWS Alexis

In this section, we will briefly introduce the Alexis system. We will describe the overall
architecture, then we will focus on the core parts of the system.

3.1 Used Technologies

According to the demands of team of the lexicographers, the system should be used
simultaneously by multiple users from multiple places. In order to fulfill this
requirement, we have decided to develop Alexis as a multilayer web application. This
decision also greatly simplifies the deployment and maintenance of the Alexis.

The data layer is built on top of MySQL server. The database consists of
approximately 100 tables centered around the heslo (i.e. lemma in the Czech language)
table. Originally, we have used the MyISAM storage engine for its simplicity, however
we have recently switched to InnoDB engine that supports ACID compliant transac-
tions and foreign key constraint. Issues solved during migration are described in [5].

The server layer is implemented mainly in PHP language with support of several
third party libraries such as snappy (for PDF export) or DiBi (for database access).

Finally, the application layer is based on HTML5 and CSS3 technologies, client
side scripting is implemented in JS language with jQuery framework. Furthermore a
new applications for tables and smart phones are currently under development.

To simplify the process of development, we have established a repository on the
GitHub platform, [8]. We have adopted a branching model described in [6]: we use two
main branches: the master branch represents stable code, while the devel branch rep-
resents the development version. In case some problem is detected in the master

Cache Module for the Dictionary Writing System 123

branch, we create a new hotfix branch, repair the problem, and merge the hotfix both to
the master and devel branches.

Furthermore, we use the Mantis issue tracking system (see [9]) to allow lexicog-
raphers easily provide information about detected issues within the stable version of
Alexis.

3.2 Main Modules of the System

Alexis is a very complex system that can be divided into several more or less inter-
connected modules. We will introduce list of entries and editing module, then we will
describe output and editorial modules in more details.

3.3 List of Entries

List of entries is the first page displayed when users login into the system. This list
represents the macrostructure of the dictionary. Each lexical unit in the list is accom-
panied with list of its variants, its editor(s), or dates of creation and last modification.
Furthermore, a notification is displayed for entries with active correction (see Fig. 1).

As the final version of the dictionary is expected to contain approximately 150 000
lexical units, we have divided the list into pages and implemented navigation between
pages. Furthermore, list of displayed lexical units can be filtered using several tools:
Quick Search tool and an advanced filter called xFilter. Quick search allows lexicog-
raphers to browse through almost any part of the lexical units including variant, word
class, meaning definition, or exemplification. Depending on the chosen category, the
user enters search term into text field (e.g. variant) with support for automatic com-
pletion and wild card convention or selects search value from fixed list of predefined
values (e.g. word class). More advanced filters can be constructed using the xFilter
tools that allows lexicographers to combine queries over multiple categories using

Fig. 1. List of entries displaying lemmas starting with ban*

124 K. Barbierik et al.

logical conjunctions. Set of predefined filters is also available - it is possible to show
lexical units modified within specified time interval or units with multiple variants.
Finally, users may manually select desired units.

From the list of entries, currently filtered units can either be opened in the editing
module or sent to the output. When large number of items is currently filtered, gen-
erating of the output may take some time. After implementation of cache, time required
to generate output decreased by factor of ten as described below.

3.4 Editing Module

The editing module represents the microstructure of the dictionary, it allows lexicog-
raphers to provide details of the lexical units. From the architecture point of view, it is
implemented as a large HTML form. The form can be divided into four sections:
header, variants, meanings, and cross reference. The header section holds general
information about lexical units such as its editor, state (new, completed,…), type of
lexical unit, date of creation, or notes for lexicographers and domain experts. The
section also contains list of active corrections on the opened lexical unit.

Below the header section, lexicographers can enter details about variants of the
lemma including morphology, word class, origin, thematic scope, or pronunciation. It
is possible to create a new variant as a copy of the existing, to change order of variants,
or to remove some particular variant. These operations are implemented using the JS
language.

Because the Academic Dictionary of the Contemporary Czech will be explanatory
dictionary, great emphasis is put on the meanings section. Each meaning can be
accompanied with multiple of exemplifications. Panels with meanings can be added or
removed on demand. It is also possible to exclude meaning or even particular exem-
plification from output. Moreover, panels with meanings can be minimized to save
space.

Finally, in the last section of the editing form, it is possible to define references and
links to other lexical units.

The editing form uses several standard HTML5 input elements such as input fields
for entering short textual information (variant, comments), radio buttons, and check-
boxes. We also use TinyMCE editor for entering rich texts such as meaning definitions
or exemplifications. Furthermore, we have developed custom widget for selections
from the fixed item lists. Lexicographers use these widgets to select one or more items
from list of values that are managed by administrator of the system. More information
about user interface can be found in [2].

In the background, Central Data Object (CDO) lies. It is the PHP class that
encapsulates all the data related to the lexical unit. CDO also serves for retrieving the
data from the database and for saving of the data back into the database. When editor
decides to save changes to the opened entry, it needs to be marked as outdated in the
cache.

From the editing module, lexicographers may return back into the list of entries or
they can send the current lexical unit into the output module.

Cache Module for the Dictionary Writing System 125

4 Output and Editorial Modules

As already mentioned, the output module can be launched either from the list of entries
(in this case, all items in the active selection are displayed) or from the editing module
(only currently opened lexical unit is printed). The output module is based on complex
rules that define a way in which elements of the microstructure are formatted.

Alexis uses two main types of output: electronic and printed. The electronic output
serves mainly as an entry point to the editorial module; correctors use it to propose
corrections to the lexical units. This output is implemented as a web page - by clicking
on any part of the lemma, a new correction popup dialog is opened. On the other hand,
the printed output is implemented as a PDF file which cannot be edited. It shows the
lexical units in a same way in which they will be printed in the final paper version of
the dictionary. Some parts of the microstructure of the dictionary such as notes or
selected exemplifications are excluded from this output. Furthermore, common infor-
mation from multiple variants is merged in the printed output. We use the wkhtmltopdf
tool to convert HTML code into the PDF file. Difference between electronic and
printed output is demonstrated in Fig. 2.

Furthermore, a recently implemented web interface for general public can be
regarded as a special type of output. The web interface consists of two main part - there
is simplified list of entries (only variants are shown) together with quick search tool on
the left. On the right, a slightly modified version of the printed output is shown.
Additionally, the web interface is connected to external lemma processing tools and
other existing online dictionaries. Users can export currently displayed lexical unit into
the PDF file or use the fulltext search over entire dictionary.

Editorial module has been designed and implemented to simplify the process of
corrections. Instead of printing HTML page with output on the paper and putting the

Fig. 2. Electronic output (on the left) and printed output (on the right) of the lemma bankocetle
(i.e. treasure note)

126 K. Barbierik et al.

corrections on it, correctors open the editorial module by clicking on problematic
element in the electronic output. In the new correction dialog box, corrector sees the
original value and enters the proposed new value, optionally with some comment. He
or she may also select specific editors who will receive notification about the correc-
tion. Some smaller correction (such as typing errors) can be directly applied by
corrector.

Active corrections are marked by special icon in the list of entries (see Fig. 1),
furthermore, there is list of active correction for given lexical unit in the editing
module. While a correction is active on certain field, the field is locked and corre-
sponding correction needs to be either accepted and applied by editor or returned to the
corrector. Again, when correction is applied on certain lexical unit, it needs to be
removed from cache.

5 Cache Module

Lexicographers use the output module on daily basis to preview currently edited lexical
units. With increasing number of processed units, displaying larger and larger lists took
longer and longer. To decrease loading times and reducing load of the database, we
have decided to implement the cache module.

5.1 Design and Implementation

In order to display lexical unit in the output module, almost entire database needs to be
searched to retrieve all microstructure details. Output module then uses the predefined
rules to format the loaded data and produce corresponding HTML code.

We have proposed and implemented cache as PHP class CacheManager. This class
provides several main operations: saves lexical unit with given id into the cache, loads
given unit from the cache, removes given unit from cache, and checks whether unit is
stored in the cache. Cache works in the write through mode, i.e. the data describing
given lexical unit are simultaneously stored in the main database and in the cache itself
which is also implemented as a database table (see ER diagram in Fig. 3). The cache
table is connected to the heslo (i.e. lemma) by Foreign Key constraint. When some
lemma is deleted from the dictionary, this constraint ensures that its cached version is
also removed. The data column holds the cached version of the lemma, while the
data_bz contains the plain text version of the lemma which is used for fulltext search as
described below. We need to store the time stamp of creation of the cache entry in order
to be able to detect if the cache entry is valid (i.e. it has been saved into the cache after
last update of the DWS software). Moreover, this time stamp is also important for
synchronization with mobile devices (see below). The role, server, and vystup
(i.e. output) columns are used to distinguish appropriate version of cached data for
given user role (editor or domain expert), server (production or development), and
output (electronic, printed, web).

The CacheManager has been integrated into output, editorial, and editing modules.
According to Fig. 4, for each lexical unit in the active list of entries the output module

Cache Module for the Dictionary Writing System 127

uses CacheManager, to verify whether a unit already exists in the cache (cache hit).
If the entry is stored in the cache, it is loaded directly from it and displayed in the
output. Otherwise (cache miss), the database is searched for all microstructure elements
of the given lexical unit which are then formatted using the predefined rules. Gener-
ated HTML code is displayed in the output and stored in the cache for future use.
However, each lexical unit described by its identification number may be present in the
cache in several versions: there is difference between electronic, printed, and web
outputs as each of these output is based on different formatting rules. Furthermore, the
electronic output depends also on the user role (different result is presented to lexi-
cographers and different to domain experts, e.g. Lexicographers see lexicographer’s
note in the output which is replaced by expert’s note for domain expert). Finally, we
use production and development servers (see above); each of them uses different
formatting rules, therefore cache also needs to distinguish type of server. Each of these
variables (type of server, type of output, user role) needs to be passed to methods of the
CacheManager class in order to work with correct version of cached value.

It is possible to completely disable the cache module on development or production
server via option in the configuration table in the database which is useful for
debugging and testing purposes. When the cache is disabled, the entries are generated
on the fly and resulting code is only displayed in the output but not saved back in the
cache (see Fig. 4).

We need to guarantee that when a lexical unit is modified, it needs to be removed
from cache in order to display the most recent version in the output. Therefore, editing
form and editorial module use CacheManager to remove lexical unit from cache when
it is modified, i.e. saved or when correction is applied. Furthermore, electronic output
of lexical unit needs to be removed from the cache when a new correction is proposed
or correction is rejected by editor because microstructure elements with active or

Fig. 3. Entity-relationship diagram of the cache

128 K. Barbierik et al.

rejected corrections are highlighted in the output. However, as a lexical unit may
depend on nested items, antonyms, synonyms, or referenced items, all these related
units needs to be removed from cache as well. We plan to integrate the Central Data
Object (see above) more deeply into the system, so all read and write operations will be
handled by it. This will simplify the process of cache update as all write operations will
be handled by single function.

The Alexis is still under development and existing modules are being modified
according to request from lexicographers: new microstructure elements are being added
(and some are being removed) which has impact on editing and formatting rules used
by output module. Therefore, when new version of Alexis software is deployed, entire
cache must be cleared as new version. CacheManager watches time stamp of the
VERSION file which is updated each time when a new version is deployed. When
update is detected, the manager automatically clears the cache. However, when cache is
empty, loading the output takes longer due to fact that cache needs to be repopulated
(see below the test results). Therefore, we are preparing the script that will be used to
update the cache table in the background. The CacheManager will call this script
instead of clearing the cache. In the meantime, the entries are saved back into the cache
when they are loaded into the output (see diagram in Fig. 4).

5.2 Benefits of the Cache Module

We have developed the cache primarily to improve performance of the output module.
We have performed several tests to measure the performance increase with cache
enabled. We present results of two series of tests. In the first test, we have compared
time to load lemma dat (i.e. to give) which is very complex unit with lot of meanings,
nested units, and cross references. Without cache, it took 3.0 s to load the lemma

Fig. 4. Process of generation of output with cache implemented

Cache Module for the Dictionary Writing System 129

(combined electronic and printed output). With cache enabled and cleared, the time
slightly increased to 3.2 s due to fact that data needed to be written to the cache.
However, after reload of the output, time dropped significantly to 0.2 s. Number of
database queries needed to load the page decreased from 14033 to only 261.

In the second test series, we have measured time to output all 92 lemmas starting
with letters ban*. Without cache, it took 5.3 s to generate the output. With cache
cleared and enabled, the time increased to 18.5 s again due to fact that data needed to
be written to the cache. Moreover, it seems that frequent change of read and write
operation reduces usage of the internal cache of the MySQL server which consequently
increases the load time. The performance decrease is unacceptable, therefore we are
developing script that will periodically fill the cache in the background in order to
reduce this performance overhead.

On the other hand, when the cache was filled, the time dropped to 0.6 s. This time,
number of queries required to load the page decreased from 25487 to 1574. All times in
the tests are taken as average of three measurements. Test results are summarized in
Table 1.

5.3 Other Use Cases for the Cache

Although, we have originally implemented cache only to increase the performance of
the output, it is now used also in the other parts of dictionary.

During development of the web interface for the public, it appeared necessary to
implement the fulltext search over the dictionary. That would require designing
complex queries over multiple tables with variants, meaning definitions, or exempli-
fications. However, as all the required information is joined together in the cache
entries, we have decided to use it as a data source for the search. We only needed to
provide new column to the cache table with dictionary data without formatting tags.
We also need to guarantee that cache stays updated, which will be implemented by
script in PHP language that will be started in the background each time a new version
of the dictionary software is deployed.

Finally, new native applications for mobile devices (i.e. iOS and Android plat-
forms) is currently being prepared. Idea is to allow these applications to access the
dictionary data in the offline mode (i.e. without connection to the Internet). Therefore,
we have decided to use the cache as a source for offline data. To decrease network
traffic, we are now developing synchronization tools that will allow to download only
items updated since the last synchronization; this is possible because time stamp of the

Table 1. Test results (average of three measurements)

Test Lemma dát Lemmas ban*
Cache Time to load Queries Time to load Queries

Disabled 2.9 s 14033 5.3 s 25487
Enabled and cleared 3.2 s 14039 18.5 s 25931
Enabled and filled 0.2 s 261 0.6 s 1574

130 K. Barbierik et al.

last update is saved with each cache entry. This use case also requires that cache
contains reasonably up to date data.

As the mobile applications use the same set of formatting rules as the public web
interface of the dictionary, it is not necessary to keep another separate version of cache.
However a different CSS files will be used on mobile platforms due to smaller screen
size. Each microstructure element is enclosed with HTML tag associated with appro-
priate CSS class, therefore it is very easy to quickly change appearance of the dic-
tionary entries.

Furthermore, we plan to implement HTML compression into the cache. The
compressed data will be used during synchronization on mobile devices. This will
reduce network traffic which will consequently decrease time required to synchronize
the cache. However, we need to uncompress and stored the data in the cache when the
synchronization is completed as it is used as a source for the fulltext search.

6 Conclusion and Outlook

Although Alexis is still under development, it is already used by lexicographers on
daily basis. Approximately 20 000 lexical units have already been processed. With
increasing number of items in the database, need to optimize speed of output module
has appeared.

We have proposed and implemented cache. Tests have proved that if the cache is
filled, the time required to generate the output can be reduced by the factor of ten. On
the other hand, if the cache is empty, the process of loading output is slowed by
generation and saving back into the cache. Therefore, we need to implement tool that
runs in the background and keeps cache up to date. Completing the integration of the
central data object into editing, editorial, and output modules will allow us to simplify
the process of cache update.

Besides the performance improvement in the output module, cache has already
been used as a source of offline data for the mobile devices and as a base for fulltext
search in the web interface for public. To reduce network traffic, we plan to compress
cache data.

Acknowledgment. This work has been supported by the grant project of the National and
Cultural Identity (NAKI) applied research and development program A New Path to a Modern
Monolingual Dictionary of Contemporary Czech (DF13P01OVV011).

References

1. Barbierik, K., et al.: A new path to a modern monolingual dictionary of contemporary Czech:
the structure of data in the new dictionary writing system. In: Proceedings of the 7th
International Conference Slovko, pp, 9–26. Slovenska akademia vied, Jazykovedny ustav
Ludovita Stura, 13–15 November 2013

Cache Module for the Dictionary Writing System 131

2. Barbierik, K., et al.: Development of dictionary writing software. In: Proceedings of the 39th
Conference Software Development, 8th November 2013. College of Polytechnics, Jihlava
(2013)

3. Barbierik, K., et al.: The dictionary-making process. In: Proceedings of the 16th International
Conference EURALEX, 15–19 July 2014, pp. 125–135. Institute for Specialised Commu-
nication and Multilingualism at the European Academy of Bolzano/Bozen (EURAC) (2014)

4. Kochov, P., et al.: At the beginning of a compilation of a new monolingual dictionary of
Czech (A Report on a New Lexicographic Project). In: Proceedings of the 16th International
Conference EURALEX, 15–19 September 2014, pp. 1145– 1151. Institute for Specialised
Communication and Multilingualism at the European Academy of Bolzano/Bozen (EURAC)
(2014)

5. Barbierik, K., et al.: Versioning module for dictionary writing system. In: Proceedings of the
International Conference on Communication Systems and Computing Application Science,
Jeju Island, South Korea, 16–17 May 2015 (2014)

6. Driessen, V.: A successful git branching model (2010). nvie.com/posts/a-successful-git-
branching-model/. Accessed 30 Sep 2015

7. DEB II: Dictionary Editor and Browser. http://deb.fi.muni.cz/index.php. Accessed 30 Sep
2015

8. Github. https://github.com/. Accessed 30 Sep 2015
9. https://www.mantisbt.org/. Accessed 30 Aug 2014

132 K. Barbierik et al.

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://deb.fi.muni.cz/index.php
https://github.com/
https://www.mantisbt.org/

Control Process Management by Means
of Evolutionary Algorithm

Roman Kielec1 and Michał Doligalski2(&)

1 Science and Technology Park, Faculty of Mechanical Engineering,
University of Zielona Góra, Zielona Gora, Poland

r.kielec@pnt.uz.zgora.pl
2 Institute of Metrology, Electronics and Computer Science,

University of Zielona Góra, Zielona Gora, Poland
m.doligalski@imei.uz.zgora.pl

Abstract. The control process can be understand as the specification of the
manufacturing process in factory or specification of the control program for
logic controller. The aim of the control process management can be understood
quite widely, especially as the resources usage optimisation or time reduction.
The paper presents the application of the evolutionary algorithm towards the
loops reduction. The unnecessary repeating of the tasks can increase the time
and costs of the control process. The UML formal models are popular method of
the control process specification. The Proposed approach enables optimisation
of the control process specified by means of the UML activity diagrams. Both,
manufacturing process and logic controller behaviour can be specified as well.

1 Introduction

The paper presents the possibility of the evolutionary algorithm application for control
process management. Formal models enables unambiguous specifications and model
transformation. Unified Modelling Language (state machines, activity diagrams) or
Petri Nets are popular and acceptable models for behavioural logic controller’s spec-
ification [11, 13], the paper is focused in activity diagrams and state machine diagram.
Matrix model are the other example of control process specification, well known and
widely accepted in production and project management. The application of the evo-
lutionary algorithm enables matrix model-based specification optimization. The opti-
mization criteria are steered by target function. The paper presents one of the function
focused on total time optimisation. The similarities of the activity diagrams and matrix
model specification enables models mapping. The presented method enables more
accurate and flexible logic control process management by means of activity diagrams
and evolutionary algorithm application. The AD are more precise and transparent than
matrix model and transformation enables the use of evolutionary algorithm. The
algorithm is dedicated to matrix model specification. The application of the activity
diagrams specification for control process specification, production process in partic-
ular, enables the application of the model checking algorithms in direct way [8].

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_11

2 Behavioral Specification

The control process can be specified in different ways, UML activity diagrams and state
machine diagrams in particular. The graphical form of the specification enables better
understanding of the control process scope. This form of the specification is
platform-independent which means that implementation method is not enforced. Such
control process can be understood as control system or production process specifica-
tion. The logic controller is a part of the control system and it can be implemented by
means of reprogrammable logic (FPGA) by means of hardware description language
(HDL) [2, 3].

The production process is a set of task, used to create an object or multiple units of
the same item. The production process uses resources like coroll system to execute
particular task. The application for both context the same method of the specification
simply the documentation. It enables the use (or partial use) the same algorithms for
analysis and optimisation.

3 Activity Diagrams

Activity diagrams are good specification method for system behaviour. The system is
understood as a group of objects cooperating with one another through indication to
tasks that are executed by them and communication that takes place between the
objects. System behaviour is modelled with the use of activities, actions and flows that
take place between them (Fig. 1). The Action node represents single work item (task),
the single means that it is atomic action from the designer point of view. For large,
complex system the hierarchical modelling is required. The activity diagrams model
provides hierarchy by means of Activity node, the sub-diagram can be assigned to
Activity node. There also signal actions: send and receive signal action. Those nodes
are responsible for the messages broadcasting and processes synchronisation.

Fig. 1. Activity diagrams elementary nodes

134 R. Kielec and M. Doligalski

4 State Machine

UML state machine diagrams represent a behaviour of a specific (single) object. An
object can be defined in a broad sense and considered on a number of abstraction
levels: it can represent an information system (at the highest abstraction level), par-
ticular system modules or specific objects (class instances). The behaviour is presented
through showing different states in which object can exist and transitions between
states. Behaviour is described through the specification of states in which a object can
exist and transitions between those states. Each of the states can have specified labels of
activity: entry, do and exit. They mean an activity stimulated at the state activation

Fig. 2. Conversion UML activity diagram to matrix model

Control Process Management by Means of Evolutionary Algorithm 135

moment, activity performed during a state activity and an activity stimulated at the
deactivation moment (state deactivation). The logic controllers can be also specified by
means of activity diagrams. This is not optimal way of the specification and it’s caused
by the way of transitions triggering. It requires decision node for each transition
condition.

5 Two Level Specification

The main difference with object behaviour specification by means of UML state
machine and activity diagrams is transition firing. The transitions firing in activity
diagrams are conditioned by activity completion, unlike in state machine diagrams
where state change (the state deactivation) is conditioned by transition firing. This
difference in causation of transition firing is crucial for control process specification.
The two level specification is proposed. First level describes general scope of the
control system. It describes the control tasks at the enterprise level by means of the
activity diagrams. The control (production) process is modelled using Tasks, graphi-
cally represented by bars. The aim of the industrial process is to deliver or produce
goods. The application of the decision block enables iterative development. The second
abstraction level describes tasks in details. It can be described by means of state
machine model. State machine diagram can be implemented in different ways. The
direct logic synthesis into hardware description languages is one of the example. The
application of dual models simplify partial reconfiguration process and enables the
formal verification methods [1, 7].

6 Activity Diagrams Conversion

The principles of activity diagrams conversion to matrix model is presented in Fig. 2.
The action and activity nodes are transformed into tasks, also the flows are also mapped
in matrix model (Fig. 2a). The concurrent paths from activity diagrams are mapped into

Fig. 3. Model transformation pattern

136 R. Kielec and M. Doligalski

concurrent task (Fig. 2b, c). The decision mode is transformed into loopback path in
matrix model. Typically there is no timing constraints assigned to Activity diagrams.
The time for activity or action is not determined. Matrix model charts are based on
timing constrains. Each task has start and end date, the period for the each task is
determined. The OCL language or UML timing enables the specification of the timing
constraints for the activity diagrams.

The conversion between models can be done automatically by means of model
transformation (Fig. 3). The MDA methodology specifies model transformation pattern
through the description of conversion method between particular models at the level of
metamodels with the use of transformation rules3. Three models: Ma, Mb, Mt are:
source model, target model and transformation rule respectively. The models are
concordant with their metamodels: MMa, MMb, MMt. The MMM metamodel defines
MMa, MMb, MMt metamodels - it is used for those model specification. The model
transformation requires metamodels for both specification method: activity diagrams
and matrix model are formal models. The source model (Ma) is specified by means of
metamodel MMa. The transformation engine use transformation rules to convert source
model into resulting model (Mb). The automatic transformation reduce the time and
possible errors of the transformation. I

The model transformation rules at the level of metamodels within the MDA
methodology are described with the use of model transformation languages. Studies are
conducted concerning the software engineering process support in the scope of the
information system development automatization stage which is fulfilled, among other
things, through model transformation. Atlas transformation language (ATL) and Query
View Transformation (QVT) are the most common description formal standards of
model transformation rules. Both languages are supported by a Model to Model project
(M2M) 1 being the framework including model transformations in a comprehensive
way. The M2M project is the component model of the Eclipse Modeling Framework
(EMF) project 2 developed within n the Eclipse platform promoting modeloriented
technologies. The M2M project includes three transformation engines: ATL, QVT -
QVTo operational (QVTo), QVT declarative.

7 Evolutionary Algorithm for the Dependency Matrix
Optimisation

Evolutionary algorithms (EA) are chains of signs (or symbols) relevant to the con-
sidered problem. For each particular EA application appropriate coding [4, 5] is
required. The choice of the right code and setting proper algorithm parameters are
required for algorithm efficiency. A good coding systems should guarantee easily
coding and de-coding, at each stage of the evolution. High computational complexity in
coding and decoding will result in an increase in the calculation time and reduce the
efficiency of the algorithm. De-coding is important for the evaluation and selection of
candidate solutions.

For each particular design process a particular code, called a chromosome is
specified. In this problem, partial process tasks are genes of the chromosome. Thus,
each chromosome corresponds to a variation in process realisation [6, 12].

Control Process Management by Means of Evolutionary Algorithm 137

The optimisation of the control process specified by means of activity diagrams
using EA is possible as well. The activity diagram specification is transformed into
dependency matrix, Fig. 4 presents an example of a dependency matrix, which contains
5 tasks. Each task corresponds to activity from formal specification. It is coded in the
form of a chromosome where each task is represented by a gene. The aim of the
evolutionary algorithm is to find the most suitable combination of the tasks. First, an

Fig. 4. The activity diagrams optimization process

Fig. 5. The activity diagrams of the exemplary control process

138 R. Kielec and M. Doligalski

appropriate coding system has been accepted for genetic representation of any par-
ticular realisation process. Second, operators of crossover, mutation and selection have
been devised. A special fitness function that expresses the quality of the process
structure in terms of its time, cost, and complexity has been formulated. Third, an
algorithm for searching the best plan of the realisation process has been set up and,
subsequently [6, 12].

Fig. 6. Matrix model and MPM

Control Process Management by Means of Evolutionary Algorithm 139

8 The Optimisation Example

Matrix method is based on representation of the process on the dependency matrix
form. The example of that matrix is shown in Fig. 6. The control system example i
specified by means of the activity diagram Fig. 5. Fork and join nodes are responsible
for parallelism introduction, the control process consists of the three parallel path, one
of them is terminated. The control process is rather small, the author’s intention was to
present overall design flow. Typical real control systems are more complex and the
genetic algorithm efficiency will be bigger. The control system is transformed into
dependency matric. Typically feedbacks are not included in matrix model but the
proposed approach enables such form of specification. Partial tasks in the dependency
matrix are indexed on the main diagonal. Connections above the diagonal represent
progressive connections, whereas the ones below the diagonal represent feedback
connections. Time or cost of the process are one of the possible criteria for matrix
method process optimization.

The chances in the tasks realization order have the influence on the process real-
ization [9]. In simple examples good solution can be found with the use of the method
of tries and failures using human skills to represent the matrixes. In complex processes
with large number of tasks analyzing all combinations without using a computer is very
complicated and time consuming. Because of that a special evolutionary algorithm was
created. The proposed method will not guarantee that found solution is the best one, but
it is optimal solution near the best one.

9 Conclusion

Planning and management of the control process i crucial, especially when new
products production line or controller are developed or deployed. High competition as
well as product quality, cost and realization time requirements caused a radical change
in engineering project management. It allows considering factors (which were earlier
omitted in these projects) and integration of engineering actions with other realization
operations. Nevertheless, in order to obtain such a situation, it was necessary to
implement new methods for production processes planning and scheduling as well as
their automating in the computer software.

The results of the EA application depends on control process complexity. The he
overall product realization time, according to manufacturer’s data can be shortened.
Tests results shows that it is possible to save up to 46,58 time units [10]. Then
presented method are focused on optimization.

The possibility of the activity diagram based specification optimization by means of
evolutionary algorithm was presented. However, it has to be remembered that the
analyzed process model was idealized and the possibility of direct use of the results
depends on the factors not allowed for in this analysis, such as an enterprise organi-
zational structure, human resources availability, machine/technology park, etc.

140 R. Kielec and M. Doligalski

References

1. Adamski, M., Tkacz, J.: Formal reasoning in logic design of reconfigurable controllers. In:
Proceedings of 11th IFAC/IEEE International Conference on Programmable Devices and
Embedded Systems PDeS 2012, Brno, Czech Republic, pp. 1–6 (2012)

2. Doligalski, M.: Behavioral specification of the logic controllers by means of the hierarchical
configurable Petri nets. In: Proceedings of 11th IFAC/IEEE International Conference on
Programmable Devices and Embedded Systems - PDeS 2012, Brno, Czechy, pp. 80–83
(2012)

3. Doligalski, M., Adamski, M.: UML state machine implementation in FPGA devices by
means of dual model and Verilog. In: 2013 11th IEEE International Conference on Industrial
Informatics (INDIN), pp. 177–184 (2013)

4. Eppinger, S.D., Joglekar, N.R., Olechowski, A., Teo, T.: Improving the systems engineering
process with multilevel analysis of interactions. Artif. Intell. Eng. Des. Anal. Manuf. 28,
323–337 (2014). http://journals.cambridge.org/article. S089006041400050X

5. Feng, W., Crawley, E.F., de Weck, O.L.: Design Structure Matrix Methods and
Applications. MIT Press, Cambridge (2012). ch. BP Stakeholder Value Network, Example
5.5

6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn.
Addison-Wesley Longman Publishing Co., Inc, Boston (1989)

7. Grobelna, I.: Formal Verification of Logic Controller Specification by Means of Model
Checking. Lecture Notes in Control and Computer Science, vol. 24. University of Zielona
Gora Press, Zielona Gora (2013)

8. Grobelna, I., Grobelny, M., Adamski, M.: Model checking of UML activity diagrams in
logic controllers design. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T.,
Kacprzyk, J. (eds.) Proceedings of the Ninth International Conference on
DepCoS-RELCOMEX. AISC, vol. 286, pp. 233–242. Springer, Heidelberg (2014)

9. Kielec, R.: Planning of iterative production processes. Przegld Mechaniczny 11, 22–26
(2009)

10. New method for engineering projects management with the use of evolutionary algorithm.
In: 7th International Conference on Research and Practical Issues of Enterprise Information
Systems - CONFENIS 2013. Linz, Trauner Verlag, Prague, Czechy, pp. 89–102 (2013).
ISBN 9783990330814

11. Leroux, H., Andreu, D., Godary-Dejean, K.: Handling exceptions in petri net based digital
architecture: from formalism to implementation on FPGAs. IEEE Trans. Ind. Inf. 99, 1
(2015)

12. Rogers, J.L.: Demaid/ga - an enhanced design manager’s aid for intelligent decomposition.
AIAA Paper, pp. 96–4157 (1996)

13. Yakovlev, A., Gomes, L., Lavagno, L.: Hardware Design and Petri Nets. Kluwer, Boston
(2000)

Control Process Management by Means of Evolutionary Algorithm 141

http://journals.cambridge.org/article

On Parallel Versions of Jumping
Finite Automata

Radim Kocman(&) and Alexander Meduna

Department of Information Systems, Faculty of Information Technology,
Brno University of Technology, Brno, Czech Republic

{ikocman,meduna}@fit.vutbr.cz

Abstract. The present paper proposes a new investigation area in automata
theory - n-parallel jumping finite automata. These automata further extend
recently presented jumping finite automata that are focused on discontinuous
reading. The proposed modification uses multiple reading heads that work in
parallel and can discontinuously read from the input in several places at once.
We also define the more restricted version of these automata which only allows
jumping to the right. This restricted version is then further studied, compared
with n-parallel right linear grammars, and several of its properties are derived.

1 Introduction

In the previous century, most formal models were designed for continuous information
processing. This, however, does not often reflects the requirements of modern infor-
mation methods. Therefore, there is currently active research around formal models that
process information in a discontinuous way. Most notably, there are newly invented
jumping finite automata (see [1]) that are completely focused on discontinuous reading.
These automata go so far that they cannot even define some quite simple languages
(e.g. a�b�) because they cannot guarantee any specific reading order between their
jumps.

The present paper proposes the modification of these automata - n-parallel jumping
finite automata. This modification presents a concept where the input is divided into
several arbitrary parts and these parts are then separately processed with distinct
synchronized heads. A quite similar concept was thoroughly studied in terms of formal
grammars, where several nonterminals are being synchronously rewritten at once; for
example, simple matrix grammars (see [2]) and n-parallel grammars (see [3–7]).
However, to the best of our knowledge, no such research was done in terms of auto-
mata, where several heads synchronously read from distinct parts on the single tape.
When this concept is combined with the mechanics of jumping finite automata, each
part can be read discontinuously, but the overall order between parts is preserved; such
automaton then can handle additional languages (e.g. a�b�). Therefore, this modifica-
tion represents the combined model of discontinuous and continuous reading.

The unrestricted version of jumping finite automata handles a quite unique lan-
guage family, which has not yet been sufficiently studied and which had no counter-
parts in grammars; until jumping grammars were introduced (see [8]). Therefore,

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_12

we decided to base our initial research on the restricted version of these automata, which
use only right jumps. Such restricted jumping finite automata define the same language
family as classical finite automata. When these restricted automata are combined with the
previously described concept, we get a model which is very similar to n-parallel
grammars. Such automata utilize jumping only during the initialization, when heads
jump to their start positions. After that, all heads read their parts of the input continuously
in a left-to-right way. The paper compares these automata with n-parallel right linear
grammars and shows that these models actually represent the same language families.
Consequently, several properties of these automata are derived from the previous results.

2 Preliminaries

This paper assumes that the reader is familiar with the theory of automata and formal
languages (see [9, 10]). Let N denote the set of all positive integers. For a set Q, card
(Q) denotes the cardinality of Q. For an alphabet (finite nonempty set) V, V� represents
the free monoid generated by V under the operation of concatenation. The unit of V� is
denoted by e. For x 2 V�, |x| denotes the length of x, and alph(x) denotes the set of all
symbols occurring in x; for instance, alph(0010) = {0, 1}. For a 2 V, |x|a denotes the
number of occurrences of a in x. Let x = a1a2 … an, where ai 2 V for all i = 1,…, n, for
some n � 0 (x = e if and only if n = 0).

A general jumping finite automaton (see [1]), a GJFA for short, is a quintuple
M = (Q, R, R, s, F), where Q is a finite set of states, R is an input alphabet, Q\R = ∅,
R � Q � R� � Q is finite, s 2 Q is the start state, and F is a set of final states.
Members of R are referred to as rules of M and instead of (p, y, q) 2 R, we write
py ! q 2 R. A configuration of M is any string in R�QR�. The binary jumping
relation, symbolically denoted by y, over R�QR�, is defined as follows. Let x, z, x′, z′
2 R� such that xz = x′z′ and py ! q 2 R; then, M makes a jump from xpyz to x′qz′,
symbolically written as xpyz y x′qz′. In the standard manner, we extend y to y

m,
where m � 0. Let y

+ and y
� denote the transitive closure of y and the

transitive-reflexive closure of y, respectively. The language accepted by M, denoted
by L(M), is defined as L(M) = {uv | u, v 2 R�, usv y

� f, f 2 F}. We also define the
special case of the jumping relation. Let w, x, y, z 2 R�, and py ! q 2 R; then, M
makes a right jump from wpyxz to wxqz, written as wpyxz r y wxqz. We extend r y to r

y
m, r y

�, and r y
+, where m � 0, by analogy with extending the corresponding

notations for y. The language accepted by M using only right jumps, denoted by rL
(M), is defined as rL(M) = {uv | u, v 2 R�, usv r y

� f, f 2 F}. Let w 2 R�. We say that
M accepts w if and only if w 2 L(M). M rejects w if and only if w 2 R� − L(M). Two
GJFAs M and M’ are said to be equal if and only if L(M) = L(M’).

Let n 2 N. An n-parallel right linear grammar (see [3, 4, 5, 6, 7]), an n-PRLG for
short, is an (n + 3)-tuple G = (N1,…, Nn, T, S, P), where Ni, 1 � i � n, are mutually
disjoint nonterminal alphabets, T is a terminal alphabet, S is the sentence symbol, S not
in N1 [. . .[Nn [T, and P is a finite set of pairs. Members of P are referred as rules
of G and instead of (X, x) 2 P, we write X ! x 2 P. Each rule in P has one of the
following forms: (1) S ! X1… Xn, Xi 2 Ni, 1 � i � n, (2) Xi ! aiYi, Xi, Yi 2 Ni, ai 2
T�, 1 � i � n, (3) Xi ! ai, Xi 2 Ni, ai 2 T�, 1 � i � n. The binary yield operation,

On Parallel Versions of Jumping Finite Automata 143

symbolically denoted by) , is defined as follows. Let x, y 2 (N1 [. . . [Nn [
{S}[T)� then x) y if either x = S and S ! y 2 P or x ¼ a1X1. . . anXn;
y ¼ a1x1. . . anxn and ai 2 T�;Xi 2 Ni;Xi ! xi 2 P, 1 � i � n. In the standard
manner, we extend) to)m, where m � 0. Let)+ and)� denote the transitive
closure of) and the transitive-reflexive closure of), respectively. The language
generated by G, denoted by L(G), is defined as L(G) = {x | S)� x, x 2 T�}.

3 Definitions and Examples

In this section, we define the modification of jumping finite automata - n-parallel
jumping finite automata - which read input words discontinuously with multiple syn-
chronized heads. Consequently, we also define the more restricted version of these
automata which uses only right jumps.

Definition 1. Let n 2 N. An n-parallel general jumping finite automaton, an n-PGJFA
for short, is a quintuple

M ¼ Q;R;R; S;Fð Þ;

where Q is a finite set of states, R is an input alphabet, Q \ R = ∅, R � Q � R�

Q is finite, S � Qn is a set of start state strings, and F is a set of final states. Members
of R are referred to as rules of M and instead of (p, y, q) 2 R, we write py ! q 2 R.

A configuration of M is any string in R�QR�. Let X denote the set of all configu-
rations over M. The binary jumping relation, symbolically denoted by y; over X, is
defined as follows. Let x, z, x′, z′ 2 R� such that xz = x′z′ and py ! q 2 R; then, M
makes a jump from xpyz to x′qz′, symbolically written as

xpyz y x 0qz 0 :

Let $ be a special symbol, $ 62 Q [R. An n-configuration of M is any string in (X
{$})n. Let nX denote the set of all n-configurations over M. The binary n-jumping
relation, symbolically denoted by ny, over nX, is defined as follows. Let f1$… fn
$, #1$… #n$ 2 nX, so fi, #i 2 X, 1 � i � n; then, M makes an n-jump from f1$… fn$
to #1$… #n$, symbolically written as

f1$. . .fn$ ny #1$. . .#n$

iff fi y #i for all 1 � i � n. In the standard manner we extend ny to ny
m, where

m � 0. Let ny
+ and ny

� denote the transitive closure of ny and transitive-reflexive
closure of ny, respectively. The language accepted by M, denoted by L(M,n), is
defined as L(M,n) = {u1v1… unvn | s1… sn 2 S, ui, vi 2 R�, u1s1v1$… unsnvn$ ny

� f1$…
fn$, fi 2 F, 1 � i � n}. Let w 2 R�. We say that M accepts w if and only if w 2 L(M,
n). M rejects w if and only if w 2 R� −L(M,n).

Definition 2. Let M = (Q, R, R, S, F) be an n-PGJFA, and let X denote the set of all
configurations over M. The binary right jumping relation, symbolically denoted by

144 R. Kocman and A. Meduna

ry, over X, is defined as follows. Let w, x, y, z 2 R�, and py ! q 2 R; then, M makes a
right jump from wpyxz to wxqz, symbolically written as

wpyxz ry wxqz:

Let nX denote the set of all n-configurations over M. The binary right n-jumping
relation, symbolically denoted by n−ry, over nX, is defined as follows. Let f1$… fn$,
#1$… #n$ 2 nX, so fi, #i 2 X, 1 � i � n; then, M makes a right n-jump from f1$…
fn$ to #1$… #n$, symbolically written as

f1$. . .fn$ n�ry #1$. . .#n$

iff fi ry #i for all 1 � i � n.
Extend n−ry to n−ry

m, n−ry
+, and n−ry

�, where m � 0, by analogy with
extending the corresponding notations for ny. Let L(M,n−r) denote the language
accepted by M using only right n-jumps.

Next, we illustrate the previous definitions by two examples.

Example 3. Consider the 2-PGJFA

M ¼ s; r; p; qf g;R;R; srf g; fs; rgð Þ;

where R = {a, b, c, d} and R consists of the rules

sa ! p; pb ! s; rc ! q; qd ! r:

Starting from sr, M has to read some a, and some b with the first head and some c,
and some d with the second head, entering again the start (and also the final) states sr.

Therefore, the accepted language is

L M; 2ð Þ ¼ uvju 2 a; bf g�; v 2 c; df g�; uj ja¼ uj jb¼ vj jc¼ vj jd
� �

:

It can be easily shown that such a language cannot be defined by any original
jumping finite automaton.

Example 4. Consider the 2-PGJFA

M ¼ s; r; tf g;R; R; ssf g; fsgð Þ;

where R = {a, b, c} and R consists of the rules

sa ! r; rb ! t; tc ! s:

Starting from ss, M has to read some a, some b, and some c with both heads. If we
work with unbound jumps, each head can read a, b, and c in an arbitrary order.
However, if we work only with right jumps, each head must read input symbols in the

On Parallel Versions of Jumping Finite Automata 145

original order; or the automaton will eventually get stuck. Therefore, the accepted
languages are

L M; 2ð Þ ¼ uvju; v 2 a; b; cf g�; uj ja¼ uj jb¼ uj jc¼ vj ja¼ vj jb¼ vj jc
� �

;

L M; 2�rð Þ ¼ uuju 2 abcf g�f g:

Denotation of language families
Throughout the rest of this paper, the language families under discussion are

denoted in the following way. REG, CF, and CS denote the families of regular
languages, context-free languages, and context-sensitive languages, respectively.
rGJFA, rn-PGJFA, and n-PRLG denote the families of languages accepted or gen-
erated by GJFAs using only right jumps, n-PGJFAs using only right n-jumps, and n-
PRLGs, respectively.

4 Conversions

In this section, we prove that n-PGJFAs with right n-jumps and n-PRLGs define the
same language families.

Theorem 5. For every n-PRLG G = (N1,…, Nn, T, S1, P), there is an n-PGJFA using
only right n-jumps M = (Q, R, R, S2, F), such that L(M,n−r) = L(G).

Proof Let G = (N1,…, Nn, T, S1, P) be an n-PRLG. Without a loss of generality,
assume that f 62 N1 [… [Nn [T. Keep the same n and define the n-PGJFA with
right n-jumps

M ¼ ff g[N1 [. . .[Nn;T;R; S2; ff gð Þ;

where R and S2 are constructed in the following way:

1. For each rule in the form S1 ! X1… Xn, Xi 2 Ni, 1 � i � n, add the start state
string X1… Xn to S2.

2. For each rule in the form Xi ! aiYi, Xi, Yi 2 Ni, ai 2 T�, 1 � i � n, add the rule
Xiai ! Yi to R.

3. For each rule in the form Xi ! ai, Xi 2 Ni, ai 2 T�, 1 � i � n, add the rule
Xiai ! f to R.

The constructed n-PGJFA with right n-jumps M simulates the n-PRLG G in such a
way that its heads read symbols in the same fashion as the nonterminals of G generate
them.

Any sentence w 2 L(G) can be divided into w = u1… un, where ui represents the
part of the sentence which can be generated from the nonterminal Xi of a rule
S1 ! X1…Xn, Xi 2 Ni, 1 � i � n. In the same way, M can start from an
n-configuration X1u1$…Xnun$, where all its heads with the states Xi need to read ui.
Therefore part (1), where we convert the rules S1 ! X1… Xn into the start state strings.
The selection of a start state string thus covers the first derivation step of the grammar.

146 R. Kocman and A. Meduna

Any consecutive non-ending derivation step of the grammar then rewrites all
n nonterminals in the sentential form with the rules Xi ! aiYi, Xi, Yi 2 Ni, ai 2 T�,
1 � i � n. Therefore part (2), where we convert the grammar rules Xi ! aiYi into the
automaton rules Xiai ! Yi. The automaton M always works with all its heads simul-
taneously and thus the equivalent effect of these steps should be obvious.

In the last derivation step of the grammar, every nonterminal is rewritten with a rule
Xi ! ai, Xi 2 Ni, ai 2 T�, 1 � i � n. We can simulate the same behavior in the
automaton if we end up in a final state for which there are no ongoing rules. Therefore
part (3), where we convert the grammar rules Xi ! ai into the automaton rules
Xiai ! f, where f is the sole final state. All heads of the automaton must also simul-
taneously end up in the final state or the automaton will get stuck; there are no ongoing
rules from f and all heads must make a move during every step.

The automaton M can also start from an n-configuration where the input is divided
into such parts that they cannot be generated from the nonterminals Xi of the rules
S1 ! X1… Xn, Xi 2 Ni, 1 � i � n. However, such an attempt will eventually get the
automaton stuck because the automaton simulates only derivation steps of the
grammar.

Theorem 6. For every n-PGJFA using only right n-jumps M = (Q, R, R, S2, F), there
is an n-PRLG G = (N1,…, Nn, T, S1, P), such that L(G) = L(M,n−r).

Proof. Let M = (Q, R, R, S2, F) be an n-PGJFA with right n-jumps. Keep the same
n and define the n-PRLG

G ¼ N1; . . .;Nn;R; S1;Pð Þ;

where N1,…, Nn, and P are constructed in the following way:

1. For each state p 2 Q, add the nonterminal pi to Ni for all 1 � i � n.
2. For each start state string p1… pn 2 S2, pi 2 Q, 1 � i � n, add the start rule

S1 ! p11… pnn to P.
3. For each rule py ! q, p, q 2 Q, y 2 R�, add the rule pi ! yqi to P for all

1 � i � n.
4. For each state p 2 F, add the rule pi ! e to P for all 1 � i � n.

The constructed n-PRLG G simulates the n-PGJFA with right n-jumps M in such a
way that its nonterminals generate terminals in the same fashion as the heads of M read
them.

The definition of n-PRLGs requires that N1,…, Nn are mutually disjoint nonter-
minal alphabets. However, the states of n-PGJFAs do not have such a restriction.
Therefore, we use a new index in each converted occurrence of a state, this creates a
separate item for every nonterminal position. The index is represented by i and is used
in all conversion steps.

Any sentence w 2 L(M,n−r) can be divided into w = u1… un, where ui represents
the part of the sentence which can be accepted by the head of M with a start state pi
from a start n-configuration p1u1$… pnun$, where p1… pn 2 S2, 1 � i � n. In the
grammar, we can simulate the start n-configurations with the start rules S1 ! p11… pnn ,

On Parallel Versions of Jumping Finite Automata 147

where the nonterminals pii must be able to generate ui. Therefore part (2), where we
convert the start state strings into the rules.

During every step of the automaton all heads simultaneously make a move.
Likewise, during every non-start step of the grammar all non-terminals are simulta-
neously rewritten. Therefore part (3), where we convert the automaton rules
py ! q into the grammar rules pi ! yqi. The equivalent effect of these steps should be
obvious.

The automaton can successfully end if all its heads are in the final states. We can
simulate this step in the grammar if we rewrite every nonterminal with e. Therefore part
(4), where we create new empty rules for all final states. These rules can be used only
once during the last derivation step of the grammar; otherwise, the grammar will get
stuck.

Theorem 7. rn-PGJFA � n-PRLG.

Proof. This theorem directly follows from Theorem 6.

Theorem 8. n-PRLG � rn-PGJFA.

Proof. This theorem directly follows from Theorem 5.

Corollary 9. rn-PGJFA = n-PRLG.

5 Characterization

Theorem 10. For all n 2 N, rn-PGJFA � r(n + 1)-PGJFA.

Proof. This theorem directly follows from n-PRLG � (n + 1)-PRLG (see [3]).

Theorem 11. For all n 2 N, rn-PGJFA is closed under union, finite substitution,
homomorphism, reflection, and intersection with a regular set.

Proof. This theorem directly follows from the same results for n-PRLG (see [3]).

Theorem 12. For all n > 1, rn-PGJFA is not closed under intersection or
complement.

Proof. This theorem directly follows from the same results for n-PRLG (see [3]).

Theorem 13. r1-PGJFA = rGJFA = REG.

Proof. This theorem directly follows from 1-PRLG = REG (see [3]), and from
rGJFA = REG (see [1]).

Theorem 14. r2-PGJFA � CF.

Proof. This theorem directly follows from 2-PRLG � CF (see [3]).

Theorem 15. rn-PGJFA � CS and there exist non-context-free languages in rn-
PGJFA for all n > 2.

Proof. This theorem directly follows from the same results for n-PRLG (see [3]).

148 R. Kocman and A. Meduna

6 Remarks and Conclusion

The presented results show that the concept of parallel jumping positively affects the
model of jumping finite automata. The most significant result is that every additional
head increases the power of these automata, which creates an infinite hierarchy of
language families. Furthermore, due to the very simple conversions and the similar
concepts, n-parallel jumping finite automata using only right n-jumps can be seen as a
direct counterpart to n-parallel right linear grammars.

Acknowledgment. This work was supported by the European Regional Development Fund in
the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), the TAČR grant
TE01020415, and the BUT grant FIT-S-14-2299.

References

1. Meduna, A., Zemek, P.: Jumping finite automata. Intl. J. Foundations Comput. Sci. 23(7),
1555–1578 (2012)

2. Ibarra, O.H.: Simple matrix languages. Inf. Control 17, 359–394 (1970)
3. Rosebrugh, R.D., Wood, D.: Restricted parallelism and right linear grammars. Utilitas

Mathematica 7, 151–186 (1975)
4. Wood, D.: n-linear simple matrix languages and n-parallel linear languages. Rev. Roum. de

Math. Pures et Appl. 408–412 (1977)
5. Wood, D.: Properties of n-parallel finite state languages. Utilitas Mathematica 4, 103–113

(1973)
6. Rosebrugh, D., Wood, D.: A characterization theorem for n-parallel right linear languages.

J. Comput. Syst. Sci. 7, 579–582 (1973)
7. Rosebrugh, D., Wood, D.: Image theorem for simple matrix languages and n-parallel

languages. Math. Syst. Theory 8(2), 150–155 (1974)
8. Meduna, A., Zbyněk, K.: Jumping grammars. Intl. J. Foundations Comput. Sci. 26(6), 709–

731 (2015)
9. Meduna, A.: Automata and Languages: Theory and Applications. Springer, London (2000)
10. Wood, D.: Theory of Computation: A Primer. Addison-Wesley, Boston (1987)

On Parallel Versions of Jumping Finite Automata 149

SD2DS-Based Datastore for Large Files

Adam Krechowicz(&), Arkadiusz Chrobot, Stanisław Deniziak,
and Grzegorz Łukawski

Kielce University of Technology, Kielce, Poland
{a.krechowicz,a.chrobot,s.deniziak,

g.lukawski}@tu.kielce.pl

Abstract. We are introducing Scalable Distributed Two-Layer Datastore. The
system that is an efficient solution while storing relatively big multimedia files.
In the article we are focusing on storing high-resolution photos. We are intro-
ducing some of the key implementation concepts as well as the careful evalu-
ation. We are comparing our solution with two of the most recognizable data
storing systems: MongoDB and Memcached.

1 Introduction

Rapidly increasing amount of information processed and stored on the Internet requires
effective and reliable data storage systems. Huge data sets are associated with business
applications, social networking and multimedia services. Even short periods of data
outages can be expensive and may result in loss of productivity, as well as financial
consequences, while permanent data loss can be catastrophic. Therefore, reliable and
efficient datastores are important components of most IT infrastructures.

Nowadays, more and more applications migrate their data working sets from the
conventional relational databases to NoSQL systems [1]. They provide greater effi-
ciency and scalability by the cost of worse aggregation and consistency. Unfortunately
most of the NoSQL systems are still optimised for small portions of data. However,
much of the data is still stored in the most versatile format, the flat file. The growing
collections of multimedia files, text documents, graphics, spreadsheets etc. are created
and stored in datacenters. Storing of such a large number of files requires distributed
storage systems that provide scalability and fast access. In the documentation of the
Cassandra system we can find the information “The practical limit on blob size, how-
ever, is less than 1 MB, ideally even smaller” [2]. The users of HBase also discourage to
use this system with large records [3]. In the most applications it is recommended to
store only metadata in the NoSQL system while the actual data are stored elsewhere.
Such procedure only partially resolves the problem of data storage. It complicates
aggregation of the data and requires additional effort to manage the whole system.

In this paper we propose an efficient distributed datastore for storing relatively big
multimedia files. The architecture of the datastore is based on Scalable Distributed
Two-Layer Data Structures (SD2DS) [4] supporting simple and universal key- value
access. The SD2DS enable storing data in a distributed environment and they are very
efficient for storing especially medium- and big-size files. Recently [5] we showed that
for files larger than 1 MB our datastore is more efficient than MongoDB, one of the

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_13

most popular distributed datastores. In this paper we continue those research by
comparing our solution with another well-known datastore. Memcached was chosen
because its efficiency and similarity with our original conception of Scalable Dis-
tributed Two-Layer Data Structures. The rest of the paper is organized as follows. Next
section reviews the related work. Section 3 presents the motivation for the paper. In
Sect. 4 the architecture of our datastore is described. Section 5 contains experimental
results. The paper ends with conclusions.

2 Related Work

Existing NoSQL solutions implement a variety of data models like: columns [6],
key-value [7], documents [8] and graphs [9]. Thus, only some of them can be used to
store flat files. Most of them was developed to replace conventional relational databases
which becomes inefficient in a massive web applications. Unlike databases, which are
universal and are capable of storing data of any type and schema, NoSQL systems are
often prepared for special demands. This explains the variety and number of existing
systems while the new ones are still developed and introduced to public.

MongoDB [8] is one of the most known document-based datastores. It is widely
used by growing number of applications. However, this is a NoSQL system it have
many features known from classical databases. It has its own query language for
aggregating and creating simple schema for data. Documents are stored in BSON
format which is binary version of JSON. MongoDB offers atomic access for a single
document. One of the most interesting fact about MongoDB is that it can distribute data
on many servers within a cluster by using sharding technique. A shard can be a
standard MongoDB instance which is responsible for managing a portion of the whole
data. The Config Server is a special MongoDB instance which is responsible for
managing the whole set of shards. It allows for splitting the overloaded shard into two
separate shards and removing the faulty shards from cluster. The MongoDB client does
not have any information about the current state of shards in the cluster. It needs to
communicate through the special element called Mongos which uses the information
from the Config Servers and routes the requests from clients to appropriate MongoDB
instance. In a situation where many clients need to use single Mongos instance it may
cause serious bottlenecks. MongoDB stores the data on reliable media like disk drives
by utilizing journals but it also uses cache mechanisms to speed up the access to the
most recently used data. It uses as much available memory for caching, as it can obtain.
So if the data is relatively small and distributed on many nodes it is possible that the
whole set is assessed very fast from the main memory. Writes still needs to persist data
into permanent memory like hard disks. The main purpose of the MongoDB is to store
documents in BSON format. However, it also allows for efficiently storing data of any
format using special API called GridFS. The data managed by GridFS are stored in two
separate collections. One, which is usually called fs.files, stores the metadata of each
element. The other, usually called fs.chunks, stores the actual data in small parts,
typically of the size equal to 255 KiB.

Memcached [10, 11] is an open source in–memory caching system that implements
Distributed Hash Table (DHT), to store data items. It is used by such companies as

SD2DS-Based Datastore for Large Files 151

YouTube or Twitter to reduce database load in their services. Memcached uses the
key–value concept for data addressing. A unique identifier is associated with each
stored data item. For performance reasons the maximal size of a single data item should
not exceed 1 MiB. The caching system may be used in a centralized or distributed
environment. In the latter case the Memcached servers are located on different nodes of
a cluster and they do not communicate with each other. Only the client software knows
exact location of servers and it uses the consistent hashing algorithm to assign data
items to them. Such a hashing method provides a good load balance but it does not
allow the system to scale. Internally, each Memcached server divides its memory into
different zones called classes [12]. Each class stores data items of a particular size. If
server does not have enough space for a new data item, it uses the LRU algorithm to
discard one of the previously stored. The old data are deleted, thus there is no way to
access them after the replacement. The performance advantage have also some
drawback, thus Memcached can be only used to speed up the performance of another
NoSQL system or database. This may be a good solution in caching mechanisms but is
unacceptable in case of permanent data storing. Although it is not recommended to
store the data larger than 1 MiB it is still possible to configure it to store data up to 20
MiB at the performance expense. The client can not wait for long for the desired data.
There exists a timeout which do not allow the client to wait more than 2.5 s for the
data. To authors knowledge there is no possible to change this time. There is also
known issue that the connections with the clients are delayed in some cases [13].

Memcachedb is a distributed high available key–value data-store [14]. It is com-
patible with Memcached but unlike the latter it stores data items in a persistent manner.
To provide data coherence Memcachedb supports transactions. The fault tolerance and
availability is achieved by data replication.

3 Motivation

Motivated by our recent success of creating efficient distributed datastore [4, 5, 15] we
decided to prepare unique solution for storing high-resolution multimedia files.
Existing NoSQL systems are still optimized mostly for storing many small pieces of
data. For example the existing works of performance tests of Memcached was devel-
oped mostly for small portions of data of hundreds of kilobytes [11] which is not
acceptable for the stated assumptions.

We propose to built a distributed datastore for multimedia files, using Scalable
Distributed Two-Layer Data Structures [4]. There is no single point in SD2DS that
could become a bottleneck for client–server communication, even if many clients make
requests simultaneously. The two layer structure allows for better memory utilization
when data records of a large size are stored. Short data access time is achieved by
keeping the headers buckets in RAMs and applying the distributed linear hashing
algorithm for addressing them. The SD2DS–based data store could be easily modified
in order to add persistence or throughput scalability.

We believe that the unique features of the SD2DS make it possible to obtain
SD2DS-based datastore for multimedia files even of hundreds of megabytes. To verify
this expectation we evaluate the performance of our datastore and compare the results

152 A. Krechowicz et al.

with the results obtained for other commonly used storage systems like MongoDB and
Memcached. This allows us not only to assess the advantages of SD2DS-based data-
store but also to identify shortcomings that we should address in our future works.

4 The SD2DD Data Store

Scalable Distributed Two–Layer Data Structures (SD2DS) were developed to effi-
ciently store large amounts of data in a distributed RAM of a multicomputer. Although
the basic idea of SD2DS was inspired by Scalable Distributed Data Structures (SDDS)
[16, 17], it overcomes some of the ancestor’s disadvantages by using double layered
structure. The SDDS LH* is very useful and efficient for management of the first layer
of SD2DS, as shown in the paper. Moreover, the basic SD2DS architecture may be
expanded for improving load balancing, fault tolerance and so on [4, 15].

4.1 Basic SD2DS Architecture

The data stored in SD2DS consist of components of constant or variable size. Each
component is uniquely identified by an unique key, thus SD2DS is suitable for building
a key–value type datastore. Components stored in SD2DS are split into two parts:

• Header, consisting of the key and so called locator (memory pointer, URL/IP
address, etc.), pointing where the second part of the component (body) is stored.
Generally, the header stores the metadata of a component,

• Body, consisting of the key and the component data.

Headers are stored in the first layer of SD2DS, called the file, while bodies are
stored in the second layer, called the storage. Both layers are managed independently
and many different algorithms may be applied for the first and the second layer.
Moreover, headers and bodies may be supplemented with additional information such
as checksums, multiple locators, counters and so on.

A single instance of SD2DS contains at least three types of elements:

• Buckets, containing both, the headers and bodies. De- pending on a particular
implementation, there may be separated buckets for storing headers and bodies, or a
bucket may store both layers simultaneously, as presented in the paper.

• Clients, processing the data stored in buckets. A client may be supplemented with
additional mechanism for addressing of the first layer of SD2DS, such as SDDS
LH* file images. This implies that there is no need for any element that is required
for addressing so there is no risk of bottlenecks or a single point of failures.

• Split Coordinator, responsible for managing state of both layers, crucial for
ensuring scalability of the SD2DS. Depending on the implementation, there may be
multiple Coordinators or none, if layers manage their state and scalability on their
own.

SD2DS-Based Datastore for Large Files 153

4.2 Management of the First Layer

Scalable Distributed Data Structure (SDDS) is an idea of storing data in a distributed
RAM of a multicomputer [16]. The data is divided into fixed-size records uniquely
identified with keys. Records are stored in buckets distributed among multicomputer
nodes. The whole set of buckets is called a file. There are many already developed SDDS
variants using different algorithms for addressing of the data. Basic SDDS architectures
use Range Partitioning (RP*) [18], Linear Hashing (LH*) [19], trees/tries [20] and more.
SDDS LH* is especially useful for efficient management of data and is very useful for the
management of the first layer of SD2DS, thus its details are given below.

SDDS LH* uses a hasing function for record addressing, such as a simple modulo
division:

h Cð Þ ¼ Cmod 2i ð1Þ

Where C denotes a key and i is a so called file level, which increases along with
expansion of the file. Because there is no need that the file must consist of buckets
which number is a division of two, there may be at most two consecutive levels (i and
i + 1) used simultaneously.

An empty file consists of a single bucket with a level i = 0. As more and more data
are inserted into the file, the lonely bucket splits and a new bucket is attached to the file.
After a split, a bucket increases its level i, just as its offspring. Thus the level of the file
increases to i = 1. The process continues and always the leftmost bucket using the
lower level i is the next to be split. If all buckets increase their level i to i + 1, the
higher value (i + 1) replaces i, and the process restarts from the first bucket constituting
the file (bucket number 0). As the whole process of expansion must be precisely
controlled, there is another component of the file called the Split Coordinator (SC),
keeping track of the next bucket to split. There is a special split pointer denoted n,
holding the number of the next bucket to be split.

The SC is the only place where current values of i and n are stored. These values
are required for determining where a record with a given key is stored within the file.
As there may be many (hundreds, thousands) of clients simultaneously accessing the
file, the SC must not be accessible by clients, as it would quickly become a bottleneck
limiting the scalability of the file. For overcoming the problem, each client uses its own
copy of these values, denoted i’ and n’ and called a file image. Using its image, a client
may calculate where a desired record is stored, using Algorithm 1.

154 A. Krechowicz et al.

The resulting value a is the number of a bucket which is the most probable des-
tination for record with key C. As the client’s file image may be out of date, a client
may commit an addressing error. In such case, the first incorrectly addressed bucket
sends an Image Adjustment Message (IAM) to the client, updating his local image.
This way, a client will never commit the same addressing error again.

If a bucket receives a message (query) concering a particular record, it must check
whether it is the correct one to store the record in question. Every bucket has its own
bucket level denoted j, which is either equal to i or i + 1. Using the value j, a bucket
a verifies whether it is a correct recipient for key C, using Algorithm 2.

If the resulting value a’ is not equal to a bucket number, the bucket forwards the
message to the bucket a’. After at most one additional addressing error [16], the
message reaches its correct recipient.

If a bucket is overloaded, it sends collision message to the SC. The SC then orders
the bucket number n to split, if there are available nodes for storing a new bucket. The
bucket number n, using its level j, creates a new bucket, which number is computed
from the following equation:

m ¼ nþ 2 j

The bucket number m is the new one to be created. Afterwards, the splitting bucket
increases its level j and sends all records not matching the new hashing function to the
newly created bucket. After the process is finished, the splitting bucket sends confir-
mation message to the SC, which updates parameters of the file (i and n) using
Algorithm 3.

Figure 1 shows an evolution of sample SDDS LH* file, starting from a single
bucket. The bucket capacity is set to 4 records each. Initially, the lonely bucket with its
level j = 0 accepts all incoming records. The bucket becomes overloaded and another
record with key 65 is to be inserted into the file (Fig. 1a). The overloaded bucket is split
and a new one is created (Fig. 1b), moving about half of its capacity into the new
bucket. Both buckets’ level is set to j = 1. After a few more insertions, the file consists
of three buckets and the bucket number 1 is overloaded (Fig. 1c). Because the split
pointer denoted (n) points to the overloaded bucket, it splits and a new one is created

SD2DS-Based Datastore for Large Files 155

(Fig. 1d). All buckets reached level j = 2 and the split pointer returns to bucket number
0. The process continues.

On of the main disadvantages of SDDS LH* is that a large amounts of data are
transferred between bucket during splits. The process wastes about 33 % of the total
throughput of the network connecting the multicomputer nodes [16]. However, our
experiments show that SDDS LH* is very efficient for management of the first layer of
SD2DS, where headers are used as records. Headers are very small (e.g. tens of bytes)
pieces of data, thus there is no need to transfer much data during expansion of the first
layer. An example SD2DS file presented on Fig. 2 uses LH* for the first layer.

Fig. 1. Example SDDS LH* file evolution

156 A. Krechowicz et al.

4.3 Scalability of the SD2DS

An empty SD2DS consists of one bucket. As more and more components are inserted
into SD2DS, the structure expands by attaching new buckets. If SDDS scheme is
applied for the first layer, it expands by performing splits [16], thus there is a need to
move data between buckets.

In case of the second layer, once inserted, component bodies stay in the same
bucket during the whole lifetime of SD2DS. This is a big advantage, as there is no need
to transfer large amounts of data during evolution of the structure. Because both, the
first and the second layer, may use the same set of servers, a whole component may be
stored on a single server, what is the most optimistic case.

Figure 2 presents a sample SD2DS file, starting from single, empty bucket with
address (a). All inserted components are stored in the single bucket and locators in their
headers are set to (a) (Fig. 2b). As more and more components are inserted, more
buckets are attached to the file (Fig. 2d–e). Headers are stored with respect to the LH*
rules, while bodies are inserted into buckets having available space.

Every bucket stores so called Redirection Bucket Address (RBA), which is used to
store component bodies. Initially, the RBA is set to NULL, thus all bodies are inserted
locally. If a bucket overloads, its RBA is adjusted to point a bucket with available
space. The SC is responsible for keeping a pool of buckets with available space and for
adjusting RBA of every bucket. The pool of buckets, maintained by the SC, consists of
one bucket in the simplest case. If the pool size is larger, the SC chooses a bucket from

0 (a)

--- ---

a) b)
3 (a)

0 (a)

7 (a)

3

0

7
0 (a)

0 (a)

0 (a)

0 (a)1 (b) 1 (b) 2 (c) 3 (d)
7 7

24

98

0 0

3 3

5 26

98

24

134

16
127

28

2

65

98 (b)

134 (c)

26 (b)

2 (d)

65 (c)

127 (d)

3 (a)

7 (a)5 (a)0 (a) 7 (a)

3 (a)24 (b) 24 (b)

0 (a)

16 (c)

28 (d)

98 (b)

c)

d) e)

3 (a)

24 (b)

1st layer

2nd layer

0 (a)

7 (a)

0 (a)

7

24
0

3

1 (b)

1st layer

2nd layer

Fig. 2. Sample SD2DS file evolution

SD2DS-Based Datastore for Large Files 157

the pool using a simple strategy (e.g. randomly or sequentially). This way there are
many buckets with available space for storing bodies simultaneously, what otherwise
may become a bottleneck. The size of the pool may be set to fixed size or may vary
along with increasing number of buckets. The problem is especially important in case
of large files (consisting of hundreds of buckets).

Two–layer design implies an indirect addressing, thus before reaching the data, a
client must contact the first layer for obtaining the corresponding locator. However, our
experiments showed that the need of indirect addressing doesn’t affect much the total
efficiency of SD2DS, especially for relatively large portions of data (starting from
about 1 MiB). Moreover, as each component body stays in the same bucket as it was
firstly inserted, locators may be stored and reused by clients (depending on the par-
ticular implementation of SD2DS).

4.4 Implementation

Our previous experiments showed that SDDS LH* is especially useful for management
of the first layer of SD2DS. Moreover, both layers may be supplemented with addi-
tional elements like checksums (for fault tolerance), reference counters (for load bal-
ancing) and so on. Thus, the general idea of SD2DS can be tailored to specific needs.
The datastore presented in the paper uses basic SD2DS architecture, where LH* is used
for management of the first layer and a simple expansion algorithm (buckets are filled
with component bodies one by another) for the second layer.

We utilize SD2DS conception to develop efficient data store mostly for storing
large multimedia files like photos, videos etc. We choose C ++ language for devel-
oping the core structure of our system, mostly because it allows efficient memory
management which is crucial in our project.

The original concept of SD2DS assumes that the data set is located entirely in the
main memory of the cluster nodes. In the real world environment it is often unac-
ceptable because of the risk of data loss, that may occur even after slight failure like
memory bit flips. To preserve the data from unexpected loss, we decided to store data
on hard disks of the cluster nodes. To preserve the high efficiency we prepared a simple
caching mechanism for storing the subset of the data also in the main memory. We
used basic Last Recently Used algorithm to perform this task. In our future work we
plan to develop more advanced algorithms which will be more suitable for our needs.

For the performance reasons we decided to not persist the metadata from the first
layer into hard disks. This allows us to achieve greater performance but seriously affect
the risks of data loss. The appropriate body cannot be accessed if the header does not
exist or it is corrupted. To resolve this problem we introduced feature that allows us to
restore all of the header information by pooling the second layer. So in case of a first
layer bucket failure it can be fully restored. Most of this information, like locators,
sizes, can be read from the second layer. Others, mostly checksums, must be recal-
culated from the original data stored in the second layer bucket.

The header was declared as follows:

158 A. Krechowicz et al.

Our priority was to minimize the size of the header to reduce the costs of accessing
it. Despite from the most basic metadata (like key, size and url of the locator) we added
only checksum, based on the SHA algorithm, to increase the reliability of the data
cached in the main memory. In case that the checksum calculated from the retrieved
data and the checksum stored in the first layer are not correct we force store to acquire
the data from the reliable persistent memory. We understand that this will give us only
partial protection from the possible faults. We are planning to investigate the problems
connected with faults deeply in our next papers.

The component body was declared as:

The essential part of the body are the pointer to the actual data and its size. The
additional key stored in the second layer is responsible for restoring process which is
essential in process of recreating the headers.

5 Experimental Results

The performance of our system was measured in comparison with two well-known
solutions: MongoDB and Mem- cached. We choose these two products because they
all have similar features. First of all, they were developed in similar programming
languages (C ++ and C). Furthermore, they all allows to distribute data on many nodes
in the cluster by utilizing hashing or partition ranges. All three of them use the same
data model. But the most important fact is that they all try to utilize main memory to
achieve great performance. They all associate the portions of data with the unique key.
Additionally, they all can be accessed by the Java clients which allows us to perform
performance comparison tests.

In addition, the similarities of MongoDB with our solution concerns the same data
organization. They both stores the metadata separately from the actual data, in different
containers that can even be located on separate locations. Moreover, the architectures
of MongoDB and SD2DS are very similar. Both datastores use special element for
managing the expansion and shrinking of the structure (Split Coordinator in case of
SD2DS and Config Server in case of MongoDB).

SD2DS-Based Datastore for Large Files 159

The original conception of the SD2DS assumes that all of the data are stored in the
main memory. This makes it very similar to Memcached. Both systems are focused on
allowing fast access to the data.

On the other hand, MongoDB and Memcached are very different systems with
different applications. MongoDB are focused on storing the data permanently even at
the expense of performance. In case of the Memcached there is an opposite approach.
Managing of the cluster also differ one from another. In case of Memcached the cluster
is created and managed from the client perspective. Adding or removing nodes requires
changing the clients behaviour. MongoDB, however, manages the cluster from the
system so it allows to scale the system transparently to the clients.

Just like in our previous work we use our own utility to perform performance tests.
We are intensively developing our benchmarking utility inspired by Yahoo! Cloud
Serving Benchmark (YCSB) [21]. We could not use YCSB because it is focused mostly
on small pieces of data which was unaccept- able in our case. The utility was developed
in Java because all three systems provide their clients for this language. We were able to
integrate Memcached to our benchmark tool and expand the performance test cases.

We conduct our real world experiments on a cluster, consisting of 16 machines, on
which the data were stored. We also used additional machine for running SD2DS Split
Coordinator and MongoDB Config Servers. We used 10 machines for running clients.
For testing MongoDB we additionally used up to 5 machines to run mongos instances
which are crucial for running clients. A single node in the cluster consisted of two 8
cores processors with 8 GiB of RAM. The servers were connected using 1 GiB Ethernet.

In this paper we focused mostly on performance tests in multi-clients environment.
We are aware of the fact that the web-based applications needs to process massive
number of clients simultaneously. We perform our first test by retrieving data of different
but relatively small sizes. The smallest data was 0.5 MiB and the biggest was 1.5 MiB.
The results are presented on Fig. 3. In case of such small portions of data the best
performance was attained for the Memcached system but our SD2DS drastically out-
performsMongoDB even using up to 5 mongoses instances. Those results were expected
because average size of the data portion is still very well supported by Memcached.

We performed our second test on real world set of 1085 photos. The existing sets of
photos [22] or [23] are mostly focused on computer vision testing and have small sizes.
We use high-resolution photos which sizes vary from 0.2 MiB to 9.5 MiB while the
average size of one photos was 6 MiB. The results are presented on Fig. 4. In this case
our SD2DS system still outperforms MongoDB. Better performance of the Memcached
is the cost of not retrieving the all parts of the data due to timeouts. The number of
timeouts grows with the number of clients as it can be seen of Fig. 5. Because we can
not predict the size of the data that was not retrieved the speed of Memcached on Fig. 4
only concerns the fastest readings.

To estimate the real performance of the Memcached we performed the test for the
portions of data offixed size. We calculated the most optimistic average processing time
by assuming that each operation that was not completed takes exactly 2.5 s (the time of
timeout). The real time could be greater but we could not estimate it more. We have
repeated the test four times with different sizes of the data portions. Figure 6 presents the
results of the retrieving data of 1 MiB. Figure 7 presents the results of retrieving data of
2 MiB. Figures 8 and 9 presents the results of retrieving data of 5 MiB and 10 MiB

160 A. Krechowicz et al.

respectively. In that cases even for the sizes of 1 MiB the SD2DS outperformed
Memcached. The real processing for the Memcached will be slightly slower due to the
timeouts. The number of timeouts in those cases are presented on Fig. 10.

As indicates from the Figs. 5 and 10 the number of timeouts are strictly related with
the number of clients and the data sizes. Because of the nature of Memcached, it was
developed as a caching mechanism, it does not works well in a multi- clients
environments.

We also performed the tests to measure the time needed to restore the content of the
first layer bucket. This very important feature determines the time that services based
on our store are unavailable. We performed this test for fixed number of records of
different sizes from 1 MiB to 20 MiB. We repeated those tests for different number of
the second layer buckets from 2 to 16. The results we given are presented on Fig. 11.
The obtained results are strictly correlated with the sizes of records. It is caused by the
fact that during restoration the calculation of checksums must be performed. This
operation is strictly dependent of the size of the data. The interesting fact is that the
results are not correlated with the number of bucket so our solution can easily scale
over different number of buckets.

Fig. 3. Speed comparison of getting components of different sizes (0.5 MiB – 1.5 MiB)

SD2DS-Based Datastore for Large Files 161

Fig. 4. Speed comparison of getting big set of photos

Fig. 5. The number of timeouts while retrieving data from Memcached

162 A. Krechowicz et al.

Fig. 6. Time comparison of getting components of fixed (1 MiB) size

Fig. 7. Time comparison of getting components of fixed (2 MiB) size

SD2DS-Based Datastore for Large Files 163

Fig. 8. Time comparison of getting components of fixed (5 MiB) size

Fig. 9. Time comparison of getting components of fixed (10 MiB) size

164 A. Krechowicz et al.

Fig. 10. The number of timeouts for tests with fixed data sizes in Memcached

Fig. 11. The time of restoring first layer depending on the number of second layer buckets

SD2DS-Based Datastore for Large Files 165

6 Conclusions

In this paper we continue our work started in [5] of developing efficient, scalable
datastore that is capable of storing relatively big multimedia files, especially
high-resolution photos. In our opinion the research in this area is very crucial because
the existing NoSQL solutions are mostly still not ready to store and process such large
data objects.

The most important part of this paper focuses on evaluation of our datastore within
the context of storing large data objects. Compared to our previous work [5] we have
extended the comparison with the MongoDB on the new data sets and we performed
the tests for different fixed size data. We have also introduced the comparison results
with Memcached.

The results indicates that our Scalable Distributed Two- Layer Data Store is an
efficient product that can seriously compete with ones of the most recognizable rep-
resentatives of the NoSQL world. We achieved better performance speed both with
MongoDB and Memcached in case of using big data objects (bigger than 1 MiB). We
also proved that our SD2DS is more efficient than compared systems in case of the
situation where the system is stressed under relatively big number of clients.

We are also aware of some of the problems concerning our product. An additional
research addressing performance issues for the smaller objects (less than 1 MiB) is
required. We understand that in many applications there is still a lot of small data
objects that need to be processed in an efficient way. Our current effort is focused on
fixing this issue. We are also planning to improve the dependability of our store. We
will equip and enhance the store with fault tolerant methods [24]. Additionally, we are
planning farther improvements to our data store like fast searching based on the data
contents or advanced efficient and scalable processing of data objects. Developing such
massive distributed system is always very complicated task at hand. We believe that
despite of some minor works to do we were able to introduce solid solution. We hope
that it will appeal the developers who are working on efficient web-scale applications.
We believe that our storage will find application in systems that uses fast image
recognition, like [25], or even in real-time cloud systems [26] where good scalability is
needed. This is very important issue because our goal is to prepare the store that allows
to process photos in real-time.

To support the assumption that SD2DS datastore is suitable for storing relatively
big multimedia files we have developed, as a proof of a concept, a simple image
browser. The application was written entirely in Java. The Fig. 12 shows a screen shot
of its GUI. The left panel is a list of images stored on a hard disk or other typical data
storage. If a user chooses a file from the list, the image is displayed in the middle of the
window and the file is copied to SD2DS. The name of the file is also its key in the
datastore. The right panel allows the user to browser the images directly from the
SD2DS datastore.

The application will evolve in the direction of a public database of images, where
will be possible to store private photos or to share photos with other users. We expect
that in this way we obtain a system with a high degree of scalability, that exceeds the
capacity of existing solutions.

166 A. Krechowicz et al.

References

1. Sadalage, P.J., Fowler, M.: NoSQL distilled: a brief guide to the emerging world of polyglot
persistence. Pearson Education, London (2012)

2. DataStax, “DataStax Documentation Apache CassandraTM 2.1.” http://docs.datastax.com/
en/cassandra/2.1/. Accessed 14 Apr 2015

3. Quora, “Is HBase appropriate for indexed blob storage in HDFS?” https://www.quora.com/
Is-HBase-appropriate-for-indexed-blob-storage-in-HDFS. Accessed 7 Oct 2015

4. Sapiecha, K., Łukawski, G.: Scalable distributed two–layer data structures (SD2DS). IJDST
4, 15–30 (2013)

5. Krechowicz, A., Deniziak, S., Bedla, M., Chrobot, A., Łukawski, G.: Scalable distributed
two-layer block based datastore. In: Wyrzykowski, R., Deelman, E., Dongarra, J.,
Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 302–
311. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32149-3_29

6. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM
Trans. Comput. Syst. (TOCS) 26(2), 4 (2008)

7. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available
key-value store. In: ACM SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 205–220.
ACM (2007)

8. MongoDB, “The MongoDB 3.0 Manual.” http://docs.mongodb.org/manual/. Accessed 14
Apr 2015

9. Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov, P., Ding, H., Ferris, J., Giardullo,
A., Kulkarni, S., Li, H.C., et al.: Tao: facebook’s distributed data store for the social graph.
In: USENIX Annual Technical Conference, pp. 49–60 (2013)

10. Memcached, “Memcached – A Distributed Memory Object Caching System.” http://
memcached.org. Accessed 13 Apr 2015

11. Chidambaram, V., Ramamurthi, D.: “Performance analysis of mem- cached.” http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.409.411&rep=rep1&type=pdf. Acces-
sed 13 Apr 2015

12. Carra, D., Michiardi, P.: Memory partitioning in memcached: an experimental performance
analysis. In: ICC 2014, IEEE International Conference on Communications, 10–14 June
2014, Sydney, Australia, June 2014. http://wwweurecom.fr/publication/4320

13. Memcached, “Timeouts.” https://code.google.com/p/memcached/wiki/Timeouts. Accessed 5
Oct 2015

14. Chu, S.: “Memcachedb: The Complete Guide.” http://memcachedb.org/memcachedb-guide-
1.0.pdf. Accessed 13 Apr 2015

15. Krechowicz, A., Deniziak, S., Łukawski, G., Bedla, M.: Preserving data consistency in
scalable distributed two layer data structures. Beyond Databases, Architectures and
Structures. Communications in Computer and Information Science, vol. 521, pp. 126–
135. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18422-7_11

16. Litwin, W., Neimat, M.-A., Schneider, D.A.: LH* — a scalable, distributed data structure.
ACM Trans. Database Syst. 21(4), 480–525 (1996). http://citeseer.ist.psu.edu/litwin96lh.
html

17. Litwin, W., Neimat, M.-A., Schneider, D.: RP*: a family of order preserving scalable
distributed data structures. In: Proceedings of the Twentieth International Conference on
Very Large Databases, Santiago, Chile, pp. 342–353 (1994). citeseer.ist.psu.edu/736278.
html

SD2DS-Based Datastore for Large Files 167

http://docs.datastax.com/en/cassandra/2.1/
http://docs.datastax.com/en/cassandra/2.1/
https://www.quora.com/Is-HBase-appropriate-for-indexed-blob-storage-in-HDFS
https://www.quora.com/Is-HBase-appropriate-for-indexed-blob-storage-in-HDFS
http://dx.doi.org/10.1007/978-3-319-32149-3_29
http://docs.mongodb.org/manual/
http://memcached.org
http://memcached.org
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.409.411&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.409.411&rep=rep1&type=pdf
http://wwweurecom.fr/publication/4320
https://code.google.com/p/memcached/wiki/Timeouts
http://memcachedb.org/memcachedb-guide-1.0.pdf
http://memcachedb.org/memcachedb-guide-1.0.pdf
http://dx.doi.org/10.1007/978-3-319-18422-7_11
http://citeseer.ist.psu.edu/litwin96lh.html
http://citeseer.ist.psu.edu/litwin96lh.html
http://citeseer.ist.psu.edu/736278.html
http://citeseer.ist.psu.edu/736278.html

18. Litwin, W., Neimat, M.-A., Schneider, D.: Rp*: a family of order preserving scalable
distributed data structures. In: VLDB, vol. 94, pp. 12–15 (1994)

19. Litwin, W.: Linear hashing: a new tool for file and table addressing. In: VLDB 1980:
Proceedings of the Sixth International Conference on Very Large Data Bases. VLDB
Endowment, pp. 212–223 (1980)

20. Litwin, W.: Trie hashing. In: Proceedings of the 1981 ACM SIGMOD International
Conference on Management of Data, pp. 19–29. ACM (1981)

21. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud
serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud
Computing, pp. 143–154. ACM (2010)

22. Fei-Fei, R.F.L., Perona, P.: Learning generative visual models from few training examples:
an incremental bayesian approach tested on 101 object categories. In: CVPR 2004, IEEE
Workshop on Generative-Model Based Vision (2004)

23. Griffin, G., Holub, A., Perona, P.: “Caltech-256 Object Category Dataset,” California
Institute of Technology, Technical report CNS-TR-2007- 001 (2007). http://authors.library.
caltech.edu/7694

24. Łukawski, G., Sapiecha, K.: Fault tolerant record placement for decentralized SDDS LH*.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007.
LNCS, vol. 4967, pp. 312–320. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68111-
3_33

25. Janowski, L., Kozowski, P., Baran, R., Romaniak, P., Gowacz, A., Rusc, T.: Quality
assessment for a visual and automatic license plate recognition. Multimedia Tools Appl. 68
(1), 23–40 (2014)

26. Deniziak, R., Bak, S., Czarnecki, R.: Synthesis of real-time cloud applications for internet of
things. Turk. J. Electr. Eng. Comput. Sci. 7719, 35–49 (2013)

168 A. Krechowicz et al.

http://authors.library.caltech.edu/7694
http://authors.library.caltech.edu/7694
http://dx.doi.org/10.1007/978-3-540-68111-3_33
http://dx.doi.org/10.1007/978-3-540-68111-3_33

Temporal Context Manager

Michal Kvet(&) and Karol Matiaško

Faculty of Management Science and Informatics,
University of Žilina, Žilina, Slovakia

{michal.kvet,karol.matiasko}@fri.uniza.sk

Abstract. Temporal database approach is one of the most significant sphere of
data processing, the basic part is exact time management, changes and progress
monitoring over the time. Conventional database does not support time man-
agement, historical data can be processed only partially by difficult and time
consuming transformations. Object level principle uses state granularity, thus
the whole state is updated, if any attribute value is changed. This approach can
be inappropriate, if the frequency and granularity of the changes is not the same
and even time varying. This paper deals with object level and attribute level
temporal architecture. Usually, data are shared, however, not all data should be
accessible to all users, and therefore concept of index definition using contexts is
proposed. In terms of efficiency, indexes are restructured using pointer mapping,
hybrid context trees are defined.

1 Introduction

Database systems are one of the most important part of the information technology. It
creates the core of the data management in the information systems, offers effective
access to stored data. Nowadays, the development requires management of the
extensive data amount, therefore the relevance and necessity is more significant.
Moreover, if the data should be processed and monitored over the time, the requirement
for efficiency is more important. However, how to store data over the time? How are
the requirements of temporal approach defined? What are the aspects, which form the
core?

This paper deals with the conventional approach, defines principles of temporal
access based on the temporal requirements. In the Sect. 10, context manager is pro-
posed to share data with regards on defined conditions. It influences the performance,
because indexed values are determined by the access layer, therefore hybrid trees based
on managed context must be defined. The Experiment section compares the perfor-
mance of the developed system.

2 Conventional Approach

Tracing the history and development of the database systems, we come to the con-
clusion, that they were created and highlighted especially current valid data. This
approach is significantly true also today. On the other hand, temporal access and state

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_14

management over the time is really important, which was even reflected during the
soon development of the database management systems. During the beginning phase,
time was treated using the log files and backups. However, that approach is ineffective
due to processing raw material, which contains a lot of non-temporal information.
Thus, the size optimization is not performed at all. Moreover, some attributes do not
evolve over the time, therefore it is not necessary and even useful to store values of
them multiple times [5, 16, 19].

Later, the developers realized, that this method cannot be used for large amount of
data. This fact even promotes the time processing extent. The amount of the stored and
processed data is still growing, frequency of the changes is also growing. Enormous
power of the system requires sensor network data processing, storing data from
thousands of sensors in industrial environment that produce data on the order of milli,
micro and nano-seconds. Even more, future shows, that the granularity will be short-
ened and amount of the data will grow.

At this point, it should be emphasized, that time bordered data can be processed
also in conventional (non-temporal) approach. How it works? And what are the dis-
advantages? First of all, it is necessary to mention the requirement of primary key.
Primary key (PK) of table provides unambiguous identification of the object. Origi-
nally, if the primary key contains object identifier as one attribute or the set of attributes
providing uniqueness and it does not contain time delimitation, used type of database
approach is conventional regardless the other attributes containing time information,
e.g. validity [23, 27]. However, nowadays, this rule is not so strict and was trans-
formed. Important side of this issue is the fact, whether it is possible to monitor
individual changes of one object over the time or not. If so, the system can be con-
sidered as temporal. However, if primary key is not temporal, but the table is covered
as temporal, two unique indexes must be defined for each thus defined table. The first
originates based on primary key definition, the second one provides consistency – each
object can be defined at any time point by no more than one (or exactly one) valid state
depending on the implementation. Moreover, fully temporal system can be called only
system, which can manage also future valid data with regards on automatic change in
the time of changing validity [26, 28].

3 Object Level Architecture

As it was partially mentioned, object level approach has been introduced based on
conventional approach, it extends the definition of the primary key by the time borders.
Usually, time attributes delimit the validity (uni-temporal table) or extends the defi-
nition also by the other time attributes expressing transaction validity (bi-temporal
table) – Fig. 1. These attributes can characterize interval by two attributes (begin
(BD) and end (ED) point of the validity. Another solution is based on only one
attribute, which reflects the begin date of the validity. Thus, each newer object state
delimits the duration of the validity of the previous one [3, 4, 9]. In that case, man-
agement for undefined states processing and managing must be provided. Thus, some
flag expressing invalid or deleted object must be done – Fig. 2.

170 M. Kvet and K. Matiaško

Bi-temporal approach is also important part of the temporal system definition. For
the purpose of audits and global information about the changes and error correction, it
is necessary to store also states, which were valid in the past, but later determined, that
those data were incorrect. If incorrectly defined data were used (were considered as true
(valid) during some time interval), that change cannot be performed directly only by
using the Update statement itself without preserving original value [15]. On the other
hand, transaction definition as the basic unit of the database server processing stores
automatically the time of definition and execution, thus it is essential to pair the
executed command to the transaction. More about transaction definition and access
rules can be found in [21, 22].

Generally, we can speak about multi-temporal approach managing multiple time
aspect spheres (e.g. time locality).

Fig. 1. Conventional and temporal table defined by time interval

Fig. 2. Conventional and temporal table defined by the first timepoint

Temporal Context Manager 171

4 Temporal Definition Aspects

Object level architecture is based on the whole state of the object processing as the
main part of the granularity. This approach reflects the requirements for temporal
system defined in [11, 16]. Authors of his book has brought the manual for temporal
design in relational databases with regards on easy data manipulation. Development
aspects are based on two types. The first one is based on the usability. The aim is to
provide easy manageable access to historical data in comparison to actual data. In our
opinion, this rule should also highlight future valid data processing as one of the
keystone of the temporal structures. The second rule is based on performance (speed of
the results). Surely, this rule is based also on providing correct data, e.g. undefined
states must be separated. However, how to get good performance, if the core of the
system operates bad and provides insufficient efficiency and robustness? In my sooner
papers, I have presented also two other aspects – requirement of data structure, which
basis is to rebuild the core of the system with regards on system application area. It is
therefore not possible to get good performance results, if the system in the fundamental
level is not set correctly, if the data structure is not optimized for the particular
application. We can get performance improvements, but minimally. Sensor network
data processing is enormously important to optimize system using all levels – size and
performance of the system expressed by the time and total costs. This extended aspect
was also the reason for attribute level architecture development (Sect. 5).

The last criterion is based on transaction processing and collisions solving
[21, 22, 24, 25].

In this paper, however, temporal access rules are shifted to sharing data environ-
ment, therefore the fifth aspect – temporal data processing requirement – is defined.
Nevertheless, this sphere is partially covered by the second aspect, however, complex
definition may be defined and added to the definition as the individual aspect.

Data sharing is one of the important areas of intelligent data and information
technology. It is also covered by the time bordered validity, where also time interval
validity can influence the accessibility. It is necessary to ensure correct data processing
given by the security and access layer. Thus, each application, user of session can
receive only data to which access has been granted by the authority. Again, it can be
granted at the object level – the whole row is either accessible or not at all (e.g.
manager can get data about the employees from his department). Granted rules can be
also used on attribute level (e.g. salary). In general, combination of both rules are used.
More specifically, the problem and the solution will be discussed in Sect. 10.

5 Attribute Oriented Granularity

Attribute oriented architecture covers the problematics of granularity and frequency of
changes diversity. If the attributes are updated asynchronously, object level system
would provide significant inefficiency based mostly on size of the structure. In sensor
data processing (Fig. 3), the problem is sharper, thousands of input data stream from
sensors are loaded, some of them provide data each micro or nano-seconds, some of

172 M. Kvet and K. Matiaško

them, however, provide these data less commonly. Input stream main factors are
velocity (speed, frequency), veracity (credibility) and variety.

Attribute level approach itself is not one table, but the system consists of several
tables managed using procedures, functions and triggers. In common, we can speak
about three layer architecture (Fig. 4). First layer contains only actual data and is
directly connected to the applications. Thus, existing applications can be used without
any necessity for code modification and debugging. The core of the system provides
the second layer, which stores global information about the progress, changes over the
time. The third layer consists of non-actual data states – historical values, future valid
data, but also data to be deleted. Actual data cannot directly query historical and future
valid data (without the access to the temporal layer), because these data are descriptive
and do not get relevant information without temporal definition (second layer).

Second temporal layer uses temporal table (Fig. 5) and consists of these attributes
[21–23]:

• ID_change – got using sequence and trigger – primary key of the table.
• ID_previous_change – references the last change of an object identified by ID. This

attribute can also have NULL value that means, the data have not been updated yet,
so the data were inserted for the first time in past and are still actual.

• ID_tab – references the table, record of which has been processed by DML state-
ment (Insert, Delete, Update, Restore).

Fig. 3. Sensor data processing

Temporal Context Manager 173

• ID_orig - carries the information about the identifier of the row that has been
changed.

• ID_column – holds the information about the changed attribute (each temporal
attribute has defined value for the referencing).

• Data_type – defines the data type of the changed attribute:
• C = char/varchar
• N = numeric values (real, integer, …)
• D = date
• T = timestamp

This model can be also extended by the definition of the other data types like binary
objects.

Fig. 4. Attribute temporal architecture

Fig. 5. Temporal table definition

174 M. Kvet and K. Matiaško

• ID_row – references to the old value of attribute (if the DML statement was
Update). Only update statement of temporal column sets not NULL value.

• Operation – determines the provided operation:
• I = Insert
• D = Delete
• U = Update
• R = Restore (renew validity)
The principles and usage of proposed operations are defined the in the part of this
paper.

• BD – the begin date of the new state validity of an object.

As we can see, individual changes and progress can be easily accessible and
managed using id_change and id_previous_change (Fig. 6, part. 2). If the future valid

Fig. 6. Ordered list of changes

Fig. 7. Statement consideration in temporal system

Temporal Context Manager 175

data are not planned at all, we can sort data also by using time identifier (BD). In that
case, time of validity is the same as time of the Insert statement. However, this
requirement is often infeasible (Fig. 6, part 1).

Temporal system is based on several main operations expressed by the DML
statements (Insert, Update, Delete, Select and Restore statement) – Fig. 7. Insert
statement expresses adding new temporal attribute to the system, individual changes
are expressed exclusively using Update statement. Delete operation can be performed,
if the data should be invalidated – deleted or we cannot create consistent valid state at
all. Vice versa, Restore operation provides renewing the validity of the object. Prin-
ciples of these methods (Insert, Update, Delete and Restore) are described in [19].
However, the most significant factor influencing the global performance is based on
Select statement, therefore the circumstances, conditions and evaluations must be
performed very emphatically. In this step, we must distinguish two types – selecting the
snapshot of the database at defined timepoint or progress monitoring of the individual
object (or the set of objects).

6 Data Selecting

Selecting data from the structure is one of the most significant factor influencing
performance of the whole structure. It is inevitable to accent the effectivity. In temporal
database, time is processed as the main layer. Time frame defined in the Select
statement can represent time point (time interval without the duration itself, thus the
first and last moment of the interval is the same or one granule later depending on
defined time interval model). Another more common situation is characterized by the
time interval, which is usually modelled using closed-closed or closed-open repre-
sentation. Sure, this parameter can be set on database, respectively session level.
However, it can be used directly defined by the select statement to ensure required type,
which would not influence the whole database or session settings.

7 Performance Evaluation

The importance of the individual commands and their effect on the global performance
of the temporal system is not the same as well as the quantity of each command may
differ. Insert statement, for example, only performs adding temporal column to the
system, thus the impact on the system is really low (e.g. can be done at night). That was
the reason to define criterion (1), which is characterized by weight of particular
statements (Insert, Update, Delete, Restore and Select) (Fig. 7):

Tkrit8 ¼
X

i2I
wi � Ti ð1Þ

I ¼ fInsert, Update, Delete, Restore, Selectg

Size of the structure as the second criterion can be monitored too. However, the size
of the index structure is very often the same in comparison with other index approaches.

176 M. Kvet and K. Matiaško

Table 1 shows the weights of the statement types for concrete solutions, as were used.
These values are set by application domain expert or by simulation. Element A expresses
standard temporal system, element B reflects the system with frequent Restore operation
(renew validity), e.g. when using not reliable communication network – wireless
internet connection. Element C delimits the weights of the medical information system,
as were used [8, 10]. Element D is based on intelligent transport system solution.

Principles of data management in distributed systems based on mathematical
models can be found in [7, 12–14, 20].

8 B-Trees, B+trees

The index structure of the B+tree is mostly used because it maintains the efficiency
despite frequent changes of records (Insert, Delete, Update). B+tree index consists of a
balanced tree in which each path from the root to the leaf has the same length.

In this structure, we distinguish three types of nodes - root, internal node and leaf
node. Root and internal node contains pointers Si and values Ki, the pointer Si refers to
nodes with lower values the corresponding value (Ki), pointer Si+1 references higher (or
equal) values. Leaf nodes are directly connected to the file data (using pointers).

B+tree (Fig. 8) extends the concept of B-tree (Fig. 9) by chaining nodes at leaf
level, which allows faster data sorting. DBS Oracle uses the model of two-way linked
list, which makes it possible to sort ascending and descending, too.

The tree height (the distance from the root to leaf nodes) and also tree degree affect
the number of blocks needed to search for items in the index structure, as well as the
block size. For each B-tree limited by n degree, these facts applies:

• Each node contains a maximum of n nodes and n + 1 pointers.
• Each leaf node consists of at least (n + 1)/2 keys.
• Each internal node consists of at least (n + 1)/2 pointers.
• Root node has at least two used pointers.
• All of the leaf nodes are on the same layer.
• Each leaf consists of the key and pointer to direct data. Keys are sorted (ascending)

in the leaves.

Table 1. Weights

Statement Notation A B C D
Weight value Weight value Weight value Weight value

Insert WInsert 0,1 0,02 0,01 0,02
Update WUpdate 0,3 0,23 0,3 0,5
Delete WDelete 0,1 0,17 0,05 0,06
Restore WRestore 0,1 0,18 0,04 0,1
Select WSelect 0,4 0,4 0,6 0,32

Temporal Context Manager 177

Limitation of this approach is a small number of records (low cardinality). In that
case, using index does not produce the desired effect in terms of performance (accel-
eration). However, temporal data are large-scale by the definition. Special category
uses inverted value for the key to prevent often tree balancing, if the indexed values are
set using sequences and triggers. Moreover, the index definition is replaced by the
database system manager by the alter table statement and cannot influence the primary
key index, which is created automatically with the unique flag (Fig. 10).

Fig. 8. B-tree

Fig. 9. B+tree

Fig. 10. Create index syntax [19]

178 M. Kvet and K. Matiaško

9 Security and Access Layer

As mentioned above, variety of transactions may require different data with emphasis
on their accuracy. Temporal system can, however, also store sensitive data. It is nec-
essary to ensure their safety, so that each user has only access to the granted data.
Imagine a company with different departments and employees. Normally, the chief
executive has access to data about his employees. In temporal system, this requirement
is even stricter and must take emphasis on the time processing represented by the time
frames and timepoints. Moreover, these rules are usually changed over the time.

10 Context Definition

Context definition allows user to define conditions and policies on the tables. This
feature has been introduced for conventional databases in Oracle 8i version and allows
to hide rows, which do not meet the conditions to users [6]. Thus, one table data can be
shared by various users reflecting the restrictions. In the past, the context could be
defined only on the object level (e.g. using views and instead of triggers), nowadays,
this approach can be used also for individual columns. This technique can be extended
by time delimitation to restrict data processing not only based on standard conditions,
but also based on time spectrum. Thus, using security and access layer, users can be
granted or revoked privileges to access the structure. The advantage of this approach is,
that user does not know about these restrictions at all – if he selects all data from the
table, processing automatically ensures the use of restrictive conditions and the user
receives accessible data without the need to change the statement syntax by adding new
conditions in the Where clause. Typical examples are personal and confidential data
that are accessible only to specific users (column level policy). If we want to make
unavailable the entire record, object (row) level policy is used.

Let have the table consisting of three objects with the state evolution over the time
(table temp_tab). Closed-open representation is used. For the simplicity, the concept

Fig. 11. Temporal table (temp_tab) structure

Temporal Context Manager 179

will be described for object level temporal architecture, but can be used for any tem-
poral approach (Fig. 11). Data stored in this table are shown in Fig. 12.

User User1 has access only to data identified by the ID = 1 or ID = 2. User User2
has access to the actual data and data valid during the last year. The user User3 should
have access only to the attribute “x”, not the attribute “y” (Fig. 13). Solution can be
done using views only partially, however in temporal access, the conditions and
policies evolve over the time, therefore views as the root for the processing is com-
pletely inappropriate. Moreover, even the owner of the data should not have complete
data access. If necessary, we can also apply this policy to the Update command.

New policy definition is provided using the package DBMS_RLS. Object schema
plus object itself must be defined and statements, which are linked to the policy, are set
using statement_types parameter (Insert, Update, Delete, Restore, Select). Moreover,
each policy definition must have name and defined function and procedure, through
which conditions are defined and evaluated.

Let have the previous example table. Policy definition requires to perform three
steps. First of all, context must be created (Fig. 14). There must be also defined
procedure, using which conditions are loaded into the context. Be aware, these con-
ditions can be set only using the defined procedure (set_temp_context), it cannot be
done outside this block (Fig. 15). The body (conditions) of the context policy can be
found by querying using function sys_context on dual table. These values are evaluated
and processed using function. That function is determined using the policy_function
parameter, when defining policy - add_policy method.

Parameter set_temp_context reflects the name of the procedure, which can set the
conditions of the context. In our case, conditions are stored separately in the table
Policy_tab (Fig. 16). First of all, let´s solve the conditions for the user User1 and User2
(Fig. 17).

The defined procedure set_temp_context must create the conditions, which will be
evaluated automatically (coded procedure principle shown in Fig. 18). For our
example, these conditions must look like this (Fig. 19) for particular session settings –
nls_date_format:

Fig. 12. Data stored in temporal table (temp_tab)

180 M. Kvet and K. Matiaško

At the step, we have defined the temporal rule and conditions, however, it is
necessary to register it in the system for specific table. For this purpose, we have used
the functionality add_policy of the package DBMS_RLS (Fig. 20). Function for
selecting the conditions have to be defined. In the body of this function, defined context
using sys_context function is returned (Fig. 21).

As it was already mentioned, policy can be defined also for individual columns or as
combination of the object and column level security layer. The principles are the same,
but the monitored column list covered by the policy is defined in the audit_column

Fig. 14. Create context

Fig. 13. User access

Temporal Context Manager 181

parameter of the add_policy function. In the parameter audit_columns_opts is stored the
flag, whether the Select statement must contain all of the attributes defined in the
parameter audit_column (flag DBMS_FGA.all_columns) or the policy will be used, if
any of them is used in Select statement (flag DBMS_FGA.any_columns).

Fig. 15. Exception – calling set_context procedure outside the defined method.

Fig. 16. Policy_tab table structure

Fig. 17. Policy_tab table data

182 M. Kvet and K. Matiaško

Be aware for using aggregate functions with the policy because of the NULL values
processing and influencing the global values and results.

If you do not want to control the security conditions for a specific user, use the
following command (Fig. 22):

Policy is dropped automatically during the process of table dropping. However, it
can be also done explicitly using the method drop_policy of the same package
DBMS_RLS with three parameters – owner of the policy, accessed table and name of
the policy.

Reliability and importance analysis of multi-state systems are described in [17–20].

Fig. 18. The procedure to set the context

Fig. 19. Regular conditions

Fig. 20. Add_policy method

Fig. 21. Get context conditions principle

Temporal Context Manager 183

11 Hybrid Context Trees

The solution proposed in the previous section can manage and share data reflecting the
access restrictions. Temporal database approach is, however, based on large data
amount of data stored over the time with regards on undefined states and future valid
data. Adding new conditions (although invisible for the particular user) can cause the
performance degradation because of the indexes. System can evaluate not to use index
at all and prefers full table scan. Extension of the system by more and more index
structures is not the right solution. Forgetting the fact that new index can even improve
the system performance in the terms of Select statements, on the other hand, Update
operation can be (rapidly) performance decreased, although it consists also of the core
part of the temporal system. As we can see in the Experiment section, B+trees provides
significant improvement in comparison with the solution without explicit definition of
the index structures mostly because of the effectiveness of structure reconstruction after
Update operation. It consists of two elements – nodes and the pointers. Pointers,
however, can be shifted to reflect the policy. Thus, it is the basis of the development of
hybrid context tree.

The nodes and links in the index structure can be trimmed to improve the traversing
method in that structure to reduce the amount of processed data, to reduce the tree
height. Therefore, process of tree branches and nodes trimming is proposed. Using the
policy, we can create links across the main index structure for each table and each user
defined in some policy. Moreover, it can be done dynamically, as shown in the pre-
vious section, where the table containing policy rules are defined and in case of change,
restrictions must be reconstructed automatically. Therefore, we can define triggers and
procedures providing us the pointer mapping approach based on defined policy context.
Main index tree in the table owner schema is reduced using pointer map. Figure 23
shows the principle of pointer mapping, simply, some nodes, which do not cover the
conditions, are skipped processing. It can seem to be waste work, however, take care of
the amount of the processed data in the temporal, these conditions can really signifi-
cantly reduce the set of fundamental data, which should be processed. Therefore, this
approach is really significant. If the node cannot be processed by the particular user,
using the pointer map, new pointer from the direct ancestor to the child (or even
hierarchically below) is created (Fig. 24 – example based on Fig. 23). Thus, there is
only one root index structure and individual policies build the improving transitions.
Because of the balance of the B+tree, new hybrid context approach cannot degrade to
the linear linked list in the pure meaning. Some nodes can be trimmed, but the height of
the original index ensures the efficiency – it is significant better solution in comparison
with new index definition for each user. In case of policy changes (which can be
performed often), only mapping layer is updated, not the entire index.

Fig. 22. Not to use policy definition statement [1, 2]

184 M. Kvet and K. Matiaško

12 Conditional Select Statements

Database system management allows you to extend the definition of the conditions in
theWhere clause of the Select statement. We distinguish tree values in the logic, that can
be grouped and compared using negation (NOT) – Fig. 25, disjunction (OR) – Fig. 26
and conjunction (AND) – Fig. 27. In this case, we should avoid using NULL values,
which are mostly evaluated as NULL. Although the processing will raise the ELSE
clause of the condition, it cannot be directly evaluated as FALSE. Figures 25, 26 and 27
show individual operations. Symbol “T” delimits the TRUE value, “F” expresses
incorrect value – FALSE and “N” expresses undefined value – NULL notation.

Fig. 23. Index structure trimming

Fig. 24. Pointer map

Fig. 25. Negation [23]

Temporal Context Manager 185

In this context, we can therefore define conditional processing for evaluating
conditions by using them or not, or by adding new ones. Unlike the definition of the
context, the following conditions must be defined explicitly. The statement definition
would be therefore more complex and conditional processing can be very complicated
for manipulation.

Fig. 26. Logical disjunction [23]

Fig. 27. Logical conjunction [23]

Fig. 28. Conditional Select statement

186 M. Kvet and K. Matiaško

Let have a table containing temporal data (previous example, for simplicity of
example, the model is based on object level granularity). We want to have identical
statement, but the processing and results should be influenced by the caller user based
on conditions. Data are shown in Fig. 12 Once again, user User1 can access data of the
objects identified by ID = 1 and ID = 2, user User2 processes data of the actual and
last year. Thus, we need to handle two different scenarios, but in the one statement. For
this purpose, we need to have two conditions delimiting the identifiers, respectively the
time to be processed. However, for conditional Where clause processing (only one
condition is used) - it is necessary to determine the user, who launched that command.
It is performed using other two extended conditions (Fig. 28 – yellow (second box) and
blue signature (forth box)).

13 Experiments

Experiment results were provided using Oracle Database 11g Enterprise Edition
Release 11.2.0.1.0 – 64 bit Production; PL/SQL Release 11.2.0.1.0 – Production.
Parameters of used computer are:

• Processor: Intel Xeon E5620; 2,4 GHz (8 cores),
• Operation memory: 16 GB,
• HDD: 500 GB.

Complete number of each operation was 10 000 (Insert, Update, Delete, Restore).
Number of updated temporal attributes has been generated, total number was 24 965.
Minimal number of operations on the object was 3, maximal number was 26, the
average value was 5,4965.

The Fig. 29 characterizes the structure of main table:

The aim of this paper is to address the lack of the data management in shared data
system based on attribute granularity. Comparison of the attribute level system and
object level approach can be found in [19]. The performance results uses weighted

Fig. 29. Main table structure

Temporal Context Manager 187

criterion (Sect. 7). First of all, index structures based on B+trees are compared to
choose the best solution for application domain. Then, the hybrid context trees are
managed to show the time improvements.

This section deals with the eight different B+tree indexes, which are compared to
declare quality:

• no explicit index (ind1)
• ID_orig (ind2),
• ID_orig, id_previous_change (ind3),
• ID_orig, BD (ind4),
• ID_orig, ID_previous_change, BD (ind5),
• Unique – ID_orig, ID_previous_change (ind6),
• BD, ID_orig (ind7),
• BD, ID_orig, ID_previous_change (ind8).

Figure 30 shows the time consumption perspective of the Update operation,
Fig. 31 shows the time consumption of the Select statement to monitor each object over
the time.

The proposed results of the weighted criterion are then divided into four categories
(Fig. 32, Table 2):

• A (standard temporal system) – the best solution provides the index ind3.
• B (system highlighting management of undefined states) – the best solution pro-

vides the index ind3.
• C (temporal system for medical data processing) – the best solution provides the

index ind3.
• D (temporal system for intelligent transport system) – the best solution provides the

index ind3.

Fig. 30. Performance of the Update statement

188 M. Kvet and K. Matiaško

When moving sight to the shared based data system, it is necessary to get the
reduction factor, which expresses the ratio corresponding all of the data in the table (or
structure) in comparison with the results considering the context conditions. In prin-
ciple, the performance is affected by the reduction factor (90% rate), the rest part covers
the problematics of pointer mapping. Thus, if the reduction factor is growing, also
performance results are growing. The dependence is not, however, linear. Figure 33
shows the performance in comparison with reduction factor.

Fig. 31. Select statement results

Fig. 32. Performance of the weighted criterion

Temporal Context Manager 189

14 Conclusions

Conventional database approach characterizes each object by one row identified by the
primary key. It can be said, that it represents only actual valid data, whereas temporal
system uses various rows even in multiple tables to define object states over the time. In
general, attribute oriented architectonical solution based on column granularity offers
far more improved performance for industrial environment, where thousands sensor
data each microsecond should be processed. Therefore, it is necessary to develop
appropriate solution and evaluate the performance model. Weighted criterion has been
proposed, each statement type is characterized by the weight representing the impor-
tance and significance in temporal system. It also proposes solution for security access
layer, which is important for sharing data. It is based on contexts and policies, which
automatically add conditions to individual statements to cover the requirements and
restrictions. However, effectiveness of that system must be highlighted, therefore the
solution is extended by the pointer mapping functionality to prevent nodes processing,
which do not pass the defined policy.

Sensor data processing belongs the most difficult data processing area because of
the frequency and amount of data. Therefore, we will focus of index, data and pointer

Table 2. Time processing (s) based of the weighted criterion

ind1 ind2 ind3 ind4 ind5 ind6 ind7 ind8

A 57,40 22,69 22,63 23,86 23,74 23,20 59,22 56,84
B 58,97 22,56 22,55 23,70 23,67 23,37 60,68 58,24
C 67,69 25,19 25,01 26,34 26,20 25,52 69,43 66,91
D 58,76 22,88 22,54 24,51 23,97 23,23 60,91 58,16

Fig. 33. Reduction factor

190 M. Kvet and K. Matiaško

mapping distribution in the future. It is another sphere, which can improve the global
performance reflecting mostly processing time. Dependencies detection between the
states and the level of the state results interference is also one of the optimization
method, which well be focused by us. Thank to this methodology, we will be able to
define dependencies and extended rules to reduce the need for storing and processing
data using patterns.

Acknowledgment. This publication is the result of the project implementation:
Centre of excellence for systems and services of intelligent transport, ITMS 26220120028

supported by the Research & Development Operational Programme funded by the ERDF and
Centre of excellence for systems and services of intelligent transport II., ITMS 26220120050
supported by the Research & Development Operational Programme funded by the ERDF.

This paper is also the result of the project implementation Center of translational medicine,
ITMS 26220220021 supported by the Research & Development Operational Programme funded
by the ERDF.

References

1. Bryla, B.: Oracle Database 11g Administration II Exam Guide. McGraw-Hill Education,
New York (2009)

2. Calero, C.: Measuring oracle database schemas. In: IMACS/IEEE CSCC 1999 Proceedings,
pp. 7101–7107 (1999)

3. Date, C.J.: Date on Database. Apress, New York (2006)
4. Date, C.J.: Logic and Databases – The Roots of Relational Theory. Trafford Publishing

(2007)
5. Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data and the Relational Model. Morgan

Kaufmann, San Francisco (2003)
6. Feuerstein, S.: Oracle PL/SQL Programming. O’Reilly, Sebastopol (2009)
7. Haan, L., et al.: Applied Mathematics for Database Professionals. Apress, New York (2007).

ISBN: 1590597451
8. Hornak, J.: The Basics of MRI. Interactive Learning Software (2008)
9. Hubler, P.N., Edelweiss, N.: Implementing a temporal database on top of a conventional

database. In: Conference SCCC 2000, pp. 58–67 (2000)
10. Jähne, B.: Digital Image Processing, pp. 156–294. Springer, Heidelberg (2002). ISBN:

3-540-67754-2
11. Jensen, C.S., Snodgrass, R.T.: Temporally Enhanced Database Design. MIT Press,

Cambridge (2000)
12. Janáček, J., Kvet, M.: Min-max optimization of emergency service system by exposing

constraints. In: Communications: Scientific Letters of the University of Žilina, vol. 2/2015,
pp. 15–22 (2015)

"PODPORUJEME VÝSKUMNÉ AKTIVITY NA SLOVENSKU

PROJEKT JE SPOLUFINANCOVANÝ ZO ZDROJOV EÚ

Temporal Context Manager 191

13. Janáček, J., Kvet, M.: Public service system design by radial formulation with dividing
points. Procedia Comput. Sci. 51, 2277–2286 (2015)

14. Janáček, J., Kvet, M.: Sequential approximate approach to the p-median problem. Comput.
Ind. Eng. 94, 83–92 (2016). Elsevier. ISSN: 0360-8352

15. Johnston, T.: Bitemporal Data – Theory and Practice. Morgan Kaufmann, San Francisco
(2014)

16. Johnston, T., Weis, R.: Managing Time in Relational Databases. Morgan Kaufmann, San
Francisco (2010)

17. Kvassay, M., Zaitseva, E., Levashenko, V., Kostolny, J.: Minimal cut vectors and logical
differential calculus. In: 2014 IEEE 44th International Symposium on Multiple-Valued
Logic, pp. 167–172 (2014)

18. Kvassay, M., Zaitseva, E., Kostolny, J., Levashenko, V.: Importance analysis of multi-state
systems based on integrated direct partial logic derivatives. In: 2015 International
Conference on Information and Digital Technologies, pp. 183–195 (2015)

19. Kvet, M.: Temporal data approach performance. In: New developments in Circuits, Systems,
Signal Processing, Communications and Computers: Proceedings of the International
Conference Circuits, Systems, Signal Processing, Communications and Computers (CSSCC
2015), Vienna, Austria, pp. 75–83, 15–17 March 2015

20. Kvet, M., Janáček, J.: Relevant network distances for approximate approach to the p-median
problem. In: Helber, S., et al. (eds.) Operations Research Proceedings 2012: Selected Papers
of the International Conference of the German operations research society (GOR), Leibniz
Univesität Hannover, Germany, pp. 123–128. Springer, Switzerland (2014). ISSN:
0721-5924, ISBN: 978-3-319-00794-6

21. Kvet, M., Matiaško, K.: Transaction management. In: CISTI, Barcelona, pp. 868–873 (2014)
22. Kvet, M., Vajsová, M.: Transaction management in fully temporal system. In: UkSim, Pisa,

pp. 147–152 (2014)
23. Kvet, M., Matiaško, K., Kvet, M.: Complex time management in databases. Central Eur.

J. Comput. Sci. 4(4), 269–284 (2014)
24. Lewis, P., Bernstein, A., Kifer, M.: Databases and Transaction Processing. An Application

Oriented Approach. Addison-Wesley, Reading (2002)
25. Maté, J.: Transformation of relational databases to transaction-time temporal databases. In:

ECBS-EERC, pp. 27–34 (2011)
26. Matiaško, K., et al.: Database Systems. EDIS (2008)
27. Simsion, G.C., Witt, G.C.: Data Modeling Essentials. Elsevier, Amsterdam (2005)
28. Snodgrass, R.: Developing Time-Oriented Database Applications in SQL. Morgan

Kaufmann Publishers, San Francisco (2000)

192 M. Kvet and K. Matiaško

Scalable Distributed Datastore for Real-Time
Cloud Computing

Maciej Lasota(&), Stanisław Deniziak, and Arkadiusz Chrobot

Department of Computer Science,
Kielce University of Technology, Kielce, Poland

{m.lasota,s.deniziak,a.chrobot}@tu.kielce.pl

Abstract. Recent prognoses about the future of Cloud Computing, Internet of
Things and Internet Services show growing demand for an efficient processing
of huge amounts of data within strict time limits. First of all, a real-time data
store is necessary to fulfill that requirement. One of the most promising archi-
tecture that is able to efficiently store large volumes of data in distributed
environment is SDDS (Scalable Distributed Data Structure). In this paper we
present SDDS LHRT, an architecture that is suitable for real-time cloud appli-
cations. We assume that deadlines, defining the data validity, are associated with
real time requests. In the data store a real-time scheduling strategy is applied to
determine the order of processing the requests. Experimental results shows that
our approach significantly improves the storage Quality-of-service in a real-time
cloud environment.

1 Introduction

Cloud computing becomes one of the most crucial paradigm of providing services on
the Internet. Cloud providers offer computation, storage and application hosting ser-
vices, according to different cloud models like Software as a Service (SaaS), Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS) and others [1]. The most
challenging problem is to achieve consistent and reliable operation under peak loads.
To guarantee the desired quality of service (QoS) and minimize the cost of the system,
an efficient cloud organizations should be developed.

Besides supporting computing environment, clouds are mainly used for storing user
data. Storage services were also defined as a new business model Storage as a Service
(STaaS). Storing data in the cloud has many advantages. It gives the ability to store
large amounts of data without having to purchase and maintain large-scale storage
resources. It also allows the use of advanced storage infrastructure providing fast access
to data.

The majority of contemporary data repositories is built with the purpose to store
data for off-line processing. The Relational Database Management Systems (RDBMs)
are in a common use, however a recent grow of interest in Big Data processing
environments caused a significant development of other data store models like NoSQL
or NewSQL. The increasing number of Internet of Things (IoT) devices and Internet
services introduces a new category of data sets, the Fast Data [2, 3]. They are char-
acterized not only by a high volume but also by a high velocity.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_15

In Fast Data every data set and every request concerning the data have attributed
validity that starts to decrease after a given deadline. Proper storing and processing of
such data may thus require a real-time approach. The consequences of missing a
deadline depend on the type of a real-time policy [4–6]:

• in a hard real-time policy a negative value of validity is assigned to tardy requests
and data,

• in a firm real-time policy tardy requests and data have no validity,
• in a soft real-time policy the validity of tardy requests and data is still positive, but it

diminishes over time.

The problem of Fast Data storing and processing was addressed in several data
store implementations, however most of them do not enforce any time restrictions on
that operations. They usually define the real-time as “as fast as possible”. Since, such
approach does not conform to any real-time policy used in real-time Internet services, it
is not suitable for real-time cloud applications.

In this paper we present the datastore which is based on SDDS LHRT architecture
presented in [7]. SDDS LHRT is a Scalable Distributed Data Structure (SDDS)-based
architecture for data store that adheres to the firm real-time policy. The data validity is
specified by the deadline associated with the request. The SDDS server schedules
requests using realtime scheduling method. Experimental results showed that in our
approach significantly more requests may be served in the required time, than in
existing data stores, where requests are processed in the FIFO order. In this way a
significantly better storage QoS may be achieved.

The paper is organized as follows. Section 2 contains a short summary of related
work. Section 3 describes the concept of SDDS and in Sect. 4 a motivation for the
research is given. An implementation of real-time policy for SDDS is described in
Sect. 5. Results of testing the prototype implementation of SDDS LHRT are presented
in Sect. 6. The paper is concluded in Sect. 7.

2 Related Work

An RDBM that supports a real-time request processing is called a Real-Time Database
System (RTDBS). Many such systems were built for both research and commercial
purposes [4–6]. Some of them offer only partial real-time functionality while others
provide a full support [6].

The real-time data stores are a less explored subject. The majority of such systems
is built with the purpose of storing as quickly as possible huge amounts of real-time
data. In that context real-time means “happening recently”.

VoltDB [3] is an in-memory scalable relational database designed for handling Fast
Data. Some large companies like Ericsson and HP take advantage of VoltDB. Similarly
to other RDBMs, VoltDB stores data in tables. However, these tables are partitioned
column-wise and distributed together with stored procedures over nodes of a cluster.
Every stored procedure is executed in a single thread, hence it does not require locking
or synchronization. That allows VoltDB to process many queries in parallel, which
greatly contributes to its efficiency. To further improve its performance VoltDB

194 M. Lasota et al.

replicates some of the most frequently used tables. Despite all of these features, the
VoltDB does not guarantee that requests from clients will be processed within pre-
dictable time periods. The Mahanaxar [8] is an ongoing research project, which goal is
to build a data storage for intercepting, evaluating and storing real-time data for latter
processing. Unfortunately many details about this effort are not yet known.

Druid [9] is an in-memory real-time data store used by such companies like Netflix
or eBay. Its architecture consists of four main elements:

• Real-Time Nodes are responsible for ingesting data about events that happened in a
given period of time; these data are immediately available for clients,

• Historical Nodes store previously acquired data about past events,
• Broker Nodes direct requests to Historical or Real-Time Nodes,
• Coordinator Nodes distribute and manage Historical Nodes.

Aside from these elements Druid also utilizes external components like databases
and file systems. It is built to be high available and fault-tolerant. However, its main
drawback, as far as in real-time applications are considered, is significant variability in
request processing time (latency).

The Chord [10] is an algorithm and protocol used in peer-to-peer environments to
locate data across a peer-to-peer network. It is designed for a network that changes
dynamically. The Chord uses Distributed Hash Table (DHT) [11] to look up data in
distributed environment. It organizes nodes of such network into a ring. Every node in
a ring is given a unique identifier, which is used for addressing and assigning data to
the node. Nodes may join or depart from the network at any time. The Chord protocol
is scalable and efficient for P2P purposes. It is available for user applications via a
special library.

An interesting real-time distributed storage was developed for gathering and pro-
cessing data from Phasor Measurement Units used in Wide-Area Measurement System
(WAMS) for power grids [12]. The data store is based on Chord protocol which basic
version is well-suited for the needs of WAMS. The real-time requirements are met by
recognizing a pattern in which periodic and aperiodic tasks appear and by applying a
cyclic executive which serves those tasks within given time intervals called time
frames. Periodic tasks are given precedence before aperiodic ones. Failing to serve a
task of any kind in a given time frame results in postponing its execution to the next
time frame. That means that the system adheres to soft real-time requirements.

3 Scalable Distributed Data Structures (SDDSs)

Multicomputer systems are often used in applications that need huge data storage with
a short access time. Local hard disks are not sufficient in such situations. Scalable
Distributed Data Structures (SDDSs) are a family of data structures designed for effi-
cient data management in a multicomputer [13, 14]. The basic data unit in SDDS may
be either a record or an object with a unique key. Those data are organized in larger
structures called servers/buckets and stored usually in RAM of multicomputer nodes
that run an SDDS server software and connected each other with the Fast Local Area
Network (Gigabit or Infiniband). Data from a bucket are saved on a hard disk only

Scalable Distributed Datastore for Real-Time Cloud Computing 195

when necessary e.g. when the server is shutting down. All of the buckets form an
SDDS file (Fig. 1).

Initially, SDDS file consists of only one bucket which level is equal to zero. When
the bucket reaches its capacity limit a collision occurs. SDDS adjusts its capacity to
current needs by splitting buckets. When a bucket is overloaded it sends a message to
the Split Coordinator (SC) [13–15]. The SC takes a decision which bucket should split.
During a split operation a new bucket is created with the level higher by one than the
splitting bucket. Next, about half of the data stored in the splitting bucket is moved to
the new bucket. When the transfer is completed the splitting bucket increments its level
by one and acknowledges the SC. After the split, both buckets have the same level
(Fig. 2).

The data in the SDDS file are accessed by an SDDS client software executing on
multicomputer nodes, other than servers. The client does not have the whole infor-
mation about the file. Instead it has its own file image, which may differ from the actual
image of the file. The client uses a special function to address data item (a record or an
object) in buckets. SDDS may be classified according to addressing functions they use,
for example:

• LH* - the client uses linear hashing [13].
• RP* - the client uses range partitioning [16].

Every client has its private image of SDDS file. After the split this image becomes
outdated and the client may send request to an incorrect bucket. In such situations the
message is forwarded to the correct bucket and the client receives Image Adjustment
Message (IAM). The IAM contains new parameters for client’s addressing function
that updates its SDDS image.

There is no single point of failure in SDDS, except for the SC, because no central
directory is used for addressing. However, there are SDDS architectures (like RP) that do
not require the SC. All SDDS implementations follow the same designs rules [13–16]:

Fig. 1. SDDS architecture

196 M. Lasota et al.

1. For performance reasons, no central directory is used by the clients in the process of
data addressing.

2. The SDDS file adjusts its size to the clients needs by splitting buckets, i.e. moving
about half of the content of buckets that reached their capacity to the newly created
buckets.

3. Due to the split operations the client’s image may become outdated, but it is
corrected only when the client makes an addressing error.

4. None of the basic operations on data requires immediate, atomic updating of client’s
image.

5. If the client incorrectly addresses data, then an Image Adjusting Message
(IAM) that allows it to update its image is sent, and the data are forwarded to the
correct server.

The SDDSs constitute an example of NoSQL data store design. The data items are
stored in-memory in a key-value form. However, the original concept of SDDS is not
entirely suitable for Fast Data processing. It lacks the realtime capabilities.

4 Motivation

Aside of Fast Data processing there are many applications that could benefit from using
a real-time data store [17, 18]. For example, cloud computing environments offer
services that typically follow the soft real-time policy by monitoring Quality of Service
(QoS) and dynamically allocating resources to applications that are critical for clients
[19–21]. Using a real-time data storage could simplify this task. Also the automated
trading [22], financial [23] and surveillance [24] systems require an access to relevant
data in a limited time [4].

The architecture of SDDS is relatively simple and easy to modify, when compared
to such data stores like Druid [9]. In our research we have addressed the issue of
enabling firm real-time requests of data fetching from SDDS LH*. Such operations are
more critical for real-time applications than data write requests.

We have assumed that the data store is used by many clients with different time
requirements. This is a common case in many systems. For example, in a large scale
medical information system access to the data about intensive care patients should be of
higher priority than the access to information about patients who undergo a long term

Fig. 2. SDDS bucket split operation

Scalable Distributed Datastore for Real-Time Cloud Computing 197

diagnostic procedure. Here, the priority is based on combination of a deadline and
service time of a request. Without a real-time scheduling the requests with a longer
deadline and time of service (ToS) would postpone the more time constrained ones. As a
result they would fail to complete before their deadlines. Figure 3 illustrates such a
situation. When requests will be serviced according to the first-in first-out rule (Fig. 3(a))
then only the deadline for request Rq1 will be satisfied. If all requests will be reordered
according to their deadlines then all-time requirements will be met (Fig. 3(b)).

We have also assumed that the time of transferring request through network may be
properly managed or, at least to some extent, predicted [25].

In our approach we have chosen SDDS LH* [13]. This type of SDDS uses dis-
tributed linear hashing for addressing buckets. This algorithm requires an additional
element in SDDS architecture called Split Coordinator for overseeing the order in
which buckets split. The split operation is performed only after a write requests. Hence
providing firm real-time writes for such an SDDS would be more challenging than in
the case of any other version of Scalable Distributed Data Structure. On the other hand,
it would also give a more general solution to the problem. We also do not discuss in the
paper the read requests that result in IAM messages. Those may be prevented by
allowing the clients to use filled-up read-only SDDS LH* or by permitting only these
writes that modify data instead of adding them. However, we want to address both of
the aforementioned issues in our future works.

5 Implementation of Real-Time Policy in SDDS LH*

The original SDDS LH* architecture consists of three basic software components:

1. a client that accesses data items in buckets,
2. a server which manages a single bucket located in RAM,
3. a split coordinator overseeing split operations of all buckets.

Fig. 3. Handling of requests

198 M. Lasota et al.

The data in the SDDS file are accessed by clients performing four basic operations:
read, write, update and delete. Only the read requests are real-time and they require the
shortest possible time of handling to be ensured. Other operations are nonreal-time, so
they do not have assigned deadlines. Providing real-time scheduling policy for read
requests requires a proper internal structure of the server. We propose an organization
that is shown in Fig. 4. The incoming requests from clients are received by a pool with
a fixed number of threads that operate on a connection queue. If the priority of request
is less than 0 the request is rejected. The threads insert the requests into a request queue
which is handled by a single thread operating on a bucket. If a read request taken form
the head of the queue meets its deadline, the thread fetches a corresponding data item
from the bucket and sends it to the client. Otherwise the request is rejected. Other types
of requests are handled in request queue in the FIFO order. Requests that need to be
forwarded to another servers are put into forward queue that is processed by a dedicated
thread pool also with a fixed number of threads. In non-real-time SDDS LH- servers the

Fig. 4. Server organization

Scalable Distributed Datastore for Real-Time Cloud Computing 199

request queue is a regular FIFO. In real-time servers a priority queue is used instead.
Requests are ordered using Least Laxity First (LLF) scheduling method [26].

The priority of the request is given by the Formula 1:

Priority ¼
1

D�Trp
if D[Trp

0 otherwise

�
ð1Þ

where D is a deadline and Trp is time of request processing. Requests are processed in
descending order of their priorities. Requests with priority equal to 0 are rejected.

Since the time of accessing a data item in a bucket is negligible comparing to the
average time of transmitting the item through a network (Tnm), we define the Trp as
follows (Formula 2):

Trp ¼ n � Tnm ð2Þ

where the n factor is equal 4 and it is introduced to provide for potential delays in
network transmission. The Split Coordinator (SC) is a special element that oversees all
bucket splits. SC takes a decision which bucket should split. During a split operation a
new bucket is created and about half of the data stored in the splitting bucket are moved
to the new bucket. In order to support real-time policy during the splits, transfer
between buckets occurs in the background. The read requests operate on a copy of data
until the split ends, while other requests are blocked. In the rest of the paper we refer to
the real-time enabled SDDS LH* by the name SDDS LHRT.

6 Experimental Results

Since there is no similar solutions that deal with real time requests, our architecture were
evaluated by comparing the QoS obtained in traditional SDDS LH* and the QoS sup-
ported by the SDDS LHRT. We performed also some other experiments, showing the
advantages of our approach. Both SDDS architectures (SDDS LH* and SDDS LHRT)
were implemented as prototype distributed data stores, then experiments comparing the
effectiveness of both solutions were performed. In the experiments we have evaluated

Table 1. Characteristics of requests

Size [KiB] Deadline range [ms] Average time of transmission [ms]

4 20–40 1
8 25–50 2
16 35–70 3
32 50–100 4
64 60–120 5
128 75–150 8
256 100–200 16
512 750–1000 64
1024 1000–2000 192

200 M. Lasota et al.

the amount of rejected time-constrained read and update requests and the maximal
queue length for the real-time and the nonreal-time servers.

As an environment for tests we have used tree nodes of a cluster computer. The
client software was executed on a nodes with Intel Xeon E5410@2.33 GHz processor
(4 cores) and 16 GiB RAM. Server software was run on a node with Intel Xeon
E5205@1.86 GHz processor (2 cores) and 6 GiB RAM. All nodes were connected
through Gigabit Ethernet network. In a single test scenario the client was sending a
number of requests ranging from 100 to 10000. The deadlines for the request was

Fig. 5. Rejected read requests with the regard to the scheduling policy, records size 4 KiB–
1024 KiB, deadlines 20 ms–2000 ms

Fig. 6. Rejected read requests with the regard to the scheduling policy, records size 4 KiB–
1024 KiB, deadlines 20 ms–2000 ms

Scalable Distributed Datastore for Real-Time Cloud Computing 201

chosen from 20 ms to 2000 ms accordingly to an estimated size of the request’s
response which ranged from 4 KiB to 1024 KiB. The stream of requests in each test
was unordered i.e. the requests formed a random pattern with the respect to the value of
deadlines. More detailed information about requests is given in Table 1. For each
record size the appropriate average time of transmission and the deadline range are
assigned. The time of transmission is an average time of processing the single request,
which was measured in our testing environment. Deadline ranges were chosen

Fig. 7. Maximal length of the requests queue, records size 4 KiB–1024 KiB, deadlines 20 ms–
2000 ms

Fig. 8. Maximal length of the requests queue, records size 4 KiB–1024 KiB, deadlines 20 ms–
2000 ms

202 M. Lasota et al.

experimentally to test the wide range of QoS obtained in the SDDS LH*, i.e. QoS <
10% for minimal deadlines and QoS > 90% for maximal deadlines.

Figures 5 and 6 show that with the growing load, the SDDS LH* server (FIFO
queue) may reject up to 97% of all requests, while the rejection rate of the SDDS LHRT

server (PRIORITY queue) stays below 13%.
Figures 7 and 8 show the maximum length of requests queue for a given scheduling

policy. With the increasing total number of request the SDDS LHRT server unloads its
request queue almost twice more efficiently than the SDDS LH* server.

Figure 9 presents average delay of tasks waiting in the priority queue. We may
observe that this delay linearly increases according to the number of records that are
read i.e. according to the processing time. Since deadlines are also proportional to the
size of transmission (Table 1), it is conformable with the LLF strategy. In the FIFO

Fig. 9. Average waiting time for the execution of GET operations

Fig. 10. Average time of scheduling GET operations

Scalable Distributed Datastore for Real-Time Cloud Computing 203

scheduling, the average waiting time will be the same regardless of the size of trans-
mitted data items.

Scheduling of requests introduces a time overhead associated with the calculation
of priorities and queue management. Figure 10 shows that for more than 1000 requests
this overhead is below 2 µs and slightly decreases with increasing number of requests.

Similar experiments were performed in the environment where one client was
sending GET requests while other was sending UPDATE ones. Figure 11 presents
results. We may observe that in this case significantly more requests were rejected in
the PRIORITY queue while number of rejected requests processed in the FIFO order is
unchanged. But still our approach twice improves the results.

UPDATE requests require more time for processing, thus such requests signifi-
cantly decrease the performance of the data store. This results in higher number of
rejected requests as well as a longer queues waiting for the processing (Fig. 12). But
still the queue length is twice shorter in the PRIORITY queue.

Fig. 11. Rejected GET and UPDATE operations, records size 4 KB–1024 KB, deadlines
20 ms–5000 ms

Fig. 12. Maximum request queue length for GET and UP- DATE operations, records size
4 KB–1024 KB, deadlines 20 ms–5000 ms

204 M. Lasota et al.

Figure 13 presents average delay of tasks waiting in the priority queue when one
client was sending GET requests while the other was sending UPDATE ones. We may
observe decrease in performance, the delay linearly increases according to the number
of records. This is caused by increasing number of requests, that causes lengthening of
the queue. Since UPDATE requires more time to process, delays are significantly
longer then in case of GET requests (Fig. 9).

The similar situation occurs in the case of scheduling of requests shown in Fig. 14.
With smaller number of the requests a priority queue behaves like a FIFO queue,
increasing number of requests improves performance and reduces scheduling time.

Fig. 13. Average waiting time for the execution of GET and UPDATE operations

Fig. 14. Average time of scheduling GET and UPDATE operations

Scalable Distributed Datastore for Real-Time Cloud Computing 205

7 Conclusions

In this paper we have presented the architecture of real-time data store that conforms to
the real-time policy used in the real-time cloud computing. Our approach is based on
scalable distributed data structures SDDS LH*. We have developed a real-time variant
of SDDS LH* called SDDS LHRT, where requests are scheduled according to the LLF
method. The experimental results indicate that when a server is overloaded with
incoming requests, even a relatively simple real-time scheduling policy allows it to
process significantly more request, before their deadlines expire. Therefore, the number
of rejected requests is greatly reduced. In this way SDDS LHRT assures significantly
higher QoS in the cloud environment.

We expect that the results could be further improved by applying aging of queued
requests or using a dedicated implementation of the priority queue. Prototype imple-
mentation were not optimized, thus still there is a room for further improvements.

In our future work we plan to address the problem of ensuring the firm real-time
policy for data insertion/update requests and bucket split operations. Solving those
problems will also require providing a real-time forwarding of misaddressed requests.
We will also consider other methods (e.g. hybrid MP/CLP [27]) for optimization of
SDDS LH*-based datastores.

References

1. Buyya, R., Broberg, J., Goscinski, A.: Cloud Computing: Principles and Paradigms. Wiley,
Hoboken (2011)

2. Hui, P., Chikkagoudar, S., Chavarría-Miranda, D., Johnston, M.: Towards a real-time cluster
computing infrastructure. In: The 32nd IEEE Real-Time Systems Symposium (RTSS 2011),
pp. 17–20. IEEE, Piscataway (2011)

3. VoltDB: Fast data – fast, smart, scale|voltdb. www.voltdb.com. Accessed 14 Apr 2015
4. Kao, B., Garcia-Molina, H.: An overview of real-time database systems. In: Halang, W.A.,

Stoyenko, A.D. (eds.) Advances in Real-Time Systems, pp. 463–486. Springer, Heidelberg (1994)
5. Aldarmi, S.A.: Real-time database systems: concepts and design (1998)
6. Lindström, J.: Real Time Database Systems. Wiley Encyclopedia of Computer Science and

Engineering (2008). http://dx.doi.org/10.1002/9780470050118.ecse575
7. Lasota, M., Deniziak, S., Chrobot, A.: An SDDS-based architecture for a real-time data

store. Int. J. Inf. Eng. Electron. Bus, November 2015. MECS Publisher
8. Bigelow, D., Brandt, S., Bent, J., Chen, H., Nunez, J., Wingate, M.: Mahanaxar: managing

high-bandwidth real-time data storage. https://systems.soe.ucsc.edu/node/389. Accessed 14
Apr 2015

9. Yang, F., Tschetter, E., Léauté, X., Ray, N., Merlino, G., Ganguli, D.: Druid: a real-time
analytical data store. In: Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2014, pp. 157–168. ACM, New York (2014). http://doi.
acm.org/10.1145/2588555.2595631

10. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: a scalable
peer-to-peer lookup service for internet applications. In: Proceedings of the 2001
ACM SIGCOMM Conference, pp. 149–160 (2001). http://pdos.csail.mit.edu/papers/chord:
sigcomm01/chord_sigcomm.pdf

206 M. Lasota et al.

http://www.voltdb.com
http://dx.doi.org/10.1002/9780470050118.ecse575
https://systems.soe.ucsc.edu/node/389
http://doi.acm.org/10.1145/2588555.2595631
http://doi.acm.org/10.1145/2588555.2595631
http://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
http://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf

11. Steinmetz, R., Wehrle, K.: Peer-to-Peer Systems and Applications. LNCS, vol. 3485.
Springer-Verlag, Heidelberg (2005)

12. Qian, T., Chakrabortty, A., Mueller, F., Xin, Y.: A real-time distributed storage system for
multi-resolution virtual synchrophasor. In: PES General Meeting on Conference Exposition,
July 2014, pp. 1–5. IEEE (2014)

13. Litwin, W., Neimat, M.-A., Schneider, D.A.: LH* — a scalable, distributed data structure.
ACM Trans. Database Syst. 21(4), 480–525 (1996). citeseer.ist.psu.edu/litwin96lh.html

14. Ndiaye, Y., Diene, A., Litwin, W., Risch, T.: AMOS-SDDS: a scalable distributed data
manager for windows multicomputers. In: 14th International Conference on Parallel and
Distributed Computing Systems, PDCS (2001). citeseer.ist.psu.edu/ndiaye01amossdds.html

15. Sapiecha, K., Łukawski, G.: Scalable Distributed Two-Layer Data Structures (SD2DS).
IJDST 4, 15–30 (2013)

16. Litwin, W., Neimat, M.-A., Schneider, D.: RP*: a family of order preserving scalable
distributed data structures. In: Proceedings of the Twentieth International Conference on Very
Large Databases, Santiago, Chile, pp. 342–353 (1994). citeseer.ist.psu.edu/736278.html

17. Bak, S., Czarnecki, R., Deniziak, S.: Synthesis of real-time cloud applications for Internet of
Things. Turkish J. Electr. Eng. Comput. Sci. 37(3), 913–929 (2015)

18. McGregor, C.: A cloud computing framework for real-time rural and remote service of
critical care. In: 2011 24th International Symposium on Computer-Based Medical Systems
(CBMS), pp. 1–6, June 2011

19. Tsai, W., Shao, Q., Sun, X., Elston, J.: Real-time service-oriented cloud computing. In: 6th
World Congress on Services, SERVICES 2010, Miami, Florida, USA, 5–10 July 2010,
pp. 473–478 (2010). http://dx.doi.org/10.1109/SERVICES.2010.127

20. Liu, S., Quan, G., Ren, S.: On-line scheduling of real-time services for cloud computing. In:
6th World Congress on Services, SERVICES 2010, Miami, Florida, USA, 5–10 July 2010,
pp. 459–464 (2010). http://dx.doi.org/10.1109/SERVICES.2010.109

21. Kyriazis, D., Menychtas, A., Oberle, K., Voith, T., Lucent, A., Boniface, M., Oliveros, E.,
Cucinotta, T., Berger, S.: A real-time service oriented infrastructure. In: Proceedings of Annual
International Conference on Real-Time and Embedded Systems (RTES 2010), pp. 39–44 (2010)

22. Freeny, C.: Automatic Stock Trading System, uS Patent 6,594,643 (2003). http://www.
google.com/

23. Fenu, G., Surcis, S.: A cloud computing based real time financial system. In: Bestak, R.,
George, L., Zaborovsky, V.S., Dini, C. (eds.) ICN 2009, pp. 374–379. IEEE Computer
Society (2009). http://dblp.uni-trier.de/db/conf/icn/icn2009.html#FenuS09

24. Javed, O., Rasheed, Z., Alatas, O., Shah, M.: KNIGHTTM: a real time surveillance system
for multiple and non-overlapping cameras. In: Proceedings of the 2003 IEEE International
Conference on Multimedia and Expo, ICME 2003, Baltimore, MD, USA, 6–9 July 2003,
pp. 649–652 (2003). http://dx.doi.org/10.1109/ICME.2003.1221001

25. Lu, F., Wang, J., Cheng, L., Xu, M., Zhu, M., Chang, G.-K.: Millimeter-wave
radio-over-fiber access architecture for implementing real-time cloud computing service.
In: CLEO 2014, p. STu1J.1. Optical Society of America (2014). http://www.opticsinfobase.
org/abstract.cfm?URI=CLEO_SI-2014-STu1J.1

26. Han, S., Park, M.: Predictability of least laxity first scheduling algorithm on multiprocessor
real-time systems. In: Zhou, X., et al. (eds.) EUC Workshops 2006. LNCS, vol. 4097,
pp. 755–764. Springer, Heidelberg (2006)

27. Sitek, P., Wikarek, J.: A hybrid approach to the optimization of multiechelon systems. Math.
Prob. Eng. 2015(12) (2015)

Scalable Distributed Datastore for Real-Time Cloud Computing 207

http://citeseer.ist.psu.edu/litwin96lh.html
http://citeseer.ist.psu.edu/ndiaye01amossdds.html
http://citeseer.ist.psu.edu/736278.html
http://dx.doi.org/10.1109/SERVICES.2010.127
http://dx.doi.org/10.1109/SERVICES.2010.109
http://www.google.com/
http://www.google.com/
http://dblp.uni-trier.de/db/conf/icn/icn2009.html%23FenuS09
http://dx.doi.org/10.1109/ICME.2003.1221001
http://www.opticsinfobase.org/abstract.cfm%3fURI%3dCLEO_SI-2014-STu1J.1
http://www.opticsinfobase.org/abstract.cfm%3fURI%3dCLEO_SI-2014-STu1J.1

Application of Statistical Classifiers
on Java Source Code

Matej Mojzes, Michal Rost, Josef Smolka(&), and Miroslav Virius

Department of Software Engineering, Faculty of Nuclear Sciences
and Physical Engineering, CTU in Prague, Prague, Czech Republic

smolkjos@fjfi.cvut.cz

Abstract. The paper deals with detection of structures in source codes
employing statistical classification. To enhance source code perception by
development tools like code editors, modeling tools and source code reposito-
ries, various methods of patterns classification are proposed and tested. To be
able to apply classification algorithms, well-defined feature space is required.
Thus, such a feature space is presented and tested. Sub-models search is carried
out by a genetic algorithm to select the optimal feature space subset without
deterioration of a classification system. The results show that with standard
classification algorithms like k-NN or Perceptron, accuracy of 0.8 can be
achieved.

1 Introduction

Detection and classification of patterns that surround man are not an invention of this or
previous century. The urge to bring an organization into apparent chaos of the natural
world is old as Plato, the classical Greek philosopher, mathematician and pedagogue,
whose work on forms and properties was further extended by his most famous student
Aristotle [3]. He divided properties of things into two categories, ones that are the same
for each member of a class and ones that differ between classes. Definition of feature
space for statistical classification is exactly the same concept, to find properties that
distinguish members of different classification classes [9]. This paper deals with an
uncommon data type for a statistical classification, on contrary to the image or sound
processing, for source code of an object-oriented strongly typed languages, like Java,
there are no best practices concerning definition of feature space for various tasks.
Thus, to be able to employ various classical classifiers as Nearest Neighbour (NN, and
k- NN extension), logistic regression, Perceptron (linear as well as modern kernel
variants), Artificial Neural Network (ANN) and Support Vector Machine (SVM) for
pattern recognition, means of feature space definitions have to be examined thoroughly.

Recognition and classification of defined structures in source code can be regarded
as a required prerequisite of complex automatic refactoring, advanced measurement of
software and design quality or source code verification against a specification. In sum,
successful application of statistical principles traditionally used in machine perception
can enhance the source code perception by standard software development tools.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_16

1.1 Previous Research

The idea of complex patterns recognition in source code emerged in the late 90 s with the
expansion of object-oriented languages. The principles of recognition differ with authors
of particular papers. In 1998, Antoniol et al. published a work on pattern detection in C++
source codes [2]. The important idea is to use source code metrics for design patterns
detection. In their second paper, Antoniol et al. presented a method of design pattern
recovery built on feature vector [1]. The main concept is to represent a source code in the
simplified form of Abstract Object Language (AOL), which is then used for feature
extraction. Classification is performed by rules extraction method. In 2004, Gueheneuc
et al. issued a paper, in which much more sophisticated feature space is presented [15]. In
contrary to Antoniol, Gueheneuc stated that even single class can be classified as a
member of more complex structure [15]. Same as Antoniol, Gueheneuc also used rules
extraction method of classification. In contrary to Antoniol and Gueheneuc, Ferenc et al.
are using various methods of machine learning, decision trees and artificial neural net-
works in particular. Another approach to classification on source code is decidingwhether
the presented code is right or bad according to some coding standards. Lerthathairat and
Prompoon used a fuzzy rules extraction method for this purpose [16]. Maiga et al. further
extend this idea by detecting anti-patterns in a code, which indicate possible problems.
Detection is carried out by Support Vector Machines [18].

1.2 Basis of the Paper

This paper honors the idea, that every class (as a data type) can be classified as
single-class pattern or member of some more complex pattern and further develops the
application of statistical classifiers for patterns detection and classification. For this
purpose, new feature space is proposed as well as a method of features extraction from
Java source code.

2 Methods of Classification

The paper deals with classification in Java source code, but principles described here
can be used in any other objectoriented strongly typed languages like C++ or C#. The
proposed method cannot be applied to dynamic languages (like Ruby, Groovy or
Python) as some of the developed features depend on variable data type matching
during static analysis.

2.1 Detected Structures

To test the proposed approach some simple single-class design patterns [14] as well as
structures that correspond to several UML 2 class stereotypes [21] were chosen. In
sum, eleven classes were defined:

• Utility is a class that contains mainly static methods that are mostly used by other
classes. In UML, such a class is usually denoted by Utility stereotype. Utility class
can be identified by the ratio of static methods and ratio of self-method invocation.

Application of Statistical Classifiers on Java Source Code 209

• Factory is a class that contains factory methods. Factory methods are responsible
for object instances creation, abstracting the process of object creation so that the
actual type can be resolved at run-time. Factory is a typical design pattern. Factory
pattern can be identified by the ratio of methods that return a result of class con-
structor invocation (directly or through another factory method).

• Builder is a support class for setting up a state of complex objects; it is a typical
design pattern. Methods of builder usually have one or more arguments, return self
as a result and work with class properties.

• Adapter is a class that addresses a problem of incompatible interfaces by providing
an interlink. Adapter is another common design pattern. Adapter usually imple-
ments one or more interfaces and contains a property of the adapted type.

• Proxy is a class that serves as a placeholder for an actual object. Usually, it is used
to introduce a caching or a security feature not present in the actual object. Proxy is
derived from the same base class as the actual object and contains a property of the
actual object.

• Decorator is a class that usually alter the behavior of decorated object or add some
new functionality. Decorator usually has a constructor with decorated object as an
argument.

• Bean is a primitive class holding data. This is typical for UML Type stereotype or
Crate design pattern. Bean can be easily identified by a high ratio of setters and getters.

• Data Access Object (DAO) is a class serving as an accessor to some (typical
remote) collection of data. For DAO, a high ratio of methods with a relatively small
number of arguments and excessive usage of try/catch are the typical symptoms.
In UML, DAO is usually denoted by Entity stereotype.

• Worker is a class usually implementing some data transformation that is a core
process for an application. Worker class usually uses or combine other objects to
achieve a principal goal of the application. Such a class can be denoted in UML by
a Focus stereotype. Identification of worker is not an easy task as it is a very
dynamic structure with little or no rules of implementation.

• Composite represents some hierarchical structure, usually a recursive tree.
Composite typical holds a reference to children or parent of the same type.

• Constant is similar to Utility class, but for the Constant pattern, the ratio of static
properties instead of methods is typical.

Design patterns Adapter, Proxy and Decorator are quite similar in an implemen-
tation and their successful classification requires to grasp the little differences and
project them into a feature space. It is not an easy task to collect sufficient amount of
samples for every proposed class. For this, public source code repositories were
manually searched, and representative samples were hand-picked.

2.2 Feature Space

In machine learning, a feature is a measurable property that describes a certain quality
of observed phenomena and typically has a numerical form. Features are used as a
whole set called the feature vector. Features in the feature vector should be independent

210 M. Mojzes et al.

and should distinguish patterns or classes from each other. The presented feature space
is based on a study of selected classes, application of software engineering and
object-oriented programming knowledge. Feature Fi from feature space S = {F1, F2,
…, Fp} is understood as function Fi : C → R, which transforms declaration of data
type c in C to a real number. The Fi is from an interval < 0, 1 > and represents a ratio
of occurrence of some source code artifact in particular data type declaration. The
feature space consists of 40 features divided into several groups: expressions, state-
ments, members and relations. The first two feature sets are connected with expressions
and statements in the project code. For instance, a typical expression feature is a
number of instantiations within a definition of a data type weighted by the total number
of expressions of the same data type. A typical member feature is, for example, a
number of public, non-static setters and getters in a selected data type weighted by the
total number of methods of the same data type. Relation features depict the relationship
of a data type with its surroundings; this kind of feature is, for instance, a logical value
which is set to true if the data type uses its direct parent type as an attribute. Features
used for the classification are more thoroughly described in [20].

2.3 Feature Space Optimization

A relevant question, in accordance with the curse of dimensionality, is whether 40
features are not too many and whether the number of features could be reduced without
statistically significant deterioration of the classification system. To improve the clas-
sification performance in the first place, search for the optimal feature sub-model was
performed. Since there is: 240 possible sub-models, it is hardly possible to search
systematically for the optimal one, therefore a heuristic search was employed. Genetic
algorithm (GA) with tournament selection and a combination of crossover and muta-
tion genetic operators was utilized for this purpose.

2.4 Method of Features Extraction

Classification data comprise source codes of Java programs. Each text file represents a
compilation unit, which can hold zero or more public type declarations and zero or
more package private and inner type declarations. Structure of compilation unit is
depicted by Fig. 2. The unit of classification is a declaration of data type: class,
interface, or enum.

A process of features extraction can be simply described as follows. For all f 2 D,
where f is a sourcefile, andD is a set of inputfiles (like directory), perform following steps:

1. read all content of f and store it into memory into string variable A,
2. extract set of data types declarations C(f) from A,
3. 8ci 2 Cðf Þx1 ¼ ðF1ðciÞ; F2ðciÞ; F3ðciÞ; . . .; FpðciÞÞ, where Fi is a feature.

The question was how to extract the data types declarations and implement the
presented transformation Fj (ci). Inspired by XQuery, SQL (an etalon of query lan-
guages), and LINQ, a new internal homogeneous domain-specific language for the

Application of Statistical Classifiers on Java Source Code 211

definition of predictors, hosted in Groovy, was designed and implemented. The core of
the language consists of a query statement similar to SQL:

Listing 1: An example of the query statement

select method, m: {m.name}, from: T, where:
[modifiers: PUBLIC & not(STATIC)]

Apart from the selection of methods as in the example, types, attributes, expres-
sions and statements can be selected by specifying an appropriate keyword after the
select. Selection can be executed on a current node of AST, or the AST can be searched
in a depth-first manner. When restricting string properties of nodes, regular expressions
can be used. As Groovy is very flexible language, the presented example query
expression is, in fact, a valid Groovy method invocation statement. The language does
not have support for graph matching, so there is no statement for searching whole
structures. On the other hand, the language supports logic statements such as exactly
one exists, at least one exists, and one or more exist.

Listing 2: An example of the exists statement.

E one, method, in: T, where: [modifiers: PUBLIC &
not(STATIC) & not(NATIVE), constructor: false]

To be able to reuse predefined queries across feature definitions, the language
contains a possibility to define library functions.

Listing 3: An example of an user-defined function.

function ’isPureGetter’, { m ->
a = E one, method, in: m, where: [modifiers:
 PUBLIC & not(STATIC) & not(NATIVE),
 constructor: false]
b = E two, statement, in: m /* block, return */
c = E one, statement, in: m, where: [nodeType:
 RETURN_STATEMENT]
st = select statement, from: m, where: [nodeType:
 RETURN_STATEMENT]
d1 = E one, expression, in: st, where: [nodeType:
 FIELD_ACCESS | SUPER_FIELD_ACCESS], deep: true
d2 = false
d0 = E one, expression, in: st, where: [noteType:
 SIMPLE_NAME], deep: true

/* ... */

return a && b && c && (d1 || d2)

}

212 M. Mojzes et al.

2.5 Used Classifiers

Processing of big data set is mainly the domain of statistics, thus it is not a surprise that
many classification methods have roots in statistical principles. In this paper, a subset
of classifiers with supervised learning is used. If classifier does not support natively
multi-class problem, it is adapted using one of the following technique:

• One to All reduction (OtA) Single classifier per class is trained with samples of that
class as positive samples and all other as negatives.

• One to One reduction (OtO) K(K − 1)/2 binary classifiers for K-class problem are
trained. Each classifier instance is trained using samples of a pair of classes from the
original training set to distinguish these two classes.

At prediction time, a voting mechanism using balance criterion is applied to
determine the sample resulting label. Classifiers were implemented using object-
oriented programming principles. Simplified view on objects structure offers Fig. 1.
Following classifiers were implemented and tested.

k-Nearest Neighbour: In the field of classification, k-Nearest Neighbour (k-NN) is one
of the simplest, yet efficient and widely employed non-parametric algorithm [5, 10].
A point in a feature space is classified by the nearest neighbours in the training set.
Algorithm can be modified by the selection of the k and a distance measure. Algorithm
weakness is a case with a non-uniform probability distribution, in which samples of
most present class bias the classification result. This can be, for example, solved by
weighting the point by its distance to examined point [10]. Algorithm efficiency is
decreasing with increasing problem dimension [5]. An advantage of k-NN is its
computational complexity, which is very low. The algorithm can be further optimized
by simplifying the distance computation (by data set compression or search tree
application). Weighted and non-weighted variants were implemented and tested.

Fig. 1. Simplified diagram of classifiers implementation.

Application of Statistical Classifiers on Java Source Code 213

Logistic Regression: Logistic regression is linear probabilistic classifier. A probability
that presented sample belongs to a particular class is modeled with the help of logistic
function. Application of logistic regression is usually based on maximum like-hood
optimization by various numeric methods [6]. Many variants of logistic regression with
different methods of training were implemented and tested, including:

• Iterative Reweighted Least Squares (IRLS),
• Broyden-Fletcher-Goldfarb-Shanno (BFGS) [12, 27],
• Davidon-Fletcher-Powell (DFP) [12],
• Fletcher-Reeves Conjugate Gradient (FRCG) [12],
• Liu-Storey Conjugate Gradient (LSCG) [17], Polack-Ribiere Conjugate Gradient

(PRCG) [12],
• Gradient Descent (GD).

Perceptron: Perceptron is the first and one of the simplest models of artificial neural
networks introduced by F. Rosenblatt in 1957 [23]. In essence, it is a weighted linear
network. Network weights, which can be initialized randomly in the beginning, are
gradually modified during the training according to Perceptron algorithm [19]. Various
linear and kernel derivatives were implemented:

• Classic Perceptron with Perceptron algorithm and STEP activation function [23],
• Voted Perceptron [13],
• Ballseptron (linear and kernel) [26],
• Passive Aggressive Perceptron [7],
• Kernel Perceptron,
• Projectron [22],
• Forgetron [8].

Neural Network: Multi-layered perceptron overcomes the condition of linear separa-
bility, which limits classic perceptron, by inserting one or more disjunctive layers with
non- linear activation function between input and output layer. An output of one layer
servers as an input of another layer. All neurons from one layer are usually connected
with all neurons of the following layer. Well-known Neuroph library was used for
implementation of ANN classifiers [25].

Fig. 2. Structure of compilation unit of Java platform languages

214 M. Mojzes et al.

Support Vector Machine: The method of support vectors deals with non-linear sepa-
rability by transferring the classification problem into a higher level dimension. The
fundamental principle is to find such a hyperplane, which divides the problem space
into two subspaces, where every subspace contains mainly samples from one class and
maximizes distance of the closest samples (support vectors) from the border formed by
this hyperplane at the same time [4]. For the implementation of SVM classifier, the
JLibSVM library was used [28].

3 Results

Each classifier variant was tested using a 5-folded cross- validation. In this variant of
cross-validation, the data set is divided into five folds with a uniform distribution of
classes. In each iteration, four of the five folds are used for training and one for
verification. This method simulates a behavior of classifiers on an independent data set
and is more close to real-life classifiers deployment then common fitting. One thousand
evaluations of cross-validation were carried out, and average error, and standard
deviation were computed. The cross-validation was implemented with multi-thread
support in order to be able to utilize nowadays multi-core CPUs. All computations were
performed on a server with following configuration: 4 × CPU AMD Opteron
2200 MHz (4 cores), 16 GB RAM, CentOS 7, Java 1.7. Table 1 contains achieved
results for best performing classifier variants.

As shows the Table 1, the best performing classifier was distance weighted k-NN
(k = 2) with Manhattan (grid) distance measure, which achieved average error of 0.190
on full model and 0.167 on sub-model with 33 features. This simple multiclass clas-
sifier performed better than all the more binary classifiers with different adaptations on
the many-class problem. The only other classifier that achieved accuracy higher than
0.8 was kernel perceptron, Ballseptron with RBF kernel and OtO adaptation in par-
ticular [26], with an average error of 0.196 on sub-space with 30 features.

The classification error is partially influenced by Worker and DAO classes, which
are very variable in implementation and thus hard to identify. The majority of mistakes
consists of misclassification of Worker and DAO classes. In general, the prediction
error depends on ability of feature space to grasp the subtleties of particular patterns.

4 Discussion

In sum, over fifty classifier variants were tested during the experiment. For k-NN,
various distance measures were tested: normal (1/2, 2, 3), Chebyshev, cosine, as well as
various values of k. All k-NN classifiers preferred smaller values of k (<10). The
important feature of implemented k-NN classifier is the weighting mechanism. Classifier
performance without weighting according to distance was unsatisfactory. For logistic
regression, some precautions have to be implemented, in order to achieve numerical
stability. To penalize logistic regression classifier for too high weights values, L2 reg-
ularization was implemented and utilized during training. Search for weights optimizing
the like-hood criterion was carried out using various iterative methods: Iterative

Application of Statistical Classifiers on Java Source Code 215

Reweighted Least Squares (IRLS), Broyden-Fletcher-Goldfarb-Shanno (BFGS)
[12, 27], Davidon-Fletcher-Powell (DFP) [12], Fletcher- Reeves Conjugate Gradient
(FRCG) [12], Liu-Storey Conjugate Gradient (LSCG) [17], Polack-Ribiere Conjugate
Gradient (PRCG) [12], and Gradient Descent (GD). Those methods were implemented
using the Cognitive Foundry library [24]. Despite the classic perceptron from the 70s,
more modern linear and kernel variants with various kernels (sigmoid, polynomial,
RBF) were tested. As for ANN, two-layer (without a hidden layer, but with non-linear
activation function) and three-layer perceptrons were tested with various activation
functions. Support Vector Machine was tested with various kernels (linear, RBF, sig-
moid, polynomial). Overall, experiments did not show that one method of adaptation is
better than the other. Classifiers, in general, preferred settings that enabled them to
generalize more. As to feature space reduction, all examined classifiers performed better
on optimized sub-models, which leads to a discussion how should be the feature space
constructed. In average, classifiers utilized 80% of original feature space.

As there are no reference data sets for pattern matching in source code, that could
be used for results verification, the results conclusiveness is endangered. The authors
are aware that without proper comparison with other methods of source code patterns
recognition proposed method validity cannot be evaluated and authors are working
towards such comparison.

5 Conclusion

The paper experimentally proved that classic statistical classifiers can be utilized in
pattern recognition and classification in Java source code with success rate on presented
patterns subset slightly exceeding 83% in cross-validation. In order to be able to apply
such classifiers on source code, new feature space and method of features extraction
was proposed and implemented. During the feature extraction process, the source code
was translated into AST, which was further regarded as an object database. A new
query language for the database was designed and implemented. Features were defined
as queries to this object database.

Table 1. Overall classifiers results on full feature space as well as on sub-model. Error of
prediction e, standard deviation σ and number of utilized features #F are listed

Classifier Variant Full model Sub-model
e σ e σ #F

k-NN k = 2, Manhattan measure 0.190 0.062 0.167 0.047 33
Logistic Regression FRCG/OtA 0.241 0.048 0.218 0.066 33
Logistic Regression IRLS/OtO 0.250 0.033 0.208 0.055 33
Linear Perceptron PRC/OtA 0.336 0.052 0.302 0.037 32
Kernel Perceptron BALRBF/OtO 0.239 0.070 0.196 0.046 30
Neural Network TANH/OtO, h = 10 0.218 0.040 0.214 0.040 35
Neural Network GAUS/OtO, h = 2 0.227 0.047 0.202 0.048 30
Support Vector Machine RBF/OtO 0.227 0.060 0.213 0.045 35

216 M. Mojzes et al.

The vision is, that with enhanced feature space and refined methods of classification,
the source code perception can be substantially enhanced. This could be used by inte-
grated development environments to assist further with coding, by analytical modeling
tools and tools supporting the model- driven architecture to verify the implementation
against a specification. Such methods can be also used in security to detect possible
dangerous anomalies in source code repositories of open source projects.

Only supervised classifiers were tested thoroughly so far, but for other listed
applications, unsupervised learning (clustering) can be more appropriate. Clustering
methods like SOM (Kohonen Map), k-Means Clustering and Fuzzy k-Means clustering
are scheduled for implementation and study. Moreover, a comparison with other
methods of source code patterns recognition, as sub-graphs matching, is going to be
carried out in order to evaluate viability of the proposed method.

Acknowledgment. This paper was supported by the grant SGS14/210/OHK4/3T/14.

References

1. Antoniol, G., Fiutem, R., Cristoforetti, L.: Design pattern recovery in object-oriented
software. Proc. IWPC 98, 153–160 (1998). doi:10.1109/WPC.1998.693342

2. Antoniol, G., Fiutem, R., Cristoforetti, L.: Using metrics to identify design patterns in
object-oriented software. In: Proceedings of Fifth International Software Metrics Sympo-
sium, pp. 23–34 (1998). doi:10.1109/MET-RIC.1998.731224

3. Bloom, A.: The Republic of Plato, 2nd edn. Basic Books, New York (1991). ISBN
978-0465069347

4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
5. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13(1),

21–27 (1967). doi:10.1109/TIT.1967.1053964
6. Cox, D.R.: The regression analysis of binary sequences. J. Royal Stat. Soc. Ser.

B (Methodological) 20, 215–242 (1958)
7. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online

passive-aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)
8. Dekel, O., Shalev-Shwartz, S., Singer, Y.: The forgetron: a kernel- based perceptron on a

budget. SIAM J. Comput. 37(5), 1342–1372 (2008)
9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2000). ISBN

978-0471056690
10. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man

Cybern. SMC-6(4), 325–327 (1976). doi:10.1109/TSMC.1976.5408784
11. Ferenc, R., Beszedes, A., Fueloep, L., Lele, J.: Design pattern mining enhanced by machine

learning. In: Proceedings of International Conference on Software Maintenance (ICSM 2005),
pp. 295–304. IEEE Computer Society (2005). doi:10.1109/ICSM.2005.40

12. Fletcher, R.: Practical Methods of Optimization. Wiley, New York (2000). ISBN
978-0471494638

13. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm.
Mach. Learn. 37, 277–296 (1999). doi:10.1.1.48.8200

Application of Statistical Classifiers on Java Source Code 217

http://dx.doi.org/10.1109/WPC.1998.693342
http://dx.doi.org/10.1109/MET-RIC.1998.731224
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1109/TSMC.1976.5408784
http://dx.doi.org/10.1109/ICSM.2005.40
http://10.1.1.48.8200

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, Boston (1994). ISBN 978-
0201633610

15. Gueheneuc, Y.G., Sahraoui, H., Zaidi, F.: Fingerprinting design patterns. In: Proceedings of
11th Working Conference on Reverse Engineering (WCRE 04), pp. 172–181. IEEE
Computer Society (2004). doi:10.1109/WCRE.2004.21

16. Lerthathairat, P., Prompoon, N.: An approach for source code classification to enhance
maintainability. In: Eighth International Joint Conference on Computer Science and
Software Engineering (JCSSE), pp. 319–324 (2011). doi:10.1109/JCSSE.2011.5930141

17. Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms, part 1: theory.
J. Optim. Theory Appl. 69(1), 129–137 (1991)

18. Maiga, A., Ali, N., Bhattacharya, N., Sabane, A., Gueheneuc, Y., Antoniol, G., Aimeur, E.:
Support vector machines for anti-pattern detection. In: Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 278–281 (2012).
doi:10.1145/2351676.2351723

19. Minsky, M.L., Papert, S.A.: Perceptrons: An Introduction to Computational Geometry.
The MIT Press, Cambridge (1987). ISBN 978- 0262631112

20. Mojzes, M., Rost, M., Smolka, J., Virius, M.: Feature space for statistical classification of
Java source code patterns. In: 15th International Carpathian Control Conference (ICCC),
pp. 357–361 (2014). doi:10.1109/CarpathianCC.2014.6843627

21. Object Management Group, OMG Unified Modeling Language (OMG UML) Superstruc-
ture, version 2.4.1 (2011)

22. Orabona, F., Keshet, J., Caputo, B.: Bounded kernel-based online learning. J. Mach. Learn.
Res. 10, 2643–2666 (2009). Rosenblatt, F.: The Perceptron: A Perceiving and Recognizing
Automaton

23. Rosenblatt, F.: The perceptron: a perceiving and recognizing automaton, Technical report
85-460-1. Aeronautical Lab., Cornell Univ. (1957)

24. Sandia National Laboratories. Cognitive Foundry. http://foundry.sandia.gov/
25. Sevarac, Z., et al.: Neuroph – Java Neural Network Framework. http://neuroph.sourceforge.

net
26. Shalev-Shwartz, S., Singer, Y.: A new perspective on an old perceptron algorithm. In: Auer,

P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 264–278. Springer,
Heidelberg (2005)

27. Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math.
Comput. 24(111), 647–656. doi:10.1090/S0025-5718-1970-0274029-X

28. Soergel, D.: jLibSVM – Efficient training of Sup- port Vector Machines in Java. https://
github.com/davidsoergel/jlibsvm

218 M. Mojzes et al.

http://dx.doi.org/10.1109/WCRE.2004.21
http://dx.doi.org/10.1109/JCSSE.2011.5930141
http://dx.doi.org/10.1145/2351676.2351723
http://dx.doi.org/10.1109/CarpathianCC.2014.6843627
http://foundry.sandia.gov/
http://neuroph.sourceforge.net
http://neuroph.sourceforge.net
http://dx.doi.org/10.1090/S0025-5718-1970-0274029-X
https://github.com/davidsoergel/jlibsvm
https://github.com/davidsoergel/jlibsvm

Contribution to Teaching Programming
Based on “Object-First” Style at College

of Polytechnics Jihlava

Marek Musil(&) and Karel Richta

Department of Technical Studies, The College of Polytechnics Jihlava,
Jihlava, Czech Republic

{marek.musil,karel.richta}@vspj.cz

Abstract. There are several different approaches to teaching programming,
based on programming styles. A concept “first the object-oriented style, then the
other one” known as “object-first” is currently being promoted by a number of
technical colleges. The reasons originate from the practical area. Also the teaching
of programming at the College of Polytechnics Jihlava (COPJ) is being switched
from the “structural-then-object” style of programming to the “object-first” style.
After the second run, the results achieved by students do not seem (very) good.
This can be confirmed from the courses’ feedback. It seems that the students are
puzzled and their skills are poorer. Therefore, we decided to examine the results
achieved by students and their opinion on the “object-first” style especially. This
survey was carried out after the completion of the course with “object-first”
teaching and at the beginning of the course with “structural” teaching. We are
interested in skills in object-oriented programming and also in structural pro-
gramming, but especially skills at the beginning of study at COPJ and the type of
completed high school. We addressed our students attending the course of
“structural programming”. The third run of this teaching approach started. In this
paper we introduce the first survey results. Even though the number of respon-
dents is not big, the statistic results are significant within the College.

1 Introduction

There are several approaches to teaching programming, based on programming styles.
The first choice is the established approach “first the structural style, then the
object-oriented style” known as “structure-first” approach. The second offered teaching
programming concept is the style “first the object-oriented style, then the other one”
known as “object-first”. This is currently being promoted for the programming teaching
by a number of technical colleges.

The reasons mentioned come from the practical area. Current programming systems
are typically developed in the object-oriented style. For this purpose, knowledge and
skills mentioned hereafter are required. Students should understand the principle of
objects including meaning of their properties and methods. In addition, they should be
able to use existing objects (components) without profound structural principles
knowledge (without profound knowledge of structural principles and structural pro-
gramming). Deep structural programming is not required for these work positions. On

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_17

the contrary, the opinion on the object-first is not unified. However, even the form of
the course “object-fist” including exercises is in discussion.

We are interested in the student’s opinion on “object-first” especially. Our next goal
is understanding programming skills following in relation to the programming ability
and skills gained at high school. A technical high school or a technical study pro-
gramme at high-school as well as respondent’s self- evaluation of programming skills
are important for our intended inquiring.

2 Related Works

Empirical studies are presented in [2, 5, 7]. These reveal results for object-first and
against structural programming as first. Bennedsen and Schulte [2] described three
categories – using objects, creating classes and concepts. This option is justified in their
article. The presented discussion on object-first leads to the new and innovative ways of
teaching introductory programming. Johnson and Moses [7] performed an empirical
study for the purpose of comparison of two students groups after a semester including
programming teaching. While the first group studies objects and classes very early in
the semester, the second group studies the basic programming structures. The exam
result is clear. It indicates that students who take the object-first approach outperform
those who take a structure-first approach [7]. It seems that the object-first approach
outperforms the structure-first.

Briand et al. [3] proclaim a distinct lack of empirical evidence. They claim that
object-oriented techniques are more popular as a result of opinion and anecdotal evi-
dence only. Result of empirical evidence is omitted. A few of these not too convincing
results are presented in their paper and mentioned below.

Firstly, Jones [6] confirms insufficiency of evidence. He identified several areas
where a distinct lack of empirical evidence exists to support the assertions of gains in
productivity and quality, reduction in defect potential and improvement in defect
removal, and reuse of software components. [3] However, no empirical research proves
the object-oriented development techniques as the option always providing the many
benefits. Several are presented hereafter.

Basili et al. [1] introduces a positive result of their study of object-oriented tech-
niques. This result provides significant benefits from reuse in terms of reduced defect
density and rework as well as increased productivity [3]. For example, it could be shown
in a development environment after introducing an object-oriented design method.

On the other hand, there are presented two negative results. Van Hillergersberg
et al. [10] deliver the finding, that object-oriented concept is not easy to learn and use
quickly. However, their evidence is not too convincing as regards the object-oriented
design. Daly et al. [4] discovered the finding about inheritance depth and class hier-
archies. Inheritance depth and conceptual entropy of class hierarchies can cause pro-
grammers difficulty maintaining object-oriented software.

Finally, Brian et al. [3] presents a controlled experiment performed with computer
science students as subjects. They try to answer questions regarding the ease of
understanding and modifying as two essential components of maintainability, including
their impact on quality standards. Whereas object-oriented design documents

220 M. Musil and K. Richta

win/triumph quality standards based on Coad and Yourdon principles, they are more
sensitive to poor design practices.

Their results are as follows:

1. Maintainers with little experience don’t gain great benefit maintaining
object-oriented designs over structured designs. (By using practical significance,
statistical was not achieved.)

2. Adherence to ‘good’ object-oriented design principles will provide ease of under-
standing and modification for the resulting design when compared to an
object-oriented design in which the principles have not been adhered to. (Used by
statistical significance).

3. An object-oriented design which did not adhere to quality design principles is likely
to cause more understanding and modification difficulties than an appropriate
structured design. (The significant evidence).

Results mentioned above suggest the following. Switching developers proficient in
structured techniques to object-oriented techniques may actually have negative effects
on the design of the product until they become as proficient with the object-oriented
techniques.

3 Materials and Methods

In conformity with re-accreditation of the study programs of Applied Computer Sci-
ence and Computer Systems at the College of Polytechnics Jihlava (COPJ), which
started from the academic year 2013/2014, the teaching of programming is being
switched from the “structural, then object-oriented” style to the “object-first” style. The
education concept, form of exercises and illustrated examples are presented in [8, 9].
The “object-first” course is marked as PRG1 - Programming 1 (the first semester) and
the next course “structural programming” is marked as PRG2 - Programming 2 (the
second semester). The second run has finished, and the moment for the evaluation of
teaching using “object-first” style has come. The results achieved by students are not
very convincing; their skills seem poorer. It seems that some students are puzzled in
addressing the challenges during exercises. The reactions from further courses con-
cerning programming may serve as feedback.

Our goal lies in investigation of programming ability and skills in students after
finish PRG1 in different aspects. Especially, we would like to know the students’
opinion on the object-first approach. The responses should be categorized into groups
by programming skills before starting at the College, by completing a technical high
school, algorithmization and programming-teaching at high school, self-evaluation of
programming skills at the begin of the study at COPJ, rating in the course PRG1, etc.
Therefore, these questions should be in our intended questionnaire.

We prepared a questionnaire witch questions categorized into 3 sections. The first
section contains questions oriented on the student and their programming knowledge
and skills at the beginning of the study at the College including questions oriented on
the completed high school and programming exercise there. The second section deals
with object-oriented programming and the last section deals with structural

Contribution to Teaching Programming Based on “Object-First” 221

programming. Based on that, we can carry out evaluation of some aspects mentioned
above (such as completed technical high school, programming skills from the high
school, self- evaluation of programming skills at the beginning of the study at COPJ,
rating in the course of PRG1, etc.). The secondary goal is the level of programming
knowledge before starting the study at COPJ and their changes after PRG1.

The questionnaire was anonymous and voluntary. We collected 37 questionnaire
responses in total. This number is expected, because 37 students out of the 55 students
registered in the course of PRG2 regularly visited exercises. All students filled in the
questionnaire. We experienced a great success. The evaluation is presented in the next
section.

4 Results and Discussion

4.1 Self-evaluation of Programming Skills at the Beginning of Study
at COPJ

70.27% of students mention the completion of a technical high school. Roughly the
same number of students (67.57%) acknowledge they have acquired programming
ability and skills at the completed high school. Approximately half of the students
confirm two aspects, algorithmization teaching (45.95%), and the programming
teaching (56.76%) at high school. 62.16% of students mention a programming language
that was used in the programming teaching at high school, namely the language C and
C ++ at the most, then Pascal, Java, Visual Basic, but also JavaScript, PHP and CSS.
Half of students admit, that they have gained programing skills by individual study.

The most students (72.9%) get rating worse than B in PRG1, rating C and D prevail.
Every rating category is represented by 2 groups of students in ration 2:1 - students from
the technical and non-technical high school, students with programming skills and
without programming skills, etc. As for Q3a, Q4a, Q6a, Q7a and Q10a, the most
frequent self- evaluating rating is 3, the average level of skills between the best and the
worst. Only some students that have gained programming skills by individual study
evaluate themselves by rating 1. However, some students get rating A in PRG1 (Fig. 1).

The questions for the chart 1 are as follows:

Q3 – Do you have programming ability, skills and knowledge from a technical high
school?
Q4 – Did you study at a technical high school?
Q5 – Did you graduate from a course of ICT at high school?
Q6 – Did you learn algorithmization at high school?
Q7 – Did you learn programming at high school?
Q10 – Did you gain programming skills by yourself?

The questions for the chart 2 are as follows:

Q2 – What is your rating in PRG1?
Q9 – Self-evaluate your programming skills at the beginning of study at VSPJ.

222 M. Musil and K. Richta

4.2 The Opinion on “Object-First”

As regards the opinion on “object-first”, the most students (70.27%) prefer structural
programming as first. Object-first is preferred only by some students having pro-
gramming skills from the high school (13.51% of all students). 8% students have not
decided, 8% students don’t know. It includes the students having programming skills
from the high school. The students that have no programming skills acquired at a high-
school are definitely for “structure-first”, several students of them are undecided.

While the most of students hold fast to the “structural-fist”, only several students
hold fast to the “object-first”. While several students having programming skill from
the high school don’t know what to prefer, several students having no programming
skills from the high school are undecided.

4.3 Ability and Skills of Object-Oriented Programming or Structural
Programming

Object-oriented knowledge is not very clear in all students’ categories. Nearly half of
the responses (approximately 30%) are false. The responses to structural programming
questions turn out a little better (Figs. 2, 3, 4, 5 and 6).

The questions for the chart 5 are as follows:

Q12 – What is a special method that is used for object creating?
Q13 – What is the name of a special method that is used when the object has been
destroyed?
Q14 – Is their explicit definition necessary?
Q15 – Inheritance. What does it mean when object B is inherited from object A?
Q16 – Object B is inherited from object A. What are the names of these objects?
Q17 – Object B is inherited from object A. Who is the direct predecessor and the
direct follower?

Fig. 1. Question oriented on the student and his skills in begin study at COPJ.

Contribution to Teaching Programming Based on “Object-First” 223

Fig. 2. Rating gained in PRG1 and self-evaluation filtered by some criterion. All - no filter (all
respondents); F7a – title of programming in a course in the high-school; F10a – self-study of
programming.

224 M. Musil and K. Richta

Fig. 3. The opinion on “object first”.

Fig. 4. The opinion on “object first” filtered by some criterion: all – no filter (all respondents);
F3a – programming ability and –skills from the high-school; F3b – no programming ability or –
skills from the high-school.

Fig. 5. Question about object-oriented knowledge.

Contribution to Teaching Programming Based on “Object-First” 225

Q18 –What is the difference between “class” and “object”? Q19 –What does “state
of an object” mean?
Q20 – An object owns a static variable/property. There are more objects of the same
type. How many variables exist?
Q21 – What does “public interface of a class” mean?
Q22 – What does “a private item of an object” mean?

The questions for the chart 6 are as follows:

Q23 – There are commands. What is the value of x?

Q24 – There are commands. What is the value of x?

Q25 – There are commands. What is the value of x?

Q26 – Is the meaning of commands sub-parts equivalent?

Fig. 6. Question about structural programming knowledge.

226 M. Musil and K. Richta

Q27 – Thera are commands. What is the value of z?

Q28 – Write commands for two values changing.
Q29 – There are commands. What is written in the standard output?

Q30 – How many times is the cycle performed?

Q31 – How many times is the cycle performed?

Q32 – How many times is the cycle performed?

5 Conclusion

The paper describes our experience with the teaching of “object first” style. The result
of the questionnaire survey was presented. We discussed students’ opinion on “object
first”. The responses showed, that the students take a clearly negative stand to
“object-first”. They think that structural programming first is better. The students’
categorization plays no significant role in terms of programming skills or knowledge
and in terms of rating of PRG1.

Only individual study of programming added to a better or good self-evaluation.
Probably, these students are sure of the programming.

Although the response number is small, the questionnaire brought up interesting
questions. We would like to carry out the questionnaire survey at the begin of study at
the College, then after the course of PRG1, and after the course of PRG2. This will
provide the opportunity for a larger scale comparison and evaluation.

Contribution to Teaching Programming Based on “Object-First” 227

Acknowledgment. This paper was partially supported by the grant “Inovace předmětů
Programování 1 a 2” of COPJ and also by the Avast Foundation.

References

1. Basili, V.R., Briand, L.C., Melo, W.L.: How reuse influences productivity in object-oriented
systems. Commun. ACM 39(10), 104–116 (1996). doi:10.1145/236156.236184. Cited 3 Oct
2015

2. Bennedsen, J., Schulte, C.: What does “objects-first” mean?: an international study of
teachers’ perceptions of objects-first. In: Proceedings of the Seventh Baltic Sea Conference
on Computing Education Research. Koli Calling, Finland (2007). http://crpit.com/abstracts/
CRPITV88Bennedsen.html

3. Briand, L.C., Bunse, C., Daly, J.W., Differding, C.: Emp. Softw. Eng. 2(3), 291–312 (1997).
doi:10.1023/a:1009720117601. Cited 3 Oct 2015

. Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M.: Evaluating inheritance depth on the
maintainability of object-oriented software. Emp. Softw. Eng. 1(2), 109–132 (1996). doi:10.
1007/bf00368701. Cited 3 Oct 2015

5. Ehlert, A., Schulte, C.: Empirical comparison of objects-first and objects-later. In:
Proceedings of the Fifth International Workshop on Computing Education Research
Workshop, ICER 2009 (2009). doi:10.1145/1584322.1584326. Cited 28 Aug 2014

6. Jones, C.: Gaps in the object-oriented paradigm. IEEE Comput. 27(6), 90–91 (1994). doi:10.
1109/MC.1994.10064

7. Johnson, R.A., Moses, D.R.: Objects-first vs. structures-first approaches to OO programming
education: an empirical study. In: Proceedings of the Allied Academies 2008, vyd. Reno,
USA, pp. 244–248 (2008). http://www.researchgate.net/publication/242549890_objects-
first_vs._structuresfirst_approaches_to_oo_programming_education_an_empirical_study.
Cited 28 Aug 2014

8. Musil, M., Richta, K.: Approaches to teaching programming in the “Objects-first” style.
Logos Polytechnikos 5(4), 114–121 (2014). http://www.vspj.cz/soubory/download/id/3829.
ISSN 1804-3682

9. Musil, M.: Přístupy k výuce programování “object-first”. In: Informatika XXVII/2014:
Sborník abstraktů z mezinárodní odborné pedagogicky zaměřené konference. MUSIL,
Marek. 1 vydání, pp. 1–2. Ústav informatiky, Mendelova univerzita v Brně, Brno (2014).
ISBN 978-80-7509-126-0

10. Van Hillegersberg, J., Kumar, K., Welke, R.: An empirical analysis of the performance and
strategies of programmers new to object-oriented techniques. In: Psychology of Program-
ming Interest Group: 7th Workshop (1995)

228 M. Musil and K. Richta

http://dx.doi.org/10.1145/236156.236184
http://crpit.com/abstracts/CRPITV88Bennedsen.html
http://crpit.com/abstracts/CRPITV88Bennedsen.html
http://dx.doi.org/10.1023/a:1009720117601
http://dx.doi.org/10.1007/bf00368701
http://dx.doi.org/10.1007/bf00368701
http://dx.doi.org/10.1145/1584322.1584326
http://dx.doi.org/10.1109/MC.1994.10064
http://dx.doi.org/10.1109/MC.1994.10064
http://www.researchgate.net/publication/242549890_objects-first_vs._structuresfirst_approaches_to_oo_programming_education_an_empirical_study
http://www.researchgate.net/publication/242549890_objects-first_vs._structuresfirst_approaches_to_oo_programming_education_an_empirical_study
http://www.vspj.cz/soubory/download/id/3829

The Survey of Current IPFRR Mechanisms

Jozef Papán(&), Pavel Segeč, Peter Palúch, Ľudovít Mikuš,
and Marek Moravčík

Faculty of Management Science and Informatics, University of Zilina,
Zilina, Slovakia

{jozef.papan,pavel.segec,peter.paluch}@fri.uniza.sk

Abstract. The primary idea of the IP Fast Reroute (IPFRR) technology is to
reduce the network recovery time after a link or router failure within an ISP
network. The key feature of existing IPFRR mechanisms for reaching low
recovery time is the usage of pre-computed alternative backup paths. These
alternative backup paths have to be pre-calculated before a network failure will
occur.
The calculation of the alternative backup path utilizes the specific information

about destination networks, and thus most of existing IPFRR mechanisms are
dependent on the distance-vector routing protocols (RIP, EIGRP). Other IPFRR
mechanisms requires an additional information about the network topology, and
therefore strongly depend on the usage of link-state routing protocols (OSPF,
IS-IS). The paper is focusing on the analysis of existing IPFRR mechanisms and
is identifying and presenting theirs primary problematic areas.

1 Introduction

Once a network link or a router failure occurs, a process of the network convergence
begins. During the network convergence process affected networks are experiencing
serious connectivity problems, where different destinations could become unreachable.
This may cause many other difficulties, as for example for time critical services (such
as Voice over IP).

To address these problems Fast Reroute (FRR) mechanisms has been developed.
The first FRR mechanism was developed for the Multiprotocol Label Switching
(MPLS) technology [1], and it uses explicit backup path. The research of IP Fast
Reroute (IPFRR) mechanisms suitable for IP networks have begun immediately.

The strategic goal of all existing IPFRR mechanisms is to achieve a very short
failure recovery time after the failure of a link or router is detected. Existing IPFRR
mechanisms are actually able to reach the network recovery time up to 50 ms [2, 3].

The restoration of communication by means of a IPFRR mechanism is significantly
faster as the process of the network convergence managed by means of a routing
protocol itself (see Fig. 1) [4, 5].

Significant portion of the overall network recovery time is the time, which is
required detect the failure itself. Therefore be able to achieve a fast network recovery
time one of the main activities is fast failure detection and a need to minimize the time

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_18

of the main failure detection process [2, 3]. Actually we identify several types of failure
detection mechanisms that could be classified as:

• Independent detection mechanisms, such as the Bidirectional Forwarding Detection
protocol (BFD) [6].

• Physical detection mechanisms, such as loss of light, loss of carrier, increase in bit
error rate, etc. [2].

• Routing protocol detection mechanisms, such as hello mechanisms [2].

IPFRR mechanisms may incorporate mentioned detection mechanisms, which
reduce the failure detection time to few milliseconds (Fig. 2).

Installed alternative backup route, is valid only for a time, till the process of the
network convergence will complete. During this period (IPFRR mechanism is still
active), the routing protocol updates its necessary routing information, which was
affected by the failure.

When the routing protocol converged and had updated its routing information,
IPFRR mechanism is deactivated. This mean that the alternative IPFRR backup path is
deleted from the routing table and the routing protocol overtakes control of the routing
communication affected by the failure.

Fig. 1. Comparison of IPFRR and routing protocol repair time

Fig. 2. The IP Fast Reroute mechanism

230 J. Papán et al.

One possible solution, which limits duration of specific IPFRR mechanism and
ensures a sufficient amount of time for correct completion of the process of the network
convergence, is the utilization of special Hold Down timer [2].

The IPFRR terminology has specific terms for defining routers with a special
purpose [2, 3]:

• Source router S is the router, which has detected a link or node failure and then
started local IPFRR repair.

• Destination router D is the destination router of the original data flow.
• The Routers N, N1, N2 are routers, which are used as an alternative next-hops for

alternative back-up path in the case of a link or router failure.

1.1 Types of Existing IPFRR Mechanisms

Each of existing IPFRR mechanisms have its own internal algorithm for calculating an
alternative backup path. There actually exists several types of IPFRR mechanisms:

• Equal cost multi-paths (ECMP) mechanisms. ECMP alternative paths exists only
when there are other paths through different links with equal total cost [7].

• Loop-free alternate paths (LFA) mechanisms. LFA uses an alternate directly con-
nected router to send traffic around failed link. Alternative router has to be on a
loop-free path [8, 9].

• Multi-hop repair path mechanism. These mechanisms use an alternate router that is
more than one hop away from a router adjacent to the failure. From the remoter router
packets will be send to their destination [2]. There are several multi hop mechanisms
such as Remote LFA (RLFA) [10], Maximally Redundant Trees (MRT) [11],
Not-Via Addresses [12], Multiple Routing Configurations (MRC) [13], etc.

1.2 The Bidirectional Forwarding Detection

Most often failure detection mechanism used in the IPFRR area is the BFD protocol.
BFD for the fast link failure detection uses fast hello messages. Time needed by the
BFD mechanism for the trustworthy failure detection begins at few milliseconds [6].

BFD has two operating modes, asynchronous and on demand mode. In both modes
BFD provides an Echo function, in which one side may request its neighbor to loop
back series of packets.

Main goals of the BFD mechanism are [2, 6]:

• Fast detection of failures.
• Protocol independent detection.
• Low-overhead efficient failure detection.
• Detection between interfaces, data links and forwarding engines themselves

The BFD mechanism is able to work with various IGPs (OSPF, IS-IS) and EGP
(BGP) routing protocols, static routes and others (Fig. 3).

The Survey of Current IPFRR Mechanisms 231

1.3 The Repair Coverage

The Repair Coverage describes the efficiency of individual IPFRR mechanisms. If an
IPFRR mechanism is able to repair all possible failures within a network, that specific
IPFRR, mechanism provides 100% repair coverage. However Existing IPFRR mech-
anisms are usually tested against only one failure (link or router) in a time [2].

Currently, there does not exist exact method for measuring of the repair coverage.
Therefore, testing of IPFRR mechanisms are made on randomly generated network
topologies. The percentage of topologies in which the IPFRR mechanism was able to
provide a workable backup path is taken as the mechanism repair coverage.

The repair coverage heavily depends on the network topology and the repair
strategy of individual IPFRR mechanisms. If an IP FRR mechanism has a higher repair
coverage, it is usually more complex.

In the present, there are several IPFRR mechanisms available, which differ in the
principle of computation of alternative backup routes. Some of analyzed IPFRR
mechanisms are described in Sect. 2.

2 Existing IPFRR Mechanisms

The section will present and describe functionalities of several important existing
IPFRR mechanisms.

2.1 Remote LFA

Remote LFA is one of the most used IPFRR mechanism deployed in ISP networks. The
Remote LFA mechanism [10] is an extended version of the basic LFA IPFRR
mechanism [8, 9].

The basic LFA IPFRR mechanism provides good repair coverage in the topologies,
which are “highly meshed”, i.e. in topologies with a good redundancy.

Fig. 3. The Bidirectional Forwarding Detection

232 J. Papán et al.

However, in some kind of topologies (for example ring), where there is no directly
connected LFA router available, the Remote LFA can be used for providing the
alternative backup path.

Elementary idea of the Remote LFA IPFRR mechanism is the utilization of tunnels
to reach a remote router. The remote router is a loop free alternative for specific
destination D. Note that Remote LFA router is not directly connected to the source
router S.

Basic terminology of the Remote LFA IPFRR mechanism defines [10]:

• P-Space: The P-space of a router S, with respect to the protected link S-E, is the set
of routers reachable from the router S using shortest paths without traversing via
protected link S-E.

• Q-Space: The Q-space of a router E, with respect to the protected link S-E, is the set
of routers, from which router E can be reached without traversing via protected link
S-E.

• PQ Node: The PQ node (router), with respect to the protected link S-E, is a router,
that is a member of both the P-space of the router S and the Q-space of the router E.
The PQ router is the tunnel endpoint of an alternative path.

• Remote LFA: The use of the PQ node (router) rather than a directly connected
neighbor of the repairing router S.

On the given topology (see Fig. 4) a link S-E is the protected link. The router S has
detected the failure with its primary next-hop for the destination D and therefore starts
local repair using the Remote LFA IPFRR mechanism.

Fig. 4. The Remote LFA IPFRR mechanism

The Survey of Current IPFRR Mechanisms 233

The shortest path from the router S to the destination D is via S-E-D. Shortest paths
from the router S to other routers, which do not traverse via the protected link S-E, are
S-A, S-A-B and S-A-B-C. Therefore, the P-Space of the router S are routers A, B and C.

Shortest paths from other routers to the router D, which do not traverse via the
protected link S-E, are D-E and C-D-E. Therefore, the Q-Space of the router E are
routers C and D.

The only router, which is in the P-Space of the router S and at the same time in the
Q-Space of the router E is the router C.

Therefore, router C will be elected as a repair tunnel endpoint (PQ node). In other
words, router C is Remote LFA of the router S for destination D.

According to the RFC7490 [10], Remote LFA is able to provide protection only for
point-to-point links and only one failure within the network in the same time.

The Remote LFA IPFRR mechanism is primary used for a link-protection. When
the router failure occurs, the Remote LFA IPFRR mechanism may create micro-loops.
In the topology (see Fig. 4), when the router E fail, routing micro-loop may occur. In
that case, the router D will send encapsulated communication to the router S and the
router S will send encapsulated communication to the router D.

Classic LFA and Remote LFA depend on the metric of individual links. When there
is not a router in the P-Space and the Q-Space, the repair with the Remote LFA IPFRR
mechanism will not be possible. Remote LFA is an enhanced version of classic LFA,
therefore Remote LFA can provide higher repair coverage than classic LFA [8].

2.2 Multiple Routing Configurations (MRC)

The MRC IPFRR mechanism utilizes the principle of multiple routing tables used by a
router. Every router in the network calculates multiple alternative routing tables for
specific failures, which can occur within the network [13].

On the following picture (see Fig. 5) there are two types of specific network
failures. The first failure is the failure of the router A and the second is the router B
failure.

In the first case (failure of the router A), router S will use the routing table, in which
router A is ignored from routing calculation. In the second case (failure of the router B),
the source router S will use the routing table, in which the router B is ignored from
routing in the network.

Other routers inside of the network have to know which version of the routing table
to use. Therefore router S puts the information on used version of routing table into a
packet, i.e. it modifies an original packet. According specific modification of the
original packet other routers will know which routing table they will use for the
routing.

Router S may put the information in the Differentiated Services Code Point (DSCP)
field of the IPv4 protocol and in a case of IPv6 – it use an extension header.

The MRC IPFRR mechanism is able to provide repair coverage reaching close to
100%. That means, that the MRC can repair all possible failures within the network.
Multiple routing configurations allow efficient control over the alternative path, which
means, network administrator can create custom routing scheme of the ISP network.

234 J. Papán et al.

Main issue of the MRC IPFRR mechanism is the number of used alternative
routing configurations. If we consider every routing table for every possible link or
neighbor router failure, the number of alternative routing tables can be high. Actual
research focuses how to reduce the number of routing configurations [13].

The MRC IPFRR mechanism is actually not implemented in routers of Cisco
Systems neither Juniper Networks.

2.3 Not-via Addresses

The Not-Via Addresses IPFRR mechanism utilizes for detour of failed link/router the
encapsulation of original packet into a packet with specific destination address, which
is called Not-Via. On the following topology (see Fig. 6) the router S wants to send s
packet to the specific destination D. The shortest path from the source router S to the
destination D is via routers P and B [12].

When the router S detect the failure with the primary next-hop router P, it
encapsulates packets to the address Bp. The Bp address carries the information, that the
destination router for detour is the router B and the router P is failed router.

Other routers in the network will recognize specific Not-Via Address, and therefore
router P will be avoided during the routing process. When the router B receives packet

Fig. 5. The multiple routing configurations IPFRR mechanism

The Survey of Current IPFRR Mechanisms 235

with destination address Bp, decapsulates it and forwards packet to the destination
router D.

The Not-Via Addresses IPFRR mechanism requires, that all routers on the alter-
native backup path must have calculated route for the Not-Via address Bp. This route
can be calculated using a SPF algorithm by ignoring the router P from the routing
scheme.

The Not-Via Address IPFRR mechanism provides 100% repair coverage. The
problem of this IPFRR mechanism is the number of Not-Via addresses, which rapidly
increases with number of routers in the network. Therefore, current research in this area
focuses on the reduction of not-Via addresses quantity [12].

These addresses are computed in advance, after initialization of the Not-Via
Address mechanism. Generally, Not-Via Address has high computational and imple-
mentation complexity. Currently, the IPFRR mechanism is not implemented in any
devices of the Cisco Systems or Juniper Networks.

3 Analysis of Existing IPFRR Mechanisms

Following our research and the analysis of mentioned IPFRR solutions, some of
mechanisms can provide the 100% repair coverage (MRT [11], MRC [13], Not-Via
Addresses [12]), but at the cost of higher complexity of internal algorithm, which
calculates alternative path.

Fig. 6. The Not-Via Addresses IPFRR mechanism

236 J. Papán et al.

Therefore, only a few of existing IPFRR mechanisms can be easily implemented
into existing architecture of present router OSs. Therefore most of them are imple-
mented and tested inside of software simulators [2].

The most important information on analyzed IPFRR mechanisms [2–5, 7–14] are
described in following Table 1.

LFA, Remote LFA and ECMP IPFRR mechanisms are most used solutions
deployed in commercial sphere. These IPFRR mechanisms are implemented in routers
of companies like Cisco Systems and Juniper Networks.

Following subsections will identify primary problematic areas of existing IPFRR
mechanisms.

3.1 The Dependence on the Routing Protocols

During the analysis we identified, that all of IPFRR mechanisms are dependent on
routing protocols used, which means, that for their correct operation they need an
information provided by routing protocols [2].

Some of them for calculations of the alternative path requires topology based
information. Therefore, these IPFRR mechanisms requires functionality of link-state
routing protocols, and they are dependent on the link-state routing protocols (MRT,
MRC, Remote LFA, Not-Via Addresses).

3.2 The Calculation of the Alternative Path

Other common feature of all analyzed IPFRR mechanisms is the fact, that the alter-
native backup path have to be calculated in advance, i.e. pre-prepared before the failure
within the network occurs (pre-computing) [2, 3]. And then the calculation of the
alternative paths is main issue of existing IPFRR mechanisms. With growing number
of routers inside of an ISP network grows number of necessary calculations of alter-
native backup paths. These calculations must be repeated every network topology
change.

Table 1. The overview of the existing IPFRR mechanisms

IPFRR
mechanism

Pre-computing Dependence on
routing protocols

The packet
modification

100% repair
coverage

LFA Yes Yes No No
ECMP
FRR

Yes Yes No No

Remote
LFA

Yes Yes Yes No

MoFRR Yes Yes No No
Not-Via
Addresses

Yes Yes Yes Yes

MRC Yes Yes Yes Yes
MRT Yes Yes Yes Yes

The Survey of Current IPFRR Mechanisms 237

Calculations of alternative backup paths are usually executed as a process with low
resource priority and they are usually executed during idle CPU periods of a router.

According our research we have identified that the calculation of the alternative
backup path (pre-computing) is the second issue of existing IPFRR mechanisms.
Table 1 shows, that all of analyzed IPFRR mechanisms are based on the principle of
pre-computation.

This problematic area brings a new research question: Is it possible to develop a
new IPFRR mechanism, which will not explicitly calculates an alternative path without
internal algorithm?

3.3 Modification of Traffic

Important characteristic of current IPFRR mechanisms is fast failure detection and the
way how they inform other routers affected by the failure [2].

IPFRR mechanisms the failure information spread by modifying bites of the IP
header, either encapsulating original packets into a new one with new IP header or by
the income interface, with which the packet was received.

The modification of packets brings problems with compatibility within the ISP
network (change of MTU) [2, 3].

3.4 Efficiency of IPFRR Mechanisms

Scientific papers demonstrates dissimilar results of the repair coverage of current
IPFRR mechanisms ([2, 3]). According these results, the primary problem is, that there
is no common technique exactly defined for measuring the repair coverage of existing
IPFRR mechanisms. That means, the conditions under which each of IPFRR mecha-
nisms were tested, had not been the same. Therefore, the repair coverage of individual
IPFRR mechanisms cannot be directly compared.

Nowadays, there exists RFC 6894 [15], which defines the methodology for testing
of the MPLS fast reroute mechanism.

The next important article dealing with testing of IPFRR mechanisms is RFC 6414
[16]. The document defines basic terminology for testing of MPLS-FRR mechanisms.

RFC 6894 [15] also defines testing methods and the reference topology for mea-
suring time of the fast network recovery. However, the document does not include
methodology for testing the repair coverage itself.

4 Conclusion and Future Work

Existing IPFRR mechanisms are very important for present IP networks. Customers,
who use real-time services require reliable and protected network connections and is up
to ISP providers meet these requirements.

The problem is, that most of existing IPFRR mechanisms have not been imple-
mented in real ISP networks yet. The implementation of existing IPFRR mechanisms
brings many problems with required modification of existing ISP networks. It is

238 J. Papán et al.

certain, that in the close future will ISP providers think about the implementation of
IPFRR solutions to their network architectures. Some of existing IPFRR mechanisms
have found place in commercial companies such as Cisco Systems or Juniper Networks
(ECMP FRR, LFA, Remote LFA).

According the analysis and research all of existing IPFRR mechanisms are
dependent on pre-computation of the alternative backup path. In other words, IPFRR
mechanisms pre-calculate alternative back path via an internal algorithm. This principle
causes unwanted effects such as load of router CPU or the dependence on routing
protocols.

Some of IPFRR mechanisms requires topology information, therefore they are
dependent on link-state routing protocols. In such case, when the IPFRR mechanism
cannot find the alternative backup path, packets are dropped.

The repair coverage of existing IPFRR mechanisms defines the efficiency of the
individual IPFRR mechanism. Currently, there is no exact method for benchmarking
neither for measuring of the repair coverage. The problem is, that tests of IPFRR
mechanisms show different, often incomparable results. Therefore is necessary to
develop exact methods suitable for objective comparing of IPFRR mechanisms.

The research shows, that existing IPFRR mechanisms is able to provide sufficient
effectiveness for finding the alternative backup path (repair coverage). The problem is,
that existing IPFRR mechanisms have complicated internal algorithm for calculating
alternative backup path.

Therefore, in the close future we will focus on finding a solution for these negative
characteristics. One of the possible way how to eliminate problematic areas of the
current IPFRR solutions is multicast technology [17], which is not being used in
IPFRR mechanisms yet. The most used multicast protocol in current ISP is Protocol
Independent Multicast (PIM). This protocol can work in sparse mode (PIM-SM) [18]
or dense mode (PIM-DM) [19].

The PIM protocol in the dense mode (PIM-DM) at the beginning of the multicast
transmission sends multicast packets to all PIM enabled routers in the network. We
used this specific behavior of the PIM-DM protocol in IPFRR for developing a new
IPFRR mechanism called M-REP (Multicast Repair). In the future we will present this
new M-REP IPFRR mechanism, which will solve the primary problematic areas of the
current IPFRR mechanisms.

Acknowledgments. This paper is the outcome of the project “Quality education by supporting
innovative forms, quality research and international cooperation – a successful graduate for
practice”, ITMS code 26110230090 supported by the Education Operational Program funded by
the European Social Fund.

References

1. Pan, A., Swallow, G., Atlas, A.: Fast Reroute Extensions to RSVP-TE for LSP Tunnels,
RFC 4090, Network Working Group, pp 3–15 (2005)

2. Shand, M., Bryant, S.: IP Fast Reroute Framework, RFC 5714, Internet Engineering Task
Force, Informational, pp. 5–7 (2010). ISSN: 2070-1721

The Survey of Current IPFRR Mechanisms 239

3. Gjoka, M., Ram, V., Yang, X.: Evaluation of IP Fast Reroute proposals. In: 2nd International
Conference, COMSWARE 2007, pp. 1–8 (2007)

4. Hassan, A.T.: Evaluation of fast reroute mechanisms in broadband networks, p. 1. Master of
Electrical and Computer Engineering, University of Ottawa (2010)

5. Antonakopoulos, S., Bejerano, Y., Koppol, P.: A Simple IP Fast Reroute Scheme for Full
Coverage, p. 1. BellLabs, Murray Hill (2012)

6. Katz, D., Ward, D.: Bidirectional Forwarding Detection (BFD). Request for Comments:
5880, Standards Track, IETF, pp. 1–50 (2010). ISSN: 2070-1721

7. Hopps, C.: Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992, Informational,
Network Working Group, pp. 1–5 (2000)

8. Atlas, A., Zinin, A. (eds.): Basic Specification for IP Fast Reroute: Loop-Free Alternates,
RFC 5286, Standards Track, Network Working Group, pp. 3–5 (2008)

9. Filsfils, C., Francois, P., Shand, M., Decraene, B., Uttaro, J., Leymann, N., Horneffer, M.:
Loop-Free Alternate (LFA) Applicability in Service Provider (SP) Networks, RFC 6571,
IETF, pp. 3–7 (2012). ISSN: 2070-1721

10. Bryant, S., Filsfils, C., Previdi, S., Shand, M., So, N.: Remote Loop-Free Alternate
(LFA) Fast Re-Route (FRR). Network Working Group, RFC 7490, pp. 3–18 (2015)

11. Atlas, A., Kebler, R., Bowers, C., Enyedi, G., Csaszar, A., Tantsura, J., White, R.: An
Architecture for IP/LDP Fast-Reroute Using Maximally Redundant Trees. Routing Area
Working Group, Internet-Draft, pp. 3–33 (2015)

12. Bryant, S., Previdi, S., Shand, M.: A Framework for IP and MPLS Fast Reroute Using
Not-Via Addresses, RFC 6981, Internet Engineering Task Force (IETF), pp. 4–25 (2013).
ISSN: 2070-1721

13. Kvalbein, A., Hansen, A.F., Čičic, T., Gjessing, S., Lysne, O.: Multiple routing
configurations for fast IP network recovery. IEEE/ACM Trans. Netw. 17(2), 1–4 (2009).
IEEE

14. Lor, S.S., Rio, M.: Enhancing Repair Coverage of Loop-Free Alternates, p. 3. University
College London (2010)

15. Papneja, R., Vapiwala, S., Karthik, J., Poretsky, S., Rao, S., Le Roux, J.L.: Methodology for
Benchmarking MPLS Traffic Engineered (MPLS-TE) Fast Reroute Protection, RFC 6894,
IETF, pp. 3–27 (2013). ISSN: 2070-1721

16. Poretsky, S., Papneja, R., Karthik, J., Vapiwala, S.: Benchmarking Terminology for
Protection Performance, RFC 6414, IETF, pp. 4–25 (2011). ISSN: 2070-1721

17. Deering, S.: Host Extensions for IP Multicasting, RFC 1112, Network Working Group,
pp. 1–5 (1989)

18. Fenner, B., Handley, M., Kouvelas, I., Holbrook, H.: Protocol Independent Multicast -
Sparse Mode (PIM-SM): Protocol Specification (Revised), RFC 4601, Standards Track,
Network Working Group, pp. 1–146 (2006)

19. Adams, A., Nicholas, J., Siadak, W.: Protocol Independent Multicast - Dense Mode
(PIM-DM): Protocol Specification (Revised), RFC 3973, Network Working Group, pp. 4–10
(2010)

240 J. Papán et al.

Synthesis of Low-Power Embedded Software
Using Developmental Genetic Programming

Stanisław Deniziak, Leszek Ciopinski(&), and Grzegorz Pawinski

Department of Computer Science,
Kielce University of Technology, Kielce, Poland

{s.deniziak,l.ciopinski,g.pawinski}@tu.kielce.pl

Abstract. A method of synthesis of software for low-power real-time
embedded systems is presented in this paper. A function of the system is
specified in the form of the task graph, then it is implemented using embedded
processors with low-power and high-performance cores. The power consump-
tion is minimized using the developmental genetic programming. The opti-
mization is based on finding the makespan, satisfying all real-time constraints,
for which the power consumption is as low as possible. We present experimental
results, obtained for real-life examples and for some standard benchmarks. The
results show that our method gives better solutions than makespans obtained
using existing methods.

1 Introduction

Embedded systems are dedicated computer-based systems that are highly optimized for
a given application. Optimization concerns hardware as well as software components.
Since, finding the optimal hardware/software architecture implementing the target
function is a very complex task, the design of embedded system should be assisted by
efficient methods and tools. During the last two decades a lot of hardware/software
co-design methods were developed. But the progress in the semiconductor technolo-
gies, more advanced embedded processors, increasing requirements, create new chal-
lenges in the optimization of embedded systems.

Techniques of minimizing the power consumption in computer systems, including
embedded systems, are used for many years. Their goal is to reduce operating costs,
protection of the environment, elimination of the problem of cooling, longer working
hours without recharging the battery. Also, many methods of designing computer
systems, in addition to minimizing costs and optimizing performance, minimize power
consumption. This is consistent with the increasingly popular concept of green com-
puting. It was observed that power demands are increasing rapidly, yet battery capacity
cannot keep up [1].

Usually, embedded systems are real-time systems, in which time constraints are
imposed on some tasks. Thus, during optimization of power consumption all time
requirements should be satisfied. Performance and power consumption are related to
each other. Generally, a high performance systems consume significantly more energy
than low performance ones. Therefore, the optimization of real-time embedded systems
should consider the trade-off between power consumption, performance, cost, etc.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_19

Advanced embedded systems are generally distributed systems. During designing
such systems, a specification, presented as a set of communicating tasks, is mapped
onto a dedicated architecture consisting of processors, memories and specialized
hardware components. An alternative to heterogeneous multiprocessor architecture is a
system based on multi-core processor. Then not only the design process reduces to a
scheduling problem, but also can take advantage of advanced power management
techniques such as DVFS (Dynamic Voltage and Frequency Scaling) or big.LITTLE
[2], to minimize power consumption. Methods of optimizing embedded systems
generally assume that some of the properties of tasks, such as execution time, power
consumption, cost, are known. Only then it is possible to optimize these features of the
system during the synthesis.

In this paper the novel method for synthesis of the power-aware software for
real-time embedded systems is presented. Our method involves the specification of the
system in the form of a graph of tasks. In addition the method is dedicated to the ARM
big.LITTLE technology, but it can be generalized also to DVFS. The schedule is
generated automatically and optimized using the developmental genetic programming
(DGP) approach. Our goal of optimization is the minimization of power consumption
by moving some tasks to low-power cores (LPCs), while critical tasks are assigned to
high-performance ones (HPCs) to satisfy all time constraints. The advantages of using
our methodology are shown on examples.

The paper is organized as follows. The related work is presented in the next section.
The idea of the developmental genetic programming and a comparison to other genetic
approaches are described in the Sect. 3. In Sect. 4 the method of software synthesis is
presented. In Sect. 5 an example is shown and experimental results are described. At
the end, a summary of the main conclusions and directions of further research are
given.

2 Previous Works

The problem of design of low-power embedded systems has attracted researchers for
many years. One direction of these research is finding the low-power architecture by
optimizing the allocation of resources and task assignment according to the power
consumption. COSYN-LP [3] is one of the first method which synthesizes the
low-power hardware-software architectures of real-time embedded systems. SLOPES
[4] minimizes the power consumption in systems implemented using dynamically
reconfigurable FPGAs. Optimization is performed using genetic algorithm. The over-
view of some power aware codesign methods is also presented in [5]. Another direction
of research concerning the design for low-power is to develop methodologies that takes
into consideration dynamic reduction of the power consumption during runtime.
Dynamic Power Management [3] tries to assign optimal power saving states. Other
methods reduces power consumption by efficiently using voltage scale processors [6].
All above methods are based on power-aware scheduling, like YDS [7].

When using multi-core processors, the synthesis of embedded system specified in
the form of a task graph resolves to the problem of optimal scheduling. This problem is
known in literature as RCPSP (Resource-Constrained Project Scheduling Problem) [8].

242 S. Deniziak et al.

It has been shown that RCPSP problem is NP-complete. Therefore, only heuristic
methods may be used in the practice to optimize real-life systems. Very good results
are obtained by genetic methods [9–11].

In the 2011 the big.LITTLE architecture for minimizing the power consumption in
embedded systems was proposed by ARM Holdings. The goal of this technique is to
enable building multi-core systems that will better adjust to dynamic computing needs.
Depending on the scheduler, there are three different methods of applying big.LITTLE
in multicore systems [12]:

• cluster switching: in this approach low-power cores are arranged into “little cluster”,
while high performance cores form “big cluster”. The scheduler can see only one
cluster at a time. When the load on the system changes from low to high then the
system switches to the “big cluster”, otherwise the “little cluster” is used. During
cluster switching all relevant data are passes through the common L2 cache. Unused
cluster is powered off.

• CPU migration (in-kernel switcher): in this approach, low-power and high-
performance cores are paired, forming virtual cores (VC). At a time only one core
inside VC is used while the other is switched off. When the load on the virtual core
changes, the incoming core is powered up, running state is transferred, the outgoing
is shut down, and processing continues on the new core.

• global task scheduling (heterogeneous multi-processing – HMP): it is the most
powerful model of big.LITTLE architecture. In this model all cores are available at
the same time. Tasks with high computational intensity can be allocated to the high
performance cores while tasks with less computational intensity, can be executed by
the low power cores.

The big.LITTLE technology can be used additionally to the DVFS technique and
requires efficient scheduling policy. In [13] we presented the method of synthesis of
adaptive schedulers for real-time embedded systems based on big.LITTLE architecture.
The goal of the optimization was to find the makespan which will have the best
self-adaptivity capabilities. According to our best knowledge there is no static
scheduling methods that minimizes the power consumption in big.LITTLE-based
real-time embedded systems.

3 Developmental Genetic Programming

A lot of real-life optimization problems cannot be efficiently solved using exact
methods. In such cases heuristic methods, usually giving sub-optimal solutions, are
more applicable. One of the most efficient method used for global optimization of
complex problems is Genetic Algorithm (GA) [14]. Methods based on GA are resistant
to getting stuck in a local extreme of optimized functions. Therefore, they often find the
optimal solution or solution better than found by other methods. Efficient GA-based
methods were developed for solving many RCPSP problems as well as for
multi-objective optimization of distributed real-time systems [15].

However, in case of hard constrained problems, the effectiveness of GAs is not so
high. Example showing the reason of such situation is presented on Fig. 1a. This figure

Synthesis of Low-Power Embedded Software Using DGP 243

presents the solution space of real-time system, for which the power consumption is
minimized. Only solutions satisfying time constraints i.e. individuals below the dashed
line, are valid. In the GA approach invalid solutions are eliminated by using con-
strained genetic operators. It is necessary to avoid the situation where the GA will find
the optimal but invalid solution. For example, genes 1 and 2 will not be considered
during evolution. But sometimes, the crossover or mutation of invalid solutions may
produce good results. For example, the crossover of individuals 1 and 5 may produce
the optimal solution i.e. gene 7. But, due to the above limitation, the GA will be only
able to find the solution 8, as a result of crossover of valid individuals 5 and 6.

Above problem does not exists in the Developmental Genetic Programming
(DGP) [16]. DGP is an extension of the GA, where the solution space (phenotypes) and
the search space (genotypes) are separated. Genotype describes the method of building
the solution. Genotypes are evolved without any restrictions, then during the devel-
opmental stage genotypes are mapped onto valid phenotypes, i.e. solutions. Crossover,

Fig. 1. Different search spaces in GA and in DGP

244 S. Deniziak et al.

mutation and reproduction are not restricted, i.e. there are no genotypes eliminated
from the evolution. This is presented on Fig. 1b, since there is no limitations in the
evolution, it is possible to obtain genotype I or VIII, that construct the optimal solution.
It should be noticed that there is no genotype which is mapped onto invalid phenotype.

In the DGP the quality of each genotype is defined by the fitness of the corre-
sponding phenotype. Since the genotype-to-phenotype mapping function should be
restricted, to construct only valid solutions, the main problem in the DGP approach is
to define genotypes and the mapping function that will be able to produce any valid
solution. The main difference between GA and DGP is that in the DGP the methods
constructing the solutions, instead solutions itself, evolve.

The inspiration for the DGP is the evolution process known from biology. Infor-
mation describing building of proteins is stored in DNA (genotype). Evolution of the
DNA has effect on proteins (phenotypes). The DGP was successfully applied for opti-
mization in many domains [16, 17], where human-competitive results were obtained.
High efficiency of the DGP-based optimization was also showed for hardware-software
codesign [18] and cost minimization in real-time cloud computing [19].

4 DGP-Based Scheduling for Low-Power Systems

We assume that the system is specified as a task graph. According to the task graph
semantics, the execution of tasks cannot be interrupted and there are no I/O operations.
After completing all tasks the processing starts over again (periodically), with a
specified frequency. We assume that the frequency is not greater than 1/T (where T is
the deadline for the whole graph), so the problem of cycles may be omitted. Also, we
assume that the execution time and the average power consumption of each of the tasks
is known for each available processor core. These parameters may be estimated with
the help of estimation methods.

In the paper, we consider ARM multicore processors supporting big.LITTLE
architecture for implementation of the target system. Our method applies the HMPmodel
of big.LITTLE. In such system there are two types of processors, usually quad-core. The
first has higher performance (about 40% for Cortex A57), but is not power-efficient. On
the other hand, the second processor is optimized to use less energy (about 75% for
Cortex A53) to execute the same task but it is slower. Our goal is to find the makespan
with the lowest power consumption, for which all time constraints will be met.

4.1 System Specification

Functions of embedded systems are specified as sets of communicating processes.
A common method for describing relationship between processes is UML Activity
Diagram [20]. For an embedded system software, the Activity Diagram can be sim-
plified to a task graph (TG) [21]. TG is an acyclic directed graph where nodes cor-
respond to tasks/processes while edges specifies the order of their execution. Each task
starts as soon as all of its predecessors are completed. There are no additional syn-
chronization mechanisms for tasks. An example of a task graph is given on Fig. 2.

Synthesis of Low-Power Embedded Software Using DGP 245

4.2 Database of Resources

A database of available resources contains estimated execution parameters for each
task. A resource is a single processor core. For each available core the execution time
and the power consumption are given. Table 1 presents a part of a sample ARM
Cortex-A15/Cortex-A7 database defined for task graph from Fig. 2.

4.3 Scheduling Options

We use similar DGP representation as in our previous works concerning the RCPSP
problems [22–24]. Groups of tasks are assigned to the corresponding genes, then all
tasks in the same group are scheduled according to the same strategy. A makespan is
created by the scheduler in two steps:

1. task assignment: according to strategy specified for the corresponding gene, all
tasks in the group are assigned to first available core which fulfills the preferences
(row step 1 in Table 2),

2. task scheduling: corresponding group of tasks is scheduled using the scheduling
strategy specified for the gene (row step 2 in Table 2). It is performed only when the
core has more than one task assigned to it.

The evolution starts from the initial population consisting of randomly generated
genotypes. Each gene has assigned preference, defining the decision rule for the
scheduler. Table 2 contains the set of all available preferences that may be chosen by
the scheduler. In the last column of Table 2 a probability of the selection is shown.

The first option prefers the HPC core. Second one prefers the LPC cores. Third
option prefers a core with both the lowest power consumption and the shortest time of

Fig. 2. An example of a task graph

246 S. Deniziak et al.

execution. The next option allows using a core that cannot be obtained as a result of the
remaining options. The fifth and sixth option prefer a core that may start and finish the
task as soon as possible, respectively. And the last option similarly to option ‘e’ looks
for the fastest starting core, but in opposite to ‘e’, this strategy always chooses the least
energy consuming core. In the second step the preferred scheduling method is chosen.
In this work only list scheduling method is considered.

4.4 Genotype and the Evolution

Genotype has a form of a tree where the nodes correspond to genes while the edges
describe the subsequent stages of constructing the solution [22]. Each gene has the
structure presented on Fig. 3.

Two types of genes are distinguished: leaves (isLeaf = true) and internal nodes
(isLeaf = false). With each gene a subset of tasks is associated in the following way:
the root of the genotype corresponds to the whole task graph, next the task graph is
partitioned and the first subset corresponds to the left successor while the second subset
is associated with the right one. Similar partitioning of subsets of tasks are performed

Table 1. Database of resources

Task # Core # Execution time [ns] Power consumption [mJ]

1 0 50 500
1 1 50 500
1 2 63 250
1 3 63 250
2 0 40 400
2 1 40 400
2 2 50 200
2 3 50 200
3 0 70 700
… … … …

12 3 4 15

Table 2. Scheduling strategies

Step Preference P

1 a. The HPC core 0.143
b. The LPC core 0.143
c. The lowest time * cost 0.143
d. Determined by the alternative gene 0.143
e. The fastest starting core 0.143
f. The fastest ending core 0.143
g. The cheapest from the fastest starting core 0.143

2 List scheduling 1

Synthesis of Low-Power Embedded Software Using DGP 247

for all internal genes. In this way the genotype specifies the hierarchical grouping of
tasks, that corresponds to hierarchical construction of the solution. When the node is
the internal node, cutPos specifies the position of cutting the group of assigned tasks
into two subsets, the first subset will be assigned to the left node and the second subset
to the right one (details are given in p. 4.5). Thus, for internal nodes fields nextLeft and
nextRight must not be null pointers and the field strategy is omitted. When the node is a
leaf the field strategy defines the strategy of scheduling of tasks corresponding to this
node. Strategies considered in our approach are given in Table 2. For leaves, infor-
mation from the other fields is neglected. Hence, the simplest genotype consists of only
root node, which is also a leaf. To prevent unlimited growth of the genotypes during
the evolution, size of the genotype is limited and it is proportional to the size of the
graph task. During the evolution the edges that exceed this size are truncated. Figure 4
presents a sample genotype and the corresponding phenotype for system specified on
Fig. 2 and resources from Table 1.

During the evolution new populations of genotypes are generated using genetic
operators: mutation, crossover and reproduction. The algorithm of mutation is pre-
sented on Listing 1 [24]. The mutation modifies the randomly selected node. For leaves
the gene is changed to the internal node or the strategy associated with it is randomly
changed. For internal nodes the gene is changed to leaf or values of other fields are
randomly changed. In this way a new genotype is created.

Fig. 3. A structure of the gene

Fig. 4. Sample genotype (a) and the corresponding phenotype (b)

248 S. Deniziak et al.

In our approach, the traditional 1-point crossover is used. First, genotypes corre-
sponding to parents are cut at randomly selected locations. Then cut off subtrees are
swapped. In this way the two new individuals are created. Sample crossover of
genotypes is illustrated on Fig. 5.

4.5 Genotype to Phenotype Mapping

The genotype-to-phenotype mapping is performed in three steps. During the first step,
scheduling strategies (Table 2) are assigned to all tasks. For the task graph from Fig. 2,
this step is illustrated on Fig. 6. With node 0 two sets of tasks are associated: {1, 2, 3,
4, 5} and {6, 7, 8, 9, 10, 11, 12}. The first set is partitioned by node 1 into next two
groups. In the first one, there are only tasks 1 and 2. They strategy is defined to ‘b’ by
the second node. Tasks 3, 4 and 5 belong to the second group, for which strategy ’f’ is
defined by the node 3. The group of tasks from 6 to 12 is partitioned by the node 4. Its
cutPos parameter equals 6, thus the first 6 tasks from the group are assigned to the first
subgroup. The node 5 determines strategy ‘a’ for this subgroup. In the second subgroup
we have only one task. Thus, although the node 6 divides this subgroup into next two
parts, the cutPos of the node 6 is out of range and in effect, strategy for the task 12 is
defined only by the node 7.

During the second step, all tasks are assigned to cores and scheduled. First, tasks
without any predecessor in the task graph, next tasks with predecessors having already
assigned core, are assigned to cores and scheduled according to preferences chosen
during the first step.

Synthesis of Low-Power Embedded Software Using DGP 249

During the third step, the power consumption of the solution is calculated. For this
purpose, the resource database (Table 1) is used.

4.6 Controlling the Evolution

Like in classical GA also in DGP the evolution is performed by generating new
populations of solutions (genotypes) using the following genetic operators: crossover
(re-combination), mutation, reproduction. Each new population replaces the current
one. The efficiency of the genetic approach strongly depends on the number of indi-
viduals generated using the above operators as well as on the number of individuals in
the population. Therefore, the evolution should be controlled by the following
parameters:

• population size: in our approach, the number of individuals in each population is
always the same and is equal to “number of tasks” * “number of cores”,

• reproduction size: the value of this parameter is determined experimentally,
• crossover size: the value of this parameter is determined experimentally,
• mutation size: the value of this parameter is determined experimentally,
• the number of generations.

Fig. 5. Sample crossover

250 S. Deniziak et al.

Genetic operator requires selection of individuals from the current generation. In
our approach the tournament method [14] is applied. In this method, each time a fixed
number of individuals is drawn, then the best one is chosen. Therefore, the size of the
tournament is the additional parameter controlling the evolution.

4.7 Fitness

Fitness defines the quality of the genotype. The goal of the evolution is to find the
individual with the best fitness. Therefore, the fitness determines the goal of opti-
mization. Since, our method should find the schedule satisfying time requirements for
which the power consumption is as low as possible, in our approach the fitness of the
genotype is defined as a power consumption of the corresponding phenotype. The best
fitness means the lowest power consumption. Genotype-to-phenotype mapping guar-
antees that all considered phenotypes satisfy time constraints.

Fig. 6. Assignment of scheduling strategies to tasks

Synthesis of Low-Power Embedded Software Using DGP 251

5 Example and Experimental Results

The first step in our experiments was finding the best parameters of the evolution.
Then, we have verified advantages of the presented method using example of the
complex multimedia system, which was described in [25] and from e3s benchmark
suite [26]. The result has been compared with the method based on Least-Laxity-First
Scheduling Algorithm [27].

5.1 Algorithm Tuning

For presentation of the algorithm tuning, the task graph from Fig. 2 was used. The
times and costs of executing each tasks on cores are presented in Table 3. Although
processors working in big.LITTLE mode have four cores, in this experiment the
number of cores in each processors was decreased to two. Otherwise, this problem
would be reduced to too trivial and a more complex task graph would be needed.

During the algorithm tuning experiment, the following values of genetics param-
eters were used:

• the evolution was stopped after 100 generations,
• the population size was equal 19,
• the tournament size was equal 10.

The values of the rest of parameters, were determined during experiments. The first
step is to estimate the influence of crossover size and mutation size on finding results.
Thus, the best results of evolution for different parameters combination was shown on

Table 3. Execution parameters for TG from Fig. 2

Task Cores

A57 (high
performance)

A53 (energy
efficient)

Energy Time Energy Time

1 500 50 250 63
2 400 40 200 50
3 700 70 350 88
4 800 80 400 100
5 1200 120 600 150
6 380 38 190 48
7 510 51 255 64
8 470 47 235 59
9 420 42 210 53
10 230 23 115 29
11 120 12 60 15
12 30 3 15 4

252 S. Deniziak et al.

Fig. 7. Figure 7 presents, that the most influential parameter is crossover size, however
an influence of mutation size is also visible. Thus investigation of influence of
crossover size is necessary. The results are presented on Fig. 8.

An analysis of data from Fig. 8 presents clearly, that the best value for crossover
size is 40%. For smaller values, the diversity in population is too small, to improve
results. From the other hand, values higher than 40% cause too much disorder, thus the
cost of a solution increases. For the next experiment, crossover size equals 40% was
used.

Figure 9 presents the influence of mutation size on the best solution found. In this
example, two minima are possible. Values smaller than 20% do not change the final
result enough. The mutation makes too many changes in the genotype and therefore the
value higher than 40% worse the evolution. Thus, mutation size = 40% was taken for
generating a solution. An evolution progress is presented on Fig. 10.

Figure 10 shows, that the best solution was found very quickly and 100 generations
are unnecessary but 15 generations are enough to solve this problem. To sum up,
execution of the best schedule, obtained by using DGP method takes 280 ms using
3875 mJ. That is better results, than obtained by LPLLF algorithm (described in
Subsect. 5.4) where execution is finished after 279 ms using 3975 mJ.

5.2 Sample System

Our method will be applied for implementation of the multimedia player described in
[25]. This is the complex system consisting of 40 tasks, which will be implemented as a
low-power real-time system. The task graph describing the sample system is given on
Fig. 12. We assumed that the deadline for the system equals 100000 ns. An archi-
tecture with shared memory is assumed, thus the communication between tasks will be
neglected. Table 4 presents run-time parameters for Cortex A57 and Cortex A53 cores.

Fig. 7. Crossover size (γ) vs. mutation size (δ)

Synthesis of Low-Power Embedded Software Using DGP 253

We assume that the target architecture will consist of 4-core A57 and 4-core A53
processors supporting big.LITTLE. The goal of the optimization will be the mini-
mization of the power usage.

Fig. 8. The influence of crossover size

Fig. 9. The influence of mutation size

254 S. Deniziak et al.

5.3 Genetic Optimization

The makespan for the system described in p. 5.2 was generated using our method. For
optimization, the following values of genetic parameters were defined:

• the evolution was stopped after 100 generations,
• each experiment was repeated 7 times,
• the population size was equal to 128,

Fig. 10. The evolution progress

Fig. 11. Makespans obtained using LPLLF and DGP for algorithm tuning

Synthesis of Low-Power Embedded Software Using DGP 255

• tournament size was equal to 10,
• the number genotypes created by mutation, was equal to 25%,
• 25% of individuals were created using reproduction.

The values of the above parameters were determined according to the method
described in our previous work [21].

5.4 Least-Laxity-First Algorithm

One of the most known algorithms for scheduling tasks in real-time embedded systems
is the Least-Laxity-First Algorithm (LLF) [27]. A description of the algorithm in
pseudocode is shown on Listing 2. Basic LLF method schedules task according to the
least laxity (slack time). The laxity is defined as a difference between an execution time
and a task deadline. The goal of LLF is to find the schedule that satisfies all deadlines.
It does not take into account power or cost optimization. Therefore, we modify this
method by favoring energy-efficient cores. In other words, during scheduling, the
method first tries assign a task to low-power core, only when it will violate the time

Fig. 12. Task graph of the multimedia system

256 S. Deniziak et al.

Table 4. Resource database for multimedia player

Task Processor cores

A57 (high
performance)

A53 (energy
efficient)

Energy Time Energy Time

1 5 537 3 671
2 11 1072 6 1340

3 5 537 3 671
4 4 376 2 470

5 73 7337 37 9171
6 11 1072 6 1340
7 110 10958 55 13698

8 74 7358 37 9198
9 11 1051 6 1314

10 6 559 3 699
11 5 486 3 608
12 3 286 2 358

13 13 1298 7 1623
14 37 3679 19 4599

15 21 2065 11 2581
16 53 5253 27 6566
17 75 7523 38 9404

18 11 1076 6 1345
19 4 409 2 511

20 4 409 2 511
21 11 1076 6 1345
22 2 157 1 196

23 260 26018 130 32523
24 2 176 1 220

25 2 197 1 246
26 260 26018 130 32523
27 236 23607 118 29509

28 6 559 3 699
29 11 1072 6 1340
30 110 10958 55 13698

31 5 486 3 608
32 3 286 2 358

33 11 1072 6 1340
34 4 409 2 511
35 4 409 2 511

36 236 23607 118 29509
37 74 7414 37 9268

38 3 253 2 316
39 2 179 1 224
40 2 176 1 220

Synthesis of Low-Power Embedded Software Using DGP 257

constraint, the task will be assigned to more efficient core. Our Low Power LLF
(LPLLF) method is used only for reference, to verify that the DGP is efficient also for
power optimization in real-time embedded systems.

5.5 Results of Power-Aware Scheduling

The makespans obtained using DGP and LPLLF methods are presented on Fig. 11. On
Y-axis different cores are represented, while the time of execution is represented by the
X-axis. Numbers correspond to the following tasks. The experimental results proved
that the presented method is more efficient than LPLLF. Energy consumption for the
system scheduled using DGP equals 990 mJ, while the same example scheduled using
LPLLF requires 1018 mJ. To meet the deadline, the LPLLF method assigned the long
task 36 to the most efficient core. But in the DGP, more energy-efficient solution was
found by assigning some shorter tasks that in total consume less power than task 36, to
the faster core.

Above experiment showed that the scheduler constructed using DGP is able to find
highly optimized solutions. More experiments proving this remark are given in our
previous work [19, 23, 24].

258 S. Deniziak et al.

5.6 Results of e3s Benchmark

The first task graph from e3s benchmark suite [26] is presented on Fig. 13. And its
resource database is presented in Table 5. Evolution parameters were the same as in
Subsect. 5.1. The results of presented method and their comparison with LLF algo-
rithm were shown in Table 6. The DGP allows to consume significantly less energy
than LLF when using 4 cores. Moreover, it is fully adaptive to the time requirements.
The energy consumption decreases as the maximal allowed execution time increases. In
case of 8 cores, the results are the same. However, the LLF is not able to find a shorter
schedule than 23042 ms. Therefore, the DGP is better for high-constrained problems.

Fig. 13. Task Graph of auto-indust-mocsyn set.

Synthesis of Low-Power Embedded Software Using DGP 259

6 Conclusions

In this paper the method of synthesis of low-power embedded real-time software for
multicore systems is presented. We use DGP-based approach to optimize the
scheduling strategy that minimizes the power consumption. The method assumes the

Table 5. Resource database for auto-indust-mocsyn benchmark

Task Processor cores

A57 (high performance) A53 (energy efficient)
Energy [mJ] Time [ns] Energy [mJ] Time [ns]

1 100 10 50 13
2 90 9 45 11
3 800 80 400 100
4 140000 14000 70000 17500
5 3300 330 1650 413
6 230 23 115 29
7 9100 910 4550 1138
8 67000 6700 33500 8375
9 690 69 345 86
10 350 35 175 44
11 90 9 45 11
12 4900 490 2450 613
13 740 74 370 93
14 50 5 25 6
15 90 9 45 11
16 30 3 15 4
17 100 10 50 13
18 800 80 400 100
19 9100 910 4550 1138
20 100 10 50 13

Table 6. Power consumption and time execution of auto-indust-mocsyn program

Deadline DGP LLF

Cores Cores

4 8 4 8

Energy Time Energy Time Energy Time Energy Time
ms mJ ns mJ ns mJ ns mJ ns

22 222330 21367 222330 21367 224940 21235 – –

23 191280 22919 191280 22919 224940 21235 – –

24 188830 23042 188830 23042 224940 21235 188830 23042
25 152330 24978 152330 24978 154940 24746 152330 24867

260 S. Deniziak et al.

ARM big.LITTLE architecture of the target system, but it can be easily adapted to other
dynamic power management techniques like DVFS.

The computational experiments confirmed, that the schedulers, generated using
DGP, are efficient and flexible. For the sample system our method gave better results
than results obtained using LLF-based method.

Despite the above advantages of our method, there is still possible to improve the
methodology. In the future work, we will consider adaptation of our method to other
methods of system specification as well as apply other optimization methods e.g. based
on constraint logic programming [28, 29].

References

1. Ditzel, M., Serdijn, W., Otten, R.: Power-Aware Architecting: for Data-Dominated
Applications. Springer, Netherlands (2007). http://dx.doi.org/10.1007/978-1-4020-6420-3

2. Greenhalgh, P.: Big. little processing with ARM CortexTM-A15 & ARM CortexTM-A7,
ARM White paper, pp. 1–8 (2011). http://www.arm.com/files/downloads/big.LITTLE_
Final.pdf

3. Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system-level
dynamic power management. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 8(3), 299–
316 (2000). http://dx.doi.org/10.1109/92.845896

4. Shang, L., Dick, R.P., Jha, N.K.: Slopes: hardware– software cosynthesis of low-power
real-time distributed embedded systems with dynamically reconfigurable fpgas. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 26(3), 508–526 (2007). http://dx.doi.org/10.1109/
TCAD.2006.883909

5. Steger, C., Bachmann, C., Genser, A., Weiss, R., Haid, J.: Power-aware hardware/software
codesign of mobile devices. e & i Elektrotech. Informationstechnik 127(11), 327–334 (2010)

6. Luo, J., Jha, N.K.: Low power distributed embedded systems: dynamic voltage scaling and
synthesis. In: Sahni, S., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552,
pp. 679–693. Springer, Heidelberg (2002). doi:10.1007/3-540-36265-7_63

7. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced cpu energy. In:
Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 374–
382. IEEE (1995). http://dx.doi.org/10.1016/j.ejor.2009.11.005

8. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained
project scheduling problem. Eur. J. Oper. Res. EJOR 207(1), 1–15 (2010). http://dx.doi.org/
10.1016/j.ejor.2009.11.005

9. Hartmann, S.: A competitive genetic algorithm for resource-constrained project scheduling.
Naval Res. Logistics (NRL) 45(7), 733–750 (1998). http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.45.359&rep=rep1&type=pdf

10. Li, X., Kang, L., Tan, W.: Optimized research of resource constrained project scheduling
problem based on genetic algorithms. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007.
LNCS, vol. 4683, pp. 177–186. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74581-
5_19

11. Zoulfaghari, H., Nematian, J., Mahmoudi, N., Khodabandeh, M.: A new genetic algorithm
for the rcpsp in large scale. Int. J. Appl. Evol. Comput. (IJAEC) 4(2), 29–40 (2013). http://
dx.doi.org/10.4018/jaec.2013040103

12. Jeff, B.: Ten things to know about big.little, ARM Holdings (2013). http://community.arm.
com/groups/processors/blog/2013/06/18/ten-things-to-know-about-biglittle

Synthesis of Low-Power Embedded Software Using DGP 261

http://dx.doi.org/10.1007/978-1-4020-6420-3
http://www.arm.com/files/downloads/big.LITTLE_Final.pdf
http://www.arm.com/files/downloads/big.LITTLE_Final.pdf
http://dx.doi.org/10.1109/92.845896
http://dx.doi.org/10.1109/TCAD.2006.883909
http://dx.doi.org/10.1109/TCAD.2006.883909
http://dx.doi.org/10.1007/3-540-36265-7_63
http://dx.doi.org/10.1016/j.ejor.2009.11.005
http://dx.doi.org/10.1016/j.ejor.2009.11.005
http://dx.doi.org/10.1016/j.ejor.2009.11.005
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.359&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.359&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-540-74581-5_19
http://dx.doi.org/10.1007/978-3-540-74581-5_19
http://dx.doi.org/10.4018/jaec.2013040103
http://dx.doi.org/10.4018/jaec.2013040103
http://community.arm.com/groups/processors/blog/2013/06/18/ten-things-to-know-about-biglittle
http://community.arm.com/groups/processors/blog/2013/06/18/ten-things-to-know-about-biglittle

13. Deniziak, S., Ciopiński, L.: Synthesis of power aware adaptive embedded software using
developmental genetic programming. In: Fidanova, S. (ed.) Recent Advances in Compu-
tational Optimization. SCI, vol. 655, pp. 97–121. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-40132-4_7

14. Michalewicz, Z.: Genetic Algorithms+Data Structures = Evolution Programs. Springer,
Heidelberg (1996). http://dx.doi.org/10.1007/978-3-662-03315-9

15. Dick, R.P., Jha, N.K.: MOGAC: a multiobjective genetic algorithm for hardware-software
cosynthesis of distributed embedded systems. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 17(10), 920–935 (1998). http://dx.doi.org/10.1109/43.728914

16. Koza, J., Poli, R.: Genetic programming. In: Burke, E., Kendall, G. (eds.) Search
Methodologies, pp. 127–164. Springer, US (2005). http://dx.doi.org/10.1007/0-387-28356-
0_5

17. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Evolutionary design of analog
electrical circuits using genetic programming. In: Parmee, I.C. (ed.) Adaptive Computing in
Design and Manufacture, pp. 177–192. Springer, London (1998). http://dx.doi.org/10.1007/
978-1-4471-1589-2_14

18. Deniziak, S., Gorski, A.: Hardware/Software co-synthesis of distributed embedded systems
using genetic programming. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds.) ICES
2008. LNCS, vol. 5216, pp. 83–93. Springer, Heidelberg (2008). doi:10.1007/978-3-540-
85857-7_8

19. Deniziak, S., Ciopinski, L., Pawinski, G., Wieczorek, K., Bak, S.: Cost optimization of
real-time cloud applications using developmental genetic programming. In: IEEE/ACM 7th
International Conference on Utility and Cloud Computing, vol. 7269, pp. 182–189. IEEE
Computer Society (2014). http://dx.doi.org/10.1109/UCC.2014.126

20. Briand, L., Labiche, Y.: A uml-based approach to system testing. Softw. Syst. Model. 1(1),
10–42 (2002). http://dx.doi.org/10.1007/s10270-002-0004-8

21. Dick, R., Rhodes, D., Wolf, W.: TGFF: task graphs for free. In: Proceedings of the Sixth
International Workshop on Hardware/Software Codesign (CODES/CASHE 1998), pp. 97–
101, March 1998 . http://dx.doi.org/10.1109/HSC.1998.666245

22. Sapiecha, K., Ciopinski, L., Deniziak, S.: An application of developmental genetic
programming for automatic creation of supervisors of multi-task real-time object-oriented
systems. In: IEEE Federated Conference on Computer Science and Information Systems
(FedCSIS), pp. 501–509 (2014). http://dx.doi.org/10.15439/2014F208

23. Sapiecha, K., Ciopiński, L., Deniziak, S.: Synthesis of self-adaptive supervisors of multi-task
real-time object-oriented systems using developmental genetic programming. In: Fidanova,
S. (ed.) Recent Advances in Computational Optimization. SCI, vol. 610, pp. 55–74.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-21133-6_4

24. Pawiński, G., Sapiecha, K.: An efficient solution of the resource constrained project
scheduling problem based on an adaptation of the developmental genetic programming. In:
Fidanova, S. (ed.) Recent Advances in Computational Optimization. SCI, vol. 610, pp. 205–
223. Springer, Heidelberg (2016). doi:10.1007/978-3-319-21133-6_12

25. Hu, J., Marculescu, R.: Energy-and performance-aware mapping for regular noc architec-
tures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(4), 551–562 (2005). http://
dx.doi.org/10.1109/TCAD.2005.844106

26. E3s benchmark. http://ziyang.eecs.umich.edu/dickrp/e3s/
27. Han, S., Park, M.: Predictability of least laxity first scheduling algorithm on multiprocessor

real-time systems. In: Zhou, X., Sokolsky, O., Yan, L., Jung, E.-S., Shao, Z., Mu, Y., Lee, D.
C., Kim, D.Y., Jeong, Y.-S., Xu, C.-Z. (eds.) EUC 2006 Workshops. LNCS, vol. 4097,
pp. 755–764. Springer, Heidelberg (2006). doi:10.1007/11807964_76

262 S. Deniziak et al.

http://dx.doi.org/10.1007/978-3-319-40132-4_7
http://dx.doi.org/10.1007/978-3-319-40132-4_7
http://dx.doi.org/10.1007/978-3-662-03315-9
http://dx.doi.org/10.1109/43.728914
http://dx.doi.org/10.1007/0-387-28356-0_5
http://dx.doi.org/10.1007/0-387-28356-0_5
http://dx.doi.org/10.1007/978-1-4471-1589-2_14
http://dx.doi.org/10.1007/978-1-4471-1589-2_14
http://dx.doi.org/10.1007/978-3-540-85857-7_8
http://dx.doi.org/10.1007/978-3-540-85857-7_8
http://dx.doi.org/10.1109/UCC.2014.126
http://dx.doi.org/10.1007/s10270-002-0004-8
http://dx.doi.org/10.1109/HSC.1998.666245
http://dx.doi.org/10.15439/2014F208
http://dx.doi.org/10.1007/978-3-319-21133-6_4
http://dx.doi.org/10.1007/978-3-319-21133-6_12
http://dx.doi.org/10.1109/TCAD.2005.844106
http://dx.doi.org/10.1109/TCAD.2005.844106
http://ziyang.eecs.umich.edu/dickrp/e3s/
http://dx.doi.org/10.1007/11807964_76

28. Sitek, P., Wikarek, J.: A hybrid framework for the modelling and optimisation of decision
problems in sustainable supply chain management. Int. J. Prod. Res. 53, 1–18 (2015). http://
dx.doi.org/10.1080/00207543.2015.1005762

29. Sitek, P., Wikarek, J.: A hybrid programming framework for modeling and solving
constraint satisfaction and optimization problems. Sci. Program. 2016, 13 (2016). Article ID
5102616. http://dx.doi.org/10.1155/2016/5102616

Synthesis of Low-Power Embedded Software Using DGP 263

http://dx.doi.org/10.1080/00207543.2015.1005762
http://dx.doi.org/10.1080/00207543.2015.1005762
http://dx.doi.org/10.1155/2016/5102616

BlueJ as the NetBeans Plugin

Rudolf Pecinovský(&)

Department of Information Technologies, University of Economics,
Prague, Prague, Czech Republic
rudolf@pecinovsky.cz

Abstract. One of the best IDE for introduction courses of object oriented
programming is the BlueJ IDE. This IDE was developed with respect to needs of
the absolute beginners. It offers almost everything what we need for teaching
according the Architecture First methodology. However later, when the students
go over to some professional IDE, they lose many of the BlueJ excellent fea-
tures, especially the ability to design the program and its architecture in the
interactive mode. The paper shows, how the BlueJ IDE was modified to work as
fully functional plugin for NetBeans IDE and which new possibilities we obtain
with it.

1 Introduction

1.1 BlueJ Integrated Development Environment

The BlueJ IDE ([1]) is at present probably the best development environment for using
in introductory courses of programming. It has the following strengths:

• It uses a class diagram for primary depiction of the developed program and thus it
pushes the students to think about the developed program at the architecture level,
not at the code level.

• The above mentioned class diagram is interactive and enables to involve the
required changes of architecture very simply without being distracted by certain
graphic details that take the attention off when using other UML diagram editors.

• Editing the class diagram is closely connected with editing the source codes. All
important changes in class diagram are immediately included into source codes of
influenced data types (interfaces, classes, enums …) and, on the contrary, all
changes in the source code are almost immediately shown in the class diagram.

• The BlueJ environment is equipped with a simple code generator so that within first
few lessons it is possible to design functioning programs without presenting the
created source code to students.

• The environment includes a simple and natural support for test class creating that
makes teaching the students more effective, and enables that the unit test creating
becomes a natural part of the program development for them.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_20

1.2 Architecture First Methodology

The abilities of development tools as well as used frameworks are further improved.
The programmer’s focus goes currently from creating the code to designing the
architecture. Contemporary trends even show that the time when various code gener-
ators will take over coding of the architecture design is a near future.

Unfortunately the methodologies currently in use do not react to these trends and
continue to prefer teaching of programming that, to certain extent, concentrates only
how to code the explained programming constructions and that postpones the expla-
nation of architectural design to follow-up courses.

This approach is, however, contrary to an important Early Bird pedagogical pattern,
which says ([2, 3]): “Organize the course so that the most important topics are taught
first. Teach the most important material, the “big ideas”, first (and often). When this
seems impossible, teach the most important material as early as possible.”

The Architecture First methodology ([6–8]) respects the crucial importance of
knowing the architecture design for future programmers and, according to the above
stated pedagogical pattern, it lines up the teaching of the architecture design at the
beginning of teaching process.

So that we could test the designed architecture, it is necessary to code the designed
program. In case we would not like to distract the students with the explanation of
syntactic rules and we would like to focus on the architecture design, we need certain
code generator at our disposal.

At this time BlueJ with its code generator comes to help us. Using it, we can focus
to the architecture design with students and coding of the relevant program will be
provided by this generator.

Thus BlueJ with its code generator enables to divide the Architecture First
methodology into required phases as follows:

1. Basics of object oriented programming are explained together with basics of object
architecture design, whilst the coding of created programs is in charge of the
program generator.

2. After exhausting all possibilities of the used code generator the programs designed
in the first phase are assessed once again. But nowadays the source code created by
the generator and the necessary syntactic rules are explained to students at these
examples.

3. Next item involves an explanation of constructions and architectural principles,
which are already behind the possibilities of the used code generator.

2 Where Are the Problems

BlueJ offers a number of properties which we can use in applying the Architecture First
methodology (and we also use them), however, some of its properties need further
improvement as follows:

BlueJ as the NetBeans Plugin 265

2.1 Small Capability of the Code Generator

The current code generator has really only limited abilities. One of the activities, we are
dealing with, is the significant extension of these abilities. Detailed information con-
cerning this problem is described in e.g. [4].

2.2 No Graphical View of the Code

The BlueJ environment depicts graphically only the program architecture in the form of
a class diagram. When teaching we would consider as very useful when it would be
able to show also the used algorithms – for example through kopenograms. This topic
is discussed in details in [5].

2.3 Bad Cooperation with Professional IDEs

BlueJ IDE is optimized for the introductory courses with the very beginners. Therefore
its simplicity of using is especially important. However, this simplicity is redeemed by
limitation of its functionality in certain areas.

On the other hand this limitation of functionality can be a good pretext for coming
to the work with professional IDE in the moment when students reach certain level of
their knowledge. However, the problem is in this case, that the possibility to work in
the interactive mode as well as the close connection between the editor and the code
generator is lost.

There is a plugin for NetBeans environment, which enables to open the project
originally developed in BlueJ environment, and to open it in such way so that they
could be open also in BlueJ environment again, but that is all what this plugin offers. In
other areas the students have to fully submit to practice of this new environment.

We used the fact that BlueJ environment is distributed as an open source and we
decided to modify the BlueJ environment in such way so that it itself becomes the
plugin of NetBeans environment and, if need be, also the plugin of other development
environment. This paper deals with this extension.

3 Requirements and Their Solution

3.1 Easy Installation

The first requirement for the created plugin was an easy installation available even for the
beginners. The plugin is installed in a standard way in which only the nbm file containing
full necessary information for installing the relevant plugin is selected. During its
installation the plugin defines its own card in the Options dialogue. This card allows
setting the BlueJ’s location (see Fig. 1). If the user forgets it, plugin will points him.

266 R. Pecinovský

3.2 Simple Creation of New Project

Another requirement was the possibility to create easily the new project which would
overtake the source codes of certain existing project created in BlueJ. Thus Import
BlueJ IDE Project has been included into the menu of the project types. After its
entering the dialogue from Fig. 2 opens. Besides the name and the location of the
created project it requires also entering the location of source codes of the transferred
original BlueJ project. The user can choose if these source codes will be copied into the
created NetBeans project’s folder or if he will work with original files.

This solution enables that the current BlueJ project could be easily converted into
NetBeans project without losing the possibility to be used by independently operating
BlueJ environment. With the other words, it enables that the project would be operating
in both environments (and even simultaneously with certain limitations).

Fig. 1. The Option dialog for setting the BlueJ location

Fig. 2. Settings for the created project

BlueJ as the NetBeans Plugin 267

3.3 Simple Activation of BlueJ Window

BlueJ project is presented in the project window similarly as any other NetBeans
project and we can work with it as with any current NetBeans project.

If we want to open some of the packages of the given project in BlueJ, we can only
enter the command Show in BlueJ in the context menu. Then NetBeans will open the
BlueJ window with the class diagram of the given package (see Fig. 3).

3.4 Window Layout

Another requirement was so that the appearance of the window in NetBeans tab would
be closely similar to that one of the BlueJ application window, so that the students could
be familiar with the new environment. As can be seen from Fig. 3, the only difference is
that the buttons from the upper part of the button panel moved to their own panel.

3.5 Functionality

The key requirement for the final product was to mediate the functionality of BlueJ
environment in NetBeans environment, above all the ability of working in the

Fig. 3. The NetBeans application window with the Project window and BlueJ window with the
opened package

268 R. Pecinovský

interactive mode and close connection of the source code and the class diagram. The
user should have, in optimal case, an access to all functionality of BlueJ environment.

As is shown in Fig. 3, the BlueJ window provides all functionality of BlueJ
environment including the possibility to work in the interactive mode.

3.6 Editor

Despite asking a maximum compliance of BlueJ functionality it was clear that it would
be advantageous to prefer NetBeans functionality in certain areas. Such area was the
source code editing. Therefore we asked BlueJ to use a comfortable editor inbuilt in
NetBeans for editing the source code.

NetBeans editor will open independently to whether we ask for editing the source
file from the NetBeans project window or from BlueJ window. Thus we can have an
access not only to comfortable editor of the source code, but also to its other func-
tionality, as is e.g. sophisticated refactoring, searching and replacing text using regular
expressions, searching and replacing text in multiple files and folders etc.

4 Summary

The first experience with the described plugin is very good. Students can significantly
easier come from the environment in which they started their learning into a more
comfortable, but at the same time more demanding environment in which they develop
more complex programs used in further phases of studies.

Thus, using of this plugin is more advantageous also for teachers because they do
not have to switch between the environments in which the programs for teaching are
designed and the environment in which they are subsequently verified. They can get
quickly the feedback and can far more operatively verify the applicability of proposed
procedures.

Acknowledgment. The paper was processed with contribution of long term institutional support
of research activities by the Faculty of Informatics and Statistics, the University of Economics,
Prague.

References

1. Page About BlueJ. http://bluej.org/about.html
2. Bergin, J.: Fourteen pedagogical patterns. In: Proceedings of Fifth European Conference on

Pattern Languages of Programs, (EuroPLoP™ 2000), Irsee (2000)
3. Bergin, J.: Pedagogical Patterns: Advice For Educators. CreateSpace Independent Publishing

Platform (2012). ISBN:1-4791-7182-4
4. Bobusky S.: Enhancing BlueJ interactive mode. Master thesis at University of Economics,

Prague (2015)

BlueJ as the NetBeans Plugin 269

http://bluej.org/about.html

5. Chadim M., Pecinovský R.: Kopenograms and their implementation in BlueJ. In: SDOT
(2015)

6. Pecinovský, R.: Principles of themethodology architecture first. In: Objekty 2012 –Proceedings
of the 17th International Conference on Object-Oriented Technologies, Praha (2012).
ISBN:978-80-86847-63-4

7. Pecinovský, R., Kofránek, J.: The experience with after- school teaching of programming for
parents and their children. In: FECS 2013 – The 2013 International Conference on Frontiers
in Education: Computer Science and Computer Engineering, Las Vegas, 22–25 July 2013.
http://worldcomp-proceedings.com/proc/p2013/FEC4207.pdf

8. Pecinovský, R.: OOP – Learn Object Oriented Thinking and Programming. Eva & Tomas
Bruckner Publishing, Czech Republic (2013). ISBN 80-904661-8-4

270 R. Pecinovský

http://worldcomp-proceedings.com/proc/p2013/FEC4207.pdf

Integration of Inertial Sensor Data
into Control of the Mobile Platform

Rastislav Pirník1, Marián Hruboš1(&), Dušan Nemec1,
Tomáš Mravec1, and Pavol Božek2

1 Faculty of Electrical Engineering, University of Žilina, Žilina, Slovak Republic
{rastislav.pirnik,marian.hrubos,dusan.nemec,

tomas.mravec}@fel.uniza.sk
2 Faculty of Materials Science and Technology, Institute of Applied Informatics,

Automation and Mechatronics, Slovak University of Technology,
Trnava, Slovak Republic

pavol.bozek@stuba.sk

Abstract. The paper presents the designed algorithm, which is able to integrate
of inertial sensor data into control algorithm. Autonomous operation of the
mobile system requires reliable measurement of its position. Sources of such
data are various; most commonly used is global satellite navigational system.
However, this technique can be used only outdoors. For navigation inside
building, under metal roof or underground only inertial or contact methods are
available. This article analyzes possibilities of deployment of the inertial navi-
gation in the control of the wheeled mobile platform. Experimental platform
uses inertial measurement unit x-IMU manufactured by x-IO Technologies.
According to our experiments inertial navigation can be reliably used only in
fusion with other absolute sensors (odometers, magnetometers).

1 Inertial Navigation Principle

Inertial navigation uses sensors, in this case accelerometers and gyroscopes and is
being used to locate objects e.g. inside buildings, in air and road traffic etc. Today, the
inertial navigation systems is not used alone for short time because with the increasing
time the error increases, too. Recent progress in the development is a fusion of GPS
data into inertial systems using Kalman filtering. These systems can be supplemented
by the barometric or magnetic sensors.

Inertial navigation [4, 5] computes position and attitude of the moving object with
respect to its starting position in inertial (non-accelerating) frame of reference. With a
small error we might consider surface of the Earth as an inertial base (the error will be
discussed later). In the most general case the movement of the rigid object is described
in six degrees of freedom – 3 degrees of translation and 3 degrees of rotation. In special
case of the wheeled vehicle moving on the horizontal floor only three degrees of
freedom are relevant:

• translation in two planar axes (North, East)
• rotation around vertical axis (Yaw)

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_21

The other degrees of freedom are required if the surface of the floor is not planar
(e.g. contains variable slopes and multiple levels).

2 Attitude Estimation

Attitude (rotation of the object around three axes) defines the transformation between
the global coordinate system (bound with the Earth) and local coordinate system
(bound with the vehicle). It can be computed in real time from the initial attitude and
readings of 3-axial gyroscope (measures angular velocity in local system). Note that
without knowing the initial attitude it is impossible to determine actual attitude. Inertial
measurement unit x-IMU therefore contains 3-axial accelerometer for roll and pitch
estimation and magnetometer for yaw estimation. Accelerometer measures the sum of
the gravitational acceleration vector [7] (constant in global coordinate system, defines
vertical direction) and the system’s own acceleration (can be arbitrary but its mean
value in long terms are zero). Magnetometer measures magnetic induction of the
Earth’s magnetic field (defines magnetic North). This configuration allows fully
compensated attitude estimation. Basic sensor fusion [1] algorithms are implemented in
default x-IMU firmware.

Attitude can be expressed in the form of Euler angles, rotational matrix or
quaternion. Available x-IMU API provides conversion algorithms from quaternions to
the other formalisms. Our algorithms use Euler angles in Z-Y-X convention
(yaw-pitch-roll) because of their readability by humans and rotational matrix because it
allows fast transformation between global and local system and can be easily used in
MATLAB® environment. Coordinate systems (both global and local) are Cartesian
with North-East-Down (abbr. NED) axis orientation.

3 Influence of the Earth’s Rotation

Small portion of the error in yaw estimation is caused by rotation of the Earth around
its own axis at angular velocity ωEarth = 7.292115 × 10−5 rad.s−1 (approximately
15°/h). For wheeled vehicle the worst case occurs around Earth’s poles, because ver-
tical complement of the Earth’s angular velocity is larger at higher latitude (see Fig. 1)
and yaw estimation provided by magnetometer is less precise.

Since the angular velocity of the Earth’s rotation is well known, readings from the
gyroscope can be compensated by following:

xcomp ¼ xraw � R:xEarth½ �cos/ 0 sin/ � ð1Þ

where R is rotational matrix expressing attitude with respect to local tangent plane in
NED convention on the Earth’s surface and ϕ is geographical latitude.

272 R. Pirník et al.

4 Position Estimation

According to the theory of inertia the position of the object can be integrated from
acceleration of the object in local coordinate system alocal, current rotational matrix R,
initial velocity v0 and position d0 in global inertial frame of reference. Algorithm of the
integration is following:

1. Initialize state variables:

a ¼ 0; v ¼ v0; d ¼ d0 ð2Þ

2. Wait for new sample from accelerometer and AHRS (Attitude and Heading Ref-
erence System)

aaccel ¼ alocalþR � g ð3Þ

3. Compute new acceleration in global coordinate system:

anew ¼ R�1 � aaccel � g; ð4Þ

where g is constant gravitational acceleration vector g = [0,0, g].
4. Compute new velocity in global coordinate system (trapezoidal integration):

vnew ¼ vþ anewþ að Þ T
2
; ð5Þ

where T is sampling period.
5. Compute new position in global coordinate system (trapezoidal integration):

dnew ¼ dþ vnewþ vð Þ T
2

ð6Þ

Fig. 1. Rotation of the Earth in local tangent plane

Integration of Inertial Sensor Data into Control 273

6. Save state, then go back to step 2.

a ¼ anew ; v ¼ vnew; d ¼ dnew ð7Þ

Experimental results show that given theoretical algorithm is very sensitive to the
bias of the accelerometer. Module x- IMU is using 12-bit accelerometer with full scale
up to ±8 g. Bias equal to 1 LSB in one axis will produce velocity drift:

vdriftðtÞ ¼ abias � t ¼ 8 g
212�1

t � 0:04m:s�2 � t ð8Þ

This drift is integrated into position:

ddrift tð Þ ¼ ddrift t � Tð Þþ vdrift tð Þþ vdrift t � Tð Þ� � T
2
� 1
2
abiast2 ð9Þ

Within t = 100 s of the operation the considered minimal accelerometer bias will
produce error of the position estimation ddrift ≈ 200 m. This error shows that using
only accelerometer for position estimation is not reliable in longer term operation.

Real measured drift characteristics are shown in Fig. 2. Experimental results are
slightly better than computed worst case.

Fig. 2. Measured acceleration, integrated velocity and distance in steady state with respect to
global frame of reference. Data are obtained right after sensor- calibration in order to eliminate
thermal drift effects.

274 R. Pirník et al.

5 Position Estimation by Odometer

Since the double integration of the accelerometer data does not provide reliable
information about distance, it is necessary to use absolute motion sensor [2, 6]. In case
of wheeled mobile platform the simplest solution is to use odometer [3] bound with its
wheels. We assume that wheels do not slide and difference of the distance run by
wheels during turns is negligible.

Following algorithm was used for estimation of the mobile platform’s position in
three-dimensional space:

1. Initialize position, reset odometer:

d ¼ d0 s ¼ 0 ð10Þ

2. Wait for new sample of rotational matrix R from AHRS.
3. Get current position of the odometer, compute change of odometer value:

Ds ¼ snew � s ð11Þ

4. Convert dislocation vector into global system:

d dþR�1 ds 0 0½ � ð12Þ

5. Go back to step 2.

Our experimental platform does not contain a real odometer. Since the propulsion DC
electromotor moves platform at approximately constant forward speed vfwd we can
replace measurement of the distance s by measurement of electromotor on-time on t.
Then it is valid:

Ds� vfwd � T ð13Þ

For improved performance of the “virtual odometer” it is possible to take the mass of
the vehicle into account. The vehicle is powered by brushed DC electromotor with
permanent magnets. Induced voltage in rotor winding is proportional to the rotation
frequency f. Supply voltageUsuppy (constant when electromotor is turned on) is equal to:

Usuppy ¼ Ra � Iþ f
KV

ð14Þ

where Ra is the rotor winding resistance and KV is the rotation rate per 1 V.
Electromotor torque is proportional to its current I, therefore is valid:

M ¼ KM � I ¼ KM � Usuppy

Ra
� f
KVRa

� �
¼ M0 � CMf ð15Þ

where M0 is initial torque and CM is motor constant.

Integration of Inertial Sensor Data into Control 275

The electromotor is coupled with wheels by fixed gear, therefore the previous
equation is valid also for propulsion force F:

F tð Þ ¼ F0 � C � vfwd tð Þ ¼ m
dvfwd tð Þ

dt
ð16Þ

where F0 is static propulsion force and C is a system constant. Since the propulsion force
at maximal forward speed max v is zero we can estimate the value of the constant as:

C =
F0

vmax
ð17Þ

Because the sampling period of the AHRS system is very short (maximal sampling
frequency of the x-IMU module is 512 Hz), we can assume dt = T and forward speed
can be calculated incrementally in each step by following:

vfwd nþ 1½ � ¼ vfwd n½ � þ F0T
m

1� vfwd n½ �
vmax

� �
ð18Þ

In case when motor is turned off the formula is different:

vfwd nþ 1½ � ¼ vfwd n½ � þ F0T
mnmax

� vfwd n½ � ð19Þ

Previous equations allow real-time estimation of the robot forward speed without
measurement of the actual wheels’ speed.

6 Collision Detection

Great advantage of mounted inertial measurement unit is that it allows detection of the
collisions of the vehicle with any obstacle. Onboard accelerometer can measure
acceleration of the shock in two axes, therefore it is possible to estimate not just
occurrence of the shock but also its direction. The shock will cause negative spike of
the acceleration in xy plane from direction δ (see Fig. 3).

d ¼ atan2ð�alocal y;�alocal xÞ ð20Þ

where alocal x, alocal y are complements of the shock acceleration in local coordinate
system.

Since the ability to accelerate of the vehicle is always limited by static friction
coefficient μ between its tires and the floor (μ usually does not exceed 1), the maximal
acceleration caused by vehicle propulsion or turning is given by:

amax ¼ lg ð21Þ

276 R. Pirník et al.

Threshold value of the local acceleration in xy plane for identifying collision should
be set from 120% to 200% of amax. Experiments show that acceleration during collision
of our mobile platform with solid obstacle was approximately 8 g at full forward speed
but only 2 g at 25% speed. Collision detection threshold was set to 1.2 g.

7 Control of the Mobile Platform

Our mobile platform was designed for massive production and allows only three-state
control of the propulsion (forward – stop – backward) and three-state control of
direction (leftstraight- right) (see Fig. 4). Control system is based on on-off regulator
with hysteresis. User inputs several waypoints which the robot should visit (approach
to it to some distance) in given order.

Every waypoint is defined in 2D space by Cartesian coordinates. We denote current
waypoint as W = [xW, xW], current position as A = [xA, xA] and current heading as ψA.
Distance vector to target is then:

D ¼ W�A¼ xW� xA; yW; yA½ � ¼ xD; xD½ �; ð22Þ

Heading to target is:

wA ¼ atan2 xD; xDð Þ ð23Þ

Difference between ψD and ψΑ expresses regulation error:

wE ¼ wD�wA ð24Þ

Note: In order to obtain angular difference ψΕ from interval (−π, π) it is necessary to
remove period 2π out of the result:

Fig. 3. Acceleration vector during collision with an obstacle

Integration of Inertial Sensor Data into Control 277

wE wE � 2p � round wE

2p

� �
ð25Þ

Steering control algorithm is three-state on-off regulator with hysteresis. It is
described by following state diagram (see Fig. 5).

Fig. 4. Experimental mobile robot platform

Fig. 5. State diagram of the simple control algorithm

278 R. Pirník et al.

As can be seen, algorithm does not use backward movement. In case that robot is
too close to the waypoint and heading error is too high (waypoint is inside arc with
robot’s minimal turn radius rmin, see Fig. 6), algorithm will not ensure reaching the
waypoint (robot will circle around waypoint).

According to Fig. 6 it is valid:

S ¼ A þ rmin½�sinwA coswA� when wE [0 ð26Þ
S ¼ A þ rmin½sin wA � cos wA� when wE\ 0 ð27Þ

Fig. 6. Unreachable waypoint inside minimal radius trajectory

Fig. 7. Real trajectory of experimental mobile robot platform

Integration of Inertial Sensor Data into Control 279

Distance rW is then computed as length of the segment SW = W − S. If the
waypoint is unreachable (rW < rmin), vehicle should reverse steering and electromotor
direction until waypoint becomes reachable (rW > rmin). In order to avoid oscillations it
is necessary to use hysteresis in decision whether waypoint is reachable or not.

Fig. 8. Real trajectory with bigger deviation

Fig. 9. Backward movement of experimental mobile robot platform

280 R. Pirník et al.

8 Experimental Results

We have applied the proposed algorithm for position control of experimental mobile
robotic platform. In the Fig. 7 we can see trajectory of experimental mobile robot
platform. Trajectory is defined using 4 points. As can be seen in Figure mobile platform
passed all points very accurately even when we set permissible deviation from the real
position.

In Fig. 8 is measurement with bigger deviation from the desired position.
In our approach is implemented algorithm which using backward movement for

better results. This approach can be seen in Fig. 9.
The robot does not run in perfect circles. This effect is caused by inaccuracy of

heading estimation by gyroscope (Fig. 10).

9 Conclusion

‘Low-cost inertial sensors do not provide sufficient accuracy of the acceleration mea-
surement therefore they cannot be used directly for position estimation. On the other
hand, they can be used for very precise measurement of attitude and heading. This
work designs, explains and verifies algorithm which allows integration of inertial
sensor data (attitude and heading estimation) into control algorithm. This algorithm is
designed universally and can be used for automatic control of movement of various
devices such as mobile wheeled robots, mobile belt robots, boats or aircraft. Proposed

Fig. 10. Inaccuracy of position estimation using gyroscope

Integration of Inertial Sensor Data into Control 281

steering control algorithm can be parameterized according to the parameters and lim-
itations of the real controlled vehicle (especially minimal turning radius and acceler-
ation abilities). It also implements detection of the waypoint reachability and provides
reversal control for wheeled platforms.

Acknowledgment. The contribution is sponsored by VEGA MŠ SR No 1/0367/15 prepared
project “Research and development of a new autonomous system for checking a trajectory of a
robot”.

References

1. Feng, S., Murray-Smith, R.: Fusing Kinect sensor and inertial sensors with multi-rate Kalman
filter. In: IET Conference on Data Fusion & Target Tracking 2014: Algorithms and
Applications (DF&TT 2014), pp. 1–8, 30 April 2014. doi:10.1049/cp.2014.0527

2. Pinney, C., Hawes, M.A., Blackburn, J.: A cost-effective inertial motion sensor for
short-duration autonomous navigation. In: Position Location and Navigation Symposium,
pp. 591–597. IEEE, 11–15 April 1994. doi:10.1109/PLANS.1994.303402

3. Sampaio, S., Massatoshi Furukawa, C., Maruyama, N.: Sensor fusion with low-grade inertial
sensors and odometer to estimate geodetic coordinates in environments without GPS signal.
IEEE Lat. Am. Trans. (Revista IEEE America Latina) 11(4), 1015–1021 (2013). doi:10.1109/
TLA.2013.6601744

4. Qasem, H., Gorgis, O., Reindl, L.: Design and calibration of an inertial sensor system for
precise vehicle navigation. In: 2008 5th Workshop on Positioning, Navigation and
Communication, WPNC 2008, pp. 229–231, 27 March 2008. doi:10.1109/WPNC.2008.
4510379

5. Benser, E.T.: Trends in inertial sensors and applications. In: 2015 IEEE International
Symposium on Inertial Sensors and Systems (ISISS), pp. 1–4, 23–26 March 2015. doi:10.
1109/ISISS.2015.7102358

6. Šimák, V., Končelík, V., Hrbček, J., Folvarčík, J.: Realization and a real testing of the road–
fee system. In: Proceedings of the 33rd International Conference on Telecommunications and
Signal Processing, TSP 2010, Baden near Vienna, Austria, 17–20 August 2010. ISBN 978-
963-88981-0-4

7. Hulsing, R.: MEMS inertial rate and acceleration sensor. IEEE Aerosp. Electron. Syst. Mag.
13(11), 17–23 (1998). doi:10.1109/62.730613

282 R. Pirník et al.

http://dx.doi.org/10.1049/cp.2014.0527
http://dx.doi.org/10.1109/PLANS.1994.303402
http://dx.doi.org/10.1109/TLA.2013.6601744
http://dx.doi.org/10.1109/TLA.2013.6601744
http://dx.doi.org/10.1109/WPNC.2008.4510379
http://dx.doi.org/10.1109/WPNC.2008.4510379
http://dx.doi.org/10.1109/ISISS.2015.7102358
http://dx.doi.org/10.1109/ISISS.2015.7102358
http://dx.doi.org/10.1109/62.730613

Measuring Maintainability of OO-Software -
Validating the IT-CISQ Quality Model

Johannes Braeuer1, Reinhold Ploesch1(&), and Matthias Saft2

1 Department of Business Informatics – Software Engineering Johannes Kepler,
University Linz, Linz, Austria

{johannes.braeuer,reinhold.ploesch}@jku.at
2 Corporate Technology Siemens AG, Munich, Germany

matthias.saft@siemens.com

Abstract. The Consortium for IT Software Quality (IT-CISQ) standard claims
to provide valid measures as well as an assessment method that are suitable for
properly measuring software quality. We implemented the measures for main-
tainability as specified by the IT-CISQ standard and wanted to find out whether
both – the IT-CISQ defined assessment method and the IT-CISQ measures – are
suitable for determining the maintainability of object-oriented systems. We
identified a reference study that classifies the maintainability of eight
open-source Java projects. This study follows a comprehensive measurement
and assessment process and therefore can be used for validating the IT-CISQ
approach. Due to the missing consideration of project size metrics, the IT-CISQ
assessment method is not capable of properly determining the quality of pro-
jects. Even considering size metrics does not substantially enhance the result,
which is an indicator that the measures proposed by IT-CISQ do not properly
measure maintainability. Finally, our benchmarking approach was applied. It
sets the measurements in relation to 26 projects that constitute the benchmark
base. Despite a lack of statistical significance, the benchmarking results show a
better correlation with the ranking published by the reference study. As our
benchmarking approach is well validated, we can conclude that the measures
proposed by IT-CISQ have to be considerably enhanced, i.e., additional mea-
sures have to be added to be able to determine the maintainability of
object-oriented software projects.

1 Introduction

In the past a quality centric viewpoint has become increasingly important in software
development. Nevertheless, the definition of software quality continues to be contro-
versial and insufficiently understood. Thus, the quality of software products is often
dissatisfactory, resulting in high economic impact. The consequences can be enormous
and include not only spectacular failures, but also increased maintenance costs, high
resource consumption, long test cycles, and delayed features [1]. To deal with this
issue, software quality models focus on providing a systematic approach for modeling
quality requirements. Moreover, some of the models not only propose approaches for
assessing the current software quality status, but also for monitoring quality aspects as
well as for improving the software based on different measures.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_22

Despite a high acceptance of quality awareness, there is still a gap between the
abstract quality characteristics described in quality models and their concrete mea-
surements [2]. Missing concrete measurements makes it difficult to explain the
importance of quality problems to developers or sponsors and to quantify the potential
of quality improvements. Furthermore, the relation between different quality assess-
ment methods is not well studied [3].

The Consortium for IT Software Quality (IT-CISQ) quality model proposed by the
Object Management Group (OMG) in 2012 [4] claims to close the gap between
abstract quality characteristics as suggested by the ISO/IEC 25010 quality model and
concrete measurements for the quality attributes maintainability, reliability, perfor-
mance efficiency, and security [5]. Providing this necessary operationalization for the
ISO/IEC 25010 standard pushes the IT-CISQ model in the spotlight of practitioners –
either to have at least something to hold on to, or because of pressure imposed on
organizations to follow this standard. It is therefore important for industry to determine
whether the proposed standard is ready to be used.

In previous work we developed operational quality models that provide concrete
measurements for typical software quality attributes [6, 7]. Moreover, the application of
a benchmark-based assessment approach has been validated in several studies [8, 9].
These studies show that the assessment approaches have high external validity, so we
were eager to validate the IT-CISQ standard with our understanding of quality assess-
ment. A recently published work discusses the validation of maintainability-related
measures of the IT-CISQ model. It highlights that the IT-CISQ quality model for
maintainability could be used for quality evaluations, but is only partially suitable for
improvement programs [10].

The research objective of this paper is to get more insights into the practical
relevance of the IT-CISQ assessment method and its quality model for the ISO/IEC
25010 quality characteristic maintainability on object-oriented software. To achieve
this objective, this paper relies on a measurement tool that has already proven its
validity, as shown in [10]. Moreover, a reference study was identified, which evaluates
the maintainability of multiple Java, C++, and C projects [11]. The reference study
follows a comprehensive approach for quality evaluation (especially for maintain-
ability); therefore, the results of the study can be well used to compare it with the
IT-CISQ model application. Due to the fact that this work is exclusively dealing with
the programming language Java, only the eight Java projects from the reference study
were used for the validation. To judge whether the measures defined in the IT-CISQ
quality model for maintainability can be reasonably used for assessing the maintain-
ability of object-oriented software products, this paper first concentrates on a validation
process that is guided by the evaluation method proposed in the IT-CISQ standard.
Based on that result, a second validation experiment enhances the proposed method by
using simple normalization with logical lines of code (LLOC) for making measurement
results comparable and assessable. As both validation experiments did not lead to
significant results, a third assessment approach (using the IT-CISQ measures) is applied
as alternative to the IT-CISQ standard. It builds upon a benchmark suite consisting of
26 open-source Java projects, which is used to level the CISQ measures.

This paper is structured as follows: Sect. 2 presents an overview of the IT-CISQ
quality model and a more detailed description of the maintainability-related parts.

284 J. Braeuer et al.

Section 3 shows the approach that is used to operationalize the measurements specified
by the IT-CISQ quality model for maintainability. In Sect. 4 the benchmarking-based
approach is introduced, followed by a presentation of the reference study in Sect. 5.
The main part of this paper is Sect. 6, which describes the validation of the IT-CISQ
quality model for maintainability. Finally, Sect. 7 concludes the findings and provides
an outlook for further work.

2 The IT-CISQ Quality Model

The goal of the IT-CISQ quality standard [4] is to provide specifications for measuring
software quality. It is based on the ISO/IEC 25010 standard for software quality,
meaning that IT-CISQ does not provide a model for specifying software quality but
instead relies on the definitions provided by ISO/IEC 25010. However, the IT-CISQ
model enhances the ISO/IEC 25010 standard by providing a specification of how to
measure the defined quality attributes. It is claimed that this facilitates the definition of
Service Level Agreements, the quantification of quality of business-critical applica-
tions, and supports the definition of benchmarks.

The standard comprises five sections. Section 1 introduces basic terms in the
context of measurement. Section 2 defines terms with a heavy reuse of definitions from
the ISO/IEC 25000 standards family. Section 3 defines requirements for implementing
the standard. Section 4 is the core part of the standard and defines concrete measures
for evaluating selected software quality attributes of the ISO/IEC 25010 standard. The
current version 2.1 of the IT-CISQ standard covers the quality attributes reliability,
performance efficiency, security, and maintainability. Finally, in Sect. 5 the standard
defines a calculation model for the aggregation of individual measures to a single
indicator for a quality attribute.

The IT-CISQ model does not refer to the next (finer) level of quality attributes. For
example, the ISO/IEC quality attribute reliability is directly measured in the IT-CISQ
model, and more differentiated measurement specifications for the sub-quality attri-
butes of reliability (e.g., maturity or availability) are not provided. For the opera-
tionalization of quality attributes, the description of each operationalization follows the
same structure. Thus, a number of issues are refined into quality rules that are opera-
tionalized by quality measure elements. Table 1 shows an example of an issue that is
related to layered architectures (therefore substantiating the ISO/IEC 25010 quality
attribute maintainability) and refined into two quality rules and three quality measure
elements.

Quality measure elements are typically formulated as rules and the underlying
metric is the number of artefacts in the source code that violate this rule. Subsequently,
this work uses the general term measure, as the IT-CISQ standard also heavily relies on
this phrase. Table 2 shows the measures that are defined for operationalizing software
maintainability. As indicted by their description, many of these rules can only be
applied in software that follows an object-oriented paradigm since they check the
adequate usage of inheritance, polymorphism, and encapsulation.

Measuring Maintainability of OO-Software - Validating the IT-CISQ Quality Model 285

Table 1. Issues, quality rules, and quality measure elements

Issue Quality rule Quality measure
Element

Issue 1: In a layered architecture,
functions should strictly be allocated
to layers and maintain a strict
hierarchy of calling between layers
(utility layers excepted)

Rule 1: Functions only
communicate (exchange data)
with functions belonging to an
adjacent layer. Functions do not
directly exchange data with
functions that are not in an
adjacent layer (no layer
skipping/bridging)

Measure 1: #
of functions that
span layers
Measure 2: # of
layer-skipping
calls

Rule 2: Avoid too many
horizontal layers

Measure 3: #
of layers
(threshold
4 <= 8)

Table 2. IT-CISQ measures for maintainability obtained from [4]

ID Short description of measure

M1 # functions that span layers
M2 # of layer-skipping calls
M3 # of layers (threshold 4 <= 8)
M4 # files that contain 100 + consecutive duplicate tokens
M5 # of unreachable functions
M6 # of classes with inheritance levels > = 7
M7 # of classes with > = 10 children
M8 # of instances of multiple inheritance of concrete implementation classes
M9 # of methods that are directly using fields from other classes
M10 # of variables declared public
M11 # of functions that have a fan-out > = 10
M12 # of objects with coupling > 7
M13 # of cyclic calls between packages
M14 # of functions with > 2% commented out instructions
M15 # files > 1000 LOC
M16 # of instances of indexes modified within its loop
M17 # of GO TOs, CONTINUE, and BREAK outside the switch
M18 # of functions with cyclomatic complexity > = a language specific threshold
M19 # of methods with > = 7 data or file operations
M20 # functions passing > = 7 parameters
M21 # of hard coded literals except (–1, 0, 1, 2, or literals initializing static or constant

variables)

286 J. Braeuer et al.

3 Measuring Maintainability

3.1 Assumptions for Maintainability Measures

This work measures maintainability as defined by the IT-CISQ quality model. Main-
tainability is chosen as evaluation target because it can have a significant impact on the
costs of a software product [1]. This quality aspect influences the whole Software
Development Life-Cycle (SDLC) and mainly the maintenance process [12, 13]. Fur-
thermore, maintainability is selected because the reference study, which is used for
validation, is considering the same viewpoint focuses on this quality attribute.

The previous section presented the overall structure of the IT-CISQ model, i.e.,
from issues to quality rules and finally to quality measure elements (measures for
short). For the purpose of evaluation, this work only needs to concentrate on the section
of measures defined for maintainability. Table 2 lists these measures as defined by the
IT-CISQ standard. The rule number given in the first row is used in the remainder of
the paper for reference.

As a first step for automating measurement, we analyzed the definitions and
specifications of measures given in the standard. Then we tried to identify issues related
to these specifications. The result of this analysis shows that these specifications are not
exact enough for some measures:

M1, M2, M3: The standard makes the implicit assumption that each function is part
of a layer. Furthermore, the specification leaves open under which circumstances a
function spans a layer (e.g., just when other functions are called, or also when variables
or constants are used from other layers). Additionally, layers defined in the architecture
are sometimes not directly reflected in a package or directory structure. Hence, code
often needs to be mapped manually to the according layer hierarchy.

M8: This measure is not generally applicable, as some object-oriented program-
ming languages (e.g., Java, C#) do not offer multiple implementation inheritance.

M11: The specification does not provide details for calculating fan-out although
there are different approaches available in the literature, e.g., [16, 17].

M12: The specification does not provide details for calculate coupling between
objects although there are different approaches available in the literature, e.g., [14, 17].

M18: The language specific thresholds remain unspecified in the standard.
M19: Although the specification is clear for this measure, there is no mean to

reliably detect all data or file operations in an arbitrary system since functions are often
hidden in a utility layer. That is why it has to be specified manually.

Table 3 lists which assumptions we took in order to be able to provide automatic
measurement for the specified measures of the IT-CISQ standard.

3.2 Implementation of the Measurement Tool

Figure 1 gives an overview of our tool architecture for the implementation of the
necessary IT-CISQ measures. Understand is a commercial tool1 that parses source code

1 https://scitools.com/.

Measuring Maintainability of OO-Software - Validating the IT-CISQ Quality Model 287

https://scitools.com/

(e.g., Java Source code) and stores the extracted information about types, methods,
method parameters, dependencies between classes and packages, etc. in a database.
Furthermore, the tool Understand provides a Perl-based API for accessing this stored
information.

MUSE (MUSE Understand Scripting Engine) is a library that we developed. This
Perl library provides basic functionality for accessing the Understand database, for
dealing with threshold values, for writing result files (in Fig. 1 denoted as findings.
xml), as well as a set of helper functions to more easily access the information provided
by Understand (e.g., getting the package of a class, getting the list of all public classes
of a project, etc.).

Moreover, MUSE uses the module concept of Perl for grouping measures. These
modules can be seen as small plugins.

In case a module is stored in a specific directory of MUSE, it can be loaded and the
measures defined in this module can be executed. This facilitates the configuration of

Table 3. Assumptions for rule automation

M1
M2
M3

We assume that every function or method is always part of a layer. The
implementation of a function or method is allowed to call functions or methods from
direct upper or lower layers, but not from layers that are far away. In order to
automatically calculate this measure, it has to be assured (by configuration) that each
function or method (or its more high-level constructs like classes or packages) is
assigned to exactly one layer.

M8 No meaningful implementation possible for Java. For this reason M8 is not considered
anymore.

M11 The fan-out is calculated by summing up the number of called functions (methods)
and the number of member variables set.

M12 For the calculation of the object coupling, we rely on the well-known metric Coupling
Between Object (CBO) as specified in [14].

M18 As a threshold value for the cyclomatic complexity, we assume a value of 10 as
proposed by McCabe [15] and because of the widespread use of this threshold value.

M19 We allow explicit specification for each project which packages or classes contain
data or file operations and that are therefore considered when calculating this measure.

Fig. 1. Tool architecture for implementing IT-CISQ measures

288 J. Braeuer et al.

the functionality of MUSE. For the implementation of the IT-CISQ measures, each of
the 20 rules2 is implemented as a separate Perl module in order to have maximum
flexibility for the validation. The implementation of the 20 IT-CISQ rules has *2,000
LOC. Nevertheless, the implementation relies on some basic functionality provided by
the MUSE framework as mentioned before.

4 Assessment Method for Maintainability

In the main part of this work, the validation of the IT-CISQ measures, we come to the
conclusion that the proposed aggregation process from the IT-CISQ standard does not
consider core assessment problems like different project sizes. As a consequence, we
apply our benchmarking approach in the course of the validation. For keeping the
validation section lean and concise, a presentation of our benchmarking method is
given here.

Benchmarking is a well-established concept in many business areas where (similar)
objects (e.g., products, services, processes, organizations) are checked against each
other for specific purposes [18], e.g., for the evaluation of the value of an object or to
derive suggestions for improvement.

In the context of software quality, Simon et al. [19] present a method for expressing
the quality of a software product by calculating a single grade named the Code-Quality-
Index (CQI). This method applies benchmarking for the calculation of the CQI by
comparing metric values of a product with statistical data from a benchmark base. The
benchmark base holds aggregated statistical data of more than 100 commercial software
systems. However, the CQI calculation model suffers some conceptual, benchmarking-
related, and technical deficiencies as investigated and described in [20].

Based on our experiences with the CQI, we developed an automatic assessment
approach for software quality [8] that is based on the benchmarking concept. For this,
in a first step we built up a benchmark database that stores the data of all reference
projects included, i.e., projects that are used for comparison. This means that we store
the results of the IT-CISQ quality measures for maintainability (see Sect. 3). It is
sufficient in this context just to count for each rule the number of violations for each
project in the benchmark base. Additionally, we store values of various size metrics for
each project as needed for normalization; examples of size metrics are lines of code,
number of methods, or number of classes.

Normalization of a measurement result deals with making raw results comparable
with other projects. As an example, in a project with several thousand functions (e.g.,
2,000), 20 undocumented functions might be just a negligible deficit. But in a project
with only 50 functions, having 20 undocumented ones might be unacceptable. From
this, the normalization operation eliminates the influence of the size of projects on the
measurement results. After having applied normalization strategies for each measure,

2 IT-CISQ specifies 21 measures for maintainability, but measure M8 is not applicable for Java
projects (see Table 3).

Measuring Maintainability of OO-Software - Validating the IT-CISQ Quality Model 289

the normalized data are comparable with data from other projects (e.g., 1% undocu-
mented functions in project A versus 40% in project B).

Based on the benchmark database that can be used for several assessments, a
benchmark suite needs to be generated in a second step. A benchmark suite usually is
specially tailored to a specific application of benchmarking and consists of only those
projects that are selected as reference projects, e.g., limited to projects of the embedded
systems domain, which are written in the C programming language. In our context, the
benchmarking suite consists of 26 open-source Java projects (more details will be given
in Sect. 5).

To create the benchmark suite, we calculate a value distribution for each measure
on the basis of their normalized measurement values of the selected projects. These
value distributions reflect commonly used statistical figures, e.g., quartiles, quintiles,
deciles, or percentiles.

A quartile-based distribution, as shown in Fig. 2, divides the values into four areas,
Q1-area to Q4-area, where Q1-area and Q4-area are delimitated with the minimum and
maximum value of the suite projects. If an investigated project is better than the
benchmark minimum it is in the additional Q0-area. Vice versa, this also applies to the
maximum value.

In order to calculate an average quality score for the project, we consider all
rules/metrics and average out the number of rules/metrics falling into each quality area
from Q0-area to Q5-area. Moreover, each of the Q-result has a value assigned; the better
the area, the higher the number. For example, a Q-result of Q0 will get 5 points while a
result of Q5 will get 0 points. Summing up the points for all rules and dividing this sum
by the total number of selected rules produces the quality score. The quality score
calculated based on this formula ranges from 5 to 0, with 5 representing the highest score.

5 Reference Study

For the validation of the IT-CISQ quality model, this paper relies on a referential data
set that is published in [11]. In [11] the authors use their own quality model to
certificate different open source software products. This applied quality model is based
on the ISO/IEC 9126 standard [21], the predecessor of the ISO/IEC 25000 standard.
Moreover, the quality model is restricted to maintainability aspects only. In other
words, it maps a set of source-code measures onto the sub-characteristics of the quality
aspect maintainability as defined in ISO/IEC 9126 [21].

Fig. 2. Quartile-based value distribution for one rule (example) [8]

290 J. Braeuer et al.

To demonstrate the certification method based on the quality model, the referenced
study uses 17 open-source projects. This set is composed of eight Java, four C/C++, and
five C products. Since our work is exclusively dealing with the programming language
Java, Table 4 contains only the eight Java projects including their version number,
logical lines of code, and calculated maintainability value. The latter ranges from –2 to 2
and is responsible for the ranking of the projects. Hence, the project with the highest
value is considered to be the most maintainable one and is therefore ranked at the top end.

The maintainability value, as shown in the last column, is calculated based on
different maintainability concerns. In detail, the four sub-characteristics analyzability,
changeability, stability, and testability are individually assessed for each project.
Furthermore, source code duplications, test quality, complexity, unit size, and volume
are five additional properties that affect the classification process proposed in [11]. In
order to operationalize these different aspects that influence the maintainability value,
the classification process relies on both automatic and manual measures. A software
analysis toolkit, for instance, automatically delivers source code metrics whereas a
manual and structured review process provides information on the test quality. At the
end, all results from the different maintainability viewpoints flow together and form the
maintainability value of a project. Maintainability is therefore measured comprehen-
sively and the study can serve as reference for judging the accuracy of the IT-CISQ
measures for maintainability.

According to Table 4, Axion 1.0 has the highest maintainability value compared
with the other Java projects. In other words, Axion is the product that best fulfills
maintainability requirements based on the quality model published in [21]. The last
place of the ranking is taken by Tomcat 6.0.14. For clarification, JalistoPlus 2.0 and
Derby 10.3.2.1 have the same maintainability value so that they share the same rank. In
the reminder of this paper, this ranking of the projects is referenced several times in
order to link the result of this study with the validation approaches discussed later.

6 Execution and Validation

In order to validate the IT-CISQ measures for maintainability, this work uses the eight
reference projects and calculates the number of violations for each maintainability
measure specified in Sect. 3.1. Therefore the previously mentioned measurement tool

Table 4. Reference projects obtained from [11]

Rank Product Version LLOC Maintainability value [–2, 2]

1 Axion 1.0 18,921 +0.54
2 H2 1.0.69 72,102 +0.08
3 SmallSQL 0.19 18,402 –0.38
4 JalistoPlus 2.0 21,943 –0.54
4 Derby 10.3.2.1 307,367 –0.54
6 Jaminid 0.99 1,120 –0.63
7 HSQLDB 1.8.0.9 69,302 –0.70
8 Tomcat 6.0.14 164,199 –1.08

Measuring Maintainability of OO-Software - Validating the IT-CISQ Quality Model 291

supports this initial data gathering process by computing the violations for each project
in an almost automated manner. The result of this first step (without measures M1, M2,
M3, and M19) is shown in Table 5.

The data summarized in Table 5 will be used for the further validation of the
IT-CISQ measures. For doing so, this article applies three different validation experi-
ments listed below. The goal of each of these experiments is to figure out whether
applying IT-CISQ obtains a similar ranking as the one obtained by the reference study.

• Validation applying IT-CISQ standard
• Validation using normalization of measures with LLOC
• Validation using benchmarking approach

6.1 Experiment 1 – Validation Applying IT-CISQ Standard

(1) Design
The first validation experiment is based on the evaluation method provided by the
IT-CISQ standard and uses the quality characteristic calculation process proposed in
[4]. This process simply sums up the number of violations to a single figure. For this
task, the product is considered as a whole and not divided into layers, components, or
other structuring concepts. Moreover, weighting the measures is also not recommended
by the standard and therefore was not applied [4].

Table 5. Distribution of violations

ID Jaminid
0.99

SmallSQL
0.19

JalistoPlus
2.0

Axion
1.0

HSQLDB
1.8.0.9

H2
1.0.69

Tomcat
6.0.14

Derby
10.3.2.1

M4 0 4 1 2 9 12 29 37
M5 1 0 1 3 18 1 29 98
M6 0 0 0 0 0 0 0 1
M7 1 3 1 2 0 6 13 12
M9 4 107 6 32 726 267 376 2920
M10 0 0 2 28 90 59 240 598
M11 10 101 198 174 452 565 1205 1809
M12 9 59 106 100 166 282 546 819
M13 1 0 61 35 25 189 78 404
M14 6 11 52 20 157 93 224 396
M15 0 4 0 5 30 14 58 131
M16 0 1 0 2 6 5 11 41
M17 2 39 6 59 266 325 536 629
M18 2 72 10 61 182 189 461 644
M20 0 2 0 1 16 18 48 448
M21 286 1751 1467 3129 6810 10360 23184 33289
Sum 322 2150 1910 3651 8944 12373 27009 42239

292 J. Braeuer et al.

Due to the fact that the IT-CISQ standard deals with the four quality characteristics
(reliability, performance efficiency, security, and maintainability), there may be con-
cerns that the quality calculation process includes all of the four characteristics.
However, IT-CISQ points out that the quality characteristic score can be calculated
separately for each quality characteristic [4], which will be maintainability in this
experiment.

(2) Result and Discussion
By executing the IT-CISQ specified aggregation process, it yields the ranking for the
eight reference products as depicted in Table 6.

The eight projects in Table 6 are ordered according to their obtained rank high-
lighted in grey. Thus, Jaminid 0.99 with the highest rank is placed on the left and Derby
10.3.2.1, as the project with the lowest rank, is placed on the right. When comparing
the second row (#CISQ findings) and third row (LLOC) of the table, it is obvious that
the number of findings increases with the number of LLOC. Consequently, the ranking
based on the IT-CISQ specified aggregation process is strongly related to the project
size. The only exception is SmallSQL 0.19, as the second smallest product, which has
more violations than JalistoPlus 2.0 that represents the third smallest product.

In further discussing the result of this validation approach, it is necessary to cal-
culate the Spearman (rank correlation) correlation coefficient since it expresses the
relationship between two variables using a monotonic function. The calculated corre-
lation coefficient (rs) has a value of 0.1073. As the sample size is small (eight projects),
the correlation coefficient has to have a value of 0.738 (α = 0.05) or 0.881 (α = 0.01) to
indicate a significant correlation. Consequently, a value of 0.1073 shows that there is
no relationship between the ranking based on the IT-CISQ standard and the ranking
from the reference study.

One reason for this discrepancy is of course that the generic configuration for the
IT-CISQ measures M1, M2, M3, and M19 could not be applied. For measuring M1,
M2, and M3 this experiment would rely on a software architecture specification that
defines the layering structure for each product. However, such a document could not be
identified for any of the products after conducting Internet research.

Finishing the discussion of the experiment result, the validation of the IT-CISQ
standard-based calculation process shows that this approach cannot be applied for
ranking products according to their IT-CISQ measures. Although the IT-CISQ standard

Table 6. Ranking based on IT-CISQ standard

Jaminid
0.99

JalistoPlus
2.0

SmallSQL
0.19

Axion
1.0

HSQLDB
1.8.0.9

H2
1.0.69

Tomcat
6.0.14

Derby
10.3.2.1

#CISQ
findings

322 1910 2150 3651 8944 12373 27009 42239

LLOC 1107 21939 18341 23821 65378 72154 158067 307127
Ranking 1 2 3 4 5 6 7 8
Ref. 6 4 3 1 7 2 8 4

Measuring Maintainability of OO-Software - Validating the IT-CISQ Quality Model 293

mentions the use of normalization techniques to support comparisons for benchmarking
[4], this idea is not further discussed in the standard. Consequently, in the second
experiment this article continues with a validation approach that uses the LLOC to
normalize the number of violations.

(3) Threats to Validity
Threats to internal validity concern our selection of projects, tools, and the analysis
method. Thus, one threat to the internal validity of this experiment is the small set of
eight reference projects. In order to explicitly address this issue, a high minimum
correlation coefficient is defined in order to accept a correlation as significant (e.g.,
0.738 for α = 0.05).

In addition to the small set, another internal threat focuses on the problem that two
reference projects share the same rank. More precisely, JalistoPlus 2.0 and Derby
10.3.2.1 are ranked in fourth place as shown in Table 4. Therefore the fifth rank is not
occupied and the computation of the correlation coefficient is slightly influenced. In other
words, it is not possible to achieve a perfect correlation coefficient of value 1 as long as
no validation approach does rank the two reference projects on the fourth rank. To verify
the low influence of this internal threat, the correlation coefficient was recalculated based
on a ranking that occupied the fifth rank with both projects. As a result, neither of the
recalculations came up with a correlation coefficient value (e.g., rs = 0.047 and rs =
0.194) that would lead to an acceptance of the IT-CISQ-based approach.

Threats to external validity affect the possibility of generalizing the results. As we
were not able to positively validate the entire set of measures (M1, M2, M3, and M19
were excluded in advance), this experiment only partly shows the application of the
IT-CISQ standard. Moreover, it is obvious that M8 does not work for Java products since
multiple inheritance is not supported. The same applies to C#. Four projects (Jaminid,
Jalisto Plus, HSQLDB, and Tomcat) potentially could obtain a ranking closer to the
reference study, as considering the four excluded measures would increase the number
of CISQ findings. However, considering these four measures would also mean for three
projects (Axion, H2, Derby) that their distance to the reference projects gets even worse.
Overall, considering these four measures would therefore not lead to a significant cor-
relation between the IT-CISQ ranking and the ranking of the reference study.

Threats to reliability concern the possibility of replicating this experiment. We
attempt to provide all the necessary details to replicate this experiment. In addition, the
eight reference projects are publicly available. However, for a full re-execution of the
validation, the architecture of the measuring tool has to be rebuilt. This means that the
commercial tool Understand must be acquired and the MUSE library, which imple-
ments the IT-CISQ measures, must be used.

6.2 Experiment 2 – Validation Using Normalization of Measures
with LLOC

(1) Design
Normalization is a necessary concept when measures, which count the number of rule
violations, are compared with each other [22], especially when the analyzed projects

294 J. Braeuer et al.

differ substantially in size. Consequently, the second validation approach relies on this
idea and uses normalization for making measurement results comparable with other
projects. In this particular experiment the LLOC are used to normalize the findings
obtained from the IT-CISQ standard-based calculation process, which is shown in
Sect. 6.1.

(2) Result and Discussion
Table 7 summarizes the data required for the normalization. It shows the number of
violations and LLOC for each product. By putting both values into relation, the nor-
malized value can be calculated as depicted in the third row. Consequently, the ranking
represents the ascending order of the normalized number of violations. For the sake of
completeness, the ranking from the reference study is shown in the last row.

Like in the discussion of the previous validation approach, the correlation coeffi-
cient between the ranking obtained by the normalization and the reference study is an
important indicator for further assessment. Although the ranking is completely different
compared to the first experiment, the correlation coefficient between the new ranking
and the referenced ranking is exactly the same as the correlation coefficient computed
in the previous validation, namely 0.1073. For the discussion of this result see
Sect. 6.1.

Since normalization does not provide additional knowledge regarding the valida-
tion of the IT-CISQ measures, we believe that a simple normalization operation is not
sufficient in this context. Moreover, combining the normalized values of different
measures within an assessment is still questionable as they have different scales and
units. Therefore, it is required to use evaluation functions in order to transfer the
normalized measurement values of all measures into evaluated values with a defined
semantics [22]. Such an approach, which follows a separate consideration of the
IT-CISQ measures, is applied in the next experiment.

(3) Threats to Validity
Due to the fact that this experiment is building on the experiment presented in
Sect. 6.1, the same threats to validity remain valid. Nevertheless, an additional internal
threat to validity is the issue regarding the projects’ LLOC. When comparing the
numbers of LLOC in Table 4 with the values our tool obtained and represented in
Table 7, a mismatch can be identified; especially, for project Axion 1.0, which has a
high derivation with additional 25% of LLOC. Although there was the attempt to
reduce the source files to the referenced set, this was not possible without losing the
ability to build the product. One reason for the LLOC mismatch could be a different
implementation of the counting algorithm that was applied.

6.3 Experiment 3 – Validation Using Benchmarking Approach

(1) Design
The core of this validation is to apply the maintainability measures of IT-CISQ to the
eight projects using our benchmarking approach explained in Sect. 4. To prepare this
benchmarking approach, it is necessary to apply our IT-CISQ measures to a benchmark

Measuring Maintainability of OO-Software - Validating the IT-CISQ Quality Model 295

suite composed of 26 open-source Java projects. This provides valid benchmarking
distributions for all IT-CISQ measures. After that, for all reference projects all CISQ
rule results are benchmarked against this distribution. This means, that for every rule
the Q-area is determined for each reference project as shown in Sect. 4. Since this
assignment task is implemented as a feature of the measurement tool, it can be done
automatically. Afterwards, the quality score can be calculated by the arithmetic mean of
the weight of all Q-areas.

(2) Result and Discussion
Table 8 depicts the result of the benchmarking-based approach for the eight reference
projects without measuring M1, M2, M3, and M19. The row QS is the direct result
using the benchmarking calculation method, i.e. for Q0 5 points, for Q1 4 points, for
Q2 3 points, for Q3 two points, for Q4 one point and for Q5 zero points. Based on that
value, the ranking is derived as shown in the penultimate row.

Without an in-depth analysis of Table 8, a first glance shows that the projects are
almost ranked according to their LLOC. Only the first three projects do not follow this
order. Especially, JalistoPlus represents an outlier under this consideration since it has
the highest QS value, but is not the smallest project. The same effect regarding Jal-
istoPlus can be seen in Table 7 as well.

Table 7. Ranking normalized with LLOC

JalistoPlus
2.0

SmallSQL
0.19

HSQLDB
1.8.0.9

Derby
10.3.2.1

Axion
1.0

Tomcat
6.0.14

H2
1.0.69

Jaminid
0.99

#CISQ
findings

1911 2154 8953 42276 3653 27038 12385 322

LLOC 21939 18341 65378 307127 23821 158067 72154 1107
Norm. 0.087 0.117 0.137 0.137 0.153 0.171 0.172 0.291
Ranking 1 2 3 4 5 6 7 8
Ref. 4 3 7 4 1 8 2 6

Table 8. Ranking based on benchmarking approach

JalistoPlus
2.0

SmallSQL
0.19

Jaminid
0.99

Axion
1.0

HSQLDB
1.8.0.9

H2
1.0.69

Tomcat
6.0.14

Derby
10.3.2.1

Q0 (5) 6 6 7 3 4 3 3 2
Q1 (4) 4 0 0 1 0 1 0 0
Q2 (3) 1 3 0 2 2 0 1 1

Q3 (2) 1 2 1 4 3 4 4 4
Q4 (1) 5 4 7 6 6 8 7 7

Q5 (0) 0 2 2 1 2 1 2 3
QS 3.29 2.76 2.59 2.29 2.24 2.06 1.94 1.65

LLOC 21939 18341 1107 23821 65378 72154 158067 307127

Ranking 1 2 3 4 5 6 7 8
Ref. 4 3 6 1 7 2 8 4

296 J. Braeuer et al.

Like in the first and second experiment, the Spearman correlation coefficient is used
for expressing the strength of the linear relationship between the obtained ranking and
the ranking from the reference study. The calculated correlation coefficient (rs) has a
value of 0.2265. Even though the correlation is higher than in the aforementioned
studies, this is no significant correlation as the coefficient has to have a value of at least
0.738 for α = 0.05 (Table 11).

Table 9. Mapping of Q-area and maintainability value

Q-area Maintainability value range

Q0]1.33, 2]
Q1]0.66, 1.33]
Q2]0, 0.66]
Q3]–0.66, 0]
Q4]–1.33, –0.66]
Q5 [–2, –1.33]

Table 10. Mapping of project to Q-area

Project Maintainability value [–2, 2] Q-area

Axion 1.0 +0.54 Q2
H2 1.0.69 +0.08 Q2
SmallSQL 0.19 –0.38 Q3
JalistoPlus 2.0 –0.54 Q3
Derby 10.3.2.1 –0.54 Q3
Jaminid 0.99 –0.63 Q3
HSQLDB 1.8.0.9 –0.70 Q4
Tomcat 6.0.14 –1.08 Q4

Table 11. Adapted distribution of IT-CISQ measures

JalistoPlus
2.0

SmallSQL
0.19

Jaminid
0.99

Axion
1.0

HSQLDB
1.8.0.9

H2
1.0.69

Tomcat
6.0.14

Derby
10.3.2.1

Q0 (5) 6 6 7 3 4 3 3 2
Q1 (4) 4 0 0 1 0 1 0 0
Q2 (3) 1 3 0 6

(+4)
2 4

(+4)
1 1

Q3 (2) 5
(+4)

6
(+4)

5
(+4)

4 3 4 4 8
(+4)

Q4 (1) 5 4 7 6 10
(+4)

8 11
(+4)

7

Q5 (0) 0 2 2 1 2 1 2 3
QS 3.05 2.62 2.48 2.43 2.0 2.24 1.76 1.71
Ranking 1 2 3 4 6

(+1)
5
(–1)

7 8

Ref. 4 3 6 1 7 2 8 4

Measuring Maintainability of OO-Software - Validating the IT-CISQ Quality Model 297

(3) Threats to Validity
In contrast to the previous validation approaches, this experiment builds on a bench-
mark distribution, which represents a threat to external validity. The 26 projects used
for calculating the benchmark distribution may not reflect the reality of projects in this
domain. Nevertheless these projects differ in their size, which means that they are
ranging from 7,221 to 560,017 LLOC. As a result, all of the eight reference projects –
except Jaminid, which is significantly smaller – are covered by this range. Furthermore
the trustworthiness of the benchmark distribution has been proven in previous inves-
tigations [6, 8]. Based on the experience gained from these investigations, the
benchmark distribution is considered to be reliable. Nevertheless, the external validity
of this experiment could be enhanced by applying the quality model to industrial
projects. Unfortunately, a larger set of industrial projects is not accessible.

The threat to validity discussion in the first experiment shows that one threat to
external validity is the neglect of the IT-CISQ measures M1, M2, M3, and M19. In
order to understand this external threat, the following discussion should highlight its
influencing factor. In order to assess the influence of the threat, we hypothetically
assume that the four missing measures affect the ranking to the same extent as the
reference study assesses the projects.

Therefore, the first task is to map the maintainability value of each project to a
Q-area used by the benchmarking approach. To support this task, Table 9 shows the
mapping between a Q-area and the range in which the maintainability value has to fall.
By using this mapping, each project gets assigned to a Q-area as depicted in Table 10.
Based on that assignment, the four missing IT-CISQ measures can flow into the cal-
culation of the ranking. The result of the modified benchmarking approach is shown in
Table 10. This result highlights that the four measures M1, M2, M3, and M19 slightly
change the ranking by switching the rank of HSQLDB and H2. Consequently, the
Spearman correlation coefficient rises from 0.2265 to 0.3458, but is still far from being
significant.

Already discussed as an external threat, but also relevant as a threat to the reliability
of this experiment is the fact that a pre-calculated benchmark distribution is used.
Consequently, a complete re-execution of this validation requires the calculation of the
distribution including the following projects: Ant (1.7.0), ArgoUML (0.24), Azureus
(3.0.4.2), FreeMind (0.8.1), GanttProject (2.0.6), hsqldb (1.8.0.9), JasperReports
(2.0.5), jDictionary (1.8), JEdit (4.2), JFreeChart (1.0.9), jose (1.4.4), Junit (4.4),
Lucene (2.3.1), Maven (2.0.7), OpenCMS (7.0.3), OpenJGraph (0.9.2), OurTunes
(1.3.3), Pentaho (1.6.0), PMD (4.1), Risk (1.0.9.7), Spring (2.5), Tomcat (6.0.16),
TuxGuitar (0.9.1), Weka (3.5.7), XDoclet (1.2.3), and XWiki (1.3).

7 Conclusion and Future Work

Motivated by our previous work [10] that successfully demonstrates the operational-
ization of the maintainability part of the IT-CISQ quality model, we were eager to
verify our approach on a reference study. Hence, we used the implementation of
IT-CISQ to determine whether the IT-CISQ standard specifies measures that can serve

298 J. Braeuer et al.

as reliable predictors for the maintenance of object-oriented software and lead to a
similar ranking of projects like the reference study.

For conducting this research, we first applied the IT-CISQ standard for the quality
criterion maintainability on eight open-source Java projects, which were selected
according to the reference study. Based on that result, the first experiment used the
evaluation method provided-as-is by the IT-CISQ standard to evaluate the reference
projects. This standard simply sums up the number of violations for deriving an
evaluation for a particular project. Due to the fact that the sum is not normalized with
some kind of size metrics, the first experiment comes to a ranking that correlates with
the size of the projects. In other words, the software quality of a project is determined
by the size of the product itself. Even though a first glance shows that the ranking of the
projects is totally different to the reference study, we calculated the correlation of both
rankings. Consequently, we came to the conclusion that the assessment method is not
applicable for an absolute estimation of project quality (star ranking, school grades, etc.
Furthermore, it is not suitable for quality comparison of projects of different sizes.

The second experiment focuses on the effect of normalization on the results of the
IT-CISQ measurements. Without changing the design, the second experiment contin-
ues from the first experiment by using the LLOC of each project to normalize the
number of violations. As a result, the size – defined by the LLOC – does not play a role
anymore and the calculated IT-CISQ measures become comparable with each other.
Although these ratio values do not contain the size factor, the obtained ranking does not
significantly correlate with the result of the reference study. As normalizing mea-
surement values for evaluation purposes is a valid approach (see [2, 6–8]), we draw the
conclusion that the IT-CISQ standard-based evaluation approach cannot be reasonably
used to assess the maintenance quality of Java software projects. As the second
experiment eliminates the problem of normalization, we cautiously can conclude that
the measures are not sufficient to predict the quality (limited to maintainability) of
software projects.

In order to eliminate the impact of the (simple) aggregation method suggested by
IT-CISQ and to be able to concentrate on the predictive power of the IT-CISQ mea-
sures, the third experiment uses a benchmarking-based approach that has already
proven successful in [8–10]. Using this benchmarking-based approach means that the
result of the IT-CISQ measures is compared with a benchmark distribution that defines
six differently weighted Q-areas for each measure. Depending on the number of vio-
lations, each IT-CISQ measure becomes assigned to a Q-area for a selected project.
Finally, the arithmetic mean of the weight of all Q-areas determines the software
quality and the ranking of the projects. Despite a better correlation with the ranking
published by the reference study, the result is not statistically significant. This
strengthens our conclusion that the measures specified by IT-CISQ are not sufficient to
predict the quality (limited to maintainability) of object-oriented software.

Based on the results of the three studies, this paper shows that the IT-CISQ model is
weak in predicting the maintainability of software projects. This statement is underlined
by the fact that both, the reference study as well as the IT-CISQ standard, define
software quality measures for maintainability according to the same ISO/IEC 25000
standard and its predecessor. In discussing the differences between the quality model of
the reference study and the IT-CISQ standard, it can be highlighted that the former

Measuring Maintainability of OO-Software - Validating the IT-CISQ Quality Model 299

considers maintainability from some different quality viewpoints. Thus, the viewpoints
of analyzability, changeability, stability, and testability are taken into consideration [4].
In order to assess these aspects, the proposed quality model defines the tasks of con-
ducting code inspection, structured documentation review, and analysis of the test
coverage [4]. Compared with the IT-CISQ standard, this means that the reference study
concentrates on a broader project context because IT-CISQ does not consider project
documents or test objects at all. Instead, the IT-CISQ measures are limited to the source
code for building the product and documents for defining the layering structure.
Obviously, the approach proposed by the reference study is more comprehensive and
gives better hints for improvements. Nevertheless, we would expect from IT-CISQ
measures at least to properly predict the maintenance quality of software projects.

The fact that a reasonable software maintainability assessment requires more than
21 measures is supported by our previous work. In [7] we use a subset of our EMISQ
quality model; this subset is composed of 165 measures derived from the ISO 9126
standard (ISO 9126 is the predecessor of ISO/IEC 25010 standard). By providing much
more maintainability-related measures, our model can give more hints for improving
source code quality. Besides, our model proved its predictive power for maintainability
(see [8]). Consequently, it reaches the coverage and depth needed to ensure thorough
quality improvement activities that cannot be achieved by the IT-CISQ model.

Our validation experiments indicate that neither the assessment method nor the
measures proposed by IT-CISQ can be reliably used to measure the maintainability of
object-oriented software. For the assessment method we can either propose our
benchmarking-based approach (see [7, 20]) or the approach developed in the Quamoco
project [6]. Our benchmarking approach [23] served well to determine the maintain-
ability of projects; nevertheless, with 165 measures used in a study [20] it is quite large
and a little bit bulky to deal with.

Moreover, further experiments with industrial or commercial software would be
necessary, too. Unfortunately, we were limited to open-source projects, but industrial
projects would strengthen the external validity for a more robust generalization of the
findings.

References

1. Riaz, M., Mendes, E., Tempero, E.: A systematic review of software maintainability
prediction andmetrics. In: Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, Washington, DC, USA, pp. 367–377 (2009)

2. Wagner, S., Lochmann, K., Winter, S., Goeb, A., Klaes, M.: Quality models in practice: a
preliminary analysis. In: 3rd International Symposium on Empirical Software Engineering
and Measurement, ESEM 2009, pp. 464–467 (2009)

3. Bakota, T., Hegedus, P., Ladanyi, G., Kortvelyesi, P., Ferenc, R., Gyimothy, T.: A cost
model based on software maintainability. In: 2012 28th IEEE International Conference on
Software Maintenance (ICSM), pp. 316–325 (2012)

4. CISQ Specifications for Automated Quality Characteristic Measures, OMG, CISQ-TR-
2012-01 (2012)

5. ISO/IEC 25010 Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE), ISO/IEC, ISO/IEC 25010:2011 (2011)

300 J. Braeuer et al.

6. Wagner, S., Goeb, A., Heinemann, L., Klas, M., Lochmann, K., Ploesch, R., Seidl, A., Streit,
J., Trendowicz, A.: The Quamoco product quality modelling and assessment approach. In:
Proceedings of the 34th International Conference on Software Engineering (ICSE 2012),
Zurich, pp. 1133–1142 (2012)

7. Ploesch, R., Gruber, H., Hentschel, A., Koerner, C., Pomberger, G., Schiffer, S., Saft, M.,
Storck, S.: The EMISQ method and its tool support-expert-based evaluation of internal
software quality. Innov. Syst. Softw. Eng. 4(1), 3–15 (2008). Springer

8. Gruber, H., Ploesch, R., Saft, M.: On the validity of benchmarking for evaluating code
quality. In: Proceedings of the Joined International Conferences on Software Measurement,
IWSM/MetriKon/Mensura 2010, Aachen (2010)

9. Gruber, H., Ploesch, R., Schiffer, S., Hentschel, A.: Calculating software maintenance risks -
a practical approach. In: Proccedings of the IASTED Software Engineering Conference (SE
2012), Maintenance Measures, Crete, Greece, pp. 452–455 (2012) and Proceedings of the
20th International Conference on Software Engineering, Washington, DC, USA (1998)

10. Ploesch, R., Schuerz, S., Koerner, C.: On the validity of the IT-CISQ quality model for
automatic measurement of maintainability. In: Proceedings of the 39th International
Computers, Software and Applications Conference (COMPSAC 2015), Taichung, Taiwan
(2015)

11. Correia, J.P., Visser, J.: Certification of technical quality of software products. In:
Proceedings of the Int’l Workshop on Foundations and Techniques for Open Source
Software Certification, pp. 35–51 (2008)

12. Erlikh, L.: Leveraging legacy system dollars for e-business. IT Prof. 2(3), 17–23 (2000)
13. Parnas, D.L.: Software aging. In: Proceedings of the 16th International Conference on

Software Engineering, Los Alamitos, CA, USA, pp. 279–287 (1994)
14. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.

Softw. Eng. 20(6), 476–493 (1994)
15. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE-2(4), 308–320 (1976)
16. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice Hall,

Upper Saddle River (1996)
17. Binkley, A.B., Schach, S.R.: Validation of the coupling dependency metric as a predictor of

run-time failures and maintenance measures. In: Proceedings of the 20th International
Conference on Software Engineering, Washington, DC, USA, pp. 452–455 (1998)

18. Correia, J.P., Visser, J.: Benchmarking technical quality of software products. In: 15th
Working Conference on Reverse Engineering, WCRE 2008, pp. 297–300 (2008)

19. Simon, F., Seng, O., Mohaupt, T.: Code-Quality-Management: technische Qualität
industrieller Softwaresysteme transparent und vergleichbar gemacht. dpunkt-Verlag (2006)

20. Gruber, H., Koerner, C., Ploesch, R., Pomberger, G., Schiffer, S.: Benchmarking-oriented
analysis of source code quality: experiences with the QBench approach. In: Proceedings of
the IASTED International Conference on Software Engineering (SE 2008), Anaheim, CA,
USA, pp. 7–13 (2008)

21. Heitlager, I., Kuipers, T., Visser, J.: A practical model for measuring maintainability. In: 6th
International Conference on the Quality of Information and Communications Technology,
QUATIC 2007, pp. 30–39 (2007)

22. Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampasona, C., Lochmann, K., Mayr, A.,
Ploesch, R., Seidl, A., Streit, J., Trendowicz, A.: Operationalised product quality models and
assessment: the Quamoco approach. Inf. Softw. Technol. 62, 101–123 (2015)

23. Gruber, H.: Benchmarking-oriented Assessment of Source Code Quality - An Approach for
Automatic Assessment using Static Code Analysis Tools, Dissertation (2010)

Measuring Maintainability of OO-Software - Validating the IT-CISQ Quality Model 301

Interface-Based Software Requirements
Analysis

Aziz Ahmad Rais(&) and Rudolf Pecinovský

Department of Information Technologies, University of Economics,
Prague, Czech Republic

aziz.ahmad.rais@gmail.com, rudolf@pecinovsky.cz

Abstract. Software requirements analysis is a critical phase in the software
development life cycle. It is usually carried out using one of the following: use
cases, user stories or business scenarios. Use cases, user stories and business
scenarios thus become inputs for the object-oriented analysis (OOA) of appli-
cation software development. Most translating and mapping of software
requirements from text to objects and classes creates problems with software
acceptance. There is also a practical issue with object-oriented analysis, namely,
that OOA and object-oriented design (OOD) both operate with the same objects
and classes, and, in practice, it has not yet been possible to separate them from
one another. The goal of this article is to provide a solution that will simplify
software requirements analysis and separate such analysis from design, in order
to give architects, developers and testers the ability to work independently
through a contract (interface) that integrates their work.

1 Introduction

According to the ISO 12207 [1], there are two types of life cycle process: system-specific
(system life-cycle) and software-specific (software life-cycle). The system-specific
processes include activities that are not directly related to application software, such as,
for example, project management related processes, and information system related
processes, and so on. It is necessary to recognize that system life-cycle processes are
important to software life-cycle processes. The most significant among these is the
system requirements analysis process. The outcome of this last demonstrates how the
whole organization is involved in the process that produces value and creates its core
business.

Most organizations underestimate the value of enterprise-level processes [4],
business requirements and business processes. Software developers must, therefore,
clarify these business requirements before software requirements analysis, with the help
of various business techniques, such as brainstorming, business rules, data dictionaries
and glossaries, data diagrams, data modelling, decision analyses, functional decom-
position, interviews, prototyping, risk analyses, scenarios and use cases, user stories,
sequence diagrams, state diagrams, and so on [6]. The techniques listed by BABOK [6]
can be used to elucidate business requirements at the enterprise level. This does not
mean, however, that we have a well-defined idea of software requirements, which can
equally be delineated using most of these techniques.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_23

Each business requirements [6] (system requirement – ISO 12207 [1]) analysis
technique is used for specific purposes, and distinguishes individual business
requirements from other perspectives. The techniques used for functional software
requirements analysis are as follows: scenarios and use cases, user stories and sequence
diagrams. They are most often used here because of a confusion of business require-
ments analysis and software requirements analysis.

The techniques used for functional software requirements are written in natural
language, so translating them to technical language or software items [1] such as
objects, classes, domain objects, components, interfaces, messages, and so on, causes a
loss in consistency and a break in the relation between requirements and software
items. This break is caused by the fact that the software also has to meet software
quality requirements [7]. Thus, software application components have to be organized
in a way other than by defined and grouped use cases, or user stories. The translation
issue is a result of difficulties in identifying the domain objects, business processes or
functionality, validation or limitation of inputs, formats of outputs, and so on.

ISO 12207 divides software development life cycle processes (SDLC) [1] into
software implementation processes, software support processes and software reuse
processes. Object-oriented analysis and object-oriented design are included in software
implementation processes.

Software implementation processes are executed by software development
methodology in different ways, such as incremental [8], agile [9], spiral, waterfall [10],
and so on. Most such software development methodologies do not consider software
support processes and software reuse processes as part of their software development
life cycle. Though they model the software implementation processes in different ways,
all software development methodologies basically utilize three practices: object-oriented
analysis, object-oriented design, and use cases of processes such as the software
requirements analysis process, the software architectural design process and the soft-
ware detailed design process. Nevertheless, how these practices are used differs
according to the software development methodology in question.

The diagram at Fig. 1 shows a common usage of OOA and OOD.

Booch in [5] defines: Object-oriented analysis is a method of analysis that
examines requirements from the perspective of the classes and objects found in the
vocabulary of the problem domain.

Fig. 1. A typical method of software requirements analysis (source: own)

Interface-Based Software Requirements Analysis 303

Object-oriented analysis thus helps developers analyse software requirements
written in text format (e.g. use cases) and natural language, and translate them into
technical language: objects and classes. However, in order properly to understand these
objects and classes, we need to place them in the context of business processes. In other
words, we have to establish a relation between the objects, classes and model behaviour
of relevant software.

Further Booch in [5] defines: Object-oriented design is a method of design
encompassing the process of objects oriented decomposition and a notation for
depicting logical and physical as well as static and dynamic models of the system
under design.

ISO 12207 [1] defines software design as: internal and external interfaces of each
software item (e.g. objects, classes) and software unit (e.g. components); consistency
and traceability are established between software requirements and software design.

According to ISO 12207, the object-oriented design process has two aspects: the
software architectural design process and the software detailed design process. The
architectural design process may be considered conceptual design by identifying
components and the relation between them. Software detailed design is about static and
dynamic models composed of objects and classes. In other words, detailed design is very
similar to object-oriented analysis. The only difference between them is that component
and conceptual design ensures that detailed design is viewed simply and abstractly in
order to organize the objects and classes in such a way as to meet non-functional
application software requirements. As a result, many software development method-
ologies cannot adequately separate OOA from OOD process and so many organizations
skip the design phase and move directly onto developing the software.

In order to analyse and design software, different modelling languages and tools may
be used, the most common of which is UML. A modelling language is a model-driven
architecture (MDA) concept [11]. Sometimes modelling is used to visualize software
components, and so tools such as, for example, Microsoft Visio are put into practice to
provide objects with images to show these components as natural words. The goal of
such modelling reaches further than conceptualizing the software component as words,
however, and also covers visualizing it within the software itself, making the model
physically available as an item or unit. This means that the model can be transformed
into a software item and vice versa.

Modelling is one of MDA concepts, and such transformation between the model
and a software item is another one [11].

To use and interpret modelling only as the visualization of a concept makes it
difficult to maintain and update such a model when application software changes
during software support processes. For that reason, OOD process is skipped during
software implementation processes and architecture design is done very abstractly.

There are tools available, like, for example, Spring Roo, that generate fully func-
tional software based on domain objects [12]. Most of these tools work with domain
object models, and generate Create, Read, Update and Delete operations for the domain
objects. Such software is, however, usually limited in its ability to provide or cover all
the functionalities required in business. Furthermore, other issues may arise with using
this type of MDA to produce software, for example, the performance, maintainability
or extensibility [7] of software items and units.

304 A.A. Rais and R. Pecinovský

2 Interface-Based Software Requirements Analyses

Analyzing software requirements requires an understanding of how software is com-
posed of different software parts (e.g. layers), software units (e.g. components) and
software items objects or classes). Architecture and architecture layers are further MDA
concepts. By applying these two concepts, software parts can be identified and divided
into three layers independently of software requirements.

• Consumer layer: This layer describes how the client will interact with the software
and use the service. If the client is human, then it will be either a graphical user
interface or a command line interface. If the client is other software, it will be a
service layer wrapper accessible remotely by consumer software.

• In use cases, the boundary of the software is not always clear. Sometimes use cases
describe the end user interaction with the software, and at other times describe the
system process; sometimes they describe the design. It can also be difficult to gain
perspective on use case granularity.

• Service layer: This layer describes the core functionality implemented by software
and provided as a service. Looking at software from the client perspective facilitates
discussion regarding functional software requirements between developers and
stakeholders, as the latter are not interested in the composition of the software, but
rather in how to use it.
In use cases, identifying the core functionality and service that the software in
question has to provide is combined and usually described in the form of a process.
It is clear that such a process is composed of related sets of activities. Thus, each
activity can be implemented in one or more services. As a result, use cases become
difficult to map or translate into objects, classes and components.

• Domain layer: This layer describes the type of data or information required and/or
provided by the service layer.

In use cases, identifying domain objects is a difficult task for most experienced
software developers. There is simply no easy trick, tip or technique to teach developers
how to identify domain objects, perform domain analysis and design the domain object
model. Software requirements can be divided into functional software requirements and
non-functional software requirements, as is the case with business requirements [6].
This means that before analysing software requirements, business requirements must be
available in the form of functional business requirements and non-functional business
requirements. In order better to analyse functional software requirements with regards
to interface, let us first clarify the concept of interface.

The [13] defines: The interface of a given entity (= of a programs part – a module,
a class, a method) specifies what the given entity knows and how to communicate with
it. In case of an object it says which messages can be sent to it (to which messages the
object understands) and how the object reacts to them. It is important to remember that
an interface doesn’t solve anything, it only promises, what the given entity can provide.
We could say that the interface summarizes what the surrounding program should
know about the given entity. This type of interface will be called in this article con-
ceptual interface.

Interface-Based Software Requirements Analysis 305

This definition describes interface as physical characteristics of software items and
units. However, ‘interface’ also has a second meaning:

Interface is used in term of the program’s construction, which we might consider as
syntax representation of interface and which behaves as a class without any imple-
mentation [13]. This type of interface will be called in this article physical interface; it
means that programming languages like java, C#, and so on have a representation of it.

Abstraction is another foundational MDA concept, and “deals with the concepts of
understanding a system in a more general way” [11]. Combining this MDA concept
with the first definition of interface (conceptual interfaces) we can use to describe
functional software requirements.

The notion of separation of concerns is a key MDA concept. By applying it to the
software requirements analysis, we would be better able to identify and to manage
dependencies between interfaces. Separation of concerns would make it possible to
provide access to the stakeholders’ perspective.

The easy way to apply separation of concerns to software requirements analysis
would be to think about dividing the software architecture vertically. The result of a
horizontal division of architecture is layers; with vertical division, on the other hand,
we would be able to create modules of software requirements according to business
concern. Please note that the vertical and horizontal division of software architecture
performed during the software requirements analysis process is meant only concep-
tually and not physically. Physical separation is usually be done by software archi-
tecture design process (Fig. 2).

The first goal of interface-based analysis is to reduce the complexity and difficulty
of translating text into objects and classes by performing such analysis only once and
remaining object-oriented. The second goal is to reduce the number of analysis phases
and focus on the architecture. This means carrying out the analysis from an architec-
tural perspective and not being limited by objects and classes that will change during
implementation and synchronization between code, architecture and requirements. It
remains to compare user stories with interface-based analysis. Because user stories are
a decomposition of use cases, they can, in fact, be regarded as mini use cases [3].

The Fig. 3 depicts how interface-based analysis different views from software
architecture, software developer, software tester and functional business requirements
perspective.

Fig. 2. Interface-based analysis (source: own)

306 A.A. Rais and R. Pecinovský

The UML model of interface-based analysis could be transformed to, for example,
Java source code. After the transformation of UML model we can get service layer
interfaces (the second definition) that can be implemented. All changes in requirements
thus become easily traceable and the software developer has the freedom to implement
them without limitation. The domain model can be converted into a class model, and
the ATM user layer (consumer layer) can be converted into the model components of
the MVC design pattern. The actors in interface-based analysis will be left out of the
diagrams and instead there will be provided a matrix of interfaces and actors list and
rights.

3 Example

In order to illustrate how interface-based analysis can work, it is useful to compare a
use-case analysis model with an interface-based one. The goal is to see that what can be
done with use cases can also be done with interfaces in an object-oriented way.

The example will analyse the following functionalities automated teller machine
(ATM) bank:

• Customer is able to check the bank balance.
• Customer can withdraw money from ATM.
• Customer can give an order for transferring money.
• Customer can deposit funds into his bank account.

ATM machine need to be repaired and maintained thus customer should be able to use
ATM machine.

3.1 Use Case Way

Use case at Fig. 4 diagram describes the functionalities required from ATM banking
without scenarios.

Fig. 3. Different views of interface-based analysis (source: own)

Interface-Based Software Requirements Analysis 307

3.2 Interface-Based Way

The ATM banking functionalities analysis with interface-based method will be divided
into two business modules according to the separation of concern concept of MDA.
The modules are:

• The operational module at Fig. 5 describes how customer performs cash operations
with ATM interface.

• The second module depicted at Fig. 6 is maintenance module that will show change
the ATM banking state into maintenance, so that the machine can be repaired
(Table 1).

Fig. 4. A use-case analysis model (source: http://www.uml-diagrams.org)

Fig. 5. An interface-based analysis of the operational module of an ATM (source: own)

308 A.A. Rais and R. Pecinovský

http://www.uml-diagrams.org

4 Conclusion

Use cases are not object-oriented, and analyses are performed twice in most software
development methodologies (see Fig. 1). With interface-based analysis, we can per-
form object-oriented analyses of software requirements, and such analyses need only be
performed once. Interface physically available in many programming languages, it
means that there are available a representation of interface, such as, for example, Java
or C#. Therefore, we can transform the conceptual interfaces from the analysis phase
into a physical interface, and can force development to become agile and modular.
With the use of conceptual interfaces we can clearly define analysis and design. Design
will be easier with conceptual interface because architecture design works with com-
ponents, and every component can have both provider and consumer conceptual
interfaces. As a result, the mapping between architecture and requirements analysis will
become clearer and easier.

Acknowledgment. The paper was processed with contribution of long term institutional support
of research activities by the Faculty of Informatics and Statistics, the University of Economics,
Prague.

Fig. 6. An interface-based analysis of the maintenance module of an ATM (source: own)

Table 1. Interface-based actors list and rights (source: own)

Access rights Customer ATM-technician

BankAccountDebitOperation Read–Write–Execute 0–0–0
BankAccountCreditOpration Read–Write–Execute 0–0–0
BankAccountStateOperation Read–Write–Execute 0–0–0
MaintenanceService 0–0–0 Read–Write–Execute

Interface-Based Software Requirements Analysis 309

References

1. ISO/IEC 12207: System and software engineering – Software life cycle processes (2008)
2. Philippe, K.: Rational Unified Process, An Introduction, 3rd edn. Addison Wesley,

New York (2003). ISBN 0-321-19770-4
3. Mike, C.: User Stories Applied: For Agile Software Development. Addison Wesley,

New York (2004). ISBN-10: 0321205685
4. The Open Group: TOGAF, version 9.1 (2011). ISBN 978-90-8753-679-4
5. Grady, B.: Object-Oriented Analysis and Design with Applications, 3rd edn.

Addison-Wesley, New York (2007). ISBN 0-201-89551-X
6. IIBA: A Guide to the Business Analysis Body of Knowledge (BABOK Guide), version 2.0.

ISBN-13: 978-0-9811292-2-8
7. ISO/IEC 25030: Software engineering — Software product Quality Requirements and

Evaluation (SQuaRE) — Quality Requirements (2007)
8. John, H.: Guide to the Unified Process Featuring UML, Java and Design Patterns. Springer,

London (2003). ISBN-10: 1852337214
9. Orit, H., Yael, D.: Agile Software Engineering. Springer, London (2008). ISBN-10:

1848001983
10. Gerard, O.: Introduction to Software Quality. Springer, London (2014). ISBN 978-3-319-

06106-1
11. OMG: Model Driven Architecture (MDA) MDA Guide rev. 2.0. OMG Document

ormsc/2014-06-01
12. Craig, L.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and the Unified Process. Prentice Hall, Upper Saddle River (2004). ISBN-13:
978-0131489066

13. Pecinovský, R.: OOP – Learn Object Oriented Thinking and Programming. Eva & Tomas
Bruckner Publishing (2013). ISBN 80-904661-8-4

310 A.A. Rais and R. Pecinovský

Object Metamorphism

Type-Safe Modeling of Protean Objects in Scala

Zbyněk Šlajchrt(&)

The Department of Information Technologies, University of Economics,
Prague, Czech Republic

zslajchrt@gmail.com

Abstract. Modeling protean objects, i.e. objects adapting their structure and
behavior dynamically with respect to changeable environment, may be chal-
lenging in traditional object oriented languages. While some dynamic languages
make the implementation of changeable behavior of objects possible by
injecting code into the objects at run-time, their lack of an in-depth compile-time
code analysis makes the resulting code fragile. The concept of object meta-
morphism (OM) targets the gap between the two language types by introducing
a declarative modeling of protean objects. Such a model, which is validated at
compile-time, defines all possible compositions of a given object from smaller
parts represented by traits. The actual composition used to instantiate the object
is chosen dynamically with respect to the current environment. The result of this
research will provide the theoretical concept of OM along with a
proof-of-concept adoption of OM to Scala.

1 Introduction

Object-oriented programming (OOP) has proven successful in a wide area of appli-
cations mainly because it makes easier to model entities from real domains and the
relationships among them. Although it has become a standard in today’s application
development, there are still some programming problems, which are difficult to solve
by means of the current object-oriented languages. In this paper I am focusing on a
subset of such problems emerging from the gray zone where neither statically nor
dynamically typed languages fit fully the problems. In particular, this paper explores
two scenarios, which the traditional OOP languages fail to fully support.

The first problem occurs in applications where the exact type and composition of an
object is not known until the moment of its instantiation. The second problem occurs
when the type and composition of the object may vary during its lifetime.

Although there is always a way to solve the above-mentioned problems in both
kinds of languages, a developer must usually make some design concessions, which
lead at least to degrading some non-functional properties of the program, such as
extensibility, coupling and reusability.

The concept of object metamorphism presented in this paper attempts to overarch
the gap between the static and dynamic languages by a sort of “controlled” or “stati-
cally checked” dynamism applicable in the domain of statically typed languages.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_24

OM targets the systems consisting of objects whose structure and behavior may be
composed of fragmentary components, whereas the number of possible compositions
may be large. An example may be a system modeling the manifestation of emotions in
the human face. A relatively small number of face muscles are able to produce thou-
sands of emotional expressions, however not every combination of the muscles rep-
resents an emotional expression. The task of such an application might be to guess the
emotion according to the activity of individual muscles or, contrarily, to control virtual
muscles in a dummy according to a given emotion.

Another example might be a complex service, which must apply a number of
optional security constraints, whereas some may depend on others. The selection of the
proper constraints is done according to the properties of the user. Such a system of
constraints may also generate a large number of combinations.

In both examples OM builds a morph model producing all possible combinations,
which are verified by checking their dependencies at compile-time.

The research presented in this paper is built on the ideas from Subject-oriented
programming (SOP) [1, 2] and the Data-Context-Interactions paradigm (DCI) [3]. In
these paradigms the objects are seen as capable of assuming different forms with respect
to the context or use-case. Such forms are called subjects in SOP and roles in DCI.

2 Example

Let us imagine an airport luggage scanner capable of recognizing three and
two-dimensional objects in baggage by their geometrical properties and material. The
scanner outputs each scanned item in a form sketched in Fig. 1.

For the sake of simplicity let us assume that besides the common attributes, such as
the item’s position, the scanner recognizes two shapes – cuboid and cylinder – and two
materials – paper and metal. It follows that the record emitted by the scanner may take
on four forms corresponding to the Cartesian product of the shapes and materials sets.
It also follows that with the increasing number of independent dimensions, added as the
scanner is improved, the number of record forms exponentially grows.

{
"id": 0,
"shape": "cylinder",
"material": "metal",
"x": 234.87,
"y": 133.4,
"z": 12.94,
"radius": 13.45,
"height": 0.45,
"density": 3.8
}

Fig. 1. Scanner data sample

312 Z. Šlajchrt

Now let us suppose that we have to write a program reading the item records and
represent them as objects. We will examine how the three established OO languages
Java, Scala and Groovy perform in modeling the scanner data.

2.1 Composition in Java

The most natural approach to model the items is to use composition to model the item
as a two-part composite and delegation to expose the common methods from both
dimensions (i.e. volume() and density()). The Fig. 2 depicts the UML diagram
of such a design.

Then instantiation of an Item instance initialized with the data from the Listing 1
would look like this (Fig. 3):

At first sight everything seems to be all right; the item object encapsulates all data
from the record and we can invoke the common methods, such as volume(), on the
item. But what if we wanted to determine whether the item is a metal cylinder, for
instance? One could naturally tend to use the instanceof operator, since it is used to
detect what an object is (Fig. 4).

Fig. 2. The item model using composition

Fig. 3. Composing the item instance in Java

Object Metamorphism 313

However, both previous statements are always false, because the objects, which
may be instances of the two particular types, are wrapped as components of the Item
class and hence they are not part of the item’s type. In order to make possible to
determine the item’s real type from the item itself we would have to incorporate a
custom management of the item types into the Item class. Such a solution would be a
mere workaround fixing the deficiency of the Java type-system.

In other words, Java forces a developer to model a trait of an object (i.e. “is-a”
relationship) as if the trait were a component of the object (i.e. “has-a” relationship).

Sometimes the choice of the relationship depends on the subject’s perception. For
example the object in Fig. 10 may be modeled as a wine bottle box or a wine bottle in a
box (Fig. 5).

In the former case we see primarily a box containing a wine bottle (“has-a”), while
in the latter case we perceive the box as a decoration or a “trait” of the wine bottle
(“is-a”). The problem we face in Java is that we must always model this situation as the
wine bottle box [4].

Such a design inherently suffers from the complication called object schizophrenia.
The name suggests that the object’s identity is scattered across the wrapper and the
components (there are more “selves”) [5]. This complication may be illustrated on the
following example. Let us assume that some items need to be additionally corrected
because of a temporary malfunction of the scanner resulting in wrong measurement of
material density. This defect may be corrected in the application by decorating the
affected items by the DensityCorrection implementation of Item.

Figure 6 shows two possible implementations of such a correction class. The left
uses inheritance while the right uses composition. Let us compare the two designs with
respect to the behavior of the weight method defined in Item.

Since the correction and the item share the same identity (self), the weight method
in the left design reflects the overridden density by DensityCorrection and
returns the corrected weight. On the contrary, the weight method invoked on the
correction in the right case will return the original value instead of the corrected one,
since the method invocation is delegated to the wrapped item where the method

Fig. 4. Attempting to determine the type of the item

Fig. 5. Do we see a wine bottle box or a wine bottle in a box?

314 Z. Šlajchrt

calculates the weight according to the original density, which is presumably incorrect
behavior.

Thus the solution based on inheritance fits better to the problem. Unfortunately, it is
not possible to arbitrarily stack more such dedicated extensions by means of inheritance
due to the single inheritance in Java.

The concept of traits overcomes this limitation. It makes possible to stratify an
arbitrary number of extensions of a class while avoiding the multiple inheritance issues,
such as the diamond problem [6], by the so-called trait linearization [7]. Let us
examine how the problem of modeling multidimensional data may be solved in Scala
and Groovy, i.e. the languages, which adopted the concept of traits.

2.2 Static Traits in Scala

In Scala, we can model the item quite straightforwardly; every piece of it is expressed
as a trait (Fig. 7).

Fig. 6. DensityCorrection extension designed by inheritance and composition

Fig. 7. Item elements modeled by traits in Scala

Object Metamorphism 315

The item instance is then composed from the right traits at the moment of its
creation. The initialization of the abstract members is done at the same time (Fig. 8).

The item constructed this way may be tested by means of isInstance to
determine if it is a metal cylinder, for example (Fig. 9).

This approach also eliminates the problem with object schizophrenia, since we can
design the DensityCorrection extension as a trait, which will share its identity
with the item. This trait will be combined with the other traits only if the input data
should be corrected.

Although it seems that the approach using Scala traits has coped with all problems
identified above, there is in fact looming another serious problem relating to the
number of all possible combinations of the item’s forms. Each combination would have
to be tested individually by a separate condition. Furthermore, there would have to be
one class for each combination of traits. Thus the code and the classes would quickly
become unmaintainable since the number of combinations grows exponentially with
every additional dimension.

Since this problem is rooted in the static nature of Scala, let us examine, if the
problem persists in Groovy, which provides a dynamic version of traits.

2.3 Dynamic Traits in Groovy

In Groovy, it is possible to attach traits to an object at run-time. Every object provides
the withTraits method for adding one or more traits to the object. This feature allows
us to initialize the item in a step-by-step way, i.e. per feature and not per combination.
(Since the traits themselves are defined in a similar way as in Scala they are not showed
because of the limited space in this paper.) (Fig. 10).

As in the Scala case, also here we can use the instanceof operator to determine
what the item really is (Fig. 11).

Also the DensityCorrection trait could be implemented similarly. Never-
theless, the most important difference is that we have gotten rid of the combinatorial
explosion of classes and code, which is the consequence of the dynamic addition of traits
allowing constructing the item per feature and not per combination. Unfortunately, also

Fig. 8. Creating and initializing a metal cylinder in Scala

Fig. 9. Testing whether the item is a metal cylinder in Scala

316 Z. Šlajchrt

this approach suffers from some serious issues resulting from the step-by-step approach
as well as from the dynamic nature of the language and its weak type system:

• Incompleteness: The configuration procedure may forget to choose a trait for some
dimension

• Redundancy: The withTraits method can possibly add two mutually exclusive
traits from the same dimension to the builder

• Missing Dependencies: A trait from one dimension may depend on another trait
from another dimension. The configuration procedure must take these inter-trait
dependencies into account, because it is beyond the capabilities of dynamic lan-
guages. This additional requirement makes the code fragile and open to
inconsistencies.

• Ambiguous Dependencies: The configuration procedure must also guarantee that
there is no ambiguity in the dependencies.

2.4 Summary

The traditional approach to model multidimensional data objects uses composition. The
composition produces an object (item) by wrapping other objects (material, shape),
which can assume various forms. The number of wrapped objects corresponds to the

Fig. 10. A step-by-step assembling in Groovy

Fig. 11. Testing whether the item is a metal cylinder in Groovy

Object Metamorphism 317

number of dimensions. For each dimension the top object exposes the corresponding
interface by means of delegation.

Composition hides the real shape (i.e. type) of the object. We cannot determine
from the top object’s type that it is a metal cylinder, for example. Instead, we just find
out that the item is something of some shape and material. To determine the real type,
one cannot use the instanceof operator only. Instead, s/he must resort to examining
the object’s attributes, i.e. the state, holding references to the wrapped objects
(getMaterial(), getShape()) and additionally apply instanceof to each
wrapped instance. Alternatively, the classes may be equipped with a custom
type-management complementing the platform’s type system.

Next, the identity of the object is scattered across the object and its components,
which results in object schizophrenia. In Java there is virtually no way to cure this
problem, however the concept of traits adopted by languages such as Scala or Groovy
naturally solve the problem.

However, modeling multidimensional objects by means of static traits in Scala
leads to the exponential explosion of code making the static traits practically unusable.

Groovy’s capability to apply traits to an object at run-time efficiently solves the
problem of the exponential explosion. This approach however also suffers from a
couple of serious issues outlined above.

We may, therefore, conclude that the outlined problems cannot be solved ideally if
they are to be implemented either in a static or dynamic OO language only. It seems
that the gap between the two types of language should be filled by a static/dynamic
approach combining the benefits of both language types. The following section pre-
sents one such a hybrid concept called object metamorphism, which has been devel-
oped by the author.

3 Object Metamorphism

3.1 Introduction

Object metamorphism may be defined as a capability of an object to assume one or
more forms defined by the object’s morph model, which defines all possible form
alternatives of the object. The compiler analyses the morph model and performs various
checks to guarantee that all alternatives are consistent. Every alternative consists of the
so-called fragments, which are the building blocks in multidimensional compositions
of objects and correspond semantically to the concept of trait as defined in Scala or
Groovy. A morph fragment represents a typological, behavioral and structural element
of multifaceted objects.

The run-time component of OM instantiates one of the alternatives selected with
the assistance of the so-called morphing strategy, which usually selects the alternative
according to the context or input data. The instance of the alternative, which is called a
morph, may be subject to further re-morphing, in case the context changes and the
morph should reflect the change (the morph keeps a link to its morph model).

The theoretical concept of OM is accompanied by a reference implementation (RI),
whose main goal is to serve as a proof-of-concept tool. RI is designed as an extension

318 Z. Šlajchrt

of the Scala compiler and may be freely downloaded from here [8]. It should be
remarked that the reason why Scala was selected as the platform for RI and not Groovy,
for example, is based on the experience that it should be easier to add some dynamicity
to a static language than to introduce some static type checking into a dynamic
language.

In order to elucidate the idea of OM we will try to apply it to the example, which we
have gone through in the previous section. We will use RI to implement the example.

3.2 Using OM

Let us begin with designing the morph model of the scanner items. In RI, morph
models are defined by means of a special type expression based on the syntax for trait
composition in Scala. RI extends the Scala type system by introducing the disjunctor
type or, which may be seen as a union operator. The disjunctor type is in fact a generic
type with two parameters or[X, Y], which may be written as X or Y. This “syntax
sugar” makes the type expressions more comprehensible and allows us to express the
morph models as logical formulas.

Using the disjunctor we can define the morph model type for the item as follows
(Fig. 12):

This is an almost human-like expression of all possible compositions of the item. In
order to translate it to a more machine-like form, we can treat it as a logical formula and
transform it to the equivalent disjunctive normal form (DNF) (Fig. 13):

The DNF clearly reveals all four alternatives produced by the morph model.
Another useful term is the lowest upper bound (LUB) of the morph model. It is the

most specific type yet compatible with the types of all alternatives from the morph
model. It follows that the LUB of the item morph model is (Fig. 14).

Fig. 12. The morph model type of the item

Fig. 13. The DNF of the item morph model

Fig. 14. The LUB of the item morph model

Object Metamorphism 319

This type actually corresponds to the type that we obtained when modeling the item
by composition.

The morph model type expression is used in the application code as the type
argument to various macros such as compose, which creates the so-called morph
assembler (Fig. 15).

The morph assembler is responsible for generating classes for all alternatives in the
morph model and for creating morphs from these classes. The morph method creates a
new morph according to the suggestion made by the morphing strategy passed as the
argument. The return type of that method is the LUB of the morph model (Fig. 16).

In case the morph should be updated according to the current context, one may
invoke the remorph method on it. The item will get reassembled to the alternative
selected by the strategy specified upon the morph’s creation (Fig. 17).

Now let us turn our attention to the validations carried out by the compiler
extension. One of such validations is checking dependencies. The dependencies are
specified in RI by means of the self-type of the fragment trait as illustrated on the Item
fragment, which depends on the Material and Shape dimensions (Fig. 18):

The compiler extension must verify that all alternatives containing fragment Item
must also contain fragments implementing Shape and Material. The alternatives
from the model mentioned above clearly satisfy this condition. However, the following
model is not valid, since its alternatives have no shape fragment as required by Item
(Fig. 19).

Fig. 15. Creating the item assembler

Fig. 16. Creating the item morph

Fig. 17. Remorphing the item morph

Fig. 18. The item’s dependencies expressed as the self-type

320 Z. Šlajchrt

On the other hand, the compiler must also check that there is no ambiguous
dependency. The next model contains two ambiguous dependencies Metal and
Paper that both appear in same alternatives (Fig. 20).

3.3 Morph Model Reification

As long as the compiler extension detects no error in the model, it performs the
so-called reification transforming the model into a special syntax tree, which is injected
as a synthetic variable into the syntax tree of the assembler being produced by the
macro (Fig. 21).

Thanks to the reification, the morph model may be used at run-time by the
assembler. The model is stored in the model attribute of the assembler and is publicly
accessible as shown in the following statement printing the model tree (Fig. 22).

The output would look like this (Fig. 23):

Fig. 19. A model with missing dependencies

Fig. 20. A model with redundant fragments Metal and Paper

Fig. 21. Morph model reification

Fig. 22. The reified morph model is accessible through the model attribute of the assembler

Fig. 23. Textual form of the reified morph model

Object Metamorphism 321

RI implements an algorithm for transforming a morph model to the corresponding
disjunctive normal form, which is used to extract the model alternatives. This func-
tionality is available through the alternative iterator, which unfolds the model into a
series of alternatives. The listing Fig. 24 shows how to print all alternatives in the
model.

The first line of the output should be (Fig. 25):

The ordering of alternatives is determined by the structure of the morph model tree.
We can attach indices to the fragment nodes increasing from left to right (Fig. 26):

Then the set of alternatives can be written as this: {(0, 1, 3), (0, 2, 3), (0,
1, 4), (0, 2, 4)}. It allows us to define the ordering of the alternatives in the set
quite easily just by comparing indices from right to left between two alternatives. The
comparison of two alternatives goes from the common right-most index to the left.

In other words, given two alternatives A1 = {a1, b1, c1} and A2 = {a2, b2,
c2, d2}, then A1 precedes A2 if and only if relation (c1 < c2) || ((c1 == c2)
&& (b1 < b2)) || ((c1 == c2) && (b1 == b2) && (a1 < a2)) is true.

Applying this rule to our morph model, we obtain the following ordering of the
alternatives (Fig. 27):

Fig. 24. Using the alternatives iterator to print the alternatives

Fig. 25. Textual form of the alternatives

Fig. 26. Indexing the fragments in the morph model

Fig. 27. Ordering the alternatives

322 Z. Šlajchrt

3.4 Morhing Strategies

A morphing strategy is a key concept in OM determining the composition of morphs.
Whenever a new morph is created or re-morphed, a morphing strategy must be sup-
plied. Although it is possible to implement custom strategies, in practice only three are
of a particular importance: promoting, masking and rating strategies. To select the
winner alternative the three strategies use distinctive methods, which may be freely
combined with one another. The following paragraphs will shortly introduce these
strategies.

Promoting strategy swaps model tree branches in such a way that the promoted (i.e.
preferred) alternatives get as high in the generated list of alternatives as possible. To
illustrate this method let us use a simplified morph model consisting of four fragments
only (Fig. 28):

This model can be depicted as a tree shown on the following figure (Fig. 29).

The model has two dimensions that correspond to the two disjunctors (or) in the
model. Each disjunctor contains two alternative fragments, thus the number of all
alternatives defined by this model is four. A very important aspect is the order of the
alternatives in the list since the first alternative in the list is by default taken as the
winner. According to the rules described above the list of the alternatives generated by
the model will be sorted in this way (Fig. 30):

The goal of the promoting strategy is to “promote” one or more independent
fragments (i.e. fragments under two different disjunctors), which means to transform
the morph model tree in such a way that the promoted fragments are present in the first
alternative in the list generated from the tree, i.e. the default-winning alternative.

Fig. 28. A simplified version of the item morph model

Fig. 29. The default morph model tree

Object Metamorphism 323

We will use notation (materialCoord, shapeCoord) to denote the fragments
to be promoted. Then (0,0) is the default promotion leading to choosing the {Metal,
Cuboid} alternative.

In order to promote fragments (1, 0), the promoting strategy must transform the
tree as follows (Fig. 31).

The new tree yields this list of alternatives (Fig. 32).
We can continue by promoting (1, 1). The corresponding tree will then be this

(Fig. 33).

Fig. 30. The default list of alternatives

Fig. 31. The Paper fragment promoted

Fig. 32. The list of alternatives with the Paper fragment promoted

Fig. 33. Additional promotion of the Cylinder fragment

324 Z. Šlajchrt

And the corresponding list of alternative is (Fig. 34):

And finally the remaining combination is (0, 1), which gives this tree (Fig. 35):
with these alternatives (Fig. 36):

In contrast to the promoting strategy, which only resorts the generated list of
alternatives, the masking strategy is destructive as it effectively eliminates alternatives
containing unwanted fragments. Masking allows suppressing alternatives, which do not
match the so-called fragment mask. The fragment mask specifies which fragments may
be present in the winning alternative. By turning some fragments off we can effectively
reduce the set of the alternatives. By default, all fragments are turned on.

In order to make the explanation easier, let us introduce the following notation,
which represents an alternative along with a bit vector indicating fragments contained
in the alternative.

fragmentsf g MetalBit; PaperBit; CuboidBit; CylinderBit½ �

The four alternatives from our model then look like this (Fig. 37):

Fig. 34. The list of alternatives after promoting Paper and Cylinder

Fig. 35. The model tree after promoting Metal

Fig. 36. The list of alternatives after promoting Metal

Object Metamorphism 325

Now, the fragment mask for our model is a vector of four bits. A bit fN set to 1
indicates that the corresponding fragment may be present in the winning alternative.

mask ¼ f0 f1 f2 f3ð Þ

We can use this mask to reduce the original list of alternatives A by clearing some
bits in the mask. The sublist S � A consists of all alternatives whose bit vector a
masked with the fragment mask (bitwise AND) gives a. It can be formulated more
precisely by the following formula.

8 a2 S; a & mask ¼ a

For a better manipulation with the fragment bits, let us construct the following
matrix corresponding to the previous list of alternatives (Fig. 38).

When no fragment is explicitly specified, the mask is (1 1 1 1). Masking matrix F
gives the same matrix. Thus there is no reduction of the original list of alternatives.

F & mask ¼
1 0 1 0

0 1 1 0

1 0 0 1

0 1 0 1

��������

��������

If we wish to constrain the list of alternatives only to those not containing the
Cylinder fragment, the mask will be (1 1 1 0). Masking matrix F then will yield the
following matrix.

F & mask ¼
1 0 1 0

0 1 1 0

1 0 0 0

0 1 0 0

��������

��������

Fig. 38. The mask status matrix

Fig. 37. The default mask status

326 Z. Šlajchrt

Here, only the first two rows remain same after the mask is applied. The first
alternative in the sublist, which preserves the order of the original list, is the winner
(Fig. 39).

If we clear an additional fragment to the mask, let us say Paper, the mask will be (1
0 1 0). Then the masked matrix F will be:

F & mask ¼
1 0 1 0

0 0 1 0

1 0 0 0

0 0 0 0

��������

��������

Only the first row remains unchanged, which becomes the winner.

1: 0; 2f g 1; 0; 1; 0½ �

The rating strategy is used to rate individual alternatives. It may be used as a
complement to the promoting strategy to fine-tune the resulting list of alternatives. The
winner alternative is selected only from those alternatives having the highest rating
with respect to their order. For a better understanding let us use the following notation,
which depicts the rating of an alternative.

fragmentsf g : Rating

By default the alternatives have no rating, i.e. their rating is 0. The four alternatives
from our model then look like this (Fig. 40):

We can explicitly assign new rating to a selected sub-set of the original alternatives.
Let’s say we will rate alternatives 1 and 4 by 1. Then the sub-list will look like that in
Fig. 41 since only the two alternatives have the highest rating. The winner is the first
alternative in the sub-list.

To wrap it up, the masking strategy is used to eliminate unsuitable alternatives. If
more non-orthogonal masking strategies are chained there is a risk that there will be no
alternative left to create the morph. On the other hand, the promoting strategy is used to
recommend suitable alternatives, i.e. promote them higher in the list, and no alternative
is removed. The rating strategy may be also used to shrink the list of the alternatives by
means of rating the alternatives.

Fig. 40. The default list of alternatives with the default rating

Fig. 39. Remaining two alternatives after the masking

Object Metamorphism 327

A key property of morphing strategies is their composability; they do not have to
provide the definite decision on which alternative is the winner. Instead, a strategy may
constrain its decision on a certain sub-model of the main morph model. The final
strategy then may be composed of several partial strategies, whose sub-models are
orthogonal and complete. In other words, the individual partial decisions are not
mutually contradicting and unambiguous when combined. I will illustrate this topic on
the following example. It follows from the above that we do not have to create one big
strategy selecting the winner alternative with respect to the whole morph model.
Instead, we can create two partial strategies, one for the material dimension and the
other for the shape dimension. The orthogonal sub-models of those strategies will be
Metal or Paper and Cuboid or Cylinder. The partial masking strategy suggesting the
winner in the material dimension is created by means of the mask macro (Fig. 42):

This macro is invoked with the sub-model type and a function returning the index
of the winning alternative in the sub-model. The function returns 0 if the input item
data contains material and 1 if it contains paper. The partial strategy is constructed
similarly except it is chained with the material strategy, which is passed as the first
argument to the macro (Fig. 43).

The two strategies are complementary; each selects one pair of alternatives from the
main model, while the two pairs have always one common alternative. The shape
strategy linked to the material strategy may be used as a complete strategy for creating
the item morph.

val item ¼ itemAsm:morph shapeStratð Þ

Fig. 41. The remaining alternatives having the same highest rating

Fig. 42. Creating the mask strategy for the material dimension.

Fig. 43. Creating the chained mask strategy for the shape dimension

328 Z. Šlajchrt

3.5 Determining Morph Type

RI uses a special macro for determining the type of a morph. The select macro is
invoked with the type to be tested and with the morph instance. The macro returns
optional result, i.e. None or Some in case the item conforms to the tested type
(Fig. 44).

The select macro provides additional static type safety, since it can reveal
invalid types passed as the argument. As long as the type argument is incompatible
with the morph model of the morph instance, the macro aborts the compilation. The
following statement would not compile because the item can never be compatible with
Metal with String (Fig. 45).

3.6 Wrappers

OM distinguishes fragments, which implement the core behavior, from wrappers,
which are used to implement stackable modifications of the underlying traits. There are
two types of wrappers: dimension and fragment wrappers. The difference lies in the
way they override their inherited methods. A dimension wrapper is designed to
override a dimension, i.e. abstract methods only (by means of abstract override), while
a fragment wrapper is used to override a fragment’s methods (by means override).

The DensityCorrection extension is an example of a dimension wrapper,
since it overrides the density method defined in the Material dimension trait. In RI
the DensityCorrection wrapper would be implemented as shown in the fol-
lowing listing (Fig. 46).

The wrapper should be incorporated into the item morph model as an optional
fragment, since it is to be applied to some items only. Optional fragments are expressed

Fig. 45. An invalid invocation of the select macro.

Fig. 46. The DensityCorrection extension as a dimension wrapper

Fig. 44. The select macro allows determining the type of the morph

Object Metamorphism 329

as a disjunction of the fragment and the neutral type Unit, i.e. (Unit or Fragment) or
(Fragment or Unit).

The order determines whether the fragment will be by default active or not, since
the left operand has a lower index and thus it will be in higher alternatives (Fig. 47).

In order to activate the wrapper selectively with respect to the input data, we have
to create an additional morphing strategy, which will activate the wrapper for some
item data only. This new strategy will be chained with the shape strategy and become
the top strategy (Fig. 48).

Note: By adding the optional wrapper we made the morph model three-dimensional.

3.7 Fragment Factories

In RI, a morph instance is in fact a dynamic proxy delegating invocations to the
so-called fragment stubs. These fragment stubs correspond to the fragments in the
model alternative used as the template for creating the morph. By default, RI uses
default stub factories, which are analogous to default constructors, i.e. they do not
allow passing arguments. The default stub factory creates a new stub instance on every
morph instantiation. If one wishes to reuse the same stub instance when re-morphing,
s/he can override the default stub factory by declaring an implicit variable prior to the
statement creating the assembler. This implicit variable holds an alternative stub fac-
tory, such as one created by the single macro, which produces the singleton factory
(Fig. 49).

The same mechanism may be used to initialize the fragment stub by some external
data, i.e. to mimic a constructor with arguments. There is an overloaded single macro
with one argument for the so-called configuration object. The following listing

Fig. 47. Incorporating DensityCorrection to the item morph model

Fig. 48. The mask strategy controlling the presence of DensityCorrection in morphs.

Fig. 49. Overriding the default fragment factory.

330 Z. Šlajchrt

illustrates how to pass a configuration object to the singleton factory creating the
Cylinder fragment stub. The configuration object is actually injected into the new stub
instance in order for the corresponding stub’s methods to delegate on it [9] (Fig. 50).

The configuration object must implement an interface, which is also implemented
by the fragment. In this case the common interface is CylinderData. There is also a
helper case class CylinderInitData implementing it to facilitate the creation of
the configuration object (Fig. 51).

The Cylinder fragment trait extends CylinderData decorated with the dlg
marker to indicate that the abstract methods from the interface are to be automatically
implemented by delegating on the configuration object injected on the creation of the
fragment proxy (Fig. 52).

3.8 Putting the Pieces Together

The following listing wraps up the pieces scattered across the preceding text. The
procedure overrides the default fragment stub factories to initialize the stubs with the
input data and then it creates the item assembler and chains three partial strategies,
which are used to create the item morph instance. In the end, the item instance is tested
whether it is a metal cylinder.

Fig. 51. The configuration interface and the helper configuration case class.

Fig. 52. The Cylinder fragment trait declaring the configuration interface.

Fig. 50. Supplying the configuration object to the fragment factory.

Object Metamorphism 331

4 Other OM Features

Because of the limited space in this paper I could not present in detail other interesting
features of OM. If the reader is interested in them s/he may visit the home site of the
project [8], where a lot of additional resources are available. In this section I am going
to briefly explain only one of them.

4.1 Extending Morph Models

OM allows extending existing morph models by other models. The extending model is
typically incomplete, which means that not all alternative it produces are valid because
of missing dependencies. The model being extended is supposed to deliver those
missing dependencies.

Fig. 53. Putting the pieces together

332 Z. Šlajchrt

To illustrate the extension of a morph model let us consider a model describing
currencies recognized among the scanned items. There would be two types of cur-
rencies, coins and banknotes, represented by fragments Coin and Banknote extending
the dimension trait Currency (Figs. 53 and 54).

Assuming that every coin corresponds to a metal cylinder item, we express this
relationship by the self-type of the Coin fragment. In a similar way we express the
binding between banknotes and paper cuboids (very thin).

The morph model for the currencies among items is very simple:

type CurrencyModel ¼
Coin or Banknote or Unit

The model includes the neutral fragment Unit addressing the metal cylinders and
paper cuboid not recognized as coins or banknotes.

The model is evidently incomplete because of the missing dependencies. However,
by joining it with the item morph model we obtain a complete model, of which DNF is
shown in the following listing (Fig. 55).

Two morph models are joined through the so-called morph references: &
[TargetModel].

val curRef : & CurrencyModel½ � ¼ item

The curRef variable is a reference to a new assembler initialized with the joined
morph model, which is created at compile-time. The new assembler also contains the
so-called default morphing strategy, which adapts the strategy used to create the item to
the joined model. This adapted default strategy is automatically chained with any other
strategy used to create morphs from the new joined model.

Fig. 54. Currency traits

Fig. 55. The joined morph model

Object Metamorphism 333

By dereferencing the reference we obtain the new assembler:

val curAsm ¼ � curRefð Þ

Then we may use the assembler as usual, i.e. to create a currency morph:

val currency ¼ curAsm:morph CurrencyValidatingStrategyð Þ

The CurrencyValidatingStrategy custom strategy validates if the pro-
portions of metal cylinders and paper cuboids correspond to coins or banknotes. If not,
the strategy selects the Unit alternative indicating an invalid currency. This strategy is
chained with the above-mentioned default strategy adapted to the new model. In case
the item is neither a metal cylinder nor a paper cuboid the default strategy selects the
Unit alternative and eliminates the others. The CurrencyValidatingStrategy
cannot override this decision, since it is a follow-up strategy in the chain.

The currency morph may be tested for its actual type by the select macro as usual:

select Coin½ � currencyð Þ match f
case Some coinð Þ ¼ [== use the coin

case None ¼ [
g

5 Conclusion

One of the goals of this paper was to show that modeling protean objects might be
surprisingly difficult in established OO languages such as Java, Scala and Groovy as
three representatives.

Java as a non-trait language has proven to be the least suitable language for the
multidimensional modeling. Because of the lack of traits, one must resort to compo-
sition, which forces us to model “is-a” relationship as “has-a” one. The complications
stemming from this approach are known as object schizophrenia.

In Scala, as a representative of the static languages, each form of a given object
must be declared as a class. Since the number of forms grows exponentially with the
number of dimensions, the number of class declarations and lines of the code quickly
becomes unsustainable.

Groovy, which is a dynamic language, can cope with this problem by means of the
dynamic traits applied to objects at runtime, however in contrast to Scala, its weak type
system is not able to guarantee the consistency of trait compositions made in a
step-by-step way.

It seems that neither static nor dynamic OO languages are capable of coping with
the multidimensional modeling. As suggested in this paper, the problem could be
solved by a hybrid approach combining some features from the dynamic and static
languages and adding new ones.

334 Z. Šlajchrt

As a candidate to such a hybrid approach is presented object metamorphism, which
describes all possible forms of an object by the so-called morph model, which is
verified at compile-time. This approach guarantees that all possible forms of the object,
called alternatives, are consistent. At run-time, these alternatives are used as templates
for assembling instances from fragment stubs.

The application of the reference implementation of OM to the example showed that
OM is able to resolve all major issues detected in the analysis.

Additionally, OM comes up with other concepts such as morph model extensions,
which allows joining incomplete morph models with complete ones. This concept may
be used for domain mapping or for raising the level of abstraction.

References

1. Harrison, W., Ossher, H.: Subject-oriented programming (a critique of pure objects). In:
Proceedings of the Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 1993), Washington, D.C. ACM, September 1993

2. Harrison, W., Budinsky, F., Simmonds, I.: Subject-oriented programming: supporting
decentralized development of objects, IBM TJ Watson Research Center (1995)

3. Coplien, J.O., Reenskaug, T.M.H.: The data, context and interaction paradigm. In:
Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications:
Software for Humanity (SPLASH 2012), pp. 227–228. ACM, New York (2012)

4. Alam, O., Kienzle, J.: designing with inheritance and composition. In: Proceedings of the 3rd
International Workshop on Variability & Composition (VariComp 2012), pp. 19–24. ACM,
New York (2012)

5. Herrmann, S.: Demystifying object schizophrenia. In: Proceedings of the 4th Workshop on
MechAnisms for SPEcialization, Generalization and inHerItance (MASPEGHI 2010). ACM,
New York (2010)

6. Malayeri, D., Aldrich, J.: CZ: multiple inheritance without diamonds. In: Proceedings of the
24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA 2009). ACM, New York (2009)

7. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, Artima, 0981531644 (2008)
8. Šlajchrt, Z.: Morpheus: a scala extension introducing metamorphism of objects (2015).

https://github.com/zslajchrt/morpheus
9. Wright, K.: A Taste of Scala: The Autoproxy Plugin (2009). http://www.artima.com/weblogs/

viewpost.jsp?thread=275135

Object Metamorphism 335

https://github.com/zslajchrt/morpheus
http://www.artima.com/weblogs/viewpost.jsp?thread=275135
http://www.artima.com/weblogs/viewpost.jsp?thread=275135

Using Interactive Card Animations
for Understanding of the Essential Aspects

of Non-recursive Sorting Algorithms

Ladislav Végh(&) and Ondrej Takáč

Department of Mathematics and Informatics,
J. Selye University, Komárno, Slovakia

{veghl,takaco}@ujs.sk

Abstract. Animations can help students to comprehend computer science
algorithms. Previous experiments, mentioned in this paper, show that interac-
tivity is very important in educational animations. In this contribution we also
describe three categories of algorithm animations with different views, and we
introduce our interactive card animations that belong to the first group (ani-
mations with conceptual views). These card animations of sorting algorithms
were used in our experiment, where first-year computer science students were
asked to fill out a pre-test, use the animations, and fill out a post-test. In the third
part of the paper we discuss the obtained results, which proved that the inter-
active card animations can help students to understand the essential aspects of
different sorting algorithms. Finally, we draw conclusions and introduce our
future plans.

1 Introduction

Understanding algorithms is one of the hardest tasks for novice computer science
students. One of the reasons why algorithms are difficult to understand is that they use
abstract concepts. Algorithm animations may help to create a bridge between these
abstract notions and real-world situations [1].

We used interactive card sorting animations in our experiment described in this
paper. Our goal was to figure out if these interactive animations can help students to
understand the essential aspects of different sorting algorithms. For this purpose, we used
a pre-test and a post-test during the experiment, and we analyzed the obtained results.

Students prefer to use animations and visualizations in their study. Algorithm ani-
mations were used in computer science education since the 80th years of the twentieth
century. Many experiments were conducted in this area during the last 30-35 years. It
was surprising to researchers when these experiments showed mixed results [2–6].

After ambiguous results, researchers started to investigate in which circumstances is
learning with animations and visualizations effective. Mayer in his book “Multimedia
Learning” [7] defined twelve principles that could be helpful for creators of multimedia
learning materials.

In thefield of using animations for teaching and learning computer science algorithms
were also made some recommendations. These suggestions were published in [2, 8].

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_25

Several different research results suggest that visualizations and animations are
more helpful in understanding computer science algorithms when students are not
passive viewers of the animations, but they actively participate in visualization pro-
cesses [2, 9]. Participation in the animations can be different: students can answer some
questions, modify input data of the algorithms, move some objects of the animations,
create the animations, explain the animations in front of their peers [9].

A meta-study comparing 21 different research papers also showed that the inter-
activity is very important in animations for learning (Fig. 1). From 9 experiments
focusing on the graphical representation only 33% showed significant results; however,
from 12 experiments focusing on the interactivity of the animations 83% showed
significant results. The complete meta-study was published in [10].

The referred studies suggest that the computer science algorithm animations should
be interactive for active learning. Students can experiment with interactive animations,
they can change input data and observe the behaviors of the algorithms in different
situations – all these activities support constructive learning.

Hansen et al. [4] proposed to use three different kinds of algorithm animations
during the programming courses. These three animations show different views of the
same computer science algorithm.

1.1 Animations with Conceptual View

Animations in this first category introduce the computer science algorithms using real
world examples, e.g. sorting algorithms by using cards or crates [11]. Models from real
world help students to connect the real world situations to the abstract concepts of the

Fig. 1. Comparing the results of the researches focusing on the graphical design of the
animations with the results of studies focusing on the interactivity of the animations [2]

Interactive Card Animations for Understanding Sorting Algorithms 337

algorithms. These animations provide students understanding of the essential aspects of
the visualized algorithms [4]. In this paper, we focus on the animations that belong to
this category.

1.2 Animations with Detailed View (Micro-Level)

Animations in this second category describe the algorithms at a very detailed level on
small data sets (6-8 elements). Usually, a pseudocode is also included in the anima-
tions, where the animated steps are highlighted. An example of this kind of animation
is on the Fig. 2.

1.3 Animations with Populated View (Macro-Level)

Algorithms are demonstrated on large data sets (> 50 elements) in this third category.
Many of the details of the animations should be removed so that the students can
concentrate on the performance and behaviors of the algorithms at macro-level.

2 Materials and Methods

To help students comprehend the main features and differences of sorting algorithms
we developed interactive algorithm animations using playing cards which are available
on the web page http://anim.ide.sk/sortingcards.php. This collection of interactive
game-based animations contains five non-recursive sorting algorithms: simple
exchange sort, bubblesort, insertion sort (Fig. 3), and two types of the selection sort
algorithm - minsort and maxsort. The reason we have chosen these algorithms is that
these algorithms occur in the programming courses before any other more complex
sorting algorithms.

Fig. 2. Interactive animation with detailed view of the insertion sort algorithm

338 L. Végh and O. Takáč

http://anim.ide.sk/sortingcards.php

The animations were developed in HTML5 and Javascript programming language,
using CreateJS libraries (http://www.createjs.com/). One of the reasons why we have
decided to use these technologies is that they are starting to become a standard for
creating web-based animations since the appearing of the HTML5 in October, 2014.
Furthermore, usage of these techniques allows the developers to embed the animations
into their web pages without any plugin. Creators of learning materials can easily
integrate these types of animations with their electronic textbooks. Our interactive card
animations were published on the portal http://algoanim.ide.sk/ as well, where the
embed code is available for every animation.

In spite of the fact that we did not add any textual explanation to these animations
in our experiment, we believe that the animations can help the most for the learners
when they are integrated with learning materials, e.g. electronic textbooks, and fol-
lowed by another, more detailed animations of the same algorithms. Adding expla-
nations and embedding algorithm animations into the learning environment was proved
by many experiments, e.g. [1, 5, 6].

We tried to create the animations as much interactive as they were possible but also
wanted to guide students through the correct solutions. Students can grab the selected
cards and exchange them with the other cards, but they have to follow the rules of the
sorting algorithms. Moving or exchanging those cards that are not consistent with the
actual steps of the algorithms are not allowed. In this way students construct the whole
solution by learning the rules of the games, which are the main steps of the sorting
algorithms.

In this phase of the research we wanted to prove that the interactive animations we
created are effective in learning. The main question was if students can understand the
essential differences between the selected sorting algorithms by using only our
game-based animations.

The experiment was conducted during the “Algorithms and programming” course
at J. Selye University, in the second semester of the academic year 2014/15. In the
experience were involved 39 first-year students of computer science.

Students have not learned about any sorting algorithm in the “Algorithms and
programming” course before the experiment. However, some of the students might
have learned these sorting algorithms during other programming courses, in high
school, or on their own.

Fig. 3. Interactive game-based animations with conceptual view of the insertion sort algorithm

Interactive Card Animations for Understanding Sorting Algorithms 339

http://www.createjs.com/
http://algoanim.ide.sk/

All of the students were familiar with control structures, and they solved many
problems on arrays, e.g. searching the minimum, maximum, counting some elements,
calculating the sum, average, mirroring the array. They were also able to read and
understand pseudocodes, but they did not learn the pseudocodes of the sorting algorithms.

At the beginning of our experiment, we asked our students to fill out a pre-test,
which contained seven statements about the behaviors of the sorting algorithms. Stu-
dents’ task was to mark with X those cells in the table, where the statement- algorithm
combinations are true. This pre-test is shown in Table 1.

Table 1. Test about the main differences between the selected sorting algorithms (For Easier
Referring to the Cells of the Table in this Paper, We Added Letters to the Columns and Numbers
to the Rows. These Marks were not Included in Students’ Tests.)

A.
Simple
exchange
sort

B.
Bubblesort

C.
Insertion
sort

D.
Selection
sort:
Minsort

E.
Selection
sort:
Maxsort

1. The algorithm always compares
two neighboring elements in the
array.
2. The algorithm compares every
element with all elements located
behind it.
3. First, the algorithm chooses one
element from the unsorted part; next,
the algorithm exchanges the selected
element with the first or last element
of the unsorted part.
4. In the unsorted part of the array,
the smallest element is always
moved to the beginning (the sorted
sequence is starting to form in the
beginning of the array).
5. In the unsorted part of the array,
the largest element is always moved
to the end (the sorted sequence is
starting to form in the end of the
array).
6. Elements in the sorted part of the
array (in the beginning or in the end
of the array) are not modified (not
moved) during the sorting.
7. Elements in the sorted part of the
array (in the beginning or in the end
of the array) can be modified
(moved) during the sorting.

340 L. Végh and O. Takáč

Because most of the students were not familiar with any or some of these sorting
algorithms, they were asked to mark only statements of sorting algorithms they knew.
In this way we wanted to minimize the number of students’ guesses.

In the next part of the pre-test, students had to connect the names of the five sorting
algorithms with the pseudocodes of the algorithms. In this part of the pre-test students
were asked again to pair only those sorting algorithms they knew.

After filling out the pre-test, students used the game-based animations, where they
had to sort cards, following the rules of the algorithms. All five animations were
accessible on a web page, in the following order: simple exchange sort, bubblesort,
insertion sort, selection sort: minsort, selection sort: maxsort. The animations did not
contain any explanation, only the names of the sorting algorithms, and the task to sort
the cards in ascending order.

While students played with the animations, we gave them the post-test and asked
them to fill it out. The post-test contained the same task as the pre-test, but, in addition,
it also had a questionnaire to rate the clarity, user-friendliness, and the graphic quality
of the animations from 1 to 10.

In the post-test we asked our students again to mark only those statement-algorithm
combinations and pair only those pseudocodes with algorithms they knew, or learned
by experimenting with the interactive card animations.

3 Results and Discussion

After the experiment we counted the number of X marks in the pre-test and post-test
papers for every statement-algorithm combination.

On Fig. 4 is illustrated how many answers were marked correctly and how many
were marked incorrectly by the students in the whole test.

Fig. 4. Percentage of correctly and incorrectly marked answers in the whole test

Interactive Card Animations for Understanding Sorting Algorithms 341

The percentage of correctly marked answers increased by 90%, from 46% to 87%;
while the percentage of incorrectly marked answers decrease by 51% from 15% to 7%
during the experiment.

We also wanted to know how students answered for each of the seven statements.
Figure 5 shows the percentage of correctly marked answers, grouped by the

statements. We can see in the graph that students marked significantly more right
answers in the post- test, after experimenting with the interactive card animations.

Figure 6 shows the percentage of incorrectly marked answers, grouped by the
statements. The graph shows an overall decrease in students’ wrongly marked answers
in the post-test.

A more detailed view of correct answers is illustrated in Fig. 7. This graph shows
the number of right answers in the pre-test and post-test for every true
statement-algorithm combination. These combinations are those cells in Table 1, which
students should have marked with X.

It is evident from the Fig. 7 that students identified more true statements after using
the game-based animations. An interesting situation can be seen in the column 1-C,
where no significantly more learners identified this statement as true in the post-test.
The possible reason for this occurrence we will discuss later when trying to examine
the results in more detail.

Fig. 5. Percentage of correct answers in the pre-test and post-test for true statement-algorithm
combinations grouped by the statements

342 L. Végh and O. Takáč

In Fig. 8 the number of incorrectly marked answers are shown in the pre-test and
post-test for every false statement-algorithm combination. These are those cells in
Table 1, which students should have left blank.

This figure shows that students overall recognized false statements and marked them
less as true in the post-test. However, in the columns 2-C, 3-A and 4-C significantly
more learners identified the false statements as true. The possible reasons for these
occurrences we will discuss later when trying to examine the results in more detail.

Fig. 6. Percentage of incorrect answers in the pre-test and post-test for false statement-algorithm
combinations grouped by the statements

Fig. 7. Number of correct answers in the pre-test and post-test for true statement-algorithm
combinations

Interactive Card Animations for Understanding Sorting Algorithms 343

The difference in the number of answers in the pre-test and post-test is shown in
Table 2. In this table, we marked the true answers with “X”, the disputably true
answers with “X?”, and the disputably false answers with “?”.

Table 2 shows that the number of correctly placed X marks in the post-test were 12
more than the number of correctly placed X marks in the pre-test for the first statement.
The number of incorrectly placed X-marks for the first statement decreased by 18 (-14
-2 -2) in the post-test after using the game-based animations. Putting an X mark into the
cell 1-C in the table can be evaluated as correct for simple insertion sort, but as
incorrect for the improved insertion sort. In the game- based animation, there was not
explicitly defined if students have to think about the improved or not improved version
of the insertion sort algorithm. For this reason, we did not take into consideration the
result from cell 1-C in the Figs. 4, 5 and 6.

Fig. 8. Number of incorrect answers in the pre-test and post-test for false statement-algorithm
combinations

Table 2. Difference in the number of answers in the pre-test and post-test (“X” – true answer,
“X?” – disputably true answer, “?” – disputably false answer)

A B C D E

1. st. -14 +12 X +1 X? -2 -2
2. st. +7 X -6 +11 ? -6 -4
3. st. +6 -6 -8 +21 X +19 X
4. st. +29 X -2 +12 ? +3 X 0
5. st. -1 +26 X +2 +1 +2 X
6. st. +18 X +26 X -2 +16 X +15 X
7. st. -10 -14 +14 X -2 -2

344 L. Végh and O. Takáč

In the second row of Table 2 we can see that the number of correctly place X marks
increased by 7, while the number of incorrectly placed X marks decreased by 5
(-6 + 11-6 -4) in the post-test for the second statement. Cell 2-C of the table shows that
the number of incorrect answers increased by 11 for the second statement when stu-
dents thought about insertion sort algorithm. One reason they might believe that this
statement is true for the insertion sort is that they did not think in details how this
algorithm works. After all, thinking in details is not the goal of these animations with a
conceptual view. We assume that, after understanding the animation of insertion sort
with a detailed view, students would change their answer. More research is needed to
confirm or refute this assumption.

The third row of the table shows that the number correctly place X marks increased
by 40 (+21 +19) and the number if incorrectly placed X marks decreased by 8 (+6 -6 -8)
in the post-test for the third statement. We do not know, why the number of incorrect
answers increased by 6 for the third statement when learners thought about the simple
exchange sorting algorithm (cell 3-A).

In the fourth row of Table 2 we can see that the number of correctly placed X
marks increased by 32, and unfortunately, the number of incorrectly placed X marks
also increase by 10 (-2 +12) in the post-test for the fourth statement. We have another
disputable statement here, in the cell 4-C. The statement 4 is as follows: “In the
unsorted part of the array, the smallest element is always moved to the beginning (the
sorted sequence is starting to form in the beginning of the array).” The first part of this
statement is false for insertion sort algorithm because the elements are not moved to the
beginning of the unsorted part. However, the second part of the statement in the
parentheses is true for insertion sort algorithm because the sorted sequence is starting to
form in the beginning of the array. Because our statement 4-C was not clear enough, we
did not take into consideration this result in the Figs. 4, 5 and 6.

The fifth row of the table shows that the number correctly placed X marks increased
by 28 (+26 +2) in the post-test, but unfortunately the number of incorrectly placed X
marks also increased by 2 (-1 +2 +1) in the post-test for the fifth statement. The
increase of incorrectly placed X marks is not significant in this case.

In the sixth row of the table the number of correctly placed X marks increased by
75 (+18 +26 +16 +15), while the number of incorrectly placed X marks decreased by 2
in the post-test for the sixth statement.

The seventh row of Table 2 shows that the number of correctly placed X marks
increased by 14, while the number of incorrectly placed X marks decreased by 28 (-10
-14 -2 -2) in the post-test for the seventh statement.

All these results suggest that students were able to recognize the main differences of
the sorting algorithms easily, when they used interactive card animations.

In the second part of the pre-test and post-test, we asked students to pair the names
of five sorting animations to their pseudocodes. The result is shown in Table 3.

As we see in this table, the overall number of correct answers is only slightly higher
in the post-test. Surprisingly, high number of students paired some algorithms correctly
in both tests, even though most of them did not learn about the sorting algorithms and
the goal of these animations with conceptual view was not the understanding of the
pseudocodes in detail. We assume, the reason of the similarly high number of correct
answers in the pre-test and post-test for some sorting algorithms is not that students

Interactive Card Animations for Understanding Sorting Algorithms 345

knew in detail how these algorithms work, but they were able to recognize the names of
the variables and/or some of the typical control structures in the pseudocodes. This
assumption supports the previous part of the experiment, where most of the learners
were not able to assess the essential features of the algorithms, only after using the
interactive card animations.

Finally, we were interested in students’ opinion about the interactive card anima-
tions. The result of this questionnaire is shown in Table 4.

Students gave high scores in the questionnaire, they liked the animations and were
interested in learning algorithms using interactive animations and visualizations.

4 Conclusion and Future Plans

The obtained results show that interactive card animations can help students to
understand the essential features of sorting algorithms. After comparing the percentages
of correctly and incorrectly marked answers in the pre-test and post-test we can see
improvement in students’ understanding.

However, there is only a slight difference in the results of that part of the pre-test
and post-test, where students had to pair the names of the sorting algorithms to their
pseudocodes. This proves that more detailed animations are needed for deeper
understanding of sorting algorithms.

Table 3. Percent’s of correctly paired names to their pseudocodes in pre-test and post-test

Simple
exchange
sort

Bubblesort Insertion
sort

Selection
sort: Minsort

Selection
sort: Maxsort

pre-test 51% 41% 59% 97% 97%
post-test 69% 46% 56% 97% 97%

Table 4. Students’ ratings of the interactive card animations of sorting algorithms (10-scale
rating: 1 – low, 10 – high)

Simple
exchange
sort

Bubblesort Insertion
sort

Selection
sort: Minsort

Selection
sort: Maxsort

Clarity
Average: 9.72 9.72 9.59 9.64 9.64
StdDev: 0.50 0.55 0.71 0.66 0.66
User-friendliness
Average: 9.49 9.49 9.33 9.28 9.28
StdDev: 0.75 0.75 1.05 1.08 1.08
Graphic Quality
Average: 9.56 9.56 9.49 9.56 9.56
StdDev: 0.74 0.74 0.84 0.74 0.74

346 L. Végh and O. Takáč

Students enjoyed experimenting with interactive algorithm animations. They said
they would like to learn more algorithms by using animations.

In future, we plan to integrate these card animations into an interactive online
electronic book that can enhance students’ comprehension. After each card animation,
we plan to add another animation with a detailed view containing the pseudocode, and
some exercises; thus learners will be able to accomplish the cognitive requirements for
the first three levels in revised Bloom taxonomy [12] (the levels of remembering,
understanding, and applying).

Acknowledgment. The contribution was published thanks to grant KEGA, 010UJS-4/2014
Modeling, simulation and animation in education (Modelovanie, simulácia a animácia vo
vzdelávaní).

References

1. Rudder, A., Bernard, M., Mohammed, S.: Teaching programming using visualization. In:
Proceedings of the Sixth IASTED International Conference on Web-Based Education,
pp. 487–492 (2007)

2. Naps, T.L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., et al.:
Exploring the role of visualization and engagement in computer science education. SIGCSE
Bull. 35, 131–152 (2002)

3. Byrne, M.D., Catrambone, R., Stasko, J.T.: Evaluating animations as student aids in learning
computer algorithms. Comput. Educ. 33, 253–278 (1999)

4. Hansen, S., Narayanan, N.H., Hegarty, M.: Designing educationally effective algorithm
visualizations. J. Vis. Lang. Comput. 13, 291–317 (2002)

5. Kann, C., Lindeman, R.W., Heller, R.: Integrating algorithm animation into a learning
environment. Comput. Educ. 28, 223–228 (1997)

6. Kehoe, C., Stasko, J., Taylor, A.: Rethinking the evaluation of algorithm animations as
learning aids: an observational study. Int. J. Hum Comput Stud. 54, 265–284 (2001)

7. Mayer, R.E.: Multimedia Learning, 2nd edn. Cambridge University Press, New York (2009)
8. Fleischer, R., Kucera, L.: Algorithm animation for teaching. Softw. Vis. 2269, 113–128

(2002)
9. Grissom, S., McNally, M.F., Naps, T.: Algorithm visualization in CS education: comparing

levels of student engagement. In: Presented at the Proceedings of the 2003 ACM
Symposium on Software Visualization, San Diego, California (2003)

10. Hundhausen, C.D., Douglas, S.A., Stasko, J.T.: A meta-study of algorithm visualization
effectiveness. J. Vis. Lang. Comput. 13, 259–290 (2002)

11. Végh, L.: From Bubblesort to Quicksort with Playing a Game (Hravou formou od
bublinkového triedenia po rýchle triedenie). In: XXIX International Colloquium on the
Management of Educational Process, Brno, CZ, pp. 539–549 (2011)

12. Anderson, L.W., Krathwohl, D.R., Airasian, P.W., Cruikshank, K.A., Mayer, R.E., Pintrich,
P.R., et al.: A Taxonomy for Learning, Teaching, and Assessing. A Revision of Bloom’s
Taxonomy of Educational Objectives. Addison Wesley Longman Inc, USA (2001)

Interactive Card Animations for Understanding Sorting Algorithms 347

An Incremental Approach to Semantic
Clustering Designed for Software Visualization

Juraj Vincúr(&) and Ivan Polášek

Faculty of Informatics and Information Technologies,
Slovak University of Technology, Bratislava, Slovakia
{juraj.vincur,polasek}@fiit.stuba.sk

Abstract. In this paper, we introduce an incremental approach to semantic
clustering, designed for software visualization, inspired by behavior of fire ant
colony. Our technique focus on identification of equally sized but natural
clusters that provides better hindsight of software system structure for devel-
opment participants. We also address performance issues of existing approaches
by maintaining similarities based on global weights incrementally, using sub-
spaces and covariance matrix. Effectivity of visualization is improved by rep-
resenting multiple documents with precise medoid approximation.

1 Introduction and Related Work

Understanding the structure of large and complex software systems is difficult task that
demands huge effort. A certain level of understanding by software engineers is nec-
essary when they perform daily development and maintenance tasks. Many approaches
have been proposed to minimize the cost of such a comprehension, but most of them
ignore huge amount of developer knowledge hidden in identifier names since they only
focus on program structure [1] or documentation [2].

To enrich software analysis by this valuable source of information, Semantic
Clustering has been proposed [3]. According to its evaluation this technique provides a
useful first impression of an unfamiliar software system by grouping source code
artifacts (e.g. class types, functions, methods) to clusters. Main problem of this
approach identified by authors themselves lies in tendency of identifying one oversized
and dozens of small clusters. Such a distribution is not suitable for software visual-
ization and it is caused by use of average- linkage clustering algorithm. The authors
also do not take in mind frequent software system changes (e.g. by adding features, bug
fixing or refactoring) that each require recalculation of whole vector representation.
This behavior leads to huge performance over-head as identified in [4, 21]. Use of
incremental techniques should be considered to minimize time required for obtaining
up-to-date representation since decisions based on non-up-to-date visualization of
software system may be wrong and lead to degradation of its structure. Different
approaches [2, 5] try to increase quality of identified topics by use of probabilistic
model called Latent Dirchlet Allocation [6]. However, this method is very sensitive to
user pre-defined number of resulted topics which are also harder to visualize.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_26

It is obvious that robustness and quality of visualization based on Semantic Clusters
is highly related to choice of clustering algorithm. An exhausting review of clustering
algorithms may be found in [7]. We will focus on 3 types of cluster analysis techniques
since our method is partially related to them.

First set of methods are members of hierarchical cluster analysis which aims to
build hierarchy of clusters by using generally two strategies. Agglomerative, also
known as bottom-up approach, which in initial phase considers each observation as
cluster. Pairs of clusters are iteratively merged until only one huge cluster remains or
the other defined criterion is met. Divisive, top-down approach, treats data in opposite
direction. An efficient and scalable representative of agglomerative methods is BIRCH
(Balanced Iterative Reducing and Clustering) [9] which requires two input parameter:
the distance threshold and the tree branching factor. With respect to these parameters
the BIRCH algorithm build CF-tree consisted of summary information (clustering
features) about candidate clusters. Then, instead of using full data set, another
agglomerative clustering algorithm is applied on these features to refine clusters. This
approach is suitable for very large data sets, however, since each node in CF-tree can
contain only limited number of data items obtained clusters may not correspond to
natural clusters. BIRCH also requires significant effort to tune its parameters [8]. Non
spherical clusters trouble BIRCH as well since it uses diameter or radius to control
boundaries of clusters.

Second set of algorithms are based on minimum or maximum spanning tree.
Multiple non-incremental approaches are described in [10]. This type of methods may
be considered as subset of hierarchical clustering. Analogy between them is well
described in [11], where MST implementation of single- linkage clustering is pre-
sented. We are not aware of any incremental approach based on spanning tree even
though their base implementations are relatively poor in performance with respect to
BIRCH.

Third group consists of ant colony algorithms. These algorithms, members of
swarm intelligence family, are inspired by multiple species and behavior models of
ants. A brief survey may be found in [12].

With respect to identified limitations, this paper aims at providing incremental
approach to semantic clustering that identifies equally sized but natural clusters.
Section 2 explains concepts of our approach. Section 3 presents our adaption of circle
packing layout to visualize obtained semantic clusters. Results and evaluation are
presented and discussed in Sect. 4. Section 5 summarizes this paper and its
contribution.

2 The Fire Ant Approach to Clustering

Our clustering approach is inspired by behavior of fire ant colony during floods. Fire
ants have unique ability to gather together and form rafts on the surface of water [14].
This formation in which they can retain for weeks, allows them to survive. We assume
that each ant has limited vision range in which it can sense the other ants. We also
assume that during gathering ants are dispersed in space so first clusters of ants are
formed and then these clusters are merged to one big raft (hierarchy). Moving

An Incremental Approach to Semantic Clustering 349

principles of these ants are often compared to fluids. The behavior we described is
similar to oil spreading on the surface of water. In this paper we work with simplified
model that considers only one possible way of grabbing another ant (instead of 7), by
its jaw. Number of survivors then depends on number of connected ants (raft size). To
maximize it, we add restriction to suppress cycle connections between ants, thus we get
spanning tree representation, which is close to minimum.

In this section, we will first present our domain specific observations that were
considered in design and implementation. Next, we will discuss main steps of our
approach in following order: preprocessing (building corpus representation), spanning
tree construction, identification of cluster-points, assigning documents to cluster-points
and merging cluster-points to clusters.

2.1 Domain Observations

Most approaches treat source code snippets as textual documents although they are
produced differently. Source code projects are usually implemented in incremental
manner by applying batches of changes. Dimensionality of space representing docu-
ments affected by single batch should be relatively low since these documents are
usually related (e.g. classes affected by single commit). To support our hypothesis we
conduct an experiment in which we simulate development of few open source projects
handled by Git version control system. Description of chosen projects may be found in
Table 2. Results of experiments are shown in Fig. 1. Data are summarized in Table 1.
As we can see, average values of dimensionality of such a subspace lie between 172.07
and 297.14, which is relatively small compared to total number of dimensions (see
Table 2). Moreover, it doesn’t seem to be strongly related to project size. Trend lines in
Fig. 1 even suggest that this dimensionality may be constant (in average). Another

Fig. 1. Number of dimensions per commit subspace (with trend lines)

350 J. Vincúr and I. Polášek

aspect we were interested in is the density of document-term matrix (DTM) which is
comparable to domain of textual documents (see Table 2).

2.2 Corpus Representation

Quality of clusters is highly dependent on precision of similarity measure obtained in
preprocessing step. In our work we use cosine similarity [17] and corpus representation
that exploits global weights and low density of document-term matrix. Primary corpus
representation is constructed as document-term matrix with term frequency
(TF) weighting. No normalization vector or global scale is applied because these may
change in time by editing corpus. However, vector of document lengths and average
document length are updated for further usage. Document lengths are used for calcu-
lation of IDF [15] and average document length for pivot normalization [19]. TF
weights are used for serialization purposes only. In order to calculate document sim-
ilarity, TF-IDF model has to be computed by applying IDF vector to normalized
primary matrix. We consider global weight in TF-IDF essential due to its tendency to
suppress false cluster identification caused by crosscutting concerns [16]. For example,
using raw TF weights, term “map” widely spread across classes in source code of
distributed database may cause identification of oversized cluster that will contain all
these classes. Problem with TF-IDF model in terms of incremental approaches is that
weights change by adding, removing or editing documents. To overcome this behavior
or even employ it we compute covariance matrix. We assume that documents similar at
some particular not too early point of project development should be relatively equally
similar at later point of development as well. Moreover, we assume that earlier point
similarity is more precise because it takes in account aspect of time. If two documents
were highly similar before some words become widely spread (by adding some module
or by merging branches) they are probably similar even if new TF-IDF weights say
otherwise. To add new documents to covariance matrix, their similarities to all

Table 1. Average valuea in covariance matrix of increment

Titan Elastic Neo4j Spring Total

avg sim 0.35 0.48 0.34 0.39 0.39
med dim 146 132 200 196 199
avg dim 201.92 172.07 270.07 297.14 235.30
aDiagonal values set to 0.

Table 2. Properties of DTM of chosen projects

Titan Elastic Neo4j Spring

row 1238 5593 5753 9833
col 3226 5297 5257 6562
nnz 63009 249107 225114 414638
density 1.58% 0.84% 0.74% 0.64%
avg 50.90 44.54 39.13 42.17

An Incremental Approach to Semantic Clustering 351

documents have to be calculated (see Fig. 2). However, since the subspace for these
documents tends to be constant in number of dimensions (term dimension of DTM),
only one dimension of matrix is growing (document dimension of DTM). Moreover,
document dimension may be filtered as well because there is high probability that
relatively low dimensional vector (rounded average of 44 dimensions for our sample)
extracted from high-dimensional space (rounded average 5085) representing single
class has no common dimensions with constructed subspace (rounded average 235).

Since both matrices, TF weights and TF-IDF model are sparse, we address memory
efficiency problem by storing them using sparse matrix schema. More specifically, TF
weights are stored using dictionary of keys format, which assigns to each row, column
tuple corresponding value. This structure is efficient for constructing sparse matrices
incrementally, for row and column slicing, but not efficient for arithmetic operations.
On the other hand, TF-IDF model is represented by compressed sparse row matrix
format. This format consists of indices (array of column indices), data (array of nonzero
values) and pointer array whose items points to row starts in indices and data. It is an
efficient representation for arithmetic operations and dot product, but very slow rep-
resentation for column slicing or changing structure.

2.3 Spanning Tree Construction

Simplified model based on spanning tree structure has been selected due to several
benefits. It is easy to maintain, analyze and visualize. Moreover, spanning tree clus-
tering methods are capable of identifying clusters with irregular boundaries (e.g. not
spherical) [13]. In our algorithm, inspired by swarm intelligence, we represent each
document by single agent. Each agent has limited vision of k nearest/most similar
nodes based on cosine similarity, obtained from covariance matrix (storing full
covariance matrix isn’t necessary). Since ants are capable of making max. 7 connec-
tions we set k to this value. The steps required to compute spanning tree are shown in
Fig. 3. This approach has been chosen over other algorithms with concurrency [20] due
to the time complexity, its natural incrementalism and fact that using nearly minimum
spanning tree has no significant impact on quality of resulted clusters. Note that

Fig. 2. Adding increment to covariance matrix.

352 J. Vincúr and I. Polášek

representing each document as single agent brings certain level of rivalry that leads to
tendency of equally sized clusters, but not for price of having non-natural clusters.

2.4 Cluster-Points

In created spanning tree, we select nodes that have more than 2 links. We call them
cluster-points and they are good approximation of medoid for group consisted of
selected node and nodes adjacent to him. Note that this group represents group of
mutually similar documents since it was obtained from spanning tree close to mini-
mum. Table 3. presents measured number of incorrectly assigned medoids, total
number of identified cluster-points, total error (sum of differences between total dis-
similarity of real medoid and approximated medoid) and average error. As we can see,
only few medoids are approximated incorrectly and even these bad approximations
yield low average error. Nodes with degree 2 will be referred as connectors.

2.5 Forming Clusters

Selecting cluster-points in spanning tree revealed high probability of forming groups of
adjacent cluster-points. These groups refer to cluster candidates. Different strategies may
be applied to obtain real clusters. The one we present could be described by pseudo code
in Fig. 5. Each one of resulted clusters is represented by list of cluster-points where each
cluster-point has list of assigned nodes. Example of spanning tree and obtained hier-
archy tree structure may be found in Fig. 4.

Fig. 3. Pseudocode of spanning tree construction algorithm

Table 3. Average value in covariance matrix of increment

JHotDraw Titan Elastic Neo4j Spring

missed 4 8 73 68 156
total 86 310 1336 1396 2349
error 0.07 0.22 3.96 3.34 4.58
avg error 0.02 0.03 0.05 0.05 0.03

An Incremental Approach to Semantic Clustering 353

2.6 Updating Structure

Two main strategies have to be considered in terms of maintaining spanning tree and
cluster hierarchy structure. In first, building of vector space model and covariance
matrix is managed incrementally and construction of spanning tree and cluster hier-
archy is recalculated each time since it requires only single pass over documents. This
strategy will probably yield more accurate results, but it causes certain level of
overhead.

Fig. 5. Pseudocode for cluster-forming strategy

Fig. 4. Spanning tree (left) and corresponding hierarchy (right). Black nodes - root and
identified clusters; dark gray – cluster-points; gray – connectors

354 J. Vincúr and I. Polášek

Second strategy maintains spanning tree and cluster hierarchy incrementally as well
by reducing recalculations to affected subtrees only. Formed clusters will be more
stable, but less accurate.

3 Data Visualization

Most companies develop large software projects using version control system. Source
code is physically located on one or multiple servers what allows us to create web
based visualization tools. Main benefit of this approach is the possibility to see the
results everywhere, immediately without any installation required. There are many
visualization JavaScript libraries suitable for this purpose. Most of them require only
JSON dump in specified format. Our software visualization, inspired by [24], use d3.js
library which provides robust documentation and large database of examples. From
these examples we adapt circle packing layout (see Fig. 6).

4 Results and Evaluation

Discussing our results we will mainly focus on quality of clusters from view of soft-
ware engineer trying to understand the structure of existing software system. Use of
external validity techniques would be the most suitable, but since we are not aware of
any evaluated data set from source code domain relevance judgments [18] are applied.

Relatively small project as JHotDraw yield with abstraction level 1 11 clusters. As
we can see in Fig. 6 (left side of picture) these clusters are relatively equally sized. We
judge the using of cluster-points as representative of group of documents very posi-
tively (see Table 4). A very good example is class AlignAction that represents classes
North, East, West, South, Vertical and Horizontal. Similar behavior is observed in all

Fig. 6. Circle packing layout (visualization of JHotDraw, zoomed views after clicking “text”
cluster and “TextAreaTool” cluster-point)

An Incremental Approach to Semantic Clustering 355

sample projects. To proof our spanning tree based concept in terms of natural clusters,
we compare our approach with selected algorithms (Birch and average linkage clus-
tering, or UPGMA) in two-dimensional space with well separated clusters. Without use
of any cluster-forming strategy or tune of parameters we were able to correctly identify
all natural clusters (see Fig. 7). Such an experiment is not considered as sufficient
evaluation since there’s no proof of relation between two and multidimensional space
but it serves as an appropriate example to present potential of proposed technique.

To briefly evaluate our approach in multidimensional space we create a table of
clusters with corresponding cluster-points that were identified in JHotDraw project (see
Table 5). With our basic knowledge about JHotDraw architecture, we were able to
identify four core parts of system (see Table 6). By comparing these components to
obtained clusters we observed that part “Drawing, figure” corresponds to cluster
“Undo, redo, decorator”, parts “Handle” and “Tool” to “Tracker, mouse, evt” and
“Command” to “File, project, open”. In addition we identified two clusters related to
XML since clipboard operations and external storage in JHotDraw use this format.
First, cluster “Reader, xml, entity”, is related to XML parsing while second, “Element,
and attribute, open”, and focus on XML DOM manipulation. Cluster “Path, node,
bezier” is related to fact that support for lines and complex shapes in JHotDraw is based

Table 4. Example of identified cluster-points in JHotDraw

Cluster-point Classes that cluster-point represents

AlignAction East, West, South, North, Vertical, Horizontal
Handle NullHandle, CloseHandle, HandleMulticaster, HandleListener
OpenAction NewAction, OpenRecentAction, Project, …
DuplicateAction CopyAction, PasteAction, CutAction, DeleteAction

Fig. 7. Comparission of our approach (DrownAnt) with selected algorithms in 2D space

356 J. Vincúr and I. Polášek

on bezier paths (instead of polygons). “Text, origin, layout” corresponds to classes
handling text areas, “Presentation, figure, graphical” to layout and composition of
figures, “Attribute, key, forbid” to setting attributes of figures and “Tool, bar, toolbar”
to toolbars and panels of drawing view.

During experiments we did not expect frequent occurrence of the term “Map” in
project Titan (distributed database) across clusters. After short analysis we realized that
term “map” occurs in 345 classes from total number of 1238 and so it is related to
cross-cutting topic. IDF works correctly in this example. During the browsing of
documents of one cluster, we realize that sometimes their vocabulary is not similar.
This is caused by use of vector enrichment as proposed in [4]. Such an observation may
be confusing for user as well, thus some abstraction of this relation should be added to
visualization.

Table 5. Identifiet clusters and cluster-points in jhotdraw

Cluster Cluster-points of cluster

Undo, redo, decorator Figure, FigureEvent, AbstractFigure, AbstractFigureListener,
UndoRedoManager, AttributeChangeEdit, SetBoundsEdit,
RestoreDataEdit, RunnableWorker

Tracker, mouse, evt SelectionTool, FormListener, HandleTracker
File, project, open LoadRecentAction, NewAction, OpenAction, OpenRecentAction
Reader, xml, entity XMLUtil, StdXMLParser, IXMLParser, IXMLValidator,

NonValidator
Element, attribute,
open

JavaxDOMOutput, DOMOutput, NanoXMLLiteDOMOutput,
NanoXMLDOMInput, DOMInput

Connector, target,
connection

ChopBoxConnector, Connector, ChopEllipseConnector,
BidirectionalConnectionTool, ChangeConnectionHandle

Path, node, bezier BezierTool, BezierPath, BezierFigure, BezierControlPointHandle
Text, origin, layout TextFigure, TextAreaTool, TextHolder
Presentation, figure,
graphical

HorizontalLayouter, AbstractLayouter, ListFigure,
GraphicalCompositeFigure

Attribute, key, forbid ColorChooserAction, DefaultAttributeAction, AttributeAction,
AbstractAttributedCompositeFigure

Tool, bar, toolbar ToggleToolBarAction, DrawApplicationModel,
ToolBarPrefsHandler

Table 6. Identified core parts of JHotDraw

Part Responsibility

Drawing,
figure

Drawing represents two-dimensional space and consists of figures

Tool DrawingView inputs are delegated to its current tool
Handle Used to change a figure by direct manipulation
Command Classes related to command design pattern that provide basic project actions

(save, exit, open)

An Incremental Approach to Semantic Clustering 357

Size of the clusters is considered rational with respect to total number of docu-
ments. According to Fig. 8 the number of clusters may scale linearly or even loga-
rithmic, but to support these assumptions statistically we need more significant number
of samples to analyze.

In Fig. 9 the results of performance evaluation of computing covariance matrix are
presented. Incremental approach is compared with calculation of full covariance matrix
each time, to see how both of them scale by number of applied commits. As we can see,
time required by base approach grows significantly faster than the time required by

Fig. 8. Number of identified clusters

Fig. 9. Comparison of computational time between base (orange) and incremental (blue)
approach of computing covariance matrix

358 J. Vincúr and I. Polášek

incremental. Moreover, incremental approach will scale even better after applying
document filtering. Since our current implementation of adding increments to covari-
ance matrix scales linearly, there is yet no point of managing spanning tree and cluster
hierarchy incrementally (we can recalculate them by single pass over documents).

5 Conclusion and Future Work

In this paper we propose new incremental technique for semantic clustering, designed
for software system visualization, inspired by behavior of fire ant colony, slightly
sensible to optional tuning of single parameter, which is capable of identifying natural,
but relatively equally sized clusters even with irregular boundaries. We employed low
density of DTM to minimize performance overhead by calculating document to doc-
ument similarities in low dimensional subspaces and by storing them to incrementally
maintained covariance matrix. We reduced size of browsing space by applying
three-layer hierarchy visualization with medoid based abstraction. To provide efficient
preview of documents, we added to our visualization source code browsing. As we
showed in evaluation, we achieve intuitive representation that provides good hindsight
of software system structure and functionality.

In future work, our primary goal is to design and implement 3D visualization of our
software system representation that utilize benefits of the third dimension as suggested
in [22, 23]. Moreover, we would like to integrate resulted tool in the IDE and enrich it
by mixed reality features and advanced interaction techniques.

Acknowledgments. This work was supported by the Scientific Grant Agency of Slovak
Republic (VEGA) under the grant No. VG 1/1221/12. This contribution is also a partial result of
the Research & Development Operational Programme for the project Research of Methods for
Acquisition, Analysis and Personalized Conveying of Information and Knowledge, ITMS
26240220039, co-funded by the ERDF.

References

1. DeLine, R., Rowan, K.: Code canvas: zooming towards better development environments.
In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering
(ICSE 2010), vol. 2, pp. 207–210. ACM, New York (2010)

2. Asuncion, H.U., Asuncion, A.U., Taylor, R.N.: Software traceability with topic modeling.
In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering
(ICSE 2010), vol. 1, pp. 95–104. ACM, New York (2010)

3. Kuhn, A., Ducasse, S., Gírba, T.: Semantic clustering: identifying topics in source code. Inf.
Softw. Technol. 49(3), 230–243 (2007)

4. Uhlár, M., Polasek, I.: Extracting, identifiyng and visualisation of the content in software
projects. In: Proceedings of the 4th World Congress on Nature and Biologically Inspired
Computing (NaBIC 2012), November 2012, pp. 72–78. IEEE Press (2012)

5. Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., Baldi, P.: Mining concepts from code
with probabilistic topic models. In: Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2007), pp. 461–464. ACM, New
York (2007)

An Incremental Approach to Semantic Clustering 359

6. Blei, D. M., Ng, A. Y., Jordan, M. I.: Latent Dirichlet allocation. J. Mach. Learn. Res.
3 (March 2003), 993–1022March

7. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3),
264–323 (1999)

8. Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler, C.:
StreamKM++: a clustering algorithm for data streams. J. Exp. Algorithmics 17, 1–31 (2012).
Article 2.4

9. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for
very large databases. SIGMOD Rec. 25(2), 103–114 (1996)

10. Grygorash, O., Zhou, Y., Jorgensen, Z.: Minimum spanning tree based clustering
algorithms. In: Proceedings of the 18th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2006), pp. 73–81. IEEE Computer Society, Washington, DC
(2006)

11. Gower, J.C., Ross, G.J.S.: Minimum spanning trees and single linkage cluster analysis.
Appl. Stat. 18, 54–64 (1969)

12. Jafar, O.M., Sivakumar, R.: Ant-based clustering algorithms a brief survey. Int. J. Comput.
Theor. Eng. 2(5), 787–796 (2010)

13. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE
Trans. Comput. 20(1), 68–86 (1971)

14. Mlot, N.J., Tovey, C.A., Hu, D.L.: Fire ants self-assemble into waterproof rafts to survive
floods. Proc. Natl. Acad. Sci. USA 108(19), 7669–7673 (2011)

15. Paltoglou, G., Thelwall, M.: A study of information retrieval weighting schemes for
sentiment analysis. In: Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics (ACL 2010), pp. 1386–1395. Association for Computational
Linguistics, Stroudsburg (2010)

16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin, J.:
Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol.
1241, pp. 220–242. Springer, Heidelberg (1997). doi:10.1007/BFb0053381

17. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill Inc.,
New York (1986)

18. Voorhees, E.M.: Variations in relevance judgments and the measurement of retrieval
effectiveness. In: Proceedings of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 1998), pp. 315–323. ACM,
New York (1998)

19. Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In: Proceedings
of the 19th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 1996), pp. 21–29. ACM, New York (1996)

20. Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Borůvka on minimum spanning tree
problem translation of both the 1926 papers, comments, history. Discrete Math. 233, 1–3,
3–36 (2001)

21. Polášek, I., Uhlár, M.: Extracting, identifying and visualisation of the content, users and
authors in software projects. In: Gavrilova, M.L., Tan, C.J.K., Abraham, A. (eds.)
Transactions on Computational Science XXI. LNCS, vol. 8160, pp. 269–295. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-45318-2_12

22. Gregorovic, L., Polasek, I.: Analysis and design of object-oriented software using
multidimensional UML. In: Proceedings of the 15th International Conference on Knowledge
Technologies and Data-Driven Business (i-KNOW 2015). ACM, New York (2015)

360 J. Vincúr and I. Polášek

http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/978-3-642-45318-2_12

23. Gregorovič, L., Polasek, I., Sobota, B.: Software model creation with multidimensional UML.
In: Khalil, I., Neuhold, E., Tjoa, A.M., Da Xu, L., You, I. (eds.) CONFENIS/ICT-EurAsia -
2015. LNCS, vol. 9357, pp. 343–352. Springer, Heidelberg (2015). doi:10.1007/978-3-319-
24315-3_35

24. Polasek, I., et al.: Information and knowledge retrieval within software projects and their
graphical representation for collaborative programming. Acta Polytech. Hung. 10(2),
173–192 (2013)

An Incremental Approach to Semantic Clustering 361

http://dx.doi.org/10.1007/978-3-319-24315-3_35
http://dx.doi.org/10.1007/978-3-319-24315-3_35

Feature Extraction Methods in JEM-EUSO
Experiment

Michal Vrabel1(&), Jan Genci1, Jozef Vasilko1, Pavol Bobık2,
Blahoslav Pastircak2, and Marian Putis2

1 Faculty of Electrical Engineering and Information Technologies, Technical
University of Kosice, Kosice, Slovakia

{michal.vrabel,jan.genci}@tuke.sk
2 JEM-EUSO Collaboration Institute of Experimental Physics,

Slovak Academy of Sciences, Kosice, Slovakia
bobik@saske.sk

Abstract. The article summarizes activities and results regarding pattern
recognition for the JEM-EUSO experiment done by Slovak group of
JEM-EUSO collaboration. The activities include estimation of trigger proba-
bility of false positives and reconstruction of simulated UHECR showers in UV
background using Euso Simulation and Analysis Framework (ESAF). The
Hough transform-based techniques are presented as methods to find UHCER
showers in the JEM-EUSO detector recorded data. Additionally, the article
describes structure and data flow of the framework.

1 Introduction

The JEM-EUSO telescope is planned to be placed on the International Space Station to
look into the Earth’s atmosphere to spot Extensive Air Showers (EAS) caused by
ultra-high energy cosmic rays (UHECR). UHECR is represented by a high energy
particle, usually a proton or a heavier nucleus, moving with velocity close to the light
speed. When such a primary particle collides with molecules of atmosphere, secondary
particles are created forming giant cascades of particles. These EAS can be detected by
measuring the light emitted during their evolution through nitrogen fluorescence and
cherenkov radiation mechanisms both observable in the UV spectrum. Because of the
speed of UHECRs, very high imaging rate is required in JEM-EUSO to detect them.

This paper provides an overview of the Euso Simulation and Analysis Framework
and work done in cooperation of students from Technical University of Kosice and
Institute of Experimental Physics of Slovak Academy of Sciences Kosice. All this work
is concerned with the detection of EAS on the focal surface of the JEM-EUSO tele-
scope. This is done with two different approaches. From one side by analysing the
images of pure UV background to compute the probability of detecting false positives,
called in the following fake showers. On the other hand an analysis is conducted on
simulated EAS on the JEM-EUSO detector to find methods that produce the most
precise results in the estimation of the angular resolution of the incoming primary
particles.

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7_27

2 JEM-EUSO Detector

The JEM-EUSO is a wide field of view telescope planned to be located in one of the
ports provided by the External Exposure Facility of Kibo module on the International
Space Station. From there it will observe atmosphere to spot EAS as a bright spot
moving along a line at the light speed. The brightness of the shower image is related
with the energy of the cosmic ray and the direction of the line shows the arrival
direction of the cosmic ray. These are important parameters for the study of cosmic ray
origins. Conceptual drawing of the experiment principle is in Fig. 1.

The detector’s focal surface has 300,000 photo-sensitive pixels for purpose of
counting photons. Individual photons are counted using photomultiplier tubes (PMTs).
In the current design, PMTs have 8 × 8 pixel resolution (3 mm each). Groups of four
near-by PMTs form an elementary cell (EC); 3 × 3 elementary cells are grouped in the
so-called photo detector module (PDM); 9 PDMs form one cluster. The whole focal
surface contains 137 PDMs (15 clusters). Recording counts of photons for long period
is difficult due to storage capacities and bandwidth availability. The photons are
accumulated in fixed time frames called Gate Time Units (GTU). In its standard mode a
GTU lasts 2.5 µ seconds [3]. A GTU determines, therefore, the duration between resets
of pixel counters. To discriminate noise, the first level of the analysis is done on-board
in real-time using schemes of triggers directly on the detector. A two-level triggering
system decreases data rate from 9.6 GB/s to 297 kbps [5].

The First-level trigger searches for count excess lasting a few GTUs on a few
near-by pixels. This trigger is called Persistent Track Trigger. The second-level trigger

Fig. 1. Principle of the JEM-EUSO telescope to detect UHECR [3].

Feature Extraction Methods in JEM-EUSO Experiment 363

decides about the presence of an interesting feature using Linear Track Trigger algo-
rithm. The algorithm integrates photon counting values of the pixels along the track
over some predefined time. Integrated value is compared to a threshold value. Set of
directions for integration covers complete parameter space. Size of an integration “box”
depends on configuration and its location varies with GTU and direction [3].

Triggered events are stored to be analyzed on the ground using more precise and
independent methods which require much higher computational resources. Here, the
data reconstruction chain starts; a detection algorithm selects from the all downloaded
data those records which are expected to come from EAS, excluding fake ones due to
fluctuations of the UV light intensity.

3 Overview of ESAF Framework

To simulate the whole process of an EAS development, the Euso Simulation and
Analysis Framework (ESAF) [2] has been developed. In its simulation application the
frame- work provides the environment to develop UHECR simulation stages by ded-
icated interfaces. The second part of ESAF is the reconstruction application which
provides interfaces to implement the reconstruction chain. The third part provides
utilities for a data visualization. Nowadays, the whole simulation and reconstruction
chain are implemented; in many cases they use alternative options. Figure 2 presents an
overview of the ESAF workflow.

The framework is developed using C++ programming language with an atmosphere
propagation modeling done using lowtran simulation written in FORTRAN. Compi-
lation is done using gcc compiler conforming to C++98 standard. ESAF is based on
CERN ROOT framework utilizing many of its libraries and coding style. Also, output

Fig. 2. Overview of the ESAF workflow.

364 M. Vrabel et al.

files are in the ROOT framework output format. Both Simu and Reco applications are
single-threaded. Typical use case is to run multiple independent simulation or recon-
struction processes in parallel by varying values of the parameters under study.

3.1 Simulation in ESAF

Simulation part of ESAF covers the process from a primary particle generation to the
detector response. Simulation has two significant parts - light production and the
detector response. Figures 3, 4 and 5 visualize the process as data flow diagrams.
Processes in the diagrams represent C++ method calls and data stores are either data
structures - objects of certain class - or simulation input files containing table data. The
first step in the simulation process is to generate an ultra-high energy particle. This
generation is encapsulated in an interface provided by the abstract class Event-
Generator. The generator produces shower track that contains shower steps. The
track is processed by a photon generator represented by the abstract class Shower-
LightSource. For every step of the track two bunches of photons are produced
according to the step properties of the shower track. First bunch is generated to model
photons produced by nitrogen fluorescence, while the second to model photons pro-
duced by cerenkov radiation. All produced bunches are aggregated in an object of class
PhotonsInAtmosphere. Photons generated in atmosphere are transferred to the
detector’s pupil using radiative transfer represented by the abstract class Radia-
tiveTransfer. In the current configuration, the BunchRadiativeTransfer is
used. This implementation utilizes fortran library lowtran. In the first part, bunches of
photons are propagated through the simulated medium, where reflections are also
included. Result of these transfers is a list of single photons. Bunch propagation is done
by its transfer through different mediums until the bunch gets to the final state. In the
current configuration, the clear sky propagation implemented in class AlongTrack_
CSPropagation is the most significant part of this propagation. In the second part,
the object of class ListPhotonsInAtmosphere aggregates objects representing
single photons which are propagated on the detector’s pupil. The whole process of
radiative transfer here described uses propagation functionalities declared by abstract
class RadiativeProcessCalculator, currently configured to lowtran
library-based calculator.

Atmosphere properties are included in steps from the primary particle generation to
the photons on pupil. Singleton object of class Atmosphere wraps this functionality
which includes retrieving values such as air density or humidity and calculations
requiring these values such as the determination of the slant depth or positions of the
shower impact. In present configuration LowtranAtmosphere implementation of
atmosphere is used. Atmospheric model is defined in tables which are loaded in
run-time.

The second step of the simulation process is the detector’s response to photons
arrived on pupil. In the beginning of processing, photons need to be transported
through the detector’s optics onto PMTs. This process is handled by Detector
TransportManager method of class DetectorTransportManager. The
position of each pho- ton is evaluated and processed by the relevant part of the

Feature Extraction Methods in JEM-EUSO Experiment 365

telescope represented by an object of a proper class. The optics is described by
OpticalSystem interface. A photon represented by an object of class Photon is
exchanged between parts of the simulation until it is considered non relevant by a
particular part of the simulation - for example absorbed by the focal plane or the
telescope’s wall. Depending on position, a photon may get captured on a PMT
described by abstract class Photomultiplier. Adding photons to photomultiplier results
in new objects of class PmtSignal, which are aggregated in the object of this
photomultiplier by channel (pixel) hit. The whole described photon transport process
includes random generation to reproduce real fluctuations.

After all photons are transported to PMTs as signals, the electronics response is
simulated. An electronics is represented by class EusoElectronics which in its
EusoElectronics::Simulate() method calls simulations of macrocell and
PMT operations. PMT simulation itself only consists of adding pointers to an object of
PmtSignal to list associated with an object of class FrontEndChip. This class rep-
resents front end chip. Simulation continues with macrocell simulation described by
class MacroCell. Method Macrocell::Simulate() calculates the number of
GTUs for the simulated event, and for every associated front end chip, its signals are
saved as counts on channels in specific GTUs. Also background noise is simulated and
added to this data. These data are aggregated in objects of class MacroCellData which
are analysed for trigger response. Trigger simulation consists of processing the data
using the expected trigger response described by class TriggerEngine. Finally,
macrocell data are added to telemetry which is stored in the output file.

In whole described process, modules store also many of their intermediate data to
the simulation output files.

3.2 Reconstruction in ESAF

Shower reconstruction process is much more straightforward than the simulation. Its
main complexity lays in the reconstruction algorithms.

The process starts by reading input data. The data are usually expected to be in
simulation output file, but input module is described by interface of abstract class
InputModule which can be implemented to support different methods of input. For
example, we have implemented an input module which parses external UV background
simulation data. Processing of the event is done in modular sequence. An EAS event
processing module is described by the interface of the abstract class RecoModule.
Notable information about this abstract class is that is requires implementation of
RecoModule::Process(RecoEvent*) method which takes pointer to the
object of RecoEvent that contains all data of the processed event. Another interesting
method is RecoModule::SaveRootData(RecoRootEvent*) which takes
pointer to the object which is after processing written into an output file. Each module
can make its results accessible through an map-like data structure associated with an
processed event (global data). Also, the module interface itself provides similar
capability (local data).

366 M. Vrabel et al.

Fig. 3. Photons on the pupil production in ESAF

Feature Extraction Methods in JEM-EUSO Experiment 367

The first step of the shower processing is expected to be pattern recognition which
selects only pixel records that are most probably associated to shower’s photons. Pixel
record is represented by an object of class RecoPixelData containing information
such as pixel identifier, pixel counts, and GTU from the start of the EAS event. The
most widely used method is PWISE [7]. Currently, pattern recognition modules are
expected to store data in the global data structure of the processed event.

The task of the angular reconstruction is to determine the direction of the shower.
These angles are zenith angle Θ and azimuth angle Φ. A unit vecto X̂ðH;UÞ describes
shower direction. Its origin is at shower core (impact position on ground) pointing
along the shower axis into sky [10]. To evaluate the performance of the angular

Fig. 4. Atmosphere model in ESAF.

368 M. Vrabel et al.

reconstruction, the separation angle γ is defined, which is the angle between simulated
and reconstructed shower axis.

Currently used angular reconstruction module TrackDirecition2 starts with
the estimation of Track Detector Plane (TDP). This plane contains shower track and
detector itself. TDP is inferred from x-t and y-t fit of the signal track. For further
information about TDP mathematics reader is directed to [10]. Task of a track
reconstruction algorithm is to determine angle β between X̂ and Ŵ Vector Ŵ is the
perpendicular vector to a normal vector of TDP V̂. To reconstruct shower direction
there are multiple techniques available in ESAF - Analytical approximate algorithm
AA1 and AA2, and Numerical exact algorithm NE1 and NE2.

Final part of reconstruction is energy and shower maximum reconstruction. The
module responsible for this task is PmtToShowerReco developed by F. Fenu [9].
The first step is reconstruction of cout curve which means reconstructing the signal
intensity as a function of time. An important factor to be taken into account in this step
is the proximity of the pixel to the edge of the focal surface, where only a portion of the
signal is recorded. At the end the UV background counts are subtracted as an average
amount for each pixel record.

The second step is the identification of the maximum and of the cherenkov peak in
the reconstructed light curve. Both of the steps are not trivial due the nature of the
detected signals. After cleaning of the signal by removing fake peaks, the valid peaks
are retrieved and ranked. Such ranking is used for the analysis of the shower maximum
and for timing purposes.

In the next step, the photon curve at the entrance of the pupil is obtained by using
the detector’s parameterization and correction for the optics response. The optics
response map is calculated by simulating point like sources at predefined FOV angles
and wavelengths.

F. Fenu proposed two methods to determine the altitude of shower maximum. The
first uses the cherenkov reflection mark and the second assumes a parameterization for
the Xmax and relies on direction provided by the algorithms for direction
reconstruction.

Finally, after the determination of a tri-dimensional position of the maximum, the
shower position at each time can be calculated and the luminosity of the shower is
calculated. From position and age of the shower, energy distribution of secondary
electrons is used to estimate the fluorescence and cherenkov yields. This module uses
lowtran library to model atmospheric transmission.

4 Probability of False Shower Detection

The JEM-EUSO detector is expected to take 400 thousands frames (shots) in one
seond, i.e. 34 billions per day. Taking into account the energy spectrum of UHECR,
exposure of the detector, including the duty cycle [8], the rate at which an EAS with
energy above GZK limit will be observed, is roughly once every 1–2 days. This EAS
will appear in a few (mostly 1 or 2) PDMs for a few tenths of GTUs. Therefore, one
PDM will observe a real event approximately every 100 billions PDM shots.

Feature Extraction Methods in JEM-EUSO Experiment 369

Fig. 5. Detector simulation in ESAF.

370 M. Vrabel et al.

In other words, the order of magnitude of the ratio is approximately 1 to 1011
between a shot with real EAS and shots without EAS, which means only with UV
background noise. Analysis of fake patterns was done for one PDM. UV background
was simulated as Poissonian noise and then triggered by 1st and 2nd level of trigger
scheme [3]. Only frames which passed trigger were analyzed. Hough transform method
(simpler than one presented for pattern recognition) was used to find patterns and
length of patterns. The number of found patterns as a function of a pattern length is
presented in the Fig. 6 [6]. The Pattern length is in pixels. An example of the analysis
result for 109 GTUs run, equivalent to 2500 s measurements for one PDM of the
detector, is presented by the blue line with diamonds. The result from full analysis of
3.3 h measurements of all detector’s PDMs is presented by magenta line with triangles.
These results from simulation can be fitted by a statistically motivated function in Eq. 1
in [6]. If we scale the curve to consider one day measurement of all detector’s PDMs
(green line on Fig. 6.), we can find only a few patterns with length of 11 and maybe
one with length of 12 pixels. Further approximation scaling to the full planned 3 years
of JEMEUSO operation, gives one pattern with length equivalent to 15 pixels. This
lengths (approx. 15 pixels) are close to the length of the shortest real shower projec-
tions observed by JEMEUSO detector. Moreover, the number of fake patterns whose
length is comparable to real EAS will be reduced by analyzing the time evolution of
their signal. Usual fake pattern has noisy characteristics, while real showers have time
evolution described by a typical shower profile. The conclusion of this analysis is that
the probability to find a fake shower is very low, at the level lower than 0,1 percent,
when compared to the rate of real EASs. Thus only one among one thousand or more
detected showers could be created by noise. This result confirms the reliability of the
trigger processes and following patter recognition to select very rare signal in over-
whelmingly big data recorded by the detector. Results were published in the pro-
ceedings of ICRC 2013 conference [6]. Those results were confirmed by an alternative
pattern recognition methods based on modified clustering method.

5 Shower Pattern Recognition Methods

The standard method for pattern recognition/feature extraction is Peak Window
Searching technique (PWISE). Our proposed alternative method is based on Hough
transform.

5.1 PWISE Module

The PWISE module selection is based on the signal-to-noise ratio (SNR) calculation. In
the first step, PWISE selects pixels above peak threshold. Then, among such pixels, a
search is performed to select those with the highest SNR for a time window (range of
GTU). If SNR within this time window is higher than SNR threshold, pixel records
from this time window are selected. For more detailed description the reader is pointed
to the original paper [7].

Feature Extraction Methods in JEM-EUSO Experiment 371

5.2 Hough Transform

A high energy particle is moving in straight line which is the reason to expect the
highest intensity pixels of the shower projected on the detector’s focal surface to be
positioned in a straight line too. The Hough transform is a technique easily used for
detection of lines (and other shapes). The purpose of the transformation is to construct
accumulator matrix representing parameter space where a voting procedure is carried
out. Line represented by equation y = ax + b in image space can be in parameter space
represented by pair (a, b). However, this representation is unbounded and cannot
represent vertical lines. Normal parameterization describes lines by pair ð/; qÞ. / is an
angle of a line normal and q is an algebraic distance from the origin [1]. Using these
parameters line equation can be written as indicated by the following equation:

y ¼ � cos/
sin/

� �
xþ q

sin/
ð1Þ

From this equation q is expressed as such:

q ¼ x cos/þ y sin/ ð2Þ

Figure 7 illustrates parameters / and q.
Normal parameters for a straight line are unique in an interval 0; p½ �. A line in x–

y space (image space) corresponds to a point in /� q space (parameter or Hough
space). On the other hand, a point in the image space corresponds to a sinusoidal curve
in /� q parameter space. From these statements it can be deduced that points laying
on the same straight line in the image space correspond to curves through single point

Fig. 6. Probability of false shower detection [6]

372 M. Vrabel et al.

in the parameter space. Similarly, curve in the parameter space correspond to lines from
single point in picture space.

Our basic implementation of the feature extraction technique consists of two steps -
two separate loops. Input parameters are the size of the step between consecutive /
angles, optionally the range of the evaluated / angles, the step between consecutive
normal distances q, and optionally their range. By default the range of / is �p=2; p=2½ �
and the range of q is �qmax; qmax½ �, qmax is the hypotenuse of the right-angled triangle
which sides are absolute values of the greatest x and y pixel locations. These default
values are also shown in the presented Algorithm 1. These four parameters define size
of the parameter space (Hough space) which is represented by an accumulator matrix.
Additionally, there is precision adjustment parameter which determines range of q cells
incremented for calculated q value.

The first step is the construction of the accumulator matrix. Rows correspond to /
and columns to q, although this is just preference of the implementation. To fill the
matrix q is calculated for every pixel of the image space and every / of the parameter
space using Eq. 2. Then indexes of q� adjustment adjustment in the array of all q
values are calculated. This means that for single point and all / of parameter space
single sinusoidal curve is created. In calculated q indexes range, the accumulator
matrix field value is incremented with a weight given by the value of the pixel counts.
Using counts as an increment value adds weight to pixels with higher counts value
discriminating noise pixel records. The new field value is compared with maximum
value that has already been set. If it is greater, then a new maximum value is set and
size of the list of the maximum value positions is set to 0. This list is added records
whenever an incremented field value is equal or greater the maximum accumulator
matrix value. Storing these locations in the list removes need of later searching in the
whole parameter space.

The second step is the selection of pixels belonging to the field with the highest
value in the accumulator matrix. This field correspond to the most significant line.
Current implementation of the algorithm expects only one significant line - the EAS
detected on the analyzed area. Because the most significant pixels themselves are not
stored when testing for the maximum value, q calculation is repeated for every pixel
and / from the list of maximum value positions.

Fig. 7. Hough transform parameters

Feature Extraction Methods in JEM-EUSO Experiment 373

1. Three-dimensional Hough transform: Expecting a shower development to be
approximately constant speed, one of the pixel position dimensions and its time fit a
linear function. There were two alternatives of three-dimensional Hough transform
considered.
(a) Hough Plane 3D: The approach is similar to simple Hough transform, but

definition of the line is added additional dimension, resulting in Hough space
(parameter space) having three dimensions. This method is much more
memory space demanding because of the accumulator matrix size which is
numq � num/ � numh:numh is the size of the additional dimension - additional
angle defining line in three dimensions. In our implementations the manage-
ability of memory requirements is achieved by limiting ranges of parameters of
Hough space. The ranges are determined by using a simple Hough transform
in the way that maximum and minimum value of parameter comes from lines
with maximum accumulator field value.

(b) Hough Line 3D: The approach consists of two consequent calls of simple
Hough transform. In the first step, Hough transform is used to find a line in a
plane XT (T is the time dimension measured in GTU) and in the second step
Hough transform is used to find line in a plane YT using pixels selected in the
first, also range of normal distances of the second Hough space is determined
by range of the most significant lines from the first. Because the Hough Plane
3D algorithm didn’t show any significant improvements over this less memory
and processing demanding method, this is the method predominantly used in
shower reconstructions. Any future algorithm enhancements will most prob-
ably be based on this approach.

2. Hough 1: The first version of algorithm selects pixels in two phases. To use this
method efficiently, two thresholds are needed to be configured for analyzed UV
background. Hough transform method is implemented as described in the previous
section and it is used in summary three times to select a line of pixels. Main idea of
the algorithm is to select rough line from pixels with the highest counts, in the first
phase. And in the second, the described three-dimensional Hough transform is
applied to select a line form all pixels above threshold.

The input parameters of the algorithm:
Pattern threshold Only pixel records above this threshold will be considered for

se lection of unique pixels used in the first Hough transform.
Data Threshold A pixel record above this threshold will be added to pixel

records above Pattern threshold to be selected and some of
them eventually handled by Hough transform.

X,Y Adjustment Adjustment value used in the first phase’s Hough trans form.
X,Y,Gtu Adjustment Adjustment value used in the second phase’s Hough trans

forms.
qstep Step between consecutive normal distances from the origin in

Hough space.
/step Step between consecutive normal angles in Hough space.

374 M. Vrabel et al.

Feature Extraction Methods in JEM-EUSO Experiment 375

Phases of the algorithm:

(a) Phase 1. - Selection of a shower pattern: From all input pixel records for each
pixel ID, the pixel record with GTU with the highest number of counts is con-
sidered. The number of counts has to be above pre-defined threshold (Pattern
threshold). If it is not, no GTU record is selected for such a pixel ID. Hough
transform is applied on these pixel records on the plane XY (space defined by axes
x and y) of detector focal surface and is used to select pixels (with unique ID) on a
line with the highest sum of counts.

(b) Phase 2. - Selection of pixel records from all GTU: From all input pixel records
above threshold (Data threshold), only those are selected which ID is present in
pixel records selected in Phase 1. Hough transform is applied to select pixels on a
line with the highest sum of counts on the plane XT (defined by axes x and GTU).
Similarly, Hough transform on plane YT (defined by axes y and GTU) is applied
on the result of selection on the plane XT. Pixels on a line with the highest sum of
counts are selected as a result of this method.

3. Hough 2: This algorithm is less straightforward than the first one and it is still
under development. The main idea of the algorithm is principally similar to the
first one - selection of the shower’s pattern and then selection from all pixel
records. A difference is that the threshold for the pattern pixels is determined
dynamically depending on number of pixels with the highest counts. Also, those
pixels are conditioned to be in “close” proximity and there is a method of adding
weights to more probable pixels by multiplying their number of counts by con-
stant. This makes them more preffered in the selection from the Hough space. The
second phase is processing of all pixel records above threshold, but pixels are
grouped by counts. Additional phase is the filtering of selected pixels.

Input parameters of the algorithm include adjustments for Hough transforms,
percentage of all pixels to be selected out of pixels with the highest counts, counts
threshold for the second phase (threshold lower limit), maximum counts group size,
number of counts threshold groups, rectangle selection dimensions.

Following description is focused on the description of the basic algorithm and does
not include all implemented capabilities.

(a) Phase 1. - Selection of pixels belonging to shower maximum: From all input pixel
records for each pixel ID, a pixel record with GTU having the highest number of
counts is selected. Pixel records with counts above computed threshold are
selected. This threshold is connected to number of pixels needed for pattern
recognition. Neighbouring pixels in the plane XY with the highest sum of counts
from this set are added a weight to be preferred within this phase. Hough trans-
form in the plane XY is applied on these pixel records with counts above the
threshold to find a line with the highest sum of counts (including weights). Then
3D Hough transform in space XYT (similar to Phase 2 of method Hough 1) is
applied on pixel records in an area around the line (weights are not included).
Selected line of pixels is filtered to contain only neighbouring pixels that have
limited maximum relative distance. Rectangle around this set of pixels is selected
from all input pixel records.

376 M. Vrabel et al.

(b) Phase 2. - Selection of pixel records from all GTU: 3D Hough transforms in space
XYT are applied on pixel records around rectangle selection from the selection of
shower’s maximum. The transforms are applied separately for each count value
over a pre-defined threshold (threshold lower limit). The ranges of angles defining
Hough space are ranges of a line with the highest sum of counts selected by
Hough transform from previous iteration with higher counts. Starting range is
from Hough transform of shower maximum. Sets of pixel records selected by the
use of these transforms are joined to the final set.

(c) Phase 3. - Filtration: Additionally, the filtration rules based on shower charac-
teristics were defined to reduce the number of pixel records with redundant GTUs.
The rules are applied to each set of pixel records with the same ID. Pixel counts
must be increasing with increasing GTU up to the GTU with the highest counts
followed by a decreasing phase. GTU values of pixel records must be continuous.
Uninterrupted sequence containing pixel records with the highest counts and the
highest number of pixel records is selected.

5.3 EAS Angular Reconstruction Results

The shower reconstruction analysis was done by analysis of same set of simulated
events using different pattern recognition methods. For each selected incident zenith
angle Θtruth more than 2000 events were simulated. Energy of simulated primary
UHECR particle was set to 1020 eV for all simulated events. Positions of the showers
were generated uniformly in the detector field of view. Simulated incident zenith angles
Θtruth are in range from 30° to 75°. The step between angles is 5°.

To analyze quality of angular reconstruction for each simulated shower, the sep-
aration c angle is evaluated, which is defined as an angle difference between the
reconstructed shower axis (determined by Θreco and Φreco) and the injected shower axis
(determined by Θtruth and Φtruth of a primary particle). Sets of reconstructed showers
are compared by c68. This is the value by which the cumulative distribution of reaches
0,68. Parts of this analysis were also published in [11].

The Fig. 8 presents the comparison of c68 for PWISE and both described
Hough-based methods in case of nominal background. Reference PWISE results are
taken from [10] and green line labeled “PWISE” presents results achieved by recon-
structing the same set of events as Hough-based techniques. The PWISE configuration
in this study: absolute threshold = 9, second threshold = 1, minimum SNR = 5, min-
imum height of any pixel’s peak = 8, second iteration (PWISER) was not used.

Please notice that, for the purpose of this paper, the relative value comparisons are
more important than their absolute value. The reconstruction result depends on simu-
lation and reconstruction parameterization.

On the chart, the Hough 1 method is presented by the red line. Hough transform
adjustment value described in Sect. 5-B was set to 2 mm for the plane XY, and 4 for
the planes XT and YT. The minimal Hough space parameter values were both set to
0:1, but preliminary analyses show that these values can be increased and achieve
comparable results. Decrease of resolution of a Hough space decreases computation

Feature Extraction Methods in JEM-EUSO Experiment 377

and space resource demands. In case of nominal background, threshold parameters for
the method were set to 5 for pattern threshold and similarly 5 for data threshold. These
two thresholds were adjusted for an analysed UV background level.

The Hough 2 method is on the chart presented by the black line. The lower
threshold limit parameter was set to 5. Value of this parameter was adjusted to fit
analyzed background intensity. Values of parameters which are adjusting resolution of
the Hough space were same as they were in analysis of Hough 1 method. Both filters
were always applied. In almost all cases, adjustment size of Hough transform in phase
2. was determined from analyzed data by the method. Distance limit, between two
pixels which are added weight, is 5 mm and distance limit between two pixels of
shower maximum is 12 mm.

Fig. 8. Separation angle γ68 for the energy 1020 eV

Fig. 9. Fraction of reconstructed events of energy 1020 eV.

378 M. Vrabel et al.

The analysis of the dataset shows that the angular reconstruction, with data from the
proposed Hough transform-based methods, has more precise estimation of particle
incident Θ angle than PWISE method. In comparison to the reference PWISE, the
Hough 1 method provides more precise estimation for angles under 65°. The Hough 2
method results are comparable with the Hough 1, but for higher incident zenith angles
angular reconstruction is more precise with data from the second method.

Not all simulated events captured by the detector’s front end electronics were
reconstructed - accepted by angular reconstruction module. In this analysis, this module
accepted only pattern recognition results with at least 10 pixel records. The fraction of
reconstructed events is presented in Fig. 9. The proposed Hough-based pattern
recognition methods tends to reconstruct more events in comparison to PWISE because
the Hough-based methods usually select more pixel records than PWISE in analyzed
configuration.

Results of angular reconstruction of data from Hough transform-based pattern
recognition module were also analyzed for different background levels. The evaluation
was made for primary particle zenith angles 30°, 45°, 60°, 75°. Background levels
started at the nominal background 500ph/(m2.ns.sr) and increased up to 5000 ph/(m2.ns.
sr) with steps of 500ph/(m2.ns.sr). Analyzed datasets for angle 30° contain more than
2800 events, for higher angles they contain at least 500 events. Because with higher
background noise level the detection gets more difficult, less events are reconstructed
and c68 estimation gets less precise. In our analysis, we have reconstructed same set of
simulated events multiple times. Each time the threshold configuration of the Hough
method was different. Following figures present the threshold combinations where c68
value was the lowest for particular background level and simulated zenith angle
Θtruth = 30°. Table 1 present’s threshold configuration for the Hough 1 method1 and
Table 2 presents threshold lower limit parameter for the Hough 2 method. Let us
remind again that angular reconstruction results depend on parameterization of simu-
lation and reconstruction and for purpose of this paper their relative comparison is more
important. For every figure presenting c68, the fraction of reconstructed events is
associated. Lowering the quality of arrival direction determination would allow to
reconstruct a higher fraction of events.

The Fig. 10 presents c68 for simulated Θtruth = 30°. The methods deliver similar c68
values except the sharp upward spike at the highest analyzed background level of the
Hough 1. The spike might be caused by low efficiency (small number of reconstructed
events) of this method in case of higher backgrounds as presented in Fig. 11. The
Hough 2 provides comparable c68 but higher fraction of reconstructed events.

The Figs. 12, 13, 14, 15, 16 and 17 show results for simulated incident zenith
angles 45°, 60°, 75°. In the figures for Θtruth = 45° c68 is similar, but the Hough 2
produces higher fraction of reconstructed events. The figures for Θtruth = 60° show the
Hough 2 having better angular estimation and sightly higher fraction of events. In the
end, results for Θtruth = 75° show that if reconstructed fraction of events is almost
similar, the Hough 2 provides more precise angular reconstruction.

1 A slash between numbers in Table 1 separates numbers after and before additional analysis. Higher
background analysis for htruth ¼ 30� uses the first numbers. Other angles use second numbers.

Feature Extraction Methods in JEM-EUSO Experiment 379

Table 1. Thresholds for Hough 1 method

Background Pattern threshold Data threshold

500 5 5
1000 8 8
1500 10 10
2000 12 12/11
2500 14 14
3000 16 16
3500 18 18
4000 20/21 20/19
4500 21 20
5000 23 22

Table 2. Threshold lower limit for Hough 2 method

Background Threshold lower limit

500 5
1000 7
1500 8
2000 10
2500 13
3000 16
3500 16
4000 18
4500 20
5000 20

Fig. 10. Separation angle c68 for Θtruth = 30°

380 M. Vrabel et al.

Fig. 11. Fraction of reconstructed events for Θtruth = 30°

Fig. 12. Separation angle c68 for Θtruth = 45°

Fig. 13. Fraction of reconstructed events for Θtruth = 45°

Feature Extraction Methods in JEM-EUSO Experiment 381

Fig. 14. Separation angle c68 for Θtruth = 60°

Fig. 15. Fraction of reconstructed events for Θtruth = 60°

Fig. 16. Separation angle c68 for Θtruth = 75°

382 M. Vrabel et al.

6 Conclusion

This paper attempted to describe the control and data flow of The Euso Simualtion and
Analysis Framework in a form that would not require deep understanding of physics
behind simulations. The purpose of the description is to help the reader identify part of
application where his module or extension should be implemented. Our interest was
pattern recognition reconstruction module.

Presented pattern recognition methods satisfy mission requirements [4] for angular
reconstruction which requires c68 to be under 2,5° for primary particle at incident zenith
angle 60° with energy 1020 eV. Although the Hough 1 method is simple, it provides
satisfactory results either for nominal or higher background. This is thanks to the fact
that combination of thresholds can be “tuned” to for particular background level. The
Hough 2 method is mainly better from the view of reconstructed events fraction. The
main advantage of the second method is better initial shower detection but there are still
enhancements to be made.

The lessons learned from these two methods will be applied in implementation of
the third method. New version will try to incorporate expected “triangular” shape of a
shower, introduce new thresholds to allow better control over excluded pixel records,
and there will be added enhanced proximity dependent selection of pixels by incor-
porating more information about focal surface geometry.

Acknowledgment. The paper was supported by KEGA grant 062TUKE 4/2013, granted by the
Cultural and Education Grant Agency of the Slovak Ministry of Education.

This work was partially supported by Basic Science Interdisciplinary Research Projects of
RIKEN and JSPS KAKENHI Grant (22340063, 23340081, and 24244042), by the Italian
Ministry of Foreign Affairs and International Cooperation, by the ‘Helmholtz Alliance for
Astroparticle Physics HAP’ funded by the Initiative and Networking Fund of the Helmholtz
Association, Germany, and by Slovak Academy of Sciences MVTS JEM-EUSO as well as
VEGA grant agency project 2/0076/13. Russia is supported by the Russian Foundation for Basic
Research Grant No 13-02-12175-ofi-m. The Spanish Consortium involved in the JEM-EUSO
Space Mission is funded by MICINN & MINECO under the Space Program projects:

Fig. 17. Fraction of reconstructed events for Θtruth = 75°

Feature Extraction Methods in JEM-EUSO Experiment 383

AYA2009-06037-E/AYA, AYA-ESP2010-19082, AYA-ESP2011-29489-C03, AYA-ESP2012-
39115-C03, AYA-ESP2013-47816-C4, MINECO/FEDER-UNAH13-4E-2741, CSD2009-00064
(Consolider MULTIDARK) and by Comunidad de Madrid (CAM) under projects S2009/
ESP-1496 & S2013/ICE-2822.

References

1. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in
pictures. Commun. ACM 15(1), 11–15 (1972). http://doi.acm.org/10.1145/361237.361242

2. Berat, C., et al.: Full simulation of space-based extensive air showers detectors with ESAF.
Astropart. Phys. 33(4), 221–247 (2010). http://arxiv.org/abs/0907.5275

3. The JEM-EUSO collaboration. Report on the phase A study 2010, Collaboration Mission
Report, December 2010

4. Bertaina, M., et al.: Requirements and expected performances of the JEM-EUSO mission. In:
Proceedings of 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil (2013).
http://dx.doi.org/10.7529/ICRC2011/V03/0991

5. Bayer, J., et al.: Second level trigger and Cluster Control Board for the JEM-EUSO mission.
In: Proceedings of 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil,
pp. 99–102 (2013). http://arxiv.org/abs/1307.7071

6. Biktemerova, S., Pastirčák, B., Bertania, M., et al.: Simulations and the analysis of fake
trigger events background in JEM-EUSO experiment. In: Proceedings of 33rd International
Cosmic Ray Conference, Rio de Janeiro, Brazil, pp. 59–62 (2013). http://arxiv.org/abs/1307.
7071

7. Guzman, A., et al.: The peak and window searching technique for the EUSO simulation and
analysis framework: impact on the angular reconstruction of EAS. J. Phy. Conf. Ser. 409
(2013). http://dx.doi.org/10.1088/1742-6596/409/1/012104

8. Adams, J.H., et al.: An evaluation of the exposure in nadir observation of the JEM-EUSO
mission. Astropar. Phys. 44, 76–90 (2013). http://arxiv.org/abs/1305.2478

9. Fenu, F.: A simulation study of the JEM-EUSO mission for the detection of ultrahigh energy
Cosmic Rays. Ph.D. dissertation, Faculty of Mathematics and Natural Sciences, The
Eberhard Karls Universität Tübingen (2013). http://hdl.handle.net/10900/49955

10. Biktemerova, S., Guzman, A., Mernik, T.: Performances of JEM-EUSO: angular
reconstruction. Exp. Astron. 40(1), 1–25 (2014). http://dx.doi.org/10.1007/s10686-013-
9371-0

11. Vasilko, J., Vrabel, M., Bobik, P., et al.: Pattern recognition study for different levels of UV
background in JEM-EUSO experiment. Presented at 34th International Cosmic Ray
Conference, The Hague, The Netherlands, 30 July–6 August 2015. http://pos.sissa.it/archive/
conferences/236/661/ICRC2015_661.pdf

384 M. Vrabel et al.

http://doi.acm.org/10.1145/361237.361242
http://arxiv.org/abs/0907.5275
http://dx.doi.org/10.7529/ICRC2011/V03/0991
http://arxiv.org/abs/1307.7071
http://arxiv.org/abs/1307.7071
http://arxiv.org/abs/1307.7071
http://dx.doi.org/10.1088/1742-6596/409/1/012104
http://arxiv.org/abs/1305.2478
http://hdl.handle.net/10900/49955
http://dx.doi.org/10.1007/s10686-013-9371-0
http://dx.doi.org/10.1007/s10686-013-9371-0
http://pos.sissa.it/archive/conferences/236/661/ICRC2015_661.pdf
http://pos.sissa.it/archive/conferences/236/661/ICRC2015_661.pdf

Author Index

A
Aizinger, Vadym, 19

B
Barbierik, Kamil, 122
Bobık, Pavol, 362
Bodlák, Martin, 122
Božek, Pavol, 271
Braeuer, Johannes, 283
Brugger, Gerhard, 65

C
Chadim, Marek, 102
Chlumecky, Martin, 110
Chrobot, Arkadiusz, 150, 193
Cibira, Gabriel, 54
Ciopinski, Leszek, 241

D
Děngeová, Zuzana, 122
Deniziak, Stanisław, 1, 150, 193, 241
Ditter, Alexander, 19
Doligalski, Michał, 35, 133
Dulik, Miroslav, 54

F
Fey, Dietmar, 19

G
Genci, Jan, 362
Gratkowski, Tomasz, 35

H
Hable, Richard, 65
Hrebik, Radek, 91
Hrkut, Patrik, 80
Hruboš, Marián, 271

J
Janech, Ján, 80
Jarý, Vladimír, 122

K
Kielec, Roman, 133
Kocman, Radim, 142
Krechowicz, Adam, 150
Kršák, Emil, 80
Kukal, Jaromir, 91
Kuzmin, Anton, 19
Kvet, Michal, 169

L
Lasota, Maciej, 193
Liška, Tomáš, 122
Lišková, Michaela, 122
Łukawski, Grzegorz, 150

M
Matiaško, Karol, 169
Meduna, Alexander, 142
Meško, Matej, 80
Michno, Tomasz, 1
Mikuš, Ľudovít, 229
Mojzes, Matej, 208
Moravčík, Marek, 229
Mravec, Tomáš, 271
Musil, Marek, 219

N
Nemec, Dušan, 271
Nový, Josef, 122

© Springer International Publishing AG 2017
J. Janech et al. (eds.), Proceedings of the 2015 Federated Conference on Software Development
and Object Technologies, Advances in Intelligent Systems and Computing 511,
DOI 10.1007/978-3-319-46535-7

385

P
Palúch, Peter, 229
Papán, Jozef, 229
Pastircak, Blahoslav, 362
Pawinski, Grzegorz, 241
Pecinovský, Rudolf, 102, 264, 302
Pieta, Paweł, 1
Pirník, Rastislav, 271
Ploesch, Reinhold, 283
Polášek, Ivan, 348
Putis, Marian, 362

R
Rais, Aziz Ahmad, 302
Richta, Karel, 219
Rost, Michal, 208

S
Saft, Matthias, 283
Schoenwetter, Dominik, 19
Segeč, Pavel, 229
Šlajchrt, Zbyněk, 311
Smolka, Josef, 208

T
Takáč, Ondrej, 336
Tkacz, Jacek, 35

V
Vasilko, Jozef, 362
Végh, Ladislav, 336
Vincúr, Juraj, 348
Virius, Miroslav, 122, 208
Vrabel, Michal, 362

386 Author Index

	Preface
	Organization
	Contents
	IoT-Based Smart Monitoring System Using Automatic Shape Identification
	Abstract
	1 Introduction
	2 Related Works
	3 Motivation
	4 Monitoring System Overview
	5 Object Recognition Algorithm
	6 Experimental Results
	7 Conclusions
	References

	Memory Analysis and Performance Modeling for HPC Applications on Embedded Hardware via Instruction Accurate Simulation
	Abstract
	1 Introduction
	2 Related Work
	3 Environment
	3.1 Simulation Environment
	3.2 Reference Hardware
	3.3 Virtual Hardware

	4 OVP Instrumentation and Modeling
	5 Benchmarks and Applications
	5.1 UTBEST3D – U3D
	5.2 Mandelbrot Set – MB
	5.3 NAS Parallel Benchmarks

	6 Results
	7 Conclusions and Future Work
	7.1 Conclusion
	7.2 Future Work

	References

	Model Checking in Parallel Logic Controllers Design and Verification
	Abstract
	1 Introduction
	2 Theoretical Introduction
	2.1 Petri Nets
	2.2 iCPN System
	2.3 Rule-Based Specification
	2.4 Gentzen System
	2.5 NuSMV System

	3 Formal Approach to PLC Design
	3.1 Control System
	3.2 Formal Verification
	3.3 Synthesis to HDL

	4 Conclusion
	References

	Fuzzy Logic for Optimized Path Establishment in Optical Networks
	Abstract
	1 Introduction
	2 Model of Real Network
	3 Optical Network Parameters
	3.1 Bit Error Rate, BER
	3.2 Optical Signal – to – Noise Ratio, OSNR
	3.3 Link Power, Power

	4 Control System for Path Evaluation
	5 Fuzzy Logic
	6 Paths Evaluation and Route Ordering
	7 Discussion
	8 Conclusion
	Acknowledgment
	References

	Providing Extensible Mobile Services to Car Owners Based on On-Board-Diagnostics
	Abstract
	1 Introduction
	2 Requirements and Challenges
	2.1 Availability and Distribution
	2.2 Privacy and Security
	2.3 Economic Restrictions

	3 Available Technology and Solutions
	3.1 Hardware
	3.2 Server and Network Software
	3.3 Mobile Phone Software

	4 Architecture and Implementation
	4.1 Client/Server Architecture
	4.2 Authentication and Authorization
	4.3 Server Software
	4.4 Mobile Application

	5 Conclusion
	References

	A New Architectural Design Pattern of Distributed Information Systems with Asynchronous Data Actualization
	Abstract
	1 Introduction
	2 Current State
	3 A New Design Pattern Proposal
	3.1 Basic Principles
	3.2 Pattern Structure
	3.3 Data Update Process

	4 Server-Side Services
	5 Conclusion
	5.1 Object Granularity Level
	5.2 Conflict Solving

	Acknowledgement
	References

	The Economics and Data Whitening: Data Visualisation
	Abstract
	1 Introduction
	2 Methodology
	3 Data Pre-processing, Whitening
	3.1 Principal Component Analysis
	3.2 Whitening

	4 Explanatory Variables
	5 Data Analysis in Period 1993–2014
	5.1 Years as Objects – Role of Preprocessing
	5.2 Years as Objects
	5.3 States as Objects
	5.4 States in Years as Objects

	6 Conclusion
	Acknowledgment
	References

	Kopenograms and Their Implementation in BlueJ
	Abstract
	1 Introduction
	2 Kopengrams
	2.1 History of Kopenograms
	2.2 Syntax of Kopenograms
	2.3 Basic Blocks
	2.4 Other Blocks
	2.5 Exception Handling

	3 Implementation in BlueJ
	4 Future Plans
	5 Conclusion
	References

	Simulation of Hydrological Processes by Optimization Algorithm Using Continuous Function
	Abstract
	1 Introduction
	2 Problem Statement of the Model Calibration
	2.1 Optimization Problems
	2.2 Optimization of Evapotranspiration

	3 Related Works
	4 Approach
	4.1 Optimized Parameters
	4.2 Quality of Optimization
	4.3 Optimization

	5 Results
	5.1 Statistical Results of SAC-SMA Model
	5.2 Optimization Algorithm

	6 Discussion
	6.1 Comparison of Evapotranspiration Definitions
	6.2 Quality and Speed of Optimization

	7 Conclusion
	7.1 Future Work

	References

	Cache Module for the Dictionary Writing System
	Abstract
	1 Introduction
	2 Motivation
	3 Overview of the DWS Alexis
	3.1 Used Technologies
	3.2 Main Modules of the System
	3.3 List of Entries
	3.4 Editing Module

	4 Output and Editorial Modules
	5 Cache Module
	5.1 Design and Implementation
	5.2 Benefits of the Cache Module
	5.3 Other Use Cases for the Cache

	6 Conclusion and Outlook
	Acknowledgment
	References

	Control Process Management by Means of Evolutionary Algorithm
	Abstract
	1 Introduction
	2 Behavioral Specification
	3 Activity Diagrams
	4 State Machine
	5 Two Level Specification
	6 Activity Diagrams Conversion
	7 Evolutionary Algorithm for the Dependency Matrix Optimisation
	8 The Optimisation Example
	9 Conclusion
	References

	On Parallel Versions of Jumping Finite Automata
	Abstract
	1 Introduction
	2 Preliminaries
	3 Definitions and Examples
	4 Conversions
	5 Characterization
	6 Remarks and Conclusion
	Acknowledgment
	References

	SD2DS-Based Datastore for Large Files
	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 The SD2DD Data Store
	4.1 Basic SD2DS Architecture
	4.2 Management of the First Layer
	4.3 Scalability of the SD2DS
	4.4 Implementation

	5 Experimental Results
	6 Conclusions
	References

	Temporal Context Manager
	Abstract
	1 Introduction
	2 Conventional Approach
	3 Object Level Architecture
	4 Temporal Definition Aspects
	5 Attribute Oriented Granularity
	6 Data Selecting
	7 Performance Evaluation
	8 B-Trees, B+trees
	9 Security and Access Layer
	10 Context Definition
	11 Hybrid Context Trees
	12 Conditional Select Statements
	13 Experiments
	14 Conclusions
	Acknowledgment
	References

	Scalable Distributed Datastore for Real-Time Cloud Computing
	Abstract
	1 Introduction
	2 Related Work
	3 Scalable Distributed Data Structures (SDDSs)
	4 Motivation
	5 Implementation of Real-Time Policy in SDDS LH*
	6 Experimental Results
	7 Conclusions
	References

	Application of Statistical Classifiers on Java Source Code
	Abstract
	1 Introduction
	1.1 Previous Research
	1.2 Basis of the Paper

	2 Methods of Classification
	2.1 Detected Structures
	2.2 Feature Space
	2.3 Feature Space Optimization
	2.4 Method of Features Extraction
	2.5 Used Classifiers

	3 Results
	4 Discussion
	5 Conclusion
	Acknowledgment
	References

	Contribution to Teaching Programming Based on “Object-First” Style at College of Polytechnics Jihlava
	Abstract
	1 Introduction
	2 Related Works
	3 Materials and Methods
	4 Results and Discussion
	4.1 Self-evaluation of Programming Skills at the Beginning of Study at COPJ
	4.2 The Opinion on “Object-First”
	4.3 Ability and Skills of Object-Oriented Programming or Structural Programming

	5 Conclusion
	Acknowledgment
	References

	The Survey of Current IPFRR Mechanisms
	Abstract
	1 Introduction
	1.1 Types of Existing IPFRR Mechanisms
	1.2 The Bidirectional Forwarding Detection
	1.3 The Repair Coverage

	2 Existing IPFRR Mechanisms
	2.1 Remote LFA
	2.2 Multiple Routing Configurations (MRC)
	2.3 Not-via Addresses

	3 Analysis of Existing IPFRR Mechanisms
	3.1 The Dependence on the Routing Protocols
	3.2 The Calculation of the Alternative Path
	3.3 Modification of Traffic
	3.4 Efficiency of IPFRR Mechanisms

	4 Conclusion and Future Work
	Acknowledgments
	References

	Synthesis of Low-Power Embedded Software Using Developmental Genetic Programming
	Abstract
	1 Introduction
	2 Previous Works
	3 Developmental Genetic Programming
	4 DGP-Based Scheduling for Low-Power Systems
	4.1 System Specification
	4.2 Database of Resources
	4.3 Scheduling Options
	4.4 Genotype and the Evolution
	4.5 Genotype to Phenotype Mapping
	4.6 Controlling the Evolution
	4.7 Fitness

	5 Example and Experimental Results
	5.1 Algorithm Tuning
	5.2 Sample System
	5.3 Genetic Optimization
	5.4 Least-Laxity-First Algorithm
	5.5 Results of Power-Aware Scheduling
	5.6 Results of e3s Benchmark

	6 Conclusions
	References

	BlueJ as the NetBeans Plugin
	Abstract
	1 Introduction
	1.1 BlueJ Integrated Development Environment
	1.2 Architecture First Methodology

	2 Where Are the Problems
	2.1 Small Capability of the Code Generator
	2.2 No Graphical View of the Code
	2.3 Bad Cooperation with Professional IDEs

	3 Requirements and Their Solution
	3.1 Easy Installation
	3.2 Simple Creation of New Project
	3.3 Simple Activation of BlueJ Window
	3.4 Window Layout
	3.5 Functionality
	3.6 Editor

	4 Summary
	Acknowledgment
	References

	Integration of Inertial Sensor Data into Control of the Mobile Platform
	Abstract
	1 Inertial Navigation Principle
	2 Attitude Estimation
	3 Influence of the Earth’s Rotation
	4 Position Estimation
	5 Position Estimation by Odometer
	6 Collision Detection
	7 Control of the Mobile Platform
	8 Experimental Results
	9 Conclusion
	Acknowledgment
	References

	Measuring Maintainability of OO-Software - Validating the IT-CISQ Quality Model
	Abstract
	1 Introduction
	2 The IT-CISQ Quality Model
	3 Measuring Maintainability
	3.1 Assumptions for Maintainability Measures
	3.2 Implementation of the Measurement Tool

	4 Assessment Method for Maintainability
	5 Reference Study
	6 Execution and Validation
	6.1 Experiment 1 – Validation Applying IT-CISQ Standard
	6.2 Experiment 2 – Validation Using Normalization of Measures with LLOC
	6.3 Experiment 3 – Validation Using Benchmarking Approach

	7 Conclusion and Future Work
	References

	Interface-Based Software Requirements Analysis
	Abstract
	1 Introduction
	2 Interface-Based Software Requirements Analyses
	3 Example
	3.1 Use Case Way
	3.2 Interface-Based Way

	4 Conclusion
	Acknowledgment
	References

	Object Metamorphism
	Abstract
	1 Introduction
	2 Example
	2.1 Composition in Java
	2.2 Static Traits in Scala
	2.3 Dynamic Traits in Groovy
	2.4 Summary

	3 Object Metamorphism
	3.1 Introduction
	3.2 Using OM
	3.3 Morph Model Reification
	3.4 Morhing Strategies
	3.5 Determining Morph Type
	3.6 Wrappers
	3.7 Fragment Factories
	3.8 Putting the Pieces Together

	4 Other OM Features
	4.1 Extending Morph Models

	5 Conclusion
	References

	Using Interactive Card Animations for Understanding of the Essential Aspects of Non-recursive Sorting Algorithms
	Abstract
	1 Introduction
	1.1 Animations with Conceptual View
	1.2 Animations with Detailed View (Micro-Level)
	1.3 Animations with Populated View (Macro-Level)

	2 Materials and Methods
	3 Results and Discussion
	4 Conclusion and Future Plans
	Acknowledgment
	References

	An Incremental Approach to Semantic Clustering Designed for Software Visualization
	Abstract
	1 Introduction and Related Work
	2 The Fire Ant Approach to Clustering
	2.1 Domain Observations
	2.2 Corpus Representation
	2.3 Spanning Tree Construction
	2.4 Cluster-Points
	2.5 Forming Clusters
	2.6 Updating Structure

	3 Data Visualization
	4 Results and Evaluation
	5 Conclusion and Future Work
	Acknowledgments
	References

	Feature Extraction Methods in JEM-EUSO Experiment
	Abstract
	1 Introduction
	2 JEM-EUSO Detector
	3 Overview of ESAF Framework
	3.1 Simulation in ESAF
	3.2 Reconstruction in ESAF

	4 Probability of False Shower Detection
	5 Shower Pattern Recognition Methods
	5.1 PWISE Module
	5.2 Hough Transform
	5.3 EAS Angular Reconstruction Results

	6 Conclusion
	Acknowledgment
	References

	Author Index

