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Abbreviations

a-SMA Alpha smooth muscle actin
ALI Acute lung injury
ABCA3 ATP-binding cassette sub-family A member 3
AQP5 Aquaporin 5
ATI Alveolar epithelial type I cell
ATII Alveolar epithelial type II cell
BMP Bone morphogenetic protein
BrdU Bromodeoxyuridine
COPD Chronic obstructive pulmonary disease
ECAD E-cadherin, epithelial cadherin
ECM Extracellular matrix
EGFP Enhanced green fluorescent protein
EMT Epithelial-to-mesenchymal transition
EpCAM Epithelial cell adhesion molecule
GFP Green fluorescent protein
FACS Fluorescence Activated Cell Sorting
IPF Idiopathic pulmonary fibrosis
KGF Keratinocyte growth factor
LAMP3 Lysosome-associated membrane glycoprotein 3
PARP Poly (ADP-ribose) polymerase
RAGE Receptor for advanced glycosylation end products
SPA Surfactant protein A
SPB Surfactant protein B
SPC Surfactant protein C
SPD Surfactant protein D
TGF-b Transforming growth factor beta
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T1a Podoplanin
TJ Tight junctions
TJP1 Tight junction protein 1
TUNEL TdT-mediated dUTP-biotin nick end labeling
WNT Wingless-type MMTV integration site family member

Introduction

Acute and chronic lung diseases constitute a significant health burden worldwide
and a better and deeper understanding of the mechanisms that initiate and drive
disease progression [1–3]. Alveolar epithelial injury represents a hallmark of acute
lung injury (ALI) as well as chronic lung diseases such as idiopathic pulmonary
fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) [1, 4, 5]. In the
healthy adult lung, alveolar epithelial type I (ATI) and alveolar epithelial type II
(ATII) cells are the main cell types that form the alveolar epithelium and establish
the alveolar epithelial barrier [6]. ATI cells represent large, thin squamous epithelial
cells that cover an enormous surface area (95 % of the alveolus) and are in close
vicinity to the underlying capillary endothelium to facilitate gas exchange [7–9].
ATII cells, however, display a cuboidal shape and one of their main functions is the
production, storage and release of surfactant. Surfactant consists of an intricate
combination of proteins and lipids which lines the alveolar epithelium, lowers the
surface tension in the lung and plays an important role in host defense mechanisms
[10, 11]. Both ATI and ATII cells participate in ion transport in the lung and
contribute to the fluid balance within the alveolus [7, 12, 13]. In ALI, the alveolar
epithelial barrier, formed by ATI and ATII cells as well as endothelial cells of the
alveolar capillary, represents the first point of injury. Disruption of the barrier
structure with subsequent accumulation of protein-rich edema fluid in the alveolar
air spaces is a main feature of ALI [14–16]. Tight junctions (TJ) localizing to the
cell–cell junctions connecting alveolar epithelial cells are essential for normal
epithelial barrier function [17]. ATII cells are a critical cell population driving repair
in the alveolar epithelium [18]. ATII cells are able to proliferate, self-renew and
serve as a progenitor cell population for ATI cells in injury and repair processes
induced by a variety of different triggers. Thus, ATII cells are considered one of the
important epithelial stem cell populations in the adult distal lung [19–22].
Restoration of the normal epithelial barrier requires the spreading and migration of
cells in close proximity to the injury to cover the denuded basement membrane.
This is followed by migration and proliferation of progenitor cells to compensate
for the cellular loss. Finally differentiation processes have to be initiated to restore a
functional epithelium [14, 23, 24]. However, the loss of reparative function of ATII
cells and a shift towards pro-fibrotic functions has been described for ALI as well as
for IPF [25–29]. The elucidation of mechanisms driving alveolar epithelial cell
responses in a beneficial versus a potentially detrimental direction during lung
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injury and repair is therefore of prime interest and the development of novel models
and methods to study those mechanisms is of utmost importance.

Methods of Alveolar Epithelial Type II Cell Isolation

A prerequisite for analyzing alveolar epithelial type II cell characteristics and
functional properties in vitro is the isolation of a pure population of the respective
primary cell type. This requires the identification of specific ATII cell markers
within the tissue together with morphology and localization. Several markers
expressed in adult ATII cells have been described over the past decades. These
include the surfactant proteins A, B, C, and D (SPA, SPB, SPC, and SPD), of which
SPC has been reported to be specific for ATII cells [30]. ATII specific expression of
ATP-binding cassette sub-family A member 3 (ABCA3), a membrane component
of lamellar bodies [31], in which surfactant proteins are stored [32], has been
reported. In addition, lysosome-associated membrane glycoprotein 3 (LAMP3) [33]
and pepsinogen C [34] have been proposed as ATII markers. Immunization
strategies by Boylan [35] and Gonzalez [36] used ATII cells as immunogens to
generate monoclonal antibodies for ATII cell surface proteins for rat and human.
The monoclonal antibody MMC4 recognized a novel antigen on the apical surface
of rat ATII cells, but also bound to rat club cells [35]. An antibody generated
against human ATII cells recognized a protein of 280- to 300-kDa on the apical
plasma membrane, which was termed HTII-280 and, by analysis of its biochemical
characteristics, represents an integral membrane protein [36].

Two main isolation strategies have been widely used to isolate ATII cells from
rodent and human tissue. Both strategies share a common procedure of enzymatic
dissociation of lung tissue to obtain a single cell suspension of the lung. Enzymes
most frequently used include porcine elastase, dispase, or collagenase as well as
different combinations thereof [37–40]. In case of the murine lung, enzymes are
directly instilled into the parenchyma via the cannulated trachea [38]. In case of
human tissue, direct instillation into the alveolar region via a bronchus can only be
applied for closed lung segments [28, 39]. Alternatively, minced human distal lung
tissue can be subjected to enzymatic digestion [40]. Following digestion, alveolar
tissue is dissected from the lager airways and minced mechanically. After sequential
filtration of cells through nylon meshes of different pore sizes ranging from 100 to
10 µm to obtain a single cell suspension [38, 39], ATII cells can be isolated via
positive or negative selection or a combinatorial approach making use of positive as
well as negative selection markers.

Several different separation methods can be applied subsequently using different
marker combinations. The most commonly used methods for depletion of specific
subset of cells include the use of antibody coated cell culture plates, where cells
expressing the respective markers adhere to the plate and non-adherent cells are
collected [41–43], or using antibodies coupled to magnetic beads [38, 44, 45], and
similarly the non-bound cells are collected.
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Antibodies directed against CD45, CD14, and CD16/32 for hematopoietic lin-
eages such macrophages, neutrophils and lymphocytes are commonly used [21, 27,
38, 43, 45–47] for negative selection. Species-specific IgG antibodies binding with
their Fc domain to the Fcc-receptors on the cell surface of phagocytes,
B-lymphocytes, natural killer cells and dendritic cells are also widely used to
eliminate these cell populations from the preparation [41–43, 45, 48–50]. Depletion
of CD31 positive endothelial cells is often included in different protocols [44].
Furthermore, a fluorescence activated cell sorting (FACS) based approach can be
utilized by using fluorescently labeled antibodies and subsequent sorting of cells,
displaying no positive signal for any of the utilized markers [51]. Isolation protocols
applied for human ATII cells frequently contain previous enrichment of ATII cells
for the downstream depletion strategy by subjecting the crude singe cell suspension
after enzymatic digestion to a discontinuous Percoll density gradient (1.04–
1.09 g/ml). After centrifugation ATII cells and macrophages will be found in the
same layer of the Percoll gradient. The cells in this layer can be isolated and
subsequently a depletion of alveolar macrophages can be performed [41, 42, 45].

Positive selection strategies are mainly applied for the isolation of lineage
labeled ATII cells in murine mouse models by FACS. For this strategy SPC-driver
lines are used, which express GFP or EGFP under the control of the SPC promoter
[7, 52–54]. In this context, it has been shown that transgenic mice exhibiting GFP
expression under the control of the human SPC promoter in the murine system
display GFP expression in only a subset of ATII cells or additionally in bronchiolar
epithelial cells [55, 56]. However, the use of murine SPC promoters was reported to
generate a higher specificity of labeling ATII cells [52, 53] although the efficiency
of labeling was also described to be dependent on the age of mice [52] and isolated
ATII cell displayed some heterogeneity as cells with bronchiolar and alveolar
epithelial gene signatures were detected under three-dimensional culture conditions
[52]. The positive selection of human ATII cells by FACS using an antibody
against the previously described HTII-280 membrane protein has been initially
described by Gonzalez and colleagues [36].

Combined negative and positive selection strategies are applied using different
combinations of negative depletion for of a variety of cell types, and are listed in
Table 6.1. These markers include markers for cells from hematopoietic lineages
[22, 28, 40, 57–60], and ATI cells (T1a positive cells) [40] and a positive selection
for general epithelial markers such as EpCAM [22, 40, 57, 59–61] and E-cadherin
[28, 58] or a lysosomal marker such as the fluorescent dye LysoTracker [59],
labeling acidic organelles within live cells.

Overall, the different ATII cell isolation strategies result in some variability of cell
purity (between 80 and 99 %). The choice of the appropriate isolation method is
widely discussed in particular with respect to the utilization for the isolation of ATII
cells from different models of lung disease or the subsequent usage of cells for
different downstream applications (direct analysis versus culture for functional
assays). When choosing which methods to apply, several points need to be taken
under consideration. In general, the use of positive selection markers might result in
higher cell purity—and better characterized cell (sub)populations, however, changes
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in the expression pattern of single specific markers used for selection might be altered
in different disease models, which in turn changes the population analyzed.

Alveolar Epithelial Type II Cell Analysis

Obtaining insight into molecular mechanisms of alveolar epithelial injury and repair
is of prime interest to identified potential targets for therapeutic intervention needed
for the treatment of various lung diseases, including ARDS.

Alveolar Epithelial Type II Cell Culture

Analyzing freshly isolated ATII cells from rodent injury models or human diseased
tissue using microarray technology is a powerful tool to determine disease related
altered phenotypes in lung injury and repair [27, 40]. However, for functional
analysis, the culture of primary ATII cells is of utmost importance. Challenged by

Table 6.1 Markers for the depletion or enrichment of specific cell populations

Marker Targeted cell population Reference

Negative
selection
Depletion of
unwanted cell
populations

CD45 Differentiated hematopoietic cells, except
erythrocytes and platelets

[22, 27,
28, 38]

CD16/32 Macrophages, monocytes, B-cells, NK cells,
neutrophils, mast cells, dendritic cells

[38, 44,
46]

CD11c Macrophages, monocytes, NK cells, dendritic
cells, granulocytes, subsets of B- and T-cells

[51]

CD11b Macrophages, monocytes, NK cells, dendritic
cells, granulocytes, subsets of B- and T-cell

[51]

F4/80 Macrophages [51]

CD14 Macrophages, monocytes, dendritic cells,
granulocytes

[45, 60]

CD19 B-cells, follicular dendritic cells [51]

CD31 Endothelial cells [44]

T1a Alveolar epithelial type I cells [40]

Positive selection
Enrichment for
wanted cell
population

HTII-280 Alveolar epithelial type II cells [22, 36]

EpCAM Epithelial cells [22, 40,
59–61]

ECAD Epithelial cells [28]

SPC-GFP SPC expressing alveolar epithelial type II cells
and bronchiolar epithelial cells (lineage–
labeled)

[28, 52,
53, 56]

LysoTracker Lysosomal rich cells [59]
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the fact that ATII cells possess the intrinsic properties to differentiate into ATI cells
when placed into normal cell culture, a wide range of culture conditions and media
compositions for ATII cells are described. A careful selection of culture conditions
is crucial to obtain meaningful results. Depending on the applied assay, culture
vessels as well as the presence of specific media supplements might influence
experimental outcomes. Plating fresh ATII cells on plastic dishes induces the
gradual loss of ATII cell characteristic [62, 63]. Coating cell culture dishes with
extracellular matrix (ECM) components such as fibronectin, collagen or laminin or
a combination thereof, will lead to differences in the dynamics of
trans-differentiation processes. Additionally, culturing of ATII cells on trans-well
filter inserts has been described to result in stabilized monolayers of ATII cells and
allow cultures at the air liquid interphase [61]. Furthermore, the supplementation of
commonly used cell culture media (e.g., DMEM or DMEM/F12) with KGF [64–
67] and glucocorticoids in the combination with cAMP [68, 69] has been described
to promote ATII cell phenotype in culture.

Alveolar Epithelial Type II Cell Proliferation

Due to their role as progenitor cells, the proliferative capacity of ATII cells is a
critical feature in lung injury and repair processes within the lung. Thus, the
assessment of proliferative behavior of this cell population is one of the most
assessed cell characteristics. For the determination of in vitro proliferation capacity
several different methods can be applied. Determination of gene and protein
expression of genes related to cell cycle progression such as Ki67, Ccng1, and
Ccng2 [27], are widely used to compare proliferative capacities of injured versus
non-injured ATII cells and furthermore their response to different stimuli. The
analysis of protein expression of proliferation markers Ki67 [27, 70], PCNA [71,
72] and phosphorylated histone H3 [27, 73] in cells in vitro as well as in in vivo
models by immunofluorescence/immunohistochemistry represents a complemen-
tary approach. Direct functional assays for the detection of proliferating cells
include the use of metabolic activity assays such as the WST-1 assay [74, 75] where
a tetrazolium salt is converted in a colored formazan by endogenous dehydro-
genates displaying a proportional relationship to cell number. Furthermore, the
incorporation of bromodeoxyuridine (BrdU) [21] or [3H]thymidine [27] into the
DNA of proliferating cells represents the gold standard for determining prolifera-
tion. Usage of several of these techniques provided insight in the reprogrammed
phenotype and aberrant proliferative capacity of fibrotic ATII cells and the obser-
vation that targeting this phenotype attenuates pulmonary fibrosis in different
models [27, 70].
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Alveolar Epithelial Type II Cell Apoptosis

Besides changes in the proliferative behavior of injured ATII cells, the presence of
apoptosis is another important parameter when analyzing injury and repair pro-
cesses in the lung epithelium. The most commonly applied strategies are the
analysis of caspase activity [76, 77] and the caspase mediated cleavage of
endogenous substrates such as PARP [77], a crucial step in the apoptotic process.
Furthermore, early apoptotic changes such as the flip of phosphatidylserine from the
inside to the outside of the cell plasma membrane is used as a surrogate marker for
apoptosis and detected by Annexin V binding and further analysis by flow
cytometry [77]. TdT-mediated dUTP-biotin nick end labeling (TUNEL), a method
to detect DNA fragmentation occurring in apoptotic cells, can be used for in vitro
studies as well as for the detection of apoptotic cells in tissues of in vivo models of
lung injury [70, 78]. The use of TUNEL staining provided data on the presence of
increased numbers of apoptotic alveolar epithelial cells in fibrotic mouse models, as
well as IPF tissue [70, 78, 79].

Epithelial to Mesenchymal Transition (EMT) of ATII Cells

Besides the described imbalance of proliferation and apoptosis in models of
epithelial injury, the occurrence of EMT is widely discussed in the context of
attempted alveolar repair processes. In vitro studies of EMT of cultured epithelial
cells regularly use the cytokine TGF-b1 for EMT induction, which has been
demonstrated in several organs including the lung [80–82]. Monitoring of
decreased expression of epithelial marker genes such as E-Cadherin, cytokeratin
and TJ-proteins is performed for the characterization of epithelial integrity on gene
expression level as well as on protein level. Moreover, analysis should include the
expression of EMT transcription factors, such as Snail, Slug, Zeb, or Twist as well
as mesenchymal markers. Several mesenchymal markers, including aSMA,
Calponin, and ECM related proteins such as collagen1, fibronectin and vimentin are
used to describe the gain of mesenchymal cell characteristics [27, 80, 83, 84].
Importantly, co-expression of epithelial and mesenchymal markers by
immunofluorescence/immunohistochemistry staining should be analyzed and has
been demonstrated in human tissue of different lung diseases [28, 85, 86]. These
descriptive investigations should be further complemented with functional cell
assays, such as cell migration, which is a prominent feature of EMT.

For studying the in vivo relevance of findings generated by in vitro cultures,
lineage tracing animals can be used to determine the cell fate in the context of lung
injury. These studies utilize different transgene mouse strains, which express trace-
able markers under the control of the surfactant protein C promotor [19, 86, 87].
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Alveolar Epithelial Trans-Differentiation

ATII cells expressing surfactant proteins are able to self-renew and trans-differentiate
into ATI cells [20, 22, 88–90]. Depending on the type of injury applied, other
epithelial cell populations, negative for SPC, can contribute to the attenuation of lung
injury [58, 91]. Therefore, understanding how ATII cells differentiate into an ATI cell
phenotype is under intense investigation including respective gene expression sig-
natures as well as the morphological conversion from a cuboidal to a squamous cell
shape. Early studies described the trans-differentiation of ATII cells into ATI-like
cells in primary culture. These observations were based on the gradual loss of gene
and protein expression of surfactant proteins as well as the loss of lamellar bodies,
investigated by the use of electron microscopy [92]. Furthermore, the gain of features
of ATI cells such as a flattened cell morphology and the expression of ATI
cell-associated markers T1a (podoplanin) [93–96], aquaporin 5 (AQP5) [64, 97],
receptor for advanced glycosylation end products (RAGE), and caveolin [98–100]
were described. An overview of ATII and ATI cell specific markers is displayed in
Table 6.2. Applying freshly isolated ATII cells to standard cell culture conditions is
now widely used to mimic differentiation and repair mechanisms to investigate
molecular cues in response to lung injury. The model has been utilized to study ATII
cell trans-differentiation potential in various species including rat, mouse and human.
Monitoring of epithelial cell identity and trans-differentiation is mainly achieved by
gene and protein expression analysis of the respective markers in combination with
microscopic evaluation of cell morphology.

Utilizing the spontaneous trans-differentiation of primary ATII cells in culture
shed light into molecular programs that regulate this process and identified essential
developmental pathways, such as the Wnt/b-catenin pathway [47, 60, 96, 103, 104]
as well as TGF-b and BMP signaling [46, 105] to be involved.

However, it has to be taken into account that the model of ATII to ATI cell
trans-differentiation in vitro does not fully resemble the processes occurring in vivo,
as the specific trigger of injury has been shown to modulate a differential response
of ATII and other progenitor cell populations. Furthermore, data indicate that the
expression profile of freshly isolated ATI cells does not completely concur with the
profile of ATI-like cells derived from trans-differentiation models in vitro [106].

Table 6.2 ATII versus ATI
cell markers/characteristics
for the determination of
trans-differentiation

Marker/characteristics Reference

ATII cells SPC [30, 96]

ABCA3 [31]

LAMP3 [33]

ATI/AT1-like cells T1a [93–95]

AQP5 [64, 97]

HOPX [22, 101]

RAGE [96, 102]

Caveolin-1 [98–100]
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To overcome the limitations of 2D cell culture models for studying ATII to ATI
trans-differentiation and the regenerative potential of the ATII cell progenitor pool,
the establishment of new 3D culture methods has been expedited extensively [22,
107], comparably to strategies for the generation of 3D organoids from colon, small
intestine, and stomach [108]. For the purpose of mimicking the 3D microenvi-
ronment of the lung alveolus, primary ATII cells are seeded as a single cell sus-
pension in an ECM mixture which is secreted by Engelbreth-Holm-Swarm
(EHS) mouse sarcoma cells (Matrigel), [22, 109]. Studies utilizing the co-culture of
ATII cells with other cell populations such as fibroblasts or endothelial cells in
matrigel describe the formation of lung organoids which display cuboidal ATII
cells expressing SPC on the outer layer of the organoid. The organoid lumen,
however, is lined by thin, squamous epithelial cells expressing markers of differ-
entiated ATI cells such as AQP5 and T1a, indicating a self-renewal as well as a
trans-differentiation capacity of ATII cells in this setting, and therefore representing
an advanced model for studying mechanisms involved in this process in a more in
vivo-related fashion [22, 101].

Short Summary

Alveolar epithelial cells play a crucial role in lung injury and repair processes in
response to different stimuli and in the context of various lung diseases. A careful
characterization of specific disease related alveolar epithelial phenotypes using
comprehensive approaches and improved culturing methodologies will lead to
important insights into novel therapeutic strategies targeting lung injury and repair.
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