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Abstract. On-the-fly generation of integrated representations of Linked
Data (LD) search results is challenging because it requires successfully
automating a number of complex subtasks, such as structure inference
and matching of both instances and concepts, each of which gives rise to
uncertain outcomes. Such uncertainty is unavoidable given the semanti-
cally heterogeneous nature of web sources, including LD ones. This paper
approaches the problem of structuring LD search results as an evidence-
based one. In particular, the paper shows how one formalism (viz., prob-
abilistic soft logic (PSL)) can be exploited to assimilate different sources
of evidence in a principled way and to beneficial effect for users. The
paper considers syntactic evidence derived from matching algorithms,
semantic evidence derived from LD vocabularies, and user evidence, in
the form of feedback. The main contributions are: sets of PSL rules that
model the uniform assimilation of diverse kinds of evidence, an empirical
evaluation of how the resulting PSL programs perform in terms of their
ability to infer structure for integrating LD search results, and, finally,
a concrete example of how populating such inferred structures for pre-
sentation to the end user is beneficial, besides enabling the collection of
feedback whose assimilation further improves search result presentation.
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1 Introduction

The idea of linked data (LD) underpins the attempt to transfer the strengths of
the web of documents to data: data can be shared, searched for and browsed,
building on standards for data identification, description and linking that pro-
vide low barriers to entry, facilitating new applications in areas such as data
science and open government. Along with a basic model that publishing, it can
be anticipated that popular types of tool can transfer successfully from the web
of documents to the web of data, supporting activities such as searching and
browsing. However, data and documents have important differences, and direct
translations of techniques that have been successful in the web of documents can
seem rather less intuitive in the web of data.
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For example, keyword search has been an important technology in the web
of documents: searches give rise to ranked lists of documents, through which the
user can browse. In such approaches, the user accesses the published document
directly. Such an approach has been transferred to the web of data, as repre-
sented by LD search engines such as Falcons [3], Sindice [11] and Swoogle [5].
Although LD search engines are useful, their results, which take the form of
collections of RDF resources, present to users the data as published. Thus, LD
search engines tackle the question What resources are out there that match the
search?, and not so much What data is out there that matches the search?. For
example, searching for "Godfather actors" returns results (see Fig. 1), among
others, that are about two distinct films in whose name the string Godfather
occurs, as well as about actors that have appeared in those films. Assuming for
the moment that the user is looking for data about actors in the US film named
The Godfather (en.wikipedia.org/wiki/The Godfather), released in 1972, filter-
ing and structuring the results in different tables, as shown in Fig. 2, would be
desirable since it distinguishes between films and actors and provides structure
to the presentation of films and of actors that have appeared in them.

The Godfather 1 9 7 2

film

lmdb:director/8405

lmdb:actor /30973 lmdb:actor /31134

lmdb:/film/43338

tit le d a t e

rdf:type

director

ac to r ac to r

The Godfather 1 7 5 6

Movie Work Q 3 8 6 7 2 4 dbr:Albert_S._Ruddy

dbr:Francis_Ford_Coppola
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rdf:type rdf:type rdf:type producer

director
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. .  The

Godfather  . .
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s ta r r ing

givenName s u r n a m e bi r thDate abs t r ac t

rdf:type rdf:type birthPlace

Talia Shire 1 9 4 6 - 0 4 - 2 5
. .  The

Godfather  . .
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The_Godfather
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dbr:Talia_Shire

s ta r r ing

dbr:David_Shire

givenName s u r n a m e bi r thDate abs t r ac t

rdf:type rdf:type spouse

Mumbai Godfather 

film

lmdb:actor /10785

lmdb:actor /45671 lmdb:country/IN

lmdb:/film/12057

tit le

rdf:type

ac tor

ac to r count ry

Vinod Khanna 4 1 5 4 0

ac tor Person lmdb:performance/102956

lmdb:performance/110906

lmdb:actor /41540

ac to r_name actor_actorid

rdf:type rdf:type performance

performance

Fig. 1. Example LD search results for the term "Godfather actors"

As such, there is an opportunity to complement the work to date on search
engines for LD by devising techniques to infer a structure from the returned
resources. This would insulate the user from many of the heterogeneities that
LD resources typically exhibit due to weak constraints on publication.

https://en.wikipedia.org/wiki/The_Godfather
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Movie
name date director budget runtime

The Godfather 1972 Francis Ford Coppola 6 172

Actor
givenName surname birthDate birthPlace spouse
Robert Duvall 1931-01-05 United States null
Talia Shire 1946-04-25 null David Shire

Fig. 2. Results in Fig. 1 integrated and reported as tables

The integration of search results by means of structure inference is by no
means a straightforward task because there is no a priori target model to which
the results are to be mapped, the available evidence about the relationships
between different resources may be partial or misleading, and the integration
must be carried out automatically, or at most with small amounts of feed-
back from the user. Our hypothesis is that LD search result integration can
benefit from (i) combining different sources of evidence to inform the integra-
tion process, (ii) systematically managing the uncertainty associated with these
sources, and (iii) making cost-effective use of feedback. To test this hypothesis,
this paper investigates the use of probabilistic soft logic (PSL) [1] for combining
three sources of evidence, viz., syntactic matching, domain ontologies and user
feedback.

The contributions of this paper are:

1. The characterization of the LD search result integration task as one in which
different sources of (partial and uncertain) evidence are brought together to
inform decision making.

2. The instantiation of this characterization of the problem using PSL to com-
bine, in a principled and uniform way, evidence from syntactic matching, from
domain ontologies and from user feedback.

3. The empirical evaluation of this approach, in which it is shown how the
principled, uniform use of different types of evidence improves integration
quality for the end user.

2 Related Work

LD search engines such as Falcons [3] and Sindice [11] return a list of resources
that match the given search terms ranked by their estimated relevance but with-
out attempting identify their underlying structure. Our contributions build on
such search engines as we infer a tabular structure over the returned results.
Sig.ma [15] also builds on returned search results. Differently from us, it assumes
that the search terms describe one entity (hence a singleton, never a set). Sim-
ilarly to us, Sig.ma aims to build a profile (essentially a property graph, not
a tabular structure as we do) that characterises the searched-for entity on the
basis of the results returned by Sindice. Sig.ma uses heuristics whose only input
is syntactic evidence, and accumulates information about the entity from dif-
ferent LD resources without using a principled evidence assimilation technique.
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In contrast, we use a probabilistic framework to uniformly assimilate different
kinds of evidence in a principled manner. Sig.ma does respond to feedback: the
user can decide whether a resource is allowed to contribute data to the generated
profile or not. However, such feedback does not affect future searches, whereas, in
our approach, feedback given is assimilated as evidence and therefore influences
positively the quality of future interactions.

Inferring a structure from instance-level RDF data, but not search results per
se, has received much attention by the research community. However, this activity
has focussed on finding ontology axioms such as range restriction [4,16], domain
restriction [4,16], subsumption [14,16,18], and equivalence axioms [6,14,16] that
apply to the data. In contrast, our approach uses PSL to populate data tables with
returned search results, which are more heterogeneous, structurally and semanti-
cally, than the data the approaches cited normally target. For example, searching
for a film title (e.g. The Godfather) with Falcons returns results from at least three
LD resources: DBPedia, LinkedMDB and Yago. This makes the structure infer-
ence task harder, as conflicts between the vocabularies used by different datasets
need to be resolved.

Given input ontologies, inductive logic programming, a statistical relational
learning paradigm, is used in [6,14] to extend the ontologies with new axioms
given data defined in terms of the given ontologies. In contrast, no background
knowledge is needed in some other approaches. Hierarchical clustering was used
in [4] to find schematic patterns, whereas association rule mining [16] and
Bayesian networks [18] have also been used to infer descriptions of concepts.
Our contributions also use background knowledge in the form of a PSL program
resulting from a supervised learning stage in which logical rules are assigned
weights. However, we view ontologies as semantic evidence, since we aim to pop-
ulate a tabular structure of search results rather than extend a given ontology.

Recently, there has been a growing interest in applying statistical relational
learning (SRL) techniques such Markov logic networks (MLNs) and PSL to prob-
lems where relational dependencies play a crucial role (e.g., inference over social
network data) or where principled integration requires assimilation of multiple
sources of evidence. In the Semantic Web context, Niepert et al. [10] exploited
MLNs to match ontologies by modelling axioms as hard constraints that must
hold for every alignment. They use similarities of concepts in the input ontologies
as evidence, taking them as a seed alignment, and apply integer linear program-
ming to maximise the probability of alignment based on the seed alignments
as constrained by the ontological axioms. Their work showed that syntactic and
semantic evidence can be combined using SRL techniques. Differently from them,
we do not represent ontological knowledge as hard constraints since we target
a tabular structure. In our approach, ontologies are used as evidence for infer-
ring an instance of out target structure in the returned search results. This
means that we treat ontological knowledge as uncertain. Similarly to us, Pujara
et al. [13] used PSL to infer knowledge graphs about real-world entities from
noisy extractors, and, in particular, the assimilation of lexical similarities and
ontological evidence proves to be crucial in de-noising extracted graphs.
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3 A Brief Introduction to PSL

In this paper, the formalism used to infer an integrated structure over returned
LD search results is PSL [1], a general-purpose learning and inference framework
for reasoning with uncertainty in relational domains.

In Sect. 4, we contribute a set of PSL rules and a target metamodel. The
rules express probabilistic relationships between triples in search results. After
the rules have been converted into a PSL program, the PSL implementation
processes the returned results so as to instantiate the target metamodel, thereby
yielding an integrated, structured view over the results.

A PSL program is a set of weighted first-order-logic formulae of the form
w : A ← B, where w are non-negative weights, B is a conjunction of literals
and A is a single literal. Consider the following example PSL program (adapted
from [8], where rules are written as w : B → A):

0.3 : votesFor(B,P ) ←̃ friend(B,A) ∧̃ votesFor(A,P ) (1)
0.8 : votesFor(B,P ) ←̃ spouse(B,A) ∧̃ votesFor(A,P ) (2)

The semantics, including the tilde-capped connectives, are briefly explained
below but, intuitively, this PSL program states that, given any individuals a,
b and p, instantiating (resp.) the logical variables A, B and P , a claim is made
that if b is either a friend or a spouse of a and a votes for party p, then, with
some likelihood, b votes for p. The respective weights assert that the influence
of spouses on what party b votes for is larger than that of friends.

Softness in PSL arises from the fact that truth values are drawn from the
continuous interval [0, 1], i.e., if A is the set {a1, . . . , an} of atoms, then an
interpretation is a mapping I : A → [0, 1]n, rather than only to the extreme
values, i.e., either 0 (denoting falsehood) or 1 (denoting truth).

To capture the notion that different claims (expressed as rules) may have
different likelihoods, a probability distribution is defined over interpretations, as
a result of which rules that have more supporting instantiations are more likely.
In the case of Rules (1) and (2) above, interpretations where the vote of an
individual agrees with the vote of many friends, i.e., satisfies many instantiations
of Rule (1) are preferred over those that do not. Moreover, where a tradeoff arises
between using agreement with friends or with spouses, the latter is preferred due
to the higher weight of Rule (2).

Determining the degree to which a ground rule is satisfied from its constituent
atoms requires relaxing (with respect to the classical definitions) the semantics of
the logical connectives for the case where terms take soft truth-values. To formal-
ize this, PSL uses the �Lukasiewicz t-norm and its corresponding co-norm, which
are exact (i.e., coincide with the classical case) for the extremes and provide
a consistent mapping for all other values. The relaxed connectives are notated
with a capping tilde, i.e., ∧̃, ∨̃, and ¬̃, with A ←̃ B ≡ ¬̃ B ∨̃ A.

Atoms in a PSL rule can be user-defined. Thus, a unary predicate IsDictWord
might be defined to have truth value 1 if the individual of which it is predicated
is a dictionary word and 0 otherwise. Atoms in a PSL rule can also capture
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user-defined relationships between sets of individuals. Thus, the truth value of
S.interests SimSetEq[] T.interests is the similarity of the respective sets of
interests of the individuals S and T as computed by the user-provided definition
of set similarity SimSetEq[].

In summary, the basic idea is to view logical formulas as soft constraints on
their interpretations. If an interpretation does not satisfy a formula, it is taken
as less likely, but not necessarily impossible. Furthermore, the more formulas
an interpretation satisfies, the more likely it is. In PSL, this quantification is
grounded on the relative weight assigned to each formula. The higher the weight,
the greater the difference between the likelihood of an interpretation that satisfies
a formula and the likelihood of one that does not.

The key tasks supported by PSL implementations are learning and inference.
The rules in a PSL program can be either given (i.e., asserted) or learned from
sample (or training) data. In this paper, rules (shown later) are given. Further-
more, the weight of each rule can also be given or learned from sample data. In
this paper, rule weights are learned from sample data (as detailed later). The
PSL weight learning process takes a PSL program (possibly with initial weights),
a specification of both evidence and query predicates, and sample data. A predi-
cate is said to be an evidence predicate if all its ground atoms have known truth
values by observation. A predicate is said to be a query predicate if one or more
of its ground atoms have unknown truth values. The process returns a relative
non-negative weight for each rule. A positive weight denotes that a rule is sup-
ported by the sample data whereas the magnitude indicates the strength of that
support. A weight of zero denotes lack of support in the sample data for that
rule (but since weights are relative it does not entail impossibility).

The main purpose of a PSL program is inference. The PSL inference process
takes a PSL program, evidence as data, and a query. It then computes the most
probable assignment of soft truth-values to the query, i.e., the probability that
the given query atom is true. A major strength of PSL is that implementations
perform inference by constructing a corresponding convex optimization problem
for which a solution can be efficiently computed even for large-size inputs. For
detailed descriptions of the PSL learning and inference algorithms, see [1].

4 Structure Inference Over LD Search Results

Our approach can be briefly summarized as follows. Firstly, we have defined a
metamodel (see Fig. 3) that characterizes the type of structure to be inferred
(i.e., populated with resources returned by LD searches). Every instances of the
metamodel is a tabular representation of search results that we refer to as a
report. Thus, given the search returns, our goal is to infer that some resources
are entity types and some are entities (i.e., elements in the extent of an inferred
entity type), some other resources are properties of some inferred entity type and
some are property values (i.e., elements in the domain of an inferred property).

Next, we have expressed the semantics of the metamodel as a set of
unweighted PSL rules, which we refer to as the baseline model, denoted by B
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Fig. 3. The metamodel for population with LD search results.

(see Rules R1-R17 in Fig. 4). The rules in B build on syntactic evidence alone.
In order to assimilate semantic evidence, we have added rules to B that build on
additional ontological evidence. We refer to this as the semantic model, denoted
by S, where S ⊃ B (see examples in Rules R18-R23 in Fig. 4). Next, using
sample data from search results and from ontologies, we use a PSL implemen-
tation (github.com/linqs/psl) to learn weights for the rules in S and obtain the
corresponding PSL program PSL(S). This also yields PSL(B), i.e., the sub-
set of PSL(S) where we only retain those rules that occur in B. Then, given
the returned results of any LD search, we can use PSL inference from PSL(S)
to instantiate the metamodel with the most probable characterization of the
returned resources. In order to assimilate evidence from user feedback, we have
defined a separate set of rules, which we refer to as the feedback model, denoted by
F (see examples in Rules R24-R27 in Fig. 4). To obtain the weights for the rules
in F and thus obtain the PSL program PSL(F), we generated synthetic feedback
and used the same PSL implementation. The PSL program PSL(S) ∪ PSL(F)
integrates LD search results given syntactic, semantic and feedback evidence.

The Baseline Model: Assimilating Syntactic Evidence. Our approach is
grounded on the hypothesis that, with some likelihood, there exist relationships
between RDF triples returned by search and instantiations of our metamodel
that can be captured by a PSL program. Correspondingly, the first step in the
construction of the baseline model B is to map, as a purely syntactic operation,
RDF triples onto predicates that assert membership of metamodel constructs.
For example, on the evidence of an RDF triple such as U rdf:type U’, where
U and U’ are URIs, we may conclude that RDFIsInstOf(U,U’), i.e., that there
is an instance-of relationship between an individual U and a type U’.

Such mappings are inherently uncertain (i.e., only hold with some likeli-
hood) because it is impossible to capture a publisher’s intentions. So, e.g., if
RDFType(Q386724) is not a user-level type then perhaps it should not be con-
sidered to denote an entity type, and therefore not suitable to be reported as
a table to the end user. Another source of uncertainty is the search itself (i.e.,
its associated precision and recall). For example, the RDF individual labeled
"Vinod Khana" may be returned but should not be listed in a table describing
the actors of the 1972 US-produced Godfather film. Rule uncertainty is reflected
in rule weights that are learned from sample data as described in Sect. 5.

The baseline model B consists of Rules R1-R17 in Fig. 4. There are two
subsets in B: Rules R1-R9 infer membership for all the constructs in the

https://github.com/linqs/psl


10 D. Alshukaili et al.

metamodel in Fig. 3 except for similarity relationships, which are inferred
through Rules R10-R17, comprising the second subset. The bodies of Rules
R1-R9 show how RDF triples, in raw (i.e. Triple predicate in Fig. 4) or in
mapped form (e.g. RDFIsInstOf in Fig. 4), provide evidence for metamodel mem-
bership predicates. For example, in Rule R1, a returned RDF triple of the form
S rdf:type T counts as evidence that T is an entity type. As expected, rules
heads (i.e., inferred predicates) may appear in rule bodies as further evidence.
For example, in Rule R7, a returned RDF triple (S,P,O), where S has been
inferred to be an entity and P has been inferred to be a property, counts as
evidence for inferring that O has domain P. User-defined predicates (such as
IsDictWord) also count as evidence, as shown in Rule R2. Lexical similarity (in
Rules R10-R17) also counts as evidence. For example, in Rule R8, the following
count as evidence that P is a property of the entity type T: P appears as a pred-
icate, and T as type, in the returned results, and the set of URIs of which P is
predicated is similar to the set of URIs which are said to be of type T.

The bodies of Rules R10-R17 show how similarity relationships can be
inferred from user-defined predicates (such as LexSim in, among others, Rule
R10) and from user-provided definitions (possibly parametrized) of set similar-
ity (such as SimSetEq[] in, among others, Rule R11). A value for LexSim is
computed using cosine similarity for strings with length greater than fifty and
Levenshtein (or edit) distance otherwise. In the case of URIs, we use the label
(as given by rdfs:label) of the dereferenced resource the URI points to, or else
the local name if no label is found. Rule R14 treats an entity as a set of property
values and infers similarity between entities from the overlap of property value
sets. Rule R16 uses object overlap (a metric that is commonly used to align
properties [7,17]) to infer similarity of properties.

Consider again the example search results in Fig. 1. Given the baseline model,
if the rules had equal weights, EntityType(Movie) would be inferred with
a higher probability than EntityType(Q386724) because the former satisfies
Rules R1 and R2, whereas, Property(birthDate) would more probable than
Property(spouse) because the latter is a predicate of fewer resources. Instances
of the HasProperty relationship are inferred based on their co-occurrence in RDF
resources computed by set similarity predicates in PSL. Based on our running
example, the probability of HasProperty(Person, surname) is greater than
that of HasProperty(Person, spouse) because surname is a predicate of more
resources than spouse is.

The Semantic Model: Adding Ontological Evidence. The baseline model
only assimilates syntactic evidence. We can extend it with rules that assimilate
evidence from ontologies to yield the model we call semantic.

Ontologies are computational artefacts that formally describe concepts and
relationships in a given domain. Thus, in terms of the metamodel we target, they
describe entity types and their properties and provide evidence that complements
the baseline model described above. Our approach is to make use of statements
in ontologies about types and properties. This is then used to ground predicates
that represent ontological evidence. Table 1 shows the different kinds of evidence
we extract from ontologies and how it is mapped into PSL predicates.
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Fig. 4. PSL rules used in structure inference

The main idea here is that being defined as a concept or property in some
pertinent ontology counts as additional evidence that a returned result (e.g.,
a resource URI) is an entity type or property, respectively, in terms of our
metamodel. Thus, we use the PSL predicates in Table 1 to construct PSL rules
such as R18-R20 in Fig. 4, which assimilate ontological information as evidence
that a given resource S is an entity. For example, if "The Godfather" appears
in a triple in the returned results as an instance of Movie, where Movie is
asserted to be a concept (e.g., in Movie Ontology (www.movieontology.org/)
this adds strength to the belief that "The Godfather" is an instance of Entity
in our metamodel (see R18 in Fig. 4). We also use ontological statements to

www.movieontology.org/
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Table 1. Mapping ontological statements into PSL predicates

Ontological statement PSL predicate

T rdf:type rdfs:Class OntType(T)

T rdf:type owl:Class

P rdf:type rdf:Property OntProperty(P)

P rdf:type owl:DatatypeProperty

P rdf:type owl:ObjectProperty

T1 owl:equivalentClass T2 OntEqType(T1,T2)

P1 owl:equivalentProperty P2 OntEqProperty(P1,P2)

T1 owl:disjointWith T2 OntDisjointType(T1,T2)

P rdfs:domain T OntHasProperty(T,P)

supplement evidence for similarity relationships as exemplified by Rules R21-
R23 in Fig. 4. Rule R21 exemplifies the direct use of ontological evidence. Rule
R22 exemplifies the use of ontological evidence mediated by lexical similarity.
Rule R23 exemplifies the use of set-similarity predicates where one of the sets
contains elements from ontological statements. In this case, ontological state-
ments help reconcile heterogeneity in the returned results.

Subsuming the baseline model, the semantic model S ⊃ B contains Rules R1-
R17 plus such rules as R18-R20 and R21-R23 that assimilate additional evidence
to the predicates in the baseline model.

The Feedback Model: Assimilating User-Provided Evidence. The seman-
tic model assimilates syntactic and semantic evidence. We can extend it with
rules that assimilate user-provided evidence in the form of feedback.

There has been a growing interest in assimilating user feedback in data inte-
gration (see [2] for a general proposal, and [12] for a general methodology and
recent work in the area). User feedback is even more important in environments
that are characterized by large-scale heterogeneity and highly autonomous data
sources as is the case in the Web of Data(WoD) [9]. Also, with recent advances
in crowdsourcing, feedback for solving complex data integration challenges can
now be obtained more cost-effectively. In this paper, we assume that the user
knows the domain of the search term and is motivated by obtaining high-quality
results from the search, which we believe to be reasonable in the context of
search results personalization.

We use feedback in two ways. The first is to refine the report presented to
the user. When the returned results have been structured and integrated using
PSL, a report is presented to the user (as described in Sect. 6). Feedback can be
provided that results in refinement of the report. For example, a prior state of
the report shown in Fig. 2 could have contained another row in the Movie tables
referring to the Mumbai Godfather film which the user ruled out as a false
positive. In this case, feedback on inference results powers up a form of filtering,
i.e., of data cleaning, generating an incentive for users to provide feedback in
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the first place. The second, and more significant, way we use feedback is to
take advantage of accumulated, user-provided feedback to improve the inference
results before a report is produced. In this case, feedback on inference results is
another type of evidence that can be assimilated.

Table 2. PSL predicates used to gather user feedback (with examples)

PSL feedback predicate Example

EntityTypeFB(uri,term) EntityTypeFB(Q11424,no)

HasTypeFB(uri,uri,term) HasType(dbr:The Godfather,CreativeWork,
yes)

HasPropertyFB(uri,uri,term) HasPropertyFB(CreativeWork, author, yes)

SimEntityTypeFB(uri,uri,term) SimEntityType(Film, Movie, yes)

SimPropertyFB(uri,uri,term) SimPropertyFB(duration, runtime, yes)

SimEntityFB(uri,uri,term) SimEntityFB(dbr:The Godfather,
lmdbr:film/43338, yes)

Table 2 shows the feedback predicates used in our model. The feedback is
simply a comment from the user on the correctness of the inferred query pred-
icate. Thus, we use the PSL predicates in Table 2 to construct such PSL rules
as R24-R27 in Fig. 4, which assimilate user-provided feedback as evidence that
a given resource S is, or is not, an entity. For example, if "War and Peace"
appears in a triple in the returned results as an instance of Movie, where Movie
is confirmed by feedback to be an entity type, this adds strength to the belief
that "War and Peace" is an instance of Entity in our metamodel.

Weight Learning for PSL Program Generation. We generated two PSL
programs PSL(S) and PSL(F) for inference by learning weights for the rules
in S and F. Firstly, we obtained search results using Sindice [11] and Fal-
cons [3]. The search terms and vocabularies used were: for the Films domain,
"The Godfather", "Godfather actors", "Casablanca" and the Movie ontol-
ogy; for the Cities domain, "Berlin", "Manchester" and the GeoFea-
tures (www.mindswap.org/2003/owl/geo/) and GeoNames (www.geonames.
org/) ontologies; for the People domain, Tim Berners-Lee, Chris Bizer and
the FOAF and SWRC (ontoware.org/swrc) ontologies. We collected the top 20
results from each search engine for each search term. The total number of typed
individuals in the corpus was 304 and the total number of triples was 12,160.
The corpus contained, resp., 180 and 502 distinct domain types and properties.

Secondly, we annotated the corpus with the ground truth. In doing so, we
took into account the relevant domain. For example, searching for "Casablanca"
return results about the city and not just the film of that name. Given the sample
data from search results and vocabularies, we used PSL to learn weights for the
rules in the semantic model and yield the PSL(S) program. We learn the weights
discriminatively using maximum-pseudo likelihood. To reduce overfitting, we use
5-fold cross-validation and we average the weights of each rule.

www.mindswap.org/2003/owl/geo/
www.geonames.org/
www.geonames.org/
http://ontoware.org/swrc


14 D. Alshukaili et al.

To learn weights for the rules in feedback model F and yield the PSL pro-
gram PSL(F), we proceeded as follows. One might crowdsource sample feedback
instances, but we simulated feedback acquisition to give rise to synthetic sam-
ple. The synthesis procedure we used is as follows. We take as input a sample of
inferences returned by PSL(S) and the number of users providing feedback (100,
in this paper). For each worker, we randomly generate 50 feedback instances,
where a feedback instance is a true/false annotation on the inference returned
for query predicates. In this paper, we assume that feedback is reliable. However,
introducing a per-user degree of unreliability only requires a simple change.

5 Experimental Evaluation

The goal of the experimental evaluation is to measure how well the various PSL
programs, generated as described above, infer a structure from LD search results
that conforms to the adopted metamodel. To provide comprehensive information
about the experiments, we have made the datasets, the code, and documentation
available on GitHub 1.

Exp. 1: Inference Using Syntactic and Semantic Evidence. The goal of
Exp. 1 is to measure the quality of PSL(B), where only syntactic evidence is
assimilated, and then measure the quality of PSL(S), where semantic evidence is
also assimilated, thereby allowing us to measure the impact of using ontologies
on the quality. We measure the quality of our program using the area under
precision-recall curve (AUC) for each query predicate in our PSL model. The
precision/recall curve is computed by varying the probability threshold above
which a query atom is predicted to be true. This means that the measurement
does not depend on setting any threshold.

We first performed PSL inference on PSL(B) on the search results, for each
of three domains in turn. We denote the measured quality as AUC(B) with
some abuse of notation. We then added semantic evidence extracted from the
relevant vocabularies to the search results and performed inference on PSL(S).
We denote the measured quality by AUC(S). We then calculate the quality
impact of using semantic evidence as Δ = AUC(S) − AUC(B). Columns 2, 3
and 4 in each subtable in Table 3 list all the measurements obtained in Exp. 1
for the corresponding domain.

Discussion. As measured in terms of the AUC, across the domains, the quality
of PSL(B) is good on average (around 0.65) if we discount the similarity rela-
tionships, which are inherently dependent on semantic evidence. This suggests
that PSL(B) uses syntactic evidence effectively but that the approach might
benefit from assimilating other forms of evidence.

Assimilating ontological evidence indeed leads to improvement in the AUC,
particularly w.r.t. similarity relationships, with a knock-on positive effect on
the quality of the tabular representation. Thus, the corresponding average
AUC(S) increases to close to 0.7. The degree of improvement varies across
1 https://github.com/duhai-alshukaili/StructuringLDSearchResults.

https://github.com/duhai-alshukaili/StructuringLDSearchResults
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Table 3. AUC results for our PSL models with datasets in the test collection

Query Predicate AUC(B) AUC(S) Δ AUC(S ∪ F) Δ′

Entity .726 .736 .010 .827 .091
EntityType .749 .812 .063 .954 .142
HasProperty .512 .578 .057 .614 .036
HasType .554 .604 .050 .709 .105
Property .774 .774 .000 .779 .005
SimEntity .083 .108 .025 .322 .214
SimEntityType .320 .351 .030 .517 .166
SimProperty .159 .184 .025 .621 .437

(a) Films

Query Predicate AUC(B) AUC(S) Δ AUC(S ∪ F) Δ′

Entity .645 .751 .105 .789 .039
EntityType .828 .844 .017 .844 .000
HasProperty .457 .511 .054 .559 .048
HasType .557 .731 .174 .732 .000
Property .683 .683 .000 .685 .001
SimEntity .086 .583 .497 .612 .030
SimEntityType .869 .891 .022 .891 .000
SimProperty .257 .230 -.027 .537 .307

(b) People
Query Predicate AUC(B) AUC(S) Δ AUC(S ∪ F) Δ′

Entity .525 .651 .126 .882 .231
EntityType .776 .793 .017 .793 .000
HasProperty .470 .485 .015 .541 .056
HasType .631 .668 .037 .820 .152
Property .774 .780 .006 .794 .014
SimEntity .082 .344 .261 .411 .068
SimEntityType .648 .662 .014 .662 .000
SimProperty .484 .386 -.098 .687 .302

(c) Cities

domains depending on the coverage of the ontologies used. For example, the
B-probability of HasProperty(dbo:Person, dbo:spouse) is 0.04, whereas its
S-probability is much higher, at 0.80, as the DBPedia ontology explicitly defines
this relationship. In other cases, explicit assertion of type disjointness has a
significant effect too. Thus, the B-probability of SimEntity(dbr:Casablanca,
dbr:Casablanca (film)) is 0.55, whereas its S-probability is much lower, at
0.01, because dbo:Work and dbo:wgs84 pos:SpatialThing are disjoint in the
DBpedia ontology. In the case of Entity, the assertion of a type by an ontol-
ogy acts as a reliable anchor for individuals returned in the search results.
For example, the B-probability of Entity(lmdb:film/43338) is 0.22, whereas
its S-probability is higher, at 0.38, because its type, lmdb:film, matches the
type dbo:Film, in the MO. As hinted above, improvements in the inference
of metatypes (e.g., Entity) has a knock-on effect on the corresponding set-
similarity relationship (SimEntity in this example). In the case of SimEntity the
improvement is more significant the People and Cities domain than for Films
because of inherent type ambiguity. For example, searching with "Casablanca"
returns films, organizations, and a city. Type ambiguity is perhaps best solved
with user feedback, as the next experiment shows.

Exp. 2: Inference Using Feedback. The goal of Exp. 2 is to measure the
quality of PSL(S ∪ F), where feedback evidence is also assimilated, thereby
allowing us to measure the impact of using feedback on the quality. We sim-
ulated the feedback evidence as being provided for the top 5 % of the infer-
ence results for each feedback target. This assumes a strategy in which feed-
back is targeted at removing false positives. We denote the measured quality by
AUC(S ∪ F). We then calculate the quality impact of using semantic evidence
as Δ′ = AUC(S ∪ F) − AUC(S). Columns 5 and 6 in each subtable in Table 3
list all the measurements obtained in Exp. 2 for the corresponding domain.

Discussion. As measured in terms of the AUC, across the domains, the qual-
ity of PSL(S ∪ F) is quite good in average (around 0.7) even if we include
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the similarity relationships. In other words, user feedback seems to address the
ambiguity issues that caused the quality of PSL(S) to be lower for similarity
relationships. Thus, although the impact of feedback is not uniformly high, it
seems complementary and corrective, i.e., it improves the most where the most
improvement is needed, viz., the similarity relationships, where we can observe
AUC improvements that can reach 80 %, 130 %, up to almost 240 %. This, the
highest improvement, was observed for SimProperty in the Films domain. The
reason for this is that PSL(S) produces many false positives for SimProperty.
One possible reason is that property names (e.g., name) are often reused without
qualification for very different concepts. Combining syntactic and ontological
evidence seems insufficient.

6 A Deployment Case Study

Fig. 5. Type selection

Imagine a user gives "Godfather
actors" as the search term. Relevant
returned results come predominantly
from the Linked Movie Database and
the DBpedia. A few, less relevant,
results come from Linked WordNet,
BookMashup, and MusicBrainz. The
PSL program uses the results to make
inferences as to how to instantiate the
target metamodel in a way that inte-
grates the returned results into a tab-
ular report.

Fig. 6. Property selection

As depicted in Fig. 5,
our PSL-driven user inter-
face then provides the
user with a list of pos-
tulated entity types for
the given search term.
The PSL query predicate
behind Fig. 5 is HasType,
with rows ordered by
EntityType probability.
At this point, the user
can express an interest in
one of the listed types by
pressing on Show More
which lists the inferred
properties of the selected
type. Figure 6 shows the
list of inferred properties
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of the postulated entity type Film. The PSL query predicate behind Fig. 6 is
HasProperty, with rows ordered by Property probability.

At this point, the user can tick some properties to obtain the final tabular
representation by clicking on Show Table. Figure 7 shows the table produced for
entity type Film by selecting the properties prequel, director, and producer.
Some properties shown (e.g. producer) are candidates for fusion and some enti-
ties (e.g. The Godfather) are candidates for deduplication. At each stage in this
process, the user can intervene by clicking on the Feedback button to contribute
feedback, which becomes evidence for use in future searches.

Fig. 7. Data table

Note, therefore, that the
use of a probabilistic frame-
work allows us not only to
structure and integrate the
results but also to improve
presentation (e.g., by order-
ing rows by likelihood) and to
obtain targeted feedback. Note
also that since the underlying
PSL program models similar-
ity relationships, the interface
can make principled, uniform
choices regarding deduplica-
tion (using SimEntity and
SimProperty) and data fusion
(using SimProperty and SimPropertyValue). In the example screenshots, some
candidate property values (e.g., of Director) have been fused on the basis of
SimEntity. Without this, the final table might be more heavily polluted by the
natural redundancy one expects in search results.

7 Conclusions

This paper has provided empirical backing for the research hypothesis that
assimilating different sources of (partial and uncertain) evidence is effective in
inferring a good quality tabular structure over LD search results. The paper has
described how a PSL program has been constructed with which the different
sources of evidence can be assimilate in a principled and uniform way, where
such sources are syntactic matching, domain ontologies and user feedback. It
was shown how the PSL program can drive a user interface by mean of which
the user can provide feedback that improves future quality, in a pay-as-you-go
style. Moreover, the expressiveness of PSL allows the program to express sim-
ilarity relationships from which, as shown, it is possible to perform immediate
duplicate detection and data fusion prior to showing cleaner results to the user.
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