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Preface

The International Semantic Web Conference (ISWC) continues to be the premier forum
for Semantic Web researchers and practitioners to gather and share exciting new
findings and experiences. The community has steadily grown in size and scope over the
years, covering many aspects of Semantic Web technologies that lie at the intersection
of semantic technologies, data, and the Web. Basic research has renewed importance as
an engine of scientific understanding and of new ideas. The broad range of applications
of Semantic Web technologies in real settings help us appreciate the accomplishments
of the field as well as the limitations and challenges ahead. In addition to building on
well-established standards, the community is always generating shared resources and
infrastructure. There is a palpable excitement as we witness the Web becoming more
machine readable every day.

This volume contains the proceedings of ISWC 2016 with all the papers accepted to
the main conference tracks. This year, in addition to the traditional ISWC Research
Track we solicited submissions to an Applications Track and a new Resources Track. A
new Journal Track was introduced to expand the scope of the conference. The main
conference call for papers received 326 responses, over 60 more than the total for the
2015 conference.

The Research Track continues to be the most popular category for submissions. This
year, the track solicited novel and significant research contributions addressing theo-
retical, analytical, empirical, and practical aspects of the Semantic Web. In addition to
work building on W3C Semantic Web recommendations (e.g., RDF, OWL, SPARQL,
etc.), investigations on other approaches to the intersection of semantics and the Web
were encouraged. The track received 212 submissions. After a bidding process, each
was reviewed by at least four anonymous members of the Program Committee of the
track including one senior Program Committee member. Authors were given a chance
to respond to the reviews during an author rebuttal period. The senior Program
Committee member was responsible for promoting discussion among the reviewers and
making a final recommendation to the program chairs. Papers were discussed in a
Program Committee meeting, and the chairs made final determinations about accep-
tance. These proceedings include the 39 papers that were accepted for presentation at
the conference.

The Applications Track solicited submissions exploring the benefits and challenges
of applying semantic technologies in concrete, practical applications, in contexts
ranging from industry to government and science. The track accepted submissions in
three categories: (1) in-use applications providing evidence that there is actual, sig-
nificant use of the proposed application or tool by the target user group, preferably
outside the group that conducted the development; (2) industry applications describing
a business case or motivation and demonstrating their impact in the respective industry
while ideally positioning the value of the tool or system for the Semantic Web com-
munity; (3) emerging applications describing early reports on real-world projects,



exposing substantial research contributions and lessons learned in terms of semantics
requirements, testing of approaches or infrastructure, and evaluations of early proto-
types. The track received a total of 43 submissions and accepted 12. Each submission
was reviewed by at least three Program Committee members of the track. Authors had
the opportunity to submit a rebuttal to the reviews to clarify questions posed by
Program Committee members. The program chairs made final decisions about accep-
tance: 23 submissions were emerging applications and seven of them were accepted, 15
were in-use applications and four were accepted, and five were industry applications
and one was accepted.

The newly introduced Resources Track sought submissions providing a concise and
clear description of a resource and its (expected) usage. Traditional resources are
considered to be ontologies, vocabularies, datasets, benchmarks and replication studies,
services, and software. These resources are important outputs of any scientific work.
Sharing these resources with the research community does not only ensure the
reproducibility of results, but also has the benefit of supporting other researchers in
their own work. Although high-quality shared resources have a key role and an
essential impact on the advancement of a research community, the academic
acknowledgement for sharing such resources is low. Therefore, many researchers
primarily focus on publishing scientific papers and lack the motivation to share their
resources. An additional challenge is that resources are often shared without following
best practices, for example, at non-permanent URLs that become unavailable within a
few months. The Resources Track aimed to encourage resource sharing following best
practices within the Semantic Web community. Besides more established types of
resources, the track solicited submissions of new types of resources such as ontology
design patterns, crowdsourcing task designs, workflows, methodologies, and protocols
and measures. The track received 71 submissions. At least three Program Committee
members for the track reviewed each paper using a structured review form that focused
on best practices for publishing a resource. After an author rebuttal period and sub-
sequent discussion among the reviewers, the program chairs decided on the final
acceptance of 24 resource papers that are included in these proceedings and were
invited to be presented at the conference.

A new Journal Track was introduced this year to invite presentations at the con-
ference about recent papers in the main journals where the community publishes. This
inaugural track targeted the Journal of Web Semantics and the Semantic Web Journal.
Authors of papers accepted during the past year that were not previously presented at a
main Semantic Web conference could self-nominate their paper. From the 49 self-
nominations, the editorial boards of the respective journals chose 12. These papers are
not included in these proceedings, but we list full citations of the papers that can be
found in the journals.

There are 75 papers included in these proceedings for the Research, Applications,
and Resources tracks. The substantial amount of papers in the Resources Track attest to
the strong culture in the Semantic Web community of disseminating research products
and continuing to extend the pool of shared resources, and doing so beyond ontologies
and software.

The conference proceedings were meticulously assembled by Fabian Flöck as
proceedings chair, who worked with the chairs to compile all the papers from the
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authors, produce the table of contents and the front matter, and submit everything to the
publishers. Silvio Peroni and Christoph Lange served as metadata chairs, organizing
structured descriptions of the contents of the proceedings so they can be made available
as semantic content in linked open data format. This year we accepted paper sub-
missions in HTML format, but only received one submission in this format.

The conference included a variety of events that are traditional at ISWC and enrich
the opportunities for interaction, learning, and mentoring.

The ISWC 2016 program included invited talks from prominent researchers within
and outside the field. Christian Bizer from the University of Mannheim talked about “Is
the Semantic Web What We Expected? Adoption Patterns and Content-Driven Chal-
lenges.” Hiroaki Kitano of from Sony Computer Science Labs, the Okinawa Institute of
Science and Technology, and the Systems Biology Institute discussed “Artificial
Intelligence to Win the Nobel Prize and Beyond: Creating the Engine for Scientific
Discovery.” Kathleen McKeown of Columbia University, gave a talk titled “At the
Intersection of Data Science and Language.”

The Posters and Demos session, chaired by Takahiro Kawamura and Heiko Paul-
heim, included 55 posters and 47 demos selected among 115 total submissions.
A Lightning Talks session offered time to those who wanted to take to the stage briefly
to offer late-breaking results, discussion topics, and perspectives.

Thanks to our workshop and tutorial chairs, Chiara Guidini and Heiner Stucken-
schmidt, the conference started off with very successful focused and highly interactive
events. Five tutorials were held on ontology design patterns, RDF-stream processing,
link discovery, Semantic Web for Internet/Web of Things, and SPARQL querying
benchmarks. Moreover, 15 workshops were also held to foster discussions on specific
topics of interest and to catalyze emerging communities. Also prior to the conference
there was a discussion to envision the future of the Semantic Web Challenge.

The doctoral consortium chairs, Philippe Cudre-Mauroux, Riichiro Mizoguchi, and
Natasha Noy, reviewed submissions from students still working on their PhD, and
organized an event that gave them an opportunity to share their research ideas in a
critical but supportive environment, to get feedback from mentors who are senior
members of the community, to explore issues related to academic and research careers,
and to build relationships with other PhD students from around the world. This pro-
gram was complemented by activities put together by Abraham Bernstein, Daniel
Garijo, and Matthew Horridge as student coordinators, who arranged travel awards, a
mentoring lunch, and other informal opportunities for students to meet other members
of the Semantic Web community.

The organization of a conference goes well beyond putting together a scientific
program. There were many volunteers who worked hard to support the large event that
ISWC has become, with hundreds of attendees from all over the world. We are very
grateful to Hideaki Takeda, who as local arrangements chair led a skilled team to
support the hotel accommodations, arrange conference facilities, develop the confer-
ence website, and take care of the myriad of details involved in supporting a scientific
conference. We thank all of them for making the conference a fun event and for hosting
us in the beautiful city of Kobe. The city’s diverse surroundings (from the modern
Kobe port to the mountainous Arima hot spring) and cultural heritage (from the Ikuta
shrine to Nada Sake breweries) inspired all participants to think more broadly and
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about the longer-term legacy of their work. We are especially thankful to Ikki Ohmukai
and Kouji Kozaki as vice chairs of the local committee and Rathachai Chawuthai as the
Web master.

Sponsorship is crucial to support the conference. We would like to thank our
sponsorship chairs, Makoto Iwayama and Carlos Pedrinaci, for their thorough and
tireless work at arranging sponsorship, and to all of our sponsors for their generous
contributions. We would also like to thank Amit Sheth for submitting a proposal to the
National Science Foundation that helped secure support for student travel to the con-
ference. The continued support from the National Science Foundation is greatly
appreciated.

We are also grateful to the Semantic Web Science Association (SWSA), and in
particular to its chair, Natasha Noy, and its treasurer, Guus Schreiber, for their spon-
sorship and for maintaining all the historical records of previous conferences containing
precious data and advice. We are also grateful to Steffen Staab, Ulrich Wechselberger,
Jeff Heflin, and the rest of the Organizing Committee of ISWC 2015, who were always
at hand to answer our questions and provide thoughtful advice.

Last but not least, we would like to thank Miel Vander Sande, our publicity chair,
who took all the announcements to mailing lists, social media, and other outlets to
ensure dissemination and awareness of all the conference events.

We hope that these proceedings and the events at ISWC 2016 will contribute to a
lasting legacy of this conference for many years to come.

October 2016 Paul Groth & Elena Simperl
Program Committee Co-chairs, Research Track

Alasdair Gray & Marta Sabou
Program Committee Co-chairs, Resources Track

Markus Krötzsch & Freddy Lecue
Program Committee Co-chairs, Applications Track

Yolanda Gil
General Chair
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Abstract. On-the-fly generation of integrated representations of Linked
Data (LD) search results is challenging because it requires successfully
automating a number of complex subtasks, such as structure inference
and matching of both instances and concepts, each of which gives rise to
uncertain outcomes. Such uncertainty is unavoidable given the semanti-
cally heterogeneous nature of web sources, including LD ones. This paper
approaches the problem of structuring LD search results as an evidence-
based one. In particular, the paper shows how one formalism (viz., prob-
abilistic soft logic (PSL)) can be exploited to assimilate different sources
of evidence in a principled way and to beneficial effect for users. The
paper considers syntactic evidence derived from matching algorithms,
semantic evidence derived from LD vocabularies, and user evidence, in
the form of feedback. The main contributions are: sets of PSL rules that
model the uniform assimilation of diverse kinds of evidence, an empirical
evaluation of how the resulting PSL programs perform in terms of their
ability to infer structure for integrating LD search results, and, finally,
a concrete example of how populating such inferred structures for pre-
sentation to the end user is beneficial, besides enabling the collection of
feedback whose assimilation further improves search result presentation.

Keywords: Linked data search · Linked data integration

1 Introduction

The idea of linked data (LD) underpins the attempt to transfer the strengths of
the web of documents to data: data can be shared, searched for and browsed,
building on standards for data identification, description and linking that pro-
vide low barriers to entry, facilitating new applications in areas such as data
science and open government. Along with a basic model that publishing, it can
be anticipated that popular types of tool can transfer successfully from the web
of documents to the web of data, supporting activities such as searching and
browsing. However, data and documents have important differences, and direct
translations of techniques that have been successful in the web of documents can
seem rather less intuitive in the web of data.

c© Springer International Publishing AG 2016
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For example, keyword search has been an important technology in the web
of documents: searches give rise to ranked lists of documents, through which the
user can browse. In such approaches, the user accesses the published document
directly. Such an approach has been transferred to the web of data, as repre-
sented by LD search engines such as Falcons [3], Sindice [11] and Swoogle [5].
Although LD search engines are useful, their results, which take the form of
collections of RDF resources, present to users the data as published. Thus, LD
search engines tackle the question What resources are out there that match the
search?, and not so much What data is out there that matches the search?. For
example, searching for "Godfather actors" returns results (see Fig. 1), among
others, that are about two distinct films in whose name the string Godfather
occurs, as well as about actors that have appeared in those films. Assuming for
the moment that the user is looking for data about actors in the US film named
The Godfather (en.wikipedia.org/wiki/The Godfather), released in 1972, filter-
ing and structuring the results in different tables, as shown in Fig. 2, would be
desirable since it distinguishes between films and actors and provides structure
to the presentation of films and of actors that have appeared in them.

The Godfather 1 9 7 2

film

lmdb:director/8405

lmdb:actor /30973 lmdb:actor /31134

lmdb:/film/43338

tit le d a t e

rdf:type

director

ac to r ac to r

The Godfather 1 7 5 6

Movie Work Q 3 8 6 7 2 4 dbr:Albert_S._Ruddy

dbr:Francis_Ford_Coppola

dbr:The_Godfather

n a m e Work/runt ime b u d g e t

rdf:type rdf:type rdf:type producer

director

Robert Duvall 1 9 3 1 - 0 1 - 0 5
. .  The

Godfather  . .

Actor Person dbr:United_States
The_Godfather
_(film_series)

dbr:Robert_Duvall

s ta r r ing

givenName s u r n a m e bi r thDate abs t r ac t

rdf:type rdf:type birthPlace

Talia Shire 1 9 4 6 - 0 4 - 2 5
. .  The

Godfather  . .

Actor Person
The_Godfather
_(film_series)

dbr:Talia_Shire

s ta r r ing

dbr:David_Shire

givenName s u r n a m e bi r thDate abs t r ac t

rdf:type rdf:type spouse

Mumbai Godfather 

film

lmdb:actor /10785

lmdb:actor /45671 lmdb:country/IN

lmdb:/film/12057

tit le

rdf:type

ac tor

ac to r count ry

Vinod Khanna 4 1 5 4 0

ac tor Person lmdb:performance/102956

lmdb:performance/110906

lmdb:actor /41540

ac to r_name actor_actorid

rdf:type rdf:type performance

performance

Fig. 1. Example LD search results for the term "Godfather actors"

As such, there is an opportunity to complement the work to date on search
engines for LD by devising techniques to infer a structure from the returned
resources. This would insulate the user from many of the heterogeneities that
LD resources typically exhibit due to weak constraints on publication.

https://en.wikipedia.org/wiki/The_Godfather
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Movie
name date director budget runtime

The Godfather 1972 Francis Ford Coppola 6 172

Actor
givenName surname birthDate birthPlace spouse
Robert Duvall 1931-01-05 United States null
Talia Shire 1946-04-25 null David Shire

Fig. 2. Results in Fig. 1 integrated and reported as tables

The integration of search results by means of structure inference is by no
means a straightforward task because there is no a priori target model to which
the results are to be mapped, the available evidence about the relationships
between different resources may be partial or misleading, and the integration
must be carried out automatically, or at most with small amounts of feed-
back from the user. Our hypothesis is that LD search result integration can
benefit from (i) combining different sources of evidence to inform the integra-
tion process, (ii) systematically managing the uncertainty associated with these
sources, and (iii) making cost-effective use of feedback. To test this hypothesis,
this paper investigates the use of probabilistic soft logic (PSL) [1] for combining
three sources of evidence, viz., syntactic matching, domain ontologies and user
feedback.

The contributions of this paper are:

1. The characterization of the LD search result integration task as one in which
different sources of (partial and uncertain) evidence are brought together to
inform decision making.

2. The instantiation of this characterization of the problem using PSL to com-
bine, in a principled and uniform way, evidence from syntactic matching, from
domain ontologies and from user feedback.

3. The empirical evaluation of this approach, in which it is shown how the
principled, uniform use of different types of evidence improves integration
quality for the end user.

2 Related Work

LD search engines such as Falcons [3] and Sindice [11] return a list of resources
that match the given search terms ranked by their estimated relevance but with-
out attempting identify their underlying structure. Our contributions build on
such search engines as we infer a tabular structure over the returned results.
Sig.ma [15] also builds on returned search results. Differently from us, it assumes
that the search terms describe one entity (hence a singleton, never a set). Sim-
ilarly to us, Sig.ma aims to build a profile (essentially a property graph, not
a tabular structure as we do) that characterises the searched-for entity on the
basis of the results returned by Sindice. Sig.ma uses heuristics whose only input
is syntactic evidence, and accumulates information about the entity from dif-
ferent LD resources without using a principled evidence assimilation technique.
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In contrast, we use a probabilistic framework to uniformly assimilate different
kinds of evidence in a principled manner. Sig.ma does respond to feedback: the
user can decide whether a resource is allowed to contribute data to the generated
profile or not. However, such feedback does not affect future searches, whereas, in
our approach, feedback given is assimilated as evidence and therefore influences
positively the quality of future interactions.

Inferring a structure from instance-level RDF data, but not search results per
se, has received much attention by the research community. However, this activity
has focussed on finding ontology axioms such as range restriction [4,16], domain
restriction [4,16], subsumption [14,16,18], and equivalence axioms [6,14,16] that
apply to the data. In contrast, our approach uses PSL to populate data tables with
returned search results, which are more heterogeneous, structurally and semanti-
cally, than the data the approaches cited normally target. For example, searching
for a film title (e.g. The Godfather) with Falcons returns results from at least three
LD resources: DBPedia, LinkedMDB and Yago. This makes the structure infer-
ence task harder, as conflicts between the vocabularies used by different datasets
need to be resolved.

Given input ontologies, inductive logic programming, a statistical relational
learning paradigm, is used in [6,14] to extend the ontologies with new axioms
given data defined in terms of the given ontologies. In contrast, no background
knowledge is needed in some other approaches. Hierarchical clustering was used
in [4] to find schematic patterns, whereas association rule mining [16] and
Bayesian networks [18] have also been used to infer descriptions of concepts.
Our contributions also use background knowledge in the form of a PSL program
resulting from a supervised learning stage in which logical rules are assigned
weights. However, we view ontologies as semantic evidence, since we aim to pop-
ulate a tabular structure of search results rather than extend a given ontology.

Recently, there has been a growing interest in applying statistical relational
learning (SRL) techniques such Markov logic networks (MLNs) and PSL to prob-
lems where relational dependencies play a crucial role (e.g., inference over social
network data) or where principled integration requires assimilation of multiple
sources of evidence. In the Semantic Web context, Niepert et al. [10] exploited
MLNs to match ontologies by modelling axioms as hard constraints that must
hold for every alignment. They use similarities of concepts in the input ontologies
as evidence, taking them as a seed alignment, and apply integer linear program-
ming to maximise the probability of alignment based on the seed alignments
as constrained by the ontological axioms. Their work showed that syntactic and
semantic evidence can be combined using SRL techniques. Differently from them,
we do not represent ontological knowledge as hard constraints since we target
a tabular structure. In our approach, ontologies are used as evidence for infer-
ring an instance of out target structure in the returned search results. This
means that we treat ontological knowledge as uncertain. Similarly to us, Pujara
et al. [13] used PSL to infer knowledge graphs about real-world entities from
noisy extractors, and, in particular, the assimilation of lexical similarities and
ontological evidence proves to be crucial in de-noising extracted graphs.
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3 A Brief Introduction to PSL

In this paper, the formalism used to infer an integrated structure over returned
LD search results is PSL [1], a general-purpose learning and inference framework
for reasoning with uncertainty in relational domains.

In Sect. 4, we contribute a set of PSL rules and a target metamodel. The
rules express probabilistic relationships between triples in search results. After
the rules have been converted into a PSL program, the PSL implementation
processes the returned results so as to instantiate the target metamodel, thereby
yielding an integrated, structured view over the results.

A PSL program is a set of weighted first-order-logic formulae of the form
w : A ← B, where w are non-negative weights, B is a conjunction of literals
and A is a single literal. Consider the following example PSL program (adapted
from [8], where rules are written as w : B → A):

0.3 : votesFor(B,P ) ←̃ friend(B,A) ∧̃ votesFor(A,P ) (1)
0.8 : votesFor(B,P ) ←̃ spouse(B,A) ∧̃ votesFor(A,P ) (2)

The semantics, including the tilde-capped connectives, are briefly explained
below but, intuitively, this PSL program states that, given any individuals a,
b and p, instantiating (resp.) the logical variables A, B and P , a claim is made
that if b is either a friend or a spouse of a and a votes for party p, then, with
some likelihood, b votes for p. The respective weights assert that the influence
of spouses on what party b votes for is larger than that of friends.

Softness in PSL arises from the fact that truth values are drawn from the
continuous interval [0, 1], i.e., if A is the set {a1, . . . , an} of atoms, then an
interpretation is a mapping I : A → [0, 1]n, rather than only to the extreme
values, i.e., either 0 (denoting falsehood) or 1 (denoting truth).

To capture the notion that different claims (expressed as rules) may have
different likelihoods, a probability distribution is defined over interpretations, as
a result of which rules that have more supporting instantiations are more likely.
In the case of Rules (1) and (2) above, interpretations where the vote of an
individual agrees with the vote of many friends, i.e., satisfies many instantiations
of Rule (1) are preferred over those that do not. Moreover, where a tradeoff arises
between using agreement with friends or with spouses, the latter is preferred due
to the higher weight of Rule (2).

Determining the degree to which a ground rule is satisfied from its constituent
atoms requires relaxing (with respect to the classical definitions) the semantics of
the logical connectives for the case where terms take soft truth-values. To formal-
ize this, PSL uses the �Lukasiewicz t-norm and its corresponding co-norm, which
are exact (i.e., coincide with the classical case) for the extremes and provide
a consistent mapping for all other values. The relaxed connectives are notated
with a capping tilde, i.e., ∧̃, ∨̃, and ¬̃, with A ←̃ B ≡ ¬̃ B ∨̃ A.

Atoms in a PSL rule can be user-defined. Thus, a unary predicate IsDictWord
might be defined to have truth value 1 if the individual of which it is predicated
is a dictionary word and 0 otherwise. Atoms in a PSL rule can also capture
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user-defined relationships between sets of individuals. Thus, the truth value of
S.interests SimSetEq[] T.interests is the similarity of the respective sets of
interests of the individuals S and T as computed by the user-provided definition
of set similarity SimSetEq[].

In summary, the basic idea is to view logical formulas as soft constraints on
their interpretations. If an interpretation does not satisfy a formula, it is taken
as less likely, but not necessarily impossible. Furthermore, the more formulas
an interpretation satisfies, the more likely it is. In PSL, this quantification is
grounded on the relative weight assigned to each formula. The higher the weight,
the greater the difference between the likelihood of an interpretation that satisfies
a formula and the likelihood of one that does not.

The key tasks supported by PSL implementations are learning and inference.
The rules in a PSL program can be either given (i.e., asserted) or learned from
sample (or training) data. In this paper, rules (shown later) are given. Further-
more, the weight of each rule can also be given or learned from sample data. In
this paper, rule weights are learned from sample data (as detailed later). The
PSL weight learning process takes a PSL program (possibly with initial weights),
a specification of both evidence and query predicates, and sample data. A predi-
cate is said to be an evidence predicate if all its ground atoms have known truth
values by observation. A predicate is said to be a query predicate if one or more
of its ground atoms have unknown truth values. The process returns a relative
non-negative weight for each rule. A positive weight denotes that a rule is sup-
ported by the sample data whereas the magnitude indicates the strength of that
support. A weight of zero denotes lack of support in the sample data for that
rule (but since weights are relative it does not entail impossibility).

The main purpose of a PSL program is inference. The PSL inference process
takes a PSL program, evidence as data, and a query. It then computes the most
probable assignment of soft truth-values to the query, i.e., the probability that
the given query atom is true. A major strength of PSL is that implementations
perform inference by constructing a corresponding convex optimization problem
for which a solution can be efficiently computed even for large-size inputs. For
detailed descriptions of the PSL learning and inference algorithms, see [1].

4 Structure Inference Over LD Search Results

Our approach can be briefly summarized as follows. Firstly, we have defined a
metamodel (see Fig. 3) that characterizes the type of structure to be inferred
(i.e., populated with resources returned by LD searches). Every instances of the
metamodel is a tabular representation of search results that we refer to as a
report. Thus, given the search returns, our goal is to infer that some resources
are entity types and some are entities (i.e., elements in the extent of an inferred
entity type), some other resources are properties of some inferred entity type and
some are property values (i.e., elements in the domain of an inferred property).

Next, we have expressed the semantics of the metamodel as a set of
unweighted PSL rules, which we refer to as the baseline model, denoted by B
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Fig. 3. The metamodel for population with LD search results.

(see Rules R1-R17 in Fig. 4). The rules in B build on syntactic evidence alone.
In order to assimilate semantic evidence, we have added rules to B that build on
additional ontological evidence. We refer to this as the semantic model, denoted
by S, where S ⊃ B (see examples in Rules R18-R23 in Fig. 4). Next, using
sample data from search results and from ontologies, we use a PSL implemen-
tation (github.com/linqs/psl) to learn weights for the rules in S and obtain the
corresponding PSL program PSL(S). This also yields PSL(B), i.e., the sub-
set of PSL(S) where we only retain those rules that occur in B. Then, given
the returned results of any LD search, we can use PSL inference from PSL(S)
to instantiate the metamodel with the most probable characterization of the
returned resources. In order to assimilate evidence from user feedback, we have
defined a separate set of rules, which we refer to as the feedback model, denoted by
F (see examples in Rules R24-R27 in Fig. 4). To obtain the weights for the rules
in F and thus obtain the PSL program PSL(F), we generated synthetic feedback
and used the same PSL implementation. The PSL program PSL(S) ∪ PSL(F)
integrates LD search results given syntactic, semantic and feedback evidence.

The Baseline Model: Assimilating Syntactic Evidence. Our approach is
grounded on the hypothesis that, with some likelihood, there exist relationships
between RDF triples returned by search and instantiations of our metamodel
that can be captured by a PSL program. Correspondingly, the first step in the
construction of the baseline model B is to map, as a purely syntactic operation,
RDF triples onto predicates that assert membership of metamodel constructs.
For example, on the evidence of an RDF triple such as U rdf:type U’, where
U and U’ are URIs, we may conclude that RDFIsInstOf(U,U’), i.e., that there
is an instance-of relationship between an individual U and a type U’.

Such mappings are inherently uncertain (i.e., only hold with some likeli-
hood) because it is impossible to capture a publisher’s intentions. So, e.g., if
RDFType(Q386724) is not a user-level type then perhaps it should not be con-
sidered to denote an entity type, and therefore not suitable to be reported as
a table to the end user. Another source of uncertainty is the search itself (i.e.,
its associated precision and recall). For example, the RDF individual labeled
"Vinod Khana" may be returned but should not be listed in a table describing
the actors of the 1972 US-produced Godfather film. Rule uncertainty is reflected
in rule weights that are learned from sample data as described in Sect. 5.

The baseline model B consists of Rules R1-R17 in Fig. 4. There are two
subsets in B: Rules R1-R9 infer membership for all the constructs in the

https://github.com/linqs/psl


10 D. Alshukaili et al.

metamodel in Fig. 3 except for similarity relationships, which are inferred
through Rules R10-R17, comprising the second subset. The bodies of Rules
R1-R9 show how RDF triples, in raw (i.e. Triple predicate in Fig. 4) or in
mapped form (e.g. RDFIsInstOf in Fig. 4), provide evidence for metamodel mem-
bership predicates. For example, in Rule R1, a returned RDF triple of the form
S rdf:type T counts as evidence that T is an entity type. As expected, rules
heads (i.e., inferred predicates) may appear in rule bodies as further evidence.
For example, in Rule R7, a returned RDF triple (S,P,O), where S has been
inferred to be an entity and P has been inferred to be a property, counts as
evidence for inferring that O has domain P. User-defined predicates (such as
IsDictWord) also count as evidence, as shown in Rule R2. Lexical similarity (in
Rules R10-R17) also counts as evidence. For example, in Rule R8, the following
count as evidence that P is a property of the entity type T: P appears as a pred-
icate, and T as type, in the returned results, and the set of URIs of which P is
predicated is similar to the set of URIs which are said to be of type T.

The bodies of Rules R10-R17 show how similarity relationships can be
inferred from user-defined predicates (such as LexSim in, among others, Rule
R10) and from user-provided definitions (possibly parametrized) of set similar-
ity (such as SimSetEq[] in, among others, Rule R11). A value for LexSim is
computed using cosine similarity for strings with length greater than fifty and
Levenshtein (or edit) distance otherwise. In the case of URIs, we use the label
(as given by rdfs:label) of the dereferenced resource the URI points to, or else
the local name if no label is found. Rule R14 treats an entity as a set of property
values and infers similarity between entities from the overlap of property value
sets. Rule R16 uses object overlap (a metric that is commonly used to align
properties [7,17]) to infer similarity of properties.

Consider again the example search results in Fig. 1. Given the baseline model,
if the rules had equal weights, EntityType(Movie) would be inferred with
a higher probability than EntityType(Q386724) because the former satisfies
Rules R1 and R2, whereas, Property(birthDate) would more probable than
Property(spouse) because the latter is a predicate of fewer resources. Instances
of the HasProperty relationship are inferred based on their co-occurrence in RDF
resources computed by set similarity predicates in PSL. Based on our running
example, the probability of HasProperty(Person, surname) is greater than
that of HasProperty(Person, spouse) because surname is a predicate of more
resources than spouse is.

The Semantic Model: Adding Ontological Evidence. The baseline model
only assimilates syntactic evidence. We can extend it with rules that assimilate
evidence from ontologies to yield the model we call semantic.

Ontologies are computational artefacts that formally describe concepts and
relationships in a given domain. Thus, in terms of the metamodel we target, they
describe entity types and their properties and provide evidence that complements
the baseline model described above. Our approach is to make use of statements
in ontologies about types and properties. This is then used to ground predicates
that represent ontological evidence. Table 1 shows the different kinds of evidence
we extract from ontologies and how it is mapped into PSL predicates.
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Fig. 4. PSL rules used in structure inference

The main idea here is that being defined as a concept or property in some
pertinent ontology counts as additional evidence that a returned result (e.g.,
a resource URI) is an entity type or property, respectively, in terms of our
metamodel. Thus, we use the PSL predicates in Table 1 to construct PSL rules
such as R18-R20 in Fig. 4, which assimilate ontological information as evidence
that a given resource S is an entity. For example, if "The Godfather" appears
in a triple in the returned results as an instance of Movie, where Movie is
asserted to be a concept (e.g., in Movie Ontology (www.movieontology.org/)
this adds strength to the belief that "The Godfather" is an instance of Entity
in our metamodel (see R18 in Fig. 4). We also use ontological statements to

www.movieontology.org/
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Table 1. Mapping ontological statements into PSL predicates

Ontological statement PSL predicate

T rdf:type rdfs:Class OntType(T)

T rdf:type owl:Class

P rdf:type rdf:Property OntProperty(P)

P rdf:type owl:DatatypeProperty

P rdf:type owl:ObjectProperty

T1 owl:equivalentClass T2 OntEqType(T1,T2)

P1 owl:equivalentProperty P2 OntEqProperty(P1,P2)

T1 owl:disjointWith T2 OntDisjointType(T1,T2)

P rdfs:domain T OntHasProperty(T,P)

supplement evidence for similarity relationships as exemplified by Rules R21-
R23 in Fig. 4. Rule R21 exemplifies the direct use of ontological evidence. Rule
R22 exemplifies the use of ontological evidence mediated by lexical similarity.
Rule R23 exemplifies the use of set-similarity predicates where one of the sets
contains elements from ontological statements. In this case, ontological state-
ments help reconcile heterogeneity in the returned results.

Subsuming the baseline model, the semantic model S ⊃ B contains Rules R1-
R17 plus such rules as R18-R20 and R21-R23 that assimilate additional evidence
to the predicates in the baseline model.

The Feedback Model: Assimilating User-Provided Evidence. The seman-
tic model assimilates syntactic and semantic evidence. We can extend it with
rules that assimilate user-provided evidence in the form of feedback.

There has been a growing interest in assimilating user feedback in data inte-
gration (see [2] for a general proposal, and [12] for a general methodology and
recent work in the area). User feedback is even more important in environments
that are characterized by large-scale heterogeneity and highly autonomous data
sources as is the case in the Web of Data(WoD) [9]. Also, with recent advances
in crowdsourcing, feedback for solving complex data integration challenges can
now be obtained more cost-effectively. In this paper, we assume that the user
knows the domain of the search term and is motivated by obtaining high-quality
results from the search, which we believe to be reasonable in the context of
search results personalization.

We use feedback in two ways. The first is to refine the report presented to
the user. When the returned results have been structured and integrated using
PSL, a report is presented to the user (as described in Sect. 6). Feedback can be
provided that results in refinement of the report. For example, a prior state of
the report shown in Fig. 2 could have contained another row in the Movie tables
referring to the Mumbai Godfather film which the user ruled out as a false
positive. In this case, feedback on inference results powers up a form of filtering,
i.e., of data cleaning, generating an incentive for users to provide feedback in
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the first place. The second, and more significant, way we use feedback is to
take advantage of accumulated, user-provided feedback to improve the inference
results before a report is produced. In this case, feedback on inference results is
another type of evidence that can be assimilated.

Table 2. PSL predicates used to gather user feedback (with examples)

PSL feedback predicate Example

EntityTypeFB(uri,term) EntityTypeFB(Q11424,no)

HasTypeFB(uri,uri,term) HasType(dbr:The Godfather,CreativeWork,
yes)

HasPropertyFB(uri,uri,term) HasPropertyFB(CreativeWork, author, yes)

SimEntityTypeFB(uri,uri,term) SimEntityType(Film, Movie, yes)

SimPropertyFB(uri,uri,term) SimPropertyFB(duration, runtime, yes)

SimEntityFB(uri,uri,term) SimEntityFB(dbr:The Godfather,
lmdbr:film/43338, yes)

Table 2 shows the feedback predicates used in our model. The feedback is
simply a comment from the user on the correctness of the inferred query pred-
icate. Thus, we use the PSL predicates in Table 2 to construct such PSL rules
as R24-R27 in Fig. 4, which assimilate user-provided feedback as evidence that
a given resource S is, or is not, an entity. For example, if "War and Peace"
appears in a triple in the returned results as an instance of Movie, where Movie
is confirmed by feedback to be an entity type, this adds strength to the belief
that "War and Peace" is an instance of Entity in our metamodel.

Weight Learning for PSL Program Generation. We generated two PSL
programs PSL(S) and PSL(F) for inference by learning weights for the rules
in S and F. Firstly, we obtained search results using Sindice [11] and Fal-
cons [3]. The search terms and vocabularies used were: for the Films domain,
"The Godfather", "Godfather actors", "Casablanca" and the Movie ontol-
ogy; for the Cities domain, "Berlin", "Manchester" and the GeoFea-
tures (www.mindswap.org/2003/owl/geo/) and GeoNames (www.geonames.
org/) ontologies; for the People domain, Tim Berners-Lee, Chris Bizer and
the FOAF and SWRC (ontoware.org/swrc) ontologies. We collected the top 20
results from each search engine for each search term. The total number of typed
individuals in the corpus was 304 and the total number of triples was 12,160.
The corpus contained, resp., 180 and 502 distinct domain types and properties.

Secondly, we annotated the corpus with the ground truth. In doing so, we
took into account the relevant domain. For example, searching for "Casablanca"
return results about the city and not just the film of that name. Given the sample
data from search results and vocabularies, we used PSL to learn weights for the
rules in the semantic model and yield the PSL(S) program. We learn the weights
discriminatively using maximum-pseudo likelihood. To reduce overfitting, we use
5-fold cross-validation and we average the weights of each rule.

www.mindswap.org/2003/owl/geo/
www.geonames.org/
www.geonames.org/
http://ontoware.org/swrc
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To learn weights for the rules in feedback model F and yield the PSL pro-
gram PSL(F), we proceeded as follows. One might crowdsource sample feedback
instances, but we simulated feedback acquisition to give rise to synthetic sam-
ple. The synthesis procedure we used is as follows. We take as input a sample of
inferences returned by PSL(S) and the number of users providing feedback (100,
in this paper). For each worker, we randomly generate 50 feedback instances,
where a feedback instance is a true/false annotation on the inference returned
for query predicates. In this paper, we assume that feedback is reliable. However,
introducing a per-user degree of unreliability only requires a simple change.

5 Experimental Evaluation

The goal of the experimental evaluation is to measure how well the various PSL
programs, generated as described above, infer a structure from LD search results
that conforms to the adopted metamodel. To provide comprehensive information
about the experiments, we have made the datasets, the code, and documentation
available on GitHub 1.

Exp. 1: Inference Using Syntactic and Semantic Evidence. The goal of
Exp. 1 is to measure the quality of PSL(B), where only syntactic evidence is
assimilated, and then measure the quality of PSL(S), where semantic evidence is
also assimilated, thereby allowing us to measure the impact of using ontologies
on the quality. We measure the quality of our program using the area under
precision-recall curve (AUC) for each query predicate in our PSL model. The
precision/recall curve is computed by varying the probability threshold above
which a query atom is predicted to be true. This means that the measurement
does not depend on setting any threshold.

We first performed PSL inference on PSL(B) on the search results, for each
of three domains in turn. We denote the measured quality as AUC(B) with
some abuse of notation. We then added semantic evidence extracted from the
relevant vocabularies to the search results and performed inference on PSL(S).
We denote the measured quality by AUC(S). We then calculate the quality
impact of using semantic evidence as Δ = AUC(S) − AUC(B). Columns 2, 3
and 4 in each subtable in Table 3 list all the measurements obtained in Exp. 1
for the corresponding domain.

Discussion. As measured in terms of the AUC, across the domains, the quality
of PSL(B) is good on average (around 0.65) if we discount the similarity rela-
tionships, which are inherently dependent on semantic evidence. This suggests
that PSL(B) uses syntactic evidence effectively but that the approach might
benefit from assimilating other forms of evidence.

Assimilating ontological evidence indeed leads to improvement in the AUC,
particularly w.r.t. similarity relationships, with a knock-on positive effect on
the quality of the tabular representation. Thus, the corresponding average
AUC(S) increases to close to 0.7. The degree of improvement varies across
1 https://github.com/duhai-alshukaili/StructuringLDSearchResults.

https://github.com/duhai-alshukaili/StructuringLDSearchResults
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Table 3. AUC results for our PSL models with datasets in the test collection

Query Predicate AUC(B) AUC(S) Δ AUC(S ∪ F) Δ′

Entity .726 .736 .010 .827 .091
EntityType .749 .812 .063 .954 .142
HasProperty .512 .578 .057 .614 .036
HasType .554 .604 .050 .709 .105
Property .774 .774 .000 .779 .005
SimEntity .083 .108 .025 .322 .214
SimEntityType .320 .351 .030 .517 .166
SimProperty .159 .184 .025 .621 .437

(a) Films

Query Predicate AUC(B) AUC(S) Δ AUC(S ∪ F) Δ′

Entity .645 .751 .105 .789 .039
EntityType .828 .844 .017 .844 .000
HasProperty .457 .511 .054 .559 .048
HasType .557 .731 .174 .732 .000
Property .683 .683 .000 .685 .001
SimEntity .086 .583 .497 .612 .030
SimEntityType .869 .891 .022 .891 .000
SimProperty .257 .230 -.027 .537 .307

(b) People
Query Predicate AUC(B) AUC(S) Δ AUC(S ∪ F) Δ′

Entity .525 .651 .126 .882 .231
EntityType .776 .793 .017 .793 .000
HasProperty .470 .485 .015 .541 .056
HasType .631 .668 .037 .820 .152
Property .774 .780 .006 .794 .014
SimEntity .082 .344 .261 .411 .068
SimEntityType .648 .662 .014 .662 .000
SimProperty .484 .386 -.098 .687 .302

(c) Cities

domains depending on the coverage of the ontologies used. For example, the
B-probability of HasProperty(dbo:Person, dbo:spouse) is 0.04, whereas its
S-probability is much higher, at 0.80, as the DBPedia ontology explicitly defines
this relationship. In other cases, explicit assertion of type disjointness has a
significant effect too. Thus, the B-probability of SimEntity(dbr:Casablanca,
dbr:Casablanca (film)) is 0.55, whereas its S-probability is much lower, at
0.01, because dbo:Work and dbo:wgs84 pos:SpatialThing are disjoint in the
DBpedia ontology. In the case of Entity, the assertion of a type by an ontol-
ogy acts as a reliable anchor for individuals returned in the search results.
For example, the B-probability of Entity(lmdb:film/43338) is 0.22, whereas
its S-probability is higher, at 0.38, because its type, lmdb:film, matches the
type dbo:Film, in the MO. As hinted above, improvements in the inference
of metatypes (e.g., Entity) has a knock-on effect on the corresponding set-
similarity relationship (SimEntity in this example). In the case of SimEntity the
improvement is more significant the People and Cities domain than for Films
because of inherent type ambiguity. For example, searching with "Casablanca"
returns films, organizations, and a city. Type ambiguity is perhaps best solved
with user feedback, as the next experiment shows.

Exp. 2: Inference Using Feedback. The goal of Exp. 2 is to measure the
quality of PSL(S ∪ F), where feedback evidence is also assimilated, thereby
allowing us to measure the impact of using feedback on the quality. We sim-
ulated the feedback evidence as being provided for the top 5 % of the infer-
ence results for each feedback target. This assumes a strategy in which feed-
back is targeted at removing false positives. We denote the measured quality by
AUC(S ∪ F). We then calculate the quality impact of using semantic evidence
as Δ′ = AUC(S ∪ F) − AUC(S). Columns 5 and 6 in each subtable in Table 3
list all the measurements obtained in Exp. 2 for the corresponding domain.

Discussion. As measured in terms of the AUC, across the domains, the qual-
ity of PSL(S ∪ F) is quite good in average (around 0.7) even if we include
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the similarity relationships. In other words, user feedback seems to address the
ambiguity issues that caused the quality of PSL(S) to be lower for similarity
relationships. Thus, although the impact of feedback is not uniformly high, it
seems complementary and corrective, i.e., it improves the most where the most
improvement is needed, viz., the similarity relationships, where we can observe
AUC improvements that can reach 80 %, 130 %, up to almost 240 %. This, the
highest improvement, was observed for SimProperty in the Films domain. The
reason for this is that PSL(S) produces many false positives for SimProperty.
One possible reason is that property names (e.g., name) are often reused without
qualification for very different concepts. Combining syntactic and ontological
evidence seems insufficient.

6 A Deployment Case Study

Fig. 5. Type selection

Imagine a user gives "Godfather
actors" as the search term. Relevant
returned results come predominantly
from the Linked Movie Database and
the DBpedia. A few, less relevant,
results come from Linked WordNet,
BookMashup, and MusicBrainz. The
PSL program uses the results to make
inferences as to how to instantiate the
target metamodel in a way that inte-
grates the returned results into a tab-
ular report.

Fig. 6. Property selection

As depicted in Fig. 5,
our PSL-driven user inter-
face then provides the
user with a list of pos-
tulated entity types for
the given search term.
The PSL query predicate
behind Fig. 5 is HasType,
with rows ordered by
EntityType probability.
At this point, the user
can express an interest in
one of the listed types by
pressing on Show More
which lists the inferred
properties of the selected
type. Figure 6 shows the
list of inferred properties
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of the postulated entity type Film. The PSL query predicate behind Fig. 6 is
HasProperty, with rows ordered by Property probability.

At this point, the user can tick some properties to obtain the final tabular
representation by clicking on Show Table. Figure 7 shows the table produced for
entity type Film by selecting the properties prequel, director, and producer.
Some properties shown (e.g. producer) are candidates for fusion and some enti-
ties (e.g. The Godfather) are candidates for deduplication. At each stage in this
process, the user can intervene by clicking on the Feedback button to contribute
feedback, which becomes evidence for use in future searches.

Fig. 7. Data table

Note, therefore, that the
use of a probabilistic frame-
work allows us not only to
structure and integrate the
results but also to improve
presentation (e.g., by order-
ing rows by likelihood) and to
obtain targeted feedback. Note
also that since the underlying
PSL program models similar-
ity relationships, the interface
can make principled, uniform
choices regarding deduplica-
tion (using SimEntity and
SimProperty) and data fusion
(using SimProperty and SimPropertyValue). In the example screenshots, some
candidate property values (e.g., of Director) have been fused on the basis of
SimEntity. Without this, the final table might be more heavily polluted by the
natural redundancy one expects in search results.

7 Conclusions

This paper has provided empirical backing for the research hypothesis that
assimilating different sources of (partial and uncertain) evidence is effective in
inferring a good quality tabular structure over LD search results. The paper has
described how a PSL program has been constructed with which the different
sources of evidence can be assimilate in a principled and uniform way, where
such sources are syntactic matching, domain ontologies and user feedback. It
was shown how the PSL program can drive a user interface by mean of which
the user can provide feedback that improves future quality, in a pay-as-you-go
style. Moreover, the expressiveness of PSL allows the program to express sim-
ilarity relationships from which, as shown, it is possible to perform immediate
duplicate detection and data fusion prior to showing cleaner results to the user.
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Abstract. The paper determines the algebraic and logic structure of the
multiset semantics of the core patterns of SPARQL. We prove that the
fragment formed by AND, UNION, OPTIONAL, FILTER, MINUS and
SELECT corresponds precisely to both, the intuitive multiset relational
algebra (projection, selection, natural join, arithmetic union and except),
and the multiset non-recursive Datalog with safe negation.

1 Introduction

The incorporation of multisets (also called “duplicates” or “bags”)1 into the
semantics of query languages like SQL or SPARQL is essentially due to practical
concerns: duplicate elimination is expensive and duplicates might be required for
some applications, e.g. for aggregation. Although this design decision in SQL may
be debatable (e.g. see [6]), today multisets are an established fact in database
systems [8,14].

The theory behind these query languages is relational algebra or equivalently,
relational calculus, formalisms that for sets have a clean and intuitive semantics
for users, developers and theoreticians [1]. The same cannot be said of their exten-
sions to multisets, whose theory is complex (particular containment of queries)
and their practical use not always clear for users and developers [8]. Worst, there
exist several possible ways of extending set relational operators to multisets and
one can find them in practice. As illustration, let us remind the behaviour of SQL
relational operators. Consider as example the multisets A = {a, a, a, b, b, d} and
B = {a, b, b, c}. Then A UNION ALLB = {a, a, a, a, b, b, b, b, c, d}, that is, the “sum”
of all the elements in both multisets (UNION DISTINCT is classical set union). A
INTERSECT ALL B is {a, b, b}, i.e., the common elements in A and B, each with the
minimum of the multiplicities in A and B. Regarding negation or difference, there
are at least two: A EXCEPT ALL B is {a, a, d}, i.e. the arithmetical difference of the
copies, and A EXCEPT B is {d}, the elements in A (with their multiplicity) after
filtering out all elements occurring in B. The reader can imagine that the “rules”
for combining these operators are not simple nor intuitive as they do not follow
the rules of classical set operations.

1 There is no agreement on terminology ([18], p. 27). In this paper we will use the
word “multiset”.

c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 20–36, 2016.
DOI: 10.1007/978-3-319-46523-4 2
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Is there a rationale behind the possible extensions? Not easy to tell. Early
on Dayal et al. [7] observed that there are two conceptual approaches to extend
the set operators of union, intersection and negation, corresponding to the two
possible interpretations of multiple copies of a tuple. The first approach treats
all copies of a given tuple as being identical or indistinguishable. The second one
treats all copies of a tuple as being distinct, e.g., as having an underlying identity.
Each of these interpretations gives rise to a different semantics for multisets. The
first one permits to extend the lattice algebra structure of sets induced by the
⊆-order by defining a multiset order ⊆m defined as A ⊆m B if each element in A
is contained in B and its multiplicity in B is bigger than in A. This order gives
a lattice meet (multiset intersection) defined as the elements c present in both
multisets, and with multiplicity min(cA, cB), where cA, cB are the number of
copies of c in A and B respectively. This is the INTERSECT ALL operator of SQL.
The lattice join of two multisets gives a union defined as the elements c present
in both multisets with multiplicity max(cA, cB). This operator is not present in
SQL. As was shown by Albert [2], there is no natural negation to add to this
lattice to get a Boolean algebra structure like in sets. The second interpretation
(all copies of an element are distinct) gives a poor algebraic structure. The union
gives in this case an arithmetic version, where the elements in the union of the
multisets A and B are the elements c present in both multisets with cA + cB

copies. This is the UNION ALL operator in SQL. Under this interpretation, the
intersection loses its meaning (always gives the empty set) and the difference
becomes trivial (A − B = A).

In order to illustrate the difficulties of having a “coherent” group of operators
for multisets, let us summarize the case of SQL, that does not have a clear
rationale on this point.2 We classified the operators under those that: keep the
set semantics; preserve the lattice structure of multiset order; do arithmetic with
multiplicities. Let A,B be multisets, and for each element c, let cA and cB be
their respective multiplicities in A and B.

union :

⎧
⎪⎨

⎪⎩

set UNION DISTINCT (multiplicity: 1)
lattice not present in SQL(*) (multiplicity: max(cA, cB))
arithmetic UNION ALL (multiplicity:cA + cB)

intersection :

⎧
⎪⎨

⎪⎩

set INTERSECT DISTINCT (multiplicity: 1)
lattice INTERSECT ALL (multiplicity: min(cA, cB))
arithmetic does not make sense

difference :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

set not present in SQL(∗∗)(multiplicity: 1)
lattice does not exists
arithmetic EXCEPT ALL (multiplicity: max(0, cA − cB)
filter EXCEPT(mult:if (cB = 0) then cA else 0

(*) Simulated as (A UNION ALL B) EXCEPT ALL (A INTERSECT ALL B).
(**) Simulated as SELECT DISTINCT * FROM (A EXCEPT B).

2 We follow the semantics of ANSI and ISO SQL:1999 Database Language Standard.
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At this point, a question arises: Are there “reasonable”, “well behaved”,
“harmonic”, groups of these operations for multisets? The answer is positive.
Albert [2] proved that lattice union and lattice intersection plus a filter differ-
ence work well in certain domains. On the other hand, Dayal et al. [7] introduced
the multiset versions for projection (πX), selection (σC), join (��) and distinct
(δ) and studied their interaction with Boolean operators. They showed that the
lattice versions above combine well with selection (σP∨Q(r) = σP (r) ∪ σQ(r)
and similarly for intersection); that the arithmetic versions combine well with
projection (πX(r ∪ s) = πX(r) ∪ πX(s)). An important facet is the complex-
ity introduced by the different operators. Libkin and Wong [16,17] and Grum-
bach et al. [9] studied the expressive power and complexity of the operations of
the fragment including lattice union and intersection; arithmetic difference; and
distinct.

For our purposes here, namely the study of the semantics of multisets in
SPARQL, none of the above fragments help. It turns out that is a formalism
coming from a logical field, the well behaved fragment of non-recursive Datalog
with safe negation (nr-Datalog¬), the one that matches the semantics of multisets
in SPARQL. More precisely, the natural extension of the usual (set) semantics
of Datalog to multisets developed by Mumick et al. [19]. In this paper we work
out the relational counterpart of this fragment, using the framework defined
by Dayal et al. [7], and come up with a Multiset Relational Algebra (MRA)
that captures precisely the multiset semantics of the core relational patterns of
SPARQL. MRA is based on the operators projection (π), selection (σ), natural
join (��), union (∪) and filter difference (\). The identification of this algebra and
the proof of the correspondence with the relational core of SPARQL are the main
contributions of this paper. Not less important, as a side effect, this approach
gives a new relational view of SPARQL (closer to classical relational algebra
and hence more intuitive for people trained in SQL); allows to make a clean
translation to a logical framework (Datalog); and matches precisely the fragment
of SQL corresponding to it. Table 1 shows a glimpse of these correspondences,
whose details are worked in this paper.

Contributions. Summarizing, this paper advances the current understanding of
the SPARQL language by determining the precise algebraic (Multiset Relational
Algebra) and logical (nr-Datalog¬) structure of the multiset semantics of the
core pattern operators in the language. This contribution is relevant for users,
developers and theoreticians. For users, it gives an intuitive and classic view of
the relational core patterns of SPARQL, allowing a good understanding of how to
use and combine the basic operators of the SPARQL language when dealing with
multisets. For developers, helps to perform optimization, design extensions of the
language, and understanding the semantics of multisets allowing for example
translations from SPARQL operators to the right multiset operators of SQL and
vice versa. For theoreticians, introduces a clean framework (Multiset Datalog as
defined by Mumick et al. [19]) to study from a formal point of view the multiset
semantics of SPARQL patterns.
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Table 1. Schema of correspondences of multiset SPARQL patterns: with
SPARQL algebra operators; Relational Multiset algebra operators; Datalog rules; and
SQL expressions. The operator EXCEPT in SPARQL is new (although expressible). The
operator diff is a typed version of the diff SPARQL algebra operator, and \ in MRA is
the multiset filter difference.

SPARQL Multiset Relational
Algebra

nr-Datalog¬ SQL

SELECT X ... πW (...) q(X) ← L1, . . . , Ln SELECT X ...

P FILTER C σC(r) L ← LP , C FROM r WHERE C

P1 . P2 r1 �� r2 L ← L1, L2 r1 NATURAL JOIN r2

P1 UNION P2 r1 ∪ r2 L ← L1 r1 UNION ALL r2

L ← L2

P1 EXCEPT P2 r1 \ r2 L ← L1, ¬L2 r1 EXCEPT r2

The paper is organized as follows. Section 2 presents the basic notions and
notations used in the paper. Section 3 identifies a classical relational algebra view
of SPARQL patterns, introducing the fragment SPARQLR. Section 4 presents
the equivalence between SPARQLR and multiset non-recursive Datalog with
safe negation, and provides explicit transformations in both directions. Section 5
introduces the Multiset Relational Algebra, a simple and intuitive fragment of
relational algebra with multiset semantics, and proves that it is exactly equiv-
alent to multiset non-recursive Datalog with safe negation. Section 6 analyzes
related work and presents brief conclusions.

2 SPARQL Graph Patterns

The definition of SPARQL graph patterns will be presented by using the formal-
ism presented in [22], but in agreement with the W3C specifications of SPARQL
1.0 [25] and SPARQL 1.1 [10].

RDF Graphs. Assume two disjoint infinite sets I and L, called IRIs and literals
respectively.3 An RDF term is an element in the set T = I ∪ L. An RDF triple
is a tuple (v1, v2, v3) ∈ I × I × T where v1 is the subject, v2 the predicate and
v3 the object. An RDF Graph (just graph from now on) is a set of RDF triples.
The union of graphs, G1 ∪G2, is the set theoretical union of their sets of triples.
Additionally, assume the existence of an infinite set V of variables disjoint from
T . We will use var(α) to denote the set of variables occurring in the structure α.

A solution mapping (or just mapping from now on) is a partial function
μ : V → T where the domain of μ, dom(μ), is the subset of V where μ is defined.
3 In addition to I and L, RDF and SPARQL consider a domain of anonymous resources

called blank nodes. Their occurrence introduces issues that are not discussed in this
paper. Based on the results in [11], we avoided blank nodes assuming that their
absence does not affect the results presented in this paper.
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The empty mapping, denoted μ0, is the mapping satisfying that dom(μ0) = ∅.
Given ?X ∈ V and c ∈ T , we use μ(?X) = c to denote the solution mapping
variable ?X to term c. Similarly, μ?X→c denotes a mapping μ satisfying that
dom(μ) = {?X} and μ(?X) = c. Given a finite set of variables W ⊂ V , the
restriction of a mapping μ to W , denoted μ|W , is a mapping μ′ satisfying that
dom(μ′) = dom(μ) ∩ W and μ′(?X) = μ(?X) for every ?X ∈ dom(μ) ∩ W . Two
mappings μ1, μ2 are compatible, denoted μ1 ∼ μ2, when for all ?X ∈ dom(μ1) ∩
dom(μ2) it satisfies that μ1(?X) = μ2(?X), i.e., when μ1 ∪μ2 is also a mapping.
Note that two mappings with disjoint domains are always compatible, and that
the empty mapping μ0 is compatible with any other mapping.

A selection formula is defined recursively as follows: (i) If ?X, ?Y ∈ V and
c ∈ I ∪ L then (?X = c), (?X =?Y ) and bound(?X) are atomic selection
formulas; (ii) If F and F ′ are selection formulas then (F ∧ F ′), (F ∨ F ′) and
¬(F ) are boolean selection formulas. The evaluation of a selection formula F
under a mapping μ, denoted μ(F ), is defined in a three-valued logic with values
true, false and error. We say that μ satisfies F when μ(F ) = true. The semantics
of μ(F ) is defined as follows:

– If F is ?X = c and ?X ∈ dom(μ), then μ(F ) = true when μ(?X) = c and
μ(F ) = false otherwise. If ?X /∈ dom(μ) then μ(F ) = error.

– If F is ?X =?Y and ?X, ?Y ∈ dom(μ), then μ(F ) = true when μ(?X) = μ(?Y )
and μ(F ) = false otherwise. If either ?X /∈ dom(μ) or ?Y /∈ dom(μ) then
μ(F ) = error.

– If F is bound(?X) and ?X ∈ dom(μ) then μ(F ) = true else μ(F ) = false.
– If F is a Boolean combination of the previous atomic cases, then it is evaluated

following a three value logic table (see [25], 17.2).

Multisets. A multiset is an unordered collection in which each element may occur
more than once. A multiset M will be represented as a set of pairs (t, j), each
pair denoting an element t and the number j of times it occurs in the multiset
(called multiplicity or cardinality). When (t, j) ∈ M we will say that t j-belongs
to M (intuitively “t has j copies in M”). To uniformize the notation and capture
the corner cases, we will write (t, ∗) ∈ M or simply say t ∈ M when there are
≥ 1 copies of t in M . Similarly, when there is no occurrence of t in M , we will
simply say “t does not belong to M”, and abusing notation write (t, 0) ∈ M , or
(t, ∗) /∈ M . All of them indicate that t does not occur in M .

For multisets of solution mappings, following the notation of SPARQL, we
will also use the symbol Ω to denote a multiset and card(μ,Ω) to denote the
cardinality of the mapping μ in the multiset Ω. In this sense, we use (μ, n) ∈ Ω
to denote that card(μ,Ω) = n, or simply μ ∈ Ω when card(μ,Ω) > 0. Similarly,
card(μ,Ω) = 0 when μ /∈ Ω. The domain of a multiset Ω is defined as dom(Ω) =⋃

μ∈Ω dom(μ).

SPARQL Algebra. Let Ω1, Ω2 be multisets of mappings, W be a set of variables
and F be a selection formula. The SPARQL algebra for multisets of mappings is
composed of the operations of projection, selection, join, union, minus, difference
and left-join, defined respectively as follows:
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– πW (Ω1) = {μ′ | μ ∈ Ω1, μ
′ = μ|W }

where card(μ′, πW (Ω1)) =
∑

μ′=μ|W card(μ,Ω1)
– σF (Ω1) = {μ ∈ Ω1 | μ(F ) = true}

where card(μ, σF (Ω1)) = card(μ,Ω1)
– Ω1 �� Ω2 = {μ = (μ1 ∪ μ2) | μ1 ∈ Ω1, μ2 ∈ Ω2, μ1 ∼ μ2}

where card(μ,Ω1 �� Ω2) =
∑

μ=(μ1∪μ2)
card(μ1, Ω1) × card(μ2, Ω2)

– Ω1 ∪ Ω2 = {μ | μ ∈ Ω1 ∨ μ ∈ Ω2}
where card(μ,Ω1 ∪ Ω2) = card(μ,Ω1) + card(μ,Ω2)

– Ω1 − Ω2 = {μ1 ∈ Ω1 | ∀μ2 ∈ Ω2, μ1 � μ2 ∨ dom(μ1) ∩ dom(μ2) = ∅}
where card(μ1, Ω1 − Ω2) = card(μ1, Ω1)

– Ω1\F Ω2 = {μ1 ∈ Ω1 | ∀μ2 ∈ Ω2, (μ1 � μ2)∨(μ1 ∼ μ2∧(μ1∪μ2)(F ) �= true)}
where card(μ1, Ω1 \F Ω2) = card(μ1, Ω1)

– Ω1���� F Ω2 = σF (Ω1 �� Ω2) ∪ (Ω1 \F Ω2)
where card(μ,Ω1���� F Ω2) = card(μ, σF (Ω1 �� Ω2)) + card(μ,Ω1 \F Ω2)

Syntax of Graph Patterns. A SPARQL graph pattern is defined recursively as
follows: A tuple from (I ∪ L ∪ V ) × (I ∪ V ) × (I ∪ L ∪ V ) is a graph pattern
called a triple pattern.4 If P1 and P2 are graph patterns then (P1 AND P2),
(P1 UNION P2), (P1 OPT P2) and (P1 MINUSP2) are graph patterns. Also if C
is a filter constraint (as defined below) then (P1 FILTER C) is a graph pattern.
And if W is a set of variables, (SELECT WP1) is a graph pattern.

A filter constraint is defined recursively as follows: (i) If ?X, ?Y ∈ V and
c ∈ I ∪L then (?X = c), (?X =?Y ) and bound(?X) are atomic filter constraints;
(ii) If C1 and C2 are filter constraints then (!C1), (C1 || C2) and (C1 && C2)
are complex filter constraints. Given a filter constraint C, we denote by f(C) the
selection formula obtained from C. Note that there exists a simple and direct
translation from filter constraints to selection formulas and vice versa.

Semantics of SPARQL Graph Patterns. The evaluation of a SPARQL graph
pattern P over an RDF graph G is defined as a function [[P]]G (or [[P]] where G
is clear from the context) which returns a multiset of solution mappings. Let
P1, P2, P3 be graph patterns and C be a filter constraint. The evaluation of a
graph pattern P over a graph G is defined recursively as follows:

1. If P is a triple pattern t, then [[P]]G = {μ | dom(μ) = var(t)∧μ(t) ∈ G} where
μ(t) is the triple obtained by replacing the variables in t according to μ, and
each mapping μ has cardinality 1.

2. [[(P1 AND P2)]]G =[[P1]]G �� [[P2]]G
3. If P is (P1 OPT P2) then

(a) if P2 is (P3 FILTER C) then [[P]]G =[[P1]]G���� C[[P3]]G
(b) else [[P]]G =[[P1]]G���� (true)[[P2]]G

4. [[(P1 MINUSP2)]]G =[[P1]]G −[[P2]]G
5. [[(P1 UNION P2)]]G =[[P1]]G ∪[[P2]]G
6. [[(P1 FILTER C)]]G = σf(C)([[P1]]G)
7. [[(SELECTWP1)]]G = πW ([[P1]]G).
4 We assume that any triple pattern contains at least one variable.
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For the rest of the paper, we will call SPARQLW3C the fragment of graph
patterns including the operators AND, UNION, OPT, FILTER, MINUS and
SELECT, as defined above.

3 The Relational Fragment of SPARQL

In this section we will introduce a fragment of SPARQL which follows standard
intuitions of the operators from relational algebra and SQL. We will prove that
this fragment is equivalent to SPARQLW3C. First, let us introduce the DIFF
operator as an explicit way of expressing negation-by-failure5 in SPARQL.

Definition 1 (The DIFF operator). The weak difference of two graph pat-
terns, P1 and P2, is defined as

[[(P1 DIFFP2)]] = {μ1 ∈ [[P1]] | ∀μ2 ∈ [[P2]], μ1 � μ2}
where card(μ1,[[(P1 DIFFP2)]]) = card(μ1,[[P1]]).

It is important to note that the DIFF operator is not defined in SPARQL
1.0 nor in SPARQL 1.1 at the syntax level. However, it can be implemented in
current SPARQL engines by using the difference operator of the SPARQLW3C

algebra. It was showed [4,13] that the operators OPT and MINUS can be simu-
lated with the operator DIFF in combination with AND, UNION and FILTER.

In order to facilitate, and make more natural the translation from SPARQL
to Relational Algebra (and Datalog), we will introduce a more intuitive notion
of difference between two graph patterns. We define the domain of a pattern
P , denoted dom(P ), as the set of variables that occur (defining the output
“schema”) in the multiset of solution mappings for any evaluation of P .

Definition 2 (The EXCEPT operator). Let P1, P2 be graph patterns satisfy-
ing dom(P1) = dom(P2). The except difference of P1 and P2 is defined as

[[(P1 EXCEPT P2)]] = {μ ∈ [[P1]] | μ /∈ [[P2]]}
where card(μ,[[(P1 EXCEPT P2)]]) = card(μ,[[P1]]).

We will denote by EXCEPT∗ (or outer EXCEPT) the version of this opera-
tion when the restriction on domains is not considered.6

Note that the restriction on the domains of P1 and P2 follows the philosophy
of classical relational algebra. But it can be proved that EXCEPT and its outer
version are simulable each other:

Lemma 1. For each pair of graph patterns P1, P2 in SPARQLW3C, and any
RDF graph G, the operator EXCEPT can be simulated by EXCEPT∗ and vice
versa.
5 Recall that negation-by-failure can be expressed in SPARQL 1.0 as the combination

of an optional graph pattern and a filter constraint containing the bound operator.
6 This operation is called SetMinus in [12].
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Proof. Clearly EXCEPT can be simulated by EXCEPT∗. On the other direc-
tion, let us assume that dom(P1) �= dom(P2). Then (P1 EXCEPT∗ P2) can be
expressed by the pattern (P ′

1 EXCEPT P ′
2) where:

– P ′
1 = (P1 FILTER(¬bound(?x1) && . . . && ¬bound(?xn))) when dom(P1) \

dom(P2) = {x1, . . . , xn} and P ′
1 = P1 when dom(P1) \ dom(P2) = ∅; and

– P ′
2 = (P2 FILTER(¬bound(?y1) && . . . && ¬bound(?ym))) when dom(P2) \

dom(P1) = {y1, . . . , ym} and P ′
2 = P2 when dom(P2) \ dom(P1) = ∅.

Note that cardinalities of selected mappings are not touched.

The next lemma establishes the relationship between EXCEPT and DIFF,
showing that EXCEPT can be simulated in SPARQLW3C.

Lemma 2. For every pair of graph patterns P1, P2 in SPARQLW3C, and any
RDF graph G, the operator EXCEPT can be simulated by DIFF and vice versa.

Proof. The high level proof goes as follows. EXCEPT, as we saw, is equivalent to
EXCEPT∗. And EXCEPT∗ differs from DIFF only in checking compatibility of
mappings (i.e. ∼). [[P1 EXCEPT∗ P2]] eliminates from[[P1]] those mappings in [[P2]]
that are equal to one in [[P1]]; while DIFF eliminates those that are compatible
with one in [[P1]]. That is, the difference is between the multisets {(μ1, n1) ∈ Ω1 |
¬∃μ2 ∈ Ω2 ∧ μ1 = μ2} versus {(μ1, n1) ∈ Ω1 | ¬∃μ2 ∈ Ω2 ∧ μ1 ∼ μ2}. Now, for
two mappings μ1, μ2, equality and compatibility (μ1 = μ2 versus μ1 ∼ μ2) differ
only in those variables that are bound in μ1 and unbound in μ2 or vice versa.
Thus, to simulate = with ∼ and vice versa, it is enough to have an operator that
replaces all unbound entries in mappings of Ω1 and Ω2 by a fresh new constant,
e.g. c, call the new sets Ω′

1 and Ω′
2, and we will have that {(μ1, n1) ∈ Ω1 | ¬∃μ2 ∈

Ω2 ∧ μ1 ∼ μ2} is equivalent to {(μ1, n1) ∈ Ω′
1 | ¬∃μ2 ∈ Ω′

2 ∧ μ1 = μ2}. Note
that cardinalities are preserved because the change between “unbound” and “c”
does not change them. The rest is to express the two operations on multisets of
solution mappings: the one that fills in unbound entries with a fresh constant c;
and the one that changes back the values c to unbound.

Now we are ready to state the main theorem. Define SPARQLR as the frag-
ment of SPARQLW3C graph pattern expressions defined recursively by triple
patterns plus the operators AND, UNION, FILTER and EXCEPT. Considering
that DIFF is able to express OPT and MINUS (cf. [4,13]), and that the DIFF
operator is expressible in SPARQLR (Lemma 2), we have the following result:

Theorem 1. SPARQLR is equivalent to SPARQLW3C.

For the rest of the paper, we will concentrate our interest on SPARQLR.

Note 1. An alternative proof of Theorem1 is given as follows. (Compare [13],
Lemma 12). Let θ be a function that renames variables by fresh ones.

SPARQLW3C contains SPARQLR: The graph pattern (P1 EXCEPT P2) can
be rewritten into an equivalent pattern (((P1 OPT(θP2)) FILTER C) FILTER C ′)
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where dom(P1) = {?x1, . . . , ?xn}, C is (?x1 = θ?x1 && . . . && ?xn = θ?xn) and
C ′ is (! bound(θ?x1)).

SPARQLR contains SPARQLW3C: The graph pattern (P1 DIFFP2) can be
rewritten into an equivalent graph pattern

(P1 EXCEPT(SELECT W ((P1 AND P ′
1) FILTER C)AND P ′

2))
where W = dom(P1) = {?x1, . . . , ?xn}, P ′

1 = θ(P1), P ′
2 = θ(P2) and C is

(?x1 = θ?x1 && . . . ?xn = θ?xn).

4 SPARQLR ≡ Multiset Datalog

In this section we prove that SPARQLR have the same expressive power of
Multiset Datalog. Although the ideas of the proof are similar to those in [3] (now
for SPARQLR), we will sketch the main transformations to make the paper as
self contained as possible. For notions of Datalog see Levene and Loizou [15], for
the semantics of Multiset Datalog, Mumick et al. [19].

4.1 Multiset Datalog

A term is either a variable or a constant. A positive literal L is either a predicate
formula p(t1, dots, tn) where p is a predicate name and t1, dots, tn are terms,
or an equality formula t1 = t2 where t1 and t2 are terms. A negative literal
¬L is the negation of a literal L. A rule is an expression of the form L ←
L1 ∧ · · · ∧ Lk ∧ ¬Lk+1 ∧ · · · ∧ ¬Ln where L is a positive literal called the head
of the rule and the rest of literals (positive and negative) are called the body. A
fact is a rule with empty body and no variables. A Datalog program Π is a finite
set of rules and its set of facts is denoted facts(Π).

A variable x is safe in a rule r if it occurs in a positive predicate or in x = c
(c constant) or in x = y where y is safe. A rule is safe it all its variables are
safe. A program is safe if all its rules are safe. A program is non-recursive if its
dependency graph is acyclic. In what follows, we only consider non-recursive and
safe Datalog programs, denoted by nr-Datalog¬.

To incorporate multisets to the classical Datalog framework we will follow
the approach introduced by Mumick and Shmueli [20]. The idea is rather intu-
itive: Each derivation tree gives rise to a substitution θ. In the standard (set)
semantics, what matters is the set of the different substitutions that instantiates
the distinguished literal. On the contrary, in multiset semantics the number of
such instantiations also becomes relevant. As Mumick and Shmueli state [19,20],
“duplicate semantics of a program is obtained by counting the number of deriva-
tion trees”. Thus now we have pairs (θ, n) of substitutions θ plus the number n
of derivation trees that produce θ.

A Datalog query is a pair (Π,L) where Π is a program and L is a distin-
guished predicate (the goal) occurring as the head of a rule. The answer to (Π,L)
is the multiset of substitutions θ such that makes θ(L) true.
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Normalized Datalog. Let L,L1, L2 be literals. We assume, without loss of gener-
ality, that any safe non-recursive Datalog program can be normalized such that
it just contains rules of the following types:

– (Projection rule) L ← L1 where var(L) ⊂ var(L1);
– (Selection rule) L ← L1, EQ where EQ is a set of equalities of the form

xi = xj such that xi, xj are variables or constants.
– (Join rule) L ← L1, L2 where var(L) ⊆ var(L1) ∪ var(L2); and
– (Negation rule) L ← L1,¬L2 where var(L2) ⊆ var(L1) and var(L) = var(L1).

4.2 From SPARQL to Datalog

The algorithm that transforms SPARQL into Datalog includes transformations
of RDF graphs to Datalog facts, SPARQL queries into a Datalog queries, and
SPARQL mappings into Datalog substitutions.

RDF Graphs to Datalog Facts: Let G be an RDF graph: each term t in G is
encoded by a fact iri(t) or literal(t) when t is an IRI or a literal respectively;
the set of terms in G is defined by the rules term(X) ← iri(X) and term(X) ←
literal(X); the fact Null(null) encodes the null value (unbounded value); each
RDF triple (v1, v2, v3) in G is encoded by a fact triple(v1, v2, v3). Recall that we
are assuming that an RDF graph is a “set” of triples.

SPARQL Patterns into Datalog Rules: The transformation follows essentially
the idea presented by Polleres [23]. Let P be a graph pattern and G an RDF
graph. Denote by δ(P )G the function which transforms P into a set of Datalog
rules. Table 2 shows the transformation rules defined by the function δ(P )G,
where the notion of compatible mappings is implemented by the rules:

comp(X,X,X) ← term(X), comp(X,Y,X) ← term(X) ∧ Null(Y ),
comp(Y,X,X) ← Null(Y ) ∧ term(X), comp(X,X,X) ← Null(X).

Also, an atomic filter condition C is encoded by a literal L as follows (where
?X, ?Y ∈ V and u ∈ I ∪ L): if C is either (?X = u) or (?X =?Y ) then L is C; if
C is bound(?X) then L is ¬Null(?X).

SPARQL Mappings to Datalog Substitutions: Let P be a graph pattern, G an
RDF graph and μ a solution mapping of P in G. Then μ gets transformed into a
substitution θ satisfying that for each x ∈ var(P ) there exists x/t ∈ θ such that
t = μ(x) when μ(x) is bounded and t = null otherwise.

Now, the correspondence between the multiplicities of mappings and substi-
tutions works as follows: Each SPARQL mapping comes from an evaluation tree.
A set of evaluation trees becomes a multiset of mappings. Similarly, a set of Dat-
alog derivation trees becomes a multiset of substitutions. Thus, each occurrence
of a mapping μ comes from a SPARQL evaluation tree. This tree is translated
by Table 2 to a Datalog derivation tree, giving rise to an occurrence of a sub-
stitution in Datalog. Each recursive step in Table 2 carries out bottom up the
correspondence between cardinalities of mappings and substitutions.
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Table 2. Transforming SPARQLR graph patterns into Datalog Rules. The function
δ(P )G takes a graph pattern P and an RDF graph G, and returns a set of Datalog rules
with main predicate p(var(P )), where var(P ) denotes the tuple of variables obtained
from a lexicographical ordering of the variables in P . If L is a Datalog literal, then
νj(L) denotes a copy of L with its variables renamed according to a variable renaming
function νj : V → V . comp is a literal encoding the notion of compatible mappings.
cond is a literal encoding a filter condition C. W is a subset of var(P1).

Pattern P δ(P )G

(x1, x2, x3) p(var(P )) ← triple(x1, x2, x3)

(P1 ANDP2) p(var(P )) ← ν1(p1(var(P1))) ∧ ν2(p2(var(P2)))
∧

x∈var(P1)∩var(P2)
comp(ν1(x), ν2(x), x),

δ(P1)G, δ(P2)G

dom(ν1) = dom(ν2) = var(P1) ∩ var(P2), range(ν1) ∩ range(ν2) = ∅.
(P1 UNIONP2) p(var(P )) ← p1(var(P1))

∧
x∈var(P2)\var(P1)

Null(x),

p(var(P )) ← p2(var(P2))
∧

x∈var(P1)\var(P2)
Null(x),

δ(P1)G, δ(P2)G

(P1 EXCEPTP2) p(var(P1)) ← p1(var(P1)) ∧ ¬p2(var(P2)),

δ(P1)G, δ(P2)G

(SELECTWP1) p(W ) ← p1(var(P1)),

δ(P1)G

(P1 FILTERC)
and C is atomic

p(var(P )) ← p1(var(P1)) ∧ cond

δ(P1)G

Thus we have that a SPARQL query Q = (P,G) where P is a graph pattern
and G is an RDF graph gets transformed into the Datalog query (Π, p(var(P )))
where Π is the Datalog program δ(P )G plus the facts got from the transforma-
tion of the graph G, and p is the goal literal related to P .

4.3 From Datalog to SPARQL

Now we need to transform Datalog facts into RDF data, Datalog substitutions
into SPARQL mappings, and Datalog queries into SPARQL queries.

Datalog Facts as an RDF Graph: Given a Datalog fact f = p(c1, ..., cn), consider
the function desc(f) which returns the set of triples

{(u,predicate, p), (u, rdf: 1, c1), . . . , (u, rdf: n, cn)},

where u is a fresh IRI. Given a set of Datalog facts F , the RDF description of
F will be the graph G =

⋃
f∈F desc(f).

Datalog Rules as SPARQL Graph Patterns: Let Π be a (normalized) Datalog
program and L be a literal p(x1, . . . , xn) where p is a predicate in Π and each
xi is a variable. We define the function gp(L)Π which returns a graph pattern
encoding of the program (Π,L). The translation works intuitively as follows:
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(a) If predicate p is extensional, then gp(L)Π returns the graph pattern
((?Y,predicate, p)AND(?Y, rdf: 1, x1)AND · · · AND(?Y, rdf n, xn)),
where ?Y is a fresh variable.

(b) If predicate p is intensional and {r1, . . . , rn} is the set of all the rules in
Π where p occurs in the head, then gp(L)Π returns the graph pattern
(. . . (T (r1)UNION T (r2)) . . . UNION T (rn)) where T (ri) is defined as follows
(when n = 1 the resulting graph pattern is reduced to T (r1)):
• If ri is L ← L1 then T (ri) returns SELECTx1, . . . , xn WHEREgp(L1)Π .
• If ri is L ← L1 ∧ EQ, where EQ is a set of equalities of the form

xi = xj such that xi, xj are variables or constants, then T (ri) returns
(gp(L1)Π FILTER C) where C is a filter condition equivalent to EQ.

• If ri is L ← L1 ∧ L2 then T (ri) returns (gp(L1)Π AND gp(L2)Π).
• If ri is L ← L1 ∧ ¬L2 then T (ri) returns (gp(L1)Π EXCEPT∗ gp(L2)Π).

Datalog Substitutions as SPARQL Mappings: For each substitution θ satisfy-
ing (Π,L) build a mapping μ satisfying that, if x/t ∈ θ then x ∈ dom(μ) and
μ(x) = t. The correspondence of multiplicities work in a similar way (via deriva-
tion tree to evaluation tree) as in the case of mappings to substitutions.

Putting together the transformation in Table 2 and the pattern obtained by
using gp(L)Π , we get the following theorem, whose proof is a long but straight-
forward induction on the structure of the patterns in one direction, and on the
level of Datalog in the other.

Theorem 2. Multiset nr-Datalog¬ has the same expressive power as SPARQLR.

5 The Relational Version of Multiset Datalog: MRA

In this section we introduce a multiset relational algebra (called MRA), coun-
terpart of Multiset Datalog, and prove its equivalence with the fragment of
non-recursive Datalog with safe negation.

5.1 Multiset Relational Algebra (MRA)

Multiset relational algebra is an extension of classical relation algebra having
multisets of relations instead of sets of relations. As indicated in the introduction,
there are manifold approaches and operators to extend set relational algebra with
multisets. We use the semantics of multiset operators defined by Dayal et al. [7]
for the operations of selection, projection, natural join and arithmetic union; and
add filter difference (not present there) represented by the operator “except”.

Let us formalize these notions. In classical (Set) relational algebra, a database
schema is a set of relational schemas. A relational schema is defined as a set of
attributes. Each attribute A has a domain, denoted dom(A). A relation R over
the relational schema S = {A1, . . . , An} is a finite set of tuples. An instance r of
a schema S is a relation over S. Given an instance r of a relation R with schema
S, Aj ∈ S and t = (a1, . . . , an) ∈ r, we denote by t[Aj ] the tuple (aj). Similarly
with t[X] when X ⊆ S and we will define t[∅] = ∅.
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In the Multiset relational algebra setting, an instance of a schema is a multiset
relation, that is, a set of pairs (t, i), where t is a tuple over the schema S, and
i ≥ 1 is a positive integer. (For notions and notations on multisets recall Sect. 2,
Multisets).

Definition 3 (Multiset Relational Algebra (MRA)). Let r and r′ be mul-
tiset relations over the schemas S and S′ respectively. Let A ∈ S be an attribute,
a ∈ dom(A) and I = S ∩ S′. MRA consists of the following operations:

1. Selection. σA=a(r) = {(t, i) : (t, i) ∈ r ∧ t[A] = a}.
2. Natural Join. r �� r′ is a multiset relation over S ∪ S′ defined as follows. Let

S′′ = S′ − S. Let t�t′ denotes concatenation of tuples. Then

r �� r′ = {(t�(t′[S′′]), i × j) : (t, i) ∈ r ∧ (t′, j) ∈ r′ ∧ t[I] = t′[I]}.

3. Projection. Let X ⊆ S. Then:

πX(r) = {(t[X],
∑

(tj ,nj)∈r s.t. tj [X]=t
nj) : (t, ∗) ∈ r}.

4. Union. Assume S = S′.

r ∪ r′ ={(t, i) : t i − belongs to r and t /∈ r′}
∪ {(t′, j) : t′ /∈ r and t′ j − belongs to r′}
∪ {(t, i + j) : t i − belongs to r and t j − belongs to r′}.

5. Except. Assume S = S′.

r \ r′ = {(t, i) ∈ r : (t, ∗) /∈ r′}.

As usual, we will define a query in this multiset relational algebra as an expres-
sion over an extended domain which includes, besides the original domains of
the schemas, a set of variables V .

5.2 MRA ≡ Multiset nr-Datalog ¬

This subsection is devoted to prove the following result.

Theorem 3. Multiset relational algebra (MRA) has the same expressive power
as Multiset Non-recursive Datalog with safe negation.

From this theorem and Theorem 2 it follows:

Corollary 1. SPARQLR is equivalent to MRA.

Proof. The proof is based on the ideas of the proof of Theorem 3.18 in [15],
extended to multisets. Let E be a relational algebra query expression over the
schema R and D a database. Then it will be translated by a function (·)Π to the
Datalog program facts(Π) ∪ EΠ , where facts(Π) is the multiset of facts (over
fresh predicates rΠ for each relation r, and having the same arity as the original
schema of r):



The Multiset Semantics of SPARQL Patterns 33

facts(Π) = {(rΠ(t), n) : t is a tuple with multiplicity n in schema r in D},
and EΠ is the translation of the expression E given by the recursive specification
below. For the expression Ej , the set Vj will denote its list of attributes.

1. Base case. No operator involved. Thus the query is a member of the schema
R, namely r(x1, . . . , xn). The corresponding Multiset Datalog query is:
outr(x1, . . . , xn) ← rΠ(x1, . . . , xn)

2. E = σC(E1), where C is a set of equalities of the form xi = xj where
xi, xj are variables or constants. The translation EΠ is the program:
outE(x1, . . . , xk) ← EΠ

1 (x1, . . . , xk) ∧ C
3. E = E1 �� E2. Let V = V2 \ V1. The translation is: outE(V1, V ) ← EΠ

1 (V1) ∧
EΠ

2 (V2)
4. E = πA(E1), where A is a sublist of the attributes in E1. The translation is:

outE(A) ← EΠ
1 (V1).

5. E = E1 ∪ E2, where E1 and E2 have the same schema. The translation is:
outE(x1, . . . , xk) ← EΠ

1 (x1, . . . , xk) outE(x1, . . . , xk) ← EΠ
2 (x1, . . . , xk)

6. E = E1 \ E2, where E1 and E2 have the same schema. The translation is:
outE(x1, . . . , xk) ← EΠ

1 (x1, . . . , xk) ∧ ¬EΠ
2 (x1, . . . , xk)

It is important to check that the resulting program is non-recursive (this is
because the structure of the algebraic relational expression from where it comes
is a tree). Also it is safe because in rule (6) both expressions have the same
schema). Now, it needs to be shown that for each relational expression (query)
E in R, [E]D and [EΠ ] return the same “tuples” with the same multiplicity.
This is done by induction on the structure of E.

Now, let us present the transformation from Multiset Datalog to Multiset
Relational Algebra. Note that we may assume a normal form for the Datalog
programs as presented in Sect. 4.1. Then the recursive translation (·)R from
Datalog programs to MRA expressions goes as follows.

1. First translate those head predicates q occurring in ≥ 2 rules as follows. Let q
be the head of rules r1, . . . , rk, k ≥ 2. Rename each such head q with the same
set of variables V . Then the translation is (q)R = (qr1)

R ∪ · · · ∪ (qrk
)R. From

now on, we can assume that, not considering these q’s, all other predicates
occur as head in at most one rule. Hence we will not need the subindex
indicating the rule to which they belong to.

2. (Base case.) Let r be a fact q(V ). Then translates it as (qr)R = qR(V ), where
qR is a fresh new schema with the corresponding arity.

3. Let r be q(A) ← p(V ), where A is a sublist of V . The translation is (qr)R =
πA((p)R).

4. Let r be q(V ) ← p(V ) ∧ C, where C is a set of equalities xi = xj such that
xi, xj are variables or constants. The translation is (qr)R = σC((p)R).

5. Let r be q(X,Y,Z) ← p1(X,Y ) ∧ p2(Y,Z), where X,Y,Z are disjoint lists of
variables. The translation is (qr)R = (p1)R �� (p2)R.

6. Let r be q(X,Y ) ← p1(X,Y )∧¬p2(Y ), that is the rule is safe. The translation
is (qr)R = (p1)R \ ((p1)R �� (p2)R).
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The arguments about multiplicity are straightforward verifications. And
because the program Π is non-recursive (i.e. its dependency graph is acyclic), the
recursive translation to the relational expression gives a well formed algebraic
expression.

6 Related Work and Conclusions

To the best of our knowledge, the multiset semantics of SPARQL has not been
systematically addressed. There are works that, when studying the expressive
power of SPARQL, touched some aspects of this topic. Cyganiak [5] was among
the first who gave a translation of a core fragment of SPARQL into relational
algebra. Polleres [23] proved the inclusion of the fragment of SPARQL patterns
with safe filters into Datalog by giving a precise and correct set of rules. Schenk
[26] proposed a formal semantics for SPARQL based on Datalog, but concen-
trated on complexity more than expressiveness issues. Both, Polleres and Schenk
do not consider multiset semantics of SPARQL in their translations. Perez et al.
[21] gave the first formal treatment of multiset semantics for SPARQL. Angles
and Gutierrez [3], Polleres [24] and Schmidt et al. [27] extended the set semantics
to multiset semantics using this idea. Kaminski et al. [12] considered multisets
in subqueries and aggregates in SPARQL. In none of these works was addressed
the goal of characterizing the multiset algebraic and/or logical structure of the
operators in SPARQL.

We studied the multiset semantics of the core SPARQL patterns, in order
to shed light on the algebraic and logic structure of them. In this regard, the
discovery that the core fragment of SPARQL patterns matches precisely the
multiset semantics of Datalog as defined by Mumick et al. [19] and that this
logical structure corresponds to a simple multiset algebra, namely the Multiset
Relational Algebra (MRA), builds a nice parallel to that of classical set relational
algebra and relational calculus. Contrary to the rather chaotic variety of multiset
operators in SQL, it is interesting to observe that in SPARQL there is a coherent
body of multiset operators. We think that this should be considered by designers
in order to try to keep this clean design in future extensions of SPARQL.

Last, but not least, this study shows the complexities and challenges that
the introduction of multisets brings to query languages, exemplified here in the
case of SPARQL.

Acknowledgments. The authors have funding from Millennium Nucleus Center for
Semantic Web Research under Grant NC120004. The authors thank useful feedback
from O. Hartig and anonymous reviewers.
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Abstract. We propose an OBDA approach for accessing geospatial data
stored in relational databases, using the OGC standard GeoSPARQL
and R2RML or OBDA mappings. We introduce extensions to an exist-
ing SPARQL-to-SQL translation method to support GeoSPARQL fea-
tures. We describe the implementation of our approach in the system
ontop-spatial, an extension of the OBDA system Ontop for creating vir-
tual geospatial RDF graphs on top of geospatial relational databases. We
present an experimental evaluation of our system using and extending a
state-of-the-art benchmark. To measure the performance of our system,
we compare it to a state-of-the-art geospatial RDF store and confirm its
efficiency.

1 Introduction

Currently, there is emerging interest of scientific communities from various
domains that produce and process geospatial data (e.g., earth scientists) to pub-
lish data as linked data and combine it with other data sources. Responding to
this trend, the Semantic Web community has been very active in the geospatial
domain, proposing data models, query languages, and systems for the represen-
tation and management of geospatial data. Notably, this research has led to the
development of extensions of RDF and SPARQL, such as stRDF/stSPARQL
and GeoSPARQL, that handle geospatial data. Similarly, research on geospatial
relational databases has been going on for a long time and has resulted in the
implementation of several efficient geospatial DBMS.

Despite the extensive research performed in the fields of relational databases
and the Semantic Web on the development of solutions for handling geospa-
tial data efficiently, to the best of our knowledge, there is no OBDA system
that enables the creation of virtual, geospatial RDF graphs on top of geospatial
databases. This would be very useful for scientists that produce and process
geospatial data, as they mainly store this data in relational geospatial databases
(e.g., PostGIS) or in other geospatial data formats that are easily imported into
such databases (e.g., shapefiles). With the existing solutions in place, these sci-
entists are forced to materialize their data as RDF in order to publish it as linked
data and/or use it in combination with other data sources. Sometimes this is
not practical and discourages users from using Semantic Web technologies. This
issue applies to the OBDA paradigm in general, but it has more impact in the
geospatial domain due to the reasons we have just described. We address these
issues by extending the OBDA paradigm with geospatial support.
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 37–52, 2016.
DOI: 10.1007/978-3-319-46523-4 3
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The contributions of this paper are the following:

– We introduce extensions to an existing SPARQL-to-SQL translation method
in order to perform GeoSPARQL-to-SQL translation.

– We describe the implementation of our approach in the system Ontop-spatial,
which is the first OBDA system for GeoSPARQL.

– We present an experimental evaluation of our system extending the benchmark
Geographica [7], comparing the performance of ontop-spatial with the state-
of-the-art geospatial RDF store Strabon [8]. The results show that, in most
cases, ontop-spatial outperforms Strabon.

Ontop-spatial is available as free and open source software at the follow-
ing link: https://github.com/ConstantB/ontop-spatial. It was developed for the
Statoil use case of the EU FP7 project Optique1, and then it was also used in
the urban accountant, land management, and crisis mapping services of the EU
FP7 project MELODIES2, as well as in the maritime domain [4].

The organization of the rest of the paper is as follows. In Sect. 2 we present
related work and background. In Sect. 3 we explain the GeoSPARQL-to-SQL
translation. In Sect. 4 we present the system Ontop-spatial and we mention the
real-world use cases in which it has been used. In Sect. 5 we present the exper-
imental evaluation of our system. In Sect. 6 we conclude the presentation of
our approach discussing its advantages and limitations, as well as its possible
extensions.

2 Related Work and Background

The first area of work related to our own is research on extensions of the data
model RDF and the query language SPARQL with geospatial features.

The data model stRDF and the query language stSPARQL are extensions
of RDF and SPARQL 1.1 respectively, developed for the representation and
querying of spatial [8] and temporal data (i.e., the valid time of triples [3]).
Another framework that has been developed for the representation and querying
of geospatial data on the Semantic Web is GeoSPARQL [2], which is an OGC
standard. GeoSPARQL and stSPARQL were developed independently, but they
have a lot of features in common, the most important of which are that they
both adopt the OGC standards WKT and GML for representing geometries, and
that they both support spatial analysis functions as extension functions. Their
main differences derive from the fact that stSPARQL extends SPARQL 1.1, so it
inherits and extends important features of SPARQL 1.1, providing support for
spatial updates and spatial aggregates. Also, GeoSPARQL does not offer valid
time support. Both stSPARQL and GeoSPARQL have extended SPARQL 1.1
with the topological functions defined in the OGC standard “OpenGIS Simple
Feature Access for SQL” [1], and they also support the Egenhofer [6] and the
RCC-8 [13] topological relation families as SPARQL 1.1 extension functions.
1 http://optique-project.eu/.
2 http://www.melodiesproject.eu/.

https://github.com/ConstantB/ontop-spatial
http://optique-project.eu/
http://www.melodiesproject.eu/
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Since in the rest of the paper we will refer to the notation and concepts
defined or followed by stSPARQL and GeoSPARQL, we briefly present them
below for the convenience of the reader.

Spatial Literal. A spatial literal represents the serialization of a geometry. In
stSPARQL, it is a literal of type strdf:geometry or its subtypes strdf:WKT
or strdf:GML, as defined in [8]. Similarly, in GeoSPARQL it is a literal of type
geo:wktLiteral or geo:gmlLiteral.

Spatial Term. A spatial term is either a spatial literal or a variable that can be
bound to a spatial literal.

Spatial Filter. A spatial filter is a Boolean binary function SF (t1, t2), where
t1, t2 are spatial terms and SF is one of the Boolean functions of the Geom-
etry extension of GeoSPARQL, namely geof:sfEquals, geof:sfDisjoint,
geof:stIntersects, geof:sfTouches, geof:sfCrosses, geof:sfWithin,
geof:sfContains, geof:sfOverlaps, and the respective Egenhofer and RCC8
relation functions. These functions are defined in the Requirements 22, 23 and
24 of the GeoSPARQL standard.

Spatial Selection. A spatial selection in GeoSPARQL/stSPARQL is a SELECT
query with a FILTER which is a Boolean binary function with arguments a
variable and a constant.

Spatial Join. A spatial join in these languages is a query with a FILTER which
is a Boolean binary function whose all arguments are variables. The definition
of the spatial join in SPARQL corresponds to the definition of the spatial join
in the geospatial extensions of the relational model. In the rest of this paper,
spatial joins will often be denoted as ��sf , where sf is a spatial filter.

In the context of this paper, we will only consider GeoSPARQL (and, as a
result, the geospatial part of stSPARQL). GeoSPARQL consists of the following
six components:

– The Core component, which defines high level RDFS/OWL classes for spatial
objects.

– The Topology vocabulary extension, which defines RDF properties for asserting
and querying topological relations between spatial objects.

– The Geometry extension, which defines RDFS data types for serializing geom-
etry data, geometry-related RDF properties, and non-topological spatial query
functions for geometry objects.

– The Geometry Topology extension, which defines topological query functions.
– The RDFS entailment extension, which includes the RDF and RDFS reason-

ing requirements.
– The Query Rewrite extension, which defines rules for transforming qualitative

spatial queries into equivalent quantitative queries.

The work surveyed above on extending RDF and SPARQL with geospatial
functionality also gave rise to the implementation of geospatial RDF stores such
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as Parliament, uSeekM and Virtuoso, that implement a subset of GeoSPARQL,
and Strabon [8] that implements both GeoSPARQL and stSPARQL.

There have also been systems that enable the translation of geospatial data
from their native formats to RDF. GeoTriples [9] is a tool for the conversion of
geospatial data from a variety of source formats (shapefiles, relational databases,
XML files, etc.) to RDF using GeoSPARQL and stSPARQL vocabularies and
R2RML mappings.

Another category of systems that are related to our work is SPARQL-to-
SQL systems such as Ontop [5,14], Ultrawrap [15], D2RQ3 and Morph [12].
These systems offer no geospatial functionality.

3 GeoSPARQL-to-SQL Translation

In the work described in [5,14], the authors present techniques for SPARQL-to-
SQL translation using R2RML mappings. In this paper we extend their approach
to support the GeoSPARQL-to-SQL translation using R2RML mappings. In this
section we briefly describe how we translate the spatial extensions introduced in
GeoSPARQL to Datalog and then in turn to the respective spatial extensions of
SQL. A more detailed presentation of our extensions to the work described in
[5,14] is omitted due to space and will appear in a longer version of this paper.

The work of [5,14] in the context of OBDA system Ontop follows the same
semantics as [11] for the translation of SPARQL to Datalog. Definition 20 in
[5,14] describes the valuation of filter expressions, considering only numeric
binary operators in filters. We present below how to extend this definition by
considering spatial filters as defined in GeoSPARQL.

Definition 1. Evaluation of Spatial Filter Expressions.
Let SF be a GeoSPARQL spatial filter, let v, u be variables, Lgs the set of

literals of the datatypes geo:wktlLiteral and geo:gmlLiteral and c ∈ Lgs.
The valuation of SF on a substitution θ returns one of three values �,⊥ and ε
as shown below.

(SF (v, c))θ =

⎧
⎪⎨

⎪⎩

� if v ∈ dom(θ) andSF (vθ, c) = true

ε if v /∈ dom(θ) or vθ = null

⊥ otherwise

(SF (v, u))θ =

⎧
⎪⎨

⎪⎩

� if v, u ∈ dom(θ) andSF (vθ, uθ) = true

ε if v or u /∈ dom(θ) or uθ = null or vθ = null

⊥ otherwise

GeoSPARQL to Datalog. In the approach described in [5,14], the SPARQL
query is translated into a set of rules that comprise a Datalog program preserv-
ing the semantics of the original query. The translation algorithm is a modified
version of the one presented in [11]. The intention behind this step is to optimise

3 http://d2rq.org/.

http://d2rq.org/
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the query before it gets translated into an SQL query that is eventually exe-
cuted by the DBMS. The deviations of the original SPARQL-to-SQL translation
algorithm of [11] proposed in [5,14] lead to a more compact encoding of rules,
due to the fact that the final goal is to translate the Datalog program in SQL
instead of executing it as in [11]. We follow the same approach and we extend
the algorithm of [5,14] to take into account the spatial filters defined above.

We extend the algorithm by introducing a new set of distinguished pred-
icates, namely the distinguished spatial predicates. We define a distinguished
spatial predicate for each GeoSPARQL spatial filter [2]. Then the GeoSPARQL
to Datalog translation algorithm is like the algorithm of [5,14] for SPARQL and
results in ΠQGS , a Datalog program that corresponds to a geospatial query.

Datalog to SQL. In a similar way as in the GeoSPARQL-to-Datalog transla-
tion, we extend Definition 18 of [5,14] in order to consider distinguished spatial
predicates as well: Every distinguished spatial predicate occurring in a Datalog
program ΠQGS is translated into the equivalent geospatial SQL operator.

Mappings. In our framework we allow exactly the same mapping languages used
in [5,14], namely R2RML mappings and OBDA mappings (mapping language
native to Ontop).

The mapping languages offer functionalities that are useful to in our geospa-
tial setting. For example, when geometry columns (e.g., columns storing geome-
tries in Well-Known-Binary format) of geospatial relational tables are present in
the mappings, we allow geometries to be mapped as WKT GeoSPARQL literals.
Similarly, we allow the presence of geospatial SQL operators in the mappings,
enabling users to manipulate their geospatial data on-the-fly (e.g., transforma-
tion of the geometries into a different Coordinate Reference System) before they
are mapped to RDF.

4 Implementation

We implemented the theoretical extensions of the SPARQL-to-SQL translation
framework of [5,14] discussed in Sect. 3 as an extension of the system Ontop with
geospatial features focusing on spatial selections and spatial joins. We chose to
extend Ontop instead of systems offering similar functionality because (i) it is
open source, robust and extensible, (ii) it offers a wide range of functionalities
that are useful for geospatial applications (reasoning, multiple APIs), and (iii) it
implements significant SPARQL-to-SQL optimizations, producing queries that
can be executed efficiently by the underlying DBMS as reported in [5,14].

Ontop-spatial supports the following components of GeoSPARQL: Core,
Topology Vocabulary extension, Geometry Topology extension, RDFS entailment
extension and the spatial filters defined in the Geometry Extension. It is also,
to the best of our knowledge, the first GeoSPARQL implementation that sup-
ports the Query Rewrite extension of GeoSPARQL. The high level architecture
of the system as well as an abstract overview can be seen in Figs. 1(a) and (b)
respectively.
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(a) Ontop-spatial architecture (b) Abstract overview

Fig. 1. Ontop-spatial

In the following, we highlight the components of Ontop that we have extended
as they are placed in the query processing workflow:

– The virtual Ontop repository takes as input an ontology and a mapping file.
Mappings can be either OBDA or R2RML.

– Once Ontop-spatial receives a GeoSPARQL query, the query gets parsed.
We modified the Sesame parser used by Ontop (and the javacc parser that
the respective Sesame library uses), in order to extend its syntax to support
geospatial operations in the filter clause of the query. Additionally, qualitative
geospatial queries, (i.e., queries containing geospatial triple patterns such as
ex:feauture1 geo:overlaps ex:feature2) are also supported as standard
SPARQL triple patterns, and get transformed into their quantitative equiva-
lents (i.e., queries with spatial filters) in the following step.

– Conventionally, the next step in Ontop is to translate the SPARQL query
and the R2RML mappings into a Datalog program so that the query can be
represented formally and optimized following a series of optimization steps
described in detail in [5,14]. Ontop-spatial inherits these optimizations and
extends the SPARQL-to-Datalog translation module. As explained in the pre-
vious section, the geospatial filters are transformed into Datalog using distin-
guished geospatial predicates. The same distinguished geospatial predicates
are used in the case of the qualitative geospatial queries as well. As a result,
both quantitative and qualitative representations of a GeoSPARQL query are
transformed into the same SQL query in the following step.

– The optimized version of the query, as derived from the previous step, gets
translated into SQL. Every geospatial Datalog predicate is mapped to the
respective geospatial SQL operator, following the syntax of the underlying
DBMS. The DBMS adapter has been extended in order to be able to identify
geospatial columns in the database of the user. The PostgreSQL adapter has
been modified and the Spatialite adapter has been added.
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– The SQL query gets eventually executed in the underlying DBMS. Currently,
the spatially-enabled databases that Ontop-spatial supports are the geospatial
extensions of PostgreSQL and Sqlite, namely PostGIS and Spatialite respec-
tively. More geospatial databases will be supported in the future.

– After the evaluation of the spatial SQL query in the DBMS, Ontop-spatial gets
the results and sends them to the user. If geometries need to be projected,
the SQL query that is produced returns the result as WKT. This enables
Ontop-spatial to be used as a GeoSPARQL endpoint, that could serve as
input endpoint for applications like linked geospatial data visualizers [10] to
display the geometries that are returned as a result of a GeoSPARQL query.

Like the default version of Ontop, Ontop-spatial can be used as a web appli-
cation (using Sesame workbench), as a Sesame library, as a Protege plugin, or it
can be executed from the command line. The virtual geospatial graphs created
by Ontop can also be materialized, creating an RDF dump, so that it can then
be imported in a geospatial RDF store.

Ontop-spatial is available as free and open source software at the following
link: https://github.com/ConstantB/Ontop-spatial.

Ontop-spatial in use. The motivation behind the development of Ontop-spatial
was the Statoil use case of the project Optique, in order to address the issue
of creating virtual RDF graphs on top of large databases that contain geome-
tries and get frequently updated. Ontop-spatial is also being used in the urban
accountant, land management and crisis mapping services of the EU FP7 project
MELODIES4. Finally, ontop-spatial has recently be used in the Maritime secu-
rity domain, in collaboration with Airbus and the University of Bolzano [4].

5 Evaluation

We conducted an empirical evaluation of our implementation based on the phi-
losophy of Geographica5, a benchmark for testing the performance of geospa-
tial RDF stores [7]. Geographica consists of a micro benchmark and a macro
benchmark. The micro benchmark is designed for testing basic geospatial oper-
ators, such as spatial selections and spatial joins. The macro benchmark tests
the performance of the evaluated systems using queries that correspond to real
application scenarios. As our aim is not to test geospatial RDF stores as done in
[7], we use a modified benchmark based on the micro benchmark of Geographica
as we explain later in this section.

Since there was no alternative OBDA systems that allow for posing
GeoSPARQL queries over geospatial relational databases, we decided to eval-
uate Ontop-spatial in comparison with a geospatial RDF store. We consider
that the spatiotemporal RDF store Strabon [8] is a good representative of the

4 http://www.melodiesproject.eu/software-tools.
5 http://geographica.di.uoa.gr/.

https://github.com/ConstantB/Ontop-spatial
http://www.melodiesproject.eu/software-tools
http://geographica.di.uoa.gr/


44 K. Bereta and M. Koubarakis

family of the geospatial RDF stores to compare with as (i) it is a state-of-the-
art geospatial RDF store both in terms of functionality and performance [7,8]
(ii) it supports a big subset of GeoSPARQL (apart from stSPARQL), and (iii)
it uses a spatially-enabled DBMS as back-end, performing a SPARQL-to-SQL
translation following a specific storage scheme as explained in [8]. This enables
us to use the same DBMS (PostGIS with the same configuration and tuning)
and perform a comprehensive comparison.

5.1 Datasets

Geospatial data come, in most cases, in native geospatial data formats. In a
real-world scenario, a user that works with geospatial data obtains it as files
in a geospatial data format (e.g., a shapefile) and stores it either in a GIS or
a spatially-enabled relational database. Later on, he may convert the data into
RDF and store it in a geospatial RDF store in order to combine it with other
linked data.

The benchmark Geographica is based on such real-world geospatial appli-
cation scenarios and for the experimental evaluation of Ontop-spatial we will
also follow this approach: We will import real geospatial datasets in a spatially-
enabled relational database and use it as the back-end of Ontop-spatial.

We chose to use the datasets of Geographica that are available in their orig-
inal format (shapefiles). These datasets are the Corine Land Cover dataset of
Greece, which is provided by the European Environment Agency (EEA), the
Greek Administrative Geography (GAG), and the Hotspots dataset provided by
the National Observatory of Athens. We complemented these data sources with
the original raw files of OpenStreetMap data about Greece which are available as
shapefiles.6 Geographica uses the RDF versions of the same subset of the OSM
datasets created by the project LinkedGeoData7. For the rest of this paper, we
will refer to this dataset using the acronym of the resulting, RDF-ized version
(LGD). We added more OSM categories to our workload (e.g., buldings, water-
ways, etc.), as we will exploit the fact that each one is contained in a different
shapefile (so it will be imported into a different table), to stress our system as
we explain later on in this section.

For the evaluation of Ontop-spatial, we imported the shapefiles in a PostGIS
database using the shp2pgsql command as described here: https://github.com/
ConstantB/Ontop-spatial/wiki/Shapefiles. In this way, each shapefile is loaded
into a separate table in the database. Each one of these tables contains a column
where geometries are stored in binary format (WKB) and an index has been
built on that column. Then, we created the minimum set of mappings in order
to pose the queries of the benchmark. We used PostgreSQL version 9.1.13 and
PostGIS 2.0.3, performing the fine tuning configurations suggested here: http://
geographica.di.uoa.gr.

6 http://download.geofabrik.de/europe/greece.html.
7 http://linkedgeodata.org/.

https://github.com/ConstantB/Ontop-spatial/wiki/Shapefiles
https://github.com/ConstantB/Ontop-spatial/wiki/Shapefiles
http://geographica.di.uoa.gr
http://geographica.di.uoa.gr
http://download.geofabrik.de/europe/greece.html
http://linkedgeodata.org/
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Table 3 shows information about the datasets described above, such as the
disk size that each of these tables occupy, the number of tuples and the average
number of points per geometry. Notice that the LGD dataset consists of 7 shape-
files/tables which is important in the OBDA setting as we will explain later on.
Also, LGD-Places and LGD-Points contain only point geometries.

In order to compare the performance of our system with Strabon, we materi-
alized the virtual geospatial RDF graphs produced by Ontop-spatial and stored
them in Strabon, so that both the virtual RDF graphs produced by Ontop-spatial
and the graphs stored in Strabon contain exactly the same information. The pro-
duced RDF dump consists of 5.620.482 triples and contains 855.502 geometries.
The total PostGIS database size (in terms of disk usage) of Ontop-spatial is
700 MB. The respective size of the PostGIS database that was produced after
loading the RDF dump to Strabon is 1665 MB, which is more than twice the disk
space compared to the original database produced by importing the shapefiles
directly. The reason is that in the first case the database stores the data, while
in the second case the database stores the equivalent set of triples. This kind of
overhead is common in RDF stores that use a relational database as back-end.
Also, Strabon inherits the per predicate storage scheme of the Sesame RDBMS
package, so every predicate is stored in a different table and additional tables are
used for dictionary encoding. According to this storage scheme, all geometries
are stored in a table called geo values in WKB format and the respective column
is indexed using an R-tree-over-GiST index, as described in [8].

5.2 Queries

The GeoSPARQL queries that we used for the experimental evaluation of our
system are a set of spatial selections and a set of spatial joins. We used some of
the queries of Geographica, and some queries that are appropriate in the OBDA
setting as we will explain in the rest of this section. The queries used in our
evaluation are presented in Tables 1 and 2. Each query has a numeric identifier,
a mnemonic label, a number that shows how many BGPs it consists of and a
number that shows how many results it returns.

Both spatial selection and spatial join queries contain a spatial filter that
checks if a spatial relation holds between two geometries that are given as argu-
ments to the respective GeoSPARQL function. In the case of spatial selections,
one of the arguments is a variable and the other one is a constant, which can be
either a line (queries suffixed with “L” in the query label) or a polygon (using “P”
suffix). In spatial join queries, both arguments of the respective spatial binary
operator are variables. The first set of queries that we consider contains simple
geospatial queries, i.e., queries consisting of a single triple pattern to retrieve
the geometries of a dataset and a spatial filter (spatial selections 00–14 and spa-
tial joins 00–03). Note that spatial joins require at least two triple patterns to
retrieve the geometries that will be bound to the variables that are involved in
the spatial filter. This kind of queries test the response time of the compared
systems to perform “pure” geospatial queries (i.e., involving the least possible
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mappingId lgd_buildings_geometry
target lgd:{gid} lgd:asWKT {geom }^^ geo:wktLiteral .
source select gid , geom from buildings

mappingId lgd_landuse_geometry
target lgd:{gid} lgd:asWKT {geom }^^ geo:wktLiteral .
source select gid , geom from landuse

Fig. 2. Examples of geospatial mappings for two LGD tables

select ?s1 ?o1 where {
?s1 lgd:asWKT ?o1 .

filter(geosparql:FUNCTION(SPATIAL_CONSTANT ,?o1)).}

Fig. 3. Template for spatial selection queries

number of triple patterns, focusing as much as possible on the evaluation of the
spatial condition).

The next set of queries that we consider tackles an important issue that is
crucial in OBDA systems: the generation of Union operators, deriving from the
ontology and the schema of the database in the SPARQL-to-SQL translation
phase. For example, the LGD dataset consists of 7 shapefiles, each one con-
taining a column where geometries are stored. But according to the ontology,
the data property that connects a spatial object with its geometry is universal
for all spatial objects in the dataset. We present the mappings for two of these
tables/shapefiles in Fig. 2.

Let us now consider the template for spatial selection queries in Fig. 3. The
translated SQL query corresponding to a GeoSPARQL query following this tem-
plate would create unions in order to fetch results deriving from all the tables it has
been mapped to, that is, all seven LGD tables, and then apply the spatial selec-
tion to this union. This is the case for spatial selection queries 15–19. In order to
test how our system responds by increasing/decreasing the number of unions pro-
duced in the translated query, we add an additional, thematic filter that selects a
different number of LGD categories each time, thus affecting a different number of
tables, and producing different number of unions, respectively. For example, con-
sider query 19 which is shown in Listing 1.1, which contains an OR-condition in
the second filter, so the respective translated query contains a union.

Listing 1.1. Query 19
select distinct ?s1 where {
?s1 lgd:asWKT ?o1 .
?s1 rdf:type ?type .
filter(geof:sfIntersects(GEOMETRY ,?o1))
filter( ?type = lgd:Road ||
?type = lgd:Waterway ) }

Listing 1.2. Spatial join query 6
select ?s1 ?s2 where {
?s1 lgd:asWKT ?o1 .
?s2 lgd:asWKT ?o2 .
(geo:sfIntersects (?o1 ,?o2))
}

The queries 15, 16, 17, and 18 produce 6, 4, 3, and 4 unions respectively.
The presence of unions has a negative impact on the query response time, but
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Table 1. Spatial selections description

No Query #BGPs results

00 Equals GADM P 1 0

01 Contains GADM P 1 9

02 Contains GADM P 1 0

03 Equals GADM L 1 1

04 Overlaps GADM L 1 0

05 Contains GADM L 1 0

06 Intersects CLC L 1 5

07 Contains CLC L 1 0

08 Equals CLC L 1 5

09 Overlaps CLC L 1 0

10 Overlaps CLC P 1 132

11 Intersects CLC P 1 533

12 Contains CLC P 1 401

13 Equals CLC P 1 0

14 Intersects LGD P 2 2749

15 Intersects LGD B 2 2749

16 Intersects LGD PL 2 2626

17 Intersects LGD P 2 2522

18 Intersects LGD LU 2 2722

19 Intersects LGD ROA 2 2387

20 Intersects LGD bigP 1 729189

21 Intersects LGD P2 3 5

Table 2. Spatial joins description

No Query #BGPs results

00 Within CLC GADM 2 34114

01 Intersects GADM GADM 2 1556

02 Overlaps GADM CLC 2 17035

03 Intersects LGD GADM 3 154725

04 Intersects LGD LGD Mus 4 2

05 Intersects LGD GADM 2 819319

06 Intersects LGD LGD 1 3686229

07 Crosses LGD LGD Roads 4 178602

Table 3. Workload characteristics

Dataset Size Tuples Avg #points
geometry

CLC 283MB 44834 187.84

Hotspots 35MB 37048 5

GAG 24MB 326 3020.14

LGD-Buildings 42MB 155474 6.5

LGD-Landuse 20MB 40220 19.4

LGD-Places 2.4MB 13043 1

LGD-Points 12MB 61664 1

LGD-Railways 2MB 4996 13.3

LGD-Roads 250MB 514403 19

LGD-Waterways 16MB 20565 39.84

things get even worse when unions appear in spatial joins (e.g., spatial join
query 6). Since variables appear in the spatial filters that serve as the conditions
of the spatial joins, all combinations of the respective tables that are involved
in the corresponding mappings should be spatially joined pairwise. For example,
consider the spatial join query 6 which is given in Listing 1.2. This query performs
a spatial join with the condition intersects in all LGD tables that are involved
in the mappings containing the predicate lgd:asWKT. This join is translated into
the corresponding relational algebra expression as follows:

(Lbuildings ∪ Lluse ∪ ... ∪ Lwaterways) ��sf (Lbuildings ∪ Lluse ∪ ... ∪ Lwaterways)

where Lbuildings, Lluse,..., Lwaterways, etc. are LGD tables and sf is spatial
operator corresponding to geof : sfIntersects from the query. The query engine
evaluates this relational algebra expression as unions of joins and all involved
tables get spatially joined pairwise.

Last, in order to measure how the selectivity of the queries affect the per-
formance of the systems, we included the spatial selection queries 20 and 21
involve the computation of the intersection of all kinds of LGD areas with a
specific polygon. This polygon is large in the case of spatial selection query 20 so
that many geometries will be returned, while in spatial selection query 21 this
polygon is small enough so that very few LGD areas intersect with it.

5.3 Results

Experimental Set Up. The experiments were carried out on a server with the
the following specifications: Intel(R) Xeon(R) CPU E5620 @ 2.40 GHz, 12 MB
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L3, RAID 5, 32 GB RAM and OS: Ubuntu 12.04. All experiments were carried
out with both cold and warm cache. Queries are first executed in cold cache and
then in warm cache. The queries for which the system under test times out (the
time out threshold is set to 40 min) are not executed in warm cache. All queries
and code we used to execute the experiments in both systems, can be found
in the “experiments” branch of the github repository of Ontop-spatial (folder
“benchmark”) at https://github.com/ConstantB/Ontop-spatial.

Query response time. The results of our experimental evaluation can be
seen in Figs. 4 and 5. Response time is measured in nanoseconds and presented
in logarithmic scale. A general observation is that the query response time of
Ontop-spatial is better than the one of Strabon, especially when big datasets are
involved, both for spatial selections and spatial joins. Strabon times out after
40 min in spatial join queries 6 and 7. In spatial selection queries 2–5, although
Ontop-spatial achieves better response time than Strabon in cold cache, it gets
outperformed in warm cache, as intermediate results (which are not many as the
dataset involved in this query is relatively small), are more likely to be found in
the cache, increasing the hit rate of the cache and decreasing I/O requests. How-
ever, such differences between executions in warm and cold cache are eliminated
in larger datasets. In what follows we explain why Ontop-spatial outperforms
Strabon.

Listing 1.3. Spatial join query 2
select ?s1 ?s2 where {
?s1 clc:asWKT ?o1 .
?s2 gag:asWKT ?o2 .
filter(geof:sfWithin(?o1, ?o2))}

Listing 1.4. Spatial join query 4
select ?s1 ?s2 where {
?s1 lgd:asWKT ?o1 .
?s1 rdf:type lgd:Building .
?s1 lgd:type"Museum" .
?s2 lgd:asWKT ?o2 .
?s2 rdf:type lgd:Landuse .
filter(geof:sfIntersects(?o1,?o2))}

Listing 1.5. Ontop-spatial SQL query

SELECT
1 AS "s1QuestType", NULL AS "s1Lang",
(’http://geo.linkedopendata.gr/clc/’
|| REPLACE(...... || ’/’) AS "s1",
1 AS "s2QuestType", NULL AS "s2Lang",
(’http://geo.linkedopendata.gr/gag/ont/’
|| REPLACE(...’/’) AS "s2"
FROM
clc QVIEW1,
gag QVIEW2
WHERE
QVIEW1."gid" IS NOT NULL AND
QVIEW1."geom" IS NOT NULL AND
QVIEW2."gid" IS NOT NULL AND
QVIEW2."geometry" IS NOT NULL AND
(ST_Within(QVIEW1."geom",QVIEW2."geometry"))

Listing 1.6. Strabon SQL query

SELECT a0.subj,
u_s2.value,
a2.subj,
u_s1.value
FROM aswkt_855211 a0
INNER JOIN geo_values l_o2
ON (l_o2.id = a0.obj)
INNER JOIN geo_values l_o1 ON
((ST_Within(l_o1.strdfgeo,
l_o2.strdfgeo)))
INNER JOIN aswkt_135992 a2
ON (a2.obj = l_o1.id)
LEFT JOIN uri_values u_s2
ON (u_s2.id = a0.subj)
LEFT JOIN uri_values u_s1
ON (u_s1.id = a2.subj)

The queries provided in Listings 1.5 and 1.6 are the SQL translations of the
GeoSPARQL spatial join query 2, which is provided in Listing 1.3. One can
observe that Ontop-spatial produces the same query as one would have writ-
ten by hand in a geospatial relational database. Strabon produces some extra
joins, as a result of the star schema that it follows in the database (and has been

https://github.com/ConstantB/Ontop-spatial
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Fig. 4. Spatial Selections experiment (cold and warm cache)

Fig. 5. Spatial Joins experiment (cold and warm cache)

inherited from the Sesame RDBMS that Strabon is built on), i.e., each predicate
is stored in a different table and there are some additional tables used for dictio-
nary encoding (tables storing URIs, one table for each different datatype, etc.).
This has a negative impact on performance when many intermediate results are
produced. In Strabon, geometries are stored in a single table, named geo values,
and are indexed on the geometry column using an R-tree-over-GiST index. On
the other hand, Ontop-spatial stores each shapefile in a different table, and
geometries are stored in a sepate column for each table, and a separate R-tree-
over-GiST index is constructed for the geometries of each shapefile/table. As
Table 3 shows, there are cases where geometries of a shapefile/table are of the
same type (e.g., all contain points/linestrings/polygons), allowing Ontop-spatial
to build smaller and more efficient indices.

Nevertheless, in spatial join query 4, Strabon outperforms Ontop-spatial. The
query is provided in Listing 1.4. Using this query, we want to retrieve the land use
of areas that intersect with Museums. This is a very selective query with respect
to the thematic condition, so the PostGIS optimizer correctly chooses to per-
form the thematic conditions first so that only the geometries of Museums will be
checked in the spatial condition that follows, and the R-tree index will be used.
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Both systems execute the query very fast, with Strabon achieving nearly 4 times
better performance than Ontop-spatial, as the overhead of the extra joins it per-
forms, as described above, is reduced because very few intermediate results are
produced. Also, dictionary decoding helps Strabon to perform string comparison
(for value “Museum”) only once, in order to retrieve the id of that value and then
perform thematic joins efficiently using the id (numeric) value.

Queries 15–19 have filters that select different kinds of LGD categories. Query
response time increases every time many LGD categories are involved (Query
15 asks for all categories), producing the respective number of unions in the
case of Ontop-spatial and more intermediate results for Strabon, forcing more
geometries to be checked in the spatial filter. On the contrary, query response
time decreases when less LGD categories need to be selected.

The results of union-queries are more interesting in the case of spatial joins,
shown in Fig. 5. One would expect that unions with spatial joins, as in the case of
the spatial join query 6, would dramatically decrease the performance of Ontop-
spatial. Indeed, query response time increases in the case of queries like query 6,
but Ontop-spatial still performs better than Strabon. The explanation for this
lies in the fact that each time a spatial join is performed between two different
LGD tables, the optimizer chooses the one having the smaller index (and usually
smaller geometries, in this case) to be nested inside the inner branch of the nested
loop, where it performs an index scan. This has greater impact on the execution
time of geospatial queries, as the evaluation of spatial joins is more expensive
due to the cost of the evaluation of the spatial conditions.

In spatial selection query 20, the performance of the two systems is very
close, while in the more selective version of the same query, i.e., spatial selection
query 21, the gap in the execution times between Ontop-spatial and Strabon
increases again. This happens because nearly every geometry in the workload is
included in the results of the spatial selection query 20, so spatial indices are
not useful in this case.

Overall, we observe that importing the shapefiles to a database and then
using an OBDA approach is very efficient, as in most cases, the information that
is contained in a shapefile is compact and homogeneous, as we often have one
shapefile per data source. So, the SQL queries that are produced based on such
a schema contain reduced amount of joins and can be executed efficiently.

6 Discussion and Conclusions

In this paper, we describe how we extended the techniques of [5,14] to develop the
first geospatially-enabled OBDA system, named Ontop-spatial. By extending the
OBDA system Ontop, Ontop-spatial inherits the advantages of using RDB2RDF
systems in real use cases: (i) RDB-to-RDF workflow becomes less complicated,
without having to use different tools for converting data into RDF and then
storing it in RDF stores, (ii) no data needs to be transfered, as existing databases
are used as input to the system, and (iii) mappings provide a layer of abstraction
between the data manipulation/database experts and the end users.
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These advantages have even greater impact when dealing with geospatial
data. The domains where geospatial data are produced and used are domi-
nated by geospatial databases and other tabular file formats that could easily be
imported to a database (e.g., shapefiles). GIS practitioners use geospatial rela-
tional databases in their day-to-day tasks, either directly or as the back-end of
applications to store and manipulate data (e.g., GIS have connectors for geospa-
tial relational databases). Ontop-spatial provides a solution for combining the
advantages of geospatial relational databases, for example, the wide variety of
geospatial data operators and the performance achieved by the use of spatial
indices, with the data modeling advantages of the RDF data model. Moreover,
Ontop-spatial allows for encapsulating geospatial data manipulation functions
offered by geospatial extensions to SQL (e.g., functions for transforming geome-
tries to a different coordinate reference system) in the mappings.

On the other hand, Ontop-spatial inherits the disadvantages of the OBDA
systems as well. First, in order to combine information coming from different
geospatial sources, the data should be imported in databases. Second, as the
database is given as input to the system, it is read-only and Ontop-spatial does
not support SPARQL store or update operations; all updates should be done
directly on the database level. Third, the performance of the system is heavily
dependent on the ontology, the schema of the database, and the mappings, as
we explained in the previous sections, which applies for OBDA approaches in
general. However, our experiments showed that in many cases, our geospatially
enchanced OBDA approach achieves significantly better performance than the
state-of-the-art geospatial RDF store Strabon. The main reasons for this are
summarized as follows:

– The database schema that is produced simply by importing the shapefiles to
the database is in most cases suitable for OBDA approaches, as shapefiles
contain compact and homogeneous information per dataset.

– The database produced by storing the materialized RDF dump that ontop
exports in Strabon is bigger than the database that results from importing
the shapefiles, even though only the RDF triples that were involved in the
OBDA mappings (i.e., the virtual RDF triples) were exported. This happens
because of (i) the normalization imposed by the RDF data model itself (i.e.,
triples) and (ii) the additional tables used for dictionary encoding.

– The additional joins that are created in the translated SQL queries of Strabon
and the fact that geometries are stored in a single table where geospatial
operators are performed increase even by more than an order of magnitude
in very large workloads with many and complicated geometries, when many
intermediate results are produced in queries.

In future work, we plan to continue the development of Ontop-spatial in
the directions of (i) fully supporting GeoSPARQL and stSPARQL (i.e., adding
also valid time support), and (ii) creating a distributed version of our extension
exploiting the fact that the union-all spatial queries are parallelizable.
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Abstract. In several subject domains, classes themselves may be subject to
categorization, resulting in classes of classes (or “metaclasses”). When repre-
senting these domains, one needs to capture not only entities of different clas-
sification levels, but also their (intricate) relations. We observe that this is
challenging in current Semantic Web languages, as there is little support to
guide the modeler in producing correct multi-level ontologies, especially
because of the nuances in the constraints that apply to entities of different
classification levels and their relations. In order to address these representation
challenges, we propose a vocabulary that can be used as a basis for multi-level
ontologies in OWL along with a number of integrity constraints to prevent the
construction of inconsistent models. In this process we employ an axiomatic
theory called MLT (a Multi-Level Modeling Theory).

Keywords: Multi-level modeling � Metamodeling � Semantic web � OWL

1 Introduction

The Semantic Web, or Web of Data, provides a common framework that allows data to
be shared across application, enterprise, and community boundaries [1]. This is
achieved by linking and publishing structured data using RDF languages, which pro-
vide a basis for producing reusable vocabularies for various domains of interest [2].

A Semantic Web vocabulary is built using the basic notion of class, which is
present in both RDF Schema (RDFS) [3] and in the Web Ontology Language
(OWL) [4]. A class (or type) is a ubiquitous notion in modern conceptual modeling
approaches and is used to establish invariant features of the entities in a domain. Often,
subject domains are conceptualized with entities in two levels: a level of classes, and a
level of individuals which instantiate these classes. In many subject domains, however,
classes themselves may also be subject to categorization, resulting in classes of classes
(or metaclasses). For instance, consider the domain of biological taxonomies [5]. In this
domain, a given organism is classified into taxa (such as, e.g., Animal, Mammal,
Carnivoran, Lion), each of which is classified by a biological taxonomic rank
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(e.g., Kingdom, Class, Order, Species). Thus, to represent the knowledge underlying
this domain, one needs to represent entities at different (but nonetheless related)
classification levels. For example, Cecil (the lion killed in the Hwange National Park in
Zimbabwe in 2015) is an instance of Lion, which is an instance of Species. Species, in
its turn, is an instance of Taxonomic Rank. Other examples of multiple classification
levels come from domains such as software development [6] and product types [7].

The need to support the representation of knowledge domains dealing with multiple
classification levels has given rise to an area of investigation called multi-level
modeling [7, 8]. A number of research initiatives have also been conducted to support
multi-level modeling in the Semantic Web (e.g., [9–12]). These approaches exploit the
fact that a class is itself an RDF resource and may thus be the subject or object of
triples. OWL 2 explicitly adopts this strategy under the term “metamodeling”, enabling
the representation of facts that are stated about classes [13].

Despite these developments, the current support for the representation of domains
dealing with multiple levels of classification in the web still lacks a number of
important features. In some cases, there are no criteria or principles for the organization
of vocabularies into levels, leading to problematic classification and taxonomic state-
ments (see, e.g. [14]). Further, there has been no attention to the representation of the
relations between types at different levels. For example, in the biological domain, it is
key to represent that all instances of Species are subtypes of Organism (even when
particular species are not represented explicitly), and that all instances of Organism
belong to one and only one Kingdom.

In this paper, we address the challenges in the representation of domains with
multiple levels of classification in the Semantic Web by proposing an OWL vocabulary
that can be used as a basis for multi-level ontologies. By defining a taxonomy of
reusable relations between types, the vocabulary enables the expression of domain rules
that would otherwise not be captured. The vocabulary is based on a reference axiomatic
theory called MLT [15]. The axioms and theorems of MLT are used to derive integrity
constraints for multi-level vocabularies, offering guidance to prevent the construction
of inconsistent vocabularies. Further, MLT rules are used to infer knowledge about the
relations between types that is not explicitly stated. We focus on the support for domain
metaclasses as opposed to language metaclasses, i.e., we focus on ontological instan-
tiation instead of linguistic instantiation [16].

This paper is further structured as follows: Section 2 presents basic requirements
for the representation of knowledge in domains with multiple classification levels;
Sect. 3 reviews the current support for multi-level modeling in OWL as well as in
related work in the literature; Sect. 4 presents briefly the MLT multi-level theory;
Sect. 5 presents our approach to represent multi-level models in OWL reflecting the
rules of MLT; and Sect. 5.3 presents concluding remarks.

2 Requirements for a Multi-level Approach

An essential requirement for a multi-level modeling approach is the ability to represent
entities of multiple (related) classification levels, capturing chains of instantiation
between the involved entities (requirement R1). To comply with this requirement, the
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approach must admit entities that are, simultaneously, type (class) and instance (object)
[17]. This means that a multi-level approach differs from the traditional two-level
scheme, in which classification (instantiation) relations can only be established between
classes and individuals. As a consequence, a multi-level modeling approach should
define principles for the organization of entities into levels (R2). These principles
should guide the modeler on the adequate use of classification (instantiation) relations.
An example of this sort of principle, which is adopted in some prominent multi-level
modeling approaches, is the so-called strict metamodeling principle [17]. It assumes
that each element of a level must be an instance of an element of the level above. The
lack of principles to guide organization of entities into levels may lead to the con-
struction of unsound multi-level models. For example, in [14] we assessed Wikidata
and found over 22,000 violations of the strict metamodeling principle. The identified
problems seem to arise from inadequate use of instantiation and subclassing and could
have been prevented with guidance from the editing/modeling environment.

Another important characteristic of domains with multiple levels of classification is
that there are rules that apply to the instantiation of types of different levels. This kind
of rule is present in an early and important approach for multi-level modeling, named
the powertype pattern [18, 19], which establishes a relationship between two types
such that the instances of a type (the so-called “powertype” or “higher-order” type) are
specializations of a lower-level type (the so-called “base type”). For example, all
instances of Dog Breed (e.g. Collie and Beagle) specialize the base type Dog. In order
to represent Dog Breed, it is thus key to establish its relation with the Dog type (we call
this sort of relation a structural relation, as it governs the instantiation of types at
different levels). Further, one may need to represent whether an instance of Dog may
instantiate: (i) only one, or (ii) more than one Dog Breed. In biological taxonomy,
another rule concerning instantiation of types at different levels is that the instances of
Biological Taxonomic Rank obey a sort of subordination chain such that every instance
of Phylum specializes one instance of Kingdom, every instance of Class specializes one
instance of Phylum, and so on. Thus, an expressive multi-level approach should be able
to capture rules for the instantiation of types at different levels (R3).

Finally, in various domains, there are relations which may occur between entities of
different classification levels. For example, consider the following domain rules:
(i) each Car has an owner (a Person), (ii) each Car is classified as instance of a Car
Model, and (iii) each Car Model is designed by a Person. In this domain, instances of
Person (individuals) must be related simultaneously with instances of Car Model
(which are classes) and also with instances of Car, i.e., instances of instances of Car
Model. Thus, a multi-level modeling approach should allow the representation of
domain relations between entities in different classification levels (R4).

3 Related Work

In this section, we review existing approaches to support the representation of multiple
levels of instantiation, with a focus on multi-level modeling in RDF languages.
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3.1 RDFS(FA)

In an early effort to organize the metamodeling architecture for RDF Schema (RDFS)
1.0 [20], Pan and Horrocks proposed RDFS(FA) [9]. They observed that “RDFS uses a
single primitive rdfs:Class to implicitly represent possibly infinite layers of classes”
(as it is an instance of itself) and that this creates barriers for understanding. They show
examples on how this lack of a principle of organization for levels creates a so-called
“layer mistake”. Inspired by the fixed UML metamodeling architecture [21], they
proposed the use of four layers: Metalanguage (M), Language (L), Ontology (O) and
Instance (I). The M Layer is responsible for defining the language, where modelling
primitives of this topmost layer have no types. The L Layer defines a language for
specifying vocabularies and each entity in this layer is an instance of an entity in the M
Layer. Vocabularies are defined in the O Layer (“Person” and “Animal” are examples
of classes in this layer) and each element in this layer is an instance of an element in the
L Layer. Lastly, the I Layer is populated with concrete individuals, which are instances
of the vocabulary defined in O Layer.

Figure 1 shows the result of applying this architecture to RDFS. RDFS classes are
replicated in the M and L Layers with the respective prefix (M and L). In O layer,
Animal and Person are represented as instances of rdfsfa:LClass (instead of rdfs:
Class); and John and Mary in the Instance Layer, as an instance of Person.

This architecture organizes the language engineering effort, but it does not aim to
address the representation of domains with multiple levels of classification. In fact, it is
based on the two-level scheme for the representation of domains in the O and I layers,
with classes at the O layer, and individuals at the I layer, related through rdfsfa:otype
(which represents what is known as ontological instantiation [16]). Metaclasses are
only used in the domain-independent L layer; classes at the O layer are related to
classes at the L layer through rdfsfa:ltype (which represents what is known as linguistic
instantiation [16]). In order to represent a domain type such as Species one would be
forced to include it in the L layer, specializing rdfsfa:LClass, which would be inade-
quate according to [9], as language and ontology issues would be confused. In this
case, one would have to instantiate Species using rdfsfa:ltype, clearly misusing

 

Fig. 1. Example of directed labeled graph of RDFS(FA) (from [9])
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linguistic instantiation [16]. In conclusion, RDFS(FA) satisfies requirements R1 and R2
only for linguistic instantiation, but not for ontological instantiation.

3.2 OWL 2

OWL 2 [4] explicitly introduced support for metamodeling, enabling the representation
of classes of classes. For example, in Fig. 2, two subclasses of Eagle, namely Golden
Eagle and Steppe Eagle are defined as instances of Species, which means that they are
member of the set of all species. In Fig. 2 (as well as in the remainder of the paper) we
use a notation that is largely inspired in UML. We use UML specialization to represent
the rdfs:subClassOf properties, and dashed arrows to represent statements, with labels
to denote the names of the predicates that apply. For instance, a dashed arrow labeled
rdf:type between Golden Eagle and Species represents that the former is an instance of
the latter. Finally, we use the instance specification notation (i.e., underlining an ele-
ment’s name) to represent an individual (e.g. Harry).

OWL’s multi-level modeling support is based on the notion of contextual semantics
[10], often referred to as “punning”, which means that a class is seen as an individual
when it is an instance of another class, and that its interpretation as a class and as an
individual are completely independent of each other. This “independent” interpretation
means that a constraint stated to a class will not be considered when it is seen as an
individual, which leads to non-intuitive interpretations [11]. For instance, consider the
following statements: (i) Harry is an instance of Golden Eagle, and; (ii) Golden Eagle
is the same as Aquila chrysaetos. Statement (i) treats Golden Eagle as a class, while
statement (ii) treats Golden Eagle as an individual. These two aspects of Golden Eagle
are never considered at the same time for reasoning. Thus, in this approach, it is
impossible to infer that Harry is an instance of Aquila chrysaetos, which violates our
intuition with respect to the multi-level model. We can say that while OWL 2 seems to
satisfy R1 (admitting classes that are also instances), it does so only partially, given the
notion of contextual semantics employed. The same can be said for the representation
of relations between entities of different levels (partially satisfying R4).

OWL offers no principle of organization into levels (failing to satisfy R2). Further,
punning also prevents us from correctly expressing the relation between a higher-order
class and a base class in the powertype pattern, which inevitable involves considering
the specializations of the base class as types and instances simultaneously (failing thus

Fig. 2. OWL representation for biological taxonomic domain
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to satisfy R3). Finally, considering the open world assumption, it is also impossible to
formally identify in this fragment above that Harry is an individual, as there could be
unstated rdf:type declarations involving Harry as a class. Further, given the same
assumption, it would be impossible to identify that Species (in isolation) is a metaclass;
in other words, we cannot express when modeling Species (and omitting its instances)
that all its instances are classes (in particular subclasses of Organism).

3.3 OWL FA

Later, Pan and Horrocks also proposed OWL FA [11], a metamodeling extension of
OWL 1 DL, with an architecture based on RDFS(FA). They argue that OWL 1 Full
supports some metamodeling by allowing users to use the built-in vocabulary without
restrictions, but that leads to undecidability (as Motik pointed out [10]). They then
propose a decidable extension of OWL 1 DL that can reuse existing reasoners.

While RDFS(FA) uses prefixes (M, L, O and I) to indicate the layer in which a class
or axiom belongs, OWL FA intuitively introduces a layer number in its constructors
and axioms, through annotations. The semantics of OWL FA [22, 23] takes into
account elements that share the same URIs and interpret them dependently (in contrast
to OWL 2). For instance, if Golden Eagle and Aquila chrysaetos are stated as the same
and Harry is an instance of Golden Eagle, OWL FA assumes that Harry must be an
instance of Aquila chrysaetos. However, it does not allow property assertions between
layers except for instantiation. For example, subclassing and domain relations must be
between classes at the same layer (failing thus to satisfy R4).

While RDFS(FA) allows instantiations only from Instance Layer to Ontology
Layer, OWL FA allows the representation of multiple levels of instantiation. Thus, we
understand here that identifying layers by numbers addresses the limitation of RDFS
(FA) (see Sect. 3.1) thus satisfying R1 fully. Moreover, as advantages when compared
to the current multi-level modeling support of OWL 2 (see Sect. 3.2), OWL FA:
(i) interprets dependently elements that share the same URI, and; (ii) it introduces
restrictions for instantiation and subclassing, providing some criteria for the organi-
zation into levels (R2). Finally, OWL FA offers no special support for the represen-
tation of constraints for the instantiation of types at different levels (not satisfying R3).

3.4 PURO

Svatek et al. [12] proposed the PURO approach which includes an OWL vocabulary
that can be used as a basis for multi-level domain vocabularies. In PURO, each entity
of a domain vocabulary can be annotated with a PURO term in order to clarify the
entity’s ontological status. The term B-object is used to refer to concrete individuals in
the world (such as Harry). In contrast, the term B-type is used to refer to classes (such
as Eagle). A B-type is analogous to an OWL class, however, B-types are organized into
strata: instances of 1st order B-types are B-objects, instances of nth-order B-types are
(n − 1)th-order B-types (for n > 1). The OWL vocabulary supporting the PURO
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approach only deals with B-objects and first-, second- and third-order B-types.
B-relationship is analogous to an object property assertion and there are variations:
(i) B-instantiation is an assertion to indicate that an entity instantiates a B-type;
(ii) B-axiom express a relationship between the extensions of two B-types (e.g., sub-
classing); and (iii) B-fact express information about an entity, e.g., who discovered
certain species. Finally, B-relation is analogous to OWL Object Property.

Similarly to OWL 2 and OWL FA, PURO has the required expressivity for rep-
resenting multiple levels of instantiation (R1) through the notions of B-object and the
B-types. Moreover, PURO defines rules for the organization of entities along levels
(R2). Finally, PURO allows modelers to express domain relations between entities of
different levels (R4); an example is provided in [12] in which a musician is considered
an expert in a type of instrument (e.g., the musician Yo-Yo Ma is an expert in Violin).
However, similarly to OWL 2 and OWL FA, PURO offers no special support for the
representation of constraints for the instantiation of types at different levels (not sat-
isfying R3).

3.5 Intermediate Conclusions

Table 1 summarizes the current support provided by each of the efforts discussed here
according to the requirements defined in Sect. 2. We classified this support in three
categories: fully covered (+), partially covered (±) and not covered (−). Despite pro-
viding support and guidance for representing multiple levels of classification, RDFS
(FA) focuses on linguistic instantiation instead of ontological instantiation, hence the
partial support for R1 and R2. OWL 2 fails in the representation of relations and
constraints crossing levels, due to its contextual semantics, and hence offers partial
support for R1 and R4. OWL FA and PURO offer full support for R1 and R2 through
annotations, and PURO also supports domain relations crossing levels (R4). Despite
the efforts in all these approaches, none of them support the representation of con-
straints involving instantiation relations across levels (thus, not satisfying R3).

Table 1. Support for multi-level modeling in RDFS languages

Requirement RDFS
(FA)

OWL
2

OWL
FA

PURO

R1 – represents entities of multiple levels of
classification

± ± + +

R2 – offers guidance for the organization of entities
into levels

± − + +

R3 – represents rules for the instantiation of types
at different levels

− − − −

R4 – supports domain relations between entities of
different levels

− ± − +
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4 MLT: A Theory for Multi-level Modeling

Motivated by the lack of theoretical foundations for multi-level modeling, some of us
have proposed a formal axiomatic theory called MLT [15] founded on the notion of
(ontological) instantiation. MLT has been used successfully to analyze and improve the
UML support for modeling the powertype pattern [24], to uncover problems in
multi-level taxonomies on the web [14] and to provide conceptual foundations for
dealing with types at different levels of classification both in core [25] and in foun-
dational ontologies [26].

The theory is defined using first-order logic, quantifying over all possible entities
(individuals and types). The instance of relation is represented in this formal theory by
a binary predicate iof(e,t) that holds if an entity e is instance of an entity t (denoting a
type). In order to accommodate the varieties of types in the multi-level setting, the
notion of type order is used. Types having individuals as instances are first-order types,
types whose instances are first-order types are second-order types and so on.

The logic constant “Individual” is used to define the conditions for entities to be
considered individuals: an entity is an instance of “Individual” iff it does not have any
possible instance (Axiom A1 in Table 2). The constant “First-Order Type” (or shortly
“1stOT”) characterizes the type that applies to all entities whose instances are
instances of “Individual” (A2 in Table 2). Analogously, each entity whose possible
extension contains exclusively instances of “1stOT” is an instance of “Second-Order
Type” (or shortly “2ndOT”) (A3 in Table 2). It follows from axioms A1, A2 and A3
that “Individual” is instance of “1stOT” which, in turn, is instance of “2ndOT”. We call
“Individual”, “1stOT” and “2ndOT” the basic types of MLT. According to MLT, every
possible entity must be instance of exactly one of its basic types (except the topmost
type) (A4 in Table 2). We consider here only first- and second-order types. However,
this scheme can be extended to consider as many orders as necessary [15].

Table 2. MLT axioms
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Some structural relations to support conceptual modeling are defined in MLT,
starting with the ordinary specialization between types. A type t specializes another
type t’ iff all instances of t are also instances of t’ (see definition D1 in Table 2). Since
the reflexivity of the specialization relation may be undesired in some contexts, we
define in MLT the proper specialization relation as follows: t proper specializes t’ iff t
specializes t’ and t is different from t’ (see D2 in Table 2). Additionally, MLT defines a
subordination relation. Subordination between two higher-order types implies spe-
cializations between their instances, i.e., t is subordinate to t’ iff every instance of t
proper specializes an instance of t’ (see D3 in Table 2). The definitions presented thus
far guarantee that both specializations, proper specializations and subordinations may
hold exclusively between types of the same order. We term these intra-level relations.

MLT also defines relations that occur between types of adjacent orders, the
so-called cross-level structural relations. These relations are inspired on different
notions of powertype in the literature. Based on the notion of powertype proposed by
Cardelli [19] (which is founded on the notion of powerset), MLT defines a powertype
relation between a higher-order type and a base type at a lower order: a type t is
powertype of a base type t’ iff all instances of t specialize t’ and all possible special-
izations of t’ are instances of t (see D4). Note that it follows from the axioms and
definitions presented so far that “1stOT” is powertype of “Individual”, i.e. all possible
instances of “1stOT” specialize “Individual” and all possible specializations of “Indi-
vidual” are instances of “1stOT”. Analogously, “2ndOT” is powertype of “1stOT”, and
so on. Thus, every instance of a basic higher-order type (“1stOT” and “2ndOT”) must
specialize the basic type at the immediately lower level (respectively, “Individual” and
“1stOT”). In other words, the notion of orders or levels in MLT can be seen as a result
of the iterated application of Cardelli’s notion of powertype to the basic types.

Odell [18], in turn, defined powertype simply as a type whose instances are sub-
types of another type (the base type), excluding the base type from the set of instances
of the powertype. Inspired on Odell’s definition for powertypes, MLT defines the
characterization relation between types at adjacent levels: a type t characterizes a type
t’ iff all instances of t are proper specializations of t’ (definition D5). The charac-
terization relation occurs between a higher-order type t and a base type t’ when the
instances of t specialize t’ according to a specific classification criteria. Thus, differ-
ently from the cases involving (Cardelli’s) is powertype of relation, there may be
specializations of the base type t’ that are not instances of t. For example, we may
define a type named “Organism by Habitat” (with instances “Terrestrial Organism” and
“Aquatic Organism”) that characterizes “Organism”, but is not a powertype of
“Organism” since there are specializations of “Organism” that are not instances of
“Organism by Habitat” (e.g. “Plant” and “Golden Eagle”).

MLT defines some refinements of the cross-level relation of characterization, which
are useful to capture further constraints in multi-level models. We consider that a type t
completely characterizes t’ iff t characterizes t’ and every instance of t’ is instance of,
at least, an instance of t (D6). Moreover, iff t characterizes t’ and every instance of t’ is
instance of, at most, one instance of t it is said that t disjointly characterizes t’ (D7).
Finally, a common use for the notion of powertype in the literature considers a
higher-order type that, simultaneously, completely and disjointly characterizes a
lower-order type. To capture this notion MLT defines the partitions relation. Thus,
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t partitions t’ iff each instance of the base type t’ is an instance of exactly one instance
of t (D8). For example, considering the biological taxonomy for living beings we have
that “Species” (and all other biological ranks) partitions “Organism”.

A complete formalization of MLT in first-order logic can be found in [15], which
presents proofs for all MLT theorems. Further, a formal specification in Alloy is
provided in [27] and was used to verify the theorems and to simulate admissible models
of the theory using the Alloy analyzer.

5 Applying MLT for Multi-level Modeling Support in OWL

Aiming to improve the OWL support for multi-level modeling, we propose (i) a
vocabulary based on distinctions put forth by MLT, and (ii) a number of derivation and
integrity rules reflecting axioms and theorems of MLT. The proposed vocabulary aims
at providing modelers with an expressive set of constructs to support the production of
multi-level ontologies in OWL. The integrity rules, in their turn, are used to verify if
ontologies built using the proposed vocabulary are well-formed according to MLT
rules. Finally, the derivation rules make use of MLT rules to infer information not
represented explicitly by the modeler.

5.1 OWL Vocabulary Based on MLT Distinctions

The proposed vocabulary encompasses the representation of the basic types of MLT
and the relations defined in the theory. The basic types of MLT are represented as
instances (rdf:type) of owl:Class. The class representing the MLT Individual basic type
is named mlt:TokenIndividual1, the class representing the First-Order Type is named
mlt:1stOrderClass, and the classes mlt:2ndOrderClass and mlt:3rdOrderClass repre-
sent, respectively, the Second-order and Third-order basic types. Considering that,
according to MLT, instances of Individual are not instantiable (i.e. are not types), mlt:
TokenIndividual does not specialize owl:Class. In contrast, the classes representing all
other basic types have a rdf:subClassOf relation with owl:Class capturing the fact that
their instances are classes (i.e. their instances are instantiable) (see Fig. 3).

Concerning the MLT relations, instance of relations are represented as rdf:type
properties and specialization relations are represented as rdfs:subClassOf properties.
All other intra- and cross-level relations of MLT are represented in this vocabulary in a
hierarchy of instances of owl:ObjectProperty, including at the top: mlt:in-
traLevelProperty, which is as a super-property for all MLT intra-level relations; and
mlt:crossLevelProperty, which is a super-property for all MLT cross-level relations.
The subordination relation of MLT is then represented by the property mlt:isSubor-
dinateTo as a sub-property of mlt:intraLevelProperty, while the characterization
(mlt:characterizes) and the is power type of (mlt:isPowertypeOf) relations are
represented as sub-properties of mlt:crossLevelProperty. Finally, each variation of

1 The term “TokenIndividual” was adopted here to avoid confusion with the term “Individual” in the
OWL specification. “TokenIndividual” corresponds to what we call “Individual” in [15].
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characterization (e.g. complete characterization, disjoint characterization and so on) is
represented as a sub-property of mlt:characterizes.

These properties are also used in the vocabulary definition to represent relations
that occur between the basic types of MLT. To capture the fact that the basic type in
one order is instance of the basic type in an immediately higher order, statements with
rdf:type are defined between the classes representing the basic types (e.g., mlt:
TokenIndividual rdf:type mlt:1stOrderClass, mlt:1stOrderClass rdf:type mlt:2ndOr-
derClass). Further, mlt:isPowertypeOf is used to represent that a basic type in an order
is the powertype of the basic type in the immediately-lower order (Fig. 3).

The MLT vocabulary allows the representation of domain rules concerning the
instantiation of types in different levels. For example, Fig. 4 illustrates a fragment of an
ontology in the biological taxonomy domain applying this vocabulary. In such an
ontology, Genus and Species are represented as instances of mlt:2ndOrderClass (and,
thus, as subclasses of mlt:1stOrderClass) meaning that their instances (e.g. Panthera,
Panthera Onca, and so on) must specialize mlt:TokenIndividual, i.e. instances of their
instances are non-instantiable elements (e.g. Cecil, the lion, which does not possibly
have instances). The domain rule that every instance of Species must be a subclass of
an instance of Genus is captured by the mlt:isSubordinateTo property between Species
and Genus. Further, the mlt:partitions property between Species and Panthera captures
the rule that every instance of Panthera must be instance of exactly one instance of
Species. Finally, Genus mlt:partitions Organism and Species mlt:partitions Organism,
to capture that every organism must be instance of exactly one Genus and instance of
exactly one instance of Species. Note that domain modelers only need to declare their
domain classes as instances and/or specializations of the MLT basic types. (As we shall
discuss later in Sect. 5.2, some of these relations can be inferred automatically, using
derivation rules reflecting MLT axioms and theorems.)

Figure 5 shows an example of an ontology representing employees and their roles
in a company to illustrate the use of variations of characterization relations to capture
domain rules. To capture the rule that each Employee must play one or more Business
Roles in the company, Business Role mlt:completelyCharacterizes Employee meaning
that every instance of Employee must be instance of at least one instance of Business
Role. Further, to represent that an Employee may play at most one Management Role,
Management Role mlt:disjointlyCharacterizes Employee.

Fig. 3. Fragment of MLT vocabulary for order classes and individual.
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5.2 Integrity Constraints and Derivation Rules Based on MLT

An important aspect of the proposed vocabulary is that it allows us to leverage rules of
the MLT formalization in order to guide modelers in producing sound models. The
rules discussed in this section ensure that the domain classes respect the stratification
into orders.

Some of these rules are expressible in pure OWL and thus were directly included in
the vocabulary. For example, a disjointness constraint (owl:AllDisjointClasses) is
introduced to reflect the fact that the basic types of MLT are all mutually disjoint.

The majority of the MLT rules, though, are not expressible directly in OWL, and
are represented here in SPARQL. This is the case of constraints concerning the domain
and range of MLT structural relations. For example, mlt:isPowertypeOf, mlt:charac-
terizes and all its variations must occur between classes of adjacent levels, i.e., if the
domain is a 2ndOrderClass, then the range must be a 1stOrderClass, if the domain is a
3rdOrderClass, then the range must be a 2ndOrderClass, and so on.

Table 3 shows the domain/range restrictions for MLT relations.
SPARQL queries are also provided to allow the verification of rules concerning the

nature of the basic types of MLT. For example, considering that instances of Individual
must have no instances, we provide an integrity constraint to verify if there are
instances of instances of mlt:TokenIndividual (see Q1 in Fig. 6, which would detect
violations of this constraint).

mlt:TokenIndiv idualmlt:1stOrderClassmlt:2ndOrderClass

Species

Genus

Panthera

Panthera Onca Panthera Tigris Panthera Leo Cecil

Organism

Panthera Species

rdf:type

mlt:partitions

rdfs:subClassOf

mlt:partitions

mlt:partitions

rdfs:subClassOfrdfs:subClassOf

rdf:type

mlt:isSubordinateTo

rdf:type

rdfs:subClassOf

rdfs:subClassOf

Fig. 4. Illustrating the use of mlt:isSubordinateTo and mlt:partitions properties.
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Fig. 5. Illustrating the use of mlt:completelyCharacterizes and mlt:overlappinglyCharacterizes.
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Integrity constraints are also provided to verify MLT theorems concerning char-
acteristics of structural relations. For instance, given the definition of the is powertype
of relation, a base class can have, at most, one higher-order class as powertype and a
higher-order class may be the powertype of at most one base class. This suggests two
clear integrity constraints: (i) a class can be the subject of at most one triple having mlt:
isPowertypeOf as predicate (violations detected by Q2 in Fig. 6), and (ii) a class can be
the object of at most one triple having mlt:isPowertypeOf as predicate. Another
example is a constraint provided to allow the verification of the MLT theorem that
states that if two classes t1 and t2 both partition the same class t then it is not possible
for t1 to be subclass of t2 (Q3 in Fig. 6).

Considering that models built using our MLT vocabulary may exhibit incomplete
information, we leverage MLT axioms and theorems to allow the inference of infor-
mation not represented explicitly. For example, it follows from the axioms of MLT
that, if t is subclass of t1 then the powertype of t is subclass of the powertype of t1. This
is reflected in a query to identify cases in which the subclass of relation is not

Table 3. Domain and range restrictions for multi-level relations.

Relation name Domain and range

rdfs:subClassOf Classes of the same order (instances of 1st, 2nd or 3rd
OrderClasses)

isSubordinateTo Higher-order classes of the same order (2ndOrderClass or
3rdOrderClass)

rdf:type Elements of adjacent levels.
isPowertypeOf Classes of adjacent levels (2ndOrderClass ! 1stOrderClass or

3rdOrderClass ! 2ndOrderClass)characterizes
completelyCharacterizes
incompletelyCharacterizes
disjointlyCharacterizes
overlappinglyCharacterizes

Fig. 6. SPARQL queries representing MLT rules
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represented between the power types (Q4). Since, according to MLT, if t2 is powertype
of t1 and t3 characterizes t1, then t3 is subclass of t2, we provide a SPARQL query to
identify cases in which the powertypeOf and the characterization relations are repre-
sented but the subclass relations are not (Q5 in Fig. 6). Further, since every instance of
a basic higher-order type must specialize the basic type at the immediately lower level,
we can identify some missing relations. For example, query Q6 in Fig. 6 allows the
identification of cases in which types are represented as instances of mlt:1stOrderClass
but their subclass relations with mlt:TokenIndividual are not represented.

Since MLT is formalized quantifying over all possible entities, some MLT defi-
nitions are not expressible considering the Open World Assumption (OWA). For
instance, according to MLT if t1 has instances such that all of them are also instances of
t2, then we can conclude that t1 is a subclass of t2 (D1 in Table 2). This rule could not
be captured in our approach since, considering the OWA, we cannot assume that all
instances of an entity are represented in the knowledge base. Thus, these rules cannot
be reflected in the implementation.

Finally, it is worth mentioning that, due to space limitations, we only expose here
some rules to illustrate the approach. The vocabulary and the complete set of SPARQL
queries is available at [27], including information on the traceability between MLT
axioms and theorems and the implemented queries.

5.3 Final Considerations

Multi-level modeling addresses phenomena dealing with a number of complex notions
and subtle relations that cross multiple levels of instantiation. These phenomena are
ubiquitous in application domains, ranging from biology, to software engineering, from
enterprise modeling to product classification [15]. Aside from the recurrence of these
phenomena in practical cases, what also makes it of great importance is the fact that
multi-level modeling seems to pose a significant challenge to modelers. As previously
mentioned, in [14], we have empirically analyzed the presence of three anti-patterns
related to multi-level modeling in Wikidata, finding over 22,000 occurrences of these
anti-patterns. In fact, for one these anti-patterns, we found its manifestation in 85 % of
the cases of taxonomic hierarchies spanning more than one level in Wikidata! That
study clearly indicates that for complex modeling phenomena such as these, an
expressive engineering support must be offered for vocabulary engineers as well as
semantic web application developers. In [27], we provide a technical report showing
how each of these anti-patterns found in Wikidata could be avoided by using the
artifact proposed in this paper, demonstrating the relevance of MLT-OWL using
real-world data.

The recognition of the importance of offering support for multi-level modeling led
many researchers in the Semantic Web community to propose solutions addressing this
issue. Some prominent results in that respect are reviewed in this paper, namely, RDFS
(FA), metamodeling (punning) in OWL 2, OWL FA and PURO. We have shown in our
analysis of these related works that all of them fail to fully support the identified
modeling desiderata.
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We adopted as a basis for our work a theoretically sound and well-tested formal
theory (MLT) that was shown to be able to address all these multi-level modeling
requirements. We then decided to offer a set of engineering tools that together would
implement the modeling distinctions and axiomatization of this theory. These tools
include: (i) an OWL vocabulary (capturing the formal relations put forth by this the-
ory); (ii) a set of OWL axioms that would capture derivation and integrity rules over
this vocabulary put forth by the theory; and (iii) a set of SPARQL queries that would
capture those derivation and integrity rules put forth by this theory but that could not be
represented in OWL directly. We strongly believe that these tools amount to an
important methodological and computational contribution for guiding modelers to
produce sound multi-level models in the Semantic Web.

The reason why these phenomena are recurrent in a large variety of practical
application domains is because they are genuine ontological phenomena (from a
philosophical point of view) [26]. As such, we advocate that truly ontological con-
siderations cannot be eschewed from a fuller analysis of multi-level modeling. Addi-
tionally, some initiatives have demonstrated that the systematic evaluation of the
ontological consistency of Semantic Web ontologies and vocabularies can greatly
benefit from the use of foundational distinctions and axioms [28, 29]. In order to
leverage the benefits of both a foundational ontology and a multi-level modeling
theory, in [30] some of us have already combined MLT and the foundational ontology
UFO [31]. A natural extension of this work is to enrich the set of engineering tools
proposed here with support for the ontological distinctions and axiomatization of UFO
(e.g., dealing with temporal aspects of anti-rigid concepts).
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Abstract. Conjunctive query answering over expressive Horn Descrip-
tion Logic ontologies is a relevant and challenging problem which, in some
cases, can be addressed by application of the chase algorithm. In this
paper, we define a novel acyclicity notion which provides a sufficient con-
dition for termination of the restricted chase over Horn-SRIQ TBoxes.
We show that this notion generalizes most of the existing acyclicity condi-
tions (both theoretically and empirically). Furthermore, this new acyclic-
ity notion gives rise to a very efficient reasoning procedure. We provide
evidence for this by providing a materialization based reasoner for acyclic
ontologies which outperforms other state-of-the-art systems.

1 Introduction

Conjunctive query (CQ) answering over expressive Description Logic (DL)
ontologies is a key reasoning task which remains unsolved for many practical
purposes. Indeed, answering CQs over DL ontologies is quite intricate and often
of high computational complexity [4,8,16]. Nevertheless, CQ answering over a
major class of DLs, the so-called Horn DLs, can in some cases be addressed via
application of the chase algorithm, a technique where all relevant consequences
of an ontology are precomputed, allowing queries to be directly evaluated over
the materialized set of facts. However, the chase is not guaranteed to terminate
for all ontologies, and checking whether it does is not a straightforward proce-
dure. It is thus an ongoing research endeavor to establish so-called acyclicity
conditions; i.e., sufficient conditions which ensure termination of the chase.

The main contribution of this paper is the definition of restricted chase
acyclicity (RCAn), a novel acyclicity condition for Horn-SRIQ ontologies (the
DL Horn-SRIQ may be informally described as the logic underpinning the
deterministic fragment of OWL DL [9] minus nominals). If an ontology is proven
to be RCAn, then n-cyclic terms do not occur during the computation of the
chase of such ontology and thus the chase is guaranteed to terminate.

In contrast with existing acyclicity notions [6] which deal with termination
of the unrestricted, i.e. oblivious, chase of arbitrary sets of existential rules, we
restrict our attention to the language Horn-SRIQ and seek to achieve termina-
tion of the restricted chase algorithm [3]; this is a special variant of the standard

c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 70–85, 2016.
DOI: 10.1007/978-3-319-46523-4 5
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chase in which the inclusion of further terms to satisfy existential restrictions is
avoided if such restrictions are already satisfied, and equality is dealt with via
renaming. By considering such a chase algorithm we are able to devise acyclic-
ity conditions which are more general than any other of the notions previously
described.

On the theoretical side, we show that RCAn is more general than model-
faithful acyclicity (MFA) provided n is sufficiently large (linear in the size of
ontology). As shown in [6], this is one of the most general acyclicity conditions
for ontologies described to date, as it encompasses many other existing notions
such as joint acyclicity [12], super-weak acyclicity [14] or the hybrid acyclicity
notions presented in [2]. Furthermore, we show that deciding RCAn membership
is not harder than deciding MFA membership.

On the practical side, we empirically show that (i) RCAn characterizes more
real-world ontologies as acyclic than MFA. Furthermore, we demonstrate that
(ii) the specific type of acyclicity captured by RCAn results in a more efficient
reasoning procedure. This is because acyclicity is still preserved in the case when
employing renaming techniques when reasoning in the presence of equality. Thus,
the use of cumbersome axiomatizations of equality such as singularization [14]
can be avoided. Moreover, we report on an implementation of the restricted
chase algorithm based on the datalog engine RDFOx [15] and show that (iii) it
vastly outperforms state-of-the-art DL reasoners. To verify (i–iii), we complete
an extensive evaluation with very encouraging results.

The rest of the paper is structured as follows: We start with some preliminar-
ies in Sect. 2. Section 3 formally introduces the notions of oblivious and restricted
chase, followed by an overview of MFA in Sect. 4. In Sect. 5 we introduce our
new acyclicity notion RCAn. Finally, Sects. 6 and 7 describe the evaluation of
our work and list our conclusions, respectively.

An extended technical report for this paper with all the proofs and further
information concerning the evaluation can be found at http://dase.cs.wright.
edu/publications/acyclicity-notion-cqa-over-horn-sriq-ontologies.

2 Preliminaries

Rules. We use the standard notions of constants, function symbols and predi-
cates, where ≈ is the equality predicate, � is universal truth, and ⊥ is universal
falsehood. Variables, terms, atoms and substitutions are defined as usual. A fact
is a ground atom; i.e., an atom without occurrences of variables. As customary,
every term t is associated with some depth dep(t) ≥ 0. Furthermore, we often
abbreviate a vector of terms t1, . . . , tn as t and identify t with the set {t1, . . . , tn}.
In a similar manner, we often identify a conjunction of atoms φ1∧. . .∧φn with the
set {φ1, . . . , φn}. With φ(x) we stress that x = x1, . . . , xn are the free variables
occurring in the formula φ.

Let t be some ground term and c some constant. Let tc be the term obtained
from t by replacing every occurrence of a constant by c, i.e., f(d, g(e))c =
f(c, g(c)). The notation is analogously extended to facts and sets of facts.

http://dase.cs.wright.edu/publications/acyclicity-notion-cqa-over-horn-sriq-ontologies
http://dase.cs.wright.edu/publications/acyclicity-notion-cqa-over-horn-sriq-ontologies
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A term t′ is a subterm of another term t if and only if t′ = t, or t = f(s)
and t′ is a subterm of some s ∈ s; if additionally t′ �= t, then t′ is a proper
subterm of t. A term t is n-cyclic if and only if there exists a sequence of terms
of the form f(s1), . . . , f(sn+1) such that f(sn+1) is a subterm of t and, for
every i = 1, . . . , n, f(si) is a proper subterm of f(si+1). We simply refer to
1-cyclic terms as cyclic.

A rule is a first-order logic (FOL) formula of one of the forms

∀x∀z[β(x,z) → ∃yη(x,y)] or (1)
∀x[β(x) → x ≈ y], (2)

where β and η are non-empty conjunctions of atoms which do not contain occur-
rences of constants, function symbols nor of the predicate ≈; x, y and z are
pairwise disjoint; and x, y ∈ x. To simplify the notation, we frequently omit the
universal quantifiers from rules. As customary, we refer to rules of the forms
(1) and (2) as tuple generating dependencies (TGDs) and equality generating
dependencies (EGDs), respectively.

Given a set of rules R, we define R∃ and R∀ as the sets of all the TGDs in
R which do and do not contain existentially quantified variables, respectively.
Moreover, let R≈ be the set of all EGDs in R. A program is a tuple 〈R, I〉 where
R is a set of rules and I is an instance; i.e., a finite set of equality-free facts.

The main reasoning task we are investigating in this paper is CQ answering.
Nevertheless, for the rest of the paper, we restrict our attention to the simpler
task of CQ entailment of boolean conjunctive queries (BCQs). This is without
loss of generality since CQ answering can be reduced to checking entailment of
BCQs. A BCQ, or simply a query, is a formula of the form ∃yη(y) where η is a
conjunction of atoms not containing occurrences of constants, function symbols
nor ≈.

For the remainder of the paper, we assume that � and ⊥ are treated as
ordinary unary predicates and that the semantics of � is captured explicitly in
any program P = 〈R, I〉 by including the rule p(x1, . . . , xn) → �(x1)∧. . .∧�(xn)
in R for every predicate p with arity n occurring in P.

We interpret programs under standard FOL semantics with true equality. As
usual, a program P is satisfiable if and only if P �|= ∃y⊥(y). Furthermore, given
some query γ, we write P |= γ to indicate that P entails γ.

We will later employ skolemization to define the consequences of a TGD over
a set of facts. The skolemization sk(ρ) of some TGD ρ = β(x,z) → ∃yη(x,y) is
the rule β(x,z) → η(x,y)σsk where σsk is a substitution mapping every y ∈ y
into fy

ρ (x) where fy
ρ is a fresh function unique for every variable y and TGD ρ.

Description Logics. We next define the syntax and semantics of the ontology
language Horn-SRIQ [13]. We assume basic familiarity with DL, and refer the
reader to the literature for further details [1]. Without loss of generality, we
restrict our attention to ontologies in a normal form close to the one from [13].

A DL signature is a tuple 〈NC , NR, NI〉 where NC , NR and NI are infi-
nite countable and mutually disjoint sets of concept names, role names and
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A1 . . . An B A1(x) ∧ . . . ∧ An(x) → B(x)

A R.B A(x) ∧ R(x, y) → B(y)

A 1 R.B A(x) ∧ R(x, y) ∧ B(y) ∧ R(x, z) ∧ B(z) → y ≈ z

A R.B A(x) → ∃y[R(x, y) ∧ B(y)]

S R S(x, y) → R(x, y)

S− R S(y, x) → R(x, y)

S ◦ V R S(x, y) ∧ V (y, z) → R(x, z)

Fig. 1. Mapping axioms α to rules Π(α), where A(i), B ∈ NC , R, S, V ∈ NR.

individuals, respectively, such that {⊥,�} ⊆ NC . A role is an element of
N−

R = NR ∪ {R− | R ∈ NR}. A TBox axiom is a formula of one of the forms
given on the left hand side of the mappings in Fig. 1. TBox axioms of the form
A � ∃R.B are also referred as existential axioms. An ABox axiom is a formula
of the form A(a) or R(a, b) where A ∈ NC , R ∈ NR and a, b ∈ NI . An axiom
is either a TBox or an ABox axiom. As usual, we simply refer to a set of TBox
(resp. ABox) axioms as a TBox (resp. an ABox ).

A Horn-SRIQ ontology O (or simply an ontology) is some tuple 〈T ,A〉,
where T and A are a TBox and an ABox, respectively, which satisfies the usual
conditions [10].

Due to the close correspondence between ontologies and programs, we define
the semantics of the former by means of a mapping into the latter. Given some
TBox T , let RT = Π(T ). Given some ontology O = 〈T ,A〉, let P(O) = (RT ,A)
where Π is the function from Fig. 1. We say that O is satisfiable if and only if the
program P(O) is satisfiable. Furthermore, O entails a query γ, written O |= γ,
if and only if P(O) is unsatisfiable or P(O) entails γ.

3 The Chase Algorithm

In this section we present two variants of the chase algorithm, which are some-
what similar to the oblivious and restricted chase from [3], and elaborate about
how such procedures may be used to solve CQ entailment over ontologies.

Definition 1. A fact φ is an oblivious consequence of a TGD ρ = β(x,z) →
∃yη(x,y) on a set of facts F if and only if there is some substitution σ with
β(x,z)σ ⊆ F and φ ∈ sk(η(x,y))σ where sk(η(x,y)) is the head of the (skolem-
ized) TGD sk(ρ). A fact φis a restricted consequence of ρ on F if and only if
there is a substitution σ with (1) β(x,z)σ ⊆ F and φ ∈ sk(η(x,y))σ, and (2)
there is no substitution τ ⊇ σ with η(x,y)τ ⊆ F .

The result of obliviously applying ρ to F , written ρO(F), is the set of all
oblivious consequences of ρ on F . The result of obliviously applying a set of
TGDs R to F , written RO(F), is the set

⋃
ρ∈R ρO(F)∪F . The result of restric-

tively applying ρ to F(resp., R to F), written ρR(T ) (resp., RR(T )), is analo-
gously defined.
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Definition 2. Let � be some total strict order over the set of all terms such
that t � u only if dep(t) ≤ dep(u). Furthermore, we say that t is greater than u
with respect to � to indicate t � u.

Given a set of EGDs R and a set of facts F , let �→R
F be the minimal con-

gruence relation over terms such that t �→R
F u if and only if there exists some

β(x) → x ≈ y ∈ R and some substitution σ with β(x)σ ⊆ F , σ(x) = t and
σ(y) = u. Let R(F) be the set that is obtained from F by replacing all occur-
rences of every term t by u where u is the greatest term with respect to � such
that t �→R

F u.

Note that we define consequences with respect to sets of rules instead of
simply (single) rules as it is customary [3]. This allows us to define the chase as
a deterministic procedure (modulo �). Also, unlike in [3], where a lexicographic
order is used to direct the replacement of terms, we employ a type of order
which ensures that terms are always replaced by terms of equal or lesser depth.
This effectively precludes some “deeper” terms from being introduced during
the computation of the chase.

Definition 3. Let P = 〈R, I〉 be some program. The oblivious chase sequence
of P is the sequence F0,F1, . . . such that F1 = I and, for all i ≥ 1, Fi is the set
of facts defined as follows.

– If R≈(Fi−1) �= Fi−1, then Fi = R≈(Fi−1).
– If Fi−1 = R≈(Fi−1) and Fi−1 �= R∀

O(Fi−1), then Fi = R∀
O(Fi−1).

– Otherwise, Fi = R∃
O(Fi−1).

The restricted chase sequence of P is defined analogously.

For the sake of brevity, we frequently denote the oblivious (resp., restricted)
chase sequence of a program P with P1

O,P2
O, . . . (resp., P1

R,P2
R, . . .)

Definition 4. Let P be some program and let R be some set of rules. Then, the
oblivious chase of P is the set OC(P) =

⋃
i∈N

Pi
O. The restricted chase of P,

written RC(P), is defined analogously.
The oblivious (resp., restricted) chase of P terminates if and only if there

is some i such that, for all j ≥ i, Pi
O = Pj

O. Furthermore, the oblivious (resp.,
restricted) chase of a set of rules R terminates if the oblivious (resp., restricted)
chase of every program of the form 〈R, I〉 terminates.

Our definition of the chase sequence ensures that rules which do not contain
existentially quantified variables are always applied with a higher priority than
rules that do. Note that, by postponing the application of rules with existential
variables, we may prevent them from introducing further consequences.

The (restricted or oblivious) chase of a program can be employed to solve
CQ entailment [3]. I.e., a program P entails a query γ, written P |= γ, if and
only if either OC(P) |= ∃y⊥(y) or OC(P) |= γ (resp., RC(P) |= ∃y⊥(y) or
RC(P) |= γ). Thus, we may also use the chase to solve CQ entailment over
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T = {Film isProdBy.Producer,Producer prod.Film,

isProdBy− prod, prod− isProdBy}
O = , {Film(AI)

RT = {ρ = Film(x) → ∃y[isProdBy(x, y) ∧ Producer(y)],

υ = Producer(x) → ∃y[prod(x, y) ∧ Film(y)],

isProdBy(y, x) → prod(x, y),prod(y, x) → isProdBy(x, y)}
P(O) = T , {Film(AI)

P(O)1R = {Film(AI), isProdBy(AI, fy
ρ (AI)),Producer(fy

ρ (AI))}
P(O)2R = {prod(fy

ρ (AI),AI)} ∪ P(O)1O

RC(P(O)) = P(O)2O

OC(P(O)) = RC(P(O)) ∪ {prod(fy
ρ (AI), fy

υ (fy
ρ (AI))),Film(fy

υ (fy
ρ (AI))), . . .}

Fig. 2. Ontology O = 〈T , A〉, program P(O) and the chase of P(O).

ontologies: An ontology O entails a query γ if and only if OC(P(O)) |= ∃y⊥(y)
or OC(P(O)) |= γ (resp., RC(P(O)) |= ∃y⊥(y) or RC(P(O)) |= γ).

For readability purposes, we say that the oblivious (resp. restricted) chase
of some ontology O terminates if and only if the oblivious (resp. restricted)
chase of P(O) terminates. The oblivious (resp. restricted) chase of some TBox T
terminates if and only if if the oblivious (resp. restricted) chase of RT terminates.

As expected, the restricted chase has a better behavior than the oblivious
chase; i.e., in some cases, the former might terminate when the latter does not:

Example 5. Let O = 〈T ,A〉 be as in Fig. 2. The figure depicts also the compu-
tation of the oblivious chase and that of the restricted chase of P(O). In this
case, RC(P(O)) terminates whereas OC(P(O)) does not.

4 Model Faithful Acyclicity

In this section we briefly describe Model Faithful Acyclicity (MFA) [6], one of
the most general acyclicity conditions for sets of rules. MFA guarantees the
termination of the oblivious chase of a program by imposing that no cyclic term
occurs in the chase. Note that, a condition such as MFA can be applied to check
whether a TBox T is acyclic; i.e., T is MFA if and only if RT is MFA.

When one is interested in checking the termination of the oblivious chase
with respect to every possible instance, it is enough to check termination with
respect to a special instance, the critical instance [14]. The critical instance is
the minimal set which contains all possible atoms that can be formed using
the relational symbols which occur in TGDs and the special constant 
. Such a
strategy is used by MFA to guarantee termination of a set of rules.

While the actual definition of MFA does not preclude the existence of EGDs,
equality is assumed to be axiomatized, and thus it is treated as a regular predi-
cate (EGDs are de facto TGDs). To reflect such treatment we will use the special
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predicate Eq to denote equality. However, as the following example shows, the
presence of equality in a set of TGDs frequently makes the MFA membership
test fail.

Example 6. Let Σ be the following set of rules and let Σ′ be the set of rules
that result from axiomatizing the equality predicate as usual (see Sect. 2.1 of
[6]). Furthermore, let I�(Σ′) be the critical instance of Σ′.

Σ = {A(x) ∧ B(x) → ∃y[R(x, y) ∧ B(y)], R(z, x1) ∧ R(z, x2) → Eq(x1, x2)}
Eq = {�(x) → Eq(x, x),Eq(x, y) → Eq(y, x),Eq(x, z) ∧ Eq(z, y) → Eq(x, y)}
Σ′ = {A(x) ∧ Eq(x, y) → A(y), R(x, y) ∧ Eq(x, z) → R(z, y),

R(x, y) ∧ Eq(y, z) → R(x, z)} ∪ Σ ∪ Eq

I�(Σ′) = {A(
), R(
, 
),Eq(
, 
)}

The oblivious chase of (Σ′, I�(Σ′)) does not terminate.

(Σ′, I�(Σ′))1O = {R(
, f(
)), B(f(
)),Eq(
, f(
))} ∪ I�(Σ′)

(Σ′, I�(Σ′))2O = {A(f(
)), R(f(
), f(f(
))), B(f(f(
))), . . .}
. . . . . . . . . . . . . . . . . . . . . . . .

To avoid this situation, the use of singularization [14], a somewhat “less-
harmful” axiomatization of equality, is proposed in [6].

Definition 7. A singularization of a rule ρ is the rule ρ′ that results from per-
forming the following transformation for every variable v in the body of ρ:

– Rename each occurrence of v using different fresh variables v1, . . . , vn,
– pick some j = 1, . . . , n and add the atoms Eq(v1, vj), . . . ,Eq(vn, vj) to the body

of ρ and
– replace any occurrence of v in the head of ρ with vj.

Let Σ be a set of TGDs and let Eq be the set from Example 6. A singulariza-
tion of Σ is a set of TGDs Σ′ which contains Eq and exactly one singularization
of every ρ ∈ Σ. Let Sing(Σ) be the set of all possible singularizations of Σ.

Example 8. Rule A(x)∧B(x) → ∃y[R(x, y)∧B(y)] from Example 6 admits two
possible singularizations: (i) A(x1) ∧ B(x2) ∧ Eq(x2, x1) → ∃y[R(x1, y) ∧ B(y)]
and (ii) A(x1) ∧ B(x2) ∧ Eq(x1, x2) → ∃y[R(x2, y) ∧ B(y)].

Note that, for any Σ′ ∈ Sing(Σ), if Σ′ is MFA, then the oblivious chase of
Σ′ can be used to answer queries on Σ [6]. The use of singularization along with
MFA gives rise to the following acyclicity notions.

Definition 9. For a set of TGDs Σ, if there is some Σ′ ∈ Sing(Σ) which is
MFA, then Σ is said to be MFA∃. If every Σ′ ∈ Sing(Σ) is MFA, then Σ is
MFA∀.
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To some extent, the use of singularization solves the problems with equality:
One can check that Σ in Example 6 is MFA∃, but not MFA∀. Nevertheless, due
to the high number of possible singularizations, it is frequently not feasible to
check MFA∃ or MFA∀ membership. A simpler alternative is to check whether⋃

Σ′∈Sing(Σ) Σ′ is MFA. If that is the case, then Σ is said to be MFA∪. Note
that in the case of Horn-SRIQ TBoxes, |⋃Σ′∈Sing(Σ) Σ′| is actually polynomial
in |Σ| and, as such, MFA∪ is more feasible to check. Thus, we will use MFA∪

as a baseline for the evaluation of the new acyclicity condition RCAn, which is
introduced in the next section.

5 Restricted Chase Acyclicity

While MFA is quite a general acyclicity condition, it has two main drawbacks:

1. It only considers the oblivious chase, which as we have seen in Example 5,
might not terminate (even though the restricted chase does!), and

2. its treatment of equality via singularization is cumbersome and inefficient in
practice. Not only MFA∃ and MFA∀ are difficult to check, but even after a set
of TGDs are established to belong to some MFA subclass, one has to employ
a singularized program for reasoning purposes.

In this section, we present RCAn, an acyclicity notion with neither of these
drawbacks: RCAn verifies termination of the restricted chase of a TBox and does
not require the use of cumbersome axiomatizations of the equality predicate.
Furthermore, unlike MFA, RCAn allows for the presence of cyclic terms in the
chase up to a given depth n.

Since we are primarily interested in termination of the restricted chase of a
Horn-SRIQ TBox, one might wonder why we do not simply check for termina-
tion of the restricted chase for such a TBox with respect to the critical instance,
as it is done in the previous section with the oblivious chase. Unfortunately,
this is not possible: The restricted chase of any set of existential rules always
terminates with respect to the critical instance. Thus, we have to devise more
sophisticated techniques to check the termination of the restricted chase. We
start by introducing the notion of an overchase for a TBox.

Definition 10. A set of facts V is an overchase for some TBox T if and only
if, for every O = 〈T ,A〉, RC(P(O))� ⊆ V.

Given some TBox T , an overchase for T may be intuitively regarded as an
over-approximation of the restricted chase of T .

Lemma 11. If there exists a finite overchase for a TBox, then the restricted
chase of such TBox terminates.

Thus, to determine whether the chase of a TBox T terminates, we introduce
a procedure to compute an overchase for T and a means to check its termination.
We proceed with some preliminary notions and notation.



78 D. Carral et al.

Definition 12. Let T be some TBox and t a term. Let I(t) be the set of facts
defined as follows: If t is of the form fy

ρ (s) where ρ = A(x) → ∃y[R(x, y)∧B(y)],
then I(t) = {A(s), R(s, t), B(t)} ∪ I(s); otherwise, I(t) = ∅. Furthermore, we
introduce the program U(T , t) = 〈R∀

T ∪ R≈
T , I(t)〉.

Intuitively, the restricted chase of the program U(T , t) can be regarded as
some kind of under-approximation of the facts that must occur in the chase
of every program of the form P(〈T ,A〉) where t occurs. I.e., if t occurs in
the restricted chase sequence of any program P(〈T ,A〉), then the facts in the
restricted chase of U(T , t) must also occur (up to renaming) in the chase sequence
of such program. Furthermore, due to the special priority of application of the
rules during the computation of the chase, the facts in the restricted chase of
U(T , t) must occur in the restricted chase sequence of every program of the form
P(〈T ,A〉) before any successors of t are introduced.

Example 13. Let O, ρ and υ be the ontology and rules from Example 5. Then,
by Definition 12:

I(fy
ρ (AI)) = {Film(AI), isProdBy(AI, fy

ρ (AI)), P roducer(fy
ρ (AI))} and

RC(U(T , fy
ρ (AI))) = {prod(fy

ρ (AI), AI)} ∪ I(fy
ρ (AI)).

All the facts in the restricted chase of U(T , t) occur in the restricted chase
sequence of P(O) before any successors of term fy

ρ (AI) are introduced. This is
because the rule isProdBy(y, x) → prod(x, y) is applied with a higher priority
than the rule υ = Producer(x) → ∃y[prod(x, y) ∧ Film(y)].

Given a TBox T and some term of the form fy
ρ (t), we can in some cases con-

clude that such a term may never occur during the computation of the restricted
chase of every program of the form P(〈T ,A〉) by carefully inspecting the facts
in the set U(T , t).

Definition 14. Let T be a TBox and t a term of the form fy
ρ (s) where ρ =

A(x) → ∃y[R(x, y)∧B(y)]. We say that a term t is restricted with respect to T
if and only if there is some term u with {R([s], u), B(u)} ⊆ RC(U(T , s)) where
[s] = [v], if s is replaced by v during the computation of the restricted chase
sequence; and [s] = s, otherwise.

We often simply say that a term is “restricted”, instead of “restricted with
respect to T ,” if the TBox T is clear from the context.

Lemma 15. Let T be a TBox and t a restricted term. Then, for every possible
O = 〈T ,A〉, t /∈ RC(P(O)).

Proof (Sketch). Let t be a term of the form fy
ρ (s) where ρ = A(x) →

∃y(R(x, y)∧B(y)). We can verify that, if t occurs during the computation of the
chase sequence, then every fact RC(U(T , s)) will also be included in such chase
sequence before any new terms are introduced. Thus, if t is indeed restricted,
there must be some u with R([s], u) and B(u) occurring in the chase sequence.
Therefore, by the definition of the chase, the term t may never be derived.
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∀-rule if there is some TGD of the form ρ = β(x,y) → η(x) ∈ RT
then VT → ρR(VT ) ∪ VT

∃-rule if there is some TGD of the form ρ = A(x) → ∃y[R(x, y) ∧ B(y)] ∈ RT
and there exists some substitution σ such that (i) A(x)σ ⊆ VT and
(ii) fy

ρ (x)σ is not restricted with respect to T
then VT → {R(x, fy

ρ (x)),B(fy
ρ (x))}σ ∪ VT

≈-rule if there is some EGD β(x,y) → x ≈ y ∈ RT and there exists some
substitution σ such that β(x,y)σ ⊆ VT

then VT → {Eq(x, y),Eq(y, x)}σ ∪ VT
Eq-rule if there are some terms t, u and ui where i = 1, . . . , n and some

predicate p such that (i) p = Eq, (ii) {Eq(t, u), p(u1, . . . , un)} ⊆ VT ,
(iii) dep(t) ≤ dep(u) and (iv) u = uj for some j = 1, . . . , n

then VT → {p(u1, . . . , un)}[u/t] ∪ VT

Fig. 3. Expansion rules for the construction of VT .

Example 16. Let T , ρ and υ be the TBox and rules from Example 5. We proceed
to show that the term fy

ρ (fy
υ (AI)) is restricted. First, we compute the restricted

chase of U(T , fy
υ (AI)).

RC(U(T , fy
υ (AI))) = {Producer(AI), prod(AI, fy

υ (AI)),
F ilm(fy

υ (AI)), isProdBy(fy
υ (AI), AI)}

Note that {isProdBy(fy
υ (AI), AI), P roducer(AI)} ⊆ RC(U(T , fy

υ (AI))). Thus,
fy

ρ (fy
υ (AI)) is restricted with respect to T and, by Lemma 15, it may not occur

in the restricted chase of a program of the form P(〈T ,A〉). Furthermore, by
Definition 14, if fy

ρ (fy
υ (AI)) is restricted, then every term of the form fy

ρ (fy
υ (c)),

where c is a constant, is also restricted.

With Definition 14 and Lemma 15 in place, we proceed with the definition
of a procedure to construct an overchase for some given TBox T .

Definition 17. Let T be a TBox. We define VT as the set initially containing
every fact in I�(RT ) which is then expanded by repeatedly applying the rules in
Fig. 3 (in non-deterministic order).

Lemma 18. The set VT is an overchase of the TBox T .

Proof (Sketch). The lemma can be proven via induction on chase sequence of
any ontology of the form O = 〈T ,A〉. Note that, O0

R ⊆ VT by the definition of
VT . It can be verified that, for every possible derivation of a set of facts during
the computation of the chase of O, such facts will always be contained in VT .

Corollary 19. The restricted chase of some TBox T terminates if VT is finite.

Example 20. Let T be the TBox from Example 5. Then VT is as follows.

VT = {Film(
), isProdBy(
), P roducer(
), prod(
, 
),
isProdBy(
, fy

ρ (
)), P roducer(fy
ρ (
)), prod(
, fy

υ (
)), P roducer(fy
υ (
))}
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Note that terms fy
ρ (fy

υ (
)) and fy
υ (fy

ρ (
)) are restricted and thus, they are not
included in VT . Since VT is finite, we can conclude termination of the restricted
chase of the TBox T .

In the previous example, we were able to ascertain termination of the
restricted chase of T after verifying that the set VT is finite. A sufficient con-
dition for finiteness of VT is to only allow cyclic terms up to a certain depth in
this set. We use such condition to formally define RCAn.

Definition 21. A TBox T is RCAn if and only if there are no n-cyclic terms
in VT . An ontology 〈T ,A〉 is RCAn if and only if T is RCAn.

Theorem 22. If a TBox T is RCAn then the restricted chase of T terminates.

We proceed with several results regarding the complexity of deciding RCAn

membership and reasoning over RCAn ontologies.

Theorem 23. Deciding whether some TBox T is RCAn is in ExpTime.

Theorem 24. Let O = 〈T ,A〉 be some RCAn ontology and γ a query. Then,
checking whether O |= γ is ExpTime-complete.

To close the section, we present several results in which we theoretically
compare the generality of RCAn to MFA∪.

Theorem 25. MFA∪ does not cover RCA1.

Proof. The TBox T from Example 5 is RCA1 but not MFA∪.

Theorem 26. If T is MFA∪ then T is RCAn for every n > |T ∃| where T ∃ is
the set of all existential axioms in T .

6 Evaluation

6.1 An Empirical Comparison of RCAn and MFA∪

In this section we include an empirical comparison of the generality of RCAn

and MFA∪. For our experiments, we use the TBoxes of the ontologies in the
OWL Reasoner Evaluation workshop (ORE, https://www.w3.org/community/
owled/ore-2015-workshop/) and Ontology Design Patterns (ODP, http://www.
ontologydesignpatterns.org) datasets. The former is a large repository used in
the ORE competition containing a large corpus of ontologies. The latter contains
a wide range of smaller ontologies that capture design patterns commonly used
in ontology modeling. The ORE dataset is rather large, and thus we restrict our
experiments to the 294 ontologies with the smallest number of existential axioms,
while skipping the 77 ontologies with the largest number of existential axioms.
The number of such axioms contained in an ontology is a useful metric to predict
the “hardness” of acyclicity membership tests; i.e. running these experiments
would be very time-intensive, while our results, reported below, already indicate

https://www.w3.org/community/owled/ore-2015-workshop/
https://www.w3.org/community/owled/ore-2015-workshop/
http://www.ontologydesignpatterns.org
http://www.ontologydesignpatterns.org
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ORE
∃-Axioms Avg. Size Count MFA∪ RCA1 RCA2 RCA3

1-5 175 70 70.0 87.1 92.9 92.9
6-10 219 48 58.3 83.3 83.3 83.3
11-25 916 54 83.3 85.2 91 91
26-100 521 42 54.8 59.5 61.9 61.9
101-500 1290 42 26.2 26.2 28.6 28.6
501-1922 5052 38 60.5 60.5 60.5 60.5
1-1922 1362 294 60.9 70.1 73.1 73.1

ODP
∃-Axioms Size Total MFA∪ RCA1 RCA2 RCA3

1-12 39 18 73.7 100.0 100.0 100.0

Fig. 4. Results for the ORE and ODP Repositories.

that for such very hard TBoxes MFA∪ and RCAn will likely not differ much
(while they differ significantly for ontologies with a lower count of existential
axioms).

Only Horn-SRIQ TBoxes which cannot be expressed in any of the OWL
2 profiles were considered in our experiments. This is because all OWL 2 RL
TBoxes are acyclic (with respect to every applicable acyclicity notion known to
us), and there already exist effective algorithms and efficient implementations
that solve CQ answering over OWL 2 EL and OWL 2 QL ontologies [11,17,18]
(albeit, if these do not include complex roles).

The results from our experiments are summarized in Fig. 4. The evaluated
TBoxes are sorted into brackets depending on the number of existential axioms
they contain. For each bracket we provide the average number of axioms in the
ontologies (“Avg. Size”), the number of ontologies (“Count”), and, for every
condition “X” considered, the percentage of “X acyclic” ontologies

RCA2 and RCA3 turned out to be indistinguishable with respect to the
TBoxes considered and thus, we limit our evaluation to RCAn with n ≤ 3. Our
tests reveal that RCA2 is significantly more general than MFA∪, particularly
when it comes to TBoxes with a low count of existential axioms. However note
that reasoning over ontologies with few (existential) axioms is in general not
trivial: All of the ontologies considered in our materialization tests (see Fig. 5)
contain less than 20 existential axioms. For TBoxes containing from 1 to 10
existential axioms in the ORE dataset, more than half of the ontologies which
are not MFA∪ are RCA2. Furthermore, the 4 ontologies in the ODP dataset
which are not MFA∪ are RCA2. Interestingly, in both repositories we could not
find any ontology that is MFA∪ but not RCA1. Thus, with respect to the TBoxes
in our corpus, RCA1 already proves to be more general than MFA∪.

In total, we looked at 312 ontologies, 62% and 75% of which are MFA∪ and
RCA2, respectively. To gauge the significance of this improvement, we roughly
compare these numbers with the results presented in [6]. In that paper, the
authors consider a total of 336 ontologies, of which 49%, 58% and 68% are



82 D. Carral et al.

Triples Restricted Oblivious PAGOdA Konc.
Count C Q1-Q4 C Q1-Q4 P Q1-Q4 R

2.8M 10 0 0 0 0 45 0 0 TO 0 89 OM 4 1 0 75
5.1M 21 0 0 0 0 138 0 0 TO 3 147 OM 1 2 0 214
6.7M 28 0 0 0 0 1029 2 0 TO 0 203 OM 2 3 1 506
8.1M 36 37 0 0 0 TO - - - - 263 OM 2 2 6 1347

9.0M 37 0 0 0 0 OM - - - - 113 1 1 1 1 198
17.8M 72 0 0 0 0 OM - - - - 232 2 2 3 3 987
26.2M 107 0 0 0 0 OM - - - - 378 4 10 12 5 3491
33.9M 141 0 1 0 0 OM - - - - 521 6 21 21 12 TO

2.8M 8 0 0 0 1 70 0 0 0 74 51 OM 0 0 0 51
5.7M 16 0 0 0 2 158 1 1 1 154 99 OM 1 1 0 118
8.4M 26 0 0 0 3 242 1 1 2 186 142 OM 2 1 1 220

11.4M 37 1 0 0 5 341 2 2 3 311 197 OM 3 1 1 315

2.2M 11 0 0 0 0 56 0 0 0 1 61 28 0 TO 1 53
4.5M 27 2 0 0 0 133 0 0 1 2 121 60 0 TO 2 125
6.6M 42 3 1 1 0 216 1 1 2 3 186 TO 0 TO 5 292
8.9M 58 5 1 2 1 310 1 2 4 6 260 TO 0 TO 5 644

Fig. 5. Results for Reactome, Uniprot, LUBM and UOBM (sorted from top to bottom
in the above table).

weakly acyclic [7], jointly acyclic [12] and MFA∪, respectively. Even though the
comparison is not over the same TBoxes, we verify that the improvement in
generality of our notion is in line with previous iterations of related work.

6.2 A Materialization Based Reasoner

We now report on an implementation of the restricted chase as defined in Sect. 3.
Moreover, we also present an implementation of the oblivious chase with singu-
larization, i.e., the chase as it must be used if we employ MFA∪ (see Sect. 4).
We use the datalog engine RDFOx [15] in both implementations.

We evaluate the performance of our chase based implementations against
Konclude [19], a very efficient OWL DL reasoner, and PAGOdA [20], a hybrid
approach to query answering over ontologies. PAGOdA combines a datalog rea-
soner with a fully-fledged OWL 2 reasoner in order to provide scalable ’pay-
as-you-go’ performance and is, to the best of our knowledge, the only other
implementation that may solve CQ answering over Horn-SRIQ ontologies with
completeness guarantees, albeit only in some cases. Nevertheless, PAGOdA was
able to solve all the queries (that is, all of which for which it did not time-out
or run out of memory) in this evaluation in a sound and complete manner.

We consider two real-world ontologies in our experiments, Reactome and
Uniprot, and two standard benchmarks, LUBM and UOBM, all of which con-
tain a large amount of ABox axioms. Axioms in these ontologies which are not
expressible in Horn-SRIQ were pruned. Furthermore, one extra axiom had to
be removed from Uniprot for it to be both MFA∪ and RCA1 acyclic.
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The results from our experiments are summarized in Fig. 5. For each ontology,
we consider four samples of the original ABox. The number of triples contained
in each one of these is indicated at the beginning of each row, under the column
“Triples Count”. As previously mentioned, we consider four different implemen-
tations: These include the two aforementioned variants of the chase (“Restricted”
and “Oblivious”), PAGOdA (“PAGOdA”) and Konclude (“Konc.”). For both
chase based implementations, we check the time it takes to compute the chase
(“C”) and then the time to solve each of the four queries crafted for each ontology
(“Q1–Q4”). In a similar manner, we list the time PAGOdA takes to preprocess
each ontology (“P”) plus the time it takes to answer the queries (“Q1–Q4”).
Finally, we list the time Konclude takes to solve realization; i.e., the task of
computing every fact of the form A(a) entailed by an ontology (note that Kon-
clude cannot solve arbitrary CQ answering). Time-outs, indicated with “TO,”
were set at 1 h for materialization and 5 min for queries. We make use of the
acronym “OM” to indicate that an out-of-memory error occurred. Sometimes, a
time-out or an out of memory error prevents us from answering the queries: Such
a situation is indicated with “-.” All experiments were performed on a MacBook
Pro with 8 GB of RAM and a 2.4 GHz Intel Core i5 processor.

For each ontology, we consider four different queries which are listed in the
App. Section B included in the extended technical report. A summarized descrip-
tion of these queries, in which we ignore unary predicates, can be found in Fig. 6.
For every ontology, the query Q1 is of the form ∃x, y, zR(x, y)∧R(z, y) where R is
an existentially quantified role occurring in the TBox. It appears that PAGOdA
has trouble with this kind of query, whereas the chase based implementations
efficiently solve it in all but one case. This is probably due to the design of the
hybrid reasoner which considers under and over approximations to provide com-
plete answers to CQ: It appears that queries as the one previously considered
find a large number of matches in the upper bound which slows down the per-
formance of this reasoner. Queries Q2, and Q3 and Q4 are acyclic and cyclic,
respectively (a query is acyclic if the shape of its body is acyclic). Even though
it is well-known that answering acyclic CQs can be reduced to satisfiability [5],
we included such a type of query in our evaluation in an attempt to verify
whether solving acyclic queries is simpler than cyclic queries (this is indeed the
case theoretically). Nevertheless, our experiments do not reveal any significant
differences.

First, note that computing the restricted chase employing renaming tech-
niques to deal with equality is way more efficient than computing the oblivious
chase with singularization. We conjecture that this is because the efficient built-
in capabilities of RDFOx to deal with equality and the fact that the rules that
result from the application of singularization are rather cumbersome. Second, see
that our proposed algorithm is also superior to PAGOdA when it comes to CQ
answering. Third, the implementation of the restricted chase outperforms the
DL reasoner Konclude by an order of magnitude when it comes to solve materi-
alization of the larger samples considered (note that, by computing the chase of
a program we already solve materialization). It is clear that our implementation
also scales much better than the OWL DL reasoner.
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q1(w, y) : pE(w, z), pE(y, z) q1(x, y) : cC(x, z), cC(y, z)

q2(x, z) : mPE(z, w),mPE(z, w), p(y, z), pC(x, y) q2(x) : tF(w,x), lO(x, y), d(x, z)

q3(x, z) : fL(x,w), fL(x, y), sIB(w, z), sIB(y, z) q3(x) : tF(w, y), tF(w,x), d(y, z), d(x, z)

q4(x, z) : p(w, z), p(y, z), pC(x,w), pC(x, y) q4(x) : lI(x,w), cC(w, z), lI(x, y), cC(y, z)

q1(x, z) : wF(x, y),wF(z, y), pA(x, z) q1(x, y) : tC(x, z), tC(y, z)

q2(x) : a(x, y), tO(y, z),mO(y, w) q2(x) : tAO(x, y), pA(z, x), tC(w, y),wF(x, v)}
q3(x, z) : tO(y, z), a(x, y), tC(x, z) q3(x, y) : iFO(x, y), l(x, z)

q4(x) : pA(x, z), pA(x, y), a(z, y), q4(x, y) : hDDF(x, z), hDDF(y, z), hMDF(x,w),

mO(z, w),mO(y, w) hMDF(y,w),wF(x, v),wF(y, v)

Fig. 6. Summarized queries for Reactome (top left), Uniprot (top right), LUBM
(bottom left) and UOBM (bottom right).

7 Conclusions and Future Work

We introduce a novel acyclicity notion for Horn-SRIQ TBoxes and prove
it to be, theoretically and empirically, more general than previously existing
conditions [6]. To the best our knowledge, this is the first acyclicity notion (for
ontologies or rules) which considers termination of the restricted chase algorithm.
Moreover, our contribution is also relevant in practice: Based on our ideas, we
produce an implementation which vastly outperforms state-of-the-art reasoners.

As future work, we plan to lift our acyclicity condition to the case of general
rules; i.e., not only those resulting from the translation of Horn-SRIQ TBoxes.
We also intend to work on further optimizing our implementation of the RCAn

membership check and our restricted chase based algorithm.
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Abstract. Query containment is one of the building block of query opti-
mization techniques. In the relational world, query containment is a well-
studied problem. At the same time it is well-understood that relational
queries are not enough to cope with graph-structured data, where one
is interested in expressing queries that capture navigation in the graph.
This paper contributes a study on the problem of query containment
for an expressive class of navigational queries called Extended Prop-
erty Paths (EPPs). EPPs are more expressive than previous navigational
extension of SPARQL (e.g., nested regular expressions) as they allow to
express path conjunction and path negation, among others. We attack
the problem of EPPs containment and provide complexity bounds.

1 Introduction

Research in graph query languages has emerged as a consequence of the intrin-
sic limitations of relational query languages when it comes to the possibility to
express recursion and navigation. This lead to the design of languages like Regu-
lar Path Queries (RPQs) and their extensions, including 2RPQs [2] that include
the possibility to traverse paths backwards, Extended Regular Path Queries
(ERPQs) [1] that offer higher expressive power by allowing to express queries that
also capture graphs [11,13]. Another well-studied class of queries is that of Nested
Regular Expressions (NREs) [26], that were originally proposed as the naviga-
tional core of SPARQL. The current SPARQL 1.1 standard introduced Property
Paths (PPs) as navigational core; PPs offer very limited expressive power due to
the lack of features to express any type of test within a path. To cope with these
issues and design a language as close as possible to the current W3C standard,
the language of Extended Property Paths (EPPs) has been recently proposed [12].
EPPs are more expressive than NREs, PPs and other navigational extensions of
SPARQL thanks to the possibility to express path conjunction, negation and more
powerful types of tests (e.g., checking the values of nodes reached via a nested
expression) while keeping query evaluation tractable.

Related Work. The problem of query containment is one of the main pillars of static
analysis and query optimization. In what follows we will not consider containment
under constraints as we tackle containment of EPPs without constraints.
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 86–101, 2016.
DOI: 10.1007/978-3-319-46523-4 6
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In the relational world, query containment for conjunctive queries (CQs) is now
well-understood; it is NP-complete for basic CQs [5] and union of CQs [29] while
it is Πp

2 when considering arithmetic comparison and also bag semantics [6,19].
For graph queries, containment of 2RPQs has been shown to be PSPACE-

complete [1,2]; the complexity jumps to EXPTIME-hard under the presence
of functionality constraints and to 2EXPTIME when considering expressive
description logics constraints [4]. The problem becomes exponential if the query
on the right hand side has a tree structure (cf. for example, [3]); for extended
RPQs containment is undecidable for Boolean queries over a fixed alphabet [1].

In the Semantic Web, the containment of PSPARQL has been studied in
Chekol et al. [8], this work provides lower bounds for upper bound complexity
results reported in that paper; for NRE, Reutter [28] has shown a PSPACE
upper bound; for SPARQL PPs, Kostylev et al. [20] show that the containment
ranges from EXPSPACE-complete for OPT-free queries to PSPACE-complete
if the right-hand side query is a pattern without projection. The study in [27]
provides complexity analysis for several fragments of SPARQL: the results range
from NP-completeness for AND-UNION queries to undecidability for the full
SPARQL.

Another related language is XPath; the problem of XPath 2.0 query con-
tainment has been studied in ten Cate and Lutz [30]. They showed that the
introduction of path intersection alone (i.e., the language CoreXPath (∩) leads
to 2EXPTIME-completeness. Finally, Kostylev et al. [22] studied the problem
of containment of navigational XPath queries (i.e., the GXpath langauge), with
results ranging from undecidability (when negation is considered) to EXP-TIME
completeness for the positive fragment.

Contributions. We study query containment for EPPs, a significant extension of
property paths (PPs), the current navigational core of SPARQL, and NREs for
which containment has been already studied. We resort on two main ingredients:
(i) an encoding of EPPs into the μ-calculus; (ii) the notion of (RDF) transition
systems to check the validity test of μ-calculus formulae and provide an upper
bound on the containment of EPPs and SPARQL with EPPs. For lower bounds
we make connections between EPPs, PDL and XPath 2.0.

Automata theoretic notions and a reduction into validity test in a logic have
been widely used to address the problem of query answering and containment
[2,3,10,15,20,24]. Contrary to the automata techniques, the logic based
approaches are fairly implementable. In this respect, it has been shown [16] that
logical combinators can provide an exponential gain in succinctness in terms of
the size of a logical formula thus allowing to study containment for expressive
query languages in exponential-time, even though their direct formulation into
the underlying logic results in an exponential blow up of the formula size.

Outline. The remainder of the paper is organized as follows. We provide some
background in Sect. 2. The language of EPPs is introduced in Sect. 3. Section 4
describes an encoding of EPPs into the μ-calculus. Section 5 discusses the con-
tainment of EPPs. We conclude in Sect. 6.
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2 Preliminaries

This section provides some background about the machineries used in this paper.
We start with RDF and SPARQL and then give a brief overview about μ-calculus
that will be used to tackle the containment of EPPs.

RDF and SPARQL. An RDF triple1 is a tuple of the form 〈s, p, o〉 ∈ I×I×I∪L,
where I (IRIs) and L (literals) are countably infinite sets. The set of terms of
an RDF graph will be terms(G) while nodes(G) will be the set of terms used
as a subject or object of a triple. An RDF graph G is a set of triples. To query
RDF data, a standard query language, called SPARQL, has been defined. The
semantics of a SPARQL query [25] is defined in terms of solution mappings. A
(solution) mapping m is a partial function m: V → I∪L. The SPARQL semantics
uses a function [[Q]]G that evaluates a query Q on a graph G and gives a multiset
(bag) of mappings in the general case. However, when considering SPARQL with
patterns using recursive PPs (i.e., using *, +) the standard introduces auxiliary
functions (called ALP) that return sets of mapping.

μ -calculus. The μ-calculus (Lμ) is a logic obtained by adding fixpoint operators
to ordinary modal logic [23]. For the purpose of this paper we will make usage
of the μ-calculus with nominals and converse programs [31]. The syntax of the
μ-calculus includes countable sets of atomic propositions AP , a set of variables
Var, a set of programs and their respective converses Prog = {s, p, o, s̄, p̄, ō} used
to allow navigation in a graph. A μ-calculus formula ϕ is defined inductively as:

ϕ :: = � | q | X | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈a〉ϕ | [a]ϕ | μXϕ | νXϕ

where q ∈ AP,X ∈ V ar and a ∈ Prog is a transition program or its converse ā.
The greatest fixpoint ν and least fixpoint operator μ introduce general and finite
recursion in graphs, respectively. The semantics of the μ-calculus is given over a
transition system (aka Kripke structure) K = (S,R,L), where S is a non-empty
set of nodes, R : Prog → 2S×S is the transition function, and L : AP → 2S

assigns a set of nodes to each atomic proposition or nominal where it holds, such
that L(p) is a singleton for each nominal p. For converse programs, R can be
extended as R(ā) = {(s′, s) | (s, s′) ∈ R(a)} where s, s′ ∈ S.

Definition 1 (Model of a formula). For a sentence ϕ and a transition system
K = (S,R,L), K is model of ϕ, denoted K |= ϕ, if there exists s ∈ S such
that K, s |= ϕ if and only if s ∈ [[ϕ ]]K – s is an element of the answer to the
evaluation of ϕ over K. If a sentence has a model, then it is called satisfiable.

If a μ-calculus formula ψ appears under the scope of a least μ or greatest ν fixed
point operator over all the programs {s, p, o, s̄, p̄, ō} as, μX.ψ∨〈s〉X ∨〈p〉X ∨· · ·
or νX.ψ ∧ 〈s〉X ∧ 〈p〉X ∧ · · · , then, for legibility, we denote the formulae by
lfp(X,ψ) and gfp(X,ψ), respectively.

1 We do not consider bnodes.
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Fig. 1. Encoding of
an RDF triple into a
transition system.

RDF Transition System. An RDF transition system [9]
is a labeled transition system, KG = (S = S′ ∪ S′′, R, L),
representation of an RDF graph G where two sets of nodes,
S′ and S′′, are introduced: one set S′′ for each triple
(called triple node) and the other set S′ for each subject,
predicate, and object of each triple. A triple node (the
black node in the figure below) is connected to its sub-
ject, predicate, and object nodes. For instance, the RDF
graph x z−→ y can be turned into the RDF transition
system in Fig. 1, where S′ = {n1, n2, n3}, S′′ = {t}, R(s) = {(n1, t)}, R(p) =
{(t, n3)}, R(o) = {(t, n2)}, and L(x) = {n1}, L(y) = {n2}, L(z) = {n3}. Navi-
gation from one node to another, in RDF transition systems, is done by using
a set of transition programs {s, p, o} and their converses. Since the μ-calculus
with converse lacks functionality for number restrictions one cannot impose that
each triple node is connected to exactly one node for each subject, predicate,
and object node. However, one can impose a lighter restriction to achieve this by
taking advantage of the technique introduced in [14] and adopted in [7]. Since
it is not possible to ensure that there is only one successor, then we restrict all
the successors to bear the same constraints; thus, they become interchangeable.
This is achieved by rewriting the formulas using a function func such that all
occurrences of 〈a〉ϕ (existential formulas) are replaced by 〈a〉� ∧ [a]ϕ; in Defini-
tion 2, func is defined inductively on the structure of a μ-calculus formula. When
checking for query containment, we assume that the formulas are rewritten using
the function func.

Definition 2. func is inductively defined on the structure of a μ-calculus for-
mula as follows:

func(�) = � func(⊥) = ⊥
func(q) = q q ∈ AP ∪ Nom func(X) = X X ∈ V ar

func(¬ϕ) = ¬func(ϕ) func(ϕ ∧ ψ) = func(ϕ) ∧ func(ψ)
func(ϕ ∨ ψ) = func(ϕ) ∨ func(ψ) func(〈a〉ϕ) = 〈a〉� ∧ [a]func(ϕ) a ∈ Prog
func(〈a〉ϕ) = 〈a〉func(ϕ) func([a]ϕ) = [a]func(ϕ)
func(μX.ϕ) = μX.func(ϕ) func(νX.ϕ) = νX.func(ϕ)

Figure 2 shows an RDF graph G and an excerpt of its corresponding RDF
transition system KG. Each RDF triple requires the introduction of a transition
node (i.e., black nodes in the figure), where: the subject of the RDF triple has an
incoming edge to the transition node labeled as s and the predicate and object
have outgoing edges labeled as p and o, respectively. At this point, we shall define
the model of formula ψ in terms of RDF transition systems.

Definition 3 (RDF transition system model). An RDF transition system KG

is considered as a model of formula ψ if there exists a node s in the transition
system where ψ holds, i.e., KG, s |= ψ. If a formula has a model, then it is called
satisfiable.
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The following lemma links RDF transition systems with transition systems
when encoding in μ-calculus a query expressed in some RDF query language.

Lemma 1 (Chekol et al. [7]). Let ϕ be a μ-calculus encoding of an
EPPs query, ϕ is satisfied by some RDF transition system KG if and only if
func(ϕ) is satisfied by some transition system K.

The above lemma serves as a basis for the encoding of EPPs that will be
encoded in μ-calculus formulas and then can be interpreted over RDF transition
systems.

3 Extended Property Paths

We now introduce our navigational extension of SPARQL called Extended Prop-
erty Paths (EPPs) [12].

Syntax. EPPs extend PPs and NREs-like languages with path conjunc-
tion/negation, repetitions, and more types of tests. The syntax of EPPs is given
below:

e :: =‘ˆ’ e | e ‘+’| e ‘?’ |e‘∗’| e ‘/’ e | e ‘|’ e |
‘(’ e ‘)’ | [p]1 test [p]2 | e ‘&’ e | e ‘∼’ e | e‘{’l, h‘}’

test :: =‘!’ test | test ‘&&’ test | test ‘||’ test | ‘(’ test ‘)’ | base

base :: =iri | ‘ˆ’iri | ‘TP(’p ‘,’ e ‘)’ | ‘T(’EExp‘)’

p :: =‘ s’ | ‘ p’ | ‘ o’

1Default is s; 2Default is o. We refer to EPPs without path repetition, path
complement as cEPPs.

EPPs introduce the following new features: path conjunction (e1&e2), path
negation (e1∼e2), path repetitions between l and h times (e{l, h}), and different
types of tests (test) within a path. EPPs allow to specify the starting and ending
position (p) of a test; it is possible to test from each of the subject, predicate
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and object positions in RDF triples, mapped in the EPPs syntax to the position
symbols s, p and o, respectively. Positions do not need to be always specified;
by default a test starts from the subject ( s) and ends on the object ( o) of the
triple being traversed. There are different types of tests (test); a test can be a
simple check for the existence of a IRI in forward/reverse direction, a nested EPP,
i.e., TP(p, e), which corresponds to the evaluation of the expression e starting
from a position p (of the last triple traversed) and returns true iff there exists
at least one node that can be reached via e. A test can also be of type T; here,
EExp (not reported here for sake of space) extends the production [110] in the
SPARQL grammar2 which enables to use in EPPs tests available in SPARQL as
built-in conditions. Tests can be combined via the logical operators and (&&),
or (||) and not (!).

Positions and Tests. EPPs tests can be coupled with positions. To formally
explain the reasoning behind tests and positions, we make usage of a function
Π(p, t), which projects the element in position p of a triple t. If we have t=
〈u1,p1,u2〉 and the test T( p=p1) then Π( p,〈u1,p1,u2〉)=p1 that checks p1=p1,
and, in this case, returns true; however, it returns false for T( o=p3).

Example 1 (Path Conjunction, Negation and Tests). Find pairs of cities
located in the same country but not in the same region; such cities must be
governed by the same political party, which has been founded before 2010.

NREs-based languages (and PPs) cannot express such request due to the
lack of path conjunction/negation. With EPPs it can be expressed as shown in
Fig. 3.

Fig. 3. EPP expression for Example 1.

The expression is the conjunction (&) of the two sub-expressions e1 and e2.
In the sub-expression e1, the symbol ˆ denotes backward navigation; from

the object to the subject of a triple. Path negation ∼ enables to discard from the
set of cities in the same country (i.e., :country/ˆ:country) those that are in
the same region (i.e., :region/ˆ:region). Path conjunction & enables to keep
2 http://www.w3.org/TR/sparql11-query/#rExpression This is not considered when

dealing with containment of EPPs.

http://www.w3.org/TR/sparql11-query/#rExpression
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from the set of nodes satisfying the first subexpression (e1) those that also satisfy
the second (e2), i.e. governed by the same party, which has been founded before
2010. Note that PPs and NREs-based languages lack tests like TP, to check the
existence of a path (via :formationYear) to nodes having value <2010.

Example 2 (Positions and Tests). Consider again the expression in Example 1.
The expression including both default positions3 and using positions to traverse
backward edges is shown in Fig. 4.

As an example, the test TP (in Fig. 4) starts from the position o, that is, the
object of the last triple traversed.

Fig. 4. An EPP expression with positions.

Definition 4. An EPP query q has the form q:: = (V ∪ I, e,V ∪ I ∪ L).

Semantics. For the purpose of this paper we will focus our attention on set
semantics. This is in line with recent related work that studied the containment
of PPs in SPARQL [20] where PPs were given a set-based semantics. Besides,
the containment of conjunctive queries in the relational world when considering
bag semantics is still an open issue4. Table 1 shows the semantics of EPPs.
The semantics makes usage of two evaluation function; the first E[[·]]G is used
to evaluate all forms of EPPs on an RDF graph G but tests; these latter are
handled by the boolean evaluation function ET [[·]]Gt . Note that in this latter case
tests consider a triple t ∈ G and have a start and end position. By observing
rule R9 one may notice that the final result is a set of pair of nodes in the graph
G; these pairs of nodes are obtained via the position mapping function Π that
projects the two elements of the triple t appearing in position p1 and p2 if t
satisfies the test.

4 Translating cEPPs into Lµ

The goal of this section is to provide the first building block toward tackling the
containment of EPP expressions; this concerns the encoding of cEPPs into Lμ.
We shall start by introducing the notion of path pattern translation.
3 These are automatically added during the parsing phase.
4 It is claimed that for basic CQs the complexity of query containment under bag

semantics is in Πp
2 [6].
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Table 1. Set-based semantics for EPPs.

Definition 5 (Path pattern translation). Given a cEPPs query q:: = (α, e, β)
where α ∈ V∪I and β ∈ V∪I∪L, its translation into Lμ is given by the following
(sub)-formula: Eμ[q] = (〈s̄〉α ∧ 〈p〉REμ(e, β)),where α, β ∈ AP ∪ �.

The formula states the existence of the encoding of the path pattern (via
Eμ[e]) somewhere in a transition system and thus it is quantified by μ (least
fixed point) so as to propagate the sub-formula to the entire transition system.
μ encodes a reflexive transitive closure over all the programs and is denoted
by lfp(X,Eμ[q]) [9]. The variables α and β are encoding as nominals whereas
the IRIs in path expressions are encoded as atomic propositions. The encoding,
shown in Table 2, makes usage of three functions

– REμ: takes an cEPPs expression e and a Lμ formula ϕ and builds inductively
an encoding based on the structure of the path expression.

– Tμ: takes a path test expression and inductively builds an Lμ formula. The test
positions are translated into transition programs in Lμ, i.e., s becomes the
transition program s̄ whereas p and o become p and o programs, respectively.

– Γ : takes two (complex) cEPPs expressions and on the basis of the end posi-
tion of the first and start position of the second returns transition programs
expressed in Lμ for the RDF transition system.

We now prove the correctness of the translation of cEPPs into Lμ formulas as
shown in the following Lemma.

Lemma 2. Let q be a cEPPs query, for every RDF transition system KG whose
associated RDF graph is G, it holds that E[[ q ]]G 
= ∅ iff [[Eμ(q)]]KG 
= ∅.
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Table 2. Encoding of EPPs into Lµ. The function Γ takes two (complex) EPP expres-
sions and on the basis of the end position of the first and start position of the second
returns transition programs expressed in Lµ for the RDF transition system. Note that
if p = s in line (14), (resp., p1 = s, p2 = s in line (9)) then the translation into Lµ

is the transition program s̄.

(1) REµ(iri, ϕ) =

{
〈p〉iri ∧ 〈o〉ϕ if ϕ ∈ AP

〈p〉iri ∧ ϕ otherwise

(2) REµ(ˆe, ϕ) = REµ(e, 〈s̄〉ϕ)

(3) REµ(e1 | e2, ϕ) = REµ(e1, ϕ) ∨ REµ(e2, ϕ))

(4) REµ(e1/e2, ϕ) = REµ(e1, Γ (e1, e2)REµ(e2, ϕ))

(5) REµ((e1&e2), ϕ) = (REµ(e1, ϕ) ∧ REµ(e2, ϕ))

(6) REµ(e?, ϕ) = REµ(e, ϕ) ∨ 〈s̄〉ϕ
(7) REµ(e+, ϕ) = μX.REµ(e, ϕ) ∨ REµ(e, Γ (e, e)X)

(8) REµ(e∗, ϕ) = REµ(e+, ϕ) ∨ 〈s̄〉ϕ
(9) RE(p1 test p2, ϕ) = 〈p1〉	 ∧ Tµ(test) ∧ 〈p2〉	 ∧ ϕ

(10) Tµ(iri) = 〈p〉iri
(11) Tµ(test1 && test2) = Tµ(test1) ∧ Tµ(test2)

(12) Tµ(test1 || test2) = Tµ(test1) ∨ Tµ(test2)

(13) Tµ(!test) = ¬Tµ(test)

(14) Tµ(TP(p, e)) = 〈p〉REµ(e, 	)

(15) Γ (e1, e2) = 〈o〉〈s〉
(16) Γ (e1, ˆe2) = 〈o〉〈ō〉
(17) Γ (ˆe1, e2) = 〈o〉〈s〉
(18) Γ (ˆe1, ˆe2) = 〈o〉〈ō〉

Proof (⇒). Assume that there exists an RDF G such that the evaluation of q over
G is nonempty, i.e., E [[q ]]G 
= ∅. We can build such graph from the canonical
instance of q and it can be produced using a function θ as shown below:

– if (α, iri, β) ∈ q, then θ((α, iri, β)) = (α, y, β) ∈ G,
– if (α, e, β) ∈ q, then θ((α, e, β)) ∈ G,
– if (α, ˆe, β) ∈ q, then θ((α, ˆe, β)) = (β, e, α) ∈ G,
– if (α, e1/e2, β) ∈ q, then θ((α, e1, y)) ∈ G and θ((y, e2, β)) ∈ G,
– if (α, e1|e2, β) ∈ q, then θ((α, e1, β)) ∈ G or θ((α, e2, β)) ∈ G,
– if (α, e1 & e2, β) ∈ q, then θ((α, e1, β)) ∈ G and θ((α, e2, β)) ∈ G,
– if (α, e+, β) ∈ q, then

⋃n
i=1 θ((α, ei, β)) ∈ G, where ei denotes the composition

of e i times and n ∈ N,
– if (α, e∗, β) ∈ q, then (α, u, α) ∈ G or (β, u, β) ∈ G or θ((α, e+, β)) ∈ G, where

u is a fresh IRI,
– if (α,p1 iri p2, β) ∈ q, then (α, iri, β) ∈ G,
– if (α,p1 test p2, β) ∈ q, then θ((α,p1 test p2, β)) ∈ G,
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– if (α,p1 test1 p2 && p3 test2 p4, β) ∈ q, then
θ((α,p1 test1 p2, β)) ∈ G and θ((α,p3 test2 p4, β)) ∈ G,

– if (α,p1 test1 p2 || p3 test2 p4, β) ∈ q, then
θ((α,p1 test1 p2, β)) ∈ G or θ((α,p3 test2 p4, β)) ∈ G,

– if (α,p1 !test p2, β) ∈ q, then we introduce a set of fresh IRI’s irii that do
not appear in test such that (α, irii, β) ∈ G and θ(α, test, β) 
∈ G,

– if (α,p1 TP(p, e) p2, β) ∈ q, then (α, y, β) ∈ G and θ(y, e, r) ∈ G or θ(α, e, r) ∈
G or θ(β, e, r) ∈ G, where y and r are fresh IRIs.

Since G is an instance of q, the evaluation of q over G is not empty. Now, we
construct an RDF transition system KG = (S,R,L) in the same way as it is done
in Definition 9 of [7]. It is possible to verify KG is a model of Eμ(q) by working
inductively on the construction of Eμ(q). This is because atomic propositions
encoding the constants and distinguished variables are true in KG as they exist
in G; therefore, Eμ(q) is satisfiable in KG. To elaborate, if l is a distinguished
variable (i.e., either x or z) or a constant e in q, then

– for l a distinguished variable, l is satisfiable in KG since [[l]]KG is non empty,
– for l = e an EPP, its encoding REμ(e,�) is satisfiable in KG if e is satisfiable

in KG, this can be proved inductively on the structure of the encoding.

Thus, since KG is an RDF transition system, we obtain that [[Eμ(q)]]KG 
= ∅.
(⇐) Assume that [[Eμ(q)]]KG 
= ∅. In order to test if the evaluation of q over

an RDF graph obtained from KG is non empty, we produce an RDF graph G from
KG as done in Lemma 4 of [7]. Thus, since G is a technical construction obtained
from an RDF transition system associated to q, it holds that E[[ q ]]G 
= ∅.

Example 3. The μ-calculus encoding of the EPPs in Example 1 is given below.
Γ (et1, et2) is a shorthand for Γ (:leaderParty&& TP( o, :formationYear),
ˆ:leaderParty).

Eμ(e1 & e2) = lfp
(
X, 〈s̄〉� ∧ REμ(e1 & e2, �)

)

REμ(e1 & e2, �) = REμ(e1, �) ∧ REμ(e2, �)

REμ(e1, �) = REμ((:country/ˆ:country) ∼(:region/ˆ:region), �)

= REμ((:country/ˆ:country), �)∧¬REμ((:region/ˆ:region), �)

= blue(REμ(:country, Γ(:country, ˆ:country)REμ(ˆ:country, �))blue)∧
¬blue(REμ(:region, Γ(:region, ˆ:region)REμ(ˆ:region, �))blue)

= blue(〈p〉:country ∧ 〈o〉〈ō〉(〈p〉:country ∧ �)blue) ∧¬blue(〈p〉:region ∧ 〈o〉〈ō〉(〈p〉:region ∧ 〈s̄〉�)blue)

REμ(e2, �) = REμ(blue(:leaderParty && TP( o, :formationYear)blue)/ˆ:leaderParty, �)

= REμ(:leaderParty && TP( o, :formationYear), Γ (et1, et2)REμ(ˆ:leaderParty, �))

= REμ(:leaderParty, Γ (et1, et2)REμ(ˆ:leaderParty, �))∧
REμ(TP( o, :formationYear), Γ (et1, et2)REμ(ˆ:leaderParty, �))

= blue(〈p〉:leaderParty ∧ 〈o〉〈ō〉(〈p〉:leaderParty ∧ �)blue) ∧
REμ(TP( o, :formationYear), 〈o〉〈ō〉(〈p〉:leaderParty ∧ �))

= blue(〈p〉:leaderParty ∧ 〈o〉〈ō〉(〈p〉:leaderParty ∧ �)blue) ∧
(〈s̄〉� ∧ Tμ(TP( o, :formationYear)) ∧ 〈o〉� ∧ 〈o〉〈ō〉(〈p〉:leaderParty ∧ �))

=blue(〈p〉:leaderParty ∧ 〈o〉〈ō〉(〈p〉:leaderParty ∧ �)blue) ∧
(〈s̄〉� ∧ 〈o〉:formationYear ∧ 〈p〉� ∧ 〈o〉� ∧ 〈o〉〈ō〉(〈p〉:leaderParty ∧ �))

So far, we have shown that our encoding of cEPPs queries into the μ-calculus
is correct. Next, we formally present the reduction of the containment test of
cEPPs into unsatisfiability test in the μ-calculus.
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5 Containment Results

In this section we state our complexity results. We start with cEPPs and then
move to SPARQL with cEPPs. We start with the containment of cEPPs which
can be stated as follows:

Problem: cEPPs Containment
Input: cEPPs q1 and q2
Output: Is q1 � q2?

Given two cEPPs queries q1 and q2, q1 � q2 if and only if for any RDF graph
G, the answers of q1 are included in the answers of q2, i.e., E[[ q1 ]]G ⊆ E[[ q2 ]]G.

In the previous section, we have presented various functions to produce Lμ

formulas corresponding to the encodings of cEPPs. Hence, the problem of con-
tainment can be reduced to formula unsatisfiability test in Lμ as:

Problem: cEPPs Containment via Lμ

Input: Lμ encodings Eμ(q1) and Eμ(q2)
Output: Is Eμ(q1) ∧ ¬Eμ(q2) unsatisfiable?

Therefore, we obtain that q1 � q2 ⇔ Eμ(q1) ∧ ¬Eμ(q2) is unsatisfiable. We now
show that our decision procedure is sound and complete.

Theorem 1 (Soundness). Given two cEPPs queries q1 and q2 if Eμ(q1) ∧
¬Eμ(q2) is unsatisfiable, then q1 � q2.

Proof. We show the contrapositive. If q1 
� q2, then Eμ(q1)∧¬Eμ(q2) is satisfiable.
One can verify that every RDF graph G in which there is at least one tuple
satisfying q1 but not q2 can be turned into a RDF transition system model for
Eμ(q1) ∧ ¬Eμ(q2). To do so, consider an RDF graph G and assume that there
is exists a mapping m ∈ E[[ q1 ]]G and m 
∈ E[[ q2 ]]G. Let us construct an RDF
transition system KG from G. In fact, we produce G which contains at least
a canonical instantiation of q1, i.e., by replacing the variables in q1 with their
mappings in m. It has been shown that an RDF graph can be turned into an
RDF transition system (cf. Lemma 1). At this point, it remains to verify that
[[Eμ(q1)]]KG 
= ∅ and [[Eμ(q2)]]KG = ∅.

Let us construct the formulas Eμ(q1) and Eμ(q1) by first skolemizing the
distinguished variables using their mappings in m. Consequently, from Lemma 2
one obtains, [[Eμ(q1)]]KG 
= ∅. However, [[Eμ(q2)]]KG = ∅, this is because the
atomic propositions in the formula corresponding to the constants and variables
are not satisfied in K. This implies that [[¬Eμ(q2)]]KG 
= ∅. This is justified by the
fact that if a formula ϕ is satisfiable in an RDF transition system, then [[ϕ]]KG =
S thus [[¬ϕ]]KG = ∅. So far we have: [[Eμ(q1)]]KG 
= ∅ and [[¬Eμ(q2)]]KG 
=
∅. Without loss of generality, [[Eμ(q1) ∧ ¬Eμ(q2)]]KG 
= ∅. Therefore, Eμ(q1) ∧
¬Eμ(q2) is satisfiable.

Theorem 2 (Completeness). Given two cEPPs queries q1 and q2, if Eμ(q1)∧
¬Eμ(q2) is satisfiable, then q1 
� q2.
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Proof. Eμ(q1) ∧ ¬Eμ(q2) is satisfiable ⇒ ∃KG.[[Eμ(q1) ∧ ¬Eμ(q2)]]KG 
= ∅. Con-
sequently, KG is an RDF transition system as shown in Proposition 1 of [7].

Using KG = (S′ ∪S′′, R, L), we construct an RDF graph G such that we can
show that E[[ q1 ]]G 
⊆ E[[ q2 ]]G and hence q1 
� q2 holds:
– for each iri or constant u in q1 and q2, we create an RDF triple (α, u, β) such

that {(α, β) | ∃n ∈ [[u]]KG ∧ n′ ∈ S′′∧ (α, n′) ∈ R(s)∧(n′, n) ∈ R(p)∧(n′, β) ∈
R(o)}.

Thus, it remains to show that E[[ q1 ]]G 
⊆ E[[ q2 ]]G. From our assumption, we
obtain the following:

[[Eμ(q1) ∧ ¬Eμ(q2)]]KG 
= ∅ ⇒ [[Eμ(q1)]]KG 
= ∅ and [[¬Eμ(q2)]]KG 
= ∅.

⇒ [[Eμ(q1)]]KG 
= ∅ and [[Eμ(q2)]]KG = ∅.

Note here that, if a formula ϕ is satisfiable in an RDF transition system K,
then [[ϕ]]KG = S as shown in [7]. Consequently, using Lemma 2 and G, we obtain
E[[ q1 ]]G 
= ∅ and E[[ q2 ]]G = ∅ because G contains all those triples that satisfy
q1 and not q2. Therefore, we get E[[ q1 ]]G 
⊆ E[[ q2 ]]G and thus q1 
� q2.

From Theorems 1 and 2, we obtain the following result.
Proposition 1 (Complexity of cEPPs Containment). The containment
of cEPPs queries can be determined in a double exponential amount time.

Note that the size of the encoding n is exponential. Hence, we obtain a
2EXPTIME upper bound for containment. If we remove path conjunction from
the cEPPs we obtain an EXPTIME upper bound; this is due to the complex-
ity of satisfiability in the μ-calculus which is 2O(n2log n) where n is the size of
the encoding (which is exponential for cEPPs). To provide a lower bound to
the problem of containment in cEPPs, we utilize the close connection between
cEPPs and PDL (Propositional Dynamic Logic) with path intersection and
converse [17]. Like Lμ, PDL formulas are interpreted over transition systems
(aka. Kripke structures). cEPPs without tests are exactly the same as that of
PDL navigational programs (which are regular expressions). PDL formulas can
be interpreted over RDF transitions systems by using a fixed set of programs
{s, p, o, s̄, p̄, ō} as we have done for Lμ. Likewise, cEPPs expressions can be
evaluated over RDF transition systems by a simple rewriting. Given a cEPPs
expression e that can be expressed over a standard RDF graph, it can be turned
into an expression e′ that can be expressed over an RDF transition system by a
bijective rewriting function ϑ. ϑ is defined inductively:

ϑ(iri) = p/T( o = iri)/ˆp/o ϑ(ˆe) = p/T( o = iri)/ˆp/ˆs

ϑ(e1/e2) = ϑ(e1)/pos(e1, e2)/ϑ(e2) ϑ((e)
∗
) = (ϑ(e))

∗

ϑ((e)
+
) = (ϑ(e))

+
ϑ(e1 | e2) = ϑ(e1) | ϑ(e2)

ϑ(e1&e2) = ϑ(e1) & ϑ(e2) ϑ(p1 test p2) = ϑT(p1)/ϑT(test)/ϑT(p2)

ϑT(iri) = p/T( o = iri)/ˆp ϑT(test1 && test2) = ϑT(test1) && ϑT(test2)

ϑT(test1 || test2) = ϑT(test1) || ϑT(test2) ϑT(TP(p, e)) = ϑT(p)/ϑ(e)

ϑT(!test) = !ϑT(test) ϑT( s) = s ϑT( p) = p ϑT( o) = o

pos(e1, e2) = s pos(e1, ˆe2) = ˆo pos(ˆe1, e2) = s pos(ˆe1, ˆe2) = ˆo
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where s, p and o are navigational programs of an RDF transition system. In order
to show that cEPPs tests are just a syntactic variant of PDL node formulas
(aka XPath node expressions), we prove the following.

Lemma 3. Satisfiability of cEPPs queries on RDF transition systems can be
reduced in polynomial time to satisfiability of cEPPs queries on RDF graphs.

Proof. We can turn an RDF transition system into a standard RDF graph by
using a bijective mapping function similar to the one in [7]. It is also possible
to transform a cEPPs expression e over an RDF transition system KG into a
cEPPs expression e′ that can be expressed over a standard RDF graph G via the
function ϑ. Thus, it remains to show that, e is satisfiable in KG iff e′ is satisfiable
in G. This can be done inductively on the construction of the expressions.

Theorem 3. Testing containment of cEPPs queries is 2EXPTIME-hard.

The above result is obtained by examining the connection between cEPPs and
Propositional Dynamic Logic with path intersection (ICPDL). cEPPs can be
as seen as a notational variant of ICPDL with the fixed set of atomic programs
{s, p, o, s̄, p̄, ō}. For example, the cEPPs expression ϑ(a/TP( s, b+)/c) = s/a/...
corresponds to the ICPDL formula a ◦ 〈s〉〈b+〉 ◦ 〈c〉.

The double exponential upper bound is unavoidable as it has already been
shown that path conjunction makes the containment problem very difficult
for XPath; it has been proved that the complexity of the containment of
CoreXPath(∗, ∩) expressions is 2EXPTIME-complete [30]. Consider now the
language of cEPPs without path intersection (cEPPsnn). This language is
closely related to PDL and CoreXPath [30].

Theorem 4. The containment problem of cEPPsnn is EXPTIME-complete.

The following result follows from the containment problem for GXPathreg

(Graph XPath) [21] and the satisfiability problem for PDL with negation on
paths [18].

Theorem 5. The containment problem of EPPs is undecidable.

5.1 Containment of SPARQL with EPPs

In this section we briefly discuss the containment problem for SPARQL queries
with EPPs (from here onwards, we refer to it as just SPARQL). We restrict
ourselves to the union of conjunctive fragment of SPARQL, i.e., AND-UNION
fragment of SPARQL, without projection.

Definition 6. A SPARQL query q is defined inductively as: q:: = (V ∪ I, e,V ∪
I ∪ L) | q AND q′ | q UNION q′.

The problem of the containment of SPARQL queries can be reduced into
unsatisfiability test in Lμ as given below:
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Problem: SPARQL Containment via Lμ

Input: Lμ encodings E(q1) and E(q2)
Output: Is E(q1) ∧ ¬E(q2) unsatisfiable?

In the following, we extend the EPPs encoding function Eμ to translate the
containment test of q1 in q2 into the μ-calculus.

Definition 7 (SPARQL containment). The encoding of a SPARQL query q
is obtained inductively as follows:

Eμ((α, e, β)) = lfp(X, 〈s̄〉α ∧ 〈p〉REμ(e, β))
Eμ(q AND q′) = Eμ(q) ∧ Eμ(q′)

Eμ(q UNION q′) = Eμ(q) ∨ Eμ(q′)

The variables on the left hand side query are encoded into nominals and the IRIs
in the path expressions are encoded into atomic propositions; to encode variables
that appear on the right hand side query, we follow two steps: (1) if a variable
appears uniquely in the query, it is encoded into �, and (2) if a variable appears
multiple times, it is encoded by using the IRIs in the path expression (the triple
pattern in which it appears). This technique has been already used in [9]. For
instance, if the query is q = (x, e1, y) AND (y, e2, z), then the encoding of x
(resp. z) is � and y → 〈ō〉〈p〉e1 or y → 〈s〉〈p〉e2. Thus, the encoding becomes:

Eμ(qp) = Eμ((�, e1, 〈ō〉〈p〉e1) AND (〈ō〉〈p〉e1, e2,�)) ∨

Eμ((�, e1, 〈s〉〈p〉e2) AND (〈s〉〈p〉e2, e2,�))

The size of the encoding for the containment problem is polynomial in the num-
ber of variables that appear more than once. To be more precise, for a given
query, the size of the encoding is: Πx∈multiVar |x| where multiVar is the set of
variables occurring more than once, and |x| is the number of times variable
x appears in the query. Note that the size of the encoding is linear if all the
variables on the right-hand side query appear uniquely.

Theorem 6 (Soundness and Completeness). Given two SPARQL queries
q1 and q2, Eμ(q1) ∧ ¬Eμ(q2) is unsatisfiable if and only if q1 � q2.

From the above theorem, we obtain the following result:

Proposition 2. Given two SPARQL queries q1 and q2, the containment test
can be solved in a double exponential amount of time in the size of the encoding
|Eμ(q1)| + |Eμ(q2)|.

This result is not surprising, as we have shown in Proposition 1 that the
complexity of the containment of EPPs is 2EXPTIME in the worst case. Fur-
thermore, if projection was part of the SPARQL fragment we consider here, then
there is a further jump in the complexity of containment, i.e., the complexity
increases by one exponential. Thereby, we obtain 3EXPTIME upper bound for
the containment of SPARQL queries with projection. This is due to an expo-
nential blow up in the size of the encoding as one needs to take care of multiple
occurring non-distinguished variables.
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6 Conclusions and Future Work

We have discussed a preliminary study of the problem of query containment
for an expressive class of navigational queries captured by the EPPs language.
Our study leverages μ-calculus to encode EPPs and then use this encoding to
get a 2EXPTIME complexity upper bound. This bound remains the same when
considering EPPs in SPARQL without projection. However, if one considers
projection, there is an exponential increase in the complexity which results in a
3EXPTIME bound. While the results obtained are of theoretical interest, from a
practical point of view an implementation is available (http://sparql-qc-bench.
inrialpes.fr/) which can be extended for EPPs. Furthermore, an additional ben-
efit of using μ-calculus is that by exploiting logical combinators the size of the
encoding can be reduced by upto exponentiation. Thus, the complexity bounds
that we obtained are not prohibitive in terms of a practical implementation.

A natural line of future research is to provide a tighter complexity bound
for the problem of containment of EPPs. Moreover, the investigation of how the
inclusion of constraints in EPPs affects the complexity of query containment is
in our research agenda.
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under RDFS entailment regime. In: Gramlich, B., Miller, D., Sattler, U. (eds.)
IJCAR 2012. LNCS, vol. 7364, pp. 134–148. Springer, Heidelberg (2012)

http://sparql-qc-bench.inrialpes.fr/
http://sparql-qc-bench.inrialpes.fr/


Containment of Expressive SPARQL Navigational Queries 101

10. Chekol, M.W., Euzenat, J., Genevès, P., Layäıda, N.: SPARQL query containment
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24. Krötzsch, M., Rudolph, S.: Conjunctive queries for EL with composition of roles.
In: Proceedings of the 2007 International Workshop on Description Logics (DL
2007), Brixen-Bressanone, near Bozen-Bolzano, 8–10 Italy 2007, June 2007

25. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. (TODS) 34(3), 16 (2009)
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Abstract. Despite the emergence and growth of numerous large knowl-
edge graphs, many basic and important facts about our everyday world
are not readily available on the Web. To address this, we present Web-
Brain, a new approach for harvesting commonsense knowledge that relies
on joint learning from Web-scale data to fill gaps in the knowledge acqui-
sition. We train a neural network model to learn relations based on large
numbers of textual patterns found on the Web. At the same time, the
model learns vector representations of general word semantics. This joint
approach allows us to generalize beyond the explicitly extracted infor-
mation. Experiments show that we can obtain representations of words
that reflect their semantics, yet also allow us to capture conceptual rela-
tionships and commonsense knowledge.

1 Introduction

Motivation. In the past decade, massive amounts of machine-readable knowl-
edge have become available, both in large knowledge graphs such as DBpedia,
YAGO, and GeoNames, as well as through the widespread adoption of stan-
dards such as schema.org for Web pages. Additionally, information extraction
techniques allow us to mine further knowledge from natural language text. To
date, such data has mainly been used for improved information interchange and
integration, e.g. for better Web search results on entity-focused queries or for
novel kinds of visualizations that combine information from different sources.

However, while there are numerous bots and services that scour the Web to
exploit a particular (often hard-coded) kind of information, we still lack intel-
ligent systems that more flexibly draw advanced conclusions from information
found on the Web. Among the missing ingredients, the lack of required world
knowledge stands out as particularly relevant. This includes knowledge that is
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less of the factual, encyclopedic kind found in DBpedia, but more related to a
general understanding of everyday objects and concepts in the world. In some
cases, such commonsense knowledge can be expressed as subject-predicate-object
triples, similar to those used for factual knowledge. Relevant predicates include
causes (e.g., fire causes heat), hasProperty (e.g., ice has the property of being
cold and ice cream has the property of being sweet), partOf (e.g., legs as parts
of humans), and usedFor (e.g., that keys can be used to open doors).

Goal. We ultimately aim at a system capable of guessing the truth of common-
sense facts (e.g. whether a dog can fly), based on knowledge seen on the Web. How-
ever, procuring this sort of knowledge from the Web is non-trivial because shared
assumptions about the world are often taken for granted such that it would be rare
if not strikingly odd for someone to write that tractors are inedible or that radiol-
ogists are capable of breathing. Thus, information extraction alone is insufficient
for equipping computational systems with commonsense knowledge.

Overview and Contribution. In this paper, we propose a joint learning app-
roach to acquire commonsense knowledge both from explicit and implicit tex-
tual information. explicit triples and on large-scale word co-occurrence informa-
tion. We optimize matrix representations of relations explicitly mined from large
amounts Web data using a custom information extraction approach designed to
minimize noise when applied to Web-scale data. At the same time, concepts are
modeled as vectors trained on large-scale text following the word2vec CBOW
approach to capture generic semantics [22].

As a result, our approach jointly learns representations of words and relations
to better reflect our natural understanding of them. In particular, we are able to
exploit general Web-scale semantics when learning commonsense relationships,
e.g. inferring from eagles being capable of flying that hawks are likely also capable
of the same. Our experiments show that we can obtain representations that
simultaneously capture conceptual relationships as well as word meanings.

2 Background and Related Work

Commonsense knowledge acquisition has been studied for many years now. Tra-
ditionally, such knowledge was modeled by human experts, an approach best
exemplified by the Cyc project [18], a decades-long commercial effort at creat-
ing a large axiomatic rule base. The SUMO ontology [24] shares this goal, but
relies on open source principles and more collaborative development processes.
However, in both cases, contributing requires significant expertise and effort in
knowledge modeling. Although feasible for specific domains, it is difficult to
obtain extensive amounts of commonsense knowledge in this way.

For large-scale commonsense knowledge acquisition, there are two more
promising directions. The well-known ConceptNet project [12] relies on crowd-
sourcing, aiming at much simpler commonsense knowledge propositions. Another
approach is to turn to large-scale data mining. Many information extraction
papers follow the bootstrapping method proposed by Hearst [13], who used lin-
guistic patterns to mine isA relationships. However, pattern-based approaches



104 J. Chen et al.

tend to extract only few facts and suffer from significant problems with noise.
Several approaches have been proposed to improve bootstrapping in general
[25,31]. Another route is to develop improved algorithms catering to particular
kinds of information, e.g. temporal knowledge [9], properties and attributes [30],
or activity knowledge [32].

Irrespective of whether one relies on crowdsourcing or data mining, how-
ever, it is necessary to generalize and expand beyond what has explicitly been
acquired. For instance, we may have obtained that Samoyed dogs have fur but
we may not have explicitly found this to be the case for shiba inus as well.

This leads us to the task of knowledge base completion [26]. When relying
on machine learning, this typically becomes a relation prediction task. Given a
a training set of true example instances of relations, i.e. triples, the goal is to
learn a model that can then be used to predict whether a new, previously unseen
triple is true or false. While the relation itself will have occurred in the training
set, the specific triple will be new.

One approach is to consider this a tensor or matrix completion problem. For
instance, if we view a relation as a matrix between subjects and objects storing
their truth values, then relation prediction boils down to filling in the missing
values to complete the matrix. Previous work in this area includes AnalogySpace
[28], which relied on singular value decomposition applied to ConceptNet extrac-
tions. Nickel et al.’s RESCAL [23] uses tensor factorization to model rela-
tionships, targeting collective classification and entity resolution. Sutskever et
al. [29] propose Bayesian clustered tensor factorization to model relational data.
Jiang et al. [16] proposed a generative probabilistic model for relation prediction
based not only on existing triples but also on information extraction.

A more recent line of work uses neural networks for relation prediction.
Bordes et al. [4–6,15] proposed several neural network architectures to capture
relation triples, the most well-known of these being the TransE approach, which
models the relation as a translation from a vector for the subject to a vector for
the object. Numerous variations have been proposed that modify how the rela-
tion is modeled. For instance, Socher et al. [27] propose neural tensor networks
(NTN), in which each relation is represented as a tensor. TransH [35] models
relations as translations on hyperplanes. TransR [20] adds extra projections of
entity vectors for each specific relation, or, in the CTransR variant, for each
cluster of relations. PTransE [19] attempts to consider inference via property
paths to improve the prediction of a triple (for example, x bornInCity y, y
cityInState z helps us predict x bornInState z).

Our approach differs from all such previous efforts by learning to generalize
not just based on the existing triples, as done by matrix and tensor methods as
well as the TransE-related neural models, but by additionally exploiting semantic
information derived from large-scale text statistics. As we show in our experi-
ments, pure relational modeling does not result in semantically satisfactory word
vector representations. Our joint model alleviates this problem by enabling the
choice of word representations to benefit from large amounts of raw text, sim-
ilar to the way humans draw on general semantic associations as well as more



WebBrain: Joint Neural Learning of Large-Scale Commonsense Knowledge 105

explicit information. Since the word vectors are constrained to reflect semantic
similarity, we use more flexible matrix representations of relations rather than
simple translations as in the TransE model. Compared to the NTN model, in
contrast, we model relations in a less flexible way, so as to ensure a mutual
influence between commonsense relations and word representations. Compared
to Jenatton et al. [15], which in turn is related to the NTN model, we do not
use any 1-gram or 2-gram features, but directly use the product as a scoring
function. We also forgo requiring that the matrix be the sum of rank-1 matrices.
This enables our approach to scale to much larger data sets such as DBpedia.

Our joint model learns word representations that allow us to better trans-
fer knowledge between related concepts. We rely on Mikolov et al.’s word2vec
CBOW approach [22], who simplified previous neural language models [1] for sig-
nificantly greater scalability. They also introduced the Skip-Gram model as an
alternative, but in our approach, we build on the CBOW variant, as it is faster to
optimize. There have been other proposals to adapt the word2vec models. Several
approaches aim at improving word vectors using additional knowledge of seman-
tic similarity [8,37]. These are based on generic semantic similarity rather than
capturing specific kinds of relations. Hill and Korhonen [14] presented a model
for multi-modal representations, training on large amounts of image labels and
text, with a minor addition of 638 abstract concept descriptions.

Bollegala et al. [3] proposed a method for obtaining improved word vectors by
exploiting information about the lexical patterns they occur in. This approach is
aimed at obtaining vectors that better reflect word analogies but does not address
our model’s goal of relation prediction. Xie et al. [36] exploit entity description
glosses but do not use large-scale text. Wang et al. [34] proposed the probabilistic
TransE model, capturing Freebase triples following the TransE model, but also
viewing the co-occurrences of two phrases as a relationship that should likewise
be modeled as a translation. Their model uses two vectors per phrase and an
alignment component to connect entities to phrases. Our model uses just a single
vector per word, so mutual dependencies between word vectors are exploited
to a greater degree, while the relation modeling is less constrained due to the
use of matrices, so a greater divergence from the word relationships is enabled.
Toutanova et al. [33] also attempt to model relationships between two entities
found in text, but use syntactic dependency trees and apply a convolutional
neural network over them to obtain relation representations. In contrast, we
exploit any occurrence of a word, not just explicit relationships between two
entities in a sentence.

3 Web-Scale Knowledge Bootstrapping

Pattern-Based Information Extraction. For knowledge acquisition, it is
well-known that one can attempt to induce patterns based on matches of seed
facts, and then use pattern matches to mine new knowledge [13]. Unfortunately,
this bootstrapping approach suffers from significant noise when applied to large
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Web-scale data [31], which appears necessary in order to mine adequate amounts
of training data. Specifically, we rely on Google’s large Web N-Gram dataset (see
Sect. 5). This problem is exacerbated by the fact that we are aiming at com-
monsense knowledge, which is not typically expressed using explicit relational
phrases. We thus devise a custom bootstrapping approach designed to minimize
noise when applied to Web-scale data.

We assume that we have a set of relations R, a set of seed facts S(r) for a
given r ∈ R, as well as a domain(r) and range(r), specified manually to provide
the domain and range of a given r as its type signature. For pattern induction,
we look for co-occurrences of words in the seed facts within the n-grams data (for
n = 3,4,5). Any match is converted into a pattern based on the words between
the two occurrences, e.g. that apple is red would become 〈x〉 is 〈y〉.
Pattern Scoring. The acquired patterns are still rather noisy. To score the
reliability of patterns, we rely on a ranking function that rewards patterns with
high distinct seed support but also discounts patterns that occur across multiple
dissimilar relations [31]. The intuition is that a good pattern should match many
of the seed facts, but should not be overly generic so as to apply to many relations
(as, e.g., 〈x〉 or 〈y〉). A pattern with many matches for both hasLocation and
partOf is less likely to be a reliable one.

Still, a pattern that matches isa or hasLocation may also match a relation
such as conceptuallyRelatedTo. To allow for this, we first define a relatedness
score between relations. We can either provide these scores manually, or consider
Jaccard overlap statistics computed directly from the seed assertion data. Let
p be a candidate pattern and r ∈ R be the relation under consideration. We
define |S(r, p)| as the number of distinct seeds s ∈ S(r) under the relation r that
p matches. We then define the score of the pattern p for relation r as:

φ(r, p) =
∑

r′∈R,r′ �=r

|S(r, p)|
|S(r)| − (1 − sim(r, r′))

|S(r′, p)|
|S(r′)|

where sim(r, r′) is the similarity between relations r and r′. At the end, we choose
the top-k ranked patterns as the relevant patterns for the extraction phase.

Assertion Extraction. We apply the chosen patterns to find new occurrences
in our (Google Web N-grams) data. For instance, 〈x〉 is 〈y〉 could match the sun
is bright , yielding (sun, bright) as an assertion for the hasProperty relation. To
filter out noise from these candidate assertions, we check if the extracted words
match the required domain and range specification for the relation, using Word-
Net’s hypernym taxonomy. Finally, we rank the candidate assertions analogously
to the candidate patterns, but treating the patterns as seeds.

4 Representation Learning and Prediction

Figure 1 provides an overview of our approach. Having extracted triples from
text, the next step is to train a model for learning commonsense word and
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Fig. 1. Schematic overview of our approach.

relation representations. Our model takes the extracted knowledge and learns to
generalize it by simultaneously drawing not only on the extractions but also on
large amounts of generic text. For instance, we may have observed that pigeons
fly but not that sparrows do. Our model aims to infer the latter based on both
the extracted facts as well as general semantic relatedness between pigeons and
sparrows. For the latter, we use word co-occurrences observed in large amounts
of text. While word co-occurrences provide only weak signals of semantic related-
ness, we can benefit from their large quantities. Thus, their overall contribution
may make up for some of the sparsity of the explicitly extracted knowledge.

At the same time, word representations can also benefit from the joint learn-
ing setup. We learn word meanings not only from general context information,
but also from the extracted relationships. For instance, we may have extracted
that roses tend to have the property of being red, or that fire causes heat. From
a cognitive perspective, commonsense knowledge about concepts is salient and
should also guide the meaning representation of words.Distributional semantics
has a long history, which has often been linked to J.R. Firth’s famous quote that
one shall “know a word by the company that it keeps”. Still, while it is indis-
putable that regular contexts play a vital role in meaning acquisition, words
and concepts are often acquired by other means than just from general con-
texts. Depending on the situation, humans may pay special attention to certain
cognitively salient features and relationships of an object (e.g., appearance and
function). In our approach, we thus train concept representations jointly with
relationship representations, exploiting both the general contextual information
and the mined relationship data.

This also touches on the long-standing dispute about whether mental rep-
resentations of concepts are best modeled using discrete symbolic methods or
in connectionist models based on numerical information processing. Whilst this
has sometimes been regarded as an irreconcilable dichotomy, models like the one
we propose here learn neural representations of words but also capture explicit
symbolic relationships between them.
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4.1 Objective

For the general word co-occurrence information, we adopt the word2vec CBOW
objective [22]. The idea is to find vector representations of words such that the
surrounding words enable the prediction of a given target word. One maximizes

∑

w

log P (w | C(w)), (1)

where w denotes a word token in a large corpus and C(w) denotes the context
words. In the CBOW model, w is represented by a dense, real-valued word
vector vw and the context C(w) is represented by the average of the vectors for
the surrounding words. The resulting context vector is used to predict vw.

Simultaneously, we jointly optimize for modeling the explicit relationships
mined earlier. We assume that we have extracted labeled relationships between
words. These can be viewed as (s, r, o) tuples consisting of a left word s (the
subject), a predicate (relation) r, and a right word o (the object). We wish to
use matrices and vectors to capture the information that the extracted relational
data provides. We still assume every word is mapped to a vector, but additionally
map each relation type to a specific matrix. To learn these representations, we
seek to maximize a scoring function over all relation triples. We define

f(s, r, o) = vᵀ
sMrvo,

where vs is the word vector for the subject s of the relation triple and vo is
the word vector for the object o, while Mr is a matrix for relation r. If Mr

is the identity matrix, then this function will compute a simple dot product
measuring the similarity of the two vectors. If Mr is some other form of diagonal
matrix, f would compute a weighted vector similarity. Other forms of Mr can
capture transformations of the two vectors. The word vectors, described by vs
and vo here, are jointly modified by both the CBOW and the relation modeling
components, while the relation matrices Mr are only modified by the latter. For
this relation modeling, we rely on the following loss function to quantify the
error:

Ls,r,o,l = −l log(σ(f(s, r, o))) − (1 − l) log(1 − σ(f(s, r, o))), (2)

where σ(·) is the sigmoid function σ(x) = 1
1+e−x and l is the label of the training

triple s,r,o (1 for positive training examples and 0 for negative ones).
Finally, we train our model to learn representations both from the relations

and using the word2vec CBOW objective, to exploit the contextual statistics
from large raw text corpora, thus making our representations more meaningful,
as we will show later on in the experiments. Our overall loss function is as follows
(with a parameter β to control the relative contributions):

∑

(s,r,o,l)

−l log(σ(f(s, r, o))) − (1 − l) log(1 − σ(f(s, r, o)))

+β
∑

w

− log P (w | C(w)) (3)
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4.2 Training

During training, we seek to minimize this loss by simultaneously optimizing both
parts of the objective. For the CBOW part, we follow the well-known negative
sampling procedure [22]. For the relation tuples, the training procedure is as
follows. Given a training tuple, we generate k random negative examples by
replacing the subject or object with a random word. Every triple is mapped
to the corresponding word vectors and relation matrices. For each triple, both
negative and positive ones, we optimize the loss function mentioned above.

For this optimization, we rely on stochastic gradient descent, which involves
repeatedly picking random training examples, evaluating the current model on
them, and making small updates if the model gives an incorrect answer. The
direction of an update step is given by the gradient of the objective function,
while the learning rate is a small factor that determines how much we move
the model parameters (in our case, the values in the word vectors and relation
matrices) in this direction. The gradients with respect to the second sum in Eq. 3
are as for the standard word2vec CBOW model, while for the first sum they are
as follows:

∂Ls,r,o,l

∂vs
= (1 − l)Mrvo

∂Ls,r,o,l

∂vo
= (1 − l)Mᵀ

r vs
∂Ls,r,o,l

∂Mr
= (1 − l) vsv

ᵀ
o

Although individual updates with respect to the two parts of the objective func-
tion may pull the model in different directions, stochastic gradient descent nor-
mally finds stable solutions in the long run. In our case, this is expected because
objects with similar extracted properties are also likely to be similar from a word
semantics perspective. Our experimental results confirmed this.

5 Experiments

5.1 Data and Extraction

General Corpus. For our experiments, we rely on two datasets. The first is a
frequently used dump of the English Wikipedia1 that serves as our general corpus
for word representation learning. We normalize the text to lower case and remove
special characters, obtaining 1,205,009,210 tokens after this preprocessing.

Extraction Corpus. In order to extract relations, we turn to a Web-scale
resource based on much larger quantities of text, the Google Web 1T N-gram
dataset2. Although this data is limited to short 5-grams, it is well-suited for the
kind of general commonsense knowledge relationships between words that we
are targeting.

Seed Data. In order to bootstrap the extraction process, we rely on seed facts
taken from the ConceptNet dataset [21] to induce patterns for each common-
sense relation in ConceptNet. Examples of these relations include atLocation,
1 http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2.
2 https://catalog.ldc.upenn.edu/LDC2006T13.

http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
https://catalog.ldc.upenn.edu/LDC2006T13
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causes, hasProperty, motivatedByGoal, partOf, and usedFor. This data is
rather noisy, mostly due to incorrect natural language analysis of crowdsourced
statements. We further find that more than 90 % are named entities, since Con-
ceptNet also imports from other existing knowledge sources. We remove these
and also generally filter out all concepts not in WordNet, a lexicon containing
mostly general words. At this point, we obtain a size of nearly 192 K assertion
triples. We then applied a score threshold of 5 (i.e., we enforce that at least
five crowdsourcing annotators agree) to filter out further noise. Additionally, we
required that the subject and object of each triple match our domain(r) and
range(r) for the involved relation r. This is checked using the WordNet taxon-
omy [10]. For instance, for the hasProperty relation, we accept (apple, red),
because apple is classified as a physical noun in WordNet and red as an adjec-
tive. A manual annotation of two random samples of size 200 revealed that the
raw ConceptNet facts had an accuracy of only 53 %, while the filtered seed facts
had an accuracy of 99 %.

5.2 Extraction

We then follow the extraction approach described in Sect. 3. Applying the seeds
to our Web-scale n-grams, we obtain large numbers of patterns. Table 1 shows
the top patterns for a few example relations.

These patterns then give rise to vast quantities of commonsense relation
triples, each consisting of word pairs as well as the relation between them. We
extract triples for 24 different relation types.

After filtering for noise we are left with a total of 1,160,136 extractions,
e.g. (abbey, church) for the isA relation, or (telephone, notice) for the usedFor
relation3

Before training, we filter out triples that contain words appearing less than
100 times in Wikipedia and obtain 1,158,141 triple instances. We split the data
and use 118,826 triples each for validation and testing, and the remaining ones
for training. We also obtain a human-created gold dataset as ground truth, by
taking a human-verified subset of ConceptNet with over 20,000 triples.

Table 1. Top-k patterns for some relations

AtLocation IsA UsedAs MadeOf HasProperty

X across Y X was only Y X used to Y X made of Y X is very Y

X inside Y X except Y X is used to Y X repair Y X can be Y

X outside Y X called Y X designed to Y X is made of Y X is too Y

X near Y Y is X X was used to Y X made from Y X may be Y

X under Y X means any Y X to help Y X cast Y X is as Y

3 See http://gerard.demelo.org/webbrain/.

http://gerard.demelo.org/webbrain/
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Fig. 2. Accuracy for every relation type comparing the fixed vector baseline (dark blue)
and the joint training of WebBrain (brighter red). (Color figure online)

Our goal is to use this knowledge in order to train a neural network so as
to learn word vectors that reflect semantic and commonsense knowledge, and
to be able to generalize this to new commonsense not directly observed in the
data. This should enable the representations to capture cognitively salient infor-
mation inherent or associated with word meanings, e.g. that a tyre is part of
a car. We can train the word vector representations by jointly optimizing for
the relations and optimizing for the word2vec CBOW model. Raw text like that
from Wikipedia provides regular contexts, while the triples describe common
sense relationships, thus contributing different kinds of information to the rep-
resentations.

5.3 Training

We consider several experimental setups. In the first setup, we pre-initialize the
word representations using vectors from the word2vec CBOW model, utilizing
the information from the Wikipedia text corpus. To test if these representations
alone can successfully be used to reflect the relations, in this first setup, we fix
the embeddings during the training and just modify the relation matrices. The
training proceeds for 10 iterations.

In the second setup, we pre-initialize the vectors in the same way but allow
both the vectors and the relation matrices to be modified during the 10 training
iterations. In the third setup, instead of pre-initializing the vectors, we train the
relational data jointly with the word2vec CBOW model, optimizing both simul-
taneously. In all setups, we use a vector dimensionality of 50 in order to reduce
the runtime. In the relation-only setups, following the literature, we normalize
the word vectors during the training and use a standard learning rate of 0.01.
For each training triple, we generate 5 negative examples by randomly replacing
its left or right word with a random word in the vocabulary. The vocabulary is
created with words appearing at least 100 times in the Wikipedia.

When we train the triples jointly with the word2vec objective, we optimize
both objectives simultaneously until the CBOW architecture has completed 3
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epochs. This is done in parallel in several threads that can run on multiple cores.
Alongside with several threads for the word2vec model, we create additional
threads for our relational objective function from Sect. 4. This time, we do not
normalize the word vectors in the relational thread, as we are training jointly
and this would not make good use of the raw text. Instead of varying both β and
the learning rates, we simply factor the variation of different possible choices of β
into the choice of learning rate for the relational component. We fixed the CBOW
learning rate at 0.05, while tuning the relational one on the validation data but
also checking the WS-353 word similarity dataset. While there is no separate
held-out dataset available for these word similarities, the much larger MEN
dataset was not used for tuning. We describe these datasets in more detail later
on. Ultimately, we arrived at the a much lower rate of just 0.002 for the relational
data, which avoids distorting the vectors too much. With higher learning rates,
we obtain almost the same results in terms of relation prediction, but the word
vectors become overly biased towards those predictions and the word similarities
correlate less strongly with human judgements.

For comparison, we also experiment with the TransE model as a represen-
tative example of methods that only use the existing relation triples without
relying on information from large-scale text. Following the literature, we set the
starting learning rate to 0.001 and require that the margin between positive
triple and its corresponding negative samples be at least 1. We pre-initialize the
model with the word2vec vectors and train it for 500 iterations, which suffices
for convergence.

The final vectors and matrices successfully separate the positive training
triples and randomly generated negative ones, as indicated in Fig. 3. The y axis
here reports the vᵀ

sMrvo scores. We can see that if we fix the word vectors and
just optimize the matrix, the scores of positive and negative examples mix. If
we allow the word vectors to change, the scores of the positive and negative
examples are better separated.

5.4 Evaluation and Analysis

We attempt to discriminate between positive triples (from the test and gold
sets) and random triples to assess whether our model can successfully capture
the relations and classify unseen triples. In our model, the positive vᵀ

sMrvr
scores are usually bigger than random ones, while in the TransE model, positive
examples usually have smaller scores. We use the validation data set to choose
the threshold. For our model, test examples with scores below the threshold are
classified as negative and those with larger scores are classified as positive. For
the TransE model, the opposite applies.

The classification results are presented in Table 2. Results on the test split
reflect how well our model learns to predict the extractions, while results on
the gold data set reflect to what extent the predicted relationships really hold
true from a ground truth perspective. If we fix the vectors to be the ones from
word2vec (“relations only, fixed vectors”), the accuracy is rather low, suggesting
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Fig. 3. Comparing positive examples in the validation set (dark blue circles) with
negative ones (light red diamonds). Left: vsMrvo scores for WebBrain when vectors
are fixed to the original vectors from word2vec. Right: scores for regular WebBrain.
(Color figure online)

Table 2. Relationship modeling results

Approach Test Gold

TransE 0.976 0.892

WebBrain: relations only, fixed vectors 0.761 0.700

WebBrain: relations only 0.983 0.897

WebBrain joint text+relation model 0.969 0.935

that the word2vec vectors are not well-suited for capturing relational similari-
ties based on commonsense knowledge. However, when we allow our algorithm
to modify the vectors (“relations only”), the resulting model achieves a good
accuracy. We obtain 0.983 on the test data set and 0.897 for the gold, which
is comparable with the TransE model despite our scalable training procedure.
This setting corresponds to using only the first term of Eq. 3.

If we train our relational model jointly with the word2vec CBOW model, i.e.
using the full objective given by Eq. 3, we see a slight reduction in accuracy on the
test set, i.e. in predicting the original extractions. This is understandable, given
that we are no longer optimizing for the goal of predicting relations exclusively.
However, we obtain a significant improvement on the gold data set, showing that
the model better reflects the real properties of concepts. This suggests that the
joint training with general word semantics gives WebBrain better generalization
capabilities than relation prediction models only considering the training triples.

In Fig. 2, we see that the advantage of joint training is consistent across
relation types. For each relation, we plot the fixed vector baseline (left, dark)
and our joint training method (right, lighter). The 24 different relations are
plotted along the x axis, while the y axis corresponds to the accuracy in [0, 1].



114 J. Chen et al.

Table 3. Spearman’s ρ for word similarity data

Approach WS-353 MEN

WebBrain: text only 0.621 0.668

WebBrain: relations only 0.316 0.302

WebBrain joint text+relation model 0.632 0.679

Word Representations. We also evaluate the word representations directly,
using two semantic relatedness datasets to assess the semantic similarities
reflected in the word vectors. One is the well-known WS-353 [11] dataset, while
the second is a significantly larger one called MEN [7]. Both contain English
word pairs with similarity judgements elicited from human assessors. We calcu-
late the cosine distance of word vectors for the word pairs in these datasets and
compare them to the scores from the human annotations using Spearman’s ρ.

Table 3 shows how the resulting word representations fare on the WS-353 and
MEN datasets. For the vectors trained just on the relational data, e.g. with the
TransE model, the result is significantly worse than for the text-only model. This
means that, after training, the vectors are optimized for the relations and fail to
reflect much of the information that the raw corpus data provides. However, if we
train jointly, we observe better correlations, indicating that the vectors are able
to maintain the semantic information from the raw corpus contexts.This shows
that our model can modify the word vectors to reflect commonsense relations
without degrading the quality of general word similarities.

5.5 Additional Experiment on DBpedia

Data. We additionally evaluate the model’s performance on DBpedia [2]. We
focus on extractions from the English Wikipedia, using the “mapping-based
types” and “mapping-based properties (cleaned)” data. We consider only URIs
from within DBpedia (starting with “http://dbpedia.org/resource/”), since oth-
ers are not part of DBpedia itself and thus the data only contains very sparse,
incomplete information about them. After preprocessing, we obtain a total of
15,109,444 triples describing 4,222,635 entities and 675 distinct relation types.
We split this data by reserving 15,110 triples as validation data for tuning and
15,110 as a test data set for evaluation. All remaining triples are used as training
data.

Training and Evaluation. To determine the optimal parameter settings, we
rely on the validation data and choose the vector size for the entities from {30,
50, 100}. We run the experiment for {20, 40, 60, 80, 100} iterations. Based on
these options, we select the best-performing set of parameters in terms of their
accuracy on the validation data, as explained below. Following the literature,
we normalize the vectors after every stochastic gradient descent step. For every

http://dbpedia.org/resource/
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Fig. 4. Scores on the DBpedia validation data, computed as ‖vs + vr − vo‖ for the
TransE model (left) and vsMrvo for ours (right), with legend as in Fig. 3.

iteration, we first shuffle the training triples. We decrease the learning rate lin-
early until it reaches 0.0001 of the starting learning rate. At that point, we hold
it constant at that value, i.e. 0.0001 of the starting learning rate.

For comparison, we again also consider the TransE model on this data. We
set the parameters for the TransE model as described in the original paper.
The initial learning rate is set to 0.001, and the optimization proceeds for 1000
iterations. The vector size is also chosen from {30, 50, 100}.

We test the model’s performance by discriminating between true and random
triples. After the training, their classification scores should be different. True
triples should have larger scores than random negative scores and we indeed
observe this result. Figure 4 plots the scores for the validation data set. We
can see that the TransE model already achieves reasonably good results. Most
positive triples have smaller scores. For our model, although we do not use a max-
margin approach, the scores of positive and negative triples separate naturally
as a result of the training objective. True triples usually have positive scores,
while randomly generated ones have negative scores.

We use the validation data set to choose the best threshold that separates
positive from negative triples and then test the model’s ability to discriminate
these on the test data set. For the TransE model, the best result is obtained
with 50 dimensions and a threshold of 7.0, reaching an accuracy of 0.8245. For
our model, setting the dimensionality to 50 and running for 60 iterations, the
threshold is −2.26 and the accuracy is 0.8831. This shows that our model can
successfully predict relationships even for the rich set of entities in DBpedia.

6 Conclusion

We have proposed WebBrain, a novel approach for knowledge acquisition and
modeling, that makes a further step towards the goal of equipping comput-
ers with commonsense knowledge to enable more intelligent systems. Our model
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combines multiple objectives to model word meanings and relationships. We rely
on large-scale Web information extraction and on general corpus co-occurrences
to train our model. While we remain far from genuine commonsense understand-
ing and intelligence, our approach is able to learn vector representations of words
and relations that reflect both their general semantics and basic commonsense
facts about the world, giving accurate answers even for knowledge that has not
been observed in text.

In future work, our joint training approach could also be evaluated with
further relation representation models. This seems particularly promising for
models that incorporate additional reasoning capabilities [19] or constraints [17].
Finally, we wish to extend our approach to combine common-sense knowledge as
extracted from text with the kinds of encyclopedic facts available in DBpedia so
as to obtain a more complete model of world knowledge. We believe that models
of this sort that combine heterogeneous kinds of inputs will enable us to put
semantic resources to use in advanced intelligent systems.
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Abstract. Finding associations between entities is a common informa-
tion need in many areas. It has been facilitated by the increasing amount
of graph-structured data on the Web describing relations between enti-
ties. In this paper, we define an association connecting multiple entities in
a graph as a minimal connected subgraph containing all of them. We pro-
pose an efficient graph search algorithm for finding associations, which
prunes the search space by exploiting distances between entities com-
puted based on a distance oracle. Having found a possibly large group
of associations, we propose to mine frequent association patterns as a
conceptual abstract summarizing notable subgroups to be explored, and
present an efficient mining algorithm based on canonical codes and par-
titions. Extensive experiments on large, real RDF datasets demonstrate
the efficiency of the proposed algorithms.

Keywords: Association finding · Canonical code · Distance oracle ·
Frequent association pattern mining · Graph search

1 Introduction

Finding associations between entities has found applications in many areas. For
instance, social networking services suggest friends based on known associations
between people. Security agents are interested in associations between suspected
terrorists. In recent years, the increasing amount of graph-structured data on the
Web, like RDF data, has made association finding easier than extracting from
Web text [14]. In such a graph describing relations between entities, associations
between entities are reflected by paths or subgraphs connecting them. Finding
such connections is also an essential component of some semantic search and
question answering systems [18].

Existing research efforts mainly focus on finding, ranking, and filtering asso-
ciations between two entities [2,3,5–8,10,15,20], which are usually defined as
paths connecting them in a graph. Given multiple (i.e., two or more) entities,
a more general notion of association naturally builds on the paths between all
pairs of entities, but requires a more concise structure [4,12,17]. In this work,
we define an association connecting multiple entities in a graph as a mini-
mal connected subgraph that contains all of them. Then two challenges arise:
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 119–134, 2016.
DOI: 10.1007/978-3-319-46523-4 8
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(a) how to efficiently find associations in a possibly very large graph, and (b) how
to help users explore a possibly large set of associations that have been found.
Both challenges are addressed in this paper. Our contribution is threefold.

– We propose an efficient algorithm for finding associations based on graph
search and path merging. To prune the search space, distances between entities
are exploited, and a distance oracle is used to achieve a trade-off between time
for computing and space for materializing distances.

– To help users explore a large group of associations, complementary to the
existing ranking approaches [4,12,17], we propose to identify its notable sub-
group(s) that match a common conceptual structure called a frequent associa-
tion pattern, which provides a high-level abstract of major results. Our efficient
algorithm for mining frequent association patterns calculates frequency based
on canonical codes of association patterns, and reduces calculations using par-
titions of associations.

– We carry out extensive experiments based on large, real RDF datasets. The
results demonstrate the efficiency of the proposed algorithms.

In this paper, we focus on the efficiency of algorithms for finding associations
and mining frequent association patterns. The effectiveness of using frequent
association patterns for exploring associations between two entities has been
demonstrated in [6]. The effectiveness in a multiple-entity setting will be empir-
ically tested in future work.

The remainder of this paper is structured as follows. Section 2 provides prelim-
inaries. Sections 3 and 4 introduce our algorithms for finding associations and min-
ing frequent association patterns, respectively. Section 5 presents experiments.
Section 6 discusses related work. Section 7 concludes the paper with future work.

2 Preliminaries

We deal with a directed unweighted entity-relation graph G = 〈E,A,R, l〉 char-
acterizing binary relations over entities, where

– E is a set of entities as vertices,
– A is a set of arcs, each arc a ∈ A directed from its tail vertex t(a) ∈ E to its

head vertex h(a) ∈ E,
– R is a set of binary relations on entities, and
– l : A �→ R labels each arc a ∈ A with a relation l(a) ∈ R.

Let C be the set of all classes. For each entity e ∈ E, let T (e) ⊆ C be e’s types,
and we assume that each entity has at least one type, i.e., T (e) �= ∅. Figure 1
shows an entity-relation graph to be used as a running example in this paper.
An RDF graph (i.e., a set of RDF triples) can be regarded as an entity-relation
graph if considering only the triples connecting two entities; T is given by the
rdf:type property. In this paper, we will stick to the above graph notation
rather than RDF because our approach is not specific to RDF but also applies
to other kinds of graph-structured data.
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Fig. 1. An example entity-relation graph, with three query entities in grey.
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Given a set of n query entities eq
1, . . . , e

q
n ∈ E, an association x connecting

eq
1, . . . , e

q
n is a minimal subgraph of G that contains all of them and is connected;

no proper subgraph of it also has these properties. Therefore, the underlying
graph of x is a tree (i.e., having no parallel edges, loops, or cycles), and the
leaves only come from query entities; otherwise x would not be minimal. For
consistency, eq

1 is always designated as the root of x. Figure 2 illustrates three
associations connecting the three query entities in the running example.

Note that in this paper, the arcs in a path or in a rooted tree are not required
to all go the same direction, since an arc a directed from t(a) to h(a) labeled
with a relation l(a) = r can be equivalently treated as an arc directed from h(a)
to t(a) labeled with a relation r̂ that represents the inverse of r. For the same
reason, later in our algorithms, every arc can be traversed in both directions in
graph search.

The diameter of an association x, denoted by diam(x), is the greatest dis-
tance between any pair of entities in x. Given a diameter constraint λ, a valid
association has a diameter of λ or less. For instance, given λ = 3, Fig. 2 shows all
the valid associations connecting the three query entities in the running exam-
ple; all of them have a diameter of 3. An invalid association has a diameter
larger than λ. We will focus on valid associations because such shorter-distance
associations usually represent stronger connections between entities and thus are
more attractive to users.

An association pattern matched by an association x is a directed graph
obtained by replacing each non-query entity in x with one of its types. For
instance, x1 and x2 in Fig. 2 match z1 in Fig. 3; x1 also matches z2. Since an
association is tree-structured and the leaves only come from query entities, an
association pattern also has these properties, and eq

1 is designated as its root for
consistency.
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3 Association Finding

Given an entity-relation graph G and a diameter constraint λ, we aim to find all
the valid associations connecting a set of n query entities eq

1, . . . , e
q
n. Firstly, we

present a basic algorithm for finding valid associations based on graph search and
path merging. Then, we prune the search space by exploiting distances between
vertices. Finally, to achieve a trade-off between time for computing and space
for materializing distances, we discuss the use of distance oracles.

3.1 A Basic Algorithm

Our basic algorithm is inspired by the following theorem.

Theorem 1. An association x connecting a set of query entities can be decom-
posed into a set of (possibly overlapping) paths of length

⌊
diam(x)+1

2

⌋
or less that

have query entities as their start vertices and have a common end vertex.

For instance, x1 in Fig. 2, with diam(x1) = 3, can be decomposed into three
paths of length

⌊
3+1
2

⌋
= 2 or less: eq

1r1e1, eq
2r3e4r̂2e1, and eq

3r̂4e4r̂2e1; all of them
start from query entities and have e1 as a common end vertex.

Proof. Let p be a longest path in x, having a length of diam(x). Let e′ be an
entity in the middle of p, i.e., the two paths p1 and p2 connecting the start and
end vertex of p to e′ have a length of

⌊
diam(x)+1

2

⌋
or

⌊
diam(x)+1

2

⌋
− 1. Then for

every leaf e of x, the path connecting e to e′ must have a length of
⌊

diam(x)+1
2

⌋

or less; otherwise we can merge such a path with p1 or p2 to obtain a path longer
than diam(x), which contradicts that the diameter of x is diam(x). Therefore,
x can be decomposed into a set of paths of length

⌊
diam(x)+1

2

⌋
or less, each

connecting a leaf of x (which is a query entity) to e′.

Following this theorem, we develop Algorithm 1 for finding all the valid
associations by searching for and merging paths. Specifically, all the paths of
length

⌊
λ+1
2

⌋
or less starting from each query entity are found by searching G

in a breadth-first manner (line 3–4). For instance, when λ = 3, starting from eq
1

in Fig. 1, four paths of length 1 and four paths of length 2 are found:

P1 = {eq
1r1e1, eq

1r1e2, eq
1r̂5e2, eq

1r6e3,

eq
1r1e1r2e4, eq

1r1e2r2e5, eq
1r̂5e2r2e5, eq

1r6e3r̂7e6} .
(1)
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Algorithm 1. A Basic Algorithm for Association Finding
Data: An entity-relation graph G, a set of n query entities eq

1, . . . , e
q
n, and a

diameter constraint λ.
Result: A set of valid associations connecting eq

1, . . . , e
q
n.

1 X = ∅ ; /* a set of associations */

2 codes = ∅ ; /* a set of canonical codes for associations */

3 for i = 1 to n do
4 Pi = the set of all paths of length

⌊
λ+1
2

⌋
or less starting from eq

i found by
searching G in a breadth-first manner;

5 foreach 〈p1, . . . , pn〉 ∈ (P1 × · · · × Pn) do
6 if p1, . . . , pn have a common end vertex then
7 Merge p1, . . . , pn to form a connected subgraph x of G;
8 if x is minimal then

/* x is minimal if its underlying graph is a tree, and the

leaves only come from eq
1, . . . , e

q
n. */

9 if diam(x) ≤ λ then
10 code(x) = the canonical code of x;
11 if code(x) /∈ codes then
12 Add code(x) to codes;
13 Add x to X;

14 return X

Then, all possible combinations of such paths are examined (line 5–13); each com-
bination consists of one path starting from each query entity, i.e., one from P1,
one from P2, . . . , one from Pn. If all the paths in a combination have a com-
mon end vertex (e.g., eq

1r1e1, eq
2r3e4r̂2e1, and eq

3r̂4e4r̂2e1 in Fig. 1), they will be
merged into a subgraph x of G (e.g., x1 in Fig. 2) that is potentially a valid
association to be found (line 6–7). However, before adding x to the results X
(line 13), it has to satisfy three requirements.

Firstly, x should be minimal; that is, its underlying graph is a tree, and the
leaves only come from query entities (line 8). These tests can be carried out
within a single depth-first search of x.

Secondly, x should be valid, i.e., diam(x) ≤ λ (line 9). This test is needed
because when λ is odd, it is possible that x is formed by merging paths of length⌊

λ+1
2

⌋
= λ+1

2 so that diam(x) = λ + 1 > λ.
Thirdly, the same association should not be added to X multiple times. For

instance, x1 in Fig. 2 can be formed twice by merging the paths in two different
combinations: one with e1 as a common end vertex and the other with e4. To
avoid such duplicates, we generate a canonical code for x (line 10), denoted by
code(x), so that two associations will have the same canonical code if and only
if they are isomorphic to each other, i.e., they have the same set of entities as
vertices and there is a bijection between their arcs that preserves adjacency and
arc labels. If it is the first time code(x) is seen, x will be added to X (line 11–13).

There have been various ways of defining and generating canonical codes for
trees [11], assuming a total order (�) on each set of sibling vertices. We adopt
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the following recursive definition, and implement � by the alphabetical order of
entity identifiers (e.g., URIs).

– For a tree T with a single vertex e, we define

code(T ) = e$ , (2)

where $ is a special symbol not in the alphabet for naming entities and
relations.

– For a tree T with more than one vertex, assuming its root is e and the arcs
connecting e to its children e1, . . . , ek (subject to e1 � · · · � ek) are labeled
with relations r1, . . . , rk, respectively, we define

code(T ) = er1code(T1) · · · rkcode(Tk)$ , (3)

where T1, . . . , Tk are the subtrees rooted at e1, . . . , ek, respectively.

Such a code can be generated for x via a depth-first search of x. For instance,
for x1 in Fig. 2 with eq

1 always designated as its root, assuming eq
2 � eq

3, we have

code(x1) = eq
1r1e1r2e4r̂3e

q
2$r4e

q
3$$$$. (4)

Let Δ be the maximum of the degrees of vertices in G. In the algorithm, the
number of paths that can be found from a query entity is bounded by O(Δ�λ+1

2 
).
Given n query entities, there are O(Δ�λ+1

2 
n) combinations of paths to examine;
in practice we can index paths by their end vertices to significantly improve
the performance. The time for checking one combination of paths for the three
requirements of a valid association is linear with its size, which is bounded by
O(nλ). Overall, the algorithm takes O(Δ�λ+1

2 
nnλ) time, but n and λ are both
very small in practice.

3.2 Distance-Based Search Space Pruning

To improve the performance of Algorithm 1, we notice that some paths found in
graph search will not be merged into any valid association. For instance, when
λ = 3, among the eight paths in P1 as shown in Eq. (1), eq

1r6e3 and eq
1r6e3r̂7e6

eventually do not take part in any valid association in Fig. 2. If we can prune
the search space to exclude such paths, graph search will end earlier (line 4) and
there will be much fewer combinations of paths to be examined (line 5–13), so
that the performance of the algorithm can be improved.

We prune the search space by exploiting distances between entities in the
entity-relation graph G. Let dist return the distance between two entities in G.
For instance, in Fig. 1, we have dist(eq

1, e3) = 1 and dist(eq
2, e3) = 4. When

searching G for the set of paths Pi starting from a query entity eq
i and arriving

at an entity e via a path peq
i e from eq

i to e, the search space may then be pruned
depending on the distances between e and other query entities, i.e., dist(eq

j , e)
for j �= i.
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Specifically, if dist(eq
j , e) >

⌊
λ+1
2

⌋
for any other query entity eq

j (j �= i),
peq

i e can be excluded from Pi safely (i.e., not affecting the final results X) because
it will not take part in any valid association since Pj is not likely to contain a
path from eq

j to e of length
⌊

λ+1
2

⌋
or less. For instance, given λ = 3, when

searching the graph in Fig. 1 starting from eq
1 and arriving at e3 via the path

eq
1r6e3, this path will be excluded from P1 because dist(eq

2, e3) = 4 > 2 =
⌊
3+1
2

⌋
.

Further, let ln(p) be the length of a path p. If ln(peq
i e)+dist(eq

j , e) > 2
⌊

λ+1
2

⌋

for any other query entity eq
j (j �= i), which implies dist(eq

j , e) >
⌊

λ+1
2

⌋
since

ln(peq
i e) ≤ ⌊

λ+1
2

⌋
, we can safely exclude from Pi not only peq

i e but also all the
paths that extend peq

i e (i.e., having peq
i e as a prefix); in other words, the entire

branch of search stemming from peq
i e can be pruned. For instance, given λ = 3,

when searching the graph in Fig. 1 starting from eq
1 and arriving at e3 via the path

eq
1r6e3, we will not only exclude this path from P1 but also prune the branch of

search stemming from it because ln(eq
1r6e3)+dist(eq

2, e3) = 1+4 = 5 > 2
⌊
3+1
2

⌋
;

as a result, the path eq
1r6e3r̂7e6 will be implicitly excluded from P1. We prove the

safeness by showing that any path peq
i e′ from eq

i to an entity e′ that extends peq
i e

will not take part in any valid association. Specifically, peq
i e′ is composed of peq

i e

from eq
i to e and pee′ from e to e′. If it can be merged with some path peq

j e′ ∈ Pj

(j �= i) from eq
j to e′ into a valid association, we will have ln(peq

j e′) ≤ ⌊
λ+1
2

⌋
and

2
⌊

λ + 1
2

⌋

=
⌊

λ + 1
2

⌋

+
⌊

λ + 1
2

⌋

≥ ln(peq
i e′) + ln(peq

j e′)

= ln(peq
i e) + ln(pee′) + ln(peq

j e′)

≥ ln(peq
i e) + dist(eq

j , e) ,

(5)

which contradicts ln(peq
i e) + dist(eq

j , e) > 2
⌊

λ+1
2

⌋
.

3.3 Distance Computation

The above pruning strategy requires knowing distances between entities. When
the entity-relation graph is large, e.g., consisting of millions of vertices and bil-
lions of arcs, obtaining distances will be nontrivial. On the one hand, online
computing distances would be time-consuming and lead to unacceptable latency.
On the other hand, materializing offline computed distances between all pairs of
entities would be a challenge. To achieve a trade-off between time for computing
and space for materializing distances, we turn to distance oracles [16].

A distance oracle is a data structure that, after preprocessing a graph, allows
for fast distance computation. Specifically, the graph is offline processed to com-
pute certain information (e.g., distances between each vertex and some landmark
vertices) to be materialized in a distance oracle; its size is usually much smaller
than the size of materializing distances between all pairs of vertices. By using a
distance oracle, computing the distance between two vertices can be reasonably
fast, though not as fast as looking up a materialized distance.
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There are two types of distance oracles: exact and approximate. Given two
vertices between which the distance is d, an exact distance oracle will return d,
whereas an approximate distance oracle will return a value that is in the range
of [d, αd + β] where α ≥ 1 and β ≥ 0, which is said to have stretch (α, β).
Different approximate distance oracles have different trade-offs between stretch,
size, and time. Practical approximate distance oracles usually have stretch α = 2
or α = 3. However, such a distance oracle is not particularly useful for small-
world graphs in which distances between vertices are typically very small [16].
As we will see in Sect. 5.1, some widely used entity-relation graphs are exactly
small-world graphs. Therefore, we choose to implement a state-of-the-art exact
distance oracle [1], to be used in distance-based pruning.

4 Frequent Association Pattern Mining

Having found a possibly large group of associations, we aim to identify its notable
subgroup(s) that match a common conceptual structure, i.e., a frequent associa-
tion pattern, to provide a high-level abstract of major results. Specifically, given
a group of associations X, the frequency of an association pattern z, denoted
by fX(z), is the number of associations in X that match z. Given a thresh-
old τ ∈ [0, 1], we aim to find all the frequent association patterns z for which
fX(z)
|X| ≥ τ . Note that existing solutions to frequent tree pattern mining [11] do

not apply here because their resulting subtrees may not contain all the query
entities. In the following, we firstly present a basic algorithm. Then we improve
its performance by partitioning X.

4.1 A Basic Algorithm

The idea is to firstly, for each association in X, enumerate all the association
patterns it matches; for instance, x1 in Fig. 2 matches z1 and z2 in Fig. 3. Then
we calculate the frequency of each association pattern and identify frequent
ones; to this end, the main problem is to judge whether two association patterns
enumerated for different associations are isomorphic to each other. Since an
association pattern is tree-structured, we intend to generate a canonical code
for each enumerated association pattern by reusing the way of defining and
generating canonical codes presented in Sect. 3.1, and then count the occurrence
of each canonical code as the frequency of the corresponding association pattern.

Recall that in Sect. 3.1, the definition of canonical code relies on a predefined
total order (�) on each set of sibling vertices; there, we implement � by the
alphabetical order of entity identifiers, considering that sibling vertices in an
association are always different entities with different identifiers. However, if
sibling entities in an association have a common type, the corresponding sibling
vertices in an association pattern will represent the same class; for instance, in
Fig. 3, the two children of eq

1 in z3 both represent C1. Hence, the alphabetical
order of entity and class identifiers fails to give a total order on such a set of
sibling vertices. If we still use this order and break ties arbitrarily, different
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canonical codes may be generated for isomorphic association patterns, leading
to incorrect calculation of frequency. For instance, the canonical code for z3 in
Fig. 3 could be

eq
1r1C1r2e

q
2$$r1C1r2e

q
3$$$

or eq
1r1C1r2e

q
3$$r1C1r2e

q
2$$$ ,

(6)

depending on how to order the two children of eq
1.

To obtain a unique canonical code, a less efficient solution is to generate
codes in all possible orders and choose the lexicographically smallest one [11].
Differently, we propose a more efficient solution that directly generates a unique
code by implementing � in a different way that exploits query entities. Specifi-
cally, instead of directly ordering sibling vertices by their identifiers (which may
represent the same class), for each sibling vertex v that is not a query entity, we
choose a query entity as its proxy to be ordered by entity identifiers, which is the
one with the alphabetically smallest entity identifier in the subtree rooted at v.
Since subtrees rooted at sibling vertices contain different sets of query entities,
the proxies chosen are different. This successfully gives a total order on each
set of sibling vertices, and thus ensures a unique canonical code for isomorphic
association patterns. For instance, assuming eq

2 alphabetically precedes eq
3, the

unique canonical code for z3 in Fig. 3 will be

eq
1r1C1r2e

q
2$$r1C1r2e

q
3$$$

but not eq
1r1C1r2e

q
3$$r1C1r2e

q
2$$$ ,

(7)

because the proxy for the upper child of eq
1 in Fig. 3 is eq

2, which alphabetically
precedes eq

3, the proxy for the lower child of eq
1. Proxies for all the vertices in an

association pattern z can be found within a single depth-first search of z.
The size of an association is bounded by O(nλ). Let γ be the maximum num-

ber of types that an entity can have. An association can match O(γnλ) associa-
tion patterns, and thus O(|X|γnλ) canonical codes will be generated. Generating
one canonical code takes O(nλ) time, plus O(nλ) time for finding proxies. Over-
all, the algorithm takes O(|X|γnλnλ) time to generate all the canonical codes
to be counted, but γ, n, λ are all very small in practice.

4.2 Partitioning-Based Performance Improvement

Enumerating association patterns and generating canonical codes for them can
be time-consuming. To improve the performance, we aim to divide X into mutu-
ally disjoint partitions, and ensure that only the associations in the same par-
tition can match a common association pattern. Then, when mining frequent
association patterns, we can ignore partitions containing fewer than τ |X| asso-
ciations, without spending time processing association patterns they match.

We observe that two associations can match a common association pattern
only if they: (a) consist of the same number of vertices, and (b) have the same set
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of arc labels (i.e., relations). We divide X based on a combination of these two
metrics. For instance, x1 and x2 in Fig. 2 will be put in the same partition because
both of them consist of five vertices and their arc labels are both {r1, r2, r3, r4},
whereas x3 is in a different partition because its arc labels are {r2, r3, r4, r5}.

5 Experiments

We tested the performance of the proposed algorithms on an E3-1226 v3 with
24GB memory for JVM. Entity-relation graphs and entities’ types were stored
in memory. Distance oracles were stored in a MySQL database on disk.

5.1 Datasets and Test Queries

Datasets. Experiments were conducted on two widely used RDF datasets.

– LinkedMDB1 provided RDF data about movies and related entities like actors
and directors. After filtering out RDF triples involving literals or rdf:type, an
entity-relation graph was obtained, consisting of 1,327,069 entities as vertices
and 2,132,796 arcs. Entities’ types were derived from RDF triples involving
rdf:type.

– DBpedia2 provided encyclopedic RDF data extracted from Wikipedia.
After filtering out RDF triples involving literals, an entity-relation graph
was obtained from the Mapping-based Properties dataset, consisting of
4,337,485 entities as vertices and 15,007,564 arcs. Entities’ types were derived
from the Mapping-based Types dataset.

For entities having no type information, owl:Thing was added to be their type.
To characterize the two entity-relation graphs, we randomly selected

10,000 pairs of entities from each graph, and tested whether they were con-
nected by paths and if so, calculated the distance between them. As shown in
Table 1, in LinkedMDB, most pairs of entities (77.20 %) were connected, and
their average and median distances were 6.61 and 7, respectively, showing the
small-world effect, which was even more pronounced on DBpedia. The results
revealed two findings.

Table 1. Distance between entities

% of connected entities Distance between connected entities

Average Median

LinkedMDB 77.20 % 6.61 7

DBpedia 96.41 % 5.06 5

1 http://www.cs.toronto.edu/∼oktie/linkedmdb/linkedmdb-latest-dump.zip.
2 http://wiki.dbpedia.org/Downloads2015-04.

http://www.cs.toronto.edu/~oktie/linkedmdb/linkedmdb-latest-dump.zip
http://wiki.dbpedia.org/Downloads2015-04
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– An exact (not approximate) distance oracle was needed for effective distance-
based pruning on such small-world graphs as discussed in Sect. 3.3.

– The diameter constraint had to be set to a small value (≤ 4), because larger
values would require searching almost the entire entity-relation graph, and
could find too many paths and associations to fit in memory.

Test Queries. Test queries were constructed under different settings of diam-
eter constraint (λ) and number of query entities (n). For each combination of
λ ∈ {2, 4} and n ∈ {2, 3, 4, 5}, we randomly selected 1,000 sets of n query entities
from each of the two entity-relation graphs as test queries.

5.2 Association Finding

Algorithms. Three algorithms for association finding were tested:

– BSC: the basic algorithm described in Sect. 3.1, which can be regarded as
an extension of the existing bi-directional BFS algorithm for finding paths
between two entities [10],

– PRN: the improved algorithm using distance-based search space pruning
described in Sects. 3.2 and 3.3, and

– PRN-1: a variant of PRN that would not try to prune the search space at the
last level of search, and thus might exclude fewer paths than PRN but could
reduce the number of distance computations, achieving a different trade-off.

In PRN and PRN-1, the distance between two vertices would be cached in
memory after being computed for the first time. However, to avoid distorting
the results of performance tests, the cache would be cleared after every single
run of an algorithm on a test query.

Results. We ran each algorithm five times on each test query, and took the
median running time. Then we calculated the average running time per query
used by each algorithm on all the test queries under each setting of λ and n.

As shown in Fig. 4 on a logarithmic scale, when λ = 2, all the three algorithms
were very fast on both datasets, using not more than 4ms per query. PRN and

Fig. 4. Running time of association finding under λ = 2.
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Fig. 5. Running time of association finding under λ = 4.

Table 2. Number of distance computations

Dataset Algorithm λ = 2 λ = 4

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5

LinkedMDB PRN 2.0 3.0 4.0 5.0 3,055.3 1,525.6 836.0 144.5

PRN-1 2.0 3.0 4.0 5.0 2.9 4.0 4.8 5.7

DBpedia PRN 2.2 3.0 4.0 5.0 32,530.2 24,061.5 19,057.1 15,346.5

PRN-1 2.0 3.0 4.0 5.0 5.7 8.9 9.1 13.0

PRN-1 were relatively slow because the search space was very small when λ = 2,
so that distance computation for pruning took more time than it saved.

Distance-based pruning proved to be effective when the search space became
large. As shown in Fig. 5 on a logarithmic scale, when λ = 4, PRN-1 used
not more than 34ms per query, being 55 %–548 % faster than BSC on Linked-
MDB, and 40 %–712 % faster on DBpedia. The difference rose when increasing n
because given a larger number of query entities (i.e., n), more distances could
be exploited in graph search and the search space would be more likely to be
pruned.

PRN was slower than BSC and PRN-1 because, compared with PRN-1, it
also tried to prune the search space at the last level of search, which required
computing distances between much more pairs of entities, as shown in Table 2.
However, each of those computations could exclude at most one path, as opposed
to a possibly large branch of search stemming from a path when pruning at earlier
levels of search, thereby being cost-ineffective.

5.3 Frequent Association Pattern Mining

Approaches. Two algorithms for frequent association pattern mining were
tested:

– BSC: the basic algorithm described in Sect. 4.1, whose running time was inde-
pendent of the relative frequency threshold (τ), and

– PRT: the improved algorithm using partitions described in Sect. 4.2, with τ =
5% or τ = 25%.
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Fig. 6. Running time of frequent association pattern mining under λ = 4.

Results. We ran each algorithm five times on each test query that resulted in
at least two associations when λ = 4, and took the median running time. Then
we calculated the average running time per query used by each algorithm on all
the test queries resulting in the same number of associations.

As shown in Fig. 6 on a log-log scale, all the algorithms were reasonably fast
on both datasets for 10,000 or fewer associations, using not more than 21ms
and 65ms per query on LinkedMDB and DBpedia, respectively. For larger sets
of associations on DBpedia, hundreds or thousands of milliseconds was used.
Actually, the reported running time had the potential to be reduced by easily
parallelizing the algorithms, e.g., enumerating association patterns for different
associations in parallel, and generating canonical codes for different association
patterns in parallel.

When the number of associations was small, the difference between BSC and
PRT was not significant. On most queries resulting in 5,000 or more associations
on DBpedia, PRT was 13 %–722 % faster than BSC when τ = 25%, showing the
effectiveness of using partitions. However, PRT was slower than BSC on some
queries particularly when τ = 5% because only very small partitions could be
occasionally ignored so that computing partitions took more time than it saved.

5.4 Discussion

In the experiments, we found two limitations of our approach.
Firstly, to find associations, although PRN-1 was very fast when λ ∈ {2, 4},

using not more than 34ms per query on two fairly large datasets, it frequently
used the memory up when we tried to increase λ to 6. That was due to the small-
world effect; there were indeed quite many associations to find when λ = 6. If
some of such long-distance associations were believed to be useful according to
a certain ranking criterion, graph search could leverage the criterion to prune
the search space and return not all but top-ranked associations. However, that
would be a different research problem having its own applications [13].

Secondly, to mine frequent association patterns, associations were partitioned
so that it was possible to avoid enumerating association patterns for some asso-
ciations and generating canonical codes for them. However, to put an association
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into the right partition according to the number of its vertices and the set of its
arc labels, the running time was linear with its size, being asymptotically equiv-
alent to the time for generating its canonical code. Therefore, partitioning could
not fundamentally improve the performance of the mining algorithm, and did
not appear to be consistently superior to the basic algorithm in the experiment.
One possibly essential improvement would be to integrate frequent association
pattern mining into association finding. For instance, it would be interesting to
combine our approach with the techniques in [19].

6 Related Work

Numerous research efforts have been made to find associations between two enti-
ties, and they define association in different ways [3,7,15]. In a seminal work [3],
four types of associations are discussed. Among others, an association between
two entities can be a path in an entity-relation graph that connects the two enti-
ties. Although recent attempts propose to merge certain paths to better explain
relatedness between two entities [7,15], the path-based straightforward defini-
tion is adopted by most of the subsequent researches, which mainly focus on
two problems: how to efficiently find all the paths of a limited length between
two entities [10], and how to help users explore such a possibly very large set of
paths [2,5,6,8,20]. Concerning the latter problem, one line of work studies the
ranking of paths to show users more important paths earlier [2,5]. Complemen-
tary to that, other solutions allow users to filter paths by specifying keywords
appearing on the paths [20], relations and classes of entities contained in the
paths [8], or frequent patterns of the paths [6].

Different from the above efforts, in this work we aim to find associations
between multiple (i.e., two or more) entities in an entity-relation graph. It goes
beyond simply finding paths between all pairs of entities [9], but requires con-
solidating those paths into concise structures. For instance, in [4,12,17], their
goal is to find an optimal association between multiple entities that is a subgraph
connecting those entities via a limited number of other entities and maximizing a
“goodness” function. In [13], the goal is to find top-k minimum-cost Steiner trees
connecting those entities. Differently, we deal with unweighted graphs because
we aim to find not top-ranked associations but all the associations having a lim-
ited diameter, and then identify their frequent patterns to provide a conceptual
abstract of them. This extends our previous work on mining frequent patterns
of paths connecting two entities [6], and complements the existing approaches
to ranking associations between multiple entities [4,12,13,17].

Compared with a recent work on mining frequent patterns of associations con-
necting multiple entities in an entity-relation graph [19], our work has made two
technical advances. Firstly, in [19], associations are efficiently found by merging
paths of a limited length that are materialized in an index. However, it has two
limitations: (a) the size of that index increases exponentially with the length of
path, and may not be affordable for large datasets and long paths, and (b) when
a larger diameter constraint is given, the index may have to be rebuilt to include
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longer paths. By comparison, to achieve a trade-off between time for computing
and space for materializing, we materialize not paths but only a distance oracle
which has a fixed, affordable size; using that, paths not taking part in any valid
association can be efficiently pruned. Besides, once a distance oracle is built, it
can work with arbitrarily large diameter constraints. Secondly, in [19], an asso-
ciation pattern (which is tree-structured) is formed by merging path patterns.
That may result in structurally isomorphic association patterns that trivially
differ in the designation of root. We eliminate such duplicates by defining and
generating a canonical code for each pattern.

7 Conclusion

We have presented efficient algorithms for finding associations connecting a set
of query entities in graph-structured data, and mining their frequent association
patterns to summarize major results for exploration. Experiment results show
that our algorithms are reasonably fast on large, real datasets. They can find
applications in many areas where finding associations is a common information
need. The novel idea of using a distance oracle to compute distances for pruning
the search space may also benefit the study of other research problems such as
semantic search and query processing over graph-structured data.

As discussed at the end of the experiments, to further improve the per-
formance of our algorithms, one promising direction is to incorporate ranking
criteria (if any) into graph search, and to embed frequent association pattern
mining in association finding. This will be our future work. Besides, we have
found that sometimes a large number of frequent association patterns can be
found, some of which have overlapping meanings and some are not so meaning-
ful to users. It inspires us to consider selecting appropriate ones from all the
frequent association patterns, to help users effectively explore associations.
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Abstract. Annotations are useful to semantically enrich documents and
other datasets with concepts of standardized vocabularies and ontolo-
gies. In the medical domain, many documents are not annotated at all
and manual annotation is a difficult process making automatic annota-
tion methods highly desirable to support human annotators. We propose
a reuse-based annotation approach that utilizes previous annotations to
annotate similar medical documents. The approach clusters items in doc-
uments such as medical forms according to previous ontology-based anno-
tations and uses these clusters to determine candidate annotations for
new items. The final annotations are selected according to a new context-
based strategy that considers the co-occurrence and semantic relatedness
of annotating concepts. The evaluation based on previous UMLS anno-
tations of medical forms shows that the new approaches outperform a
baseline approach as well as the use of the MetaMap tool for finding
UMLS concepts in medical documents.

Keywords: Semantic annotation · Medical documents · Ontology ·
UMLS

1 Introduction

The annotation of data with concepts of standardized vocabularies and ontolo-
gies has gained increasing significance due to the huge number and size of avail-
able datasets as well as the need to deal with the resulting data heterogeneity.
In the biomedical domain, gene or protein functions are thus often described
by concepts of the Gene Ontology(GO) [2], scientific publications can be anno-
tated with Medical Subject Headings (MESH) [14], and electronic health records
(EHRs) can be semantically classified by concepts of SNOMED CT [7]. Anno-
tations of medical documents such as EHRs can also support advanced analy-
ses, e.g. significant co-occurrences between the use of certain drugs and neg-
ative side effects in terms of occurring diseases [12]. Still many medical docu-
ments are not annotated at all, impeding data analysis and data integration. For
instance, more than 200.000 trials are registered on http://clinicaltrials.gov and
every study requires a set of so-called case report forms (CRFs), e.g. to ask for
the medical history of probands. For every new clinical trial, CRFs are usually
built from scratch, although previous forms might already cover similar topics.
c© Springer International Publishing AG 2016
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Fig. 1. Example medical form item and associated annotations to UMLS concepts.

CRF annotations are helpful to search for existing form collections, e.g., in the
MDM repository of medical data models [4].

To improve the value of medical documents for analysis, reuse and data inte-
gration it is thus crucial to annotate them with concepts of ontologies. Since
the number, size and complexity of medical documents and ontologies can be
very large, a manual annotation process is time-consuming or even infeasible.
Hence, automatic annotation methods become necessary to support human anno-
tators with recommendations for manual verification. Figure 1 shows an exem-
plary annotation for one item in a medical form (CRF) on eligibility criteria for a
clinical trial on acute myeloid leukaemia (AML). Such an item comprises a ques-
tion as well as a response field or a list of answer options. The shown question has
been manually annotated based on a reference mapping with five concepts of the
Unified Medical Language System (UMLS) [3], a comprehensive knowledge base
integrating many biomedical ontologies. The associated UMLS concepts relate to
different terms of the item text (italicized) as indicated by the numbers (1) to (5).

The automatic annotation of medical documents is challenging for several
reasons. In particular, it is difficult to correctly identify relevant terms and med-
ical concepts within natural language sentences such as the items (questions)
occurring in medical forms. This is because concepts typically have several syn-
onyms that may occur in sentences in different variations. Furthermore, concepts
are often described by labels or synonyms consisting of several words, e.g., AML-
Acute myeloid leukaemia (C0023467 ), that can match many irrelevant terms in
the items to be annotated. We might further need to identify complex many-to-
many mappings between items and ontology concepts without knowing a priori
how many medical concepts should be associated per item. Moreover, UMLS
is very large (2.8 mio. concepts) making it difficult to identify the best fitting
concepts for annotation.

We recently proposed already an initial approach to annotate medical forms
with UMLS concepts by extracting terms from items and matching these terms
to UMLS concepts based on linguistic ontology matching techniques [5]. The
study revealed the mentioned challenges and showed the difficulty of automati-
cally achieving high quality annotations especially for long natural language sen-
tences. Moreover, we observed frequent errors due to the high number of available
concept synonyms and misleading terms in synonyms. In this study we aim at
improving the quality of annotations and reducing the manual annotation effort
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by reusing already determined and manually verified annotations. This assumes
that there are similar questions in different medical forms of a domain of interest
so that previous annotations can be reapplied. For this purpose, we propose and
evaluate a new reuse-based annotation approach for annotating medical forms
and documents.

Specifically, we make the following contributions:

– To enable annotation reuse, we propose to cluster all previously annotated
items that are annotated with the same medical concept. For such annotation
clusters, we identify representative features that are more compact than the
large set of terms in concept labels and synonyms. We use these clusters and
their features to find likely annotations for new items that are similar to
already annotated ones.

– We propose a new context-based strategy to select the most promising anno-
tations from a set of previously determined candidates. The strategy considers
both the semantic relatedness of the annotating concepts as well as their co-
occurrence in previously annotated items.

– We evaluate the proposed approaches based on reference mappings between a
set of medical forms and UMLS and compare them with a baseline annotation
approach as well as with using the MetaMap tool [1] to identify UMLS concepts
within medical documents.

The remainder of this paper is organized as follows. We first provide a more
formal problem definition and introduce a base workflow for determining anno-
tations (Sect. 2). We then propose our new reuse-based annotation approach
and the context-based selection strategy (Sect. 3). Section 4 presents evaluation
results for the new approaches. Finally, we discuss related work in Sect. 5 and
conclude in Sect. 6.

2 Preliminaries

We first present the formal definition of the annotation problem we address.
Next we present a base workflow to determine annotation mappings for medical
forms. This workflow has already been proposed in [5] and serves as a basis for
our new approach that can reuse previous annotations (Sect. 3).

2.1 Problem Definition

We are given a set of medical forms F and an ontology O. Each form F ∈ F
consists of a set of items {i1, i2, . . . ik} where each item has a question q and
a response part. The response may be provided as free text or by selecting an
answer from a list of possible values (as in Fig. 1). While the list of possible
answers may include valuable information for the annotation of items, in this
work we concentrate on using the question parts for finding suitable annota-
tions. An ontology O consists of a set of concepts CO = {c1, c2, . . . , cl} and a
set of relations RO = {(c1, c2, rel type1), . . . (ci, cj , rel typek)} interrelating the
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ontology concepts by certain relationship types, e.g. is−a, part−of or domain-
specific relationships such as is − located − in. The concepts in O are typically
described by an id, a label and several synonyms as shown on the right side of
Fig. 1. The goal is to annotate each question (item) with one or several concepts
from the given ontology O. More specifically, we aim to determine an annota-
tion mapping MF,O = {(q, c, sim)|q ∈ F, c ∈ O, sim[0, 1]} for each form F . An
annotation (q, c, sim) in these mappings indicates that question q is semanti-
cally described by concept c; the similarity value sim indicates the strength of
the association according to the underlying method to compute the annotations.

Note that a question may be annotated by several concepts and that a con-
cept may describe several questions. The challenge is to develop automatic meth-
ods that can determine annotation mappings of good quality (recall, precision).
Ideally, all questions are correctly annotated, i.e. they are annotated with the
ontology concepts that provide the best semantic description for the questions.
A secondary goal is to efficiently determine the annotation mappings in a short
time, even for large form collections and large ontologies.

2.2 Base Workflow

In our previous work [5] we used the basic workflow shown in Algorithm 1 to
determine annotation mappings for medical forms. The input of the workflow
is a set of forms F , an ontology O, and a similarity threshold δ. First, we nor-
malize the label and synonyms of ontology concepts by removing stop words,
transforming all string values to lower case and removing delimiters. The same
preprocessing steps are applied for each form Fi. We identify an intermediate
annotation mapping M′

Fi,O by lexicographically comparing each question with
the label and synonyms of ontology concepts. For this purpose we apply three
string similarity measures, namely trigram, TF/IDF as well as a longest com-
mon sequence string similarity approach. We keep an annotation (q, c, sim), if the
maximal similarity of the three string similarity approaches exceeds the thresh-
old δ. Finally, we select annotations from the intermediate result by not only
choosing the concepts with the highest similarity but also by considering the

Algorithm 1. annotation method A
Input: Set of forms F , ontology O= (CO, RO), threshold δ
Output: Annotation mapping MF,O

1 O←preprocess (O);
2 MF,O← ∅ ;
3 foreach Fi ∈ F do
4 Fi ← preprocess (Fi);
5 M′

Fi,O ←identifyCandidates (Fi, CO, δ);
6 MFi,O ← selectAnnotations (M′

Fi,O);
7 MF,O←MF,O∪MFi,O;

8 return MF,O;
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similarity among the concepts. For this purpose, we group the concepts asso-
ciated with a question based on their mutual similarity and only choose the
concept with the highest similarity per group in order to avoid the redundant
selection of highly similar concepts. This group-based selection proved to be quite
effective in [5] albeit it only considers the string-based (linguistic) similarity
between questions and concepts, and among concepts.

3 Reuse-Based Annotation Approach

In this section we outline an extended workflow to determine annotation map-
pings that reuses previously found annotations for similar questions. The goal
is to reduce the complexity of the annotation problem by avoiding to search a
very large ontology for finding concepts that describe or match terms of a ques-
tion to annotate. By reusing verified annotations we also hope to achieve a good
annotation quality since the previous annotations may include concepts that are
difficult to find by common match techniques based on linguistic similarity. The
reuse approach is also motivated by the existence of a high number of related
forms in a specific domain, e.g. dealing with a specific disease. It would thus be
desirable to reuse the annotations of a subset of these forms to more quickly and
effectively annotate the remaining ones. The proposed approach is not limited
to the annotation of medical forms but could be generalized for other medical
documents such as electronic health records (EHRs) where we would associate
medical concepts from an ontology to specific sentences or sections of the docu-
ment rather than to questions.

We will first outline the new workflow for reuse-based annotation and then
provide more details about its main steps, i.e., the generation of so-called anno-
tation clusters (Sect. 3.2), determination of candidate annotations (Sect. 3.3) and
a context-based strategy for selecting the final annotations (Sect. 3.4).

3.1 Workflow for Reuse-Based Annotation

The workflow for the reuse-based annotation approach is shown in Algorithm2.
Its input includes a set of verified annotation mappings containing the annota-
tions for reuse. The result is a set of annotation mappings MF,O for the input
forms F w.r.t. ontology O. In the first step, we use the verified annotations
to determine a set of annotation clusters AC = {acc1 , acc2 , . . . , accm}. For each
concept ci used in the verified annotations, we have an annotation cluster acci
containing all questions that are associated to this concept. To calculate the
similarity between an unannotated question and the questions of an annotation
cluster we determine for each cluster a representative (feature set) acfsci consist-
ing of relevant term groups in this cluster. These term groups are identified based
on common terms between the questions q ∈ acci and the description (label and
synonyms) of the corresponding concept of aci.

After these initial steps we determine the annotation mapping for each unan-
notated input form Fi (lines 3–7 in Algorithm 2). We first preprocess a form as
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Algorithm 2. Extended annotation method Areuse

Input: Set of unknown forms F , ontology O= (CO, RO), set of verified
annotation mappings Mverified

F,O , threshold δ
Output: Annotation mapping MF,O

1 AC ←determineAnnotationCluster (Mverified
F,O ) ;

2 AC ← determineFeatureSets (AC, O);
3 O←preprocess (O);
4 foreach Fi ∈ F do
5 Fi ← preprocess (Fi);

6 MReuse
Fi,O ← identifyCandidatesByReuse (Fi, AC, δ);

7 F ′
i ← findUnannotatedQuestions (Fi, MReuse

Fi,O );

8 Mreduced
F ′
i ,O ← identifyCandidates (F ′

i , O, δ);

9 M′
Fi,O ← Mreduced

F ′
i ,O ∪ MReuse

Fi,O ;

10 MFi,O ← selectAnnotationsByContext (M′
Fi,O);

11 MF,O←MF,O∪MFi,O;

12 return MF,O;

in the base approach of Algorithm1. Then we determine an annotation mapping
MReuse

Fi,O for the form based on the annotation clusters. Depending on the degree
of reusable annotations the determined mapping is likely to be incomplete. We
thus identify all questions that are not yet covered by the first mapping. For
these questions we apply the base algorithm to match them to the whole ontol-
ogy and obtain a second annotation mapping (line 7). We then take the union of
the two partial mappings to obtain the intermediate mapping M′

Fi,O. Finally, we
apply a new strategy to select the annotations for the final mapping MF,O. This
selection strategy considers the context of concepts, their linguistic similarity as
well as their co-occurrences in previous annotations.

3.2 Generation of Annotation Clusters and Representatives

We build annotation clusters from verified annotation mappings by creating
a cluster for each applied ontology concept ck and associating to it all input
questions that are assigned to this concept. Formally, an annotation cluster acck
is represented as triple:

acck := (ck, Qck , acfsck ).

It includes the concept ck, the set of questions Qck annotated with ck, as
well as a cluster representative or feature set acfsck . The purpose of the cluster
representative is to provide a compact cluster description that is more suitable
for finding further annotations than the free text questions or the label and
synonym terms of the ontology concept.

A feature set is formed by terms or groups of terms that frequently co-occur
in the questions of the cluster and that are similar to the synonym description
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Fig. 2. Sample annotation cluster acC0023467 for UMLS concept C0023467 with its set
of associated questions QC0023467 and feature set acfsC0023467.

of the corresponding concept. To identify frequently co-occurring terms, we use
a frequent itemset mining algorithm where the frequency of term groups has to
exceed a given min support. Moreover, we only keep term groups that maximize
the overlap between the terms of a question and the synonyms or the label of a
concept, i.e., we do not use term groups that build a subset of another frequently
occurring term group. The resulting feature sets build representatives for the
annotation clusters that will be used to identify new annotations by matching
unannotated forms to cluster representatives.

As an example, Fig. 2 shows the resulting annotation cluster acC0023467 for
UMLS concept C0023467 about the disease Acute Myeloid Leukaemia. In the
UMLS ontology, this concept is described by a set of 32 synonyms (Fig. 2 left).
The annotation cluster also contains 25 questions associated to this concept in
the verified annotation mappings. Most questions only relate to some of the
synonym terms of the concept while other synonyms remain unused. So the
abbreviation ‘AML’ that is a part of some synonyms is often used but the abbre-
viation ‘ANLL’ does not occur in the medical forms used to build the annotation
clusters. For this example, we generate only 9 relevant term groups, i.e., the rep-
resentative feature set of the cluster is much more compact than the free text
questions and large synonym set.

3.3 Identification of Annotation Candidates

To reuse the confirmed annotations for unannotated forms we have to determine
the annotation clusters (and thus their concepts) that match best the new ques-
tions to be annotated. One difficulty is that we need to find several annotations
per question, i.e., we aim at identifying several annotation clusters. Since we
may find too many related annotation clusters it is also important to select the
most promising ones from the set of candidates.

We first describe how we determine the set of candidate annotation clus-
ters. The example in Fig. 1 showed that annotating concepts typically refer to
some portion, i.e., succeeding terms, of the question text. Our approach to find
matching annotation clusters thus uses a sliding window with a specified size
wnd size that partitions a given question into smaller portions according to the
order of words in the question. Every text portion is compared with the feature
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set of every existing annotation cluster using a linguistic similarity measure. For
this linguistic comparison we apply a soft TF/IDF string similarity function.
TF/IDF weights the different terms based on their significance in all considered
documents. A soft variant of TF/IDF is more robust than TF/IDF w.r.t. dif-
ferent word forms. An annotation cluster and thus its concept is an annotation
candidate for a given question, if the linguistic similarity exceeds a threshold δ
for one portion of the question.

In the final selection of annotations, we want to avoid choosing similar anno-
tations referring to the same medical concept. We therefore group the annotation
candidates per question that relate to the same tokens and text portions of a
question. For selecting the best matching concept per candidate group we apply
the context-based selection strategy to be described next.

3.4 Context-Based Selection of Annotations

The input for the final selection of annotations is a set of grouped candidate
concepts for each question in the medical forms F . To determine the final anno-
tations per question, we rank the candidate concepts within each group based on
a combination of both linguistic and context-based similarity among the candi-
date concepts. For this purpose, we calculate an aggregated similarity (aggSim)
for each question and candidate concept based on weighted linguistic (lsim) and
context (csim) similarity scores:

aggSimq,Candidates(ck) = ωlsim · lsim(q, ck) + ωcsim · csim(ck, Candidates)

The linguistic similarity between candidate concepts is determined by the
linguistic similarity of their concept descriptions, similarly as in the selection
strategy of the base approach (Sect. 2.2). The calculation of the context-based
similarity is more involved and will be described below. For each question in the
set of input forms, we select the concepts with the highest aggSim value per
candidate group to obtain the final set of annotations.

For the context-based similarity between candidate concepts we consider two
criteria: first, the degree to which concepts co-occurred in the annotations for the
same question within the verified annotation mapping, and second, the degree of
semantic (contextual) relatedness of the concepts w.r.t. the ontological structure.
The goal is to give a high contextual similarity (and thus a high chance of being
selected) to frequently co-occurring concepts and to semantically close concepts.
These concepts are more likely to fit the context of a question which is typically
about one subject, e.g. different medical aspects such as medications for a specific
disease.

For the context-based selection of candidate concepts, we construct a context
graph Gq = (Vq, Eq) for each question q. The vertices Vq represent candidate
concepts that are interconnected by two kinds of edges in Eq to express that
concepts have co-occurred in previous annotations or that concepts are seman-
tically related within the ontology. In both cases we assign distance scores to
the edges that will be used to calculate the context similarity between concepts.
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Figure 3a shows the sample input for annotation selection consisting of a question
and the set of grouped candidate concepts. In the context graph of the question
(Fig. 3b), green edges interconnect concepts that have co-occurred before and
red edges interconnect semantically related concepts.

To determine the co-occurrence score between concepts c1 and c2 we count
how often the two concepts have been annotated to the same question and
compute the following normalized overlap of their annotation clusters:

cooccDist(c1, c2) = 1 − |acc1 ∩ acc2 |
|acc1 |

.

Concepts that often co-occur thus have a small distance score.
We further assign a semantic distance between concepts in the context graph

based on the shortest path between two considered concepts in the ontologi-
cal structure (see Fig. 3c), similarly to common techniques [18]. The ontological
structure consists of the is − a, part − of relationships and further domain
specific relationships. We determine the semantic distance between two candi-
date concepts by summarizing the weighted distances of each relationship within
the shortest path. We currently use the same distance 1 for each relationship
type. Hence the semantic distance between two concepts corresponds to the path
length, e.g., distance 4 for the concept pair in the example of Fig. 3c.

Based on the context graph and its distance scores we compute a context-
based similarity for each concept by computing the distance to all other concepts
in the candidate set of a question. Thereby, we favor concepts that often co-
occur and those with a close semantic relatedness for our selection, i.e. selected
concepts should have a small distance to other annotated concepts. We use the
closeness centrality measure cc that computes the reciprocal of the sum of all
distances d between a vertex v and all other vertices w in the graph G:

cc(v) =
1

∑
w∈G d(v, w)

We adopt a modified version of the closeness centrality to compute the
context-based similarity score as follows. In our graph concepts can be isolated

Fig. 3. Context-based similarity computation. (a) Candidate concept groups for one
question; (b) context graph with different edges for concept co-occurrence (green edges)
and semantic relatedness (red edges); (c) computation of semantic relatedness between
concepts with related concepts from UMLS. (Color figure online)
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in case they do not co-occur with any other concepts and have a very different
semantic context (e.g., concept c5 in the context graph of Fig. 3b). Such isolated
concepts should get a lower similarity score than concepts in a larger subgraph
of Gq. However, isolated concepts have infinite distances d to all other vertices
such that cc(v) would often converge to zero. To compute a normalized context-
based similarity score csim(ci) ∈ [0, 1] for each concept ci in the set of vertices
V of the context-graph Gq, we sum up single reciprocal values of distances and
normalize it by the number of concepts in the context-graph:

csim(ci, V ) =

∑
cj∈V \{ci}

1
d(ci,cj)

|V | − 1

Concepts with a small distance to every other concept in the graph have high
csim values meaning they are highly related to the other candidate concepts due
to annotation co-occurrences and relationships from UMLS.

For instance, the context similarity for the concept c4 is computed
by the semantic distance d(c4, c1) = 1 and the co-occurrence distance
cooccDist(c4, c6) = 0.7. The distances to the other concepts in the context
graph are infinite. Therefore, we get the following context-similarity csim(c4) =
1
1+

1
0.7+

1
∞+ 1

∞+ 1
∞

6−1 ≈ 0.49.

4 Evaluation

We now evaluate the proposed reuse-based annotation approach for medical
forms and compare it with the baseline approach and the MetaMap tool. In
the next subsection we introduce the used datasets and workflow configurations.
We then evaluate the annotation quality compared to the baseline approach
(Sect. 4.2) and analyze the effectiveness of the context-based selection strategy
(Sect. 4.3). Finally, we provide the comparison with MetaMap (Sect. 4.4).

4.1 Evaluation Setting

Our evaluation uses medical forms about eligibility criteria EC and about qual-
ity assurance QA w.r.t cardiovascular procedures from the MDM platform [4].
The forms in the first dataset are used to recruit patients in clinical trials. Most
questions in this dataset are long natural language sentences since the recruit-
ment of clinical trial participants requires a precise definition of inclusion and
exclusion criteria. The sentences contain ∼8 tokens on average and often mention
several medical concepts. The QA forms are used by health service providers in
Germany since 2000 to document the quality of their services. The questions of
the QA forms are shorter than the eligibility criteria (∼3 tokens on average),
therefore a question is probably annotated with only one concept. The forms
will be annotated with concepts of a reduced version of UMLS [3] covering all
UMLS concepts that possess at least one preferred label or synonym (∼1 Mio.
concepts with ∼7 Mio. labels/synonyms). Moreover, we do not consider gen-
eral concepts (∼12000 concepts) that are associated with one of the following
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Table 1. Statistics on the reuse and evaluation datasets for EC and QA

Dataset ECRD1 ECRD2 ECeval QARD1 QARD2 QAEval

#forms 100 200 25 16 32 23

#items 1638 3125 310 453 795 609

#annotations 6911 13027 578 694 1054 668

semantic types: Qualitative Concept, Quantitative Concept, Functional Concept,
Conceptual Entity.

To evaluate the quality of automatically generated annotations, we use man-
ually created reference mappings from the MDM portal [4]. These reference map-
pings might not be perfect (“a silver standard”) since the huge size of UMLS
makes it hard to manually identify the most suitable concepts for each item. We
divide the set of input forms into disjoint reuse and evaluation datasets. For both
use cases, EC and QA, we consider two reuse datasets of different sizes to study
the impact of the amount of reusable annotations. Table 1 shows the number
of forms, items and verified annotations for the reuse and evaluation datasets.
To analyze the quality of the resulting annotation mappings, we compute pre-
cision, recall and F-measure using the union of all annotated form items in the
evaluation dataset.

For our reuse-based annotation workflow, we set a fixed window size wnd size
of five tokens for the Candidate Identification and fixed weights ω lsim/ω csim
to 0.5 for the Context-based Selection. In our experiments, we observe that these
parameters only slightly affected the results for the considered datasets. We
evaluate different thresholds δ = {0.5, 0.6, 0.7} to present the recall and preci-
sion trends. For the selection strategy we consider both the previously proposed
group-based strategy [5] as well as the new context-based strategy. Note that we
can use the group-based strategy not only for the base workflow but also in the
reuse-based approach by setting the weight ωcsim for the context similarity to 0.

4.2 Reuse-Based Annotation

Figure 4 shows evaluation results w.r.t. the mapping quality (precision, recall,
F-measure) for the baseline approach and the different configurations of the
reuse-based approach for the two datasets. For the baseline approach we only
show the results for the best threshold of δ = 0.7 for both datasets. The reuse-
based approaches uses the context-based selection strategy. We observe that the
reuse-based approach can significantly improve the annotation quality and that
the improvement grows with the amount of annotations that we can reuse. Com-
pared to the baseline approach, the reuse of existing annotations increases the
F-measure from 39.1 % to 50.7 % for the EC dataset and from 57.5 % to 59 %
for the QA dataset for the best threshold setting of δ = 0.6. Using more existing
annotations (ECRD2 and QARD2) improves the mapping quality - and espe-
cially recall - compared to the smaller reuse datasets (ECRD1 and QARD1) since
annotation clusters and their feature sets become more accurate and are thus
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Fig. 4. Results on the quality of annotation results for the baseline and reuse-based
annotation using the EC dataset and the QA dataset with both configurations.

more valuable to match to unannotated questions. The reuse-based approach
is especially effective for the EC dataset where we could apply more annota-
tions (Table 1) to build the annotation clusters compared to the QA dataset.
The results confirm that matching questions to the feature sets of annotation
clusters (reuse-based) helps to identify more correct annotations than trying to
find the best matches in the UMLS (baseline). At the same time, the reuse-based
approaches with the context-based selection strategy usually improve precision
compared to the baseline approach.

An added benefit is that the execution time of the reuse-based approaches is
lower than for the baseline approaches since matching questions with the com-
pact annotation clusters is much faster than matching with the large UMLS
ontology. Overall, runtimes could be reduced by half for our experiments com-
pared to the baseline. Moreover, the execution time depends on the number of
reused forms and the coverage of reused annotation clusters.

4.3 Context-Based Selection

To analyze the effectiveness of the proposed context-based selection strategy (CS ),
we now compare its use with the group-based selection strategy (GS ) that was used
in the baseline approach but can also be applied for the reuse-based approaches.
Table 2 shows the resulting mapping quality for the two selection strategies for the
different EC and QA reuse configurations and threshold 0.6 that led to the best
mapping quality for the reuse-based approach. The results show that the context-
based selection strategy improves F-measure in all cases (up to 2.2 %) compared
to the simpler group-based approach. While recall is generally reduced this is more
than outweighed by an increase in precision by up to almost ∼7 % (ECRD2). This
indicates that considering the context eliminates many false candidates.

Table 2. Results on the quality of annotation results for the group-based (GS) and
context-based (CS) selection strategies for both datasets

Datasetconfiguration ECRD1 ECRD2 QARD1 QARD2

Selection-strategy gs cs gs cs gs cs gs cs

Precision 45.9 % 52.1% 47.9 % 54.5% 61.9 % 67.0% 60.4 % 66.9%

Recall 43.6% 42.2 % 49.2% 47.3 % 51.0 % 51.2% 54.6% 52.8 %

f-measure 44.7 % 46.7% 48.5 % 50.7% 55.9 % 58.0% 57.4 % 59.0%
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Fig. 5. Comparison of the quality for the resulting annotation mappings from the
baseline approach, reuse-based approach and MetaMap.

4.4 Comparing Reuse-Based Annotation Approach with MetaMap

We finally compare our reuse-based annotation method with the MetaMap tool
that is commonly used for annotating medical documents (see Sect. 5). We gen-
erate the annotations with a local installation of a MetaMap server and the
MetaMapAPI and use the provided word sense disambiguation service and the
configuration considering several variants for a concept. We select annotations
based on the generated MetaMap score. This score ranges from 0 to 1000 and
is computed by applying several ranking functions for each identified term. If
MetaMap generates more than one annotation per question, we select the anno-
tations with an aggregated score above a threshold. We normalize the scores
by dividing by 1000 for comparing with our approach and evaluate different
thresholds δ = {0.6, 0.7, 0.8} for selecting the candidates.

Figure 5 shows the results for the two datasets and different configurations.
Our reuse-based approach outperforms Meta-Map in terms of mapping quality
for each dataset. For the EC dataset, F-Measure is improved by ∼4 %(ECRD1)
and ∼8.6 % (ECRD2) indicating that the computed annotation clusters allow
a more effective identification of annotations than with the original concept
definition. In addition, our approach benefits from using the ontological rela-
tionships for selecting annotations resulting in a much better precision than
using MetaMap (54.5 % for ECRD2 than compared to 43.1 %). While MetaMap
achieved a better F-Measure than the baseline approach for the EC dataset it
performed poorly for the QA dataset where its best F-Measure of 44.8 % was
much lower for the baseline approach and reuse-based approaches (57.5 and
59 %), mainly because of a very low recall for Metamap.

A positive side of MetaMap is its high performance due to the use of an
indexed database for finding annotations. Its runtimes were up to 13 times faster
than for the baseline approach and it was also faster than the reuse-based app-
roach. In future work we will study whether the use of MetaMap in combination
with the reuse approach, either as an alternative or in addition to the baseline
approach, can further improve the annotation quality.

5 Related Work

The automatic annotation of medical forms and documents with concepts
of standardized vocabularies is related to the well-studied fields of ontology
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matching [8,20] and entity linking [22]. Both research domains provide useful
generic methods to identify concepts or names in full-text documents and match
them to concepts or entities of a knowledge base or standardized vocabulary.
These techniques can also be applied to the medical domain. In fact, our base
workflow proposed in [5] uses linguistic ontology matching techniques to map
terms of medical forms to the concepts and their synonyms of the UMLS ontol-
ogy. Entity linking approaches focus on the identification of named entities in
text documents and their linking to corresponding entities of a knowledge base
for enrichment. Many approaches (e.g. [6,16,24]) use a dictionary-based strategy
to identify entity occurrences by searching the whole knowledge base.

Moreover, there are many approaches to select the correct entities from a
set of candidates (e.g. [6,9,11]). For instance, in [9] co-occurrences of entities in
Wikipedia articles are transformed into a graph model to consider the global
interdependence between different candidate entities in a document.

There is also some research focusing on the manual or automatic annota-
tion of certain kinds of medical documents. The MetaMap tool [1] considered in
our evaluation applies information retrieval methods such as tokenization, lexi-
cal lookup and term-based ranking methods to retrieve UMLS concepts within
medical documents. There is evidence in the literature that MetaMap results
are not fine-grained enough [15], contain many spurious annotations [19] and
do not cover mappings to longer medical terms [21]. These observations confirm
that a correct annotation of medical documents with UMLS concepts is chal-
lenging. Our reuse-based approach could significantly outperform MetaMap due
to its use of annotation clusters derived from verified annotations and due to its
context-based approach to select and disambiguate concept candidates.

In the medical domain, the standardization of eligibility criteria has become
an active field of research and datasets from this subdomain are often used for
method evaluation (e.g. [10,13,17,23]). For instance, the study in [23] identified
the most frequent ECs in clinical trial forms and performed a manual annota-
tion of eligibility criteria top terms. In [10], similar clinical trials have been clus-
tered by performing nearest neighbor search using annotated eligibility criteria,
and the application of a dictionary-based pre-annotation method [13] showed to
improve the speed of manual annotation for clinical trial announcements. In [17],
a set of eligibility criteria in the context of clinical trials on breast cancer is for-
malized by defining eligibility criteria specific patterns in order to improve their
comparability.

In contrast to previous research we propose a novel reuse-based annotation
approach for medical documents. Our method is especially valuable to annotate
documents from different biomedical domains with ontology concepts, i.e. it is
not restricted to a specific medical subdomain. The proposed use of annota-
tion clusters and their feature sets has not been explored before. Furthermore,
we apply a novel context-based selection of annotations considering both, the
co-occurrences of verified annotations as well as the semantic relatedness of con-
cepts. Our comparative evaluation showed that the new approaches outperform
previous annotation schemes including tools like MetaMap.
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6 Conclusion

We proposed and evaluated a new reuse-based approach to semantically annotate
medical documents such as CRFs with concepts of an ontology. The approach
utilizes already found and verified annotations for similar CRFs. It builds so-
called annotation clusters combining all previously annotated questions related
to the same medical concept. Clusters are represented by features covering mean-
ingful term groups from the annotated questions and concept description. New
questions are matched with these cluster representatives to find candidates for
annotating concepts. We further presented a context-based selection strategy
to identify the most promising annotations based on the semantic relatedness
of concept candidates and well as known co-occurrences from previous anno-
tations. In a real-world evaluation, our methods showed to be effective and
we could generate valuable recommendations to reduce the manual annotation
effort. Moreover, reusing annotation clusters is more efficient than searching a
large knowledge base such as UMLS for suitable annotation candidates.

For future work, we plan to evaluate further annotation approaches, in partic-
ular the combined use of several reuse-based and other techniques. For example,
the MetaMap tool alone was inferior to the reuse-based scheme but it could be
used in a combined scheme to find further annotation candidates. We also plan
to build a reuse repository covering annotation clusters and their feature sets for
different medical subdomains. Such a repository can be used to efficiently and
effectively identify annotations for new medical documents. It further enables a
semantic search for existing medical document annotations. This can be useful
to define new medical forms by finding and reusing suitable annotated items
instead of creating new forms from scratch.

Acknowledgment. This work is funded by the German Research Foundation (DFG)
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Abstract. Recently, RDF and OWL have become the most common
knowledge representation languages in use on the Web, propelled by the
recommendation of the W3C. In this paper we examine an alternative
way to represent knowledge based on Prototypes. This Prototype-based
representation has different properties, which we argue to be more suit-
able for data sharing and reuse on the Web. Prototypes avoid the distinc-
tion between classes and instances and provide a means for object-based
data sharing and reuse.

In this paper we discuss the requirements and design principles for
Knowledge Representation based on Prototypes on the Web, after which
we propose a formal syntax and semantics. We further show how to
embed knowledge representation based on Prototypes in the current
Semantic Web stack and report on an implementation and practical eval-
uation of the system.

Keywords: Linked data · Knowledge representation · Prototypes

1 Introduction and Motivation

In earlier days of Knowledge Representation, Frames [19,20] and Semantic
Networks [23] were accepted methods of representing static knowledge. These
had no formal semantics but subsequent works (e.g., KL-ONE [2]) introduced
reasoning with concepts, roles, and inheritance, culminating in Hayes’s 1979 [10]
formalization of Frames. This formalization included instances formalized as ele-
ments of a domain (individuals) and classes (or concepts) as sets in a domain
(unary predicates). This formalization was subsequently used as a basis for
Description Logics (DL) and the investigation of expressiveness vs. tractabil-
ity [16], which lead to Description Logic systems and reasoners such as SHIQ [11]
and FaCT [12]. Finally, the Semantic Web effort led to the combination of
Description Logics with Web Technologies such as RDF [6], which subsequently
c© Springer International Publishing AG 2016
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evolved into the Web Ontology Language OWL [13]. However, the formaliza-
tion of Frames only covered some modeling primitives which were in use at the
time. Specifically Prototype-based systems, which do not make a distinction
between instances and classes, did not get much attention for knowledge rep-
resentation (cf. Karp [15]). Exceptions exists, for instance, THEO [21], which
is a Frame Knowledge Representation System deviating from the — now com-
mon — instance–class distinction by using only one type of frame, with the
authors arguing that the distinction between instances and classes is not always
well defined. Also several programming Languages based on prototypes were
successfully developed (SELF [27], JavaScript [8] and others), but the notion
of Prototypes as a Knowledge Representation mechanism was not formalized
and remained unused in further developments. As noted in [24], these knowl-
edge representation mechanisms may now be again relevant for applications. In
this paper we develop a syntax and formal semantics for a language based on
prototypes for the purpose of enabling knowledge representation and knowledge
sharing on the Web. We argue that such a system has distinctive advantages
compared to other representation languages.

This paper is augmented by a separate technical report in which we detail
the software which we wrote to support prototype knowledge representation. [3]
The report also includes experiments which show how the system performs in a
web environment.

2 A Linked Prototype Layer on the Web

2.1 Idea and Vision

Tim Berners-Lee stated the motivation for creating the Web as:

The dream behind the Web is of a common information space in which we
communicate by sharing information.1

We aim to optimize the sharing and reuse of structured data. Currently,
on the Semantic Web, this sharing is typically achieved by either querying a
SPARQL endpoint or downloading a graph or an ontology. We call this verti-
cal sharing: top-down sharing where a central authority or institution shares an
ontology or graphs. We would like to enable horizontal sharing: sharing between
peers where individual pieces of instance data can be used and reused. Note
that this mode of sharing appears much closer to the intended spirit of the Web.
Languages like OWL evolved driven by the AI goal of intelligent behavior and
sound logical reasoning [14]. They don’t emphasize or enable horizontal shar-
ing - the sharing and reuse of individual objects in a distributed environment.
Rather, their goal is to represent axioms and enable machines to reason. Imag-
ine a prototype, for example, an Oil Painting with properties and values for
those properties, that lives at a particular addressable location on the Web. This
prototype Oil Painting can be reused in a number of different ways (see Fig. 1):
1 https://www.w3.org/People/Berners-Lee/ShortHistory.html.

https://www.w3.org/People/Berners-Lee/ShortHistory.html
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Fig. 1. The figure shows three prototypes and different relations between them. The
Arnolfini Portrait is a specialization of the Oil Painting but also displayed at the
National Gallery, London.

– First, by specializing the Oil Painting prototype(i.e., using it as a template
by linking to it), and either specializing or changing its properties. For exam-
ple, whereas the Oil Painting has a value Canvas for its surface property,
the Arnolfini Portrait prototype has the value Oak Panel. However, the
value for the creator property (Jan van Eyck) remains the same. To accom-
plish this, current Semantic Web infrastructure would require one to copy
the initial object to a new object before changing its properties. Note, how-
ever, that a this also means that the newly created object looses its heritage,
meaning that it will not receive any updates which are made to object in the
inheritance chain later on.

– Second, by either directly or indirectly referring to it as a value of a prop-
erty. For instance, in Fig. 1 the prototype National Gallery has a property
displays, which links to the prototype Arnolfini Portrait, which is based
on the Oil Painting prototype. This usage of entities is currently also possi-
ble using RDF. (But, see also the discussion in Sect. 4.3.)

These two ways to reusing objects on the Web create a distributed network
of interlinked objects, requiring horizontal as well as vertical sharing:

– Vertical sharing is enabled by specializing an object or prototype. The proto-
type that is being specialized defines the vocabulary and structure for the new
object, realizing the task of ontologies. For example, a museum can publish a
collection of prototypes that describe the types of artifacts on display (e.g.,
Oil Painting), which can then be used to describe more specific objects.

– Horizontal sharing is enabled by reusing prototypes and only changing specific
attributes or linking to other prototypes as attribute values. For example, a
specific oil painting by painter Jan van Eyck can be used as a template by
describing how other oil paintings differ from it, or a specific oil painting can
be the attribute value for the National Gallery prototype. This creates a
network of prototypes across the Web.
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2.2 Requirements

In the previous section, we presented a vision for a prototype layer on the Web.
In this section we discuss requirements for the linked prototype layer. Some of
these requirements are based on actual tasks that user communities want to
perform while others are based on desirable principles of the World Wide Web.

The linked prototype layer must primarily enable sharing and reuse of knowl-
edge. Sharing and reuse of knowledge requires an explicit distributed network of
entities. In particular we desire means to share vertically (i.e., provide a central
vocabulary or ontology that many can refer to) and share horizontally (i.e., pro-
vide concrete reusable entities). Further, it must be possible for the knowledge to
evolve over time and anyone should be able to define parts of the network. This
implies that central authority should be avoided as much as possible. Preferably,
the realization of the prototype layer should be achieved using facilities which
the Semantic Web already provides, such as RDF and IRIs, in order to leverage
existing data resources. Finally, the designed system should still retain a certain
level of familiarity.

2.3 Design Principles

While designing the prototype-based system, we were inspired by design prin-
ciples, such as the KISS Principle (as defined in [28]), and worse-is-better (as
coined by R.P. Gabriel [9]). On the intersection between these principles lies the
idea of simplicity. The worse-is-better approach encourages dropping parts of
the design that would cause complexity or inconsistency.

Our goal was explicitly not to enable sophisticated reasoning, but rather
provide a simple object or prototype layer for the Web.

We use the idea of prototypes as suggested in early Frame Systems [15] as
well as in current programming languages such as Javascript [8]. Prototypes fulfill
the requirements to support the reusabilty and horizontal shareability since it
is possible to just refer to an existing prototype that exists elsewhere on the
Web, ensuring horizontal shareability. Furthermore a collection of prototypes
published by an authority can still serve the function of a central ontology,
ensuring vertical shareability.

3 Prototypes

In this section we introduce our approach for knowledge representation on the
web, based on prototypes. First, we provide an informal overview of the app-
roach, illustrating the main concepts. Then we introduce a formal syntax and
semantics.

3.1 Informal Presentation

To illustrate the prototype system we use an example about two Early
Netherlandish painters, the brothers van Eyck. First, we look at a simple
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Fig. 2. The prototype representation of the Arnolfini Portrait

Fig. 3. Deriving the prototype representation of the Ghent Altarpiece from the
Arnolfini Portrait

representation of the Arnolfini Portrait in Fig. 2.2 This figure contains the proto-
type of the portrait which is derived from the empty prototype (P∅, see Sect. 3.2)
and has two properties. The first property is dc:creator and has value Jan van
Eyck3. The second property describes the format of the artwork. We also display
the example using a concrete syntax.

Next we will start making use of the prototype nature of the representation.
Starting from the Arnolfini Portrait, we derive the Ghent Alterpiece. This paint-
ing was created by the same painter, but also his brother Hubert van Eyck was
involved in the creation of the work. Figure 3 illustrates how this inheritance
works in practice; we create a prototype for the second work and indicate that
its base is the first one (using the big open arrow). Then, we add a property
asserting that the other brother is also a creator of the work. The resulting pro-
totype has the properties we defined directly as well as those inherited from its
base.

2 In the illustrations, we loosely write identifiers like Arnolfini Portrait for proto-
types, properties and their values. However, the proposed systems requires the use
of IRIs for identifiers, just like RDF. The concrete syntax examples reflect this. Note
that our syntax does not support prefixes as supported by RDF Turtle syntax. If we
write dc:creator we mean an IRI with scheme dc.

3 For illustrative purposes we use different graphical shapes for the prototypes under
consideration and the values of their properties. However, as will become clear in
the sections below, all values are themselves prototypes.
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Often, there will be a case where the base prototype has properties which
are not correct for the derived prototype. In the example shown in Fig. 4 we
added the example:location property to the Arnolfini Portrait with the value
National Gallery, London. The Ghent Altarpiece is, however, located in the
Saint Bavo Cathedral, Ghent. Hence, we first remove the example:location
property from the Arnolfini Portrait before we add the correct location to the
second painting. In effect, the resulting prototype inherits the properties of its
base, can remove unneeded ones, and add its own properties as needed.

Another way to arrive at the same final state would be to derive from a
base without any properties and add all the properties needed. The predefined
empty prototype (proto:P 0) has no properties. All other prototypes derive
from an already existing prototype; circular derivation is not permitted. Now,
we will let the prototype which we are creating derive directly from the empty
prototype and add properties. This flattening of inherited properties produces
the prototype’s fixpoint. The fixpoint of the prototype created in Fig. 4 can be
found in Fig. 5.

Fig. 4. Removing properties while deriving the Ghent Altarpiece from the Arnolfini
Portrait

Fig. 5. The result of removing properties while deriving the Ghent Altarpiece from the
Arnolfini Portrait.



Knowledge Representation on the Web Revisited: The Case for Prototypes 157

In the proposed system we apply the closed world and the unique name
assumptions. If the system used the open world assumption and one would ask
whether the Arnolfini Portrait is located in Beijing, the system would only be
able to answer that it does not know. In a closed world setting, the system will
answer that the painting is not in Beijing. This conclusion is not based on the fact
that the system sees that the painting is located in England, but because of the
fact that there is no indication that it would be in Beijing. Under the non-unique
name assumption, the system would not be able to answer how many paintings
it knows about. Instead, it would only be able to tell that there are one or more.
Without the unique name assumption, the resource names Ghent Altarpiece
and Arnolfini Portrait may refer to the same real-world instance.

3.2 Formal Presentation

The goal of this section is to give a formal presentation of the concepts discussed
in the previous section. We separate the formal definition into two parts. First,
we define the syntax of our prototype language. Then, we present the semantic
interpretation and a couple of definitions which we used informally above.

Prototype Syntax. In this section we define the formal syntax of prototype-
based knowledge bases. We define a set of syntactic material first, before we
define the language.

Definition 1 (Prototype Expressions). Let ID be a set of absolute IRIs
according to RFC 3987 [7] without the IRI proto:P 0. The IRI proto:P 0 is
the empty prototype and will be denoted as P∅. We define expressions as follows:

– Let p ∈ ID and r1, . . . , rm ∈ ID with 1 ≤ m. An expression (p, {r1, . . . , rm})
or (p, ∗) is called a simple change expression. p is called the simple change
expression ID, or its property. The set {r1, . . . , rm} or ∗ are called the values
of the simple change expression.

– Let id ∈ ID and base ∈ ID ∪ P∅ and add and remove be two sets of simple
change expressions (called change expressions) such that each simple change
expression ID occurs at most once in each of the add and remove sets and ∗
does not occur in the add set. An expression (id, (base, add, remove)) is called
a prototype expression. id is called the prototype expression ID.

Let PROTO be the set of all prototype expressions. The tuple PL = (P∅, ID, PROTO)
is called the Prototype Language.

Informally, a prototype expression contains the parts of a prototype which
we introduced in the previous subsection. It has an id, a base (a reference to the
prototype it derives from), and a description of the properties which are added
and removed.
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As an example, we could write down the example of Fig. 4 using this syntax.
The prototype expression of the Arnolfini Portrait would look like this:

.

The prototype for the Altarpiece would be written down as follows:

.

This syntax is trivially transformable into the concrete syntax which we used
in Fig. 4b and the other examples in the previous subsection.

Definition 2 (dom). The domain of a finite subset S ⊆ PROTO, i.e., dom(S) is
the set of the prototype expression IDs of all prototype expressions in S.

Definition 3 (Grounded). Let PL = (P∅, ID, PROTO) be the Prototype Lan-
guage. Let S ⊆ PROTO be a finite subset of PROTO. The set G is defined as:

1. P∅ ∈ G
2. If there is a prototype (id, (base, add, remove)) ∈ S and base ∈ G then id ∈ G.
3. G is the smallest set satisfying (1) and (2).

S is called grounded iff G = dom(S) ∪ {P∅}. This condition ensures that all
prototypes derive (recursively) from P∅ and hence ensures that no cycles occur.

To illustrate how cycles are avoided by this definition, imagine that S =
{(A, (P∅, ∅, ∅)), (B, (C, ∅, ∅)), (C, (B, ∅, ∅)), }. What we see is that there is a cycle
between B and C. If we now construct the set G, we get G = {P∅, A} while
dom(S) ∪ {P∅} = {A,B,C, P∅}, and hence the condition for being grounded is
not fulfilled.

Definition 4 (Prototype Knowledge Base). Let PL = (P∅, ID, PROTO) be
the Prototype Language. Let KB ⊆ PROTO be a finite subset of PROTO. KB is
called a Prototype Knowledge Base iff 1) KB is grounded, 2) no two proto-
type expressions in KB have the same prototype expression ID, and 3) for each
prototype expression (id, (base, add, remove)) ∈ KB, each of the values of the
simple change expressions in add are also in dom(KB).

Definition 5 (R). Let KB be a prototype knowledge base and id ∈ ID. Then,
the resolve function R is defined as: R(KB, id) = the prototype expression in
KB which has prototype expression ID equal to id.
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Prototype Semantics

Definition 6 (Prototype-Structure). Let SID be a set of identifiers. A tuple
pv = (p, {v1, . . . , vn}) with p, vi ∈ SID is called a Value-Space for the ID-Space
SID. A tuple o = (id, {pv1, . . . , pvm}) with id ∈ SID and Value-Spaces pvi, 1 ≤
i ≤ m for the ID-Space SID is called a Prototype for the ID-Space SID. A
Prototype-Structure O = (SID,OB, I) for a Prototype Language PL consists
of an ID-Space SID, a Prototype-Space OB consisting of all Prototypes for the
ID-Space SID and an interpretation function I, which maps IDs from PL to
elements of SID.

Definition 7 (Herbrand-Interpretation).
Let O = (SID,OB, Ih) be a Prototype-Structure for the prototype language
PL = (P∅, ID, PROTO). Ih is called a Herbrand-Interpretation if Ih maps every
element of ID to exactly one distinct element of SID.

As per the usual convention used for Herbrand-Interpretations, we assume that
ID and SID are identical.

Next, we define the meaning of the constituents of a prototype. We start
with the interpretation functions Is and Ic which give the semantic meaning of
the syntax symbols related to change expressions. These functions (and some
of the following ones) are parametrized (one might say contextualized) by the
knowledge base. This is needed to link the prototypes together.

Definition 8 (Is). Interpretation for the values of a simple change expression
Let KB be a prototype knowledge base and v the values of a simple change
expression. Then, the interpretation for the values of the simple change expres-
sion Is(KB, v) is a subset of SID defined as follows:

SID,ifv = ∗
{Ih(r1), Ih(r2), . . . , Ih(rn)}, if v = {r1, . . . , rn}

Definition 9 (Ic). Interpretation of a change expression. Let KB be a prototype
knowledge base and a function ce = {(p1, vs1), (p2, vs2), . . . } be a change expres-
sion with p1, p2, · · · ∈ ID and the vsi be values of the simple change expressions.
Let W = ID \ {p1, p2, . . . } . Then, the interpretation of the change expression
Ic(KB, ce) is a function defined as follows (We will refer to this interpretation
as a change set, note that this set defines a function):

{(Ih(p1), Is(KB, vs1)), (Ih(p2), Is(KB, vs2)), . . . } ∪
⋃

w∈W

{(Ih(w), ∅)}

Next, we define J which defines what it means for a prototype to have a
property.

Definition 10 (J). The value for a property of a prototype. Let KB be a pro-
totype knowledge base and id, p ∈ ID. Let R(KB, id) = (id, (b, r, a)) (the resolve
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function applied to id). Then the value for the property p of the prototype id,
i.e., J(KB, id, p) is:

Ic(KB, a)(Ih(p)), if b = P∅
(J(KB, b, p) \ Ic(KB, r)(Ih(p))) ∪ Ic(KB, a)(Ih(p)),otherwise

Informally, this function maps a prototype and a property to (1) the set of
values defined for this property in the base of the prototype (2) minus what is
in the remove set (3) plus what is in the add set.

As an example, let us try to find out what the value for the creator of
the Ghent Altarpiece described in the example of the previous subsection
would evaluate to assuming that these prototypes were part of a Prototype
Knowledge Base KB. For brevity we will write example:Ghent Altarpiece
as GA, example:Arnolfini Portrait as AP, dc:creator as creator,
example:Jan Van Eyck as JVE, and example:Hubert Van Eyck as HVE.

Concretely, we have to evaluate J(KB,GA, creator) =
(J(KB,AP, creator) \ Ic(KB, ∅)(creator)) ∪ Ic(KB, add)(creator) where add
is the add change set of the GA prototype expression. First we com-
pute the recursive part, J(KB,AP, creator) = Ic(KB, addap)(creator) =
{(creator, {JV E}), . . . }(creator) = {JV E}. Where addap is the add change
set of the AP prototype expression. The second part (what is removed) becomes
Ic(KB, ∅)(creator) = ∅. The final part (what this prototype is adding) becomes
Ic(KB, add)(creator) = {(creator, {HV E}), . . . }(creator) = {HV E}. Hence,
the original expression becomes ({JV E} \ ∅) ∪ {HV E} = {JV E,HV E} as
expected.

Definition 11 (FP). The interpretation of a prototype expression is also
called its fixpoint. Let pe = (id, (base, add, remove)) ∈ KB be a proto-
type expression. Then the interpretation of the prototype expression in con-
text of the prototype knowledge base KB is defined as FP (KB, pe) =
(Ih(id), {(Ih(p), J(KB, id, p))|p ∈ ID, J(KB, id, p)) �= ∅}), which is a Proto-
type.

Definition 12 (IKB: Interpretation of Knowledge Base). Let O =
(SID,OB, Ih) be a Prototype-Structure for the Prototype Language PL =
(P∅, ID, PROTO) with Ih being a Herbrand-Interpretation. Let KB be a
Prototype-Knowledge Base. An interpretation IKB for KB is a function
that maps elements of KB to elements of OB as follows: IKB(KB, pe) =
FP (KB, pe)

This concludes the definition of the syntactic structures and semantics of
prototypes and prototype knowledge bases. For the semantics, we have adopted
Herbrand-Interpretations, which are compatible with the way RDF is handled
in SPARQL.

4 Inheritance

Our discussion of inheritance is based on the work by Lieberman [17], Cook
et al. [5], de la Rocque Rodriguez [25], and Taivalsaari [26]. The combination of
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these works provides a wide overview of different forms of inheritance. Despite
the fact that the focus of these works is on object oriented programming (OOP)
we chose them because prototype-based systems are much more developed in
OOP than in knowledge representation. Many of the OOP concepts and con-
cerns also apply to how inheritance mechanisms can be applied in Knowledge
Representation.

Broadly speaking, inheritance means that an entity receives properties from
another one because of a relation between the two. Two types of inheritance
are common: class-based and prototype-based. In class-based systems there is
a distinction between objects and classes. An object is an instantiation of a
class or, as some say, a class is a blueprint for an object. A new class can be
inherited from another one and will typically inherit all properties and methods
from the base or parent class. The values associated with these properties are
typically defined in the context of the instances. Prototype-based systems on the
other hand only have one type of things: prototypes. A new prototype can be
made by cloning an existing prototype (i.e., the base). The freshly created object
now inherits from the earlier defined one and the values are defined directly on
the prototypes. As we argued above, we chose the prototype-based inheritance
to allow for both horizontal and vertical sharing. In the next sections we will
describe the consequences of the choice of prototype-based inheritance.

4.1 Prototype Dynamics

There are essentially two ways to achieve prototype-based inheritance. The first
one, concatenation, would copy all the content from the original object to the
newly created one and apply the needed changes to the copy. The second one,
delegation, keeps a reference to the original object and only stores the changes
needed in the newly created object. We decided to follow the second option (for
now) because it more closely resembles what one would expect from a system
on the web. Instead of centralizing all information into one place, one links to
information made available by others. This type of inheritance makes it possible
to automatically make use of enhancements made in the base prototypes. Fur-
thermore, the option of making a copy of the object one extends from is still
available; we will discuss this further in Sect. 4.3. Note that this is also a space-
time trade-off. Copying will occupy more space, but make look-up faster while
delegation will be slower, but only the parts which have been changed have to be
stored. Another option is to get parts of both worlds by caching frequently used
prototypes for a set amount of time. In this case, one may retrieve outdated val-
ues. In our technical report [3], we describe a possible approach towards caching
using existing HTTP mechanisms.

When parts of a knowledge base are not in the control of the knowledge
engineer who is adding new information, it might be tempting to recreate certain
prototypes to make sure that the prototypes one is referring to do not change
over time, rendering the newly added information invalid.
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4.2 A Prototype Is-not-a Class

In class-based object oriented languages, deriving a class A from a base class B
usually implies that an instance of A can be used wherever an object of type B
is expected. In other words, the objects instantiated from the classes A and B
follow the Liskov substitution principle [18]. Since class-based object-orientation
is currently most common in popular programming languages, one might be
tempted to emulate classes in a prototype-based language. Imagine, for instance,
that we want to create a prototype employee to represent an employee of a
company. One might be tempted to give this employee a property name, with
some default value since all employees will have a name in the end. However, this
is not necessary, or even desired, when working with prototype-based systems.
Instead, the employee should only have properties with values which all or most
employees have in common, like for example the company they work for. Any
more specific properties should instead be put on the employees themselves.
Moreover, the fact that a prototype derives from the created employee does not
have any implication beyond the inherited properties. Put another way, there is
no is-a relation between a concrete employee and the employee prototype from
which it was derived. This is also clearly visible from the fact that a derived
prototype has the ability to remove properties from the base. Moreover, any
other prototype with the properties needed to qualify for being an employee
can be seen as an employee; independently from whether it derives from the
employee prototype or not. Next, we will discuss what it means to be ‘seen’ as
an employee.

4.3 Object Boundaries

Applications usually need to work with data with predictable properties. For
instance, the employees from the example in the previous section need to have a
name, gender, birthday, department, and social security number in order for the
application to work. Hence, there is a need to specify the properties a prototype
needs to have in order to be used for a specific application. This idea is not
new and has also been identified in other knowledge representation research.
Named Graphs are often used for this purpose, but they don’t capture shared
ownership or inheritance. Further, resource shapes4 and shape expressions [22]
have the core idea of determining whether a given RDF graph complies with a
specification. The main goal of these is checking some form of constraints, but
they could as well be used to identify instances in a dataset.

This need has been identified in many places in OOP literature. An object
oriented programming language which allows variables to contain any object
which fulfills a given interface definition is said to have a structural type sys-
tem. Recent examples of programming languages with such type system include
OCaml and Go, but to our knowledge the first programming language to use it
was Emerald [1] and later School [25]. In these languages, if objects have a given

4 https://www.w3.org/Submission/2014/SUBM-shapes-20140211/.

https://www.w3.org/Submission/2014/SUBM-shapes-20140211/
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set of operations (according to what they called an abstract type in Emerald,
type in School, or interface in Go), they would be treated a being an instance
of, or assignable to, a variable of that type.

One of the arguments against structural type systems is that it might hap-
pen that an object has the properties (or methods) of the type by accident. We
can envision this happening in OOP because the names of methods have little
semantic meaning connected to them (does the write() method write something
to the disk or to the printer?). However, in a Semantic Web setting, the prop-
erty names are themselves IRIs and chosen carefully not to clash with existing
names (a http://xmlns.com/foaf/0.1/workplaceHomepage will always be ‘The
workplaceHomepage of a person is a document that is the homepage of a orga-
nization that they work for.’5). In other words the property names in the system
under consideration in this paper do in principle not suffer from this problem.

5 Future Work

Since most past work in the research community has been focused on class-
based knowledge representation, there are still many areas unexplored related
to prototype-based knowledge representation on the web.

5.1 Relation to RDF and OWL

In this paper, we are suggesting a knowledge sharing language based on proto-
types. Future work will need to investigate how to layer the prototype language
on top of RDF. While most of the conversion and layering should be straightfor-
ward (e.g., the IRI of a prototype expression would also be the IRI of the RDF
resource), some challenges remain. For example, one would need to define a pro-
tocol working on RDF graphs in order to locate and interact with a prototype.
However, we believe that these challenges can be overcome.

5.2 A Hint of Class?

In this paper, we presented prototypes as a possible alternative to class-based
systems such as OWL for Knowledge representation on the Web - at least for the
purpose of scalable Knowledge Sharing. However, both ways - prototypes and
class-based representations, have different use cases and reasons to exist: OWL
is focusing on enabling reasoning whereas prototypes are focusing on enabling
Knowledge Sharing. Exploring the exact boundaries of their respective use cases
still remains a topic for future work.

Another interesting future research path would be the discovery of ‘hidden’
classes in the knowledge base. A hidden class would be formed by a group of
objects with similar characteristics. These classes would be automatically dis-
covered, perhaps with techniques like Formal Concept Analysis (FCA) [29], by

5 definition of foaf:workplaceHomepage from http://xmlns.com/foaf/spec/.

http://xmlns.com/foaf/0.1/workplaceHomepage
http://xmlns.com/foaf/spec/
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collecting a large number of prototypes from the Web. Another approach to this
would be to perform a hierarchical clustering of the prototypes with a scalable
technique as proposed in [4]. After this clustering, it might be possible to extract
a class hierarchy from the generated dendrogram.

5.3 Variations, Evaluations and Large Scale Benchmarks

The prototype system introduced in this paper is only an initial exploration.
There are numerous variations possible by making different choices for the
inheritance model (e.g. concatenation, multiple inheritance, etc.), the allowed
values (intervals, literals, etc.), and solutions for resolving the values for non-
local prototypes. These choices will have different implications for implemen-
tations and good evaluation metrics and large scale benchmarks should be
designed to compare them. We presented initial work in this direction in a
technical report [3] and publicly available software https://github.com/miselico/
knowledgebase (LGPLv3). We benchmarked the system using several synthetic
data sets and observed that the theoretical model presented offers the scala-
bility needed for use in production environment in a typical distributed web
architecture.

6 Conclusions

During the last decade, Knowledge Representation (KR) research has been dom-
inated by W3C standards whose development was influenced by the state of the
mind that researchers in the involved research communities had at the time of
creation. Several choices which were made which have far reaching consequences
on the way knowledge representation is done on the Web today.

In this paper we tried to take a step back and investigate another option for
KR which, in our opinion, has properties more suitable to deliver on the goals
of horizontal and vertical sharing. Concretely, we introduced a system in which
everything is represented by what we call prototypes and the relations between
them. Prototypes enable both vertical sharing by the inheritance mechanism and
horizontal sharing by direct reference to any prototype. We provided a possible
syntax and semantics for the Prototype system and performed experiments with
an implementation. The experiments showed that the proposed system easily
scales up to millions of prototypes. However, many question still remain to be
answered. First and foremost, this kind of Knowledge Representation needs to get
traction on the Web, which is a considerable challenge - but one we believe can be
achieved based on early feedback we obtained. Furthermore, a larger deployment
of this kind of system would need a clear mechanism for resolving non-local
prototypes. We did some experiments in this direction in a technical report using
existing web technologies like HTTP for this, but still there are many options to
investigate. We would like to see what kind of options others come up with to
introduce useful parts of class-based systems into the prototype world. Finally,
we hinted towards finding ‘hidden’ classes in the Prototype system. This would

https://github.com/miselico/knowledgebase
https://github.com/miselico/knowledgebase
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not only be an academic exercise, but would be very useful to be able to compress
knowledge base representations and reduce communication costs. We hope that
this paper contributes constructively to the field of Knowledge Representation on
the Web and that in the future, more researchers will explore different directions
to see how far we can reach.
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2 Universitat Politècnica de Catalunya, Barcelona, Spain
xoriol@essi.upc.edu

Abstract. In this paper we study instance-level update in DL-LiteA,
the description logic underlying the owl 2 ql standard. In particular
we focus on formula-based approaches to ABox insertion and deletion.
We show that DL-LiteA, which is well-known for enjoying first-order
rewritability of query answering, enjoys a first-order rewritability prop-
erty also for updates. That is, every update can be reformulated into
a set of insertion and deletion instructions computable through a non-
recursive datalog program. Such a program is readily translatable into
a first-order query over the ABox considered as a database, and hence
into sql. By exploiting this result, we implement an update component
for DL-LiteA-based systems and perform some experiments showing that
the approach works in practice.

1 Introduction

In this paper we study effective techniques to perform updates over DL-Lite
ontologies. In particular, we focus on DL-LiteA, which is the most expressive
member of the DL-Lite family of Description Logics (DLs) [4,5]. DL-LiteA
includes virtually all constructs of the owl 2ql profile of the W3C owl 2 stan-
dard. In addition, it includes the most typical cardinality restrictions on the
participation in roles of UML class diagrams, i.e., any combination of manda-
tory participation and functional participation.

The crucial characteristic of DL-LiteA ontologies is that they enable the so-
called ontology-based data access by virtue of first-order rewritability of query
answering, that is, every (union of) conjunctive query over a DL-LiteA ontol-
ogy can be rewritten into a first-order query to be evaluated over the ABox
only (i.e., the individual data) considered as a database. This property, on the
one hand, gives us a very low worst-case computational complexity bound w.r.t.
data, namely AC0 data complexity. On the other hand, it gives us a very effec-
tive practical technique to deal with ontologies that include very large ABoxes
(i.e., a lot of individual data): perform the rewriting; transform the first-order
query into sql, or Sparql, depending on how data are stored; and perform the
resulting query exploiting a data management engine to take advantage of all
optimizations available for these standard languages.
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When we come to updates over ontologies, several approaches are available in
the literature [7,10,17,20]. In particular, in this paper we are interested in the so-
called instance-level update: we add and delete (or erase) facts about individuals
only. Namely, we change the ABox, while we keep the TBox unchanged. This
is the most common form of update in practice, since it is essentially concerned
with keeping the intensional part of the ontology fixed, while changing freely the
individual data (indeed, the ABox changes are typically frequent whereas the
TBox typically evolves slowly). Even in this specific kind of updates, there are
sophisticated semantic issues to consider in general. One crucial issue is that,
in practice, we need the result of the update to be still in the same language
as the original ontology, in order to keep using the same system [20]. The most
promising approaches that enjoy this property are the so-called formula-based
approaches [9,13,14,23], in which the update is seen as a change of the ontology
axioms. Again, several forms of formula-based instance-level updates have been
considered [6,18,19,22]. Interestingly, however, for the DLs in the DL-Lite family,
virtually all proposals in the literature reduce to two main approaches: the one
in which we simply act on the ABox assertions explicitly stated in the ontology,
and another one in which we act also on the ABox assertions that are not present
but logically entailed through the use of the TBox. Notice that, while the first
approach is syntax-dependent (i.e., updating logically equivalent ontologies that
are stated through different assertions may give rise to logically different resulting
ABoxes), the second one is not. In both cases, the semantics have been clarified,
their computational tractability established, and ad-hoc algorithms are available.
Though, for both approaches, there are essentially no implemented tools yet.

In this paper we look again at the problem of instance-level formula-based
update in DL-LiteA, and we establish a result that may turn out to be cru-
cial to generate efficient implementations: like query answering, updating an
ontology is first-order rewritable. That is, given an update specification, we can
rewrite it into a set of addition and deletion instructions over the ABox which
can be characterized as the result of a first-order query. This means that (i)
updating a DL-LiteA ontology is AC0 in data complexity, and, (ii) updates can
be processed by widely used data management engines, e.g., based on sql or
Sparql. We proof this by showing that every update can be reformulated into
a datalog program that generates the set of insertion and deletion instructions
to change the ABox while preserving its consistency w.r.t. the TBox. Since the
obtained datalog program is non-recursive, it can be further translated as first-
order queries over the ABox considered as a database. Exploiting this result,
we implement an update component for DL-LiteA-based systems and perform
some experiments over (a DL-LiteA version of) the LUBM ontology [15] with
increasing ABox sizes, showing that the approach works in practice.

As far as we know, this is the first time that the first-order rewritability
property for DL-LiteA ontology updating is defined, proved, and empirically
evaluated. It is important to mention here that some previous work has been
done in the context of RDF triplestores [2,3], but only for the more restricted case
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of RDFS (with class disjunctions), which is a proper subset of the expressiveness
of DL-LiteA, the language we deal with in this paper.

2 Preliminaries

In this section, we first present the notion of Description Logic (DL) ontology,
then we provide the definition of the specific DL considered in this work, and
finally we summarize some datalog basic concepts and notation.

2.1 Description Logic Ontologies

Let S be a signature of symbols for individual (object and value) constants, and
atomic elements, i.e., concepts, value-domains, attributes, and roles. If L is a DL,
then an L-ontology O over S is a pair 〈T ,A〉, where T , called TBox, is a finite
set of intensional assertions over S expressed in L, and A, called ABox, is a finite
set of instance assertions, i.e., assertions on individuals, over S expressed in L.
Different DLs allow for different kinds of concept, attribute, and role expressions,
and different kinds of TBox and ABox assertions over such expressions. In this
paper we assume that ABox assertions are always atomic, i.e., they correspond
to ground atoms, and therefore we omit to refer to L when we talk about ABox
assertions.

The semantics of a DL ontology is given in terms of interpretations. An
interpretation is a model of an ontology O = 〈T ,A〉 if it satisfies all assertions
in T ∪ A, where the notion of satisfaction depends on the constructs allowed by
the specific DL in which O is expressed. We denote the set of models of O with
Mod(O).

Let T be a TBox in L, and let A be an ABox. We say that A is T -consistent
if 〈T ,A〉 is satisfiable, i.e., if Mod(〈T ,A〉) �= ∅, T -inconsistent otherwise. The
T -closure of A with respect to T , denoted clT (A), is the set of all atomic ABox
assertions that are formed with individuals in A, and are logically implied by
〈T ,A〉. Note that if 〈T ,A〉 is an L-ontology, then 〈T , clT (A)〉 is an L-ontology as
well, and is logically equivalent to 〈T ,A〉, i.e., Mod(〈T ,A〉) = Mod(〈T , clT (A)〉).
A is said to be T -closed if clT (A) = A.

2.2 The Description Logic DL-LiteA

The DL-Lite family [4] is a family of low-complexity DLs particularly suited
for dealing with ontologies with very large ABoxes. It constitutes the basis of
owl 2 ql, a tractable profile of OWL 2, the official ontology specification lan-
guage of the World Wide Web Consortium (W3C)1.

We now present the DL DL-LiteA, which is one of the most expressive logics in
the family. DL-LiteA distinguishes concepts from value-domains, which denote
sets of (data) values, and roles from attributes, which denote binary relations

1 http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/.

http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/
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between objects and values. Concepts, roles, attributes, and value-domains in
this DL are formed according to the following syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B T −→ 	D | T1 | · · · | Tn

Q −→ P | P− R −→ Q | ¬Q
V −→ U | ¬U

where A, P , and U are symbols in S denoting respectively an atomic concept
name, an atomic role name and an attribute name, T1, . . . , Tn are n pairwise
disjoint unbounded value-domains, 	D denotes the union of all domain values.
Furthermore, P− denotes the inverse of P , ∃Q denotes the objects related to by
the role Q, ¬ denotes negation, δ(U) denotes the domain of U , i.e., the set of
objects that U relates to values, and ρ(U) denotes the range of U , i.e., the set
of values related to objects by U .

A DL-LiteA TBox T contains intensional assertions of the form:

B 
 C (concept inclusion) E 
 T (value-domain inclusion)
Q 
 R (role inclusion) U 
 V (attribute inclusion)
(funct Q) (role functionality) (funct U) (attribute functionality)

A concept inclusion assertion expresses that a (basic) concept B is subsumed
by a (general) concept C. Analogously for the other types of inclusion assertions.
Inclusion assertions that do not contain (resp. contain) the symbols ‘¬’ in the
right-hand side are called positive inclusions (resp. negative inclusions). Role and
attribute functionality assertions are used to impose that roles and attributes
are actually functions respectively from objects to objects and from objects to
domain values.

Finally, a DL-Lite TBox T satisfies the following condition: each role (resp.,
attribute) that occurs (in either direct or inverse direction) in a functional asser-
tion, is not specialized in T , i.e., it does not appear in the right-hand side of
assertions of the form Q 
 Q′ (resp., U 
 U ′).

A DL-LiteA ABox A is a finite set of assertions of the form A(a), P (a, b),
and U(a, v), where A, P , and U are as above, a and b are object constants in S,
and v is a value constant in S.

We refer to [21] for the semantics of a DL-LiteA ontology. Here, we present
an example of one such ontology.

Example 1. We consider a slightly modified version of the LUBM ontology [15]
about the university domain. We know that a Person can be either a Professor or
a Student, where every Student takes (takesCourse role) at least one Course, and
every Professor can be either a FullProfessor or an AssociateProfessor. Finally, we
know that john is a FullProfessor and that bob is a Student. The corresponding
ontology O is:
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T = { Student � Person Professor � Person
FullProfessor � Professor AssociateProfessor � Professor
Student � ¬Professor FullProfessor � ¬AssociateProfessor
Student � ∃takesCourse ∃takesCourse− � Course }

A = { FullProfessor(john), Student(bob) }
��

A notable characteristic of DL-LiteA is that both satisfiability checking and
conjunctive query answering are First-Order (FO) rewritable. Intuitively, FO-
rewritability of satisfiability (resp., query answering) captures the property that
we can reduce satisfiability checking (resp., query answering) to evaluating a FO
query over the ABox A considered as a relational database. We remark that FO-
rewritability of a reasoning problem that involves the ABox of an ontology (such
as satisfiability or query answering) is tightly related to low data complexity of
the problem. Indeed, since the evaluation of a First-Order Logic query (i.e., an
SQL query without aggregation) over an ABox is in AC0 in data complexity [1],
the FO-rewritability of a problem has as the immediate consequence that the
problem is in AC0 in data complexity.

2.3 Datalog Concepts and Notation

A term T is either a variable or a constant. An atom is formed by a n-ary
predicate p together with n terms, i.e., p(T1, . . . , Tn). We may write p(T ) for
short. If all the terms T of an atom are constants, we call the atom to be ground.
A literal is either an atom p(T ), a negated atom ¬p(T ), or an inequality Ti �= Tj .

A predicate p is said to be derived (or intensional) if the evaluation of an
atom p(T ) depends on some derivation rules, otherwise, it is said to be base (or
extensional). A derivation rule is a rule of the form p(Tp) ← φ(T ), where p(Tp)
is an atom called the head of the rule, and φ(T ) is a conjunction of literals called
the body. All derivation rules must be safe, i.e., every variable appearing in the
head or in a negated or inequality literal of the body should also appear in a
positive literal of the body. Additionally, all the predicates must be stratified,
i.e., it should be possible to partition the set of predicates P into several pairwise
disjoint strata P1∪. . .∪Pm s.t. for each predicate p ∈ Pi, each predicate appearing
in the derivation rules of p should belong to a stratum Pj with j < i, if it appears
in a negated literal, or, j ≤ i, if it only appears in positive literals.

Finally, a datalog program is a set of derivation rules together with a set of
facts, where a fact is a ground atom of a non-derived predicate.

3 Formula-Based Approach for Updating DL Ontologies

In the following, we first present the intuitions on ontology update, then we
define two distinct formula-based update semantics, and we argue that, for the
case of DL-LiteA, these two semantics capture virtually all other formula-based
update semantics proposed so far. Then, we show that the careful semantics,
a different formula-based update semantics proposed in the literature, is not
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uniquely defined in the case of DL-LiteA, contradicting a result stated in [6],
which makes this update semantics inappropriate in our approach due to its
inherent nondeterminism.

3.1 Update Semantics for DL-LiteA

In the formula-based approaches to the update, the objects of change are sets
of formulae. That is, the result of the change is explicitly defined in terms of a
formula, by resorting to some minimality criterion with respect to the formula
expressing the original ontology.

Thus, an update is a set U of operations of two types: insertion operations,
denoted by i(α), and deletion operations denoted by d(α), where α is an ABox
assertion. Intuitively, updating a consistent ontology with an insertion operation
i(A(o)), where A(o) is a concept ABox assertion, means changing the extensional
level of the ontology in such a way that the ontology resulting from the update
is still consistent and entails the fact A(o). Conversely, updating a consistent
ontology with a deletion operation d(A(o)), means changing the extensional level
of the ontology in such a way that the ontology resulting from the update is still
consistent and does not entail the fact A(o).

After adding new facts into an ontology, one may find that the revised ontol-
ogy becomes inconsistent. A strategy to overcome such a situation is to remove
part of the original ABox to the aim of preserving consistency. Similarly, if the
goal is to update the ontology by deleting a fact, we might need to retract
several facts from the original ABox that entailed it. When applying these mod-
ifications to the original ABox, one should respect the minimal change principle,
a widely accepted principle of the knowledge base evolution literature [8,11,16].
This principle states that the ontology resulting from the update should be as
close as possible to the original one. In updating an ontology at the instance
level following the formula-based approach, the goal becomes the preservation of
the facts contained in the original ABox. In what follows we formalize this idea.

Given an ontology O = 〈T ,A〉, an update U , and an ABox A′, we say that
A′ accomplishes the update of O with U if it satisfies all the insertions/deletions
in U minimally. To formalize this notion, we first need to introduce the set A+

U ,
which denotes the set of ABox assertions appearing in U in insertion operations,
and the set A−

U , which denotes the set of ABox assertions appearing in U in
deletion operations.

Definition 1. Let O = 〈T ,A〉 be an ontology, U an update, and A′ be an ABox.
A′ accomplishes the update of O with U if A′ = A′′∪A+

U for some maximal subset
A′′ of A s.t. A′′ ∪ A+

U is T -consistent and 〈T ,A′〉 �|= β for each β ∈ A−
U .

It easy to see that, by definition, if such ABox A′ exists, it also satisfies
〈T ,A′〉 |= α for each α ∈ A+

U since A+
U ⊆ A′. In order to ensure its existence,

note that U has to respect both of the following conditions:

(i) Mod(〈T ,A+
U 〉) �= ∅, which means that the set of facts we are adding is

consistent with the TBox of the ontology.
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(ii) A−
U ∩ clT (A+

U ) = ∅, which means that the update is not asking for deleting
and inserting the same knowledge at the same time.

Given a TBox T and an update U , we say that U is coherent with T if U respects
both the above conditions with respect to a TBox T .

Given a consistent ontology O = 〈T ,A〉 and an update U coherent with T ,
there might be more than one ABox accomplishing the update of O with U .
This fact leads to different update semantics, each one addressing this issue by
means of a different criterium, like the Cross Product Approach [9], the When
In Doubt Throw It Out principle [14,18,19,23], allowing the user to choose
the update [22], or even nondeterminism [6]. Fortunately, when the TBox of
the ontology is expressed in DL-LiteA, the ABox accomplishing the update is
uniquely defined [6]. Hence, the application of all the above approaches leads to
the same result, which can be defined as follows:

Definition 2. Let O = 〈T ,A〉 be a consistent DL-LiteA ontology and U be an
update coherent with T . The result of updating O with U , denoted by O ◦ U ,
is the ontology 〈T ,A′〉, where A′ is the ABox accomplishing the update of O
with U .

When dealing with ontology updating, there is a fundamental philosophical
aspect that has to be considered: one has to decide if the formulae explicitly
given in our ontology provide a justification for our knowledge (foundational
semantics) or if they are just used as a finite representation of our knowledge
(coherence semantics) [11,12]. Depending on this point of view, one may or
may not need to preserve a fact that is entailed in the ontology despite not
being explicitly asserted. The choice depends on the particular application and
personal preferences (we refer to [12] for more details).

Clearly, the update semantics given in Definition 2 embraces the founda-
tional theory. Depending on the specific scenario, and the particular application
at hand, this semantics might be considered inappropriate. This motivates the
definition of the following update semantics [6,18] for DL-LiteA ontologies based
on the coherence theory, in which the objects of the update is not the original
ABox, but its deductive closure with respect to the TBox.

Definition 3. Let O = 〈T ,A〉 be a consistent DL-LiteA ontology and let U be
an update coherent with T . The result of updating O with U according to the
coherence semantics, denoted by O • U , is the ontology 〈T ,A′〉, where A′ is the
ABox accomplishing the update of 〈T , clT (A)〉 with U .

3.2 Careful Semantics in DL-LiteA

An alternative formula-based update semantics based on the coherence theory
is the Careful semantics [6] which was proposed with the aim of preventing
unexpected information. Formally, an ontology updated according to the care-
ful semantics should not entail a role constraint φ (i.e., a rule of the form
∃x(R(o, x)) ∧ (x �= c1) ∧ · · · ∧ (x �= cn)), unless φ is entailed by the original
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ABox, or the update itself. In practice, the careful update semantics encom-
passes deleting more ABox assertions so that the final ontology does not entail
any new role constraint φ. However, although the careful update semantics was
thought to be uniquely defined [6, Theorem 16], it can bring to several solutions
as we show in the following example.

Example 2. Consider the DL-LiteA ontology O = 〈T ,A〉 where:

T = { A 
 ∃RA, RA 
 R, ∃R−
A 
 ¬∃R−

B,
B 
 ∃RB , RB 
 R, ∃R−

A 
 ¬∃R−
C ,

C 
 ∃RC , RC 
 R, ∃R−
B 
 ¬∃R−

C ,
D 
 ∃RD, RD 
 R, ∃R−

C 
 ¬∃R−
D}

A = { A(o), B(o) }
and the update U = {i(C(o)), i(D(o))}. It is easy to see that the ABox
A′ = A ∪ A+

U is T -consistent and that it accomplishes the update of O with
U . Moreover, 〈T ,A′〉 |= ϕ, where ϕ = ∃x(R(o, x)) ∧ (x �= c1 ∧ (x �= c2))) (since
the negative inclusions in T imply that in every model I of 〈T ,A′〉 there are three
distinct individuals da, db, dc such that 〈o, da〉 ∈ RI

A, 〈o, db〉 ∈ RI
B , 〈o, dc〉 ∈ RI

C).
However, since neither 〈T ,A〉 |= ϕ nor 〈T ,A+

U 〉 |= ϕ, we have that A′ does
not accomplish the update of O with U carefully. Conversely, both the ABoxes
{A(o)} ∪ A+

U and {B(o)} ∪ A+
U accomplish the update of O with U carefully.

This is because the only role-constraining formula ∃x(R(o, x)) ∧ (x �= c1)) that
both entail with T , is also entailed by 〈T ,A+

U 〉. Hence, we have more than one
ABox that accomplishes the update of O with U carefully. ��

4 Foundational-Semantic Updates Through Datalog

Now, our intention is, given a DL-LiteA ontology 〈T ,A〉, and some update U , to
define a datalog program D that permits querying whether U is coherent with
T and, in such a case, allows for generating a set of insertion/deletion instruc-
tions that should be applied to A to accomplish U according to Definition 2
(foundational-semantic updates).

For ease of presentation, from now on we assume that the TBox T does
not contain inclusions involving attributes and value-domains. However, all the
results presented in the next two sections can be easily extended to TBoxes
containing such kinds of axioms.

Formally, the datalog program D contains a derived predicate incoher-
ent update, together with a pair of derived predicates ins a/del a for each con-
cept/role A such that:

– incoherent update() is true iff U is not coherent with T .

and, in case incoherent update() is false,

– ins a( o) is true iff the assertion A(o) was not in A, but A(o) ∈ 〈T ,A〉 ◦ U .
That is, ins a captures the assertions of A that should be inserted into A to
accomplish the (foundational-semantic) update U .
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– del a( o) is true iff the assertion A(o) was in A, but A(o) �∈ 〈T ,A〉◦U . That is,
del a captures the assertions of A that should be deleted from A to accomplish
the (foundational-semantic) update U .

Briefly, the main idea of the translation is to map each ABox assertion in
A, and each operation in U into different datalog facts. Then, we map each
assertion in the closure of T into several datalog derivation rules that define the
incoherent update, ins a(X), del a(X) predicates. In the following, we formally
describe how to obtain such a datalog program D. Then, we prove that the set
of instructions generated in D are sound and complete to obtain 〈T ,A〉 ◦ U .

4.1 Translation Rules

Translation of A and U . All the assertions in A and operations in U are
translated as different facts in D. In particular:

Each assertion A(o) ∈ A is translated as the fact a(o).
Each operation i(A(o)) ∈ U is translated as the fact ins a request(o).
Each operation d(A(o)) ∈ U is translated as the fact del a request(o).

Intuitively, ins a request(o)/del a request(o) means that the ontology has
received the request to insert/delete the ABox assertion A(o). Since accord-
ing to the Definition 2 all the insertions/deletions requested should be applied,
we define the datalog rules:

ins_a(X) :- ins_a_request(X), not a(X).

del_a(X) :- del_a_request(X), a(X).

incoherent_update () :- ins_a_request(X), del_a_request(X).

for each atomic concept A. Note that incoherent update becomes true in case we
request for the insertion and deletion of the same axiom. Similarly, we define the
rules ins p(X, Y)/del p(X,Y) for each atomic role P .

Translation of cl(T ). We translate positive and negative/functional axioms
in the closure of T differently. In particular, for each positive inclusion axiom
B 
 A in the closure of T , where A is an atomic concept, we define the rules:

del_b(X) :- b(X), del_a_request(X).

incoherent_update () :- ins_b_request(X), del_a_request(X).

Intuitively, when we request for deleting A(o), we have to delete any other
ABox assertion B(o) that entails A(o). Note that it cannot be accomplished if
there is a request for inserting B(o), so, this case makes incoherent update true.
We define similar rules when the left-hand side of the axiom is of the form ∃P ,
and also for role inclusion axioms.

Note that we translate the closure of T , instead of T itself, to be able to
capture deletions that are propagated along the concept/role hierarchy. E.g. if
in our example we have U = d(Person(john)), the translated datalog program
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D generates the deletion of FullProfessor(john) because of the translation of the
assertion FullProfessor 
 Person appearing in cl(T ):

del_fullprof(X) :- fullprof(X), del_person_request(X).

Differently, for each negative inclusion axiom B 
 ¬A in cl(T ), we define the
rules:

del_b(X) :- b(X), ins_a_request(X).

del_a(X) :- ins_b_request(X), a(X).

incoherent_update () :- ins_a_request(X), ins_b_request(X).

Intuitively, if we insert A(o) when we have B(o) in the ABox, we have to
delete B(o). In the case where the requested update tries to insert both things,
we reach a contradiction and thus, incoherent update becomes true. We define
similar rules for role negative inclusions, negative inclusions involving the ∃ con-
structor, and functional axioms. In this last case, we require using the inequality
built-in predicate to check whether the requested role assertion insertion is going
to violate the functional axiom. E.g., given a functional axiom defined over R,
we define:

del_r(X,Y) :- r(X,Y), ins_r_request(X,Z), Y<>Z.

incoherent_update () :- ins_r_request(X,Y),ins_r_request(X,Z),

Y<>Z.

Again, note that since we translate the closure of T , the rules are able to
capture deletions due to inconsistencies generated by propagation. E.g. if in
our previous example we have the update U = i(AssociateProfessor(bob)), D
generates the deletion of Student(bob) because of the first rule obtained when
translating the assertion Student 
 ¬AssociateProfessor appearing in cl(T ):

del_student(X) :- student(X), ins_assocprof_request(X).

del_assocprof(X) :- assocprof(X), ins_student_request (X).

4.2 Datalog Program Soundness and Completeness

The update generated by the datalog program D is sound in the sense that, for
every axiom A(o) that should be inserted/deleted according to D, A(o) should be
truly inserted/deleted according to the foundational-semantic update. Formally:

Theorem 1. Given a consistent ontology 〈T ,A〉, and an update U , the datalog
program D obtained through the translation defined in Sect. 4.1, satisfies that: if
incoherent update() is true in D, U is incoherent with T , otherwise, for each
concept/role A, if ins a(o) is true in D, then, A(o) ∈ 〈T ,A〉 ◦ U \ A, and if
del a(o) is true in D, then, A(o) ∈ A \ 〈T ,A〉 ◦ U .

Proof (Sketch). If incoherent update() is true, it can only be because of a rule
generated when translating the update U , the positive axioms of cl(T ), or the
negative/functional axioms of cl(T ). The rules generated in the first two cases
are true only if A−

U ∩ A+
U �= ∅ and A−

U ∩ clT (A+
U ) �= ∅, respectively. The rules of
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the third case are true only if Mod(〈T ,A+
U 〉) = ∅. Thus, if incoherent update()

is true, U is incoherent with T .
If ins a(o) is true, it is because of a rule generated when translating U , which

can only be true if A(o) �∈ A, and A(o) ∈ A+
U , thus A(o) ∈ 〈T ,A〉 ◦ U \ A.

If del a(o) is true, it can only be because of (1) a rule generated when
translating U , where in such case we have A(o) ∈ A, and A(o) ∈ A−

U , thus
A(o) ∈ A \ 〈T ,A〉 ◦ U ; or (2) a rule generated when translating a positive axiom
in T , where in such case we have that A(o) ∈ A and that for some B(o) ∈ A−

U ,
A(o) |=T B(o), thus, A(o) ∈ A \ 〈T ,A〉 ◦ U ; or (3) a rule generated when trans-
lating a negative/functional axiom in cl(T ) where in such case we have A(o) ∈ A
and Mod(〈T ,A+

U ∪ {A(o)}〉) = ∅, and thus, A(o) ∈ A \ 〈T ,A〉 ◦ U . ��
Conversely, D is also complete in the sense that any axiom insertion/deletion

of A(o) that should be applied according to the foundational-semantic update is
also generated in D. Formally:

Theorem 2. Given a consistent ontology 〈T ,A〉, and an update U , the datalog
program D obtained through the translation defined in Sect. 4.1, satisfies that: if
U is incoherent with T , then, incoherent update() is true in D, otherwise, for
each concept/role A, if A(o) ∈ 〈T ,A〉 ◦ U \ A, then, ins a(o) is true in D, and if
A(o) ∈ A \ 〈T ,A〉 ◦ U , then, del a(o) is true in D.

Proof (Sketch). First, if U is incoherent with T , it is immediate to verify that
then, incoherent update() is true in D. So, from now on we assume that U is
coherent with T . Moreover, since U is coherent with T , 〈T ,A〉◦U \A = A+

U \A,
and by definition of D, it easily follows that, for each concept/role A, if A(o) ∈
A+

U \ A, ins a(o) is true in D. Finally, we prove that for every assertion deleted
from A there is a corresponding deletion instruction in D. To this aim, we define
the following algorithm:

Algorithm ComputeDeletedAssertions(T ,A,U)
Input: DL-LiteA TBox T , ABox A, update U coherent with T
Output: ABox Ad = A \ 〈T ,A〉 ◦ U
begin
Ad = ∅;
for each C(a) ∈ A+

U do begin
for each D(a) ∈ A such that T |= C � ¬D do Ad = Ad ∪ {D(a)};
for each R(a, x) ∈ A such that T |= C � ¬∃R do Ad = Ad ∪ {R(a, x)};
for each R(x, a) ∈ A such that T |= C � ¬∃R− do Ad = Ad ∪ {R(x, a)}

end;
for each R(a, b) ∈ A+

U do begin
for each S(a, b) ∈ A such that T |= R � ¬S do Ad = Ad ∪ {S(a, b)};
for each S(b, a) ∈ A such that T |= R � ¬S− do Ad = Ad ∪ {S(b, a)};
for each C(a) ∈ A such that T |= ∃R � ¬C do Ad = Ad ∪ {C(a)};
for each C(b) ∈ A such that T |= ∃R− � ¬C do Ad = Ad ∪ {C(b)};
for each S(a, x) ∈ A such that T |= ∃R � ¬∃S do Ad = Ad ∪ {S(a, x)};
for each S(x, a) ∈ A such that T |= ∃R � ¬∃S− do Ad = Ad ∪ {S(x, a)};
for each S(b, x) ∈ A such that T |= ∃R− � ¬∃S do Ad = Ad ∪ {S(b, x)};
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for each S(x, b) ∈ A such that T |= ∃R− � ¬∃S− do Ad = Ad ∪ {S(x, b)}
end;
for each C(a) ∈ A−

U do begin
for each D(a) ∈ A such that T |= D � C do Ad = Ad ∪ {D(a)};
for each R(a, x) ∈ A such that T |= ∃R � C do Ad = Ad ∪ {R(a, x)};
for each R(x, a) ∈ A such that T |= ∃R− � C do Ad = Ad ∪ {R(x, a)}

end;
for each R(a, b) ∈ A−

U do begin
for each S(a, b) ∈ A such that T |= S � R do Ad = Ad ∪ {S(a, b)};
for each S(b, a) ∈ A such that T |= S � R− do Ad = Ad ∪ {S(b, a)}

end;
return Ad

end

It can easily be shown that the ABox returned by such an algorithm is equal
to A \ 〈T ,A〉 ◦ U . Moreover, it is easy to see that, for each concept/role A,
if A(o) belongs to the ABox returned by ComputeDeletedAssertions(T ,A,U),
then del a(o) is true in D. ��

5 Coherent-Semantic Updates Through Datalog

The previous datalog program D generates the set of insertions/deletions that
should be applied to an ABox A to accomplish an update U according to the
foundational-semantics. Now, our purpose is to modify this datalog program to
deal with the coherent-semantics as described in Definition 3.

Briefly, to accomplish the coherent-semantics, we need to generate more inser-
tion instructions in D. This is because in the coherent-semantics we need to keep
the updated ABox as close as possible to the T -closure of the original ABox,
instead of the ABox itself. For instance, if in our previous example we apply
the update U = {d(Student(bob))} with coherent-semantics, besides deleting the
assertion Student(bob), we also need to apply the insertion Person(bob) since
Person(bob) appears in clT (A).

Thus, in practice, we only need to extend our datalog program D to (1)
additionally capture those assertions A(o) entailed by assertions B(o) that are
requested for deletion, and (2) derive their insertion in case they do not get
in conflict with the assertions in A+

U . Intuitively, we do (1) by considering an
additional derived predicate ins a closure for each concept/role A; then, we use
this new predicate to define new derivation rules for ins a in case they do not
get in conflict with any axiom in A+

U , thus accomplishing (2).
In the following, we first define how we obtain these new derivation rules, and

then we prove that the insertion/deletion instructions generated by this extended
datalog program D are sound and complete with respect to the coherent-
semantics.
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5.1 Translation Rules

Capturing Closure Insertions Due to Deletions. For each positive inclu-
sion axiom B 
 A in the closure of T , where A is an atomic concept, let A1,ldots,
Am be all the atomic concepts having a positive inclusion axiom of the form
A 
 Ai in the TBox closure of T , then we define the rules:

ins_a_closure(X) :- del_b(X), not a(X), not ins_a_request(X),

not

del_a_request(X), not del_a1_request(X),\ldots , not

del_am_request(X).

For example, for the assertion FullProfessor 
 Professor, we define the rules:

ins_prof_closure (X) :- del_fullprof(X), not prof(X), not

ins_prof_request (X), not del_prof_request (X), not

del_person_request(X).

Intuitively, when we delete a FullProfessor(o), we might need to insert
Professor(o) because of the closure of the semantics. However, such closure inser-
tion is not necessary if Professor(o) is already in the ABox, or if there is a request
for its insertion, or if it is requested for deletion (either Professor(o) itself or its
parent concepts Person(o)). We define similar rules for role positive inclusion
axioms and positive inclusion axioms in which the left-hand side uses the ∃
constructor.

Defining New Insertions Due to Closure Insertions. Once we have defined
the predicates ins a closure, we use them for defining new insertions in case they
do not get in conflict with the assertions in A+

U . To do so, for each atomic concept
A, let B1, . . . , Bn be all the concepts having a negative inclusion axiom with A
in the TBox closure of T , then we define the rules:

ins_a(X) :- ins_a_closure(X), not ins_b1_request(X)\ldots not

ins_bn_request(X).

Following the previous example, we would define:

ins_prof(X):-ins_prof_closure (X), not ins_student_request (X).

Intuitively, any derived closure insertion of Professor(o) should be applied
only if it does not get in conflict with any negative inclusion axiom. Such a
conflict might arise if there is a request to insert some Student(o) because of the
negative inclusion assertion Student 
 ¬Professor. Similarly, we define the rules
for roles.

5.2 Datalog Program Soundness and Completeness

We finally state that the generated insertion/deletions instructions generated
by the datalog program D is sound and complete with respect to the coherent-
semantics (the proof of the following theorem can be obtained by easily extending
the proofs of Theorems 1 and 2).
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Theorem 3. Given a consistent ontology 〈T ,A〉, and an update U , the datalog
program D obtained through the translation defined in Sects. 4.1 and 5.1, satisfies
that:

(i) incoherent update() is true in D iff U is incoherent with T ;
(ii) if U is coherent with T , then for each concept/role A, ins a(o) is true in D

iff A(o) ∈ 〈T ,A〉•U \A, and del a(o) is true in D iff A(o) ∈ A\〈T ,A〉•U .

6 Implementation and Experiments

To show the feasibility and scalability of our technique, we have developed a Java
program that, given a closed DL-LiteA TBox, builds the datalog program that
generates the insertion/deletion instructions for applying a coherent-semantic
update. Furthermore, the program translates this datalog into standard SQL
queries. Since these queries depend only on the TBox, but not on the ABox nor
the requested update, all of them are created in compilation time and stored
in the database as SQL views. Thus, on runtime, the user can generate the
instructions by means of inserting the operations s/he wants to perform in the
ins a request/del a request tables of the database and querying these views.

We have run the experiments using a DL-LiteA approximation of the LUBM
benchmark, an ontology describing university concepts (e.g., teachers, depart-
ments, etc.) with 75 basic concept/roles and 243 assertions. For our purposes,
we have removed those axioms not expressible in DL-LiteA, and added 20 dis-
jointness/functional assertions to increase the complexity of the updates. Thus,
our final ontology consisted of 195 axioms.

Regarding the data, we have created different ABoxes of increasing size (from
105 to 3.5 ∗ 107 assertions). To do so, we have modified the UBA Data Gener-
ator to create a single university, but with an increasing number of connected
departments, teachers, etc. Due to this increasing number of connected objects,
the updates became more complex when increasing the data size. Then, we have
defined an update request by means of selecting 3 tuples to delete, and 3 tuples
to insert. Such tuples were selected in a way to ensure several interactions with
the TBox assertions, thus, generating several insertions/deletions.

In Fig. 1 we summarize the results we have obtained using the MySQL 5.7
DBMS, running on a Windows 8.1 over an Intel Core i7-4710HQ, with 8GB of
RAM 2. In particular, we show the times to generate the instructions (x points
in the first diagram), the time to generate and execute the instructions (+ points
in the first diagram), and the number of instructions generated (x points in the
second diagram). We also depict the different trend lines in the diagrams.

As it can be seen, our method has generated from 139 insertion/deletion
instructions in 12 s for the smallest ABox, to 479 instructions in 16 s for the
largest. Thus, although there is a constant time penalty of about 12 s to gener-
ate the instructions, the time increment in function of the ABox size is small.
Adding this time to the time to execute the instructions, we got a total cost
2 More experiment details and results at www.essi.upc.edu/∼xoriol/dllitea/.

www.essi.upc.edu/~xoriol/dllitea/
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Fig. 1. Experimental results

near to 20s. We argue that this low time increment behavior is due to the fact
that, in DL-LiteA, an update request only causes updates locally, i.e., the unique
tuples to insert/delete are a subset of those that are connected to the requested
insertions/deletions. Thus, since ABoxes tends to increase its size by considering
more objects, rather than infinitely augmenting the connectivity between them,
increasing the ABox size barely increases the generated instructions, as can be
seen in the second diagram. Hence, we argue that our approach can be effectively
used in practice with large ABoxes.

7 Conclusions

In this paper we have shown that the DL-Lite family, in particular DL-LiteA,
enjoys the first-order rewritability of instance level updates. Apart from the
theoretical interest, this result gives us a practical and effective technique to
perform updates over DL-Lite ontologies.

Although we have not considered any specific syntax to express the update,
what we proposed here is fully compatible with Sparql update operators studied
in [2]. There, the set of insertions and deletions are defined through unions of
conjunctive queries over the current ontology. We can immediately extend our
approach in the same way, producing update operators that are equivalent to the
ones defined in [2] in the case of RDFS, but that deal with the more expressive
DL-LiteA and owl 2 ql languages.

There are several directions for future work, but maybe the most compelling
one, encouraged by the practical applicability of our results, is to extend our
datalog-based approach blurring the distinction between TBox and ABox asser-
tions, in line with the use of Sparql over owl 2ql ontologies.
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Abstract. According to its model-theoretic semantics, Semantic Web
IRIs are individual constants or predicate letters whose names are cho-
sen arbitrarily and carry no formal meaning. At the same time it is
a well-known aspect of Semantic Web pragmatics that IRIs are often
constructed mnemonically, in order to be meaningful to a human inter-
preter. The latter has traditionally been termed ‘social meaning’, a con-
cept that has been discussed but not yet quantitatively studied by the
Semantic Web community. In this paper we use measures of mutual infor-
mation content and methods from statistical model learning to quantify
the meaning that is (at least) encoded in Semantic Web names. We
implement the approach and evaluate it over hundreds of thousands of
datasets in order to illustrate its efficacy. Our experiments confirm that
many Semantic Web names are indeed meaningful and, more interest-
ingly, we provide a quantitative lower bound on how much meaning is
encoded in names on a per-dataset basis. To our knowledge, this is the
first paper about the interaction between social and formal meaning, as
well as the first paper that uses statistical model learning as a method to
quantify meaning in the Semantic Web context. These insights are useful
for the design of a new generation of Semantic Web tools that take such
social meaning into account.

1 Introduction

The Semantic Web constitutes the largest logical database in history. Today it
consists of at least tens of billions of atomic ground facts formatted in its basic
assertion language RDF. While the meaning of Semantic Web statements is for-
mally specified in community Web standards, there are other aspects of meaning
that go beyond the Semantic Web’s model-theoretic or formal meaning [12].

Model theory states that the particular IRI chosen to identify a resource has
no semantic interpretation and can be viewed as a black box: “urirefs are treated
as logical constants.”1 However, in practice IRIs are not chosen randomly, and
similarities between IRIs are often used to facilitate various tasks on RDF data,
with ontology alignment being the most notable, but certainly not the only one.
1 See https://www.w3.org/TR/2002/WD-rdf-mt-20020429/#urisandlit.
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Our aim is to evaluate (a lower bound on) the amount of information the IRIs
carry about the structure of the RDF graph.

A simple example: Taking RDF graphs G (Listing 1.1) and H (Listing 1.2)
as an example, it is easy to see that these graphs are structurally isomorphic
up to renaming of their IRIs. This implies that, under the assumption that IRIs
refer to objects in the world and to concepts, graphs G and H denote the same
models.2

Listing 1.1. Serialization of graph G.

abox : item1024 rd f : type tbox : Tent .
abox : item1024 tbox : soldAt abox : shop72 .
abox : shop72 rd f : type tbox : Store .

Listing 1.2. Serialization of graph H.

fy : ju fn1024 pe : ko9sap fyu fn t : Ufou .
fy : ju fn1024 fyu fn t : tmf fqt fy : aHup .
fy : aHup pe : ko9sap fyu fn t :70342 .

Even though graphs G and H have the same formal meaning, an intelligent agent
– be it human or not – may be able to glean more information from one graph
than from the other. For instance, even a human agent that is unaware of RDF
semantics may be inclined to think that the object described in graph G is a tent
that is sold in a shop. Whether or not the constant symbols abox:item1024 and
fy:jufn1024 denote a tent is something that cannot be glanced from the formal
meaning of either graph. In this sense, graph G may be said to purposefully
mislead a human agent in case it is not about a tent sold in a shop but about
a dinosaur trodding through a shallow lake. Traditionally, this additional non-
formal meaning has been called social meaning [11].

While social meaning is a multifarious notion, this paper will only be con-
cerned with a specific aspect of it: naming. Naming is the practice of employing
sequences of symbols to denote concepts. Examples of names in model theory are
individual constants that denote objects and predicate letters that denote rela-
tions. The claim we want to substantiate in this paper is that in most cases names
on the Semantic Web are meaningful. This claim cannot be proven by using the
traditional model-theoretic approach, according to which constant symbols and
predicate letters are arbitrarily chosen. Although this claim is widely recognized
among Semantic Web practitioners, and can be verified after a first glance at
pretty much any Semantic Web dataset, there have until now been no attempts
to quantify the amount of social meaning that is captured by current naming
practices. We will use mutual information content as our quantitative measure
2 Notice that the official semantics of RDF [13] is defined in terms of a Herbrand

Universe, i.e., the IRI dbr:London does not refer to the city of London but to the
syntactic term dbr:London. Under the official semantics graphs G and H are there-
fore not isomorphic and they do not denote the same models. The authors believe
that RDF names refer to objects and concepts in the real world and not (solely) to
syntactic constructs in a Herbrand Universe.
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of meaning, and will use statistical model learning as our approach to determine
this measure across a large collection of datasets of varying size.

In this paper we make the following contributions:

1. We prove that Semantic Web names are meaningful.
2. We quantify how much meaning is (at least) contained in names on a per-

dataset level.
3. We provide a method that scales comfortably to datasets with hundreds of

thousands of statements.
4. The resulting approach is implemented and evaluated on a large number of

real-world datasets. These experiments do indeed reveal substantial amounts
of social meaning being encoded in IRIs.

To our knowledge, this is the first paper about the interaction between social and
formal meaning, as well as the first paper that uses statistical model learning as
a method to quantify meaning in the Semantic Web context. These insights are
useful for the design of a new generation of Semantic Web tools that take such
social meaning into account.

2 Method

RDF Graphs and RDF Names. An RDF graph G is a set of atomic ground
expressions of the form p(s, o) called triples and often written as 〈s, p, o〉, where
s, p and o are called the subject, predicate and object term respectively. Object
terms o are either IRIs or RDF literals, while subject and predicate terms are
always IRIs. In this paper we are specifically concerned with the social meaning
of RDF names that occur in the subject position of RDF statements. This implies
that we will not consider unnamed or blank nodes, nor RDF literals which only
appear in the object position of RDF statements [5].

IRI Meaning Proxies. What IRIs on the Semantic Web mean is still an open
question, and in [11] multiple meaning theories are applied to IRI names. How-
ever, none of these different theories of meaning depend on the IRI trees, neither
their structure nor their string-labels. Thus, whatever theory of IRIs is discussed
in the literature, it is always independent of the string (the name) that makes
up the IRI. The goal of this paper is to determine if there are some forms of
meaning for an IRI that correlate with the choice of their name (as defined by
the IRI trees above).

For this purpose, we will use the same two “proxies” for the meaning of an
IRI that were used in [10]. The first proxy for the meaning of an IRI s the type-set
of x: the set of classes Y C(x) to which an IRI x belongs. The second proxy for
the meaning of an IRI x is the property-set of x: the set of properties Y P (x) that
are applied to IRI x. Using the standard intension (Int) and extension (Ext)
functions for RDF semantics [13] we define these proxies in the following way:

Type-set: Y C(x) := {c | 〈Int(x), Int(c)〉 ∈ Ext(Int(rdf:type))}
Property-set: Y P (x) := {p | ∃o. 〈Int(x), Int(o)〉 ∈ Ext(Int(p))}
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Notice that every subject term has a non-empty property-set (every subject term
must appear in at least one triple) but some subject terms may have an empty
type-set (in case they do not appear as the subject of a triple with the rdf:type

predicate). We will simply use Y in places where both Y C and Y P apply. Since
we are interested in relating names to their meanings we will use X to denote
an arbitrary IRI name and will write 〈X,Y 〉 for a pair consisting of an arbitrary
IRI name and either of its meaning proxies.

Mutual Information. Two random variables X and Y are independent iff
P (X,Y ) = P (X) · P (Y ) for all possible values of X and Y . Mutual information
I(X;Y ) is a measure of the dependence between X and Y , in other words a mea-
sure of the discrepancy between the joint distribution P (X,Y ) and the product
distribution P (X) · P (Y ):

I(X;Y ) = E[log P (X,Y ) − log P (X) · P (Y )],

where E is the expectation under P (X,Y ). In particular, there is no mutual
information between X and Y (i.e. I(X;Y ) = 0) when X and Y are independent,
in which case the value of X carries no information about the value of Y or vice
versa.

Information and Codes. While the whole paper can be read strictly in terms of
probability distributions, it may be instructive to take an information theoretical
perspective, since information theory inspired many of the techniques we use.
Very briefly: it can be shown that for any probability distribution P (X), there
exists a prefix-free encoding of the values of X such that the codeword for a
value x has length − log P (x) bits (all logarithms in this paper are base-2).
“Prefix-free means” that no codeword is the prefix of another, and we allow non-
integer codelengths for convenience. The inverse is also true: for every prefix free
encoding (or “code”) for the values of X, there exists a probability distribution
P (X), so that if element x is encoded in L(x) bits, it has probability P (x) =
2−L(x) [4, Theorem 5.2.1].

Mutual information can thus be understood as the expected number of bits
we waste if we encode an element drawn from P (X,Y ) with the code corre-
sponding to P (X)P (Y ), instead of the optimal choice, the code corresponding
to P (X,Y ).

Problem Statement and Approach. We can now define the central question
of this paper more precisely. Let o be an IRI. Let n(o), c(o) and p(o) be its
name (a Unicode string), its type-set and its predicate-set respectively. Let O
be a random element so that P(O) is a uniform distribution over all IRIs in the
domain. Let X = n(O), Y C = c(O) and Y P (O). As explained, we use Y C and
Y P as meaning proxies, if the value of X can be reliably used to predict the
value of Y C or Y P , then we take X to contain information about its meaning.
The treatment is the same for both proxies so we will use Y as a symbol for a
meaning proxy in general to report results for both.
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We take the IRIs from an RDF dataset and consider them to be a sequence
of randomly chosen IRIs from the dataset’s domain with names X1:n and
corresponding meanings Y1:n. Our method can now be stated as follows:

If we can show that there is significant mutual information between the
name X of an IRI and its meaning Y , then we have shown that the IRIs
in this domain carry information about their meaning.

This implies a best-effort principle: if we can predict the value of Y from the value
of X we have shown that X carries meaning. However, if we did not manage this
prediction, there may yet be smarter methods to do so and we have not proved
anything. For instance, an IRI that seems to be a randomly generated string
could always be an encrypted version of a meaningful one. Only by cracking the
encryption could we prove the connection. Thus, we can prove conclusively that
IRIs carry meaning, but not prove conclusively that they do not.

Of course, even randomly generated IRIs might, through chance, provide
some information about their meaning. We use a hypothesis test to quantify the
amount of evidence we have. We begin with the following null hypothesis:

H0: There is no mutual information between the IRIs X1:n and their mean-
ings Y1:n.

There are two issues when calculating the mutual information between names
and meaning proxies for real-world data:

1. Computational cost: The straightforward method for testing independence
between random variables is the use of a χ2-test. Unfortunately, this results
in a computational complexity that is impractical for all but the smallest
datasets.

2. Data sparsity: For many names there are too few occurrences in the data in
order for a statistical model to be able to learn its meaning proxies. In these
cases we must learn predict the meaning from attributes shared by different
IRIs with the same meaning (clustering “similar” IRIs together).

To reduce computational costs, we develop a less straightforward likelihood
ratio test that does have acceptable computational properties. To combat data-
sparsity, we exploit the hierarchical nature of IRIs to group together IRIs that
share initial segments. Where we do not have sufficient occurrences of the full
IRI to make a useful prediction, we can look at other IRIs that share some prefix,
and make a prediction based on that.

Hypothesis Testing. The approach we will use is a basic statistical hypothesis
test: we formulate a null hypothesis (that the IRIs and their meanings have no
mutual information) and then show that under the null hypothesis, the structure
we observed in the data is very unlikely.
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Let X1:n, Y1:n denote the data of interest and let P0 denote the true distrib-
ution of the data under the null hypothesis that X and Y are independent:

P0(Y1:n|X1:n) = P0(Y1:n).

We will develop a likelihood ratio test to disprove the null hypothesis. The
likelihood ratio Λ is the ratio between the probability of the data if the null
hypothesis is true, divided by the probability of the data under an alternative
model P1, which in this case attempts to exploit any dependencies between
names and semantics of terms. We are free to design the alternative model as
we like: the better our efforts, the more likely we are to disprove P0, if it can
be disproven. We can never be sure that we will capture all possible ways in
which a meaning can be predicted from its proxy, but, as we will see in Sect. 4,
a relatively straightforward approach suffices for most datasets.

Likelihood Ratio. The likelihood ratio Λ is a test statistic contrasting the prob-
ability of the data under P0 to the probability under an alternative model P1:

Λ =
P0(Y1:n|X1:n)
P1(Y1:n|X1:n)

=
P0(Y1:n)

P1(Y1:n|X1:n)

If the data is sampled from P0 (as the null hypothesis states) it is extremely
improbable that this alternative model will give much higher probability to the
data than P0. Specifically:

P0(Λ ≤ λ) ≤ λ (1)

This inequality gives us a conservative hypothesis test: it may underestimate
the statistical significance, but it will never overestimate it. For instance, if we
observe data such that Λ ≥ 0.01, the probability of this event under the null
hypothesis is less than 0.01 and we can reject H0 with significance level 0.01. The
true significance level may be even lower, but to show that, a more expensive
method may be required. To provide an intuition for what (1) means, we can
take an information theoretic perspective. We rewrite:

P0(− log Λ ≥ k) ≤ 2−k with k = − log λ

− log Λ = (− log P0(Y1:n | X1:n)) − (− log P1(Y1:n | X1:n))

That is, if we observe a likelihood ratio of Λ, we know that the code corresponding
to P1 is − log Λ bits more efficient than P0. Under P0, the probability of this
event is less than 2−k (i.e. less than one in a billion for as few as 30 bits). Both
codes are provided with X1:n, but the first ignores this information while the
second attempts to exploit it to encode Y1:n more efficiently. Finally, note that
H0 does not actually specify P0, only that it is independent of X1:n, so that we
cannot actually compute Λ. We solve this by using

P̂ (Y = y) =
|{i |Yi = y}|

n
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in place of P0. P̂ is guaranteed to upper-bound any P0 (note that it “cheats” by
using information from the dataset).3 This means that by replacing the unknown
P0 with P̂ we increase Λ, making the hypothesis test more conservative.

3 The Alternative Model

As described in the previous section, we must design an alternative model that
gives higher probability to datasets where there is mutual information between
IRIs and their meanings.4 Any alternative model yields a valid test, but the
better our design, the more likely it is we will be to be able reject the null-
hypothesis, and the more strongly we will be able to reject it.

As discussed in the previous section, for many IRIs, we may only have one
occurrence. From a single occurrence of an IRI we cannot make any meaningful
predictions about its predicate-set, or its type-set. To make meaningful predic-
tions, we cluster IRIs together. We exploit the hierarchical nature of IRIs by
storing them together in a prefix-tree (also known as a trie). This is a tree with
labeled edges where the root node represents the empty string and each leaf
node represents exactly one IRI. The tree branches at every internal node into
subtrees that represent (at least) two distinct IRIs that have a common prefix.
The edge labels are chosen so that their concatenation along a path starting at
the root node and ending in some node n always results in the common prefix of
the IRIs that are reachable from n. In other words: leaf nodes represent full IRIs
and non-leaf nodes represent IRI prefixes. Since one IRI may be a strict prefix
of another IRI, some non-leaf nodes may represent full IRIs as well.

For each IRI in the prefix tree, we choose a node to represent it: instead of
using the full IRI, we represent the IRI by the prefix corresponding to the node,
and use the set of all IRIs sharing that prefix to predict the meaning. Thus, we
are faced with a trade-off: if we choose a node too far down, we will have too few
examples to make a good prediction. If we choose a node too far up, the prefix
will not contain any information about the meaning of the IRI we are currently
dealing with.

Once the tree has been constructed we will make the choice once for all IRIs
by constructing a boundary. A boundary B is a set of tree nodes such that every
path from the root node to a leaf node contains exactly one node in B. Once the
boundary has been selected we can use it to map each IRI X to a node nX in
B. Multiple IRIs can be mapped onto the same boundary node. Let XB denote
the node in the prefix tree for IRI X and boundary B. We use B to denote the
set of all boundaries for a given IRI tree.

For now, we will take the boundary as a given, a parameter of the model.
Once we have described our model P1(Y1:n | X1:n, B) with B as a parameter, we
will describe how to deal with this choice.
3 A detailed proof for this, and for (1) is shared as an external resource at http://

wouterbeek.github.io/iswc2016 appendix.pdf.
4 Or, equivalently, we must design a code which exploits the information that IRIs

carry about their meaning to store the dataset efficiently.

http://wouterbeek.github.io/iswc2016_appendix.pdf
http://wouterbeek.github.io/iswc2016_appendix.pdf
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We can now describe our model P1. The most natural way to describe it, is
as a sampling process. Note that we do not actually implement this process, it is
simply a construction. We only compute the probability P1(Y1:n | X1:n, B) that
a given set of meanings emerges from this process. Since we will use an IRI’s
boundary node boundary in place of the full IRI, we can rewrite

P1(Y1:n | X1:n, B) = P1(Y1:n | XB
1:n).

When viewed as a sampling process, the task of P1 is to label a given sequence
of IRIs with randomly chosen meanings. Note that when we view P0 this way,
it will label the IRIs independently of any information about the IRI, since
P0(Y1:n | X1:n) = P0(Y1:n). For P1 to assign datasets with meaningful IRIs
a higher probability than P0, P1 must assign the same meaning to the same
boundary node more often than it would by chance.

We will use a Pitman-Yor process [16] as the basic structure of P1.
We assign meanings to the nodes XB

i in order. At each node, we decide
whether to sample its meaning from the global set of possible meanings Y or
from the meanings that we have previously assigned to this node.

Let Yi be the set of meanings that have previously been assigned to node
XB

i : Yi = {yj | j ≤ i ∧ XB
j = XB

i+1}.
With probability (|Yi|+1)/2

i+ 1
2

, we choose a meaning for XB
i that has not been

assigned to it before (i.e. y ∈ Y−Yi). We then choose meaning y with probability
|{j≤i:Yj=y}|+ 1

2
i+|Y| 12

5. Note that both probabilities have a self-reinforcing effect: every
time we choose to sample a new meaning, we are more likely to do so in the
future, and every time this results in a particular meaning y, we are more likely
to choose y in the future.

If we do not choose to sample a new meaning, we draw y from the set of
meanings previously assigned to XB

i . Specifically:

P (Yi = y | XB
i ) =

|{j ≤ i | XB
j = XB

i+1, Yj = y}| − 1
2

i + 1
2

.

Note that, again, the meanings that have been assigned often in the past are
assigned more often in the future. These “the rich-get richer”-effects mean that
the Pitman-Yor process tends to produce power-law distributions.

Note that this sampling process makes no attempt to map the “correct”
meanings to IRIs: it simply assigns random ones. It is unlikely to produce a
dataset that actually looks natural us. Nevertheless, a natural dataset with
mutual information between IRIs and meanings still has a much higher proba-
bility under P1 than under P0, which is all we need to reject the null hypothesis.

While it may seem from this construction that the order in which we choose
meanings has a strong influence on the probability of the sequence, it can in fact

5 The Pitman-Yor process itself does not specify which new meaning we should choose,
only that a new meaning should be chosen. This distribution on meanings in Y is
inspired by the Dirichlet-Multinomial model.
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be shown that every permutation of any particular sequence of meanings has the
same probability (the model is exchangeable). This is a desirable property, since
the order in which IRIs occur in a dataset is usually not meaningful.

To compute the probability of Y1:n for a given set of nodes X1:n we use

P1(Y1:n | XB
1:n) =

n−1∏

i=0

P1(Yi+1 | Y1:i,X
B
1:n) with

P1(Yi+1 = y | Y1:i,X
B
1:n)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(|Yi| + 1)12
i + 1

2

· |{j ≤ i : Yj = y}| + 1
2

i + |Y| 12
if y 	∈ Yi,

|{1 ≤ j ≤ i | XB
j = XB

i+1, Yj = y}| − 1
2

i + 1
2

otherwise.

Choosing the IRI Boundary. We did not yet specify which boundary results
in clusters that are of the right size, i.e., which boundary choice of boundary
gives us the highest probability for the data under P1, and thus the best chance
of rejecting the null hypothesis.

Unfortunately, which boundary B is best for predicting the meanings Y can-
not be determined a priori. To get from P1(Y | X,B) to P1(Y | X), i.e. to get
rid of the boundary parameter, we take a Bayesian approach: we define a prior
distribution W (B) on all boundaries, and compute the marginal distribution on
Y1:n:

P1(Y1:n | X1:n) =
∑

B∈B
W (B)P1(Y1:n | X1:n, B) (2)

This is our complete alternative model.
To define W (B), remember that a boundary consists of IRI prefixes that are

nodes in an IRI tree (see above). Let lcp(x1, x2) denote the longest common
prefix of the IRIs denoted by tree nodes x1 and x2. We then define the following
distribution on boundaries:

W (B) := 2−|{lcp(x1,x2) | x1,x2∈B}|

Here, the set of prefixes in the exponent corresponds to the nodes that are
in between the root and some boundary node, including the boundary nodes
themselves. Therefore, the size of this set is equal to the number of nodes in
the boundary plus all internal nodes that are closer to the root. Each such node
divides the probability in half, which means that W can be interpreted as the
following generative process: starting from the root, a coin is flipped to decide for
each node whether it is included in the boundary (in which case its descendants
are not) or not included in the boundary (in which case we need to recursively
flip coins to decide whether its children are).

The number of possible boundaries B is often very large, in which case com-
puting 2 takes a long time. We therefore use a heuristic (Algorithm 1) to lower-
bound (2), by using only those terms that contribute the most to the total.



Are Names Meaningful? Quantifying Social Meaning on the Semantic Web 193

Algorithm 1. Heuristic calculation for the IRI boundary.
1: procedure MarginalProbability(X1:n, Y1:n, IRI tree with root r)
2: B ← {r} � The boundary in the sum in (2)
3: Q ← {r} � Queue of boundary states to be expanded
4: best term ← W (B)P1(Y1:n | X1:n, B) � Largest term found
5: acc ← best term � Accumulated probability
6: while Q �= ∅ do
7: n ← shift(Q)
8: B′ ← B \ {n} ∪ children(n)
9: term ← W (B)P1(Y1:n | X1:n, B′)

10: acc ← acc + term
11: if term ≥ best term then
12: (B, best term) ← (B′, term)
13: add(Q, children(n))

return acc � Approx. P1(Y1:n | X1:n) from below

Starting with the single-node boundary containing only the root node, we recur-
sively expand the boundary. We compute P1 for all possible expansion of each
boundary we encountered, but we recurse only for the one which provides the
largest contribution.

Note that this only weakens the alternative model: the probability under the
heuristic version of P1 is always lower than it would be under the full version,
so that the resulting hypothesis tests results in a higher p-value. In short, this
approximation may result in fewer rejections of the null hypothesis, but when we
do reject it, we know that we would also have rejected it if we had computed P1

over all possible boundaries. If we cannot reject, there may be other alternative
models that would lead to a rejection, but that is true for the complete P1 in (2)
as well. Algorithm 1 calculates the probability of the data under the alternative
model, requiring only a single pass over the data for every boundary that is
tested.

4 Evaluation

In the previous section we have developed a likelihood ratio test which allows
us to verify the null hypothesis that names are statistically independent from
the two meaning proxies. Moreover, the alternative model P1, provides a way of
quantifying how much meaning is (at least) shared between IRI names X and
meaning proxies Y .

Since we calculate P1 on a per-dataset basis our evaluation needs to scale
in terms of the number of datasets. This is particularly important since we are
dealing with Semantic Web data, whose open data model results in a very hetero-
geneous collection of real-world datasets. For example, results that are obtained
over a relatively simple taxonomy may not translate to a more complicated ontol-
ogy. Moreover, since we want to show that our approach and its corresponding
implementation scale, the datasets have to be of varying size and some of them
have to be relatively big.
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Fig. 1. The fraction of datasets for which we obtain a significant result at significance
level α = 0.01. Note that we group the datasets in logarithmic bins (i.e., the bin edges
{ei} are chosen so that the values {log ei} are linearly spaced. As explained in Sect. 2,
all datasets have predicate-sets but not all datasets have type-sets. The fraction of
datasets with no type-set is marked in gray.

For this experiment we use the LOD Laundromat data collection [1], a snap-
shot of the LOD Cloud that is collected by the LOD Laundromat scraping,
cleaning and republishing framework. LOD datasets are scraped from open data
portals like Datahub6 and are automatically cleaned and converted to a standards-
compliant format. The data cleaning process includes removing ‘stains’ from the
data such as syntax errors, duplicate statements, blank nodes and more.

We processed 544, 504 datasets from the LOD Laundromat data collection,
ranging from 1 to 129, 870 triples. For all datasets we calculate the Λ-value for
the two meaning proxies Y C and Y P , noting that if Λ < α, then p < α also, and
we can reject the null-hypothesis with significance level at least α. We choose
α = 0.01 for all experiments.

Figure 1 shows the frequency with which the null hypothesis was rejected for
datasets in different size ranges.

The figure shows that for datasets with at least hundreds of statements our
method is usually able to reliably refute the null hypothesis at a very strong sig-
nificance level of α = 0.01. 6, 351 datasets had no instance/class-assertions (i.e.,
rdf:type-statements) whatsoever (shown in gray in Fig. 1). For these datasets it
was therefore not possible to obtain results for Y C .

Note that we may not conclude that no datasets with less than 100 statements
contain meaningful IRIs. We had too little data to show meaning in the IRIs
with our method, but other, more expensive methods may yet be successful.

In Fig. 2 we explore the correlation between the results for type-sets Y C and
property-sets Y P . As it turns out, in cases where we do find evidence for social
meaning the evidence is often overwhelming, with a pΛ-value exponentially small
in terms of the number of statements. It is therefore instructive to consider not

6 See http://datahub.io.

http://datahub.io
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Fig. 2. This figure shows log Λ for both meaning proxies, for each dataset. Datasets
that appear below a horizontal line provide sufficient evidence (at that α) to refute the
claim that Semantic Web names do not encode type-sets Y C . Datasets that appear
to the left of a vertical line provide sufficient evidence (at that α) to refute the claim
that Semantic Web names do not encode property-sets Y P . Datasets containing no
instance/class- or rdf:type-relations are not included.

the Λ-value itself but its binary logarithm. A further reason for studying log Λ
is that − log Λ can be seen not only as a measure of evidence against the null
hypothesis that Y and X are independent, but also as a conservative estimate of
the mutual information I(X:Y ): predicting the meanings from the IRIs instead
of assuming independence allows us to encode the data more efficiently by at
least − log Λ bits.

In Fig. 2, the two axes correspond to the two meaning proxies, with Y P on
the horizontal and Y C on the vertical axis. To show the astronomical level of
significance achieved for some datasets, we have indicated several significance
thresholds with dotted lines in the figure. The figure shows results for 544, 504
datasets7 and as Fig. 2 shows, the overwhelming majority of these indicate very

7 Datasets with fewer than 1, 000 statements are not included in order to get a clear
picture of what happens in case we have sufficient data to refute the null, as indicated
by our observations from Fig. 1. A zoomed out version of Fig. 2, scaling to log(p)
values of −300, 000 is available at https://goo.gl/r3uxpA, but is not included in this
paper because its scale is no longer suitable for print.

https://goo.gl/r3uxpA
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strong support for the encoding of meaning in IRIs, measured both via mutual
information content with type-sets and with property-sets. Recall that − log Λ
is a lower bound for the amount of information the IRIs contain about their
meaning. For datasets that appear to the top-left of the diagonal property-sets
Y P provide more evidence than type-sets Y C . For points to the bottom-right of
the diagonal, type-sets Y C provide more evidence than property-sets Y P .

Only very few datasets appear in the upper-right quadrant. Manual inspec-
tion has shown that these are indeed datasets that use ‘meaningless’ IRIs. There
are some datasets where the log Λ for property-sets is substantially higher than
zero; this probably occurs when there are very many property-sets so that the
alternative model has many parameters to fit, whereas the null model is a max-
imum likelihood estimate so it does not have to pay for parameter information.

Datasets that cluster around the diagonal are ones that yield comparable
results for Y C and Y P . There is also a substantial grouping around the horizontal
axis: these are the datasets with poor rdf:type specifications. There is some
additional clustering visible, reflecting that there is structure not only within
individual Semantic Web datasets but also between them. This may be due to a
single data creator releasing multiple datasets that share a common structure.
These structures may be investigated further in future research.

The results reported on until now have been about the amount of evidence
against the null hypothesis. In our final figure we report about the amount of
information that is encoded in Semantic Web names. For this we ask ourselves
the information theoretic question: how many bits of the schema information

Fig. 3. Measuring the amount of information that is encoded in Semantic Web names.
The horizontal axis shows the entropy of the empirical distribution of Y for a given
dataset, a lower-bound for the information contained in the meaning of the average
IRI. The vertical axis shows the number of bits used to encode the average meaning by
the code corresponding to P1. This is an upper bound, since P1 may not be the optimal
model. Datasets containing no type relations are not included in the right-hand figure.
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in Y can be compressed by taking into account the name X? Again we make
a conservative estimate: the average number of bits required to describe Y is
underestimated by the empirical entropy, whereas the average number of bits we
need to encode Y with our alternative model, given by − log(P1(Y1:n|X1:n)/n,
is an overestimate (because P1 is an ad-hoc model rather than the true distrib-
ution). Again, we only consider datasets with more than 1, 000 statements.

The results in Fig. 3 show that for many datasets more than half of the
information in Y , and sometimes almost all of it, can in fact be predicted by
looking at the IRI. On the other hand, for datasets of high entropy the alternative
model P1 tends not to compress a lot. Pending further investigation, it is unclear
whether this later result is due to inefficiency in the alternative model or because
the IRIs in those datasets are just less informative.

5 Related Work

Statistical Observations. Little is known about the information theoretic
properties of real-world RDF data. Structural properties of RDF data have been
observed to follow a power-law distribution. These structural properties include
the size of documents [6] and frequency of term and schema occurrence [6,15,19].
Such observations have been used as heuristics in the implementation of triple
stores and data compressors.

The two meaning proxies we have used were defined by [10] who report the
empirical entropy and the mutual information of both Y C and Y P for various
datasets. However, we note that the distribution underlying Y C and Y P , as well
as the joint distribution on pairs 〈Y P , Y C〉, is unknown and has to be estimated
from the observed frequencies of occurrence in the data. This induces a bias in
the reported mutual information. Specifically, the mutual information may be
substantial even though the variables Y C and Y P are in fact independent. Our
approach in Sect. 2 avoids this bias.

Social Meaning. The concept of social meaning on the Semantic Web was
actively discussed on W3C mailing lists during the formation of the original
RDF standard in 2003–2004. social meaning is similar to what has been termed
the “human-meaningful” approach to semantics by [9]. While social meaning has
been extensively studied from a philosophical point of view by [11], to the best
of our knowledge there are no earlier investigations into its empirical properties.

Perhaps most closely related is again the work in [10]. They study the same
two meaning proxies (which we have adopted from their work), and report on
empirical entropy and mutual information of between two quantities. That is
essentially different from our work, where we study the entropy and mutual
information content not between these two quantities, but between each of them
and the IRIs whose formal meaning they capture. Thus, [10] tells us whether
type-sets are predictive of predicate-sets, whereas our work tells us whether IRIs
are predictive of their type- and predicate-sets.

Naming RDF Resources. Human readability and memorization are explicit
design requirements for URIs and IRIs. [3,8,20] At the same time, best practices
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have been described that advise against putting “too much meaning” into
IRIs [20]. This mainly concerns aspects that can easily change over time and
that would, therefore, conflict with the permanence property of so-called ‘Cool
URIs’ [2]. Examples of violations of best practices include indicators of the status
of the IRI-denoted resource (‘old’, ‘draft’), its access level restrictions (‘private’,
‘public’) and implementation details of the underlying system (‘/html/’, ‘.cgi’).

Several guidelines exist for minting IRIs with the specific purpose of naming
RDF resources. [17] promotes the use of the aforementioned Cool URIs due
to the improved referential permanence they bring and also prefers IRIs to be
mnemonic and short. In cases in which vocabularies have evolved over time the
date at which an IRI has been issued or minted has sometimes been included as
part of that IRI for versioning purposes.

6 Conclusion and Future Work

In this paper we have shown that Semantic Web data contains social meaning.
Specifically, we have quantitatively shown that the social meaning encoded in IRI
names significantly coincides with the formal meaning of IRI-denoted resources.

We believe that such quantitative knowledge about encoded social meaning
in Semantic Web names is important for the design of future tools and meth-
ods. For instance, ontology alignment tools already use string similarity metrics
between class and property names in order to establish concept alignments [18].
The Ontology Alignment Evaluation Initiative (OAEI) contains specific cases
in which concept names are (consistently) altered [7]. The analytical techniques
provided in this paper can be used to predict a priori whether or not such tech-
niques will be effective on a given dataset. Specifically, datasets in the upper
right quadrant of Fig. 2 are unlikely to yield to those techniques.

Similarly, we claim that social meaning should be taken into account when
designing reasoners. [14] already showed how the names of IRIs could be used
effectively as a measure for semantic distance in order to find coherent subsets
of information. This is a clear case where social meaning is used to support
reasoning with formal meaning. Our analysis in the current paper has shown
that such a combination of social meaning and formal meaning is a fruitful
avenue to pursue.
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Abstract. User validation is one of the challenges facing the ontology
alignment community, as there are limits to the quality of automated
alignment algorithms. In this paper we present a broad study on user
validation of ontology alignments that encompasses three distinct but
interrelated aspects: the profile of the user, the services of the alignment
system, and its user interface. We discuss key issues pertaining to the
alignment validation process under each of these aspects, and provide an
overview of how current systems address them. Finally, we use experi-
ments from the Interactive Matching track of the Ontology Alignment
Evaluation Initiative (OAEI) 2015 to assess the impact of errors in align-
ment validation, and how systems cope with them as function of their
services.

1 Introduction

The growth of the ontology alignment area in the past years has led to the
development of many ontology alignment systems. In most cases, these systems
apply fully automated approaches where an alignment is generated for a given
pair of input ontologies without any human intervention. However, after many
editions of the Ontology Alignment Evaluation Initiative (OAEI), it is becoming
clear to the community that there are limits to the performance (in terms of
precision and recall of the alignments) of automated systems, as adopting more
advanced alignment techniques has brought diminishing returns [21,40]. This is
likely due to the complexity and intricacy of the ontology alignment process, with
each task having its particularities, dictated by both the domain and the design
of the ontologies. Thus, automatic generation of mappings should be viewed only
as a first step towards a final alignment, with validation by one or more users
being essential to ensure alignment quality [12].

Having users validate an alignment enables the detection and removal of
erroneous mappings, and potentially the addition of alternative mappings, or
altogether new ones, not detected by the alignment system. Additionally, if user
validation is done during the alignment process, it enables the adjustment of
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system settings, the selection of the most suitable alignment algorithms, and the
incorporation of user knowledge in them [40]. While users can make mistakes,
experiments have shown that user validation is still beneficial up to an error rate
of 20 % [26], although the exact error threshold will depend on the alignment
system and how it makes use of the user input.

The relevance of user involvement in ontology alignment is evidenced by the
fact that nearly half of the challenges facing the community identified in [46]
are directly related to it. These include explanation of matching results to users,
fostering user involvement in the matching process, and social and collaborative
matching. Moreover, the lack of evaluation of the quality and effectiveness of user
interventions was identified as one of the general issues after six years of expe-
rience in the OAEI [12], leading to the introduction of the Interactive Matching
track in the OAEI 2013 campaign [40] where user validation was simulated using
an oracle. This track was extended in 2015 [4] to also take into account erroneous
user feedback to the systems as well as additional use cases.

There have been earlier studies addressing user involvement in ontology align-
ment and identifying and evaluating the requirements and techniques involved
therein [14,17,21,28]. More recently, the requirements for fostering user sup-
port for large-scale ontology alignment were identified and current systems were
evaluated [24]. However, these studies focused mostly on the user interface of
alignment systems. While that is a critical aspect for user involvement, there are
other important aspects which have been largely unaddressed, such as how sys-
tems cope with erroneous user input or how they maximize the value of limited
input.

In this paper we present a broader study of user validation in ontology align-
ment. In Sect. 2, we identify the key issues regarding user validation of ontology
alignments by reviewing existing systems and literature related to ontology align-
ment, as well as drawing from our experience in the field. These issues pertain to
three categories: the user profile, the alignment systems’ services and their user
interfaces. In Sect. 3, we first assess how current systems deal with the identified
issues in a qualitative evaluation (Subsect. 3.1), then use the experiments from
the Interactive Matching track of the OAEI 2015 campaign to show how some
of these issues impact alignment quality (Subsect. 3.2). While the experiments
from the OAEI Interactive track considered the erroneous input as a function
solely of user knowledge, here we discuss them in light of different aspects of
user expertise.

2 Issues Regarding User Alignment Validation

Alignment validation requires users to first become familiar with the ontologies
and their formal representations, and to grasp the view of the ontology model-
ers, before being able to understand and decide on the mappings provided by an
alignment system or creating mappings by themselves [15]. Thus, it is a cogni-
tively demanding task that involves a high memory load and complex decision
making, and is inherently error-prone because of different levels of expertise,
differences in interpretation or perception, and human biases [17].
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There are three categories of issues that affect alignment validation: the pro-
file of the user, i.e., his domain and technical expertise, and his expertise with
the alignment system (Subsect. 2.1); the system services, concerning how systems
formulate user interactions and how they capitalize on user input (Subsect. 2.2);
and the user interfaces, including the impact of visualization and interaction
strategies on the alignment validation process (Subsect. 2.3).

2.1 User Profile

The domain expertise of the user concerns his knowledge about the domain
of the aligned ontologies, and therefore his ability to assess the correctness of a
mapping conceptually (e.g., whether two ontology classes mapped as equivalent
actually represent the same concept in the domain). Thus, domain expertise is
critical for alignment quality, and the lack thereof is likely to be the main source
of erroneous input from a user, particularly in specialized domains with complex
terminology such as the life sciences.

The technical expertise of the user pertains to his knowledge about
ontologies themselves, and his experience in knowledge engineering and model-
ing, and therefore his ability to assess the correctness of a mapping formally (i.e.,
whether a mapping is logically sound given the constraints of the two ontologies).
While domain knowledge is critical for alignment validation, domain experts are
often not familiar with knowledge engineering concepts and formal representa-
tions [5], and may have difficulty grasping the consequences of a mapping in the
context of the ontologies, or even in perceiving subtle differences in modeling
that make that mapping incorrect.

While alignment system users will usually fall under the categories of domain
expert or knowledge engineer, it should be noted that domain and technical
expertise are not disjoint. Indeed, the development of tools like Protégé has
allowed domain experts to delve into knowledge engineering [20]. Nevertheless,
the differences between these two user types are important for the design of
every knowledge-based system, and should be addressed both when designing
the system and when building support for it. For instance, in order to assist
users with limited technical expertise, alignment systems should provide infor-
mation about the structure of the ontologies and the entailments of a mapping
in a manner that is intuitive to understand. Likewise, in order to assist users
with limited domain expertise, systems should provide detailed contextual and
conceptual information about the mapping. Indeed, a recent study showed that,
given enough contextual help, the quality of the validation of non-domain experts
can approximate that of domain experts [36] – although this is likely to depend
on the domain in question.

The final aspect of user expertise is expertise with the alignment system,
which concerns the user’s familiarity with the functionality of the system and its
visual representations. Novice users can face comprehension difficulties and make
erroneous decisions, not for lack of domain or technical expertise, but because
they cannot fully acquire the information made available about a mapping or
its entailments. It is up to the alignment system to be as intuitive as possible
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in both functionality and visual representations so that novice users can focus
on the alignment process and are not limited by their lack of expertise with
the system [35]. In this context, it is important to consider that different visual
representations are suited for conveying different types of information, as we will
detail in Subsect. 2.3. Systems should also provide support to expert users in the
form of shortcuts or customizations, so that they can speed up their work.

Users can be expected to make mistakes in alignment validation [5,22], be
that due to lack of domain expertise, technical expertise, or expertise with the
alignment system. However, the possibility of user errors is often disregarded in
existing alignment systems. On the one hand, it is true that users are generally
expected to make less errors than automated systems, and experiments have
shown that up to an error rate of 20 %, user input is still beneficial [26]. On
the other hand, there are risks to taking user input for granted, particularly
when that input is given during the alignment process, and inferences are drawn
from it, leading to the potential propagation of errors. An example of this is
given in [26], where user validated relations during an alignment repair step are
fixed, meaning that they cannot be removed during subsequent steps, and other
potentially correct relations may have to be removed instead.

User errors can be prevented to some extent by warning the user when con-
tradicting validations are made [23] or by preemptively removing mappings that
lead to logical conflicts. In a multi-user setting (e.g. [7,43]), errors may be diluted
through a voting strategy, where the mapping confidence is proportional to the
consensus on the mapping, by accepting the decision made by a majority of
the users [43], or by adopting a more skeptical approach where full agreement
between the users is required [7]. However, given the limited availability of users
for alignment validation, systems cannot rely on having multiple users to prevent
user errors.

One way of assessing the impact of the user profile on the alignment quality
is by simulating the user input by an oracle with different error rates [33], which
is the strategy we have adopted in our evaluation (Subsect. 3.2).

2.2 System Services

Alignment validation is an extensive task, particularly when large ontologies
are involved, as alignments can include several thousand mappings. Since users
capable of performing alignment validation are a scarce and valuable resource,
alignment systems cannot expect them to be able to validate a whole alignment.
Rather, they must limit their demand for user intervention and exploit that
intervention to maximize its value, wherein lies one of the main challenges of
alignment validation [26,38].

With regard to demand for user intervention, several strategies have been
implemented by alignment systems for limiting the number of mapping sug-
gestions to be validated by the user (suggestions selection - {Sys.e}). The
simplest and most common of these consists of employing threshold values for
different alignment algorithms. Other, more sophisticated filtering approaches
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include filtering with respect to principles (e.g., consistency, locality, and conser-
vativity) [25] or quality checks [3], selecting only “problematic” mappings where
different alignment algorithms disagree [8], and using a similarity propagation
graph to select the most informative questions to ask the user [44].

One common strategy that both reduces demand for user intervention and
exploits that intervention is to automatically reject alternative mappings for a
concept when the user validates one of that concept’s mappings [26,31].

With regard to exploiting user interventions, systems can adopt different
strategies depending on the stage of involvement of the user in the alignment
process: before ({Sys.a}), after ({Sys.b}), during ({Sys.c}), or iterative ({Sys.d}).

When the validation happens before the matching process, the user provides
an initial partial alignment which is then used by the system to guide the match-
ing process. The partial alignment can be used in the preprocessing phase to
reduce the search space [30], as input for the alignment algorithms [11,30], or to
select and configure the algorithms to use [29,40,42,49].

When the validation is performed after the automatic alignment process,
the input of the user cannot be exploited for aligning the ontologies. How-
ever, many systems still filter out mapping suggestions which are in conflict
with user validations before proceeding to a final reasoning and diagnosis phase
[23,26,31,37].

When the validation is done during the alignment process, input from the
user can be extrapolated through the use of feedback propagation ({Sys.f})
techniques to fully exploit it. When the validation is iterative, the user is asked for
feedback on several iterations of the alignment process, where in each iteration
the alignment from the previous iteration is improved [29].

Feedback propagation techniques usually consist of propagating mapping
confidence from validated mappings to those in their neighborhood, be that
neighborhood defined from the structure of the ontologies [31,37,44] or from
the pattern of similarity scores from the various alignment algorithms [8,30].
They usually require that the validation is done during the alignment process or
is iterative, but one form of feedback propagation that systems can implement
regardless of when the validation takes place in the alignment process, is con-
flict detection ({Sys.g}) [18,26]. This consists of testing user validated relations
against the ontologies, report on the violation of logical constraints (e.g., unsat-
isfiable classes), and possibly ask for revalidations of certain relations to resolve
the conflict.

Demand for user involvement in the matching process can be evaluated by
measuring the number of questions (mapping suggestions) the system asks the
user, and comparing it to the actual size of the alignment produced by the
system. The effectiveness with which systems exploit user involvement can be
evaluated by measuring their improvement in performance (in terms of precision
and recall) over the fully automated process, and relating it with the number of
questions asked.
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2.3 User Interface

A graphical user interface (UI) is an indispensable part of every interactive sys-
tem, as the visual system is humans’ most powerful perception channel. Align-
ment validation is a cognitively demanding task that involves a high memory
load – ontologies are complex knowledge-bases, and validating each mapping
requires considering the structure and constraints of two ontologies while also
keeping in mind other mappings and their logical consequences – and thus is all
but impossible without visual support.

Given the complexity of ontologies and alignments, a critical aspect of visu-
alizing them is not overwhelming the user. Humans apprehend things by using
their working memory, which is limited in capacity (it can typically hold 3 ± 1
items) and thus can be easily overwhelmed when too much information is
presented [48]. However, this limitation can be expanded by grouping similar
things, a process called “chunking”, which can be exploited by visualization
designers to facilitate cognition and reduce memory load [39]. For instance,
encoding properties of entities and mappings with different graphical primitives
facilitates their identification and enables their chunking.

Another critical aspect of ontology alignment visualization is providing the
user with sufficient information to be able to decide on the validity of each map-
ping, which includes lexical and structural information in the ontologies, and
potentially other related mappings. This naturally competes with the need not
to overwhelm the user with information, and a balance between the two must be
struck. As we discussed in Subsect. 2.1, different user types are likely to have dif-
ferent information requirements, and alignment systems must cater to all.

The Visual Information Seeking Mantra, {UI.a}, [45] defines seven low-
level tasks to be supported by information visualization interfaces in order to
enable enhanced data exploration and retrieval: overview, zoom, filter, details-
on-demand, relate, history, and extract. The former six of these were further
refined for the purpose of ontology visualization [27], and all are relevant in
the context of striking a balance between providing information and avoiding
memory overload.

Providing enhanced information while addressing the working memory lim-
its is also the goal of the field of visual analytics, {UI.b}, which combines
data mining and interactive visualization techniques to aid analytic reasoning
and obtain insights into (large) data sets. The application of visual analytics to
ontology alignments facilitates their exploration and can provide quick answers
to questions of interest from the users [2,6,8,32,34].

Another technique at the disposal of alignment systems is that of providing
alternative views {UI.c} [6,17,29,34]. Different views may be more suitable for
performing different tasks – for instance, graphs are better for information per-
ception, whereas indented lists are better for searching [19] – and by providing
alternate views, systems need not condense all relevant information into a single
view, and thus avoid overwhelming the user. Also relevant in this context are main-
taining the user focus in one area of the ontology [37], and preserving the user’s
mental map (e.g., by ensuring that the layout of the ontology remains constant).
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Two strategies that facilitate chunking are grouping mappings together by
different criteria to help identify patterns {UI.d}, and distinguishing between
different types of mappings and their provenance {UI.e} – particularly between
validated and candidate mappings [17]. Color-coding is a common and effective
technique for implementing both strategies.

With regard to facilitating the decision making process, showing context and
definitions of terms {UI.f} is essential, and providing recommendations and/or
ranking ({UI.g}) facilitates the process by allowing the user to focus on a specific
set of mappings. Also important is the explanation of mapping suggestions
by presenting the provenance of, or justification for, a mapping ({UI.h}). Like-
wise, the user should be provided with feedback about the consequences of his
decision {UI.i} about a mapping with regard to the alignment and ontologies,
possibly through a trial execution [17].

Justifications have been identified as one of the future challenges of ontology
alignment, given that many alignment systems merely present confidence values
for mappings as a form of justification [38]. They require particular attention
to the user type: domain experts will require detailed contextual information
and a clear explanation of how a mapping suggestion was inferred, whereas for
knowledge engineers summarized provenance information might suffice.

Three distinct justification approaches have been identified [13]: proof pre-
sentation, strategic flow, and argumentation. In the proof presentation approach,
the explanation for why a mapping suggestion was created is given in the form
of a proof, which can be a formal proof, a natural language explanation (e.g.,
[17,47]), or a visualization (e.g., [29]). In the strategic flow approach the expla-
nation is in the form of a decision flow which describes the provenance of the
acquired mapping suggestion (e.g., [10,15]). Finally, in the argumentation app-
roach, the system gives arguments for or against certain mapping suggestions,
which can be used to achieving consensus in multi-user environments.

In addition to providing visual information to support the decision process,
alignment systems need to provide functionalities for the user to interact with the
alignment in order to validate it. The most basic level of interaction is to allow
the user to either accept or reject mapping suggestions {UI.j}. Additionally, the
functionality of adding a mapping manually or refining a mapping suggestion
{UI.k} is also important, since the system may not have captured a mapping
that is required according to the user, or may not have correctly identified the
mapping relationship [1,6,15,16,29].

An important functionality is searching and filtering {UI.l}, which con-
tributes to minimize the user’s cognitive load [1,6,17,34]. It is relevant to enable
searching/filtering both of the ontologies (e.g., to analyze the structural context
of a mapping suggestion, or look for a concept to map manually) [17,34] and of
the mapping suggestions themselves [6,17,29].

Given the extension of the validation process, allowing the user to add meta-
data in the form of annotations {UI.m} [17,29], and accommodating interrup-
tions or sessions {UI.n} are important functionalities. However, while many
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systems enable interruptions through saving and loading the ontologies and
alignment, this often does not preserve the provenance information.

Finally, allowing the creation of temporary mappings {UI.o} in order to test
decisions is a relevant functionality for supporting the decision process [34], as
is enabling trial execution to help the user understand the consequences of his
decisions {UI.i} [17].

3 Evaluation

In this section, we assess how state of the art ontology alignment systems take
into account the three aspects discussed above: user profile, system services, and
user interface. We start by surveying systems and evaluating them qualitatively
with regard to key features of their interfaces and services for processing user
input in Subsect. 3.1. Then, we assess the impact of erroneous user input to the
system through a series of experiments from the Interactive Matching track of
OAEI 2015 in Subsect. 3.2. In these experiments, we simulate user input with
varying error rates, which can reflect lack of user of expertise, but also limita-
tions of the system’s user interface. How these errors impact the alignment is
dependent on the system services.

3.1 Qualitative Evaluation

We performed a qualitative evaluation of state of the art systems that incorpo-
rate user validation in the alignment process and have a mature user interface:
AgreementMaker [6,8,9], AlViz [34], AML [18,41], CogZ/Prompt [16,17,37], COMA
[1], LogMap [26], RepOSE [23], and SAMBO [29,31]. The results of this evaluation
are summarized in Table 1.

Regarding system services, the majority of the systems ask for validations
after running the matching algorithms (AgreementMaker, AlViz, AML, LogMap,
and RepOSE), CogZ/Prompt involves the user during the alignment process, while
SAMBO and COMA allow validations both before and after the alignment process.
AgreementMaker, COMA, SAMBO, and RepOSE also allow multiple iterations of the
alignment process, and allow for user involvement in multiple validation sessions.

The majority of the systems use some form of thresholds to select mapping
suggestions to present to the user for validation. AML and AgreementMaker use a
more refined strategy for identifying “problem” mappings to present to the user,
which relies on the variance of the similarity scores of their various alignment
algorithms. LogMap presents mapping suggestions that cause the violation of
alignment principles such as consistency, locality, and conservativity.

With respect to feedback propagation, most systems implement at least a
conflict detection mechanism, such as checking if the validated mapping contra-
dicts previously validated mappings or results in an incoherent or inconsistent
integrated ontology (AML, CogZ/Prompt, LogMap, SAMBO, RepOSE). AlViz does
not implement such mechanisms and accepts user’s feedback without any addi-
tional steps. AgreementMaker employs a blocking propagation strategy where the



208 Z. Dragisic et al.

T
a
b
le

1
.
Is

su
es

re
g
a
rd

in
g

u
se

r
in

te
ra

ct
io

n
in

o
n
to

lo
g
y

a
li
g
n
m

en
ts

a
d
d
re

ss
ed

b
y

st
a
te

-o
f-
th

e-
a
rt

sy
st

em
s

Is
su

e
A
gr
ee
m
en

t
m
ak
er

A
lV
iz

A
M
L

C
og

Z
P
ro
m
pt

C
O
M
A

Lo
gM

ap
SA

M
B
O

R
ep

O
SE

S
y
st
e
m

se
rv

ic
e
s

S
ta

g
e
o
f

in
v
o
lv
e
m

e
n
t

{S
y
s.
a
}-

b
e
fo
re

,
{S

y
s.
b
}-

a
ft
e
r,

{S
y
s.
c
}-

d
u
ri
n
g
,
{S

y
s.
d
}-

it
e
ra

ti
v
e

{S
y
s.
b
+
d
}

{S
y
s.
b
}

{S
y
s.
b
}

{S
y
s.
c
}

{S
y
s.
a
,b

+
d
}

{S
y
s.
b
}

{S
y
s.
a
,b

+
d
}

{S
y
s.
b
+
d
}

S
u
g
g
e
st
io
n
s

se
le
c
ti
o
n

{S
y
s.
e
}

th
re

sh
o
ld

/
a
d
v
a
n
c
e
d

fi
lt
e
ri
n
g

�
�

-
�

-
�

-
�

�
-

�
-

F
e
e
d
b
a
c
k

p
ro

p
a
g
a
ti
o
n

{S
y
s.
f}

re
c
o
m

p
u
ta

ti
o
n

�
-

-
�

�
-

�
�

{S
y
s.
g
}

c
o
n
fl
ic
t
d
e
te

c
ti
o
n
/

b
lo
c
k
in

g
/
re

v
a
li
d
a
ti
o
n

�
-(
*
)

-
�

-
�

-
-

-
�

-
-

�
-
-

�
-

U
se

r in
te

rf
a
c
e

A
li
g
n
m

e
n
t
p
re

-

se
n
ta

ti
o
n

{U
I.
a
}

7
v
is
u
a
l
in

fo
-s
e
e
k
in

g
ta

sk
s

�
�

�
-

�
�

-
-

-
�

-
-

�
-
-

{U
I.
b
}

v
is
u
a
l
a
n
a
ly
ti
c
s

�
�

-
-

-
-

-
-

-

{U
I.
c
}

a
lt
e
rn

a
ti
v
e
v
ie
w
s

�
�

�
�

-
-

�
-

{U
I.
d
}

g
ro

u
p
in

g
�

�
�

�
-

-
�

�
{U

I.
e
}

v
a
li
d
a
te

d
/
c
a
n
d
id

a
te

m
a
p
p
in

g
s

�
-

�
-(
*
*
)

�
�

�
-
-(
*
*
)

-
�

-
�

-

{U
I.
f}

m
e
ta

d
a
ta

&
c
o
n
te

x
t

�
-

�
�

-
�

�
-
-

�
-

{U
I.
g
}

ra
n
k
in

g
/
re

c
o
m

m
e
n
d
a
ti
o
n
s

-
�

-
-

�
-
-

�
-
-

-
�

-
-

�
M

a
p
p
in

g

e
x
p
la
n
a
ti
o
n

{U
I.
h
}

p
ro

v
e
n
a
n
c
e

&
ju

st
ifi

c
a
ti
o
n

�
-
-

�
-
-

�
-

�
-

�
-
-

�
-
-

-
�

-
-

{U
I.
i}

im
p
a
c
t
o
f

d
e
c
is
io
n
s/

c
o
n
se

q
u
e
n
c
e
s
o
f

a
c
ti
o
n
s

�
-

-
-

�
-
-

-
�

-
-

�
-
-

A
li
g
n
m

e
n
t

in
te

ra
c
ti
o
n

{U
I.
j}

a
c
c
e
p
t/

re
je
c
t
m

a
p
p
in

g
�

�
-

�
�

�
-

�
�

�

{U
I.
k
}

c
re

a
te

/
re

fi
n
e
m

a
p
p
in

g
�

�
�

�
�

-
�

�
-

{U
I.
l}

se
a
rc
h

-
�

�
�

�
-

�
-

{U
I.
m
}

u
se

r
a
n
n
o
ta

ti
o
n

-
-

-
�

-
-

�
-

{U
I.
n
}

se
ss
io
n

�
-

�
-

�
-

�
-

�
�

�
�

-

{U
I.
o
}

c
re

a
te

te
m

p
o
ra

ry
m

a
p
p
in

g
-

�
�

-
�

-
-

-
-

In
th

e
ta

b
le

�
m

a
rk

s
th

a
t

a
ll

o
f
th

e
li
st

ed
it

em
s

a
re

su
p
p
o
rt

ed
b
y

th
e

sy
st

em
w

h
il
e

-
m

a
rk

s
th

a
t

th
e

is
su

e
is

n
o
t

co
v
er

ed
b
y

th
e

sy
st

em
.

C
o
m

b
in

a
ti

o
n
s

su
ch

a
s

�
-

a
n
d

�
-

-
m

a
rk

th
a
t

o
n
e

o
r

tw
o

o
f

th
e

li
st

ed
it

em
s

a
re

n
o
t

su
p
p
o
rt

ed
.

(*
)

in
a

m
u
lt

i-
u
se

r
en

v
ir

o
n
m

en
t;

(*
*
)

ca
n
d
id

a
te

a
n
d

va
li
d
a
te

m
a
p
p
in

g
s

ca
n
n
o
t

b
e

d
is

ti
n
g
u
is

h
ed

in
th

e
u
se

r
in

te
rf

a
ce



User Validation in Ontology Alignment 209

user can control to how many similar instances the validation is propagated.
Revalidation is supported by AML and RepOSE as a part of the conflict reso-
lution phase. AgreementMaker, CogZ/Prompt, COMA, RepOSE and SAMBO employ
some form of recomputation, where the user’s input is used to guide the matching
process. For example, AgreementMaker propagates the user’s decision to similar
mappings thus increasing/decreasing the similarity value.

Regarding the representation of the ontologies and the alignment, systems
typically represent ontologies as trees or graphs. Graphs are usually used as an
additional representation (AlViz, CogZ) and rarely as a main representation (AML,
RepOSE). Mappings are typically represented as links between corresponding
nodes, or sometimes as a list/table of pairs (AML, SAMBO, CogZ, COMA, LogMap).
The list/table view is used to support different interactions by systems. About
half of the systems support more than one view of the alignments and ontologies,
often a tree and a graph view which are more suitable for different alignment
tasks [19]. Most of the systems employ strategies to group the mappings together:
SAMBO presents all mappings for a particular concept together, CogZ, AML,
LogMap, and RepOSE show the local neighborhoods of a mapping up to different
number of levels. AgreementMaker and AlViz combine the different views with
clustering algorithms and interaction techniques to support the comparison of
the similarity values calculated by the different matchers (AgreementMaker) or
clustering nodes of the ontologies according to a selected relationship (AlViz).

Most systems also provide detailed information for mappings individually,
such as the context of the mapping and its state (e.g., whether it is accepted).
However few systems provide interface support for features regarding explain-
ing the mappings, such as why the system has suggested the mapping or how
the current validation would affect other candidate or validated mappings. Most
systems provide only a similarity value or employ color coding as a form of expla-
nation for the mapping, which is insufficient for users to make informed decisions
(one exception is CogZ which shows a short natural language explanation for the
mapping). Thus our evaluation survey confirms findings from [24] that explana-
tions for mappings suggestions are not well supported by the user interfaces of
alignment systems, and continues to be a challenge for the alignment commu-
nity [46]. Ranking and recommendation functionalities are also rarely provided
by systems.

Interactions for accepting, rejecting and creating mappings manually are sup-
ported by most of the systems but the different systems do not always present
this information to the user – rejected mappings for instance are rarely shown.
AlViz and COMA do not distinguish between validated and candidate mappings,
thus the user cannot keep track of already visited mappings. Creating temporary
mappings is supported by AlViz, AML, and CogZ. Interactions to support the 7
information visualization seeking tasks are provided to a different extent by the
different systems with overview usually supported and filter, history and relate
rarely supported. Search is often supported but a previous survey of some of
these systems found serious limitations [24]. Two systems (CogZ and SAMBO)
allow the user to annotate mappings during the validation process. Sessions are
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directly (COMA, LogMap, SAMBO) or indirectly (by saving and loading files) sup-
ported by all systems.

3.2 Experiments in the OAEI Campaign

The Interactive Matching track of OAEI was extended in 2015 to take into
account erroneous user validations and assess varying error rates and their
impact of the performance of alignment systems [4]. Systems were evaluated
according to their performance in terms of precision and recall versus the refer-
ence alignments, as well as in terms of number of interactions required and time
between interactions.

Although the original purpose of introducing error rates in the Interactive
Matching track was to simulate users with different expertise levels, the results
can be interpreted and discussed in a broader light with regard to how system
services are affected by and cope with errors, irrespective of their cause.

3.2.1 Setup and Systems

The OAEI SEALS client1 allows interactive systems to pose questions regarding
the correctness of a mapping to an oracle, which will simulate a user by checking
the reference alignment from the respective OAEI task, and answering with a
predefined error rate. In this experiment the error rates considered were 0 %
(perfect oracle), 10 %, 20 % and 30 %. Systems were evaluated on three datasets
from the OAEI: Conference (16 small ontologies), Anatomy (2 medium-sized
ontologies) and LargeBio (3 large ontologies). For the sake of brevity, we will
present only results for the Anatomy track, as the other results are similar (they
can be found in [4]).

The systems that participated in the OAEI 2015 Interactive track were AML,
JarvisOM, LogMap and ServOMBI. We note that not all of these systems have user
interfaces, but they implement an interface to communicate with the oracle,
so we can automatically evaluate the impact of the user input to the resulting
alignment. We could not evaluate other systems with this experimental setup,
as it requires compliance with the OAEI’s SEALS client.

Apart from JarvisOM, which involves the user during the computation of the
alignment, the systems all make use of user interactions exclusively in post-
alignment steps. Both LogMap and AML request feedback on selected mapping
suggestions and filter mapping suggestions based on the user validations. The
former interacts with the user to decide on mapping suggestions which are not
clear-cut cases, whereas the latter employs a query limit and other strategies to
minimize user interactions. ServOMBI asks the user to validate all of its mapping
suggestions and uses the validations and a stable marriage algorithm to decide
on the final alignment. JarvisOM is based on an active learning strategy known as

1 The SEALS client is the infrastructure used in the OAEI to automate the evaluation
of ontology matching systems http://oaei.ontologymatching.org/2016/seals-eval.
html.

http://oaei.ontologymatching.org/2016/seals-eval.html
http://oaei.ontologymatching.org/2016/seals-eval.html
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query-by-committee: at every iteration JarvisOM asks the user for pairs of enti-
ties that have the highest disagreement between committee members and lower
average euclidean distance, and at the last iteration, the classifiers committee is
used to generate the alignment.

3.2.2 Results and Discussion

The evaluation results for the Anatomy track are shown in Table 2. As expected,
the performance of all systems improves when they have access to an all-knowing
oracle (Or0 in the table) in comparison with their non-interactive performance

Table 2. Interactive anatomy alignment evaluation

Oracle System P/F/R P/F/R Or TReq DReq TP TN FP FN Size

N/A AML .96/.94/.93 - − − − − − − 1477

JarvisOM .36/.17/.11 - − − − − − − 458

LogMap .92/.88/.85 - − − − − − − 1397

ServOMBI .96/.75/.62 - − − − − − − 971

Or0 AML .97/.96/.95 .97/.96/.95 312 312 73 239 0 0 1491

JarvisOM .86/.75/.67 .86/.75/.67 7 7 4 3 0 0 1173

LogMap .98/.91/.85 .98/.91/.85 590 590 287 303 0 0 1306

ServOMBI 1/.76/.62 1/.76/.62 2136 1128 955 173 0 0 935

Or10 AML .96/.95/.95 .97/.96/.95 317.3 317.3 66.3 218 23 10 1502

JarvisOM .76/.68/.67 .76/.68/.67 7 7 3.3 3 0.3 0.3 1475

LogMap .96/.89/.83 .96/.89/.83 609 609 261.3 288.3 33.7 25.7 1302

ServOMBI 1/.71/.55 1/.74/.59 2198.7 1128 857.3 156.3 16.7 97.7 843

Or20 AML .94/.94/.94 .97/.96/.95 321.7 321.7 66.3 186.7 52.3 16.3 1525

JarvisOM .53/.60/.71 .53/.60/.71 8 8 4.7 1 1.3 1 2055

LogMap .95/.88/.82 .95/.88/.81 630 630 233 274 69 54 1321

ServOMBI .99/.66/.49 1/.71/.55 2257 1128 767.3 131.3 41.7 187.7 758

Or30 AML .93/.93/.94 .97/.96/.95 306 306 54 168.7 61.3 22 1526

JarvisOM .51/.49/.53 .51/.49/.53 7.3 7.3 4 1.7 1 0.7 1509

LogMap .94/.87/.82 .92/.86/.80 663 663 200.7 270.7 105.3 86.3 1334

ServOMBI .99/.60/.43 1/.68/.52 2329.7 1128.3 663.3 129 44.3 291.7 659

Systems were evaluated with user interactions simulated by an oracle with different
error rates (Orx corresponds to an error rate of x%) and without user interactions
(N/A). The “P/F/R” column shows the Precision, F-measure and Recall obtained
in the task; the “P/F/R Or” column shows the same parameters with respect to
oracle, i.e., as if the errors made by the oracle were instead correct; “TReq” and
“DReq” correspond respectively to the total number of requests and the number of
distinct requests made by the system to the oracle; “TP”, “TN”, “FP” and “FN”
are respectively the number of True Positive, True Negative, False Positive and False
Negative answers given by the oracle; and “Size” indicates the number of mappings
in the alignment produced by the system. All values in interactive settings with non-
zero error rate are averages over 3 runs, to dilute the variance of the oracle errors.
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(N/A in the table). Also as expected, when we increase the oracle’s error rate,
we observe that the performance of all systems deteriorates. However, it takes an
error rate of 30 % for the user interaction not to be beneficial to most systems,
which corroborates the observations in [26]. The way in which the systems exploit
user interactions, how they benefit from them, and how they are affected by
errors are very different.

AML is the only system that improves more in terms of recall than in terms
of precision with user interactions, because it exploits them in part to test map-
pings with lower similarity scores than it accepts in non-interactive mode. This
is why it is the system that asks the most negative questions from the oracle,
proportionally. As a result, when the error rate increases, AML’s precision drops
below the non-interactive precision (at 20 %), but its recall remains higher than
the non-interactive recall. AML is also the only system that is affected linearly
by the errors, as evidenced by the fact that its performance as measured against
the oracle (i.e., assuming the oracle errors are instead correct) remains constant
at all error rates. This means that, unlike the other three systems, AML does
not extrapolate from the user feedback about a mapping to decide on the clas-
sification of multiple mapping candidates. While extrapolation (be it through
active learning, feedback propagation, or other techniques) is an effective strat-
egy for reducing user demand, it also implies that the system will be more heavily
impacted by user errors.

JarvisOM is the system that most depends on user interactions, as evidenced
by the very poor quality of its non-interactive alignment. Thus, it is the system
that most improves with user interactions, and the only one that improves sub-
stantially in both precision and recall. It is also the one that makes the least
requests from the oracle – only 7–8 requests per alignment – as it uses these
requests in an active learning approach rather than to validate a final align-
ment. This means it is the system that extrapolates the most from the user
feedback, which as expected, makes it the one that is most affected by user
errors – its F-measure drops by 26 % between 0 and 30 % errors. However, it
depends so heavily on user interaction, that even at 30 % errors, its results are
still better than the non-interactive ones. JarvisOM is also the system where the
impact of the errors most deviates from linearity, precisely because it extrap-
olates from so few mappings. Another curious consequence of this is that its
alignment size fluctuates considerably, increasing to almost double between 0
and 20 % errors, but then decreasing again at 30 % errors. It should be noted
that JarvisOM behaves very differently in the Conference track [4], showing a
linear impact of the errors, as in that case less inferences are drawn from its
7–8 oracle requests because they represent ∼50 % of the Conference alignments
(whereas in Anatomy they represent 0.5 %).

LogMap improves only with regard to precision with user interactions, which
is curious considering it is the most balanced system regarding positive versus
negative oracle answers. This means that, in this particular task, the positive
questions LogMap asks the oracle all correspond to mappings it would also accept
in its non-interactive setting, whereas the negative questions allow it to exclude
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some mappings that it would also (erroneously) accept. Due to the balance
between its questions, when presented with user errors, LogMap is affected with
regard to both precision and recall in approximately equal measure. However,
since its precision increased substantially with user interactions, it remains higher
than the non-interactive precision at all error rates, unlike the recall. Another
interesting observation about LogMap is that the number of requests it makes
increases slightly but steadily with the error rate, whereas other systems show
stable rates. This increase is tied to the fact that user errors can lead to more
complex decision trees when interaction is used in filtering steps and inferences
are drawn from the user feedback. For instance, during alignment repair, if the
user indicates that a mapping that would be removed by the system to solve a
conflict is correct, the system may have to ask the user about one or more alter-
native mappings to solve that conflict, thus increasing the number of requests.
In this context, the present query-based evaluation does not accurately reflect
an interface-based alignment validation, where the user could be shown all the
mappings that cause a conflict simultaneously.

ServOMBI is the system that improves the least with user interaction, showing
an increase of only 1 % F-measure, and like LogMap improves only with regard
to precision. It is also the system that makes the most oracle requests, as it
asks the oracle about every mapping candidate it finds, and the only system
that makes redundant questions (its total number of requests is almost double
that of the distinct ones). Interestingly, it is also the only system that produces
alignments that do not contain all the mappings identified as positive by the user,
as some are apparently discarded by its stable marriage algorithm. Because it
makes so many oracle requests, ServOMBI is strongly affected by user errors,
so much so that at only 10 % errors, user interaction is no longer beneficial in
terms of F-measure. In fact, since 85 % of the questions ServOMBI asks the oracle
are positive, the system would have a better performance (72 % F-measure) by
simply accepting all its mapping candidates than it does at 10 % errors. Because
of its strong bias towards positive questions, ServOMBI feels the impact of the
errors mostly in terms of recall and alignment size, whereas precision is hardly
affected. However, given the number of false positive questions returned by the
oracle at 30 % errors, we would expect a drop in precision as well, but it remains
almost constant as the errors increase. This attests to the ability of this system’s
stable marriage algorithm to filter out user errors. Interestingly, the number of
total oracle requests made by ServOMBI increased with the error rate, even though
the number of distinct requests remains constant – as it should, considering the
system already asks the user about all mapping candidates it identifies. This
means that ServOMBI is making more redundant questions.

4 Conclusions

Despite the advances in automated ontology alignment techniques, user vali-
dation remains critical to ensure alignment quality, due to the complexity and
diversity of ontologies and their domains. In this broad study of user validation
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in ontology alignment, we encompassed three distinct but interrelated aspects:
the profile of the user; the ontology alignment systems services; and their user
interfaces. We assessed the services and user interfaces of state of the art systems
in a qualitative evaluation, and investigated the impact of errors in alignment
validation through a series of experiments that revealed how systems cope with
it, depending on their services.

The profile of the user is a key factor to take into account in alignment
validation, as systems will not be able to rely exclusively on domain experts
for validation, and even domain experts require extensive support for deciding
on the validity of mappings – particularly if they have little technical expertise
regarding ontologies and knowledge engineering. Thus, it is up to alignment
systems’ user interfaces to provide rich contextual information on each mapping.
However, they have to balance that need with the need not to overwhelm the
users with too much information, as humans have limited working memory. To
that end, systems must ensure that their user interfaces convey information in an
intuitive manner, and that while all required information is ready on-click, it is
not all shown simultaneously. A strategy that many systems have implemented to
achieve this is to provide different views of the alignment and/or each mapping.

In order to support user decisions, alignment systems’ user interfaces should
provide detailed explanations about mappings, and allow users to interact with
the alignment in multiple ways, so as to make clear the consequences of accepting
or rejecting a mapping. Allowing users to manually annotate mappings, and
enabling validation over multiple sessions are also important features, due to
the complexity and extensiveness of the validation task. However, these are all
aspects where most current alignment systems have room for improvement.

Given the limited availability of users for alignment validation, systems should
be able to prioritize the mapping suggestions they present to the users, by focus-
ing on mappings about which they are unsure and/or those which cause conflicts.
Systems can further exploit user input by extrapolating on it through feedback
propagation techniques. However, as our experiments have shown, extrapolating
will increase the impact of user errors, so systems should consider the profile of the
user when deciding whether or not to employ feedback propagation. One possible
strategy for that would be to ask the user how confident he is about each mapping,
and only extrapolating on his decision when his confidence is high.

Our study should serve as a starting point towards establishing guidelines
and best practices for good user interface design in the context of ontology
alignment, which our evaluation of state of the art systems has shown to be
necessary. Furthermore, we expect our study to help guide the development of
alignment systems with regard to exploiting user interactions and coping with
user errors.

For future work, we will aim to extend our evaluation by making usability
assays with real users having varying degrees of expertise. We will also refine
our experimental setup to better mirror the manual validation process, namely
by considering the scenario where the user chooses between different conflicting
mappings, rather than evaluating them independently, and by having the user
provide a confidence value rather than a binary classification.
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Abstract. Despite developments of Semantic Web-enabling technolo-
gies, the gap between non-expert end-users and the Semantic Web still
exists. In the field of semantic content authoring, tools for interacting
with semantic content remain directed at highly trained individuals.
This adds to the challenges of bringing user-generated content into the
Semantic Web. In this paper, we present Seed, short for Semantic Edi-
tor, an extensible knowledge-supported natural language text composi-
tion tool for non-experienced end-users. It enables automatic as well as
semi-automatic creation of standards based semantically annotated tex-
tual content with focus on the task of text composition. We point out
the structure of Seed, compare it with related work and explain how it
excels at utilizing Linked Open Data and state of the art Natural Lan-
guage Processing to realize user-friendly generation of textual content
for the Semantic Web. We also present experimental evaluation results
involving a diverse group of 120 participants, which showed that Seed
helped end-users easily create and interact with semantic content with
nearly no prerequisite knowledge.

Keywords: Semantic web · Semantic content authoring · Semantic text
composition · Microdata · LOD · NLP · HCI

1 Introduction

Since the advent of the Semantic Web vision [12], the web has gradually evolved
from a structure of interlinked documents to that of interlinked data. This vision
drove rapid developments in technologies essential for its realization. Develop-
ments in Semantic Web enabling technologies can be seen in the field of mod-
eling and structuring data, where crowd-sourced knowledge repositories such as
DBPedia [13] and Freebase [14] have grown into huge graphs of entities contain-
ing millions of interrelated concepts, which comprise a web of LOD (Linked
Open Data) [8]. In addition to public knowledge repositories, there are pri-
vate ones, which focus on individual or group knowledge [29] (e.g. corporate
knowledge repositories). Also, research on NLP (Natural Language Processing)
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 218–233, 2016.
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techniques underwent great developments in both its syntactical and semantic
variations [17]. Formats for embedding semantic content in web pages (e.g. RDFa
[5], Microformats [4] and Microdata [6]) have also seen growth in their number
and adoption rate. However, despite those developments, a gap between non-
expert end-users and the Semantic Web still exists. This so-called semantic gap
[31] is more evident in the process of creating structured information on the Web,
where tools remain directed almost entirely at highly trained individuals [11].

Seed’s Back-end

+

LOD

Freebase DBPedia

Freebase
APIs

DBPedia
APIs

Seed’s Front-end

DOM
Manipulation APICKEditor Server API

Proxy

Knowledge Layer

LOD component
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CoreNLP

Apache
OpenNLP

NLP component

+

HTML5/JS 
Libraries

Fig. 1. Architecture of Seed

1.1 Related Work

Research about technologies that allow for user-friendly consumption and inter-
action with the existing web of data is gaining traction. SemCards [33] provides
an intermediate ontological representational level that allows end-users to cre-
ate rich semantic networks for their information sphere. OntoAnnotate [32] is
an ontology-based annotation environment for web pages based on RDF [25]
and RDFschema [15]. RDFauthor [34] bases on making arbitrary XHTML views
with integrated RDFa annotations editable. OntosFeeder [23] is a WYSIWYG
tool for annotating text for the news/journalism domain. In [7], authors can use
Epiphany to get RDFa enhanced versions of their articles that link to Linked
Data models.

In [21], the authors surveyed 31 recent primary studies, that dealt with
Semantic Content Authoring (SCA) of textual content. Special focus was made
on 4 of them, namely OntoWiki [9,28], SAHA 3 [24], Loomp also known as
One Click Annotator [26] and RDFaCE [22]. The authors defined SCA as the
tool-supported manual composition process aiming at the creation of documents
which have one of two types:
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(a) fully semantic (i.e. their original data model uses a semantic knowledge
representation formalism).

(b) based on a non-semantic representation enriched with semantic representa-
tions during the authoring process. [21, p. 2]

Among the variety of SCA tools previously mentioned, the One Click
Annotator [19] and RDFaCE have the most similar goals to those of Seed. This
is why we will closely compare them in a later section.

1.2 Contribution

In this paper, we present Seed, short for semantic editor, an extensible knowledge-
supported Web-based natural language text composition tool, which targets non-
experienced end-users. Seed aims at bridging the gap between normal users and
semantically annotated textual content on the Web. It enables automatic as
well as semi-automatic creation of Microdata-annotated [6] HTML-based textual
content without any domain knowledge requirements regarding the underlying
technology or annotation formats. We point out the structure of Seed, explain
how it builds upon developments in the fields of NLP, LOD and other Semantic
Web technologies to provide a user-friendly way of creating and interacting with
knowledge on the Web. We contrast Seed with comparable works and show what
distinguishes it:

As discussed and later demonstrated through experimental evaluation in this
paper, we show that:

– Seed ’s focus on non-expert end-users makes semantics completely transparent
to authors by focusing on the process of text composition, the actual inter-
est of end-users, rather than semantic annotation or the underlying semantic
analysis.

– It realizes more aspects of end-user SCA systems mentioned in [21] such as:
• Real-time annotation during composition, which encourages users to

review and interact with annotations making them more reliable. In that
regard, comparable systems, are better described as a posteriori annota-
tion tools.

• Inline annotations behave like normal text reacting to inserting, delet-
ing or updating characters all while preserving correct clean semantic
markup.

• Going beyond annotation to enable interaction and exploration of knowl-
edge

– It is rigorously evaluated in terms of scale of the evaluation and evaluated
aspects diversity, a much needed practice in Semantic Web research. Our
experimental user study involved 120 participants from various backgrounds,
age-groups and nationalities, we evaluated the usability of Seed, the quality
of content it produces, and the subjective opinion of participants about the
value of using Seed to explore, modify, and create semantic content.
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This paper proceeds as follows: Sect. 2 explains the architecture and imple-
mentation of Seed showing how it builds on open Web technologies and stan-
dards. Section 3 assesses Seed in comparison with two related works and points
out what distinguishes it as a SCA tool. In Sect. 4, we discuss in detail the setup
and results of an experimental evaluation study. Finally, we wrap up and present
examples of future work in the conclusion.

2 Seed Architecture and Implementation

As shown in Fig. 1, Seed consists of 3 loosely-coupled main components: (a)
Knowledge layer, (b) Back-end and (c) Web front-end. Mutual communication
between these components uses standard Web APIs (e.g. REST -based [18] Web
services) to promote interoperability.

2.1 Knowledge Layer

This is a logical component of Seed, which represents the collective body of struc-
tured information available on the Semantic Web. Possible sources of knowledge
integrable in this layer include not only public LOD sources such as DBPedia,
but also any ontology-based knowledge repository. The current implementation
of Seed integrates two LOD sources in its knowledge layer, namely DBPedia and
Freebase. Other knowledge sources can be integrated as shown in Fig. 1.

2.2 Back-End

The second logical component of Seed is subdivided into two sub-components:

NLP Component. This sub-component utilizes state-of-the-art NLP toolkits
to perform tasks such as part of speech tagging (POS), named entity recogni-
tion (NER), coreference resolution, ... etc. The implementation is carried out
in a modular way that eases integrating or swapping various NLP toolkits as
implied in Fig. 1. The current implementation of Seed specifically builds upon
Stanford CoreNLP [27] and Apache OpenNLP [1] to provide a server API capable
of real-time analysis of the text being authored. It also extracts named entity
candidates, which are then processed to discover knowledge. This component
currently supports English and German.

LOD Component. Together with the NLP component, this component com-
municates in real-time with LOD sources to extract information about potential
entities extracted from the text. It is responsible for performing entity disam-
biguation and providing contextual information about discovered entities. The
LOD component does not enforce a specific vocabulary or domain on the front-
end. This has the following benefits for end-user oriented use-cases:
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Fig. 2. Screenshots of multiple configurations of Seed ’s front-end

– freeing the creator of the user interface (UI) in which Seed is to be embedded,
from being restricted by the back-end’s choice and

– elimination of the mental overload on the end-user incurred in understanding
the vocabulary and learning to use it.

However, it is also possible to extend the front-end to enforce a specific vocab-
ulary if the application domain or the use-case at hand dictates it.

2.3 Web Front-End

The current prototype of Seed ’s front-end is meant to run in the browser (see
Fig. 2 for various configurations of Seed in the browser). It is implemented as
a pluggable component suitable for any Web-based UI. Therefore, it is written
completely in HTML5 and JavaScript (JS). Nonetheless, it is also possible to
embed it in non-Web GUIs. The only prerequisite is the availability of an HTML
capable UI element. This flexibility in integrating Seed makes it highly portable
and facilitates reaching end-users dealing with different UI types or different
types of devices. The front-end component consists of the following logical sub-
components.

CKEditor. At the core of the front-end, Seed builds upon CKEditor [2], the
open source WYSIWYG HTML editor. We have extended CKEditor with the
following components:
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Fig. 3. Main parts of Seed ’s front-end: 1- Dropdown menu for viewing, selecting or
rejecting an annotation, 2- Suggested as well as confirmed inline annotations, 3- Entity
side pane for viewing more information about entities in the text, 4- Controls for
Faceted viewing/browsing, 5- Text composition area

DOM Manipulation API. In order to implement inline editing of HTML
content including semantic markup in a reliable usable way, we have built upon
JavaScript (JS) native HTML Document Object Model (DOM) manipulation
constructs, jQuery [3] as well as CKEditor’s own JS APIs to implement a
basic API for monitoring and interacting with the HTML DOM for text editing
purposes.

Server API Proxy. This is JS code that handles communication with the
server in near real-time. It consumes standard RESTful APIs provided by the
NLP and LOD components of Seed ’s back-end to update the semantic represen-
tation of the text as it changes.

Semantic Annotator. The semantic annotator is a JS/HTML extension code
responsible for:

– building upon the DOM manipulation API of Seed to add, remove or update
Microdata annotations during editing. Annotations are applied in the form of
HTML Microdata markup,

– maintaining a client side representation of the knowledge in the text in the
form of entities and their metadata,

– binding between entities and their arbitrary UI manifestations (labels, high-
lights, information panes, images, ... etc.).

HTML5/JS Libraries. For the creation of the various elements of the front-
end, we have used the following main third-party JS/HTML5/CSS libraries:
(jQuery, jQuery Mobile, Mutation Summary and Bootstrap)

As shown in Fig. 3, various parts of the Seed ’s UI allow authors to interact
with the textual and knowledge content of the text being composed.
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3 Comparative Assessment

Despite obviously increasing research interest in the field of SCA, our literature
survey of related work pointed to only a handful of approaches to SCA, which
focus on semantic text composition of natural language text. Fewer are works,
which target end-users in contrast to Semantic Web computer professionals.

In this section, we will assess Seed in comparison with two other SCA tools
(One Click Annotator and RDFaCE) due to their conceptual similarity. Both
tools also follow a bottom up semantic authoring approach like Seed. They tar-
get, at least in part, end-users. Our assessment will start by a tabular comparison
inspired by [21]. We will augment the quality attributes for assessing SCA sys-
tems listed by the authors with additional metrics we suggest to form a basis
for the comparison. According to [21], those quality attributes adopt the point
of view of SCA users (i.e. end-users in our case). For each quality attribute,
concrete UI features should realize the respective quality attribute [21, p. 7].

After the tabular comparison, we will discuss selected comparative aspects
in detail to point out the significance of Seed.

A review of the condensed comparison in Table 1 reveals many advantages of
Seed over One Click Annotator and RDFaCE. For the sake of brevity, we will
elaborate on some of those advantages and suffice to the table entries for the
rest.

No prerequisite knowledge: Seed requires no prerequisite technical knowl-
edge about formats of embedding semantic content, underlying knowledge rep-
resentation models, vocabularies or even the basic terminology of the Semantic
Web. For example, annotating text with information about its semantics, mod-
ifying existing annotations and exploring knowledge about entities beyond the
textual content being authored take place through familiar user interaction sce-
narios. In contrast, other similar works vary from requiring knowledge of triple
representations to learning specific vocabularies.

Real-time annotation: One Click Annotator and RDFaCE require text
authors to explicitly request the annotation of content. This reduces the pro-
ductivity of the text composition task and increases the mental load on authors,
which in turn discourages end-users from reviewing and possibly correcting anno-
tations of the content. Seed, on the other hand, continuously analyzes authored
text and proactively annotates it with semantic information. The reduced effort
required from authors, is expected to encourage them to review and interact
with annotations, thus producing more reliable semantic annotations.

Native annotations: In Seed, annotations behave like normal text. They react
to inserting, deleting or updating characters intuitively and consistently, thus
producing correct semantic markup. In comparable systems like RDFaCE, once
annotations are created, attempts to modify them break the semantic markup.

Focus on knowledge: In addition to generating semantic content, Seed focuses
on enabling users to consume the underlying knowledge in a high level fashion
and through different views. As shown in Figs. 2 and 3, it provides multiple views
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Table 1. SCA quality attributes assessment of Seed. Table layout adapted from [21,
p. 12]

One click annotator RDFaCE Our system (Seed)

Online demo N/A rdface.aksw.org/ tiny.cc/seed-demo

Experimental evaluation 12 non-expert participants,

paper prototype user

study

16 experienced

participants

120 non-expert &

expert subjects,

online experiment

Usability

Single entry point Yes Yes Yes

Faceted browsing No No Yes

Faceted viewing Yes Yes Yes

Inline editing No Yes Yes

View editing No No Yes

Native annotations No No Yes

Automation

Automatic annotation No External NLP APIs Own server API

Generalizability

Multiple ontologies

support

Yes Yes Yes

Ontology modification

support

No No No

Heterogeneous content

formats

no No No (only standard HTML5)

Collaboration

Access control No No Yes

Standard formats support RDF & RDFa RDFa & Microdata Microdata

UIs for social

collaboration

No No (Depends on Web UI)

Customizability

Living UIs No No No

Providing different

semantic views

No Yes Yes

Evolvability

Resource consistency No No Yes

Document & annotation

consistency

Yes Yes Yes

Versioning No No Yes

Proactivity

Resource suggestion Yes Yes Yes

Real-time semantic

tagging

No No Yes

Concept reuse Yes No Yes

Real-time validation No No Yes

Portability

Cross-browser

compatibility

Yes Yes Yes

Mobile UI support No No No

Accessibility

Accessible UIs No No No

Interoperability

Standard formats RDF & RDFa RDFa & Microdata Microdata

Semantic syndication No No No

Scalability

Caching support No No No

Storage strategy Server-side triple store On the fly

client-side triple

store

Triple store or live LOD

+ client-side

in-memory storage

http://rdface.aksw.org/
http://tiny.cc/seed-demo
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to the underlying semantics on annotations. By means of a faceted view, authors
can have a high level view of the entities mentioned in the text and are able to
explore information about the entities derived from LOD sources.

Rigorous evaluation: To our knowledge, no other comparable system has been
as rigorously evaluated as Seed, neither in terms of the scale of the evaluation,
the target test-subject audience or the diversity of evaluated aspects. RDFaCE
for example, has been evaluated by 16 participants from a computer science
background participating in a LOD workshop [22].

4 Experimental Evaluation

A comparative experimental evaluation with other works such as RDFaCE and
One Click Annotator, which involved 120 participants was not feasible in the
scope of our study. Reasons include the lack of publicly accessible functioning
prototypes/demos of other works. Besides, the scale of the experiment and the
practical time limits for an online evaluation made it impossible for us to eval-
uate other works using the same procedure without substantially shrinking the
population. So, we focused instead on evaluating Seed while providing enough
information for reproducing the evaluation by others 1.

4.1 Goals

As previously mentioned, an important yet missing aspect of research on SCA
is user studies of sizable scale involving ordinary non-expert users. Most of the
studies in the field propose conceptual ideas, which are seldom put to reasonable
evaluation. Therefore, we have set out to target a large group of Web-users with
the following goals in mind:

1. Show that Seed is a highly usable and easy-to-learn semantic text composition
tool, which hides the complexity of the underlying technology, thus enabling
Semantic Web end-users to focus on the process of textual content generation.

2. Enable end-users with no prerequisite knowledge to produce standards based
semantically annotated textual content.

3. Proactively help end-users to explore, and interact with knowledge from the
Semantic Web (LOD in our case) while composing textual content.

4.2 Design

The evaluation was designed as a within-subjects repeated measures experiment.
All participants were exposed to the same conditions. The independent variables
of the study were:

1. The number of text passages
2. The length of each passage
3. The number of entities in each passage
1 Evaluation data available at http://tiny.cc/seed-iswc2016-data.

http://tiny.cc/seed-iswc2016-data
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4.3 Procedure

We have set up an evaluation website at http://tiny.cc/seed-demo and prepared
the experiment, which consisted of the following stages:

– User registration, where participants were asked to provide information about
themselves for demographic profiling and validation purposes.

– Once registered, participants watched a 3 min. video1 that explained the con-
cept of Seed in a non-technical way. We refrained from detailed descriptions
of technical aspects of the system in order to properly measure its learnability
by non-experts.

– Participants were then asked to review and annotate 3 text passages using
Seed. Every participant started with a pre-loaded text. The user then reviewed
automatic annotations by Seed as well as annotation suggestions that (s)he
could confirm, modify, reject or augment.

– Afterwards, participants were asked to type in a predefined text passage into
Seed, which gets annotated in real time and reviewed during writing. Then,
participants are asked questions to test their understanding of the text and
validate their attention to the experiment. Answers helped us later pre-process
data and eliminate non-serious participants.

– Finally, participants were asked to fill in a standardized usability questionnaire
to assess participants’ satisfaction with the perceived usability of the system,
then answer additional questions about Seed.

4.4 Participants

The evaluation received 256 registrations, of which 120 completed the experi-
ment. Table 2 shows demographic information about participants.

Table 2. Demographics of the participants population

Characteristics Percentages

Age 15–25 years (47%), 25–35 years (42%), 35–45 years (9%), 55–65
years (2%)

Gender Males (61%), Females (39%)

Profession Undergraduate students (31%), graduate students (23%),
computer professionals (20%), non computer professionals
(19%), researchers (7%)

Nationality Egypt (59%), Germany (14%), India (8%), Jordan (3%),
Pakistan (3%), Palestine (2%), others (11%)

1 Seed, the Semantic Editor - http://tiny.cc/seed-video.

http://tiny.cc/seed-demo
http://tiny.cc/seed-video
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4.5 Measures

For the assessment of semantic annotations, we calculated precision, recall and
F-1 scores of annotations done by participants for all texts. For assessing learn-
ability, we measured the time required for reviewing and annotating texts in the
repeated measures part of the experiment. For assessing the perceived usability
of the system, we measured the System Usability Scale score (SUS) for Seed

4.6 Semantic Annotations Assessment

For the choice of texts to be authored and annotated in the experiment, we pro-
vided all participants with a set of text passages to achieve as much consistency
as possible in regard to the length of text, the number of entities mentioned,
their types and the subject domain. To compensate for the small size of dataset
we targeted a large participants population. The outcome of the experiment was
then assessed against a ground truth version of the set of texts.

The texts used in the experiment were produced as follows. We selected 3
representative text passages from different subject domains (news articles, wiki
articles, and blog posts) to control the subject domain familiarity variable. The
fourth passage was arbitrarily selected to be from the wiki articles domain.

To create a ground truth for assessing annotations in the text passages, 3
different human annotators separately annotated named entities of type person,
location or organization by hand. We restricted types of annotations in the
ground truth to the three mentioned types to parallel the most widely used 3-
class model in state of the art NLP tools. Only annotations agreed upon by 2 or
more annotators were added.

In order to evaluate Seed ’s ability to produce correct annotations during text
composition, we calculated Precision, Recall and F-1 scores for annotations in
all passages submitted by participants as shown in Table 3.

Table 3. Annotation performance measures assessment

Avg. recall Avg. precision Avg. F1

Passage 1 0.80 0.79 0.79

Passage 2 0.89 0.97 0.93

Passage 3 0.76 0.88 0.80

Passage 4 0.89 0.93 0.91

For the calculation of the performance measure values, we considered an
entity annotation correct if it was:

– correctly recognized (i.e. there is an entity and its token delimiters were iden-
tified by the author)

– disambiguated and correctly mapped to a LOD entity from DBPedia or Free-
base
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The values in Table 3 show that Seed helped automatically annotate the
majority of the entities in the text already at the text authoring stage.

The following interesting observations resulted from the performance mea-
sures assessment for all texts:

On average 38.2 % percent of participants annotated more entities in total
than existed in the ground truth. This is a valuable remark because it shows that
Seed ’s support for annotation during text composition goes beyond the limita-
tions of state-of-the-art NLP models. On average 13.5 % percent of participants
submitted more correct annotations than the total number of annotations in the
ground truth. This shows that the annotations submitted by participants are
not only more but also correct.

4.7 Usability Evaluation

System Usability Scale Score. At the end of the experiment, we prompted
users to fill in a questionnaire which consisted of a standard SUS form in addition
to two questions we added. As defined by [16], scores of individual items in a
SUS are not meaningful on their own. So, we calculated the overall SUS score
for Seed across the population of participants, which resulted in an overall SUS
score with mean: 73.56, median: 75, standard deviation of 13.71. According to
[16], this means Seed has above average usability. In order to assess the statistical
significance of the SUS results, we performed a one sample Z-test on the SUS
scores of the participants.

Following Sauro’s notion in [30], we defined our hypotheses as follows:

– Null Hypothesis, H0: It’s predicated that Seed’s SUS score is at most around
average (μ ≤ 70).

– Alternate hypothesis, Ha: Seed’s SUS score above average (μ > 70).

The results of the Z-test showed that SUS scores for Seed in our experiment
(μ = 73.96, σ = 13.94) are significantly higher than the predicated SUS score of
70 (z = 2.71, p = 0.0034). According to [10], we can confidently say that Seed’s
SUS score is between good and excellent.

Interactive Inline Annotations. In order to assess the effect of interactive
inline annotations in authored text in Seed on its overall usability, we asked par-
ticipants the following two alternating tone questions with answers varying on a
5-degree scale (0 to 4), from “strongly disagree” to “strongly agree” respectively:

– The annotated entities helped me to understand the written content
– Entities annotated in the text distracted me from reading the content

A clear majority of users found the annotations not distracting. The answers
to the negatively formulated question had a median= 1 and a mean= 1.42.
They also found them helpful in understanding the content of the text they were
annotating. Answers to the positively formulated question had a median= 3 and
a mean= 2.85.
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Real-Time Annotation. In order to assess the value of real-time annotation,
we asked participants the following question:

“Which of the following options would you prefer more?”

(a) Annotating entities as you write them
(b) Annotating once after you finish typing the text
(c) No preference

According to responses, 55.5555 % � 55.6 % of the participants chose (a),
38.8888 % � 38.9 % chose (b) while 5.5555 % � 5.6 % expressed no preference. It
is worth mentioning that many of the users who chose (b) justified their choice
by the relative simplicity of the topic of the 3 passages or by the irrelevance to
a personal context of theirs.

Faceted Viewing and Knowledge Discovery. These important features of
Seed ’s UI aim at enabling end-users to easily explore and consume knowledge
about content of the text being authored. In order to evaluate these features,
we asked users questions whose answers are not contained in a passage, but are
available through the entity summary side pane of Seed as well as through the
interactive annotation information pane. The results of users answers were as
follows:

– For the questions, whose answers required looking into the information in
the entity side pane or in the interactive annotation info pane, 94.9 % of the
participants managed to find the correct answer.

– For the question, whose answer is most easily accessible by faceted browsing,
51.5 % of the participants managed to find the answer.

To check whether participants had looked up the answer elsewhere, we asked
them how they found it. For those who correctly answered at least one question,
93.9 % did so using Seed ’s features. This showed that Seed successfully helped
participants discover knowledge about the content. The results hint at the need
for further inspection of the design of the faceted browsing feature (Fig. 3).

Learnability. To assess how fast participants learned to use Seed, we carried
out the following:

– We measured the time required for annotating each of the first 3 text passages
for all of participants.

– Outliers were eliminated using a two-sided Iglewicz and Hoaglin’s robust test
for multiple outliers [20].

– To account for varying length of the texts, we calculated the time per word in
each passage.

– In order to check for statistically significant differences in mean times per
word required for annotating texts, a repeated measures ANOVA with a
Greenhouse-Geisser correction determined that mean time per word dif-
fered statistically significantly between passages (F (1.89, 177.696) = 17.09,
P < .0005). Post hoc tests using the Bonferroni correction revealed that
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Fig. 4. Mean time per word required to annotate text passages. An overall decreasing
trend is seen, which signals the speed of learning of users

time/word decreased from passage 1 to passage 2 (1.26 ± 0.77s vs 0.79 ±
0.45s, respectively), which was statistically significant (p < .0005). Also,
time/word decreased from passage 1 to passage 3 (1.26±0.77s vs 0.96±0.62s,
respectively), which was also statistically significant (p = 0.005). However,
time/word slightly increased from passage 2 to passage 3 (0.79 ± 0.45s vs
0.96 ± 0.62s, respectively), which was not statistically significant (p = 0.055).
Therefore, we can conclude that an overall decreasing trend exists from pas-
sage 1 on one hand and passage 2 or 3 on the other hand.

To explain the slight increase in passage 3 time, we further inspected annotation
data and qualitative feedback collected in the experiment. Deteriorating perfor-
mance measures for passage 3 combined with re-occurring comments regarding
passage 3 about the inability to annotate overlapping entities such as “Old Town
Hall” and “New Town Hall” in a sentence containing the text “Old and New
Town Hall” provide an explanation for the apparent increase. It also highlights a
technical limitation in dealing with overlapping entities in HTML based seman-
tic annotations. Attempts to annotate pairs of overlapping entities is not easily
doable in HTML markup due to its hierarchical nature (Fig. 4).

5 Conclusion

In previous sections, we highlighted the importance of bridging the gap between
end-users and the Semantic Web. We presented Seed, a user-friendly semantic
text composition tool, which brings technical non-experts closer to the Semantic
Web. It allows them to benefit from, interact with, and create semantic content
in the form of semantically annotated HTML-based text. We showed how it
realizes real-time annotation during authoring, thus encouraging end-users to
review, possibly add annotations as they write. Using rigorous experimental
evaluation involving a sizable, diverse population of 120 participants, we assessed
our hypotheses about Seed. Results showed that it enabled users to produce
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semantically annotated textual content in a reliable way. By means of a standard
SUS evaluation, Seed proved highly usable, not only in annotating content, but
also in exploring knowledge about it.

The outcome of this paper gives insight into future work research questions.
The loosely-coupled architecture of Seed combined with the fact that it supports
German as well as English, encourages us to explore its use for multilingual con-
tent. Seed ’s ability to integrate with public knowledge sources motivates us to
explore its use in application scenarios where personal rather than public knowl-
edge is more relevant. Also, exploring richer semantic representations embedded
in the text (e.g. relations between entities) is an interesting possibility. This
in turn will further contribute to bridging the gap between end-users and the
Semantic Web.
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Abstract. Advances in information extraction have enabled the auto-
matic construction of large knowledge graphs (KGs) like DBpedia,
Freebase, YAGO and Wikidata. These KGs are inevitably bound to be
incomplete. To fill in the gaps, data correlations in the KG can be ana-
lyzed to infer Horn rules and to predict new facts. However, Horn rules
do not take into account possible exceptions, so that predicting facts
via such rules introduces errors. To overcome this problem, we present
a method for effective revision of learned Horn rules by adding excep-
tions (i.e., negated atoms) into their bodies. This way errors are largely
reduced. We apply our method to discover rules with exceptions from
real-world KGs. Our experimental results demonstrate the effectiveness
of the developed method and the improvements in accuracy for KG com-
pletion by rule-based fact prediction.

1 Introduction

Motivation and Problem. Recent advances in information extraction have
led to huge graph-structured knowledge bases (KBs) also known as knowledge
graphs (KGs) such as NELL [4], DBpedia [2], YAGO [22] and Wikidata [8].
These KGs contain millions or billions of relational facts in the form of subject-
predicate-object (SPO) triples.

As such KGs are automatically constructed, they are incomplete and contain
errors. To complete and curate a KG, inductive logic programming and data
mining techniques (e.g., [5,11,29]) have been used to identify prominent patterns,
such as “Married people live in the same place”, and cast them in the form of
Horn rules, such as: r1 : livesIn(Y ,Z ) ← isMarriedTo(X ,Y ), livesIn(X ,Z ).

This has twofold benefits. First, since KGs operate under the Open World
Assumption (OWA) (i.e., absent facts are treated as unknown rather than false),
the rules can be used to derive additional facts. For example, applying the rule r1
mined from the graph in Fig. 1a, the missing living place of Dave can be deduced
based on the data about his wife Clara. Second, rules can be used to eliminate
erroneous facts in the KG. For example, assuming that livesIn is a functional

c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 234–251, 2016.
DOI: 10.1007/978-3-319-46523-4 15
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relation, Amsterdam as a living place of Alice could be questioned as it differs
from her husband’s.

State of the Art and its Limitations. Methods for learning rules
from KGs are typically based on inductive logic programming or associa-
tion rule mining (see [11] and references given there). However, these meth-
ods are limited to Horn rules where all predicates in the rule body are
positive. This is insufficient to capture rules that have exceptions, such
as “Married people live in the same place unless one is a researcher”:
r2:livesIn(Y ,Z )←isMarriedTo(X ,Y ),livesIn(X ,Z ),not researcher(Y ). This
additional knowledge could be an explanation for Alice living in an unexpected
place. If r2 often holds, then one can no longer complete the missing living place
for Dave by assuming that he lives with his wife Clara. Thus, understanding
exceptions is crucial for KG completion and curation.

Our goal is to learn rules with exceptions, also known as nonmonotonic rules.
Learning nonmonotonic rules under the Closed World Assumption (CWA) is a
well-studied problem that lies at the intersection of inductive and abductive logic
programming (e.g., [26,27]). However, these methods cannot be applied to KGs
treated under the OWA.

Approach and Contribution. We present a novel method that takes a KG
and a set of Horn rules as input and yields a set of exception-enriched rules as
output. The output rules are no longer necessarily Horn clauses (e.g., rule r2
above could be in our output). So we essentially we tackle a variant of a theory
revision problem [30] under OWA.

Our method proceeds in four steps. First, we compute what we call “excep-
tion witnesses”: predicates that are potentially involved in explaining exceptions
(e.g., researcher in our example). Second, we generate nonmonotonic rule can-
didates that we could possibly add to our KG rules. Third, we devise quality
measures for nonmonotonic rules to quantify their strength w.r.t the KG. In
contrast to prior work, we do not merely give measures for individual rules in
isolation, but also consider their cross-talk through a new technique that we call
“partial materialization”. Fourth and last, we rank the nonmonotonic rules by
their strengths and choose a cut-off point such that the obtained rules describe
the KG’s content as well as possible with awareness of exceptions.

The salient contributions of our paper are:

– A framework for nonmonotonic rule mining as a knowledge revision task, to
capture exceptions from Horn rules and overcome the limitations of prior work
on KG rule mining.

– An algorithm for computing exception candidates, measuring their quality,
and ranking them based on a novel technique that considers partial material-
ization of judiciously selected rules.

– Experiments with the YAGO3 and IMDB KGs where we show the gains of
our method for rule quality as well as fact quality when performing KG com-
pletion.
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(a) Rule mining for KG completion and KG cleaning
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Fig. 1. Examples of knowledge graphs.

The rest of the paper is structured as follows. Section 2 introduces necessary
notation and definitions. Section 3 presents our approach to nonmonotonic rule
mining. Section 4 gives details on computing exceptions and revision candidates.
Section 5 describes how we measure the quality of rules. Section 6 presents an
experimental evaluation of how exception-enriched rules can improve the KG
quality. Section 7 discusses related work.

2 Preliminaries

Knowledge Graphs. On the Web, knowledge graphs (KG) are often encoded
using the RDF data model [16], which represents the content of the graph with a
set of triples of the form 〈subject predicate object〉. These triples encode positive
facts about the world, and they are naturally treated under the OWA.

In this work, we focus on KGs without blank nodes or schema (i.e. TBox).
For simplicity, we represent the triples using unary and binary predicates. The
unary predicates are the objects of the RDF isA predicate while the binary ones
correspond to all other RDF predicates. We call this the factual representation
AG (the subscript G is omitted when clear from context) of the KG G defined
over the signature ΣAG = 〈C,R, C〉, where C, R and C are resp. sets of unary
predicates, binary predicates and constants.

Example 1. The factual representation of the graph G from Fig. 1a among
others contains the following facts:ism(brad , ann);ism(bob, alice);li(brad , berlin);

r(alice);r(dave); hb(ann, john); li(alice, amsterdam); li(bob, berlin); li(clara, chicago),
where ism,li ,hb,r stand for isMarriedTo, livesIn, hasBrother , and researcher
respectively. The signature of AG is ΣAG =〈C,R, C〉, where C={r},
R={ism, li, hb} and C={john, ann, brad , dave, clara, alice, kate, bob, chicago,
berlin, amsterdam}. ��
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In this work, we focus primarily on mining rules over unary predicates.
Binary relations can be translated into multiple unary ones by concatenating
the binary predicate and one of its arguments, e.g. the binary predicate livesIn
of Fig. 1a can be translated into three unary ones livesInAmsterdam, livesInBer-
lin, livesInChicago. We apply this conversion to a KG in the input so that it
consists of a collection of unary facts.

Nonmonotonic Logic Programs. Nonmonotonic Logic Programs We define
a logic program in the usual way [21]. In short, a (nonmonotonic) logic program
P is a set of rules of the form

H ← B,not E (1)

where H is a standard first-order atom of the form a(X) known as the rule
head and denoted as Head(r), B is a conjunction of positive atoms of the form
b1(Y1), . . . , bk(Yk) to which we refer as Body+(r) and not E, with slight abuse
of notation, denotes the conjunction of atoms not bk+1(Yk+1), . . . ,not bn(Yn).
Here, not is the so-called negation as failure (NAF) or default negation. The
negated part of the body is denoted as Body−(r). The rule r is positive or Horn
if Body−(r) = ∅. X,Y1, . . . ,Yn are tuples of either constants or variables whose
length corresponds to the arity of the predicates a, b1, . . . , bn respectively. The
signature of P is given as ΣP = 〈P, C〉, where P and C are resp. sets of predicates
and constants occurring in P .

A logic program P is ground if it consists of only ground rules, i.e. rules with-
out variables. Ground instantiation Gr(P ) of a nonground program P is obtained
by substituting variables with constants in all possible ways. The Herbrand uni-
verse HU (P) (resp. Herbrand base HB(P)) of P , is the set of all constants
occurring in P , i.e. HU (P) = C (resp. the set of all possible ground atoms that
can be formed with predicates in P and constants in C). We refer to any subset
of HB(P) as a Herbrand interpretation. By MM (P) we denote the set-inclusion
minimal Herbrand interpretation of a ground positive program P .

An interpretation I of P is an answer set (or stable model) of P iff I ∈
MM (P I), where P I is the Gelfond-Lifschitz (GL) reduct [12] of P , obtained
from Gr(P ) by removing (i) each rule r such that Body−(r) ∩ I 
= ∅, and (ii) all
the negative atoms from the remaining rules. The set of answer sets of a program
P is denoted by AS(P ).

Example 2. Consider the program

P =
{

(1) bornInUS (alex ); (2) bornInUS (mat); (3) immigrant(mat);
(4) livesInUS (X ) ← bornInUS (X ),not immigrant(X )

}

The ground instantiation Gr(P ) of P is obtained by substituting X
with mat and alex. For I={bornInUS (alex ),bornInUS (mat),immigrant(mat),
livesInUS (alex )}, the GL-reduct P I of P contains the rule livesInUS (alex ) ←
bornInUS (alex ) and the facts (1)-(3). As I is a minimal model of P I , it holds
that I is an answer set of P . ��
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The answer set semantics for nonmonotonic logic programs is based on the CWA,
under which whatever can not be derived from a program is assumed to be false.
Nonmonotonic logic programs are widely applied for formalizing common sense
reasoning from incomplete information.

Definition 1 (Rule-based KG completion). Let G be a KG and A its factual
representation over the signature ΣA = 〈C,R, C〉. Let, moreover, R be a set
of rules mined from G, i.e. rules over the signature ΣR = 〈C ∪ R, C〉. Then
completion of G ( resp. A) w.r.t. R is a graph GR constructed from any answer
set AR ∈ AS(R ∪ A).

Example 3. Consider a factual representation A of a KG G given in a tabular
form in Fig. 1b, where a tick appears in an intersection of a row s and a column
o, if o(s) ∈ A (resp. 〈s isA o〉 ∈ G). Suppose we are given a set of rules
R = {r1, r2}, where

r1 : livesInUS (X ) ← bornInUS (X ),not immigrant(X );
r2 : livesInUS (X ) ← hasUSPass(X ).

The program A ∪ R has a single answer set AR=A ∪ {livesInUS (pi) |
i=6, 7, 11}, from which the completion GR of G can be reconstructed. ��

3 Learning Exception-Enriched Rules

Horn Rule Revision. Before we formally define our problem, we introduce
the notion of an incomplete data source following [7].

Definition 2 (Incomplete data source). An incomplete data source is a pair
G = (Ga,Gi) of two KGs, where Ga ⊆ Gi and ΣAGa = ΣAGi . We call Ga the
available graph and Gi the ideal graph.

The graph Ga is the graph that we have available as input. The ideal graph
Gi is the perfect completion of Ga, which is supposed to contain all correct facts
with entities and relations from ΣAGa that hold in the current state of the world.

Given a potentially incomplete graph Ga and a set of Horn rules RH mined
from Ga, our goal is to add default negated atoms (exceptions) to the rules in RH

and obtain a revised ruleset RNM such that the set difference between Ga
RNM

and
Gi is smaller than between Ga

RH
and Gi. If in addition the set difference between

Ga
RNM

and Gi is the smallest among the ones produced by other revisions R′
NM

of RH , then we call RNM an ideal nonmonotonic revision. For single rules such
revision is defined as follows:

Definition 3 (Ideal nonmonotonic revision). Let G = (Ga,Gi) be an incom-
plete data source. Moreover, let r : a ← b1, . . . , bk be a Horn rule mined from
Ga. An ideal nonmonotonic revision of r w.r.t. G is any rule

r′ : a ← b1, . . . , bk,not bk+1,not bn, (2)
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Fig. 2. Exception-enriched rule learning: general overview

such that Gi
Ga
r′ ⊂ Gi
Ga

r
1, i.e. the completion of Ga based on r′ is closer to

Gi than the completion of Ga based on r, and Ga
r′′
Gi ⊂ Ga

r′
Gi for no other
nonmonotonic revision r′′ 
= r′ of r. If k=n, then the revision coincides with the
original rule.

In our work, we assume that the ideal graph Gi is not available (otherwise
nothing would need to be learnt). Therefore, we cannot verify whether a revision
is ideal for RH . What we can do, however, is to estimate using some quality
functions whether a given revision produces an approximation of Gi that is better
than the approximation produced by the original Horn ruleset. For this purpose,
we introduce a generic quality function q which receives as input a revision RNM

of the ruleset RH and a graph G, and returns a real value that reflects the quality
of the revised set RNM . We can now formally define our problem:

Problem: quality-based Horn rule revision

Given: KG G, set of nonground Horn rules RH mined from G, quality function q

Find: set of rules RNM obtained by adding default negated atoms to Body−(r)
for some r ∈ RH , such that q(RNM ,G) is maximal.

Note that so far we did not specify the details of the quality function q. In
our approach, we estimate the quality of a ruleset by exploiting well-established
measures proposed in the field of data mining [3]. Even though none of these
measures can offer any sort of guarantee, our hypothesis is that they still indicate
to some extent the percentage of correctly predicted facts obtained as a result of
completing a KG based on a given ruleset. We discuss in Sect. 5 in more details
how q can be defined.

Approach Overview. Figure 2 illustrates the main phases of our approach. In
Step 1, we launch an off-the-shelf algorithm to mine Horn rules from the input
KG. We use FPGrowth [13], but any other, e.g., [5,11] can be likewise applied,
i.e., our overall revision approach is independent of the concrete technique used

1 G1�G2 = (G1\G2) ∪ (G2\G1).
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Algorithm 1: ComputeEWS : compute EWS(r,A)
Input: KB A, rule r : a(X) ← b1(X), . . . , bk(X)
Output: EWS (r,A)

(a) N ← NS(r,A); A ← ABS(r,A)
(b) E+ ← {not a(c) | c ∈ A}; E− ← {not a(c) | c ∈ N}
(c) Re ← Learn(E+, E−,A)
(d) EWS ← {predicate p in Body+(r′) | r′ ∈ Re, s.t. , p is not in Body+(r)}
(e) return EWS

for Horn rule mining. Then, for each rule we compute normal and abnormal
instance sets, defined as:

Definition 4 (r-(ab)normal instance set). Let A be the factual representa-
tion of a KG G and r : a(X) ← b1(X), . . . , bk(X) a Horn rule mined from G.
Then,

– NS (r,A)={c | b1(c), . . . , bk(c), a(c)∈A} is an r-normal instance set;
– ABS (r,A)={c | b1(c), . . . , bk(c)∈A, a(c) 
∈ A} is an r-abnormal instance set.

Example 4. For A from Fig. 1b and the rule r : livesInUS (X )←bornInUS (X ),
r-normal and r-abnormal instance sets are given as NS(r,A) = {p1, . . . , p5} and
ABS (r,A) = {p6, . . . , p11} respectively. ��

Intuitively, if the given data was complete, then the r-normal and r-abnormal
instance sets would exactly correspond to instances for which the rule r holds
(resp. does not hold) in the real world. Since the KG is potentially incomplete,
this is no longer the case and some r-abnormal instances might in fact be clas-
sified as such due to data incompleteness. In order to distinguish between the
“wrongly” and “correctly” classified instances in the r-abnormal set, in Step 2
we construct exception witness sets (EWS ), which are defined as follows:

Definition 5 (Exception witness set (EWS)). Let A be the factual repre-
sentation of a KG G and let r be a Horn rule mined from G. An r-exception
witness set EWS (r ,A) = {e1, . . . , el} is a maximal set of predicates, such that

(i) ei(c′) ∈ A for some c′ ∈ ABS (r,A), 1 ≤ i ≤ m and
(ii) e1(c), . . . , em(c) 
∈ A for all c ∈ NS(r,A).

Example 5. For A and r from Example 4 EWS (r ,A)={immigrant} is an
r-exception witness set. For A′=A\{p5} it holds that EWS (r ,A′)=
{immigrant , stateless}. ��

After EWSs are computed for all rules in RH , we use them to create potential
revisions in Step 3. Then, we rank the newly created revisions and select the best
ones using different criteria (Step 4). These selected rules will constitute the new
RNM .



Exception-Enriched Rule Learning from Knowledge Graphs 241

4 Computing Exception Witnesses and Potential Rule
Revisions

In this section we describe how we calculate the exception witness sets for Horn
rules (Fig. 2, Step 2) and how we create potential rule revisions (Fig. 2, Step 3).

Computing Exception Witness Sets. For constructing exception witness
sets we use the algorithm ComputeEWS (Algorithm 1), which given a factual
representation A of a KG and a rule r ∈ RH as input, outputs the set EWS (r ,A).

The algorithm works as follows: First in (a) r-normal NS (r ,A) and r-
abnormal ABS (r ,A) instance sets are found and stored resp. in N and A. Then
in (b) the fresh predicate not a the facts not a(c) are added to E+ for all
c ∈ ABS (r ,A). In the same step the facts not a(c) for c ∈ N are stored in E−.
In (c), a variant of a classical inductive learning procedure Learn(E+, E−,A),
e.g., [23] is employed to induce a set of hypothesis Re in the form of Horn
rules with unary atoms, s.t. A ∪ Re |= e for as many as possible e ∈ E+, and
A ∪ Re 
|= e′ for all e′ ∈ E−. Finally, in (d) the bodies of rules in Re not
containing predicates from Body+(r) are put in EWS , which is output in (e).

The correctness of ComputeEWS follows from the correctness of the proce-
dure Learn. Indeed, by (d) for p ∈ EWS, a rule r′ with p occurring in Body(r′)
exists in Re. Since r′ ∪ A 
|= not a(c) for not a(c) ∈ E−, we have that p(c) 
∈ A
for r-normal c due to (a) and (b). Moreover, p(c′) ∈ A for some r-abnormal c′,
as otherwise r′ 
∈ Re. Hence, (i) and (ii) of Definition 5 hold, i.e. EWS is an
exception witness set for r w.r.t. A.

Constructing Candidate Rule Revisions. After all EWSs are calculated for
Horn rules in RH , we construct a search space of potential revisions by adding to
rule bodies exceptions in the form of default negated atoms. More specifically, for
every ri : a(X) ← b1(X), . . . , bk(X) in RH we create m = |EWS (ri,A)| revision
candidates, i.e. rules r

ej
i , s.t. Head(reji ) = Head(ri), Body+(reji ) = Body(ri),

Body−(ri) = ej(X), where ej ∈ EWS (ri,A). We denote with Ri the set of
all r

ej
i .

Example 6. For EWS (r,A′) = {immigrant , stateless} from Example 5 in Step 3
revision candidates rim : livesInUS (X )←bornInUS (X ),not immigrant(X ) and
rst : livesInUS (X )←bornInUS (X ),not stateless(X ) are created. ��

5 Rules Quality Assessment

Given a potential RNM , the function q should approximate the closeness between
the completion Ga

RNM
of the input KG Ga and the ideal KG Gi. In this work,

we follow usual practice in data mining and adapt standard association rule
measures to our needs. Let rm be a generic rule measure, e.g. one defined in
Table 12. Then, naively generalizing rm for rulesets by taking the average of rm
2 Table 1 reports the definition of confidence, lift and Jaccard coefficient – three

commonly-used rule measures [1]. Here, n(B) (resp. n(H )) denotes the number of
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Table 1. Rule evaluation measures for a rule r w.r.t. A

Rule measure Formula for r : H ← B

Confidence conf (r,A) =
n(HB)

n(B)

Lift lift(r,A) =
n(HB)

n(H) ∗ n(B)

Jaccard coef jc(r,A) =
n(HB)

n(H) + n(B) − n(HB)

values for all rules in a given set we obtain

qrm(RNM ,A) =

∑
r∈RNM

rm(r,A)
|RNM | (3)

In our case, qrm alone is not sufficiently representative for being the target
quality function q for two reasons: (1) it does not penalize rules with noisy
exceptions3; (2) it does not measure how many contradicting beliefs our revisions
reflect.

Example 7.

(1) For r : livesInUS (X )←hasUSPass(X ),not poet(X ) and A (from Fig. 1b) we
have conf (r,A)=1, as all 3 non-poets with US passports live in the US, i.e.,
r gets the highest individual score based on confidence. However, poet is a
noisy exception due to p3, who is a poet possessing a US passport and living
in the US.

(2) Let RNM = {r1 : lu(X)←hu(X ), st(X ), r2 : lu(X)←bu(X ),not im(X ), r3 :
im(X ) ← st(X )}, where lu, hu, bu, st , im stand for livesInUS , hasUSPass,
bornInUS , stateless and immigrant . Although im in r2 may perfectly fit
as exception w.r.t. some (unspecified here) original KG; once the KG is
completed based on r1 and r3, im might become noisy for r2. Indeed, r1
can easily bring new instances c in lu, while r3 can predict facts im(c). If
this is the case, i.e., r2 ∈ RNM becomes noisy after other rules in RNM are
applied, then intuitively rules in RNM do not agree on the beliefs about Gi

they express.

��
To resolve the above issues we introduce an additional quality function

qconflict , next to qrm , whose purpose is to evaluate the ruleset w.r.t (1) and (2).
To measure qconflict for RNM , we create an extended set of rules Raux, which
contains every revised rule r : a(X ) ← b(X ),not e(X ) in RNM and its aux-
iliary version raux : not a(X ) ← b(X ), e(X ), where not a is a fresh predicate
collecting instances that are not in a. Notice that raux is meaningless, and thus

instances for which the body (resp. head) of a rule H ← B is satisfied in A or in data
mining terminology the number of transactions in A with items from B (resp. H ).

3 e is a noisy exception for r if e(c) ∈ A for some r-normal c.



Exception-Enriched Rule Learning from Knowledge Graphs 243

void in Raux , for rules r with positive bodies. Formally, we define qconflict as
follows

qconflict (RNM ,A) =
∑

p∈pred(Raux )

|{c | p(c), not p(c) ∈ ARaux }|
|{c |not p(c) ∈ ARaux }| (4)

where pred(Raux ) is the set of predicates appearing in Raux .
Intuitively, ARaux contains both positive predictions of the form p(c) and

negative ones not p(c) produced by the rules in Raux . The function qconflict
computes the ratio of “contradicting” pairs {p(c),not p(c)} over the number
of not p(c)4 in ARaux , which reflects how much the rules in RNM disagree with
each other on beliefs about the ideal KG Gi they express. The smaller qconflict ,
the better is the ruleset RNM .

Revision Based on Partial Materialization. Our goal in Step 4 is to find a
set of revisions RNM , for which qrm(RNM ,A) is maximal and qconflict (RNM ,A)
is minimal.

To determine such globally best set RNM many candidate rule combinations
have to be checked, which is unfortunately not feasible because of the large size
of our A and EWS. Therefore, we propose an approach where we incrementally
build RNM by considering every ri ∈ RH and choose the best revision rji ∈
Ri for it. In order to select the best rji , we use a special ranking function,
which estimates how well a rule r at hand describes the data and how noisy its
exceptions are. In the remaining of this section, we will propose four different
ranking functions, starting from the simplest to the most sophisticated one.

Naive-ranker. The first implementation, which we call rank naive, calculates
the average value of the rm scores of r and raux and uses it to rank the rules.
Formally, the average is computed by the following function:

estrm(r,A) =
rm(

r
︷ ︸︸ ︷
H ← B,not E,A) + rm(

raux
︷ ︸︸ ︷
not H ← B,E,A)

2
(5)

where rm is one of the measures in Table 1. E.g., plugging in conf instead of rm,
gives

estconf (r,A) =
1
2

(n(BH) − n(BHE)
n(B) − n(BE)

+
n(BE) − n(BHE)

n(BE)

)
(6)

where n(X) is the number of transactions with items from X.

Example 8. For r and A from Example 7 (1) estconf (r,A) = 0.75, i.e., due to
noisiness of poet the value of estconf decreased. ��
PM -ranker. The main problem of rank naive is that it does not exploit any
knowledge about the properties that a final revision RNM might have. In other
4 Ratio over the number of p(c) instead of not p(c) is possible, but then qconflict is

smaller and less representative.
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words, ranking of revisions of a rule at hand is completely independent from
ranking of revisions for other rules. To address this issue, we propose a sec-
ond implementation called revision based on partial materialization (denoted as
rank pm). Here, the idea is to apply estrm for a rule r not on A but on com-
pletion of A based on other rules, which according to our estimates constitute
some approximation of RNM .

Example 9. Consider a rule r1:lu(X )←bu(X ),not im(X ), and suppose there
is only a single other rule r2:lu(X )←hu(X ) given, for which EWS (r2,A) = ∅
for A from Fig. 1b. This knowledge can be exploited when ranking r1. We have
estconf (r1,A) = 0.8, while estconf (r1,Ar2) = 0.875 due to the materialized fact
livesInUS (p11 ). This increase gives us an indication that r1 agrees with r2 on
predictions it makes.

On the contrary, for r3 : lu(X ) ← hu(X ),not pt(X )}, where pt
stands for poet and r4 : lu(X )←bu(X ) we have estconf (r3,A)=0.75, but
estconf (r3,Ar4)=0.5, which witnesses that beliefs of r3 and r4 contradict. ��

The function rank pm first constructs the temporary rule set Rt , which con-
tains, for every rule ri ∈ RH , a rule rti with all exceptions from EWS (ri,A)
incorporated, i.e., Rt predicts the smallest number of facts, which are also pre-
dicted by any possible revision RNM . Then, for each ri ∈ RH , we compute the
estrm value for all revision candidates rji based on ARt\rti . Formally,

rank pm(rji ,A) = estrm(rji ,ARt\rti ) (7)

Once the scores for all revision candidates rji for ri are computed, we pick the
revision with the highest score, add it to the current snapshot of RNM and move
to ri+1.

OPM -ranker. With rank pm, facts inferred by rules of low quality might have
a significant impact on more promising rules. To handle this issue, we propose a
variation of rank pm called revision with ordered partial materialization (abbr.
rank opm), which proceeds as follows. First we rank Horn rules based on some
rm ′ (possibly same as rm) and obtain an ordered list osRH

. Then we go through
osRH

and for every rule ri we compute a snapshot Ai of A by materializing only
those rules rtk ∈ Rt , for which rk is ordered higher in the list osRH

than ri. More
formally,

rank opmrm(ri,A) = estrm(ri,Ai) (8)

where Ai = ARt\{rtk | osRH
[k]=rk; i≥k}.

OWPM -ranker. With rank opm as we have defined it, the facts inferred by
rules count the same as the true facts in A. Since the predicted facts are inferred
based on statistically-supported assumptions, it is natural to distinguish them
from the facts that are explicitly present in A. To achieve this, we propose one
last ranking function that exploits weights assigned to facts. Here, there is a clear
distinction between facts from A (which get maximal weight) and the predicted
facts (which inherit weights from rules that inferred them). We call this method
revision with ordered weighted partial materialization (abbr. rank owpm).
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The method rank owpm differs from rank opm in that weights are used
to estimate the revisions’ scores. It is convenient (and a common practice) to
assign weights of probabilistic nature between 0 and 1 (e.g., confidence can be
exploited). There are several ways to produce weighted partial materialization;
for example, using probabilistic logic programming systems, e.g., Problog [9] or
PrASP [25].

However, normally, in such systems facts predicted by some rules in a ruleset
at hand are used as input to other rules, i.e., uncertainty is propagated through
rule chains, which might be undesired in our setting. To avoid such propagation,
when computing weighted partial materialization of A we keep predicted facts
(i.e., derived using rules) separately from the explicit facts (i.e., those in A), and
infer new facts using only A.

The method rank owpm works as follows. Initially, we sort the rules in RH

and create the Ais with the same procedure as described for rank opm. The
only difference is that here every inferred fact in ARt receives a specific weight
that corresponds to rm(r′,A), where r′ is the positive version of the rule that
inferred the fact5. If the same fact is derived by multiple rules, we keep the
highest weight.

The weights play a role when we evaluate a rule w.r.t. the partially materi-
alized KG. To this end, we slightly change the rm function so that it considers
weighted facts (we denote such function as rmw). E.g., conf w(r,A) calculates a
weighted sum of the instances for which the head (resp. body) of r is satisfied
w.r.t. A (instead of a normal sum used in conf ). Formally, rank owpm computes
a score for a revision rji as follows:

rank owpmrmw(rji ,A) = estrmw(rji ,Aw
i ) (9)

where Aw
i is the weighted version of Ai from Eq. 8. In the following section, we

will analyze the performance of these four functions on some realistic KGs.

6 Evaluation

Experimental Setup. We considered two knowledge graphs: a slice of almost
10M facts from YAGO3 [22], a general purpose KG, and an RDF version of
IMDB6 data with 2M facts, a well known domain-specific KG of movies and
artists. We chose these two KGs in order to evaluate our method’s performance
on both general-purpose and domain-specific KGs. Our experiments were per-
formed on a machine with 40 cores and 400GB RAM. The used datasets and
the experimental code are publicly available7.

Outline. First we evaluate different configurations of our method using the qual-
ity functions qrm and qconflict , defined in Sect. 5. Then, we report the results of a

5 We cannot consider the entire rule (i.e. with all exceptions attached), since standard
measures like confidence will return values very close to 1 for such rules.

6 http://imdb.com.
7 http://people.mpi-inf.mpg.de/∼gadelrab/rules iswc.

http://imdb.com
http://people.mpi-inf.mpg.de/~gadelrab/rules_iswc
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(a) Confidence for top-k YAGO revised rules (b) Confidence for top-k IMDB revised rules

Fig. 3. Average rules’ confidence on YAGO and IMDB (higher is better).

manual assessment that we performed to evaluate the quality of the predictions,
reporting good and bad examples produced by our method.

6.1 Evaluation of the Revision Steps

Step 1. Initially, we considered the Horn rules produced by AMIE [11]. However,
they mainly focus on unsupported binary predicates and the only unary rules
are restricted to the isA predicate, which was too limiting for us. Therefore, we
first propositionalized the original KG, and then mined the Horn rules using the
association rule mining implementation based on standard FPGrowth [13] offered
by SPMF Library8. In order to avoid over-fitting rules as well as to reduce the
computation, we limited the extraction to rules with maximum four body atoms,
a single head atom, a minimum support of 0.0001 × # entities and a minimum
confidence of 0.25 for YAGO. Since IMDB is smaller and more connected, we
set a higher minimum support of 0.005 × # entities and confidence of 0.6. On
our machine, this process took approx. 10 seconds on YAGO and 2.5 second on
IMDB, and it generated about 10 K and 25K rules respectively.

Steps 2 and 3. We implemented a simple inductive learning procedure, which
performs manipulations on the set of facts instantiating the rule and its body
to get the EWS. The generation of EWSs with minimum support of 0.05 took
about 50 seconds for YAGO and 30 seconds for IMDB. The execution time is
significantly affected by the size and distribution of the predicates in the KG.
We could find EWSs for about 6 K rules mined from YAGO, and 22 K rules
mined from IMDB. On average, the EWSs for the YAGO’s rules contained 3
exceptions, and 28 exceptions on IMDB.

Step 4. We evaluated the quality of our rule selection procedure w.r.t. two
dimensions, which reflect the two q proposed in Sect. 5: average of the rules’
confidence (qconf ), and the number of conflicts (qconflict ). The average confi-
dence shows how well the revised rules adhere to the input. The number of con-
flicts indicates how consistent the revised rules set is w.r.t the final predictions

8 http://www.philippe-fournier-viger.com/spmf/.

http://www.philippe-fournier-viger.com/spmf/
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Fig. 4. Ratio of conflicts on YAGO and IMDB (lower is better).

it makes. Due to space constraints, we report the results using only confidence
as rule evaluation function (Eq. 6) and lift as rule ordering criterion, as we found
this combination to be a good representative.

6.2 Exception-Enriched Rules vs. Horn Rules

Figure 3 reports the obtained average rules’ confidence using the four ranking
functions to select the best revisions. Horn reports the average confidence of
the original Horn rules; while Naive, PM, OPM and OWPM are our ranking
methods described in Sect. 5. For both inputs, we show the results on the top
10, . . . , 100% rules ranked by lift.

We make three observations. (i) In general enriching Horn rules with excep-
tions increases the average confidence (approx. 11 % for YAGO, 3.5% for IMDB).
This indicates that our method is useful to mine rules that reflect the data more
precisely. It is also worth mentioning that along with the increase in confidence,
the average coverage of the revised rules dropped only by 13 % for YAGO and
4 % for IMDB (i.e. the rules do not become too specific). (ii) The comparison
between the four ranking methods shows that the highest confidence is achieved
by the non-materialized (Naive) function followed by the weighted one (OWPM ).
(iii) Since we used lift for ordering the rules, and it is not neccessarily correlated
with confidence, one can see that the confidence drops for around top 60 % of the
YAGO rules, and then slightly increases again. For IMDB a smooth confidence
decrease is observed with the addition of lower-ranked rules.

The higher value of Naive was expected, since this procedure is designed to
maximize the confidence. However, confidence alone is not a good indicator to
determine the overall rule’s quality, as we explained in Sect. 5. Figure 4 shows
the number of conflicts (for YAGO and IMDB) that were obtained by executing
the revised rules and their corresponding auxiliary versions (raux) using the DLV
system [19]. Unfortunately, DLV was unable to scale to the entire ruleset; hence,
we used up to 1000 rules. In our experiment, a conflict occurs when we derive
both p(c) and not p(c). The graphs report the ratio between the number of
conflicts and negated derived facts. From them, we observe that both OPM and
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Y1 : isMountain(X ) ← isLocatedInAustria(X ), isLocatedInItaly(X ),
not[isRiver(X )|isLocatedInRussia(X )]

Y2 : bornInUSA(X ) ← actedInMovie(X ), createdMovie(X ), isPerson(X ),
not[wonFilmfareAwards(X )|bornInNewYork(X )]

Y3 : isPoliticianOfUSA(X ) ← bornInUSA(X ), isGovernor(X ),
not[isPoliticianOfPuertoRico(X)|isPoliticianOfHawaii(X)]

I1 : hasLanguageEnglish(X ) ← hasGenreDrama(X ), hasGenreTriller(X ), hasGenreCrime(X ),
not[producedInIndia(X )|createdByNovelist(X )]

I2 : hasGenreAnimation(X ) ← directedByActor(X ), hasLanguageEnglish(X ), producedInUSA(X ),
hasGenreFamily(X ), not[hasGenreDrama(X )|producedIn1984(X )]

Fig. 5. Anecdotal example rules (Y= YAGO, I= IMDB) with good and bad exceptions

OWPM produce less conflicts than the Naive function in most of the cases. By
comparing the OPM and OWPM functions, we find that the weighted version
is better, especially on the IMDB dataset when we can reduce the conflicts from
775 to 685 on a base of about 2000 negated facts.

We executed the top-1000 revised rules using DLV and counted the number
of derivations that our exceptions prevented. For YAGO with the original Horn
rules, the reasoner inferred 924591 new triples. Our exception-enriched ruleset
decreased the number of inferred triples to 888215 (Naive), 892707 (PM ), 892399
(OPM ), and 891007 (OWPM ). For IMDB we observed a smaller reduction. With
the Horn rules the reasoner derived 38609 triples, while with the revised rules
the inference set decreased to 36069 (Naive), 36355 (PM ), 36021 (OPM ), and
36028 (OWPM ) triples.

Unfortunately, there is no automatic way available to assess whether the
removed inference consists of genuine errors. Therefore, we selected the revised
ruleset produced by the OWPM function and sampled 259 random facts from
YAGO (we selected three facts for each binary predicate to avoid skewness).
Then, we manually consulted online resources like Wikipedia to determine
whether these triples were indeed incorrect. We found that 74.3 % of these triples
consisted of factual mistakes. This number provides a first empirical evidence
that our method is indeed capable of detecting good exceptions and hence can
improve the general quality of the Horn rules.

We conclude reporting some anecdotal examples of rules on YAGO and IMDB
in Fig. 5. Between the brackets we show examples of both good (underlined) and
bad exceptions. In some cases, the rules have high quality exceptions such as
rule Y 1. In others, we found that the highest ranked exceptions mainly refer
to disjoint classes of the head. The complete list of mined rules with the scores
given to the determined exceptions is available in our repository.

7 Related Work

The problem of automatically learning patterns from KGs and exploiting them
for predicting new facts has gained a lot of attention in the recent years.
Approaches for predicting unseen data in KGs can be roughly divided into
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two groups: statistics-based, and logic-based. The firsts apply well-known tech-
niques like tensor factorization, or neural-embedding-based models (see [24] for
overview). The second group focuses more on logical rule learning (e.g., [11,29]).
The most relevant works for us are in the last group. These, however, typically
focus on learning Horn rules, rather than nonmonotonic (i.e., exception-enriched)
as we do.

In the association rule mining community, some works concenrated on finding
(interesting) exception rules (e.g. [28]), which are defined as rules with low
support (rare) and high confidence. Our work differs from this line of research
because we do not necessarily look for rare interesting rules, but care about the
quality of their predictions. Another relevant stream of research is concerned
with learning Description Logic TBoxes or schema (e.g., [18]). However, these
techniques focus on learning concept definitions rather than nonmonotonic rules.

In the context of inductive and abductive logic, learning nonmonotonic rules
from complete datasets [10] was studied in several works ([6,15,17,26,26,27].
These methods rely on CWA and focus on describing a dataset at hand exploiting
negative example, which are explicitly given unlike in our setting.

Learning Horn rules in presence of incompleteness was studied in hybrid
settings in [14,20]. There a background theory or a hypothesis can be represented
as a combination of a DL ontology and Horn rules. While the focus of this work
is on the complex interaction between reasoning components and the learned
rules are positive, we are concerned with techniques for deriving nonmonotonic
rules with high predictive quality from huge KGs.

8 Conclusions and Future Work

We have presented a method for mining nonmonotonic rules from KGs: first
learning a set of Horn rules, and then revising them by adding negated atoms
into their bodies with the goal of improving the quality of a rule set for data
prediction. To select the best revision from potential candidates we devised rule-
set ranking measures, based on data mining measures and the novel concept of
partial materialization. We evaluated our method with various configurations on
both general-purpose and domain-specific KGs and observed significant improve-
ments over a baseline Horn rule mining.

There are various directions for future work. First, we look into extract-
ing evidence for or against exceptions from text and web corpora. Second, our
framework can be enhanced by partial completeness assumptions for certain
predicates (e.g., all countries are available in KG) or constants (e.g., knowledge
about Barack Obama is complete). Finally, an overriding future direction is to
extend our work to more complex nonmonotonic rules with higher-arity predi-
cates, aggregates and disjunctions in rule heads.

Acknowledgments. We thank Thomas Eiter, Francesca A. Lisi and the anonymous
reviewers for their constructive feedback about this work. The research was partially
funded by the NWO VENI project 639.021.335.



250 M.H. Gad-Elrab et al.

References

1. Agrawal, R., Carey, M.J., Livny, M.: Concurrency control performance modeling:
alternatives and implications. In: Performance of Concurrency Control Mechanisms
in Centralized Database Systems, pp. 58–105 (1996)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

3. Azevedo, P.J., Jorge, A.M.: Comparing rule measures for predictive association
rules. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič,
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Abstract. Data stream applications are becoming increasingly popular
on the web. In these applications, one query pattern is especially promi-
nent: a join between a continuous data stream and some background
data (BGD). Oftentimes, the target BGD is large, maintained externally,
changing slowly, and costly to query (both in terms of time and money).
Hence, practical applications usually maintain a local (cached) view of
the relevant BGD. Given that these caches are not updated as the origi-
nal BGD, they should be refreshed under realistic budget constraints (in
terms of latency, computation time, and possibly financial cost) to avoid
stale data leading to wrong answers. This paper proposes to model the
join between streams and the BGD as a bipartite graph. By exploiting
the graph structure, we keep the quality of results good enough without
refreshing the entire cache for each evaluation. We also introduce two
extensions to this method: first, we consider a continuous join between
recent portions of a data stream and some BGD to focus on updates
that have the longest effect. Second, we consider the future impact of a
query to the BGD by proposing to delay some updates to provide fresher
answers in future. By extending an existing stream processor with the
proposed policies, we empirically show that we can improve result fresh-
ness by 93 % over baseline algorithms such as Random Selection or Least
Recently Updated.

1 Introduction

Real-time processing of massive, dynamically generated stream-data has become
increasingly popular on the Web [18]. In stream processing, one common task
is to enrich the streams with external background data (BGD). This kind of
tasks has to deal with two V’s of “Big Data” at the same time: Velocity,
the rapidly changing nature of the stream data; Variety, integrating data from
different sources1. RDF Stream Processing (RSP) has provided necessary lan-
guages to declare this task. Current RSP languages, such as C-SPARQL [3],

1 http://www.ibmbigdatahub.com/infographic/four-vs-big-data.
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SPARQLstream [4], and CQELS-QL [16], support complex queries that involve
both streams and remote BGD. However, these RSP engines are not optimized
for remote BGD access. Usually, they continuously fetch BGD to match newly
arrived stream data ignoring the communication and potential financial cost of
such operations. To improve BGD access, RSP engines may adopt local views
(or caches), as done in database systems [9]. However, the remote BGD is not
always static. Indeed, even in the mostly static linked-data realm, information
changes [13]. Hence, the freshness of local views in the RSP engine degrades
over time as updates in BGD do not propagate to the local view. To address this
problem, RSP engines have to maintain the local view, by identifying the out-
of-date (or stale) data items and replacing them with the up-to-date (or fresh)
values retrieved from the remote. Examples of such updating behavior include
the identification of opinion makers in social media based on a stream of posts
and (slowly-changing) contact-networks as BGD or traffic prediction based on
position data fetched from mobile phones.

Maintaining a local view can take time. Given that a federated query evalu-
ation can spend up to 95 % of its time on accessing remote data [19], query eval-
uation under response time constraints becomes a major challenge. To ensure a
certain response time, only a limited number of remote accesses can be allowed.
Additionally, BGD providers may impose constraints such as API rate limits,
e.g., Twitter2. Lastly, other communication and financial constraints may have
to be considered, since accessing BGD can cost money, computation power or
energy (in both the RSP engine and the remote service). Returning to the above
examples, computing updated network metrics for opinion makers is computa-
tionally expensive, and fetching location updates from cell phones burdens scarce
battery power. In this paper, we consider these constraints as a limited budget
that restricts the number of BGD accesses. We study the problem of how to
utilize the limited budget so that it can provide fresher response to the query.

To optimally manage BGD accesses under realistic budget constraints, this
paper proposes to allocate budget only to carefully selected “important” data
that could lead to more fresh join results. Our algorithms exploit characteristics
of the join between the stream and the BGD to improve the response fresh-
ness. Specifically, our contribution is threefold. First, we propose an algorithm
that employs a bipartite graph to model the join selectivity between stream and
BGD. It favors the update of data items with a higher selectivity within a budget
constraint. This problem decomposes to two scenarios: one can be tackled with
a local optimal approach; a second is NP-hard requiring a greedy heuristic app-
roach. This encodes Hypothesis H1: A maintenance processes exploiting
join selectivity improves response freshness. Second, we extend the above
model to favor data items that have a longer impact on the response freshness,
which leads to hypothesis H2: Leveraging the definition of the sliding
window and BGD change frequencies can improve response freshness.
Third, we explore the trade-off between the current and future importance of
data elements. We present an algorithm that exploits the change frequencies, join

2 https://dev.twitter.com/rest/public/rate-limiting.

https://dev.twitter.com/rest/public/rate-limiting
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selectivity, and the sliding window all together to delay some current refreshes in
favor of future, more important ones. It encodes hypothesis H3: Considering
both current and future evaluations for budget allocation can further
improve response freshness.

Outline: Section 2 introduces some background of RSP and BGD access.
Section 3 reviews related work. Section 4 formalizes the problem. Our solutions
and their optimization are in Sect. 5. Section 6 provides evaluation results of our
hypotheses on both real and synthetic data sets.

2 Background

An RDF stream S is a potentially unbounded sequence of timestamped
informative units (di, ti) ordered by the temporal dimension, where ti is the
timestamp (as in [3,4,16], we consider the time as discrete) and di is a set of
RDF statements. An RDF statement is a triple (s, p, o) ∈ (I∪B)×I×(I∪B∪L),
where I, B, and L identify the sets of IRIs, blank nodes and literals, respectively.
An RDF term is an element of the set T = I ∪ B ∪ L.

RSP Query Languages [3,4,7,16] extend SPARQL3 with operators to
cope with streams. They enable the registration of queries over RDF streams.
RSP queries are evaluated in a continuous fashion, i.e., results are computed at
different time instances as the data flows in the streams. Given a query q, the
answer Ans(q) is a stream, to which the results of the evaluations are appended.
This work focuses on the RSP query languages that support the time-based
sliding window operator W, which is defined through the parameter ω, the
width, and β, the slide, and generates a sequences of fixed windows, i.e., portions
of S in a time interval (o, c] [3,4,16]. Given a time-based sliding window and two
generated consecutive windows Wi and Wi+1, defined in (oi, ci] and (oi+1, ci+1],
two constraints hold: ci − oi = ci+1 − oi+1 = ω and oi+1 − oi = β.

Let V be a set of variables (disjoint with I, B and L), graph patterns are
expressions defined recursively as: (1) a basic graph pattern, i.e., a set of triple
patterns (ts, tp, to) ∈ (I ∪ B ∪ V ) × (I ∪ V ) × (I ∪ B ∪ L ∪ V ), is a graph
pattern; (2) let P1 and P2 be graph patterns, P1 JOIN P2 or P1 UNION P2 is
a graph pattern; (3) let P be a graph patterns and u ∈ I ∪ V , SERV ICE u P
or WINDOW u P is also a graph pattern. Other graph pattern expressions
are possible (e.g. OPTIONAL, FILTER) but are not presented for the sake of
space3.

Like SPARQL, the evaluation semantics of RSP Query Languages rely on the
notion of solution mapping, i.e., a partial function that maps variables to RDF
terms, i.e., μ : V → T . A full formalization of RSP Query Languages is in [7].
We briefly describe the semantics of WINDOW, SERVICE, and JOIN in RSP Query
Languages. Evaluating a WINDOW clause results the content of a sliding window,
similarly to what GRAPH does in SPARQL, which refers to the content of a
named graph in the data set. The SERVICE retrieves mappings from SPARQL

3 Cf. https://www.w3.org/TR/sparql11-query/ for additional reference.

https://www.w3.org/TR/sparql11-query/
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endpoints by submitting a graph pattern [2]. JOIN can be formally defined as:
let dom(μ) ⊂ V be the set of variables mapped by μ, two mappings μ1 and
μ2 are compatible (denoted with μ1 ∼ μ2) if they assign the same values to
the common variables, i.e., ∀v ∈ dom(μ1) ∩ dom(μ2), μ1(v) = μ2(v). We name
joining variables the elements in dom(μ1) ∩ dom(μ2).

As explained, this paper focuses on queries containing the graph pattern:

(WINDOW uW PW ) JOIN (SERV ICE uS PS),

where PW and PS are two graph patterns that share one or more variables, uS

is the address of a service BGD in remote and uW is an IRI denoting a sliding
window operator W defined through ω, β and applied to a stream S.

Local View. Existing RDF stream engines leverage a nested loop join strat-
egy to fetch data from BGD. It follows that evaluating the above graph pattern
can be expensive: each request to BGD has a latency, computational and, pos-
sibly, financial cost. In the SPARQL endpoint of our experiments (see Sect. 6),
each invocation takes 4.6 ms. Hence, during one second, it can only accommo-
date up to 200 requests. In real scenarios, SPARQL endpoints are exposed over
Internet, and each quest can take more than 500 ms [19].

For this reason, we previously proposed to use a local view R to store the
result of PS in the RSP engine [5]. R stores the results of the SERVICE clause so
that the engine computes the results of the query without invoking the SPARQL
endpoint of BGD at each evaluation. However, given that the content of BGD
changes over time, the mappings in R become outdated, and the evaluation of
the SERVICE clause produces different solution mappings can leading to wrong
results. We consider these outdated results invalid. Therefore, each mapping
μR ∈ R can be classified as fresh or stale: μR is fresh at time t, if it is contained
in the result set by evaluating the SERVICE clause over BGD at t; it is stale
otherwise (i.e., if BGD changes, it produces different results when evaluating of
the SERVICE clause over μR and the remote BGD). In the following, we assume
that mappings in BGD change with fixed intervals. This happens, e.g., in data
warehouses, where updates are scheduled, or in data generated by sensors or
automatic processes, where data is updated with fixed interval. As in [6], we
define the freshness of an answer Ans(q) as |fresh(Ans(q))|

|Ans(q)| .

Maintenance Process. To ensure the freshness of the local view over time, we
introduce a maintenance process MP that refreshes a portion of R. MP selects a
set of mappings E ⊆ R to refresh within each evaluation of the queries over BGD.
The design of MP is the key to the freshness of Ans(q): if the process correctly
identifies the stale mappings and puts them in E , then both the freshness of
R and Ans(q) increase. Note, however, that if the number of refresh queries
sent to BGD is too high, the presence of R does not bring any advantage. In
practice, MP has to consider (i) Quality of Service requirements associated to
the query, e.g., responsiveness; (ii) system reactiveness, e.g., each evaluation
should terminate before the next one starts; (iii) constraints imposed by the
BGD providers on the number of requests during a time interval. We capture
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these aspects by introducing a notion of refresh budget value Γ , defined as the
number of refresh queries that can be sent to BGD in a given time period under
the above constraints. In our Hypotheses 1 and 2, we assume that Γ is evenly
distributed over n evaluations, when the stream rate is stable. In Hypothesis 3,
in order to deal with unstable stream rate, we relax such assumption by allowing
to move budget between evaluations. We use γ = 
Γ/n� to denote the maximum
refresh budget available in one evaluation.

3 Related Work

Traditional databases usually materialize remote BGD locally. Sophisticated
optimizations of retrieving remote data on-demand have been introduced to
improve availability, scalability and query processing performance [8,9,14]. The
drawback of materialization is that local data becomes stale when the remote
data changes. Those works are neither in stream processing context, nor consid-
ering budget constraints on remote access.

In Complex Event Processing (CEP), the incoming events not only need to
be matched with specified event patterns, but also need to be enriched [10,22].
During enrichment, it usually needs to access remote BGD through APIs defined
by service providers [11]. These API providers usually apply constraints on the
number of accesses to restrict the massive loads of requests, as the computation
and communication costs involved are shown to be intensive. Given the repetitive
nature of the access to BGD [17], caching techniques can improve on response
latency. However, when a cache becomes outdated, refreshing it raises the trade-
off between latency and freshness [1]. More remote accesses could provide fresher
response, but take longer time. Authors in [14] addresses this trade-off in a
web setting, where updates of the remote BGD are pushed into the system [9].
However, this work does not consider the constraints of service providers or the
view maintenance without updates being pushed into the system.

In RDF processing, SPARQL 1.1 standardizes the access to remote BGD
by introducing the federated extension [2] and the SERVICE clause. Broadly,
there are two ways of accessing BGD: either one pulls the whole data into the
query processor [15] or one ‘federates’ query-execution and transfers the data
for individual operations over the network [12], defining new join strategies that
can efficiently process both local and remote data [15]. Extending static RDF
processing, RSP technologies deal with data of different velocity and variety. C-
SPARQL [3] performs query matching on subsets of the information flow defined
by windows. CQELS [16] implements its native query operators, which can be
adaptively optimized to improve performance. MorphStream [4] allows querying
relational data streams over a set of stream-to-ontology mappings. INSTANS [20]
is a semantic event processing platform, which compiles a query into a Rete-like
structure. All those systems are optimized for processing streams. They support
the SERVICE clause as described above but do not consider budget-constrained
updates in the local view. Hence, our solution is orthogonal to these and other
RSP engines.
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Fig. 1. WINDOW/SERVICE clauses and the maintenance graph

Our previous work [5] studied the maintenance process of local view for
queries where each mapping in the WINDOW clause joins with exactly one mapping
in the SERVICE one. In this paper, we tackle a more general join relationship
between WINDOW and SERVICE clauses, i.e., we extend the 1:1 join relationship to
M:N and propose a flexible budget allocation method that further improves the
maintenance process.

4 Problem Definition

Given the graph pattern expression PS in the SERVICE clause, we define two sets
of variables: first, V SR ⊂ var(PS) contains the variables in var(PS) that are
related to the changing part in BGD. In other words, V SR captures the dynamic-
ity of BGD and contains the information needed to construct the refresh queries
that are sent to remote BGD. Second, V SN are the common variables that join
the PS and PW clauses, i.e., V SN = var(PS) \ V SR. We model the relation-
ship between V SR and V SN as a bipartite graph. The maintenance process MP
exploits the graph to identify the candidate set E for refreshing. The MP builds
a bipartite graph (maintenance graph, Fig. 1) out of C, which is a subset of R.
Mappings in C are (1) stale and (2) belong to the candidate set of the current
window (i.e., they have compatible mappings in the result set ΩW of the WINDOW
clause). The maintenance graph has signature GC = (ΩSN , ΩSR, E), where ΩSN

(ΩSR) is the set of mappings with domain V SN (V SR), and E are the mappings
μR in C, modeled as edges connecting elements of ΩSN and ΩSR.

Different subqueries in PS have different optimization goals. In this work, we
consider: (1) PS is a Basic Graph Pattern (BGP) query; (2) PS is an aggregate
query4.
Case 1: PS is a BGP query. By differentiating V SR and V SN , we split
μR into two mappings μ = μSR ∪ μSN such that dom(μSR) ⊆ V SR and

4 We assume that the aggregation is performed locally in the query processor and not
in the remote BGD. It happens, e.g., when BGD is not SPARQL 1.1 compliant.
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dom(μSN ) ⊆ V SN . As PS is a BGP query, each mapping μR
k consists a μSN

i

and a μSR
j . Updating one μSR

j can ensure all its corresponding μR
k are fresh.

As an example, consider the graph in Fig. 1, where C = {μR
1 , . . . , μR

6 }. ΩSR

contains the mappings with the variables in V SR, i.e., {μSR
1 , μSR

2 , μSR
3 } (on the

right); ΩSN contains the other mappings, i.e., {μSN
1 , μSN

2 , μSN
3 } (in the middle).

The mappings in R are encoded as the edges in E (e.g., (μSN
1 , μSR

1 ) represents
μR
1 ). Updating μSR

1 will make all its three corresponding mappings to be fresh:
(μSN

1 , μSR
1 ), (μSN

2 , μSR
1 ), and (μSN

3 , μSR
1 ). Given ΩW (on the left) as the solution

of the WINDOW clause and γ as the refresh budget at the current iteration, the
maintenance process can be summarized as: what is the subset of ΩSR to refresh
can maximize the number of fresh join results between μW and μR? Formally,
it can be modeled as the following optimization problem:

Sub. uSR
j = 0 or 1 ∀j = [1, |ΩSR|] (1)

∑|ΩSR|
j=1 uSR

j ≤ γ (2)

fSN
i =

∑
μSR

j ∀μSR
j : (μSN

i , μSR
j ) ∈ E ∀i = [1, |ΩSN |] (3)

cSN
i = |{μW : μW∈ ΩW ∧ μW comp. with(μSN

i , μSR
j )}| ∀i = [1, |ΩSN |]

(4)

Max.
∑|ΩSN |

i=1 fSN
i ∗ cSN

i (5)

The optimization is subject to: in Formula (1), the value of uSR
j shows

whether the j-th stale mapping is updated (uSR
j = 1) or not (uSR

j = 0). The
total number of updates is limited by γ, as in Formula (2). Formula (3) defines
fSN

i as the number of fresh mappings μSN
i will have. Each μSN

i may have sev-
eral related μSR

j . By summing all its refreshed μSR
j , we have the total number

of fresh mappings for μSN
i . As discussed above, this is because each updated

μSR
j produces one fresh μR

k (μSN
i , μSR

j ) . Overall, Formula (1) to (3) give the
total number of fresh μR in the SERVICE clause. Since each μR may have sev-
eral compatible mappings in the WINDOW clause, Formula (4) introduce cSN

i to
represent the number of compatible mappings of μR

k in the window. Finally, our
optimization goal is to maximize the total number of join results between WINDOW
and SERVICE clauses, which could be defined as the product of cSN

i and fSN
i , as

shown in Formula (5).

Case 2. PS is an aggregate query. In this case, the maintenance graph GC

is constructed as the previous case: ΩSN contains mappings with variables used
for join, and ΩSR contains mappings with dynamic values. However, ΩSR in this
case does not directly participate in the join, but are needed for aggregation.

Consider the example in Fig. 1: C = {μR
1 , μR

2 , μR
3 }: μR

1 contains the value of
the aggregate variables by using the data stored in μSR

1 ; μR
2 has an aggregate

computed from μSR
1 and μSR

3 ; μR
3 is computed from μSR

1 , μSR
2 and μSR

3 . The
edges in this case represent the mappings required to compute the aggregates,
e.g., (μSN

2 , μSR
1 ) and (μSN

2 , μSR
3 ) indicate that the mapping μR

2 should be com-
puted by using both the fresh values of μSR

1 and μSR
3 . The maintenance problem
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is still to choose a subset of μSR to maximize the fresh join results. However,
in this case, updating one μSR

j cannot ensure its corresponding μR
k is fresh. To

have a fresh μR
k , we need all its related μSR to be fresh. Therefore, the problem

can be modeled as:

Sub. uSR
j ≤ 1 ∀j = [1, |ΩSR|] (6)

∑|ΩSR|
j=1 uSR

j ≤ γ (7)

fSN
i =

∏
μSR

j ∀μSR
j : (μSN

i , μSR
j ) ∈ E ∀i = [1, |ΩSN |] (8)

cSN
i = |{μW : μW∈ ΩW ∧ μW comp. with(μSN

i , μSR
j )}| ∀i = [1, |ΩSN |]

(9)

Max.
∑|ΩSN |

i=1 fSN
i ∗ cSN

i (10)

The constraints in Formula (6) and (7) are same with Case 1. Formula (8)
uses fSN

i to model the fact that the i-th mapping μSN
i is fresh (fSN

i = 1) iff all
its related μSR are refreshed. For example, to have a fresh result of μSN

2 , both
μSR
1 and μSR

3 have to be 1; otherwise, fSN
i = 0. Formula (9) is same with Case

1. Finally, the objective function in Formula (10) maximizes the number of fresh
mappings produced by the join.

Overall, both Case 1 and 2 can be treated as binary integer programming
problems. However, Case 2 can be seen as an extension of the knapsack problem,
which is NP-hard, e.g., packing a μSN has a cost (the number of its μSR). We
can only afford a certain number of μSR, but need to maximize the number
of μSN . Furthermore, after choosing a μSN and its related μSR to pack, those
μSR might contribute to other μSN . Therefore, choosing different μSR will have
different influence on the following decisions. Currently, there is no optimal way
to find the best subset of μSR.

5 Maintenance Algorithms

In this section, we propose a set of budget allocation algorithms. Section 5.1
proposes two greedy algorithms, SBMBGP and SBMAgg, for the problems in
Case 1 and 2, respectively. They aim at maximizing the freshness of the cur-
rent slide evaluation. Because the sliding window operator supplies information
about future evaluations (i.e., elements stay in the window for different peri-
ods), Sect. 5.2 shows how to exploit this information to improve the maintenance
process. Section 5.3 discusses how to flexibly manage the budget to optimize the
overall response freshness. The basic idea is to uniformly allocate Γ to n evalu-
ations (i.e., γ = 
Γ/n�). When it is worthwhile, the solution trades the current
remote accesses for the future ones.

5.1 Selectivity-Based Maintenance (SBM)

To maximize the number of fresh join results, we propose the SBMBGP algorithm
for Case 1, where PS is a BGP query; and the SBMAgg for Case 2, where PS
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is an aggregate query. In both cases, we start from the maintenance graph GC

defined above.

SBMBGP . The objective function of Case 1 (Formula (5)) aims at maximizing
the number of fresh mappings produced by the join. Based on GC , SBMBGP first
computes a score for each mapping μSR ∈ ΩSR, which represent the total number
of the fresh join mappings that would be generated if μSR is updated:

scoreSBM (μSR) =
∑

μSN
i :(μSN

i ,μSR)∈E ci (11)

Based on the selectivity of μSR, the number of results it will have equals
to the sum of each its connected μSN times μSN ’s compatible mappings in the
window. Then, SBMBGP picks μSR with the highest scores under the budget
γ to refresh. If there are more than γ data with the same highest score, our
algorithm chooses among them randomly.

SBMAgg. This case aims to maximize the number of fresh aggregate results.
A mapping μSN produces a fresh aggregate result only if all its connected μSR

are fresh. As discussed, fining the optimal set of μSN is a NP-hard problem. We
propose a heuristic algorithm: SBMAgg. It tries to utilize the budget on those
“cheap” μSN , which connects to less stale μSR. Specifically, SBMAgg picks the
mapping ¯μSN with the smallest amount of connected μSR and puts those μSR in
E . Then, ¯μSN and the mappings in E are removed from the maintenance graph
GC , and a new iteration starts again. It ends when γ elements have been moved
into E . If the budget left γ′ is less than ¯μSN , we will randomly choose γ′ amount
of stale μSR.

5.2 The Impact-Based Maintenance (IBM)

The two SBM algorithms maximize the freshness of the current evaluation, but
do not consider future evaluations. As shown in [5], a maintenance process MP
can take into account the sliding window and the changing frequency of the
background data to have a prediction on what will be stale in future. We combine
this idea with SBM to improve the performance of MP .

Before presenting the solution, we first introduce the concept of ranking data
by a score based on two properties from [5], which quantify the impact of a
mapping in future window evaluations. Consider a set of solution mappings ΩW

resulted from the evaluation of a WINDOW clause and a local view R, where each
mapping in ΩW can have only one compatible mapping in R.

The first property is the remaining lifetime, denoted with L. Let μR be a
mapping in R, and let μW be its only compatible mapping in ΩW computed
at time t in a sliding window W = (S, ω, β). The L value of μS at time tnow is
computed as �(t+ω−tnow)/β�. It represents the number of evaluations, in which
μS will be involved. For example, given a sliding window W = (S, ω = 150, β =
30) and a mapping μW with timestamp t = 100, the L value of the compatible
mapping μR at time 100 is L(μR, 100) = �(100 + 150 − 100)/30� = 5; at time
160, it is L(μR, 100) = �(100 + 150 − 160)/30� = 3. The second property is the
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number of evaluations before the next expiration, denoted with B. Given a stale
mapping μR, B represents the number of evaluations that μR would be fresh,
if refreshed now. B is computed as B(μR, tnow) = �(texp − tnow)/β�, where texp

is the next time on which μR would become stale. texp is processed by exploiting
the change rate interval information of μR. At time tnow = 100, the value of B
is B(μR, 100) = 3, i.e., if μR is refreshed now, it would remain fresh for the next
three evaluations (evaluations at 100, 130, and 160; at 190, μR will be stale).

Now, L and B can be combined to assign a score to the elements in C (i.e., the
stale mappings in the local view currently involved). Intuitively, the score of the
mapping μR represents how many future correct results are attainable if μR is
refreshed now. The score of μR at time tnow is computed as score(μR, tnow) =
min{L(μR, tnow), B(μR, tnow)}. If B(μR, tnow) < L(μR, tnow) μR, it can gen-
erate at most B(μR, tnow) fresh join mappings, before it becomes stale while
remaining in the window; otherwise, it generates L(μR, t) fresh join results and
will leave the window before it becomes stale. Based on this score, we extend the
two SBM algorithms so that they also consider the future impact of a refresh.
Given the maintenance graph GC = (ΩSN , ΩSR, E) as defined in Sect. 4 (M:N
bipartite graph), the extensions, namely IBMBGP and IBMAgg, can cope with
the stale mappings μSR appearing in different mappings μR of the local view.

IBMBGP . We assign a score for the stale mappings in ΩSR, as with SBMBGP .
The formula proposed above for B is still valid for the elements in ΩSR. However,
L cannot be directly associated with mappings in ΩSR because they are related
to the mappings computed by the WINDOW clause ΩW through ΩSN .

L(μR, μW , tnow) = �(tμW + ω − tnow)/β� (12)

score(μR, μW , tnow) = min{L(μR, μW , tnow), B(μSR, tnow)} (13)

score(μR, tnow) =
∑

μW c.w.μR score(μR, μW , tnow) (14)

scoreIBMbgp
(μSR, tnow) =

∑
μR=(μSN ,μSR)∈E score(μR, tnow) (15)

IBMBGP associates the remaining lifetime L to the pair of compatible map-
pings (μR, μW ) as defined in Formula (12): the function considers the arriving
time tμW of μW as well, in order to cope with the fact that there are multiple
compatible mappings for a μSR. This extension allows defining a score for each
pair (μR, μW ), as in Formula (13). It represents the number of fresh mappings
that are potentially generated by joining μR and μW in the current and the
following evaluations, if a μSR is refreshed. Formula (14) computes the score of
a mapping μR in the local view, which sums the scores of μR with compatible
mappings in ΩW . Finally, IBMBGP assigns the score to the mappings in ΩSR

by Formula (15): it represents the total number of fresh join mappings that will
be generated, if μSR is refreshed. We select γ mappings of μSR with the highest
scores to refresh. Section 5.4 discusses why IBMBGP is a local optimal solution.

IBMAgg. As discuss in Sect. 4, budget allocation in this case is a NP-hard prob-
lem. When future evaluations of the current data are considered, the complex-
ity increases further, due to the additional level of combinatorial optimization.
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Therefore, IBMAgg exploits a score function to improve the basic SBMAgg algo-
rithm. An aggregate value for a μSN ∈ ΩSN is fresh only when all the required
mappings μSR ∈ ΩSR are fresh.

L
(
μSN , tnow

)
=

⌈(

max
t:μW ∈ΩW ∧μW c.w. μSN

{t} + ω − tnow

)

/β

⌉

(16)

scoreIBMagg
(μSN , tnow) = min

{

L(μSN , tnow), min
μSR:(μSN ,μSR)∈E

{
B(μSR, tnow)

}
}

(17)

IBMAgg computes the score of the mappings in ΩSN when two or more of
them have the same lowest amount of connected μSR. Specifically, Formula (16)
computes the remaining lifetime of μSN , which takes the most recent timestamp
of the compatible mappings of a μSN in ΩW . Formula (17) reports the function
to compute the score, which considers two factors: (1) μSN will continue to
generate fresh mappings as long as all its related mappings μSR are fresh; (2)
their compatible mappings of μSN still remain in the window.

5.3 Flexible Budget Allocation (FBA)

Above solutions only consider the fixed amount of refresh budget γ assigned
in the current evaluation. However, fixing γ may be inefficient as the number
of refresh requests changes over time. Saving current budget for future updates
may improve result freshness, if the future ones can generate more results.5 The
semantics of the sliding window allow inferring how long each element in the
current window will be involved in future joins. We propose FBA to allocate the
refresh budget by considering both current and future evaluations. Specifically,
FBA iterates from the current to the future ω/β slides (window length/slide
length). At each iteration, it identifies the maintenance graph GC

i and the stale
data ΩSR

i . It calculates the number of future fresh results for each μSR in every
ΩSR

i at their corresponding evaluation time and orders μSR by their scores.
FBA allocates total n × γ budgets to the Top-(n × γ) μSR with the largest
scores. Note that this set contains both current and future stale μSR. If the
number of μSR in the current evaluation is less than γ, it means FBA delays the
budgets of current μSR to some future ones.

5.4 Discussion

SBMBGP and IBMBGP are optimal for Case 1. For a BGP query, choosing
the top-γ data in ΩSR based on degSR, which is the number of μSR’s associated
elements in ΩSN . It gives the local optimal solution at the current time without
considering the future impact of ΩSR. This is because the top-γ of ΩSR is the

5 We acknowledge that not all types of budget can be saved for future (e.g., a fixed
amount of bandwidth cannot be saved). Other types of budgets, such as a supplier
charges per request, a limited data plan, or limited power can be saved.
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set with the largest sum of degSR, since the sum of degSR exactly equals the
number of fresh results. Therefore, SBMBGP gives the local optimal solution.
The same reason applies to IBMBGP , where γ mappings with the largest score
also gives the most results, as score accurately reflects the number of future
results. Note that since the future elements in stream are not predictable (with
certainty), there is no global optimal solution for BGP query.

Complexity. Both the SBM and IBM only consider data in the current evalu-
ation. SBMBGP /IBMBGP visits each μW and μR to count the number of map-
pings and calculate scores for μSR, which both take linear time of O(|ΩW | +
|ΩR|+|ΩSR|). Then, choosing the Top-γ mapping take O(|ΩSR| log |ΩSR|) time.
SBMAgg takes O(|ΩSN |2 log |ΩSN |) time, as whenever updating a μSN , we have
to update all its related μSR. IBMAgg, as an extension of SBMAgg, has the same
complexity. FBA has the same time complexity as IBM, since they have the same
way of ranking and choosing data to refresh, except that IBM chooses data only
in the current slide; FBA does this for a fixed number of future slides.

6 Experiments

Experiment environment. We implemented the maintenance process in a real
RSP system: C-SPARQL [3]. The system registers continuous federated queries
with WINDOW and SERVICE clauses (as in Sect. 2) and continuously evaluates the
query per window on the incoming stream. Each evaluation joins the content
of the current WINDOW with the results of the SERVICE clause. For evaluating
the SERVICE clause, we have implemented a local view in C-SPARQL to cache
remote BGD data (as in Sect. 4). Before executing the SERVICE clause, different
maintenance algorithms will select a candidate set E from ΩSR to refresh. For
each data in E , the SERVICE clause will request its fresh value from the remote
server. We used Fuseki 2.0.0 as the remote BGD server and ran it with the C-
SRAPQL engine on the same machine. The delay of each remote access under
this setting is much smaller than querying an actual remote server.

Experiment data sets. We employ a real data set and several synthetic data
sets to investigate the performance of our solutions. The real data set was
recorded from Twitter. The synthetic ones were constructed by resembling the
real one, but using a generator that can alter its characteristics. Each data set
broadly contains three kinds of data: the remote BGD, the local view R, and
the input stream. We discuss different parameters of our data sets below and
report their values in each experiment.

The remote BGD. In BGD, data change according to each one’s own change
interval ChR. In realtwitter data, we use the number of a user’s followers as the
BGD. When a tweet mentions several users, the SERVICE clause will provide
the number of followers for each mentioned user in Case 1 (BGP query); it will
provide the sum of the followers for all mentioned users in Case 2 (aggregate
query). We collected the follower number of 100 selected users every minute for
four hours by using the Twitter search API [5]. We noticed that the distribution
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of ChR is highly skewed: only few users have a very dynamic changing number
of followers, while others are stable. Roughly, it resembles a Beta distribution
with α = 50 and β = 1. In synthetic data, our data generator outputs data with
different ChR-distributions. The generator has two parameters: the skewness of
the distributions and the correlation with the selectivity of data elements in the
local view. The latter controls whether data that changes more frequently can
have either a higher or a lower selectivity.

The local view R. In R, we model the relationship between ΩSN and ΩSR

as a bipartite graph. Therefore, we are mainly interested in the degSR of ΩSR.
After analyzing the realtwitter data set, we observed a skewed distribution of the
degSR that can be modeled as a Zipf distribution with a skewness parameter of
0.2. In the synthetic data, we can tune two aspects of degSR: the skewness and
the correlation with the stream/remote data.

The stream and the sliding window. By using the Twitter stream API,
the real data set collects a stream of tweets that contains the mentions of the
monitored Twitter users described above. The synthetic data set generates the
streaming data through a Poisson process [21]. To verify Hypothesis 3, the stream
is generated with a non-homogeneous Poisson process, where the data arrival
rate changes over time, e.g., λi = 0.95λ0 · (i mod 2) + λ0 · ((i + 1) mod 2), where
λ0 is the initial expected arrival interval and i is incremented along the time.
The input query has a sliding window length of ω = 4 seconds and slides every
β = 1 second. Each experiment has 50 evaluations, and the first 10 % is used as
a warm-up period.

We first use synthetic data sets to verify our hypotheses and study the per-
formance of our algorithms. The performance and the computational overhead
on the real data set are reported as well. The average response freshness is used
as the Key Performance Indicator (KPI). As discussed in Sect. 2, it is the ratio
of fresh results to total number of results, within each evaluation. The number of
fresh results is acquired by comparing the current result set to the corresponding
set acquired by the original C-SPARQL engine6, where all results are fresh, since
it queries BGD without budget constraints.

The baseline algorithms. We choose two baseline algorithms: (1) Least
Recently Update (LRU), which selects the least recently updated stale data
from R; (2) Random (RAND), which randomly chooses stale data from R. All
algorithms pick at most γ (the refresh budget) candidates to refresh.

Resulting synthetic data sets. The default settings of the synthetic data set
are: ΩSN and ΩSR in R contains 50 data elements each. There are 1000 edges
μR between ΩSN and ΩSR. Each μR randomly connects a pair of μSN and μSR.
Every μSR has a change interval ChR randomly chosen from [100, 3000] ms. A
stream trace generated from a Poisson distribution decides the arrival time of
each μSN . For the Poisson distribution, each μSN chooses its λ (the expected
arrival interval) randomly from [1000, 2000] ms. The default budget γ is 10.

6 http://streamreasoning.org/larkc/csparql/CSPARQL-ReadyToGoPack-0.9.zip.

http://streamreasoning.org/larkc/csparql/CSPARQL-ReadyToGoPack-0.9.zip
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6.1 Verifying Hypotheses H1 and H2

H1 and H2 are tested together by comparing the response freshness among
RAND, LRU, SBM and IBM in both subquery cases:

(a) Density (b) Skewness

(c) Budget (d) ChR Range

Fig. 2. SBMBGP and IBMBGP outperform baselines under different settings.

Case 1. In the four settings of Fig. 2, both SBMBGP and IBMBGP greatly
improve the response freshness of the baselines by 22 %/43 %/93 %
(Min/Average/Max). These different settings show how the performance
improvement generalizes.

In Fig. 2(a), we show the performance of using R with different densities,
i.e., the number of edges |μR| in R is set to be 500, 1000, 1500, and 2000.
Note that 2500 (|ΩSN | × |ΩSR|) edges will form a fully connected R. First,
we observe that the performance of RAND and LRU remain roughly stable
over different densities. The reason is that they select the refresh candidates E
“blindly” without considering degSR—the selectivity of μSR. Therefore, the per-
centage of edges being updated remains the same for different densities. On the
other hand, in higher densities, the performance improvement of SBMBGP and
IBMBGP decreases a bit. The reason is that in a denser graph the difference
of degSR among μSR becomes less significant. SBMBGP and IBMBGP always
choose the μSR with the highest degSR, however, the percentage of the chosen
μSR to the total number of μSR in GC becomes smaller. Hence, SBMBGP and
IBMBGP favor sparse graphs.

Figure 2(b) plots the performance on graphs with different distributions of
μSR’s selectivity. We set the selectivity to follow different Zipf’s distributions,
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with skewness parameter s to be 1 (uniform), 0.8 (slightly skewed), 0.5 (skewed),
and 0.3 (highly skewed). Figure 2(b) shows that the performance improvement
of SBMBGP and IBMBGP is more significant in skewed graphs. The reason is
same with the second observation above: SBMBGP and IBMBGP refresh the μSR

with the highest degSR. In a skewed graph, the percentage of the selected μSR

increases, which leads to more fresh results. Therefore, SBMBGP and IBMBGP

favor skewed μSR selectivity distribution.
Figure 2(c) shows the performance with different budgets i.e., γ = 5, 10, 20,

and 30. With a larger budget, the performance improvement of SBMBGP and
IBMBGP becomes less. In an extreme case of having a large enough budget to
cover most of the stale μSR, different subsets of E do not affect the freshness
anymore. Therefore, SBMBGP and IBMBGP can achieve significant improve-
ment with less budget. The above three experiments verify H1: considering the
selectivity degSR of μSR enables choosing better candidates for refreshing and
improves response freshness.

(a) Skewness (b) Budget

Fig. 3. SBMAgg and IBMAgg outperform baselines in subquery Case 2.

Regarding H2, Fig. 2(d) shows the performance results of BGD change inter-
vals that are randomly chosen from different ranges: [100, 3000], [500, 2000], and
[800, 1200] ms. We can make these comparisons: first, IBMBGP always has a
higher freshness than SBMBGP . Second, having a wider range for ChR leads to
better improvement in IBMBGP . The reason is that IBMBGP chooses μSR with
larger “impact”, i.e., larger score, since the score indicates that μSR makes more
results in the current and future slides. Therefore, this experiment verifies H2
and shows that IBMBGP favors larger ranges of change intervals.

Case 2. When PS is an aggregate query, in all of the above cases, we observed
similar performance improvements of SBMAgg over RAND and LRU. To save
space, we just show the results with different skewnesses to demonstrate the
performance in Fig. 3(a). Besides the freshness improvement, we notice that in
most cases IBMAgg performs similarly with SBMAgg. This is because IBMAgg is
designed to be at least as good as SBMAgg. Only when several μSN have the same
amount of connected μSR, SBMAgg will choose the one with the lowest score.
Furthermore, for different μSN , when the overlapping between their associated
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μSR is small, the chance of μSN s have different scores is larger and the effect of
SBMAgg is, therefore, more significant. Figure 3(b) investigates this by plotting
the results of a special case: a very sparse graph (100 edges) and a tiny budget,
e.g., 3 to 5. In these cases, IBMAgg outperforms SBMAgg by up to 12.5 %.

6.2 Verifying Hypothesis H3

We compare the performance of FBA with IBM in Case 1 with three refresh
budgets, γ = 5, 10, 15 in Fig. 4(a). They track the accumulated number of
stale results over time. By increasing the budget, the gap between FBA and
IBM becomes more significant. Furthermore, when γ = 15, after the first 15
iterations, FBA makes the accumulated stale result increases very slowly, i.e.,
the freshness ratio of the answer is almost 100 %, while IBM still keep producing
stale results. To explain the improvement, Fig. 4(b) plots the actual amounts of
budget that are consumed over time. For IBM, the consumption of budget will
always be a vertical line for different budgets. For FBA, when γ = 5, the line
fluctuates a bit. With larger budgets, the lines fluctuate more. It shows that
FBA moves budgets between different slides to improve freshness.

(a) Accumulated error (b) Budget usage of FBA over time

Fig. 4. The performance of FBA under different budgets.

Results on a real data set. Figure 5 plots the results on a real data set with
different budgets for both cases. We can observe that IBM always achieves the
best freshness and SBM also outperforms the two baseline algorithms. When we
decrease the budget, the performance improvement of IBM and SBM increases.
These results confirm our findings in Fig. 2(c).

Computational overhead. We finally report the computational overhead and
the average remote access delay. Under the default setting γ = 20, the total
latency of a slide evaluation is about 94.4 ms. The delay of querying the BGD
server accounts for 92 ms on average (4.6 ms per request); the computational
overhead is only about 2.3 ms (2.5 % of the overall latency). Note that, the
current setting has the remote BGD server running locally. When requests are
sent over Internet, the computational overhead will become even more negligible
while the performance gain will become more substantial.
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(a) Case 1 under different budget (b) Case 2 under different budget

Fig. 5. SBM and IBM outperform baselines in a real data set.

7 Conclusions and Future Work

In this paper, we studied the problem of accessing remote background data
(BGD) from an RDF Stream Processing (RSP) context. When BGD is large,
stored remotely, and/or changing over time, accessing it can be expensive, waste
resources, and deteriorate the response time. Hence, a local view is often used
to speed up the BGD accesses, but maintaining it is often subject to refresh
budget constraints. This paper proposes to efficiently allocate the budget for
refreshing the local view. Specifically, our solution relies on a bipartite graph
to model the join between stream data and BGD. It exploits the graph struc-
ture to improve response freshness for two kinds of SERVICE subqueries: a BGP
query (Case 1) and an aggregate query (Case 2). Our solution, SBM, exploits
a set of basic algorithms that leverage the selectivity of the join between the
stream and the background data. Experiments show that it can significantly
improve the response freshness up to 25 % compared to baseline algorithms (i.e.,
RAND and LRU). An also introduce an improved approach, IBM, that takes
the future impact of refreshes into account and improves the performance up to
55.6 % over the SBM. Finally, we propose the FBA optimization that flexibly
allocates budget considering not only the current but also future data. As a result
FBA significantly improves over all other solutions and maintains a freshness of
close to 100 % even in the light of limited update budget.

Our findings have the following limitations: first, we propose a greedy heuris-
tic algorithm for Case 2. We hope to investigate a more advanced approximate
approach in the future. Second, the current approach focuses on BGP. Some
SPARQL operators (e.g., OPTIONAL) can introduce new challenges and require
non-trivial extensions of our model. Third, we currently focus on stream query-
ing. In future, we plan to extend our current optimization problem to reasoning
over both stream and BGD. For example, we plan to investigate how to ensure
stream consistency over a background knowledge base under a given budget.

Even in the light of these limitations we believe that this paper highlights
an important problem in RSP—the joint evaluation of stream and BGD under
budget constraints—and provides solutions for different subqueries. As such it
paves the way for truly scalable RSP systems in real-world environments, where
the integration of stream and BGD is ubiquitous.
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Abstract. Finding relevant concepts from a corpus of ontologies is use-
ful in many scenarios, such as document classification, web page anno-
tation, and automatic ontology population. Many millions of concepts
are contained in a large number of ontologies across diverse domains.
A SPARQL-based query demands the knowledge of the structure of
ontologies and the query language, whereas user-friendlier and, simpler
keyword-based approaches suffer from false positives. This is because
concept descriptions in ontologies may be ambiguous and may overlap.
In this paper, we propose a keyword-based concept search framework,
which (1) exploits the structure and semantics in ontologies, by con-
structing contexts for each concept; (2) generates the interpretations of
a query; and (3) balances the relevance and diversity of search results.
A comprehensive evaluation against the domain-specific BioPortal and
the general-purpose Falcons on widely-used performance metrics demon-
strates that our system outperforms both.

Keywords: Ontology concept search · Query interpretation ·
Diversification

1 Introduction

The current breed of Semantic Web search engines can be broadly grouped
into three categories: (1) those that search for ontologies [12,15], (2) those that
search for individual resources [15,20], and (3) those that search for concepts that
represent a group of individuals [17,27].1 Searching concepts across ontologies
represents an ideal granularity middle ground and has applicability in ontology
mapping, ontology merging, bootstrapping ontology population, entity annota-
tion, web page classification, and link prediction, all real world applications.
With structured content (e.g., knowledge graph) increasing on the web, search-
ing concepts across these is a challenge. In certain domains such as life sciences,

1 Throughout this paper we use the terms concept and class interchangeably.
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there are many overlapping domain ontologies that contain concepts and prop-
erties that describe and link concepts. In such a scenario, concept search in itself
is a very important task.

To the best of our knowledge, existing concept search approaches can be
divided into two types on basis of the nature of the input queries: (1) SPARQL
queries [23], which as precise input queries, lead to exact results. However, it
requires knowledge of writing SPARQL queries and knowledge of the structure
of the ontologies that are to be queried. In reality, learning SPARQL may be
an additional burden, and often the structure might not be known to the user.
(2) Keyword-based approaches [15,27], typically use the standard information
retrieval techniques such as tf-idf-based and PageRank-inspired algorithms. How-
ever, these approaches do not make use of the structure and semantics in ontolo-
gies to capture the intents of queries with multiple keywords. In our preliminary
work [17] we proposed a concept search framework that only considers relevance.
Extending it, in this work, we incorporate diversification of search results and
propose a context-based diversification framework that automatically captures
fine-grained query intents in the top-k results. We incorporated inferred knowl-
edge using reasoners and refined context further to include annotation properties
of widely used vocabularies such as SKOS.

In this paper, we propose a novel keyword-based concept search framework
that optimizes both the relevance and diversity of search results. In order to
improve search relevance, our framework interprets a query by constructing con-
texts for concepts from ontology axioms. We exploit the rich and inherent struc-
ture and semantics of ontologies and adopt an explicit query interpretation app-
roach [14] in our concept search problem. A keyword query can be ambiguous
with multiple intents. Our framework returns the subset of relevant results that
contain the most relevant as well as the most diverse results that cover these
intents. Our diversification approach achieves the goal of capturing fine-grained
intents in the top-k results by using the structure of the ontology.

The technical contributions of our concept search framework are three-fold:
(1) the proposal and design of contexts of concepts for their retrieval, (2) explicit,
context-based query interpretation based on co-occurrences among keywords in
a query, and, (3) explicit, context-based diversification of top-k results using
fine-grained search intents.

We have conducted extensive experiments that compare our framework
against two concept search systems: the domain-specific BioPortal and the
general-purpose Falcons. Our evaluation shows that our framework outperforms
both systems by a large margin for both relevance and diversity.

2 Related Work

We relate our work with the broad areas of search approaches and systems.

Semantic Search Approaches. Semantic search engines such as Sindice [32],
Swoogle [12,15], and Watson [11], enable keyword-based search for the ontologies
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and entities within them. Sindice [32] provides a search interface by using key-
words, URI’s and inverse functional properties. Swoogle [12,15] has developed
algorithms to rank the importance of documents, individuals and RDF graphs.
The existing semantic search approaches do not leverage the structure and
semantics in ontologies to capture the intents of queries with multiple keywords.
BioPortal [26] and Falcons [27] are state-of-the-art concept search engines. The
Falcons system retrieves concepts, the textual descriptions of which match the
keyword query. The system then ranks the results according to the relevance
and popularity of the concepts. The BioPortal system provides multiple search
functions across ontologies, individuals, and concepts. The BioPortal concept
search system is based on the precise or partial matching of the preferred name
with the search string. BioPortal use ontology popularity to rank concept search
results. We differ in our approach from both these concept search systems in the
aspect of searching by using query interpretation and search result diversification
techniques.

Indexing and Ranking. SchemEX [24] is an indexing approach for search across
the linked open data (LOD) using structured queries. SchemEX consists of three
schema layers of RDF classes, RDF types, and equivalence classes with each layer
supporting different types of structured queries. However, our framework sup-
ports keyword queries and makes use of contexts based on a richer set of ontology
constructs. Blanco et al. [5] propose r-vertical index (reduced version of their ver-
tical index) for the RDF entity search problem. The r-vertical index is built by
manually categorizing RDF properties in three fields (important, unimportant
and neutral). In comparison, our index is built using context information of con-
cepts in the ontologies suitable for our concept search problem. Recent work in
the area of Semantic Web resources ranking has largely focused on adapting and
modifying the PageRank algorithm. ReConRank [19] is PageRank-inspired [22]
algorithm for Semantic Web data. It uses node degree to rank Semantic Web
resources in a manner analogous to the PageRank algorithm. ReConRank com-
bines ranks from the RDF graph data sources and their linkage. AKTiveRank [3]
ranks ontologies on the basis of how well they cover the specified search terms.
The Linked open vocabularies (LOV) [4] search system ranks results on the basis
of the popularity of the term in the LOD datasets and in the LOV ecosystem.
Butt et al. [6,7], use offline ranking with the popularity of the concept within
the ontology and the popularity of the ontology that contains the concept as the
ranking features. Blanco et al. [5] propose instance/entity search using BM25F
ranking function. Their ranking function does not exploit proximity information
or term dependencies. The existing approaches do not directly exploit the struc-
ture in ontologies for indexing and ranking. Dali et al. [9], propose the learning to
rank (LTR) [25] approach by using query-independent frequency-based features
to rank the results of structured queries. We build the context-based inverted
index to interpret the queries, and rank the results of keyword queries using
query-based features in the LTR algorithm.
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Query Processing and Interpretation. There has been work on structured query
processing over LOD and related ontologies. The work on Top-k exploration of
query candidates on the (RDF) graph data [31] proposes an intermediate step
of converting keyword queries to structured queries. The user needs to select the
correct SPARQL query interpretation to retrieve search results. However, our
method internally interprets the keyword query without needing to explicitly
generate the candidate SPARQL query. Fu and Anyanwu [16] generate query
interpretations using the query history as contextual information. However, the
queries may not always be iterative and extensive query logs of similar queries
may not be available for interpretations. In our approach, we use the context
information around a concept across ontologies to interpret the query. We also
discuss query interpretation work in the context of implicit and explicit query
interpretation. Sawant and Chakrabarti [29] propose implicit generative and dis-
criminative formulations for joint query interpretation and response ranking in
keyword-based searches across web documents. Agarwal et al. [1] use proba-
bilistic modeling techniques to mine query templates from query logs for query
interpretation. While these approaches may work well for large-scale unstruc-
tured data, they may not work in our problem of searching over structured
ontologies with low number of redundancies. Our technique of interpreting rela-
tions among keywords in the query by using a rich ontology structure is different
from the rest of the approaches.

Search Result Diversification. There are two main approaches to diversifica-
tion: (1) implicit ones that assume that similar documents that cover similar
intent/aspects of the query should be demoted to achieve diversified ranking
(maximum marginal relevance, or MMR [8]); and (2) those that explicitly model
query aspects by sub-queries and maximize the coverage of selected documents
with respect to these aspects [10,21,28]. These approaches are applied to the
unstructured text document search. We believe the diversification techniques
have not been designed for the structured data setting of ontologies. Herzig
et al. [18] propose language model (LM) approach for consolidating entity search
results to reduce redundancy by grouping similar entities. However, their app-
roach does not consider diversity of intent capture in the top-k results. While in
our explicit diversification approach, we eliminate redundancy and also capture
the fine-grained intents in the top-k search results.

3 Overall Approach

Given a multi-word query Q that consists of m keywords, Q = {k1, k2, . . . , km}
on a search space of diverse web ontologies O = {O1, O2, . . . , On}, the goal
is to retrieve relevant (named) concepts R = {R1, R2, . . . , Rp} across these
ontologies. We retrieve concept results R by interpreting relations among key-
words in the query via the context of a concept (class). Given an ontology,
Og (g = 1, 2, . . . , n), the entities of Og include named concepts and named
(object-, datatype-, or annotation) properties that are declared in Og. Given an
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axiom a ∈ Og (logical or annotation), let sig(a) represent the signature (the
set of entities) in a. sig(·) is extended naturally to apply to sets of axioms
also. For an entity e, let annotations(e) represent the values of annotation
axioms on e. These annotation axioms include rdfs:label, rdfs:comments,
rdfs:isDefinedBy, rdfs:seeAlso as well as those defined in other widely-used
vocabularies such as SKOS.

A keyword query is interpreted using the context of each concept. The context
of a given concept Cj across ontologies O is defined as the set of annotation values
of the concept and of the entities that co-occur with Cj in some axioms in an
ontology.

AxCj ={a| a ∈ O ∧ Cj ∈ sig(a)} ∪
{a| a is A � B ∧ {A,B} ⊆ sig(O) ∧ o � a ∧ (Cj = A ∨ Cj = B)} ∪
{a| a is A ≡ B ∧ {A,B} ⊆ sig(O) ∧ o � a ∧ (Cj = A ∨ Cj = B}

PxCj ={a | a ∈ O ∧ Cj ∈ sig(a) where a is an object-, datatype-

or annotation property axiom}
Context(Cj) ={annotations(Cj)} ∪

{annotations(e) | e ∈ sig(AxCj ∪ PxCj )}
where AxCj

and PxCj
are sets of class-axioms and property-axioms that

are relevant to Cj , respectively. Note that AxCj
includes subClassOf and

EquivalentClasses axioms a that are entailed by an ontology (i.e., O � a), where
both concepts are named concepts (i.e., A and B), and one of them is Cj . These
additional, inferred axioms are obtained through reasoning. Context(Cj) consist
of its annotation values (annotations(Cj)) and the annotation values of the set
of entities that are relevant to Cj (annotations(e)|e ∈ sig(AxCj

∪ PxCj
)).

We further employ search result diversification to cover maximum user intents
in the top-k search results. We pose our search result diversification problem as
a an optimization problem, in which the objective is to maximize the relevance
of a result, while minimizing the redundancy among the results. Given a ranked
set R of relevant concepts for Q, the goal is to select the subset of concepts
Cs ⊆ R that are most relevant to the query and diverse among Cs. Along the
lines of the MMR [8] framework, our diversification optimization model is:

C∗ = arg max
Ci∈R\Cs

((1 − λ) × S(Ci) + λ × D(Ci, Cs)) (1)

where S(Ci) is the relevance score of concept Ci, and D(Ci, Cs) is the diversi-
fication score of Ci. S(Ci) is obtained by using LTR algorithms. D(Ci, Cs) is
estimated using the diversity function in which Ci is compared with each of the
concepts in Cs. The diversity parameter, λ ∈ [0, 1], is the tuning parameter that
draws a balance between the relevance and the diversity of a concept.

4 The Concept Search Framework

Figure 1 depicts the high-level architecture of our search framework. The com-
ponents at the bottom are constructed offline, whereas the computations at the
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Fig. 1. The high-level architecture of our concept search framework.

top are performed online for each new query. The concept inverted index I is
built offline using Context(Cj), that is relevant to each Cj as defined in Eq. 1
(Sect. 3). Each class and property axiom in AxCj

and PxCj
, which is relevant

to each Cj in the ontology corpus is indexed as a field such as rdfs:label,
rdfs:comments, rdfs:isDefinedBy. Since the probability of having more than
two words together in the ontology corpus is small, we set the shingle size (num-
ber of co-occurring words used in co-occurrence computation) to two. In addi-
tion, we store the term-vectors for performing co-occurrence computation. We
perform natural language processing (NLP) techniques such as tokenization and
stemming using the Lucene standard analyzer in order to store the context infor-
mation in the inverted index.

4.1 The Concept Search Procedure

Given a query Q, the search proceeds by finding concepts with human-readable
label L(Cj) or class-name(Cj) (fragment of the URI) that match exactly with
the query Q terms as a phrase (line 3 in Procedure CS ). We define L(Cj):

L(Cj) ={l | l ∈ rdfs : label(Cj) ∨ l ∈ skos:prefLabel(Cj)} (2)

The lexical co-occurrence LC among keywords in a query is evaluated using
Pearson’s Chi-squared test (line 6). A Chi-squared value that is greater than
3.841 implies that the keywords co-occur with 95 % confidence. The Pearson’s
Chi-squared test returns a set of all co-occurring terms, Cterms in the query.
We use Cterms for explicit query interpretation in procedure QI (line 7, further
described in Sect. 4.2). QI generates direct and inferred parses for the query
using context of concepts. The parses return a set of concepts as search results.
Feature vectors (fv’s) are then built for these results to obtain relevance by using
LTR model (line 8). An LTR ranking model that is trained offline is applied in
order to obtain the relevance score of each search result (line 9, further described
in Sect. 4.3). Finally, the search results are diversified to capture fine-grained user
intents (line 10, further described in Sect. 4.4).

4.2 Explicit Query Interpretation

Our explicit query interpretation approach generates interpretations by analyz-
ing the interrelationships among the keywords along with the inherently rich
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Procedure CS(Q, C)
Data: Query Q = {k1, k2, . . . , km}
Data: Number of results to be returned, k
Data: Concepts across ontologies, C = {C1, C2, . . . , Cl}
Data: An LTR ranking model trained offline, rankingModel
Result: SearchResults

1 SearchResults ← ∅;
2 foreach Cj ∈ C do
3 if IsExactMatch(L(Cj), Q) or IsExactMatch(class-name(Cj , Q)) then
4 SearchResults ← SearchResults ∪ {Cj} ;

5 if |Q| ≥ 2 then
6 Cterms = {Ct | Ct ⊆ Q ∧ Ct = {ki, ki+1} ∧ LC(ki, ki+1) > 3.841} ;
7 SearchResults ← SearchResults ∪ QI(Cterms, Q);

8 fv ← BuildFV (Q,SearchResults) ;
9 SearchResults ← relevance(fv, SearchResults, rankingModel) ;

10 SearchResults ← diversify(SearchResults, k);
11 return SearchResults ;

structure and semantics of ontologies. Our explicit approach embeds a precise
understanding of how each search result is obtained. In the procedure QI, we
use the set of co-occurring terms Cterms and all the individual keywords in
the query. For each co-occurring terms pair Ct ∈ Cterms, we search for the set
of classes CtermClasses for which IsExactMatch(L(Cj), Ct) is true (line 5).
We implement the direct and inferred parse on each of the concepts Cj in
CtermClasses. The direct and inferred parse returns the set of relevant con-
cept results (SearchResults) for the query (line 6–7). If the SearchResults found
using direct and inferred parse for co-occurring tokens are less than the threshold
(set to 50), we search for a set of classes StermClasses in order to match each
keyword St ∈ Q, for which IsExactMatch(L(Cj), St) is true (line 10). We imple-
ment the direct and inferred parse on each of the classes Cj in StermClasses
to obtain relevant concept results (SearchResults) for the query (line 11–12). In
addition we also return the set of classes CtermClasses and StermClasses as
SearchResults if the SearchResults found using direct and inferred parse are less
than the threshold (line 14–15).

Direct Parse: The direct parse (DP) returns sets of concepts (SearchResults).
DP analyzes the relation among the query keywords by using the context of a
concept and is defined as:

DP (tC, S) = {Cj |Cj ∈ tC ∧ sim(Context(Cj), S) > 0} (3)

where tC is either CtermClasses or StermClasses, and sim(Context(Cj), S)
is calculated using the Jaccard similarity measure.

We explain DP with an example for a query “Myocardial infarction
causes” in Fig. 2. The query contains the co-occurring terms pair Ct,
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Procedure QI(Cterms, Q)
Data: Co-occurring terms Cterms, Q
Result: SearchResults

1 SearchResults ← ∅;
2 CtermClasses ← ∅;
3 StermClasses ← ∅;
4 foreach Ct ∈ Cterms do
5 CtermClasses ← CtermClasses ∪ {Cj |IsExactMatch(L(Cj), C

t))} ;
6 SearchResults ← SearchResults ∪ DP (CtermClasses,Q \ Ct) ;
7 SearchResults ← SearchResults ∪ IP (CtermClasses,Q \ Ct) ;

8 if |SearchResults| ≤ th then
9 foreach St ∈ Q do

10 StermClasses = StermClasses ∪ {Cj |IsExactMatch(L(Cj)), S
t)} ;

11 SearchResults ← SearchResults ∪ DP (StermClasses,Q \ St) ;
12 SearchResults ← SearchResults ∪ IP (StermClasses,Q \ St) ;

13 if |SearchResults| ≤ th then
14 SearchResults ← SearchResults ∪ CtermClasses ;
15 SearchResults ← SearchResults ∪ StermClasses ;

16 return SearchResults ;

Fig. 2. Direct parse

“Myocardial infarction”. The keywords “Myocardial infarction” appear
as the label of some concept Cj in our concept index i.e., IsExactMatch
(L(Cj), Ct) = true. If the context of the same concept Cj contains “causes”
(hence sim(Context(Cj), S) > 0 is satisfied), then Cj with label ‘Myocardial
infarction” will be returned as a search result.

Inferred Parse: The inferred parse (IP) returns a set of other concepts that
do not directly appear in the query, but rather indirectly through SubClassOf
or EquivalentClasses axioms. The IP is defined as:

OC(Cj) ={Ck | SubClassOf(Cj , Ck)}∪ (4)
{Ck | EquivalentClasses(Cj , Ck)}

IP (tC, S) =
⋃

Cj∈tC

{Ck |Ck ∈ OC(Cj) ∧ sim(Context(Ck), S) > 0} (5)
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Fig. 3. Inferred parse

where OC(Cj) is a collection of all other classes that are indirectly related to Cj

through either SubClassOf or EquivalentClasses axioms, and IP is similarly
constructed from classes in OC(Cj). Here tC, sim are defined in the same way
as explained in Eq. 4 of the definition of direct parse.

An example of IP is shown in Fig. 3. Consider the query “Heart attack
causes”. The keywords “Heart attack” co-occur and appear as a label of some
concept, Cj , in our concept index that is, IsExactMatch(L(Cj), Ct) = true.
However, the keyword “causes” is not present in the context of Cj . An equivalent
class of Ck, Myocardial infarction, has the context that contains “causes”.
This is interpreted as an inferred relation between “Heart attack” (co-occurring
terms) and “causes” (single term) and the class Myocardial infarction with
causes as its relevant property will be returned as a search result.

4.3 Relevance Score Computation

The relevance score for the search results are computed by the ranking model
that is built using learning to rank (LTR) algorithms [25]. LTR algorithms are
supervised machine learning algorithms. Training data for the ranking model is
generated from a query log, in which feature vectors (FV’s) are generated for
each combination of query and a result. Components of such FV’s are ranking
features, which are obtained using ISUB [30] (12 features) and Jaccard (12 fea-
tures) similarity, between query terms and concept context fields in the index. The
twelve features are computed as the ISUB similarity of query with rdfs:label,
rdfs:isDefinedBy, skos:prefLabel, rdfs:comments, rdfs:seeAlso, synonym,
dataproperty, objectpropertydomain, objectpropertyrange, SuperClassOf,
SubClassOf, EquivalentClasses, respectively. Similar features are obtained
using the Jaccard similarity measure.

The training data of FV’s are used to build LTR models, by employing the
RankLib implementation2. We use the pairwise RankNet algorithm because the
highest normalized distributive cumulative gain (NDCG) value was obtained
from this algorithm among the pairwise algorithms by using the query log test
data. The RankNet parameters that are used are: the number of epochs to train =
100; the number of hidden layers = 1; number of hidden nodes per layer = 10;

2 http://people.cs.umass.edu/∼vdang/ranklib.html.

http://people.cs.umass.edu/~vdang/ranklib.html
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and the learning rate = 0.00005. The LTR model is trained using 70 % of the
log queries in order to learn the weights of the features and 30 % of the queries
are used for testing (excluding training queries). The model is then applied to
search results in order to obtain the relevance scores for all the concept search
results.

4.4 Search Result Diversification

A keyword query may have diverse possible search intents. Search result diver-
sification aims to retrieve k items that are the subset of all relevant results
that contain the most relevant and the most diverse intent results. We use the
relevance score that is obtained by the LTR algorithm for search result diver-
sification. Search results are diversified by capturing fine-grained query intents
explicitly, using the context of concepts.

Baseline Approach. The baseline Implicit approach assumes that similar
search results map to the same query intent. Such results should be demoted
in order to achieve diversified ranking. Maximum marginal relevance MMR [8] is
a canonical technique from the implicit approach. The implicit diversity function
is defined as follows:

D(Ci, Cs) =
∑

Cj∈Cs

(1 − SC(Ci, Cj)) (6)

We calculate the similarity SC(Ci, Cj) among two concepts by comparing their
respective context similarity. For example, the context information that is cap-
tured in sig(a), in which a is a SubClassOf axiom of the concept Ci is compared
with similar information of the other Cj . We use the greedy algorithm [13] by
substituting Eq. 6 in Eq. 1 of Sect. 3 in order to implement the implicit diversi-
fication.

C∗ = arg max
Ci∈R\Cs

((1 − λ) × S(Ci) + λ × (
∑

Cj∈Cs

(1 − SC(Ci, Cj))) (7)

We iteratively select the best concept result with the highest LTR score (S(Ci))
from R which can maximize the diversity of the selected concepts Cs. The iter-
ative process is repeated until top-k results (|Cs| = k) are obtained.

Fine-Grained Explicit Diversification. Explicit approaches [10,28] directly
map search results to query intents. Diversified ranking is achieved by selecting
results that maximize coverage with respect to query intents. Existing explicit
diversification approaches obtain query intents from commercial search engines
such as Google, which may not be useful in our setting because they are indepen-
dent of the ontology corpus. Our explicit diversification is based on fine-grained
intents that are captured by the contextual information around a concept.
We make use of super-class and subclass relations of the returned concepts to
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generate search intents. Super-classes of concepts cover more generic intents,
while subclasses of concepts generate more specific intents.

More specifically, for a query, Q, and the set of most relevant concepts R
returned by the LTR model, two levels of intents are generated. Firstly, the top-
level intents consists of all of the super-classes of concepts in R. Secondly, the
sub-level intents consists of all the subclasses of the super-classes of R.

Top-level intent diversity: The top-level intents are represented as I. Along
the lines of the work by Hu et al. [21], we define diversity of the top-level intents
as follows:

D(Ci, Cs, I) =
∑

x∈I

[
p(Ci|x) × p(x|Q) ×

∏

Cj∈Cs

(1 − p(Cj |x))
]

(8)

p(Ci|x), is the probability that Ci satisfies the top-level intent x, and I represents
the set of the top-level intents of Q. p(Ci|x) = sim(L(Ci), L(x)) is estimated as
the Jaccard similarity between the labels L(Ci) of a concept and the intent L(x),
in which L(Ci) and L(x) are defined by Eq. 3 in Sect. 4.1.

p(x|Q), which is the probability of x for the given query Q, is estimated by
assuming uniform probability distribution p(x|Q) = 1

|I| . Uniform intent distrib-
ution has been demonstrated to be the most useful [28].

(1 − p(Cj |x)) is the probability that Cj does not satisfy intent x, which
indicates that x is less substantially covered and should have higher “priority” in
getting more results. The product

∏
Cj∈Cs

(1−p(Cj |x)) estimates the probability
that all concepts Cs, that are selected by the LTR model fail to satisfy intent x.

After summing over all query intents, and after being weighted by p(x|Q),
the diversity measure in Eq. 8 is the probability that Ci covers the search intents
I while the existing list Cs, fails to satisfy them.

Sub-level intent diversity: Each of the top-level intents x ∈ I is subdivided
into sub-level intents S. The sub-level intents are represented as Sx in which x
is a top-level intent.

D(Ci, Cs, S) =
∑

x∈I

∑

y∈Sx

[
p(Ci|y) × p(y|Q) ×

∏

Cj∈Cs

(1 − p(Cj |y))
]

(9)

where p(Ci|y) estimates the probabilities that concept Ci satisfies the sub-level
intent y, and p(y|Q) is the probability of each of the subclass level intents y for
the given query Q. The probability of each of the sub-level intents, y, for query,
Q, p(y|Q), is estimated by assuming uniform probability for sub-level intents,
p(y|Q) = 1∣

∣I
∣
∣×

∣
∣Sx

∣
∣ .

By combining the diversity of the top-level and sub-level intents, our fine-
grained explicit diversification is estimated as follows

D(Ci, Cs) = γ × D(Ci, Cs, I) + (1 − γ) × D(Ci, Cs, S) (10)

where γ is the tuning parameter for the top-level and the sub-level depending
on the granularity of the diversification.
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By plugging Eq. 10 into Eq. 1, our diversification optimization model is

C∗ = arg maxCi∈R\Cs
((1− λ)× S(Ci) + λ(γ ×D(Ci, Cs, I) + (1− γ)×D(Ci, Cs, S)))

(11)

where λ is the diversity parameter and γ is the intent parameter for the top-level
and sub-level intents.

The model considers the relevance between the concept results Cs and query
Q and the diversity among concepts in Cs. Using a greedy algorithm [13], it iter-
atively selects the next best concept that is relevant to query Q which maximizes
the diversity of selected concepts Cs.

5 Evaluation

We compare our system with the search function of two large, widely-used,
and openly available ontology repositories, the Bio-medical domain BioPortal,3

and the generic Falcons4. A summary of the two repositories can be found in
Table 1. A separate inverted index was built for each of the BioPortal and Falcons
repositories respectively.

We evaluate our system’s performance in terms of relevance only (query
interpretation, Sect. 5.1), as well as relevance and diversity (search diversifica-
tion, Sect. 5.2). Standard information retrieval (IR) ranking measures [25], mean
reciprocal rank (MRR) and normalized distributive cumulative gain (NDCG) are
used to evaluate our query interpretation approach. The standard search diver-
sification metric of normalized cumulative gain-intent aware (NDCG-IA) [2] is
used for evaluation of our diversification technique. Our evaluation dataset is
publicly available.5

Table 1. A summary of the BioPortal and Falcons repositories.

Repository Type # ontologies # concepts # axioms

BioPortal Domain-specific 296 2,062,080 9,221,087

Falcons Generic 294,504 804,380 2,566,921

5.1 Query Interpretation Evaluation

Comparison with BioPortal. The BioPortal query log (July 2012 to July
2014) contains more than 2,000 real-world queries as well as click-through data.
Among these queries, more than 50 % are multiple-token queries.

3 http://bioportal.bioontology.org/.
4 http://ws.nju.edu.cn/falcons/conceptsearch/.
5 https://dx.doi.org/10.4225/03/57218DB2399B9.

http://bioportal.bioontology.org/
http://ws.nju.edu.cn/falcons/conceptsearch/
https://dx.doi.org/10.4225/03/57218DB2399B9
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Table 2. Comparison with BioPortal.

Measure Multi-token Single-token

BioPortal Ours BioPortal Ours

NDCG 0.61 0.72 0.62 0.63

MRR 0.42 0.60 0.49 0.51

Table 3. Comparison of implicit and explicit with BioPortal for multi-token queries.

Measure BioPortal Ours

Implicit Explicit

NDCG 0.61 0.69 0.72

MRR 0.42 0.52 0.60

Comparison with BioPortal Average Values. We present average NDCG and
MRR for our approach vis-a-vis BioPortal for multi-token and single-token
queries in Table 2. Our system significantly outperforms BioPortal for multi-
token queries, and both systems demonstrate comparable performances in single-
token queries.

Query-Wise Comparison with BioPortal. For each query, we calculated the dif-
ference between the NDCG values obtained by our system and BioPortal. Of
the 2,000 queries, the NDCG values for 1,000 queries (>50 %) are better in
our system, and more than 700 queries (>35 %) have the same level of per-
formance. The number of queries in which BioPortal performs better is 300
(<15 %). Our system performs better (>50 %) due to effective use of context
information in query interpretation. The level of performance is the same for the
queries (>35 %) in which the keywords match the class label exactly. The lower
performance (<15 %) may be due to unavailability of context information in the
ontologies. The better performance of BioPortal in these (<15 %) queries can
be attributed to their statistical consideration of ontology popularity in ranking
search results.

Comparison with Implicit Query Interpretation. We evaluated explicit and
implicit implementations of query interpretation on the BioPortal dataset. The
feature-based implicit model was trained using query logs. Explicit techniques
can be more useful in searches over structured data with a low number of redun-
dancies due to the structuredness of the corpora; we also confirm this experi-
mentally. A comparison of the implicit, explicit query interpretation approaches
and BioPortal can be found in the Table 3.

Comparison with Falcons. We compared our system vis-a-vis the Falcons
search engine [27] in order to explore the generic applicability of our approach.
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Table 4. Comparison with Falcons for multi-token queries.

Measure Falcons Ours

NDCG 0.54 0.79

MRR 0.49 0.78

We performed a human-based evaluation in this experiment for better evaluation
accuracy and to eliminate noise in automatic clicks. We performed an evaluation
on 102 queries that were obtained from two years of TREC web track compe-
titions.6 This TREC dataset does not contain single token queries. Our system
was evaluated by 30 human users who were undergraduate, graduate, and post-
graduate students and had a high level of Web search experiences. Each of the
102 queries was evaluated by at least three of the users. We recorded the binary
relevance judgment for the same set of queries for each result on both systems.
The performance was evaluated using standard information retrieval measures
of NDCG and MRR. Again, our system outperforms Falcons.

Comparison with Average Values of Falcons. We present average NDCG and
MRR for our approach vis-a-vis Falcons for multi-token queries in Table 4.

Query-Wise Comparison with Falcons. We calculated the difference of the
NDCG and P@k (precision at k) values of our system (with QI) in comparison
with Falcons, for the same set of queries. Our NDCG performance was better for
>66 % of the queries. It was at par in >25 % and lower in <8 % of the queries.
We recorded the top-k (k = 1, 3, 5) P@k (precision at kth position) results of our
system and Falcons. Of all the queries, the performance of our system in P@1,
P@3, and P@5 respectively was better than Falcons in >50 %, >60 %, and >70 %
respectively, the same as Falcons in >40 %, >30 %, and >20 % respectively, and
lower than Falcons for <10 % for all P@k. The average precision (AP) was calcu-
lated by taking an average of P@1, P@3, and P@5 for each query. The positive
difference for AP for >70 % queries indicates the better overall performance of
our approach.

The subsequent indicative queries give a fair idea of our performance.
A query, standard axioms of set theory, has co-occurring keywords set theory and
the keywords standard axioms appears in the context of the set theory class. The
same query failed to return any results in the Falcons system. For another query,
machine learning algorithms, Falcons failed to return relevant results while our
system returned relevant result such as machine learning program, and machine
learning topic.

5.2 Evaluation of Diversification

Search result diversification was evaluated using a variation of NDCG which is
known as the intent-aware normalized cumulative gain measure (NDCG-IA) [2]
6 http://trec.nist.gov/data/webmain.html.

http://trec.nist.gov/data/webmain.html
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Table 5. Comparison of our implicit and explicit diversification techniques with Bio-
Portal and Falcons on two separate indices. The best NDCG-IA value in each compar-
ison is highlighted in bold

Measure BioPortal Ours Falcons Ours

Implicit Explicit Implicit Explicit

NDCG-IA 0.66 0.75 0.83 0.47 0.73 0.77

on the BioPortal and Falcons dataset. We have implemented the implicit diver-
sification approach as defined in Eq. 7 as a baseline, and the explicit diversifi-
cation approach as defined in the Eq. 11. We set the diversity parameter λ to
0.5, and assigned equal probability to diversity and relevance. Similarly, we set
the intent level parameter γ to 0.5, assigning equal priority to top-level and sub-
level intents. Table 5 compares the NDCG-IA values produced by our explicit
fine-grained diversification method with the implicit diversification baseline, as
well as BioPortal and Falcons. Note that separate indices are constructed for the
comparison with BioPortal and Falcons.

Comparison with BioPortal. We conducted experiments with 52 queries
randomly selected from the BioPortal query log in order to evaluate the effec-
tiveness of intent-capture in our concept search results. Each query was evaluated
by three users with a basic level of bio domain expertise and a high level of web
search experience. We designed an interface for evaluating our diversification
approach. The evaluation interface provided the users with list of intents for
search results. The users selected intent for each search result that was used for
computing NDCG-IA values.

Comparison of NDCG-IA Values. We report the average NDCG-IA values for
the top-10 results of baseline implicit diversification and explicit diversification
vis-a-vis BioPortal for multi-token queries in the left part of Table 5. Of the total
queries, 70 % fared well with diversification, 25 % were the same as the baseline
and 5 % performed lower. The better results for diversification are due to the
use to explicit intent capture in our approach. For example, a query Myocar-
dial infarction captures the following intents-myocardial infarction definition,
myocardial infarction symptoms, myocardial infarction types, and myocardial
infarction causes in the top-k results. On the other hand, the implicit approach
removes redundancy but may not address the specific user intents, whereas, the
BioPortal captures the intents in their results but not in the top-k.

Comparison with Falcons. We conducted experiments with 50 queries that
were randomly selected from the TREC competitions on the Falcons dataset in
order to evaluate the effectiveness of intent-capture in our results. Each query
was evaluated by three users. The users were graduate students and had a high
level of search experience. NDCG-IA was computed for the intents assigned by
the user during evaluation.
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Comparison of NDCG-IA Values. We present the average NDCG-IA values of
baseline implicit diversification and explicit diversification vis-a-vis Falcons, in
the right part of Table 5. Of the total queries, 75 % fared well with diversifica-
tion, 10 % were the same as the baseline and 15 % performed lower. Our explicit
diversification techniques effectively captures the fine grained intents. For exam-
ple, natural language processing applications captures diverse intents such as the
linguistic translation process, linguistic topic, and artificial intelligence in our
approach, while Falcons returns search results that repeat the single intent in
the top-k results.

5.3 Discussion

Our comprehensive log-based and human-based evaluation includes domain-
specific and generic ontologies. Our system demonstrated better performance in
both settings using standard information retrieval measures, indicating the effec-
tiveness of our framework, especially in multi-token queries. Relation among the
keywords in the multi-token queries is effectively captured in our approach. All of
our experiments presented in this section (for both multi-token and single-token
queries) were found to be statistically significant using the Wilcoxon signed-
rank test with p-value <0.0001. Our system’s effectiveness can be attributed to
the following factors: (1) Co-occurrence is prevalent among multi-token queries
(>50 % queries). (2) Contexts of concepts facilitate effective query interpretation.
(3) Our search result diversification methods effectively captures fine-grained
intents in top-k results for multi-token queries. As a result, our system seldom
returns null or irrelevant results.

6 Conclusion

In this paper we present a novel and effective concept search framework that
balances relevance and diversity. We propose to construct contexts for concepts,
and use these contexts to (1) interpret user queries and (2) capture fine-grained
search intents. The effectiveness of our context-based query interpretation and
search result diversification techniques is demonstrated through a comprehen-
sive evaluation against two concept search systems, BioPortal and Falcons. Our
evaluation shows that our concept search framework significantly outperforms
both systems on widely-used IR metrics.

Our work opens up several directions for further research. Our approach of
explicit query interpretation can be improved by incorporating user involvement
in the customization of the search. Our explicit diversification formulation can
be improved by using proportionality-based optimization techniques. Finally,
implementing the applicability of concept search in applications such as ontology
population may be useful.

Acknowledgments. We thank Prof. Mark Musen and Prof. Paul Alexander of Stan-
ford University for sharing the BioPortal query log. We would like to thank Prof. Gong
Cheng for his advice and guidance on working with Falcons.
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Abstract. The unprecedented growth in mobile devices, combined with
advances in Semantic Web (SW) Technologies, has given birth to oppor-
tunities for more intelligent systems on-the-go. Limited resources of
mobile devices demand approaches that make mobile reasoning more
applicable. While Mobile-Cloud integration is a promising method
for harnessing the power of semantic technologies in the mobile
infrastructure, it is an open question how to decide when to reason over
ontologies on mobile devices. In this paper, we introduce an energy con-
sumption prediction mechanism for ontology reasoning on mobile devices
that allows an analysis of the feasibility of performing an ontology rea-
soning on a mobile device with respect to energy consumption. The devel-
oped prediction model contributes to mobile–cloud integration and helps
to improve further developments in semantic reasoning in general.

Keywords: Energy · Semantic web · Ontology reasoning · Mobile com-
puting · Prediction · Random forests

1 Introduction

Server and desktop machines have been the main environment for ontology rea-
soning in assisting knowledge management so far. With the rapid improvement
of hardware capabilities, as well as software developments in mobile devices
(e.g., smartphones, tablets, PDAs, smartwatches), semantic reasoners start to
become adopted [24] in mobile environments. Mobile applications (apps) that
use semantic technologies, such as for the integration with diverse data sources
and knowledge due to inferences made during semantic reasoning, are also being
developed. However, this potential seems not fully utilized yet.

According to Yus and Pappachan’s research [25] on semantic mobile apps, 23
out of 36 apps implement a client-server architecture, where the mobile app is
used as an interface for the results processed by a server and just 6 apps utilize a
semantic reasoner directly on the device to infer facts. According to their obser-
vation, the use of Semantic Web technologies on mobile devices is on the rise and
there is a need for the development of more tools to facilitate this growth [25].
Groth [6] asserts that, while there has been a large amount of effort in Semantic
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 289–304, 2016.
DOI: 10.1007/978-3-319-46523-4 18
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Web Services, even going as far as developing a standard for describing those ser-
vices, we have not seen a corresponding take-up in using these languages to enable
the execution of actions either on the Web or in the real world.

Our goal is to make semantic technologies more feasible for a new era of
mobile and cloud computing by building an energy prediction mechanism that
will guide us “to what extent ontology reasoning can be made on mobile devices”.
Mobile-Cloud Integration can significantly enhance the capabilities and benefits
of semantic technologies. For a successful mobile-cloud integration, a mechanism
is needed that will (1) predict the cost of data processing (including loading,
parsing, reasoning, query answering) on a mobile device itself in terms of time
and energy consumption, (2) predict the cost of data processing on the cloud,
and (3) ultimately determine where data processing should be conducted in an
optimal way.

In this paper, we focus on the Prediction of Energy Consumption aspect of
ontology reasoning on the mobile front, using statistical methods and execution
data collected during experiments. We present an energy consumption prediction
mechanism that predicts how much energy a new ontology will consume and
whether this ontology may be processed within a predefined time, using previous
reasoning results and specific metrics for ontologies [12].

We focus on the energy consumption aspect of semantic data processing,
because, as [15,19] pointed out, energy consumption is a principal design concern
for mobile platforms, rather than just a desirable attribute. Our investigation
(see Sect. 5.2) shows that it cannot be assumed that the energy consumption
of a reasoning process on a mobile device correlates with its time consumption.
The main contributions of this paper can be summarised as follows:

1. We show that metrics of ontologies are very effective for accurate prediction
(having R2 between 0.8985 and 0.9859, and a maximum RMSE of 10.86)
of energy consumption of ontology reasoning on the Android platform, as
validated by our comprehensive evaluation.

2. A comprehensive dataset ontologies in OWL 2 EL profile (a tractable profile
in OWL 2) is made available for assessing and improving the performance of
reasoning algorithms in terms of energy consumption.

2 Related Work and Background

Kleemann [14] discusses resource limitations in terms of computing power, mem-
ory and energy and presents a study for the development of a reasoner suitable
for resource constrained environments such as mobile devices. Cerri et al. [3]
propose the “knowledge in the cloud” approach, extending “data in the cloud”
with support for handling semantic information, such as organising and finding
it efficiently and providing reasoning and quality support. Despite presenting an
efficient approach for harnessing the power of the cloud, this study is limited to
cloud computing and doesn’t take into account the capabilities of mobile devices.
Rietveld and Schlobach [20] present a study about how the constraints in com-
puting environments influence SW applications. In their study, they take battery
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power as one constraint, however, no deeper study is provided about the relation-
ship between the energy need of the application and the structure of semantic
data. Corradi et al. [4] propose an architecture and describe a prototype system
for a mobile–cloud support of semantically enriched speech recognition in social
care. In their approach, they move resource-demanding tasks that consume a
high amount of energy on a mobile device to the cloud computing infrastruc-
ture. Hogan et al. [11] discuss scalability issues of reasoning and propose an
approach for making the processing of a billion triples of open-domain Linked
Data feasible. While they contribute to the feasibility of semantic data process-
ing with regard to complexity, energy consumption of these approaches haven’t
been investigated.

Metrics of ontologies have been used for assessing the quality [2], complexity
[26], cohesion [23], population task [16] and time consumption [13] of ontology
reasoning. Hasan and Gandon [8] implemented a machine learning approach for
predicting the performance of SPARQL queries using previous execution data.
These investigations targeted server machines and efficient results were obtained.
In our investigation, we are going to make use of metrics to deal with the energy
bottleneck of mobile devices.

2.1 Electric Power and Energy Consumed

.....(Electric) Power (P) is the rate of doing work, measured in watts. The electric
power in watts produced by an electric current I passing through an electric
potential (voltage) difference of V is,

P = V ∗ I, (watts = volts ∗ amperes). (1)

Energy (E) is equal to the power (P) times the time period (t) is,

EJ = PW ∗ ts, (joules = watts ∗ seconds). (2)

We measure Energy Consumed, in watt-seconds (Ws.), which is equal to joules.

2.2 Measuring Energy Consumption Programmatically

Various techniques [7,22] have been used to measure and predict energy con-
sumption on mobile devices. For measuring energy consumed in reasoning,
Patton and McGuinness propose a power benchmark [18] using a physical device
setup that consists of a power monitor and a notebook computer to collect data.
Because of the difficulty of implementing hardware-dependent (requiring any
extra equipment not natively available on the mobile device) techniques to a
solution that is desired to be applicable to all mobile devices, we searched for a
software-based technique that can be programmatically implemented.

We adopted the Power Consumption Benchmark Framework [21] proposed
by Valincius et al., which is hardware-independent and easily programmable1.
1 https://github.com/evalincius/PowerBenchMark, https://github.com/evalincius/

HermitOWLAPI.

https://github.com/evalincius/PowerBenchMark
https://github.com/evalincius/HermitOWLAPI
https://github.com/evalincius/HermitOWLAPI
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Energy is calculated using the properties in Android’s BatteryManager class,
BATTERY PROPERTY CURRENT NOW and EXTRA VOLTAGE, Current and Voltage are
retrieved (see Eq. (1)). Valincius et al. measured total energy consumption with
interval of 1 s (see Eq. (2)).

Observing and measuring overall energy consumption and battery drainage
of the mobile device in 1 sec intervals poses a problem – a measurement with a
resolution of 1 s shows the energy consumed by the mobile device during this sec-
ond, independent of whether during such a measuring interval the processing of
an ontology lasts 1 ms or 1000 ms. In order to get a more accurate measurement
of how much energy the processing of a single ontology consumes, we, therefore,
increased the precision of measurements by shortening the interval to 100 ms.
In order to do this, we recorded the value of V ∗I

10 with intervals of 100 ms from
the start of the data processing to the end. The cumulation of these values con-
stitutes the total energy consumed . With that, we reach a precision of 100 ms.
With this method, an ontology processed in 1 ms is measured to consume the
energy calculated for 1 interval of 100 ms. And, an ontology processed in 1000 ms
is measured to consume the energy calculated for 10 intervals of 100 ms cumu-
latively.

2.3 Ontology Metrics

To be able to capture the complexity of ontologies thoroughly, we have adopted
the set of 91 metrics proposed by Kang et al. [12,13]. These metrics include
the number of general class inclusions, number of individuals, and the count of
additional types of logical axioms (including reflexive properties, irreflexive prop-
erties and domain/range axioms). There are 24 ontology-level metrics to measure
the overall size and complexity of an ontology, 15 class-level metrics to measure
characteristics of OWL classes in an ontology, 22 anonymous class expression
metrics to capture different types of class axioms, 30 property definition and
axiom metrics to capture different types of property declarations and axioms.
The complexity of all the metrics calculation algorithms is polynomial [13] in
the size of the graph representation of the ontology.

2.4 Statistical Methods for Energy Prediction

We use a series of statistical methods for our energy prediction. Regression
Analysis [9] is a statistical tool for the investigation of relationships between
variables using some predictor variables and an output variable. We have built
a regression model in which metrics are the predictor variables and the overall
energy consumption of processing an ontology is the output variable. The output
variable is denoted by Y , and the set of predictors by a vector X (X1,X2, . . . , Xn,
where n is the number of predictor variables). A regression model is formalized
as Y ≈ f(X,β), where β is the unknown parameters, X is the independent vari-
ables and Y is the dependent variable. Classification identifies to which of a set of
categories a new observation belongs, on the basis of a training set of data con-
taining observations (or instances) whose category membership is known. In our
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classification model, metrics are the predictor variables and the output variable
states either “able to process the ontology in 100 s ” or “not able to process the
ontology in 100 s”. Random Forest [1] is an ensemble learning method for classi-
fication, regression and other tasks that operate by constructing a multitude of
decision trees at training time and outputting the class that is the mode of the
classes (classification) or mean prediction (regression) of the individual trees.
In this paper, we train Random Forest-based classification models to predict
whether an ontology can be processed within a predefined time and Random
Forests-based regression models to predict energy consumption for an ontology
using the power benchmark introduced above and syntactic metrics as features.
A Moving Average is a calculation to analyse data points by creating series of
averages of different subsets of the full data set in statistics. A moving average
is commonly used with time series data to smooth out short-term fluctuations
and highlight longer-term trends or cycles. We will use moving average to see
whether there is a trend in the energy consumption while the battery level is
decreasing from 100 % to 1 %. The Coefficient of Variation (CV), also known
as “relative variability”, is a standardized measure of dispersion of a probability
distribution or frequency distribution. It is often expressed as a percentage, and
is defined as the ratio of the standard deviation to the mean (or its absolute
value). In our work, we will use CV for examining the variability of the energy
measurement results from 100 % to 1 % battery level.

3 Our Approach

Making an energy prediction mechanism is a challenging task. Firstly, as detailed
in Sect. 5.2, there may not be always a linear relation between time and energy
consumption of ontology reasoning on every device. Hence, prediction models for
reasoning time, and those done in a desktop/server environment (such as [12,13]),
cannot be re-used as-is. Secondly, trying to model all the variables of real-world
environments for energy consumption prediction, especially for a mobile device,
is very difficult. Adapting to improvements in mobile environments is another
complication for developing predication models, as changes to operating systems
or in the utilisation of the CPU may render existing models obsolete.

In addressing these challenges, we developed prediction models by using a
programmable (and hardware-independent) energy measurement tool (“Power
Consumption Benchmark Framework” [21] proposed by Valincius et al.) and
we use metrics that provide us with a numerical representation of particular
properties of an ontology and use this information as our data source, in order
to deal with the complexity of the semantic web and the uncertainty of inter-
nal and external influences on measuring energy consumption during ontology
reasoning processes on mobile devices. We have chosen ontologies2 in EL pro-
file which were used at the ORE 2014 (The OWL Reasoner Evaluation Work-
shop 2014). We used two substantially different devices for our experiments.
The measurement and prediction results will also provide an opportunity to
2 https://zenodo.org/record/10791.

https://zenodo.org/record/10791
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identify unforeseeable effects due to changes in the environment. For example,
we observed that energy consumption may not always be correlated with reason-
ing time during our experiments with Machine2. Our case scenario (work-flow
of the mechanism) has the following steps:

1. The mobile device asks the server whether it shall try to perform a reasoning
task locally by sending the IRI of the ontology.

2. The server takes measures of the ontology according to the ontology metrics
discussed in Sect. 2, and applies those measurement results to the classifica-
tion model, which is trained to predict whether this ontology can be processed
on this mobile device with a chosen reasoner using the metrics of the ontology,
and will return either:
(a) Positive: “this ontology can be processed within the predefined time limit

(100 s in our experiment), and (using the regression model for predicting
the energy consumption) it will consume this amount of energy”; or

(b) Negative: “it cannot be processed in the predefined time”.
3. If the mobile device gets a positive result from the server, it will then analyse

the remaining energy available on the device and decide whether to proceed
locally or in the cloud. If the mobile device receives a negative result, it will
wait for the cloud to perform the reasoning task and return the result. For
experimental purposes, we will process all the ontologies on the device. If
the process exceeds the predefined time limit (100 s in our experiments), the
process will be terminated.

4. The server will be informed whether the reasoning finishes with success within
the set time limit.

5. The data collected about energy and time consumption will be used to
improve our model to produce better prediction results.

Our approach regards mobile device as a “black-box” and accepts all its inter-
nal/external influences over data processing as the nature of it. We gather the
execution data produced by the device and make inferences using this data with
prediction data. We measure overall energy consumed (including loading/parsing
of ontology, classification of the ontology TBox and executing the SPARQL query
to retrieve the classification result) during the processing of ontologies in EL pro-
file on each mobile device-reasoner pair. We describe experiments with a partic-
ular query answering task (explained in Sect. 5.1) by sending the same SPARQL
query to the two reasoners we investigate, in order to get results for subsumption
reasoning. Experiment results of these ontologies are used to make a prediction
model and predict energy consumption of a new ontology on the same device-
reasoner pair. This prediction mechanism is validated by the statistical results
obtained from experiments.

In our experiments, we have implemented a separate model for each device-
reasoner pair to see its validity in that scope. We are planning to work on one
model for classification and one model for regression of all device-reasoner pairs
as future work.
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4 Experimental Setup

For calculating the error rate of our classification model, we divide wrong predic-
tions by total predictions. For deciding whether our regression model is accept-
able to describe the relation between the variables and the result obtained from
the model, we have referred to R2 and RMSE. The coefficient of determination
(R2) is a key output of regression analysis, which indicates the extent to which
the dependent variable is predictable. An R2 of 0.95 means that 95 percent of
the variance in dependent variable can be predictable from independent vari-
ables. The Root Mean Squared Error (RMSE) is simply the square root of the
mean/average of the square of all of the error. RMSE represents the sample
standard deviation of the differences between predicted and observed values.

4.1 Data Collection

.....Reasoners:We have used HermiT [5], a DL reasoner, and TrOWL, an EL rea-
soner, (version 1.5, ported on Android) as testing reasoners. We implemented an
android-ported version3 of HermiT provided by Yus et al. [24], as the desktop
version could not be directly supported by Android Runtime (ART).

Ontologies: The ORE2014 Reasoner Competition Dataset is chosen as the
dataset for our experiments. The OWL 2 EL Profile [10] is chosen, because
the computational complexities of ontology consistency, class expression sub-
sumption, and instance checking are all PTIME-Complete [17] and both reason-
ers support it natively. From 16,555 ontologies, 8,805 ontologies, which are in
EL profile, were filtered. The RDF/XML format was used in the experiments;
however, the validity of our prediction mechanism does not depend on a par-
ticular input format. As we have built an extendible prediction mechanism, in
the future, other formats can be introduced easily. Being aware of the RAM
limitation (and reasoning limitation as a consequence), we ordered ontologies
according to their file sizes and started with the ones with a smaller file size.
Each device-reasoner pair is analysed with the ontologies it could process within
mobile-specific and time limitations. There are 17 cases of exceptions throughout
the experiment, which contain 14 “InconsistentOntology” exceptions, 2 “Con-
currentModification” exceptions and 1 error for receiving a voltage value of zero
(0) from the operating system. Details of the exceptions are available online4.
The “0 Voltage” problem occurred just once during the processing of ca. 8000
ontologies. Our point of view, therefore, is that such a low frequency of occur-
rence of these errors do not invalidate our results. These exceptional 17 cases
are excluded in the model generation.

Mobile Devices: We used two mobile devices (Machine1 and Machine2) that have
substantially different hardware specifications5. Machine1 had the Android 5.1.1
3 https://github.com/evalincius/Hermit 1.3.8 android.
4 https://github.com/IsaGuclu/PredictionOfEnergy/blob/master/Exceptions.xlsx.
5 Unofficial comparison: http://www.phonearena.com/phones/compare/

Samsung-Galaxy-S6,Sony-Xperia-Z3-Compact/phones/8997,8744.

https://github.com/evalincius/Hermit_1.3.8_android
https://github.com/IsaGuclu/PredictionOfEnergy/blob/master/Exceptions.xlsx
http://www.phonearena.com/phones/compare/Samsung-Galaxy-S6,Sony-Xperia-Z3-Compact/phones/8997,8744
http://www.phonearena.com/phones/compare/Samsung-Galaxy-S6,Sony-Xperia-Z3-Compact/phones/8997,8744
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as the OS and Machine2 had Android 6.0.1 as the OS. To avoid the side-effects
of other services and processes, we uninstalled apps that could be uninstalled,
closed all services and GSM connection and opened the Wi-Fi connection in all
experiments to enable TBox retrieval from the internet if needed. For avoiding
side-effects of the sensors, we closed location services and kept the device in a
fixed place to avoid triggering sensors, e.g., accelerometer, gyro, proximity, com-
pass, barometer, etc. We closed all sort of energy saving utilities in the settings
of the machine to have near standard conditions in experiments. Ontologies are
run on the same machine sequentially.

Data Preprocessing: Before training every model, to avoid misleading conse-
quences, predictor metrics with zero standard deviation are discarded.

In the experiments with the TrOWL EL Reasoner, 61 of the metrics have
been chosen for training the classification model and 60 of the metrics for the
regression model. In the experiments with the HermiT Reasoner, 58 of the met-
rics have been chosen for training the classification model and 57 of the metrics
for the regression model.

Prediction Model Construction: For the 1st prediction (“Will this ontology be
reasoned in 100 s on this device-reasoner?”), a random forests based classifica-
tion model is implemented. For the 2nd prediction (“How much energy will this
ontology consume on this device-reasoner?”), a random forests based regression
model is implemented. Standard 10-fold cross-validation is performed to ensure
the generalizability of models.

5 Results and Evaluation

Before starting experiments, we had questions about how accurately we could
collect energy consumption data from a mobile device by taking the measures
explained above to eliminate the side-effects of mobile devices. The voltage pro-
vided by the battery continuously decreases during each reasoning activity. Heat-
ing may have adverse effect on computations as the CPU may slow itself when
it reaches some threshold. As the Wi-Fi connection is open throughout the rea-
soning process, there would be some effects of OS-based or manufacturer specific
apps on measurements. If measurement results change through the battery level
from 100 % to 1 %, this will make a generalizable approach impossible. This
made us investigate the standard error of the mean caused by these (and those
that we may not foresee) side-effects in our experiments.

Experiments were started with fully charged Machine1 and Machine2. We
repeatedly reasoned over the same ontology6 using the TrOWL EL reasoner
until the battery was completely drained. In this experiment, we made the fol-
lowing observations. In Machine1 (Fig. 1), the average energy consumption for
an ontology reasoning task is 151.16 Ws., with a standard deviation of 5.91 Ws.
The average duration of the reasoning is 74.06 s and standard deviation is 1.73 s.
6 https://github.com/IsaGuclu/PredictionOfEnergy/blob/master/

From100To1PercentBatteryLevel/approximated 00518.owl RDFXML.owl.

https://github.com/IsaGuclu/PredictionOfEnergy/blob/master/From100To1PercentBatteryLevel/approximated_00518.owl_RDFXML.owl
https://github.com/IsaGuclu/PredictionOfEnergy/blob/master/From100To1PercentBatteryLevel/approximated_00518.owl_RDFXML.owl
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Fig. 1. Machine1 (Android 5.1.1) - Energy/Time consumption with battery level from
100% to 1 %. This figure illustrates (1) the energy/time consumed in experiments,
(2) the average energy/time consumption of all experiments, (3) moving average of
energy/time consumption with interval of 10.

Fig. 2. Machine2 (Android 6.0.1) - Energy/Time consumption with battery level from
100% to 1 %. This figure illustrates (1) the energy/time consumed in experiments,
(2) the average energy/time consumption of all experiments, (3) moving average of
energy/time consumption with interval of 10.

We found 3.91% as the CV (standard deviation of energy consumed divided
by the average of energy consumed) of energy measurement for this machine-
reasoner pair. To see whether this result is generalizable, we made the same
experiment with a substantially different machine (i.e., Machine2). In Machine2
(Fig. 2), the average energy consumption of the ontology is 93.76 Ws., with
a standard deviation of 11.92 Ws. The average duration of the reasoning is
43.64 s and the standard deviation is 4.34 s. We found 12.71% as the CV of
energy measurement for this machine-reasoner pair. This result made us search
for the reason of such a difference. One of the biggest differences between the
two machines is that Machine2 has a CPU which has one 2.1 GHz. quad-core
processor and one 1.5 GHz. quad-core processor, but Machine1 has one 2.5 GHz.
quad-core processor. To see what kind of a behaviour does the CPU have during
our experiments, we used Usemon(CPU Usage Monitor)7 and three sample exe-
cution of Machine2 is illustrated with Fig. 3. Figure 3 shows observations made
on Machine2, where different cores, which have different clock-pulses, are used

7 https://play.google.com/store/apps/details?id=com.iattilagy.usemon.

https://play.google.com/store/apps/details?id=com.iattilagy.usemon
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Fig. 3. 3 sample CPU utilization graph of Machine2 during reasoning activities. This
figure illustrates 3 sample attitude of Machine2 during processing ontologies.

during execution. This feature of Machine2 adds one new dimension for predict-
ing. In the first execution, the faster core (2.1 Ghz) makes the processing and
results in a shorter time than the average. In the second execution, the slower
core (1.5 Ghz) processes the ontology and results in a longer time than the aver-
age. In the third execution, faster core executes the reasoning at a slower speed
while the other core is used by other processes. This execution finishes in a longer
time than the first execution, but in a shorter time than the second execution.
This changeability of cores makes the processing longer or shorter. The OS may
decide to use the faster or slower core according to its own decision parameters.
And this decision will affect time/energy consumption. We accept this internal
effect as a nature of this “device” and continue.

To see whether there is a trend in energy consumption of the battery in
relation with the remaining battery level, we implemented moving average over
the energy consumption with interval of 10 executions, which is illustrated in
Figs. 1 and 2. In Machine1, we see that there is a trend of consuming less energy
especially when the battery level is less than 50 %. We accept that there is slight
trend (probability) when the battery level is low, and it may result in lower
energy consumption with this device-reasoner pair. We searched for whether
there is the same trend in Machine2 parallel to Machine1. Making the same
experiment using the Machine2, we could not find a concrete trend parallel to
Machine1. In our work, we assume that our power benchmark will measure the
energy, regardless of the battery level, within the error rate defined. Seeing this
difference in the results of two different machines, we conclude that it is very
difficult to make a generalizable model that can be applied to all devices. Thus,
regarding “each device” as a black-box in analysing would be more practical.

Machine2 has given us an opportunity to see whether there is a “linear rela-
tion” between energy and time, as its energy and time consumption results are
varied in time and energy dimension. We ordered execution results of Machine2
according to time consumption and divided into 5 groups as illustrated in Table 1.

According to Table 1, in the 1st group (66 executions with lowest time), aver-
age time consumption of group is 16.60 % less than average time consumption of
all executions. But, energy consumption is not less than general, 1.24 % more than
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Table 1. Energy-Time Consumption Relation of Machine2. Distribution of energy
and time consumption of reasoning same ontology from 100 % to 1 % battery level is
illustrated. 1st column shows average (Avg.) time consumption of group. 3rd column
shows Avg. energy consumption.

Group Avg. sec. of the group Avg. sec. of all Avg. Ws. of group Avg. Ws. of all

1 36.397 43.644 94.951 93.785

2 42.124 43.644 90.737 93.785

3 45.446 43.644 94.043 93.785

4 47.035 43.644 93.754 93.785

5 47.273 43.644 95.258 93.785

general. In the 5th group (66 executions with highest time), average time consump-
tion of group is 8.32 % more than average time. Whereas, average energy consump-
tion of 5th group is 1.57 % more than the general. Observing the 1st and 5th group
has a difference of 24.92 % average time consumption, but 0.33 % of difference in
average energy consumption, we conclude that we could not find a linear relation
between time and energy consumption in this device-reasoner pair.

Hardware doesn’t influence the validity of the mechanism but shows varied
results which makes us observe the effects of this hardware. For example, we
reached the observation that energy consumption may not always be correlated
with time consumption (as in Machine2) with help of this model while question-
ing why there was a higher variance in predictions of Machine2.

5.1 Experiments

Experiment results and source codes are accessible8. A re-run requires the prepa-
ration of an application development environment, the recompilation of the code
and, finally, the generation of predictions in R. The reasoners TrOWL and Her-
miT are not part of our contribution, we therefore provide the scripts for running
the experiments only. While working with TrOWL on Machine1, we observed
that ontologies with the file size (in OWL Functional syntax) between 3000 KB
and 3999 KB, 29 of 223 (13 %) could be processed within 100 s. Between 4000 KB
and 4999 KB, it was about 2.99 % (5 of 167). Seeing this result, we limited our
work for TrOWL within the dataset with the file size between 10 KB and 4999 KB
(8281 ontologies). While working with HermiT on Machine1, we observed that
ontologies with the file size between 500 KB and 599 KB, about 12.01 % (15 of
124) could be processed within 100 s. Seeing this result, we limited our work for
HermiT within the dataset with the file size between 10 KB and 599 KB (6487
ontologies). We regard mobile devices as a black-box and do not search for the
reasons of the peaks in energy consumption as in Figs. 1 and 2, whether it is
because of OS services or manufacturer specific apps or anything we may not

8 https://github.com/IsaGuclu/PredictionOfEnergy.

https://github.com/IsaGuclu/PredictionOfEnergy
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foresee, as this is the nature of mobile devices to run with this kind of internal
(or external) influences. We preferred this overall approach as we are focusing
on the energy consumption of the reasoning activity from a holistic perspective.
We will not compare lower levels of reasoners but energy consumption in total.
Reasoning experiment of one ontology is in this order:

1. The Counter starts calculating time and the energy. The Counter gets the
average voltage and current from the OS, measuring the energy consumed in
intervals of 100 ms.

2. The reasoner is called to load the ontology and the following query is sent:

prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>
select * where {?X rdfs:subClassOf ?Y}

We describe experiments with a particular query answering task by sending
the same SPARQL query to the two reasoners we investigate, in order to get
results for subsumption reasoning.

3. When the request from the reasoner is provided with success and the query
result is parsed, the Counter is stopped.

5.2 Results

After training the classification model with the data provided by the previous
executions, we predicted whether a new ontology can be processed within the
predefined time (100 s) or not, applying 10-fold cross validation. The results are
illustrated in Table 2. This table illustrates successful and wrong predictions of
the mechanism. “Positive” denotes reasoning CAN be made on mobile device.
“Negative” denotes reasoning CANNOT be made on mobile device. For exam-
ple, in a “Successful-Positive Prediction”, it is predicted that reasoning can be
accomplished on mobile device and it is observed so. In a “Wrong-Negative Pre-
diction”, it is predicted that reasoning cannot be accomplished on mobile device,
but just opposite is observed, it could be processed on mobile device. As shown
in Table 2, with TrOWL, the error rate of the 1st prediction in Machine1 is 0.52 %
and in Machine2 is 1.51 %. With HermiT, the error rate of the 1st prediction in
Machine1 is 0.76 % and in Machine2 is 1.86 %. Working on the ontologies which
resulted in wrong predictions, deeper analysis can be made about the energy
prediction, but we leave this analysis as a future work. After 1st prediction, we
focussed on the prediction of the energy consumption. We trained our regression

Table 2. Classification model assessment.

Machine1 Machine2

Successful prediction Wrong prediction Successful prediction Wrong prediction

Positive Negative Positive Negative Positive Negative Positive Negative

HermiT 90.38% 8.87% 0.48% 0.28% 92.55% 6.59% 0.52% 0.34%

TrOWL 91.76% 7.72% 0.36% 0.16% 95.40% 3.08% 0.72% 0.79%
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Table 3. Regression model assessment

Machine1 Machine2

R2(%) RMSE R2(%) RMSE

HermiT 94.05 5.43 89.85 10.35

TrOWL 98.59 4.62 95.64 10.86

Table 4. Percentage of error rates according to actual energy consumption

Machine1 Machine2

Group Hermit TrOWL Hermit TrOWL

1 (Up to 1 Ws.) 20.21 % 18.88 % 43.50 % 50.20 %

2 (1–5 Ws.) 24.90 % 13.88 % 56.33 % 47.38 %

3 (5–10 Ws.) 25.51 % 16.35 % 58.88 % 33.93 %

4 (10–50 Ws.) 21.48 % 15.66 % 40.59 % 28.40 %

5 (50– Ws.) 14.80 % 5.43 % 21.11 % 14.06 %

General 21.46 % 14.11 % 45.12 % 40.00 %

model with the data provided by the previous executions and predicted how
much energy will a new ontology consume, applying 10-fold cross validation.
The results are illustrated in Table 3.

In Table 3, R2 and RMSE values as obtained from the prediction models
are shown. Making more observations with different device-reasoner pairs will
enhance the precision of the model, which we plan to do in future work.

To see the percentage of this error in prediction according to the amount
of actual energy consumptions, we have grouped ontologies according to actual
energy consumptions and obtained average percentage of error in prediction
according to amount of actual energy consumption, as illustrated in Table 4.

From Table 4, we make the following observations. Machine1, which pro-
duces less varied energy consumption results, has less error rate in all groups
of actual energy consumption. Whereas, Machine2, which produces more varied
energy consumption results, has more error rate in all groups of actual energy
consumption.

When the variation of energy consumption of the device-reasoner is lower,
percentage of error rate is lower too. This encourages us to obtain more accurate
execution data for training our model. Because, the more we can standardize
our results for training, the more precise our prediction will be.

The random forests based regression model makes predictions in a very bal-
anced way. As our energy measurement interval is 100 ms, we were expecting that
there would be high percentages of error in predictions of 1st group of which the
reasoning finishes less than a second. We find the difference of error rate between
the 1st group and general acceptable.
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These energy prediction results are obtained after predicting whether an
ontology can be processed within 100 s with an accuracy of over 98 %. When
energy consumption is very small, the energy prediction model can predict with
an accuracy of nearly 80 % in Machine1 and nearly 50 % in Machine2. With the
increase in reasoning time, the accuracy in Machine1 reaches about 90 % and
the accuracy in Machine2 reaches about 80 %.

From all the experiments we have done, we are concluding that:

1. Treating the device (including OS, manufacturer specific apps and hardware
specifications, etc.) as a black-box with the reasoner, we obtained affirma-
tive results, indicating that the classification and regression models generated
with this approach show a good measure for validity to describe the relation
between energy consumption and structure of the ontology.

2. The classification models (which predict whether the ontology will be
processed in the predefined time (100 s)) achieve very low error rates. It vali-
dates the feasibility and practicality of our approach, as it can be applied to
minimize the risk of Out of memory (OOM) exceptions and general uncer-
tainty about whether an ontology can be processed on a mobile device.

3. Using structure of the ontology (metrics) and previous ontology reasoning
energy consumption data, actual energy consumption of a new ontology can
be predicted with high accuracy. When the execution time of the ontology
increases and standardized training data can be supplied, this accuracy reach
94.57 % as in Machine1 with TrOWL reasoner.

4. Patton and McGuinness had hypothesized that the amount of energy used for
reasoning would be linearly related to the amount of time required to perform
the reasoning, in their power consumption benchmark [18] for reasoners over
mobile devices. Seeing experiment results with Machine2 about energy–time
relation, we observe that energy consumption is not always parallel to the time
consumption and this hypothesis is limited to old CPUs with standard speed.
As the device contains many internal (OS policies-services-apps, manufacturer
specific apps, hardware specifications, etc.) and external (movement of the
user, bandwidth change, temperature, etc.) influences, instead of trying to
sort out every variable and their weight in the energy consumption, using a
holistic approach and collecting more and more data will be a more effective
way for obtaining a more precise energy prediction mechanism. We conclude
that the relation between time and energy is changeable according to hardware
and software specifications of the device and this necessitates making separate
prediction mechanisms for time and energy consumption.

6 Conclusion

Mobile devices, such as smartphones and tablets, have markedly different per-
formance characteristics and requirements, most prominently limited energy,
which poses a significant challenge for deploying computation-intensive tasks,
such as ontology reasoning on mobile devices. In this paper, we developed statis-
tical methods that predict energy consumption of ontology reasoning on various
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mobile devices, using different reasoners and ontologies in the OWL 2 EL profile.
Our main contributions include the following. Firstly, high prediction accuracy
is achieved for our random forest-based regression models with R2 of 90 % or
higher. It is also observed that the prediction error rate is the lowest for ontolo-
gies with the highest actual energy consumption, showing that our prediction
models are accurate when it matters. Our approach is hardware independent, i.e.
hardware specification is not used as a parameter of our prediction model, thus
our approach can be applied to devices other than the two that we tested. Sec-
ondly, we observe that a linear relation between time and energy consumption on
a mobile device is not a valid assumption, especially with new hardware (CPU’s
containing cores with different speed) and software (multi-threading) improve-
ments. Thirdly, the comprehensive dataset used in our evaluation has been made
available to allow for reproducibility and encourage further investigation.

Our plan for future work is to improve our approach and make it applicable
to real-world scenarios. First, we will extend our experiments with more devices
and combine all models of different device-reasoner pairs into one comprehen-
sive, general model. Second, we are planning to implement this approach in the
Android version of TrOWL reasoner and empowering this prediction mechanism
by collecting data from devices using this implementation. Third, we will build
an optimisation mechanism that will manage the integration of mobile-cloud
using this approach with user preferences taken into account.
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Abstract. The traversal-based approach to execute queries over Linked
Data on the WWW fetches data by traversing data links and, thus,
is able to make use of up-to-date data from initially unknown data
sources. While the downside of this approach is the delay before the
query engine completes a query execution, user perceived response time
may be improved significantly by returning as many elements of the
result set as soon as possible. To this end, the query engine requires a
traversal strategy that enables the engine to fetch result-relevant data
as early as possible. The challenge for such a strategy is that the query
engine does not know a priori which of the data sources discovered during
the query execution will contain result-relevant data. In this paper, we
investigate 14 different approaches to rank traversal steps and achieve
a variety of traversal strategies. We experimentally study their impact
on response times and compare them to a baseline that resembles a
breadth-first traversal. While our experiments show that some of the
approaches can achieve noteworthy improvements over the baseline in
a significant number of cases, we also observe that for every approach,
there is a non-negligible chance to achieve response times that are worse
than the baseline.

1 Introduction

The availability of large amounts of Linked Data on the World Wide
Web (WWW) presents an exciting opportunity for building applications that
use the data and its cross-dataset connections in innovative ways. This possibil-
ity has spawned research interest in approaches to enable such applications to
query Linked Data [4,7]. A well-understood approach to this end is to populate
a centralized repository of Linked Data copied from the WWW. By using such a
repository it is possible to provide almost instant query results. This capability
comes at the cost of setting up and maintaining the centralized repository. Fur-
ther limitations of this approach are that query results may not reflect the most
recent status of the copied data, new data and data sources cannot be exploited,
and legal issues may prevent storing a copy of some of the data in the repository.
c© Springer International Publishing AG 2016
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To address these limitations a number of works adopt an alternative view
on querying Linked Data: The idea is to conceive the Web of Linked Data itself
as a distributed database in which URI lookups are used to access data sources
at query execution time [8,11–13,16,17]. A particularly interesting approach is
traversal-based query execution which intertwines the query execution process
with a traversal of data links [8,11–13]. This approach can discover initially
unknown data and data sources on the fly, and it can be used to start querying
right away (without first having to populate a repository of data). An inher-
ent downside, however, is the delay before the data retrieval process terminates
and a complete query result can be returned to the user. Nonetheless, users
may want to start receiving elements of the query result set as soon as pos-
sible. The following example shows that the user experience may be improved
significantly by query optimization approaches that aim to reduce the response
times of query executions, that is, the times required to find a particular num-
ber of result elements (as opposed to the overall time required to complete the
query execution).

Example 1. Consider the following SPARQL query from the FedBench
benchmark [15].
SELECT * WHERE { ?person nyt:latest use ?mentionInNYT . ?person owl:sameAs ?chancellor .

?chancellor dct:subject <http://dbpedia.org/resource/Category:Chancellors of Germany> }

We used the URI at the end of this query as a starting point for a traversal-based
execution of the query over the WWW (under cMatch-bag-semantics; cf. Sect. 2).
For this execution we used a randomized traversal strategy; that is, we prioritized
the retrieval of Linked Data by using randomly chosen lookup priorities for
all URIs that are discovered and need to be looked up during the execution
process. By repeating this query execution five times, for each of these executions,
we measured an overall execution time of 8.9 min (because all five executions
eventually retrieve the same set of documents, which always requires almost the
same amount of time). However, due to the random prioritization, the documents
always arrive in a completely different order, which affects the time until all the
data has been retrieved that is needed to compute any particular result element:
In the best of the five cases, a first element of the result set can be returned
after 9 s, that is, 1.7 % of the overall query execution time; on average however
the five executions require 3.1 min (34.8 %) to return a first result element, and
the standard deviation of this average is as high as 1.3 min (14.6 %).

The example illustrates that there exists a huge potential for optimizing the
response times of traversal-based query executions (i.e., returning result ele-
ments as early as possible) and that these response times may vary significantly
depending on the strategy chosen to traverse the queried Web of Linked Data.
A desirable traversal strategy is one that prioritizes the lookup of URIs such
that it discovers as early as possible the result-relevant documents (whose data
can be used to compute at least one of the elements of the query result). Then,
as soon as these documents arrive, a pipelined result construction process can
compute and output result elements. The primary challenge in this context is

http://dbpedia.org/resource/Category:Chancellors_of_Germany


Ranking-Based Traversal for Querying Linked Data 307

that the URIs to be looked up are discovered only recursively, and we cannot
assume up-to-date a priori information about what URIs will be discovered and
which of the discovered URIs allow us to retrieve documents that are result-rel-
evant. Given these issues, an investigation of possible approaches to prioritize
URI lookups and their impact on the response times is an open research problem
that is important for improving the user experience of applications that can be
built on the traversal-based paradigm.

In this paper, we focus on this problem. To this end, we identify a diverse
set of 14 different approaches to prioritize URI lookups during a traversal-based
query execution. None of these approaches assumes any a priori information
about the queried Web. Then, as our main contribution, we conduct an experi-
mental analysis to study the effects that each of these prioritization approaches
can have on the response times of traversal-based query executions. This analysis
is based on a comprehensive set of structurally diverse test Webs. We show that
some of the approaches can achieve significant improvements over a breadth-
first search baseline approach that looks up URIs on a first-come, first-served
basis. However, we also observe that, even for the most promising ones of our
approaches, there is a non-negligible number of cases in which they perform worse
than the baseline. Before describing the approaches (Sect. 4) and discussing our
experiments in more detail (Sects. 5 and 6), we briefly review the state of the
art in querying Linked Data on the Web and elaborate more on the focus of
our work.

2 Linked Data Query Processing

The prevalent query language used in existing work on querying Linked Data on
the WWW is the basic fragment of SPARQL. Approaches to evaluate such basic
graph patterns (BGPs) over Linked Data can be classified into traversal-based,
index-based, and hybrid [7,11]. All these approaches compute a query result
based on Linked Data that they retrieve by looking up URIs during the query
execution process. Their strategy to select these URIs is where the approaches
differ.

Traversal-based approaches perform a recursive URI lookup process dur-
ing which they incrementally discover further URIs that can be selected for
lookup. Existing work in this context focuses on techniques to implement such a
traversal-based query execution [8,12,13]; additionally, as a well-defined founda-
tion for these approaches, we have proposed a family of reachability-based query
semantics for SPARQL that restrict the scope of any query to a query-specific
reachable subweb [6]. To this end, the specification of any query in this context
includes a set of seed URIs (in addition to the query pattern). Then, a document
in the queried Web of Linked Data is defined to be reachable (and, thus, part of
the reachable subweb) if it can be retrieved by looking up either a seed URI—in
which case we call it a seed document—or a URI u such that (i) u occurs in
an RDF triple of some other reachable document and (ii) u meets a particular
reachability condition specified by the given reachability-based query semantics.
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For instance, such a condition may require that the triple in which the URI is
found is a matching triple for any of the triple patterns in the given query. Our
earlier work formalizes this condition in a reachability-based query semantics
that we call cMatch-semantics [6].

Index-based approaches use a pre-populated index whose entries are URIs
that can be looked up to retrieve Linked Data. Then, for any given query, such an
approach uses its index to select a set of URIs whose lookup will result in retriev-
ing query-relevant data. By relying on their index, index-based approaches fail to
exploit query-relevant data added to indexed documents after building the index,
and they are unaware of new documents. Existing work on such approaches
focuses on different ways to construct the corresponding index [17], on tech-
niques to leverage such an index [17], and on ranking functions that prioritize
the lookup of the selected URIs in order to reduce response times [11,17]. The
latter aims to achieve the same objective as our work in this paper. However, the
ranking functions proposed for index-based approaches rely on statistical meta-
data that has been added to the index. For our work on traversal-based query
executions we do not assume an a priori availability of any metadata whatsoever.

The only hybrid approach that has been proposed in the literature so far
exploits an index to populate a prioritized list of seed URIs; additional URIs
discovered during a subsequent traversal-based execution are then integrated
into the list [11]. To this end, discovered URIs that are in the index (but have
not been selected initially) are prioritized based on a ranking function that uses
information from the index. For any URI for which no index entry exists, the
approach simply uses as priority the number of retrieved Linked Data documents
that mention the URI in some of their RDF triples (i.e., the number of known
incoming links). One of the prioritization approaches that we analyze in this
paper resembles the latter strategy (cf. Sect. 4.1).

3 Focus of Our Work

As discussed in the previous section, the prioritization of URI lookups is an idea
that has been shown to be suitable to improve the response time of queries over
the Web of Linked Data. However, the only systematic analyses of approaches
that implement this idea focus on index-based query executions [11,17]. The
approaches proposed in this context cannot be used for a traversal-based exe-
cution because they rely on statistical metadata that may be recorded when
building an index but that is not a priori available to a (pure) traversal-based
query execution system (which also rules out these approaches for non-indexed
URIs in a hybrid system). Therefore, the overall goal of the work presented in
this paper is to investigate URI prioritization approaches that can be used to
reduce the response times of traversal-based query executions.

For this work we make minimal assumptions about how traversal-based query
execution is implemented, which ensures independence of the peculiarities of
any particular implementation techniques (such as those proposed in earlier
work [8,12,13]). That is, we only make the general assumption that traversal-
based query engines consist of a data retrieval component (dr-component) and
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a result construction component (rc-component), and these two components
operate in parallel to execute a query as follows.

The dr-component receives Linked Data by looking up URIs. To this end,
the component is equipped with a lookup queue that is initialized with the seed
URIs of the given query. The component may use multiple URI lookup threads.
Whenever such a thread is free, it obtains the next URI from the queue, looks
up this URI on the Web, and scans the RDF triples that are contained in the
document retrieved by the lookup. This scan has two goals: First, the triples
may contain new URIs that can be scheduled for lookup. However, the lookup
threads do not necessarily have to add all new URIs to the lookup queue. Instead,
the dr-component can support an arbitrary reachability-based query semantics.
That is, the component may schedule only those URIs for lookup that satisfy the
reachability condition specified by the semantics. By doing so, the lookup threads
incrementally discover (and retrieve) the specific reachable subweb that the given
query semantics defines as the scope of the query. Hence, all triples scanned
by the lookup threads—and only these—have to be considered to compute the
sound and complete query result. Consequently, the second goal of scanning these
triples is to identify triples that match a triple pattern in the given query. Any
such matching triple is then sent to the rc-component, which starts processing
them as soon as they arrive.

Regarding the rc-component we make only three assumptions: (i) it uses
the incoming matching triples to compute the final query result, (ii) it processes
intermediate results in a push-based manner, and (iii) as soon as an element
of the final query result is ready, it is sent to the output. For techniques to
implement such a push-based rc-component we refer to the literature [12,13]
and to the extended version of this paper [10].

The whole query execution process continues until the dr-component has
accessed all data from the query-specific reachable subweb and the rc-compo-
nent has finished processing the resulting intermediate solutions. If the queried
Web is distributed over a comparably slow network such as the Internet (as we
assume in this paper), it is not surprising to observe that data retrieval is the
dominating factor for query execution times. In fact, as we verify experimentally
in the extended version of this paper, due to this dominance of data retrieval,
the execution times of traversal-based query executions over the WWW are not
affected at all by the order in which URIs are looked up [10]. For the same reason,
however, the URI lookup order has a crucial impact on the times required to find
a specific number of result elements (as demonstrated by Example 1). Therefore,
when aiming to minimize such response times, a suitable approach to prioritize
URI lookups is of critical importance. We study 14 candidates in this paper.

In this study we focus on conjunctive queries (represented by BGPs) under
the bag version of the aforementioned cMatch-semantics . This semantics is the
most prominent reachability-based query semantics supported by the travers-
al-based approaches studied in the literature [8,12,13]. While, in theory, there
exist an infinite number of other reachability-based query semantics and our
experiments can be repeated for any of them, we conjecture that the results
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will be similar to ours because none of the approaches studied in this paper
makes use of anything specific to cMatch-semantics. Using the bag version of
cMatch-semantics allows us to focus on a notion of the response time optimization
problem that is isolated from the additional challenge of avoiding the discovery
of duplicates (which is an additional aspect of response time optimization under
set semantics and worth studying as an extension of our work).

As a final caveat before going into the details, we emphasize the following
limitations of our study: We ignore factors that may impact the response times
of traversal-based queries but that cannot be controlled by a system that exe-
cutes such queries (e.g., varying latencies when accessing different Web servers).
Moreover, we focus only on approaches that do not assume any a priori infor-
mation about the queried Web of Linked Data. That is, the topology of the
Web or statistics about the data therein is unknown at the beginning of any
query execution. This focus also excludes approaches that aim to leverage such
information collected during earlier query executions (of course, studying such
approaches is an interesting direction for future work). Similarly, we ignore the
possibility to cache documents for subsequent query executions. While caching
can reduce the time to execute subsequent queries [5], this reduction comes at
the cost of potentially outdated results. However, studying approaches to bal-
ance the performance vs. freshness trade-off in this context is another interesting
direction for future work.

4 Approaches to Prioritize URI Lookups

Fig. 1. Approaches to prioritize URI lookups

A variety of approaches to pri-
oritize URI lookups are possible.
In this section, we identify differ-
ent classes of such approaches.
Figure 1 illustrates our tax-
onomy. All these approaches
assume that the lookup queue of
the dr-component is maintained
as a priority queue. Priorities are
denoted by numbers; the greater
the number, the higher the pri-
ority. URIs that are queued with
the same priority are handled in
a first-come, first-served manner (after all higher priority URIs have been looked
up).

A first class includes non-adaptive approaches that determine a fixed priority
for each URI when the URI is added to the lookup queue. A trivial example is to
treat all URIs equal, which resembles a breadth-first traversal. We consider this
approach as our baseline. In the extended version of this paper we also discuss
depth-first and random as alternative non-adaptive approaches (Example 1 uses
the latter). These turn out to be unsuitable for reducing the response times of
traversal-based query executions [10].
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4.1 Purely Graph-Based Approaches

In contrast to non-adaptive approaches, adaptive approaches may reprioritize
queued URIs. A first class of such approaches is based on the idea of apply-
ing a vertex scoring method to a directed graph that represents the topology
of the queried Web as discovered during the data retrieval process. Each ver-
tex in this graph corresponds either to a retrieved document or to a queued
URI. Each directed edge between two document vertices represents a data link
that is established by URIs that occur in some RDF triple in the source doc-
ument and that turned out to resolve to the target document when looked up.
Directed edges from a document vertex to a URI vertex represent data links to
documents that are yet to be retrieved. Obviously, such a graph is an incom-
plete model of the topology of the queried Web. However, as a side-effect of the
data retrieval process, the dr-component obtains increasingly more information
about the topology and, thus, can augment its model continuously. That is, any
URI vertex becomes a document vertex after the corresponding URI has been
looked up. If such a lookup results in discovering new URIs for the lookup queue,
new URI vertices and connecting edges can be added to the graph. Similarly,
new edges can be added if a retrieved document mentions URIs that either are
already queued for lookup or have already been looked up.

Given such a graph, it is possible to apply a vertex scoring method and use
the score of each URI vertex as the priority of the corresponding URI in the
lookup queue. Whenever the dr-component extends the graph after completing
some URI lookup, the vertex scores can be recomputed, and the priorities can
be adapted accordingly.

A multitude of different vertex scoring methods exist. We select PageRank
and indegree-based scoring as two examples for our study. PageRank is a well-
known method that uses an iterative algorithm to determine a notion of impor-
tance of vertices [14]. Indegree-based scoring is a less complex method that sim-
ply uses the number of incoming edges as the score of a vertex. Hereafter, we
refer to the two resulting URI prioritization approaches as PageRankand indegree,
respectively. We note that the latter approach is equivalent to the only existing
proposal to prioritize URI lookups during traversal-based query executions [11].
However, its effectiveness has not been studied so far.

4.2 Solution-Aware Graph-Based Approaches

We now turn to local processing aware approaches that aim to leverage run-
time information about the result construction process in the rc-component. To
enable an implementation of these approaches, the traversal-based query execu-
tion engine must be extended with a feedback channel from the rc-component to
the dr-component. Then, specific information required to prioritize URI lookups
can be sent over this channel.

Given the possibility to obtain runtime information from the rc-component,
we now can define graph-based URI prioritization approaches for which we use
vertex scoring methods that leverage such runtime information . In this paper
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we focus on methods that are based on the number of solutions that retrieved
documents have contributed to.

To enable the application of such methods, intermediate solutions must be
augmented with provenance annotations. In particular, each intermediate solu-
tion must be annotated with a set of all documents that contributed a match-
ing triple to the construction of that intermediate solution. To this end, before
sending a matching triple to the rc-component, the dr-component augments
this triple with metadata that identifies the source document of the triple. This
document becomes the provenance of the initial intermediate solution that the
rc-component generates from the matching triple. When two intermediate solu-
tions are joined in the rc-component, the union of their provenance annotations
becomes the provenance of the resulting intermediate solution. Then, whenever
an intermediate solution has been completed into a solution that is ready to be
sent to the output, the rc-component uses the feedback channel to send the
provenance annotation of this solution to the dr-component. The dr-compo-
nent uses these annotations to maintain a result contribution counter (RCC )
for every document vertex in the Web graph model that the component builds
incrementally as described in Sect. 4.1. This counter represents the number of
solutions that the document represented by the vertex has contributed to so far,
which may increase as the query execution progresses.

Given these counters, we define four vertex scoring functions that can be
applied to the Web graph model. Informally, for each vertex v ∈ V in such a
graph G=(V,E), the rcc–1 score of v, denoted by rccScore1(v), is the sum of the
(current) RCCs of all document vertices in the in-neighborhood of v; and the rel–
1 score of v, denoted by relScore1(v), is the number of document vertices in the
in-neighborhood of v whose RCC is greater than 1. Similarly, the rcc–2 score and
rel–2 score of v, denoted by rccScore2(v) and relScore2(v), respectively, focus on
the 2-step in-neighborhood. To define these scores formally, let ink(v) denote the
set of vertices in the k-step in-neighborhood of v, and, if v is a document vertex,
let rcc(v) be its (current) RCC. Then, for each vertex v ∈ V and k ∈ {1, 2}, the
scoring functions are defined as follows:

rccScorek(v) =
∑

v′∈ink(v)
rcc(v′), relScorek(v) =

∣
∣{v′ ∈ ink(v) | rcc(v′) > 0}∣∣.

These vertex scoring functions can be used by a graph-based approach to priori-
tize URI lookups (in the same manner as the PageRank and indegree approaches
use the PageRank algorithm and indegree-based scoring, respectively). Here-
after, we refer to the four resulting URI prioritization approaches as rcc1, rcc2,
rel1, and rel2, respectively.

4.3 Intermediate Solution Driven Approaches

An alternative class of local processing aware approaches use the aforementioned
feedback channel to obtain information about all the intermediate solution map-
pings sent between operators in the rc-component. We focus on one such app-
roach, denoted by IS, that assigns an initial priority of 0 to any new URI added
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to the lookup queue, and it reprioritizes queued URIs based on the following two
assumptions:

A1: The greater the number of operators that have already processed a given
solution mapping μ, the more likely it is that this intermediate solution μ
can be completed into a solution μ′ that covers the whole query and, thus,
can be sent to the output.

A2: The documents that can be retrieved by looking up the URIs mentioned in
a given (intermediate) solution mapping μ are the documents that are most
likely to contain matching triples needed for completing μ into a solution.

Recall that the objective is to return solutions as early as possible. Hence, by
assumption A2, it seems reasonable to increase the priority of a URI in the
lookup queue if the URI is mentioned in an intermediate solution. Further-
more, by assumption A1, such an increase should be proportional to the number
of operators that have already processed the intermediate solution. Then, to
implement the IS approach, intermediate solutions do not only have to be sent
between operators in the rc-component, but they also have to be sent over the
feedback channel to the dr-component—after annotating them with the num-
ber of operators that contributed to their construction. Given an intermediate
solution mapping μ with such a number, say opcnt, the IS approach iterates over
all variables that are bound by μ. For each such variable ?v ∈ vars(μ), if μ binds
the variable to a URI (i.e., μ(?v) is a URI) and this URI is queued for lookup
with a priority value that is smaller than opcnt, then IS increases the priority of
this URI to opcnt.

4.4 Hybrid Local Processing Aware Approaches

The idea of the IS approach (cf. Sect. 4.3) can be combined with the solution-
aware graph-based approaches (cf. Sect. 4.2). To this end, the dr-component
has to obtain via the feedback channel both the provenance annotation of each
solution and all intermediate solution mappings. Based on the former, the dr-
component increases the RCCs of document vertices in the Web graph model
(as described in Sect. 4.2). The intermediate solutions are used to maintain an
additional number for every URI that is queued for lookup; this number repre-
sents the maximum of the opcnt values of all the intermediate solutions that bind
some variable to the URI. Hence, initially (i.e., when the URI is added to the
lookup queue) this number is 0, and it may increase as the dr-component gets to
see more and more intermediate solutions via the feedback channel. Observe that
this number is always equal to the lookup priority that the IS approach would
ascribe to the URI. Therefore, we call this number the IS-score of the URI.

Given such IS-scores, we consider four different approaches to prioritize URI
lookups, each of which uses one of the RCC-based vertex scoring functions intro-
duced in Sect. 4.2. We call these approaches isrcc1, isrcc2, isrel1, and isrel2 (the name
indicates the vertex scoring function used). Each of them determines the priority
of a queued URI by multiplying the current IS-score of the URI by the current
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vertex score that their vertex scoring function returns for the corresponding URI
vertex. Whenever the dr-component increases the IS-score of a URI, or the ver-
tex score of the corresponding URI vertex changes , then the lookup priority of
that URI is adapted accordingly.

4.5 Oracle Approach

We also want to gain an understanding of what response times a traversal-
based query execution system could achieve if it had complete information of
the queried Web (which is impossible in practice). To this end, we developed
another approach assuming an oracle that, for each reachable document, knows
(i) the URIs leading to the document and (ii) the final RCC of the document (i.e.,
the number of solutions of the complete query result that are based on matching
triples from the document). Then, this oracle approach uses as priority of a URI
lookup the final RCC of the document that will be retrieved by this lookup.
As a consequence, retrieving documents with a greater final RCC has a higher
priority. Clearly, without a priori information about the queried Web, a travers-
al-based system can determine such final RCCs only after retrieving all reachable
documents —which is when it is too late to start prioritizing URI lookups. Hence,
the oracle approach cannot be used in practice. However, for our experiments
we performed a baseline-based “dry run” of our test queries and collected the
information necessary to determine the RCCs that are required to execute the
queries using the oracle approach.

5 Experimental Setup

In this section we specify the setup of our experiments. Although the execution
of queries over Linked Data on the WWW is the main use case for the concepts
in this paper, the WWW is not a controlled environment to run experiments on.
For this reason, we set up a simulation environment consisting of two identical
machines, each with an Athlon 64 X2 dual core CPU, and 3.6 GB of main
memory. Both machines use an Ubuntu 12.04 LTS operating system with Sun
Java 1.6.0 and are connected via a fast university network. One machine runs a
Tomcat server (7.0.26) with a Java servlet that can simulate different Webs of
Linked Data (one at a time); the documents of these Webs are materialized on the
machine’s hard disk. The other machine executes queries over such a simulated
Web by using an in-memory, Java implementation of a traversal-based query
engine. To rule out any effects of parallelized URI lookups as a factor that may
influence our measurements we set up the system to use a single lookup thread.

In the following, we specify the Webs of Linked Data simulated for our exper-
iments, the corresponding test queries, and the metrics that we use. Software and
data required for our experiments are available at http://squin.org/experiments/
ISWC2016/.

http://squin.org/experiments/ISWC2016/
http://squin.org/experiments/ISWC2016/
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5.1 Test Webs

The goal of our experiments is to investigate how the different URI prioritization
approaches impact the response times of traversal-based query executions. This
impact (as well as the chance to observe it) may be highly dependent on how the
queried Web of Linked Data is structured and how data is distributed. Therefore,
we generated multiple test Webs for our experiments. To be able to meaningfully
compare measurements across our test Webs, we used the same base dataset for
generating these Webs.

We selected as base dataset the set of RDF triples that the data generator of
the Berlin SPARQL Benchmark (BSBM) suite [1] produces for a scaling factor
of 200. This dataset, hereafter denoted by Gbase, consists of 75,150 RDF triples
and describes 7,329 entities, each of which is identified by a unique URI. Let
Ubase denote the set consisting of these 7,329 URIs. Hence, the subject of any
triple 〈s, p, o〉 ∈ Gbase is such a URI (i.e., s ∈ Ubase), and the object o either is a
literal or also a URI in Ubase.

Every test Web that we generated from this base dataset consists of 7,329
documents, each of which is associated with a different URI in Ubase. To dis-
tribute the triples of Gbase over these documents, we partitioned Gbase into 7,329
potentially overlapping subsets (one for each document). First, we always placed
any base dataset triple whose object is a literal into the subset of the document
for the subject of that triple. Next, for any of the other base dataset triples
〈s, p, o〉 ∈ Gbase (whose object o is a URI in Ubase), we considered three options:
placing the triple (i) into both the documents for s and for o—which establishes
a bidirectional data link between both documents, (ii) into the document for s
only—which establishes a data link from that document to the document for o,
or (iii) into the document for o only—which establishes a data link to the doc-
ument for s. It is easy to see that choosing among these three options impacts
the link structure of the resulting test Web (note that the choice may differ for
each triple).

We exploited this property to systematically generate test Webs with differ-
ent link structures. That is, we applied a random-based approach that, for every
generated test Web, uses a particular pair of probabilities (φ1, φ2) as follows:
For every base dataset triple 〈s, p, o〉 ∈ Gbase with o ∈ Ubase, we chose the first
option with a probability of φ1; otherwise, φ2 is the (conditional) probability
of choosing the second option over the third. To cover the whole space of pos-
sible link structures in a systematic manner, we have used each of the twelve
pairs (φ1, φ2) ∈ {0, 0.33, 0.66} × {0, 0.33, 0.66, 1} to generate twelve test Webs
W 0,0

test, ... ,W
66,100
test , and we complemented them with the test Web W 100

test that we
generated using probability φ1 = 1 (in which case φ2 is irrelevant) .

While these 13 test Webs cover a wide range of possible link structures, we
are also interested in an additional test Web whose link structure is most repre-
sentative of real Linked Data on the WWW. To identify a corresponding pair of
probabilities (φ1, φ2) we analyzed the 2011 Billion Triple Challenge dataset [3].
For this corpus of real Linked Data we identified a φ1 of 0.62 and a φ2 of 0.47.
Given this pair of probabilities, we used our base dataset to generate another
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test Web, W 62,47
test . In this paper we discuss primarily the measurements obtained

by querying this test Web. However, for our analysis we also queried the other
test Webs; the measurements of all these query executions contribute to our
empirical comparison of the URI prioritization approaches (cf. Sect. 6.6).

We emphasize that a systematic creation of test Webs with different link
structures as achieved by the given, random-based approach requires a base
dataset that has a high degree of structuredness, which is the case for our BSBM
dataset [2]. On the other hand, even if the base dataset is highly structured,
our random-based approach ensures that the documents in each generated test
Web (except W 100

test ) contain data with varying degrees of structuredness, which
reflects most of the Linked Data on the WWW [2].

5.2 Test Queries

For our experiments we use six SPARQL basic graph patterns (BGPs) under
cMatch-bag-semantics (cf. Sect. 2); as seed URIs, we use all URIs in the given
BGP, respectively. These queries, denoted by Q1 to Q6, are listed in the extended
version of this paper [10].

We created these six queries so that they satisfy the following three require-
ments: First, each of these queries can be executed over all our test Webs. Second,
the queries differ w.r.t. their syntactical structure (shape, size, etc.). Third, to
avoid favoring any particular traversal strategy, the reachable subwebs induced
by the queries differ along various dimensions. For instance, Table 1 lists sev-
eral properties of the six query-specific reachable subwebs of test Web W 62,47

test .
These properties are the number of reachable documents, the number of edges
between these documents in the link graph of the reachable subweb, the number
of strongly connected components and the diameter of the link graph, the num-
ber of reachable documents that are result-relevant (i.e., their data is required
for at least one solution of the corresponding query result), the percentage of
reachable documents that are result-relevant, the mean lengths of the shortest
paths (in the link graph) from seed documents to these relevant documents,
the lengths of the shortest and the longest of these shortest paths, and similar
statistics for the reachable documents that are not result-relevant. Additionally,
Table 1 lists the cardinality of the corresponding query results. We emphasize

Table 1. Statistics about the reachable subwebs of test queries Q1–Q6 over test Web
W 62,47

test .

link graph of reachable subweb result-relevant reachable documents res.-irrel. reach. documents result
Query # of # of str. conn. dia- # of % of all shortest paths from seeds shortest paths from seeds cardi-

docs edges components meter docs reach.docs mean (st.dev) min max mean (st.dev) min max nality
Q1 3818 10007 413 8 572 15.0% 1.12 (±0.43) 1 3 1.69 (±0.93) 1 3 2481
Q2 214 627 8 15 22 10.3% 2.34 (±1.70) 1 8 5.04 (±1.40) 2 8 34
Q3 234 410 57 6 3 1.3% 1.41 (±0.50) 1 2 2.74 (±0.53) 1 3 4
Q4 1098 7805 36 12 43 3.9% 1.38 (±0.73) 1 3 3.49 (±0.98) 1 5 804
Q5 333 2340 14 10 36 10.8% 2.21 (±0.78) 1 4 3.83 (±0.37) 3 5 116
Q6 2232 6417 88 45 12 0.5% 2.40 (±0.78) 1 4 4.08 (±1.34) 1 8 28
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that a computation of any of the properties in Table 1 requires information that
a traversal-based system discovers only during query execution. Hence, such sta-
tistics can be computed only after completing a traversal-based query execution
and, thus, they cannot be used for query optimization.

By comparing the properties in Table 1, it can be observed that our six test
queries induce a very diverse set of reachable subwebs of test Web W 62,47

test . In
an earlier, more detailed analysis of these queries we make the same observation
for the other 13 test Webs [9]. Moreover, if we consider each query in separation
and compare its reachable subwebs across the different test Webs, we observe a
similarly high diversity [9]. Hence, these six queries in combination with all 14
test Webs represent a broad spectrum of test cases. That is, we have some test
cases that reflect interlinkage characteristics of a real snapshot of Linked Data
on the WWW (i.e., W 62,47

test ) and others that systematically cover other possible
interlinkage characteristics (W 0,0

test ... W 100
test ).

5.3 Metrics

For each solution that our test system computes during a query execution, it
measures and records the fraction of the overall execution time after which the
solution becomes available. An example of such numbers for the first reported
solution are the percentages given in Example 1. For our analysis we focus pri-
marily on the two extreme cases: the relative response times for a first solution
and the relative response times for the last solution. The former is interesting
because it identifies the time after which users can start looking over some out-
put for their query; the latter marks the availability of the complete result (even
if the system cannot verify the completeness at this point). Hence, we define
two metrics. Let exec be a query execution; let tstart, tend, t1st, and tlast be the
points in time when exec starts, ends, returns a first solution, and returns the
last solution, respectively. The relative first-solution response time (relRT1st)
and the relative complete-result response time (relRTCmpl) of exec are defined
as follows:

relRT1st =
t1st − tstart
tend − tstart

and relRTCmpl =
tlast − tstart
tend − tstart

.

We can use such relative metrics for our study because, for each query, the overall
query execution time is always the same, independent of the URI prioritization
approach (cf. Sect. 3). The advantage of relative metrics is that they directly
show the differences in response times that can be achieved by different URI
prioritization approaches relative to each other. Measuring absolute times—such
as the times that Example 1 provides in addition to the percentages—would not
provide any additional insight for such a comparison. Moreover, absolute times
that we may measure in our simulation environment are mostly a function of
how fast our simulation server responds to URI requests. Hence, such absolute
times in our simulation would be quite different from what could be measured
for queries over the “real” Web of Linked Data (such as in Example 1).
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To increase the confidence in our measurements we repeat every query exe-
cution five times and report the geometric mean of the measurements obtained
by the five executions. The confidence intervals (i.e., error bars) in the charts
in this paper represent one standard deviation. To avoid measuring artifacts
of concurrent query executions we execute queries sequentially. To also exclude
possible interference between subsequent query executions we stop and restart
the system between any two executions.

6 Experimental Results

To experimentally analyze the URI prioritization approaches introduced in
Sect. 4 we used each of these approaches for traversal-based query executions
over our test Webs. The charts in Fig. 2 illustrate the mean relRT1st and the
mean relRTCmpl measured for the query executions over test Web W 62,47

test (in
some cases the bars for relRT1st are too small to be seen). For instance, the left-
most bars in Fig. 2(a) indicate that the baseline executions of query Q1 returned
a first solution of the query result after 26.5 % of the overall query execution
time, and it took them about 99 % of the time to complete the query result.
In this section, we discuss these measurements, as well as further noteworthy
behavior as observed for query executions over the other test Webs. The discus-
sion is organized based on the classification of URI prioritization approaches as
introduced in Sect. 4 (Fig. 1). However, we begin with some general observations.

6.1 General Observations

A first, unsurprising observation is that, in almost all cases, none of the
approaches achieves response times that are smaller than the response times
achieved by the oracle approach. However, we also notice a few (minor) excep-
tions. These exceptions can be explained by the fact that—independent of what
URI prioritization approach is applied—the dr-component discovers the URIs
to be looked up only gradually. Then, by greedily ordering the currently available
URIs (based on our pre-computed RCCs), the oracle approach may only achieve
a local optimum but not the global one.

Ignoring the oracle approach for a moment, we note that approaches that
achieve a good relRT1st for a query do not necessarily also achieve a good
relRTCmpl for that query.

Another general observation is that, by using different URI prioritization
approaches to execute the same query over the same test Web, the number
of intermediate solutions processed by our system can vary significantly, and
so does the number of priority changes initiated by the adaptive approaches.
These variances indicate that the amount of computation within our system
can differ considerably depending on which URI prioritization approach is used.
Nonetheless, in all our experiments the overall time to execute the same query
over the same test Web is always almost identical for the different approaches!
This fact again illustrates the dominance of the data retrieval fraction of query
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(a) Query Q1 (b) Query Q2 (c) Query Q3

(d) Query Q4 (e) Query Q5 (f) Query Q6

Fig. 2. Relative response times for queries Q1 to Q6 over test Web W 62,47
test as achieved

by employing the different approaches to prioritize URI lookups.

execution time (cf. Sect. 3) and, thus, is a strong verification of the comparability
of our relative measurements. The only exception is the PageRank approach
for which query execution times range from 120 % to 320 % of the execution
times measured for the other approaches. Hence, in contrast to the additional
computation required for each of the other approaches, the frequent execution
of the iterative PageRank algorithm becomes a non-negligible overhead. As a
result, the PageRank approach cannot compete with the other approaches and,
thus, we ignore it in the remainder.

Finally, in Fig. 2(c) (for query Q3 over test Web W 62,47
test ), we note that, for all

approaches, the differences between the time needed to return a first solution and
the time to return the last solution are insignificant. We explain this phenomenon
as follows: Only three of the 234 reachable documents for Q3 over W 62,47

test con-
tribute to the query result and this result consists of four solutions (cf. Table 1).
It turns out that the computation of each of these four solutions requires data
from each of the three result-relevant documents. Hence, only after (and as soon
as) the last of these three documents has been retrieved, the system can compute
and return all four solutions.
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6.2 Evaluation of the Purely Graph-Based Approaches

After ruling out the PageRank approach (cf. Sect. 6.1), indegree is the only
remaining purely graph-based approach in our experiments. We observe that this
approach is often worse and only in a few cases better than the baseline app-
roach (for both relRT1st and relRTCmpl). The reason for the negative per-
formance of this approach—as well as any other possible purely graph-based
approach—is that the applied vertex scoring method rates document and URI
vertices only based on graph-specific properties, whereas the result-relevance of
reachable documents is independent of such properties. In fact, in our earlier
work we show empirically that there does not exist a correlation between the
result-relevance—or irrelevance— of reachable documents and the indegree of
the corresponding document vertices in the Web graph model (similarly, for
the PageRank, the HITS scores, the k-step Markov score, and the betweenness
centrality) [9].

6.3 Evaluation of the Solution-Aware Graph-Based Approaches

In contrast to the purely graph-based approaches, the solution-aware graph-
based approaches (rcc1, rcc2, rel1, and rel2) employ vertex scoring methods that
make use of information about result-relevant documents as discovered during
the query execution process. We notice that, until such information becomes
available (that is, not before a first query solution has been computed), these
methods rate all vertices equal. As a consequence, all URIs added to the lookup
queue have the same priority and are processed in the order in which they
are discovered. Hence, until a first solution has been computed, the solution-
aware graph-based approaches behave like the baseline approach. Therefore,
these approaches always achieve the same relRT1st as the baseline.

Once a first set of result-relevant documents can be identified, the solution-
aware graph-based approaches begin leveraging this information. As a result,
for several query executions in our experiments, these approaches achieve a
relRTCmpl that is significantly lower than the baseline. Moreover, for the major-
ity of query executions for which this is not the case, the relRTCmpl achieved by
the solution-aware graph-based approaches is comparable to the baseline. In the
following, we identify characteristics of reachable subwebs that are beneficial for
our four solution-aware graph-based approaches (for a more detailed discussion
refer to the extended version of this paper [10]).

A necessary (but not necessarily sufficient) characteristic is that every reach-
able document that is result-relevant must have at least one in-neighbor that is
also result-relevant (for rel2 and rcc2 it may also be a 2-step in-neighbor). How-
ever, even if the in-neighborhood of a relevant document d contains some other
relevant documents, the solution-aware graph-based approaches can increase the
retrieval priority of document d only if the relevance of at least one of these other
documents, say d′, is discovered before the retrieval of d. This is possible only if
the relevance of d′ can be attributed to its contribution to some query solution
whose computation does not require document d.
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Hence, an early discovery of a few first solutions may increase chances that
the solution-aware graph-based approaches retrieve all relevant documents early,
which then leads to smaller complete-result response times (relRTCmpl). How-
ever, there are also cases in which the identification of relevant documents may
mislead these approaches; in particular, if some relevant documents link to many
irrelevant documents. A special case that is particularly worse for rcc1 and rcc2

is the existence of a result-relevant document d with an RCC that is signif-
icantly higher than the RCCs of the other relevant documents in the corre-
sponding subweb; such a high RCC may dominate the RCC-based scores in the
in-neighborhood of document d. The Q4-specific reachable subweb of test Web
W 62,47

test is an example of such a case (cf. Fig. 2(d)).

6.4 Evaluation of the Intermediate Solution Driven Approaches

Intermediate solution driven approaches (including the hybrid approaches ana-
lyzed in the next section) use information about all intermediate solutions sent
between operators in the rc-component. Regarding these approaches, we notice
a high variation in our measurements (observe the error bars in Fig. 2). We
attribute this variation to the multithreaded execution of all operators in the
rc-component of our traversal-based query engine (which we describe in detail
in the extended version of this paper [10]). Due to multithreading, the exact order
in which intermediate solutions appear in the rc-component and are sent to the
dr-component is nondeterministic. As a result, the intermediate solution driven
adaptation of the priorities of URIs that are queued for lookup becomes non-
deterministic. Then, due to this nondeterminism, the order in which reachable
documents are retrieved may differ for repeated executions with the same prior-
itization approach. Such differences may cause different response times because
the retrieval order of documents determines which intermediate solutions can be
generated at which point during the query execution process.

Irrespective of the variations, our measurements indicate that, in a number
of cases, the IS approach can achieve an advantage over the baseline approach.
For instance, compare the relRT1st values in Fig. 2(a) or the relRTCmpl values
in Fig. 2(f). However, there also exist a significant number of cases in which IS

performs worse than the baseline approach (e.g., query Q4 over test Web W 62,47
test ;

cf. Fig. 2(d)).

6.5 Evaluation of the Hybrid Approaches

For the hybrid approaches (isrcc1, isrcc2, isrel1, isrel2) we first notice that they
all achieve similar response times in many cases. More importantly, however,
these response times are comparable, or at least close, to the best of either the
response times achieved by the solution-aware graph-based approaches or the
response times of the IS executions.

A typical example are the executions of Q1 over test Web W 62,47
test

(cf. Fig. 2(a)). On one hand, the hybrids achieve complete-result response
times (relRTCmpl) for this query that are smaller than the baseline—which is
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also the case for the solution-aware graph-based approaches but not for the
IS-based executions. On the other hand, instead of also achieving first-solu-
tion response times (relRT1st) as achieved by the solution-aware graph-based
approaches (which are as high as the baseline), the hybrids achieve a relRT1st
that is as small as what the IS-based executions achieve. Regarding relRT1st we
recall that the solution-aware graph-based approaches cannot be better than the
baseline. The latter observation shows that this is not the case for the hybrid
approaches. On the contrary, even if each hybrid approach is based on a solu-
tion-aware graph-based approach, their combination with intermediate solution
driven functionality enables the hybrid approaches to outperform the baseline
in terms of relRT1st.

6.6 Comparison

Our measurements show that there is no clear winner among the URI prioriti-
zation approaches studied in this paper. Instead, for each approach, there exist
cases in which the approach is better than the baseline and cases in which the
approach is worse.

Table 2. Percentage of cases in which the
approaches achieve response times that are
at least 10 % worse (resp. 10% better) than
the baseline

Table 2 quantifies these cases;
that is, the table lists the percentage
of cases in which the response times
achieved by each approach are at
least 10 % better (resp. 10 % worse)
than the baseline. For this compar-
ison, we consider the executions of
all six test queries over all 14 test
Webs (i.e., 84 cases for each app-
roach), and we use the threshold
of 10 % to focus only on notewor-
thy differences to the baseline. In
addition to relRT1st and relRTCmpl,
the table also covers relative 50%
response time (relRT50); that is, the
fraction of the overall execution time
after which 50 % of all solutions of the
corresponding query result have been computed.

For both relRT1st and relRT50, we observe that isrel1 is the best of the
approaches tested (ignoring the oracle approach which cannot be used in practice;
cf. Sect. 4.5). Although the other intermediate solution driven approaches (IS,
isrel2, isrcc1, isrcc2) have a similarly high number of cases in which they are at
least 10 % better than the baseline, these approaches have a higher number of
cases in which they are at least 10 % worse. We also notice that, as discussed
in Sect. 6.3, for relRT1st, the solution-aware graph-based approaches (rcc1, rcc2,
rel1, rel2) behave like the baseline.

For relRTCmpl, we observe some differences. The hybrid approaches (isrcc1,
. . . , isrel2) still have a comparably high number of cases in which they are at
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least 10 % better than the baseline, but they also have a significant number of
noteworthy cases in which they are worse. IS has an even higher number of such
worse cases. In contrast, the solution-aware graph-based approaches are more
suitable, with rel2 being the best choice.

In summary, to return some solutions of query results as early as possi-
ble, isrel1 appears to be the most suitable choice among the approaches studied
in this paper. However, if the objective is to reduce complete-result response
times (relRTCmpl), the solution-aware graph-based approaches are usually bet-
ter suited; in particular, rel2. In the extended version of the paper we additionally
show that, by and large, these general findings are independent of whether the
queried Web is densely populated with bidirectional data links (i.e., φ1 ≥ 0.66)
or sparse (i.e., φ1 ≤ 0.33) [10].

7 Conclusions

This is the first paper that studies the problem of optimizing the response times
of traversal-based query executions over Linked Data. In particular, we focus on
the fundamental problem of fetching result-relevant data as early as possible.
To this end, we introduce heuristics-based approaches to prioritize URI lookups
during data retrieval and analyze their impact on response times. For this exper-
imental analysis we use a broad range of simulated, structurally diverse Webs
of Linked Data. One of these test Webs reflects interlinkage characteristics of a
real snapshot of Linked Data on the WWW, and the others systematically cover
other possible interlinkage characteristics as may reflect other Webs of Linked
Data (e.g., within the intranet of an enterprise).

Our experiments show that some of the approaches can achieve noteworthy
improvements over the baseline in a significant number of cases. However, even
for the best URI prioritization approaches in this paper, there exist cases in
which the baseline approach achieves better response times. Moreover, a com-
parison to the oracle approach shows that there is further room for improvement.
A promising direction of future work are approaches that collect statistics during
(traversal-based) query executions and leverage these statistics to optimize the
response times for subsequent queries.
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10. Hartig, O., Özsu, M.T.: Walking without a map: optimizing response times of
traversal-based linked data queries (extended version). CoRR abs/1607.01046
(2016)

11. Ladwig, G., Tran, T.: Linked data query processing strategies. In: Patel-Schneider,
P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B.
(eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 453–469. Springer, Heidelberg
(2010)

12. Ladwig, G., Tran, T.: SIHJoin: querying remote and local linked data. In: Antoniou,
G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan,
J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 139–153. Springer, Heidelberg
(2011)

13. Miranker, D.P., Depena, R.K., Jung, H., Sequeda, J.F., Reyna, C.: Diamond: a
SPARQL query engine, for linked data based on the rete match. In: Proceedings
of the AImWB (2012)

14. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. Technical report 1999–66, Stanford InfoLab, November
1999

15. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench:
a benchmark suite for federated semantic data query processing. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg
(2011)

16. Umbrich, J., Hogan, A., Polleres, A., Decker, S.: Link traversal querying for a
diverse web of data. Semant. Web J. 6(6), 585–624 (2015)

17. Umbrich, J., Hose, K., Karnstedt, M., Harth, A., Polleres, A.: Comparing data
summaries for processing live queries over linked data. World Wide Web 14(5–6),
495–544 (2011)



CubeQA—Question Answering on RDF Data
Cubes
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Abstract. Statistical data in the form of RDF Data Cubes is becoming
increasingly valuable as it influences decisions in areas such as health
care, policy and finance. While a growing amount is becoming freely
available through the open data movement, this data is opaque to layper-
sons. Semantic Question Answering (SQA) technologies provide intuitive
access via free-form natural language queries but general SQA systems
cannot process RDF Data Cubes. On the intersection between RDF Data
Cubes and SQA, we create a new subfield of SQA, called RDCQA. We
create an RDQCA benchmark as task 3 of the QALD-6 evaluation chal-
lenge, to stimulate further research and enable quantitative comparison
between RDCQA systems. We design and evaluate the domain indepen-
dent CubeQA algorithm, which is the first RDCQA system and achieves
a global F1 score of 0.43 on the QALD6T3-test benchmark, showing that
RDCQA is feasible.

1 Introduction

Statistical data influences decisions in domains such as health care, policy, gov-
ernmental decision making and finance. The general public is increasingly inter-
ested in accessing such open information [19]. This coincides with the open
data movement and has led to an increased availability of statistical government
data in the form of data cubes. Initiatives that publish those statistics include
OpenSpending1 and World Bank Open Data2. However, this type of data is mul-
tidimensional, numerical and often voluminous, and thus not easily approachable
for laypersons.

While singular data points can be queried using a tabular and faceted brows-
ing interfaces offered by those initiatives, common questions often require [12]
the combination and processing of many different datapoints. This processing
can be performed by specialized tools but they require knowledge of a specific
1 http://openspending.org/.
2 http://data.worldbank.org/.
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vocabulary or a formal query language and are thus also hindering the access
for laypersons. To provide a more intuitive interface, we present the CubeQA
approach.

Our contributions are as follows: (1) To the best of our knowledge, we are
the first to tackle the intersection between Data Cubes, Question Answering
(QA) and RDF, creating a new subfield of QA, which we call RDCQA. (2) We
stimulate further research with the creation of the QALD-6 Task 3 benchmark
(QALD6T3): Statistical Question Answering over RDF datacubes. This enables
quantitative comparison between RDCQA systems, see Sect. 4.2. Moreover, the
introduction of this task has led to the development of another system, QA3

(“QA cube”), and the extension of the SPARQL query builder Sparklis (see
Sect. 5). (3) With the CubeQA algorithm, which achieves a global F1 score of
0.43 on QALD6T3-test (see Sect. 4), we show that RDCQA is feasible.

The rest of the paper is structured as follows: Section 2 introduces the prelim-
inaries. Section 3 defines the CubeQA algorithm. Section 4 presents our bench-
mark and evaluates the CubeQA algorithm. Section 5 summarizes general SQA
approaches and work in progress on RDCQA. We summarize our contributions
in Sect. 6 and present challenges to be addressed by future work.

2 Preliminaries

Unlike common data representations such as tables or relational databases, the
data cube3 formalism adequately represents multidimensional, numerical data.
A data cube is a multidimensional array of cells. Each cell is uniquely identified
by its associated dimension values and contains one or more numeric measure-
ment values. Data cubes are often sparse, i.e., for most combinations of dimen-
sion values there is no cell in the cube. Data cubes, such as in Fig. 2a, allow the
following operations supported by CubeQA:

1. Dicing a data cube creates a subcube by constraining a dimension to a subset
of its values, see Fig. 2b.

2. Slicing a data cube reduces its dimensionality by one by constraining a dimen-
sion to one specific value, see Fig. 2c.

3. Rolling Up a data cube means summarizing measure values along a dimension,
such as a sum, count, or arithmetic mean. A roll-up of Fig. 2c answers Fig. 1.

Definition 1. We define Question Answering (QA) [11] as users (1) asking
questions in natural language (NL) (2) using their own terminology to which
they (3) receive a concise answer. In Semantic Question Answering (SQA), the

How much did the Philippines receive in the years of 2007 to 2008?

Fig. 1. The running example used throughout this paper

3 also OLAP cube or hypercube.
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(a) Simplified excerpt of the LinkedSpending RDC Finland Aid Data for Fig. 1. Measure
units are provided by the currency attribute in each cell (omitted for brevity).
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(b) A dice of Fig. 2a created by constraining
the year dimension to 2007 and 2008.

4300 25000

0 0

wateradministration

Sector

Philippines
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Country

2007
2008Year

(c) A slice of Fig. 2b created by constrain-
ing the Recipient Country dimension to the
Philippines.

Fig. 2. Example of a data cube and its operations.

natural language question is transformed into a formal query on an RDF knowl-
edge base, commonly using SPARQL.

The RDF Data Cube (RDC) Vocabulary models both the schema and the
observations of a data cube to RDF (see Fig. 3a). Each data cube, an instance of
qb:DataSet, has an attached schema, the data structure definition, which speci-
fies the component properties4. A component property is either a dimension, an
attribute or a measure. Measures, of which there has to be at least one, represent
the measured quantities, while the dimensions and the optional attributes pro-
vide context. Because the RDC vocabulary is focused on statistical data, its cells

4 qb:ComponentProperty in Fig. 3a, not to be confused with rdf:Property.

http://purl.org/linked-data/cube#ComponentProperty
http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
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(a) Simplified structure of the RDF Data
Cube (RDC) vocabulary, which deter-
mines the triple patterns required for the
SPARQL query. A more detailed explana-
tion of the RDC vocabulary is presented
in [12]. Figure originally published in [13].

SELECT sum(?amount )
FROM : f in land −a id
{
?o a qb : Observation .
?o : amount ?amount .
?o : r e c i p i e n t −country : ph .
?o : re fYear ?y .
f i l t e r ( year (? y )=2007

OR year (? y ) =2008)
}

(b) A SPARQL query answering the run-
ning example (Fig. 1).

Fig. 3. The RDC vocabulary and an exemplary SPARQL query for Fig. 1.

are called observations. Each observation contains a triple that specifies a value
for each component property5.

RDCs allow data cubes to profit from the advantages of Linked Data [3],
such as ontologies, reasoning and interlinking. For example, the dimension value
for recipient country :ph can be linked to dbpedia:Philippines, whose properties
can then be queried from DBpedia [16].

3 CubeQA Algorithm

The CubeQA algorithm converts a natural language question to a SPARQL
query using a linear pipeline. Its first step, preprocessing, indexes the target
datasets, extracts simple constraints and creates the parse tree used by the
following steps. Next, the matching step recursively traverses the parse tree
downwards until it identifies reference candidates at each branch. Starting at
those candidates, the combination step merges those candidates upwards until
it creates a final template in the root of the parse tree. Finally, in the execution
step, the template is converted to a SPARQL query that is executed to generate
the result set containing the answer.

3.1 Preprocessing

Number Normalization. First, numbers are normalized, for example “5 thou-
sand” to “5000”, as the other components do not recognize numbers in words.

Keyphrase Detection. In this step, phrases referring to data cube operations are
detected. These operations are typically referenced by certain keyphrases and
are thus detected using regular expressions during preprocessing, see Table 1.

5 except attributes, which may also apply to the whole data cube.

http://dbpedia.org/resource/Philippines
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Fig. 4. The CubeQA pipeline

Those keyphrases, as well as the following entity recognition and disambiguation
steps, are domain independent, so that CubeQA can be used with any set of
RDCs. Nevertheless, the keyphrase to operation mapping can be extended for a
specialized vocabulary to increase the recall on a particular domain.

Table 1. Data cube operations extracted in the preprocessing step

Element SPARQL Example phrase

Dice Filter 2007 to 2008

Roll-up Aggregate In total

Slice Filter In 2008

Modifier ORDER LIMIT The 5 highest amounts

If a roll-up is not explicitly expressed in the question, a default aggregation
is assumed for some answer types. A SPARQL aggregate rolls up all dimensions
that are not bound by query variables. The roll-up aggregates sum, arithmetic
mean and count are handled differently then minimum and maximum. The for-
mer aggregates return new values, so that they can be mapped to the SPARQL
aggregation keywords SUM, AVG and COUNT. Minimum and maximum, how-
ever, choose a value among the existing ones, which allows identification of a cell
and thus of a different component value. For example, in “Which company has
the highest research spending?”, the user probably asks for the total, which can
be achieved by a roll-up with addition followed by selecting the company with
the highest sum.

Dataset Detection. CubeQA uses a dataset index that is initialized once with
the set of available RDCs. It is implemented as a Lucene index with fields for the
labels, comments and property labels of each RDC. The dataset name alone is
not sufficient because questions (Definition 1) often do not refer to the dataset.
For example, in Fig. 1, the dataset finland-aid is not mentioned but “the Philip-
pines”, “2007” and “2008” will all be found by the index.

Parsing. At the end of the preprocessing step, a syntactic parse tree is generated
for the modified question. This tree structure is traversed for matching nodes as
described in Sect. 3.2.
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3.2 Matching

Our query model starts with the whole RDC. The question is then split into
phrases that are mapped to constraints, which exclude cells from the target
datacube. In order to increase accuracy and resolve ambiguity, however, phrases
of the question are first mapped to potential observation values in the matching
step, based on the following definitions:

Definition 2 (RDF Knowledge Base (KB)). Let U be a set of URIs, U =
I ∪· P ∪· C, where I is are the instances, P the properties and C the classes. Let
L ⊂ Σ∗ be a set of literals, where Σ is the unicode alphabet. We define a KB k
as a set of triples k ⊆ U ×P × (U ∪· L) (we disregard blanknodes). In the context
of this work, the KB contains the triples of a set of RDCs.

Definition 3 (Values). The values of a component property p for an RDC
c and a KB k are defined as: Vp,c,k = {v|∃o : {(o, p, v), (o, qb:dataset, c),
(o, rdf:type, qb:Observation)} ⊂ k}. The numerical values Dp,c,k are the values
representing numbers, converted to double values. The temporal values Tp,c,k are
the union of all values representing dates or years, converted to time intervals
τ(v) : Tp,c,k =

⋃
v∈Vp,c,k

τ(v).

Example: :ph ∈ V{:recipient-country, finland-aid, linkedspending}.

Definition 4 (Scorer). A scorer for a component property p is represented
formally by a partial function dp : Σ∗ → (L ∪ U) × (0, 1], Table 3 shows the three
types of scorers, which are assigned to a property based on its range (see Table 2).
Informally, the scorer of p returns the value with the closest match to a given
phrase and its estimated probability.

Table 2. Component property scorer and answer type assignment. Integers include
datatypes derived by constraint

Range Scorer Answer type

xsd:integer Numeric Countable

xsd:float, xsd:double Numeric Uncountable

xsd:gYear, xsd:date Temporal Temporal

No match String Entity

For the query template, the scorer results are converted to constraints.
A naive approach is to create a value reference for the highest scored prop-
erty of a phrase but this penalizes short phrases and suffers from ambiguity as
it does not take the context of the phrase into account. Accordingly, CubeQA
inserts an intermediate step: the match, which represents the possible references
to component properties and their values.

http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#float
http://www.w3.org/2001/XMLSchema#double
http://www.w3.org/2001/XMLSchema#gYear
http://www.w3.org/2001/XMLSchema#date
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Table 3. Definitions of the different types of scorers. The String Scorer uses both
the Levenshtein distance, to quickly find candidates, and bigrams, for a more accurate
scoring. All three scorers are partial functions whose result is undefined if no value is
found. Only String Scorers return scores < 1, as they can correct for typographical
errors in the input, while Numeric and Temporal Scorers are either undefined or return
the input number, respectively time interval, with a score of 1. Type casting and
conversion is omitted for brevity, e.g. in Fig. 1 the phrase “Philippines” is equated
to the language tagged label "Philippines"@en and the phrase “2007” to the year
2007^^xsd:gYear.

Type Scoring function dp(a)

String (arg maxb∈βp(a)
(ngram(a, b)), maxb∈βp(a)

(ngram(a, b)),

where βp(a) = {b ∈ Vp,c,k|lev(a, b) ≤ 2}, using n-gram
similarity [15] (ngram, n=2) and a Levenshtein-Automaton
[21] (lev)

Numeric (a, 1), if a ∈ [min(Dp,c,k), max(Dp,c,k)], otherwise undefined

Temporal (a, 1), if Tp,c,k ∩ τ(a) �= ∅, otherwise undefined,

Definition 5 (Match). A match m is represented formally by a pair (ρ, γ),
where ρ is the partial property scoring function, ρ : P → (0, 1] and γ is the
partial value scoring function, γ : P → (L ∪ U) × (0, 1].

3.3 Combining Matches to Constraints

The recursive combination process is used because (1) it favours longer phrases
over shorter ones, giving increased coverage of the question and (2) it favours
combination of phrases that are nearby in the question parse tree.

Definition 6 (Constraint). A constraint c is represented by a triple (G,ω, λ),
where:

– G is a set of SPARQL triple patterns and filters as defined in [20]
– ω is an optional order by modifier, ω ∈ ({ASC,DESC} × P ) ∪ {null}
– λ is an optional limit modifier, λ ∈ N

+ ∪ {null}
Constraints are based on three different criteria:

1. A Value Constraint can be applied to any component property to confine
it to an exact value, which can be a string, a number or a URI. It consists of
a single SPARQL triple pattern: cv = ({(?o, p, v), (?o, qb:DataSet, d), (?o, a,
qb:Observation)}, null, null)}, with p ∈ Pandv ∈ L ∪ U .

2. An Interval Constraint confines a value to a numeric or temporal interval.
Accordingly, it can only apply to a component property whose range is an
XSD numeric or temporal data type. It consists of a SPARQL triple pattern
and a filter: ci = ({?o p ?x, filter(?x > x1) AND (?x < x2)},null,null),
with p ∈ P , the lower limit x1 and an upper limit x2. Example:
({?o :refYear ?y, filter(year(?y)>=2007 AND year(?y)<=2008)},null,
null). Closed or half-bounded intervals are defined analogously.

http://www.w3.org/2001/XMLSchema#gYear
http://purl.org/linked-data/cube#Dataset
http://purl.org/linked-data/cube#Observation
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3. Top/Bottom n Constraints place an upper limit on the number of selected
cells. They consist of three parts: The order (ascending or descending), the
limit and the numeric component property whose values imply the order.
Formally, ct = (∅, (DESC, p), n), cb = (∅, (ASC, p), n)

To identify Value Constraints, each component property has a scorer
(Definition 4), which tries to find a value similar to an input phrase. For example,
“How much total aid was given to the regional FLEG programme in Mekong?”,
could refer to a dimension “programme” with a value of “FLEG” and a dimen-
sion “region” with a value of “Mekong”. Equally possible would be a dataset
description of “aid to Mekong” and a dimension “target” with a value of “FLEG
programme”. The other types of constraints are matched in the preprocessing
step because they are identified by certain keyphrases, such as “the 5 highest X”.

In the example question, “How much did the Philippines receive in the year
of 2007?”, there are multiple candidates for the number “2007”. The candidates
can be disambiguated using the property scoring function of the “year” node by
upward combination. As a match only holds the information collected from a
single node in the question parse tree, there is additional information needed to
represent a whole subtree. This extended representation is called a fragment and
holds: (1) multiple matches collected in the recursive merge and (2) constraints
extracted from fitting matches.

Definition 7 (Fragment). Formally, a fragment f is a pair (M,R), where M
is a set of matches (see Definition 5) and R is a set of constraints.

Algorithm 1 describes the process that combines the fragments of a list of
child nodes into the fragment for their parent node.

3.4 Execution

Algorithm 1 combines the fragments of child nodes to create a fragment for the
parent node. When this recursive process reaches the root node, Algorithm2
transforms the fragment that results from the successive combination up to that
point into a template (see Definition 8). All leftover value references whose prop-
erty has not been referenced yet over a certain score threshold are transformed
into additional Value Constraints. Other name and value references are dis-
carded. All constraints, as well as the aggregate, if available, are then used to
construct a SPARQL select query.

Definition 8 (Template). A template t is a tuple (R, a, α), where R is as
defined in Definition 7, a ∈ P is the answer property and α is an optional aggre-
gate function, α(X) ∈ {min(X),max(X),

∑
x∈X x, |X|,∑x∈X

x
|X| ,null}.

Next, the values of the answer properties are requested. If the set of answer prop-
erties is empty, the default measure of the dataset is used as an answer property
to determine the properties. Executing the SPARQL query on the target knowl-
edge base results in the set of answers requested by the user. The algorithm
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Algorithm 1. Fragment Combination
Input: A list of fragments F = {(M1, R1), . . . , (Mn, Rn)}, with Mi = (ρi, γi)
Output: The combined fragment f = (M, R)
R ← ∪n

i=1Ri;
P ′ ← (P \ δ(R)) ∩⋃n

i=1(dom(ρi) ∪⋃x∈dom(γi)
π1(x));

M ← {M1, . . . , Mn}};
foreach p′ ∈ P ′ do

mproperty ← arg max(ρ,γ)∈M′ ρ(p′);
mvalue ← arg max(ρ,γ)∈M′\{mproperty} γ(p′)];
g ←?o p π2(mvalue)(p).;
R ← R ∪ {({g}, null, null)};
M ← M \ {mproperty, mvalue};

return (M, R)

πi(t) is the projection on the i-th element of the tuple t. The domain dom(f) is the
set of all elements for which the (partial) function f is defined. δ(R) is the set of all
component properties that occur in at least one triple pattern in R.

implementation is publicly available under an open license at (link temporar-
ily removed for anonymity). The algorithm implementation is publicly available
under an open license at https://github.com/AKSW/cubeqa.

4 Evaluation

4.1 Research Questions

The goal of the evaluation was to obtain answers to the following research ques-
tions: Q1: Is CubeQA powerful enough to be practically useful on challenging
statistical questions? Q2: Is there a tendency towards either high precision or
recall? Q3: How do other RDCQA systems perform? Q4: What types of errors
occur? How frequently are they? What are the reasons?

4.2 Experimental Setup and Benchmark

As there was no existing benchmark for RDCQA, we created a benchmark based
on a statistical question corpus [12] and included it in the QALD-66 evaluation
challenge. We used the existing corpus and significantly extended it to 100 ques-
tions, forming the training set QALD6T3-train. While keeping a similar struc-
ture, we adapted it to 50 of the, at this time, 983 financial datasets of Linked-
Spending [13]. Chosen are the first 50 datasets that are manually confirmed as
English from a list of all datasets. The list was sorted in descending order by
their proportion of English labels (having at least 100 labels) as determined by
automatic language detection. The datasets contain in total 158 dimensions, 81
measures, 176 attributes, 950149 observations and 16359532 triples (Table 4).
6 http://www.sc.cit-ec.uni-bielefeld.de/qald/.

https://github.com/AKSW/cubeqa
http://www.sc.cit-ec.uni-bielefeld.de/qald/
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Algorithm 2. Fragment to Template Conversion.
Input: A fragment f = {(M, R)}, an optional aggregate function α identified in

preprocessing. The set of expected answer types E is defined in Table 4.
answerType(p) is defined by Table 2.

Output: A template t = (R′, a, α′)
R′ = R;
P ′ ← (P \ A \ δ(R));
foreach (ρ, γ) ∈ M ′ do

pmax = arg maxp∈(dom(γ)∩P ′)(π2(γ(p));

if (pmax �= null) ∧ (π2(γ(pmax)) ≤ θ) then
R′ ← R′ ∪ ({?o pmax π1(γ(pmax)).}, null, null);

A ← ⋃(ρ,γ)∈M) dom(ρ);

A′ ← {p ∈ A|answerType(p) ∈ E};
if A′ = ∅ then

a ← DEFAULT MEASURE;

else
a ← arg max(ρ,γ)∈M),p∈A′ ρ(p);

return (R′, a, α)

Using the same 50 datasets, the test set QALD6T3-test was created in
the same way, but with slightly less complex questions. The questions, cor-
rect SPARQL queries, correct answers and our evaluation results are available
online.7

QALD6T3 provides several challenges that are supported by the CubeQA
algorithm. These are implied aggregations, intervals, implied or differently ref-
erenced measures and numerical values that are contained in several compo-
nent properties. It also includes questions that require features not provided
by CubeQA, such as SPARQL subqueries. The performance of CubeQA on the
benchmark is measured as follows: Given C the correct set of resources and O
the output of the algorithm, we define precision p = |C|∩|O|

|O| , recall r = |C|∩|O|
|C|

and the F1-score F1 = 2 pr
p+r . The average global F1 score calculates p = 0 for

empty answers.

Results. Of the 100 questions, 82 resulted in a nonempty answer, with an average
precision of 0.401, a recall of 0.324 and an F1 score of 0.392. Expected Answer
Typing positively impacts the performance, as its removal results in a signifi-
cant decrease in all three scores. Due to the cube index, many questions can be
answered even if they do not specify their target dataset. With all the 50 datasets
as candidates, the performance drops even more than without using answer typ-
ing, but the index chooses the dataset correctly for the majority of the questions
(74 of 100). Answering the 100 questions on a PC with an Intel Core i5-3230M
CPU, hosting both the SPARQL endpoint and the system implementation, took

7 https://github.com/AKSW/cubeqa/blob/master/benchmark/.

https://github.com/AKSW/cubeqa/blob/master/benchmark/
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Table 4. Mapping m of a question word to a set of expected answer types E, along
with the frequency of each question word in the benchmark. When the question word is
unknown or not found, or the unspecific “what” is used, all 6 answer types are possible.

Question word Expected answer type f

What Uncountable, countable, count, temporal, location, entity 35

How much Uncountable 33

Which Temporal, location, entity 19

How many Countable, count 6

When Temporal 4

None, other Uncountable, countable, count, temporal, location, entity 3

Total 100

87.45 s, 63.29 s and 63.33 s on three consecutive runs with preexisting index
structures.8 Table 5 shows the runtime distributions for the core tasks. With-
out preexisting index structures, the runs took 228.11 s, 228.77 s and 224.73 s,
respectively.

4.3 Research Question Summary

A brief summary of the initial research questions is as follows: Q1: CubeQA is
sufficiently powerful to be applied on challenging questions over statistical data
and we believe it will be a strong baseline for future research. Q2: Precision
is higher than recall, similar to general SQA systems, on QALD6T3-train but
similar on QALD6T3-test. Q3: CubeQA achieves a global F1 score of 44 %,
surpassed by QA3 with 53 %, using a template-base algorithm. Q4: The most
common cause for problems is ambiguity, followed by the lexical gap and query
structure.

4.4 Discussion

Comparison. We believe that CubeQA will be a strong baseline in this new
research subfield. As QALD6T3 was launched prior to submitting this publica-
tion to attract further research, two additional systems emerged: the yet unpub-
lished QA3 RDCQA system and the Sparklis [8] query builder (see Table 6).
A query builder lets the user construct queries visually by selecting and combin-
ing SPARQL features and knowledge base resources. It enables users to create
SPARQL queries and, if they build those queries correctly, achieves high accu-
racies. As such it occupies a middle ground, both in accuracy and usability,
between RDCQA and manually creating SPARQL queries. QA3 achieves a 9 %

8 The higher initial time is assumed to be caused by cache warmup both in the system
and the SPARQL endpoint.
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Table 5. Runtimes and error causes.

task t(ms)

SPARQL 25489

scoring 23326

index lookup 16070

parsing 5066

detectors 466

answer typing 13

total 61673

(a) Runtimes of the core tasks on QALD6T3-
train with preexisting cache structures. SPARQL
querying, scoring and index lookup are intersect-
ing and not all tasks are measured, so that the
times do not add up to the total.

error cause n

ambiguity 30

lexical gap 18

query structure 17

unknown 1

no error 34

total errors 66

(b) Categorization of errors from
the different benchmark questions
(at most one error per question),
including the categories automat-
ically excluded before the evalua-
tion.

higher f-score than CubeQA but due to its purely template-base approach, it is
unclear how it performs on open domain questions.

Limitations. CubeQA does not support query structures that require SPARQL
subqueries, express negations of facts or unions of concepts. Ambiguities and
lexical gaps are hard challenges that are not solved yet [14]. Nevertheless, they
occur in almost every question and must be adressed by every SQA system to
avoid massive penalties to precision and recall. Table 5 categorizes the different
errors that prevented CubeQA from returning a correct result to a question.

The most common cause is ambiguity, which mainly results from a high num-
ber of similar resources or equal numbers in the observation values. In benchmark
question 86, “How much was budgeted for general services for the Office of the
President of Sierra Leone in 2013?”, two different properties contain the literal
“Office of the President”. Because only the property value and not the property
name is referenced, the algorithm cannot determine which property is correct.
SQA systems like TBSL [26] resolve ambiguity by template scoring, so that the
user chooses among the top n, where candidate combinations are ranked high-
est that maximize textual and semantic relatedness between the candidates [22].
But this approach is not applicable to RDCQA because of the RDC meta model,
where component properties are not directly connected.

Instead, CubeQA relies on references consisting of a name reference as well
as a value reference, as in “the year 2008”, where the name-value pair with the
maximal score product of the name reference and the value reference is chosen. In
case such a two-part reference does not occur, it is alleviated by giving temporal
dimensions priority to others. For example, “2008” gets mapped to the year, if
it exists, rather than the more improbable measurement value.
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Table 6. QALD-6T3 performance of, indicated by average precision (over defined
values), recall, and global F1-score, rounded to 2 decimal places. The training set is
used for evaluation, as it contains 100 harder questions compared to 50 in the test
set. The correct target RDC was predefined for the training set, as the cube index is
evaluated separately, with 74 of 100 correct choices.

Algorithm Benchmark ∅p ∅r ∅F1

CubeQA Train 0.40 0.32 0.32

QA3 Test 0.59 0.62 0.53

CubeQA Test 0.49 0.41 0.44

Sparklis Test 0.96 0.94 0.95

The second most common cause the lexical gap, where a reference could not
be mapped to an entity due to the differences in surface forms. It is caused,
among others, by different capitalization, typing errors, word transpositions
(“extended amount”, “amount extended”) and different word forms (“commit-
ted”, “commitments”). Another issue with the lexical gap is that a measurement
can be referenced using a quantity reference (“amount”), a unit (“How many
dollars are given”), or the type (“aid”), of which only the first one guarantees
a match. Thus, CubeQA matches the range of a property as well as a its label.
The RDC vocabulary provides sdmx-attribute:unitMeasure to specify units of
measurement, but it does not support multiple measures so that the fallback has
the same effect. In case of future vocabulary specification updates, we plan to
integrate measurement units into our approach.

All of those, except typing errors, occur in the benchmark. As these men-
tioned causes occur in document retrieval and Web search as well, full text
indexes have been developed that robustly handle those problems. The employed
Lucene index cannot overcome the lexical gap in some cases, which are not recog-
nized by the stemmer and where the edit distance is too large for the fuzzy index
as well. Sometimes a concept is implicitly required but there is no explicit refer-
ence at all. Implicit references are part of future work and include aggregates.

5 Related Work

SQA in general is an active and established area of research with too many sys-
tems to cite individually but surveys [2,6,9,14,17] give a qualitative overview
of the field. Also, evaluation campaigns present quantitative comparisons with
benchmarks on either general tasks like QALD [5] or specialized tasks like
BioASQ [25]. RDCQA has not existed until recently, but non-semantic QA is
implemented by Wolfram—Alpha, which queries several structured sources using
the computational platform Mathematica [27], but the source code and algorithm
are not published. We inspired the RDCQA sub-field by discussing RDCs in rela-
tion to SQA and by categorizing of a statistical question corpus [12]. Next, we

http://purl.org/linked-data/sdmx/2009/attribute#unitMeasure
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developed CubeQA and QALD6-T3 to stimulate further research, which led to
the development of QA3 and Sparklis (see Sect. 4.4).

CubeQA uses time intervals for handling dates, similar to the system in [24]
that uses the Clinical Narrative Temporal Relation Ontology (CNTRO) to incor-
porate the time dimension in answering clinical questions. The ontology is based
on Allen’s Interval Based Temporal Logic [1] but it represents time points as
well. The framework includes a reasoner for time inference, for example based
on the transitivity of the before and after relations. The time dimension is used
there to identify the direction of possible causality between different events.

Furthermore, CubeQA generates query templates recursively, which is simi-
larly employed by Intui2 [7], which uses DBpedia and is based on synfragments,
minimal parse subtrees of a question, that are combined based on syntactic and
semantic characteristics to create the final query.

The motivation to develop RDCQA algorithms and their benefit rises with
the quantity, quality and significance of available RDCs. On the flipside, we
expect that the emergence and improvement of RDCQA algorithms increases
the value of RDCs. Because of this interdependence, we summarize efforts to
improve the quality of, create and publish RDF in general and RDCs in partic-
ular: RDCs are usually created by transforming databases or other structured
data sources using either custom software or mapping languages like R2RML9

and SML [23]. Eurostat—Linked Data10 transforms tabular data of Eurostat11,
providing statistics for comparing the European countries and regions. Linked-
Spending [13] uses the OpenSpending JSON API to provide finance data from
countries around the world. The most widely used statistical data format is
SDMX (Statistical Data and Metadata eXchange), which can be transformed
to RDCs using SDMX-ML [4]. A systematic review of Linked Data quality [28]
provides a qualitative analysis over established approaches, tools and metrics.

6 Conclusions and Future Work

We introduce RDCQA and design the CubeQA algorithm, provide a benchmark
based on real data, and evaluate the results. In future work, we plan to continue
contributing to the yearly QALD evaluation campaign by providing progressively
more challenging benchmarks. The next iteration of CubeQA will answer ques-
tions that require the consolidation of several RDCs. We will also investigate how
to integrate RDCQA techniques with SQA frameworks, such as OpenQA [18], so
that all-purpose systems can also answer questions on RDCs. On the flipside, we
also plan to integrate general SQA into RDCQA, to answer questions on RDCs
that require world knowledge. We also identified the following improvements:

– Implement selection filters as logical formula of constraints instead of flat sets,
including negations and unions.

9 https://www.w3.org/TR/r2rml.
10 http://eurostat.linked-statistics.org/.
11 http://ec.europa.eu/eurostat.

https://www.w3.org/TR/r2rml
http://eurostat.linked-statistics.org/
http://ec.europa.eu/eurostat
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– Support SPARQL subqueries to handle nested information dependencies.
– Support languages other than English using language detection components

as well as fitting parsers, indexes and preprocessing templates.
– Incorporate measurement units if the RDC vocabulary adds support for them

for multiple measures. For elaborate phrase patterns, like “How many people
live in” for “population”, there are pattern libraries like BOA [10] which need
to be adapted to statistical data by retraining on a comprehensive statistical
question corpus.

Overall, we believe to have opened a novel research subfield within SQA, which
will increase in importance due to the rise of both the volume of statistical data
and the usage of QA approaches in everyday life.

Acknowledgment. This work was supported by a grant from the EU H2020 Frame-
work Programme provided for the project HOBBIT (GA no. 688227).
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Abstract. During recent years, more and more data has been published
as native RDF datasets. In this setup, both the size of the datasets and
the need to process aggregate queries represent challenges for standard
SPARQL query processing techniques. To overcome these limitations,
materialized views can be created and used as a source of precomputed
partial results during query processing. However, materialized view tech-
niques as proposed for relational databases do not support RDF specifics,
such as incompleteness and the need to support implicit (derived) infor-
mation. To overcome these challenges, this paper proposes MARVEL
(MAterialized Rdf Views with Entailment and incompLetness). The
approach consists of a view selection algorithm based on an associated
RDF-specific cost model, a view definition syntax, and an algorithm for
rewriting SPARQL queries using materialized RDF views. The exper-
imental evaluation shows that MARVEL can improve query response
time by more than an order of magnitude while effectively handling RDF
specifics.

1 Introduction

The growing popularity of the Semantic Web encourages data providers to
publish RDF data as Linked Open Data, freely accessible, and queryable via
SPARQL endpoints [25]. Some of these datasets consist of billions of triples.
In a business use case, the data provided by these sources can be applied in
the context of On-Line Analytical Processing (OLAP) on RDF data [5] or pro-
vide valuable insight when combined with internal (production) data and help
facilitate well-informed decisions by non-expert users [1].

In this context, new requirements and challenges for RDF analytics emerge.
Traditionally, OLAP on RDF data was done by extracting multidimensional data
from the Semantic Web and inserting it into relational data warehouses [19]. This
approach, however, is not applicable to autonomous and highly volatile data on
the Web, since changes in the sources may lead to changes in the structure of the
data warehouse (new tables or columns might have to be created) and will impact
the entire Extract-Transform-Load process that needs to reflect the changes.
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 341–359, 2016.
DOI: 10.1007/978-3-319-46523-4 21
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In comparison to relational systems, native RDF systems are better at handling
the graph-structured RDF model and other RDF specifics. For example, RDF
systems support triples with blank nodes (triples with unknown components)
whereas relational systems require all attributes to either have some value or
null. Additionally, RDF systems support entailment, i.e., new information can be
derived from the data using RDF semantics while standard relational databases
are limited to explicit data.

Processing analytical queries in the context of Linked Data and federations
of SPARQL endpoints has been studied in [15,16]. However, performing aggre-
gate queries on large graphs in SPARQL endpoints is costly, especially if RDF
specifics need to be taken into account. Thus, triple stores need to employ spe-
cial techniques to speed up aggregate query execution. One of these techniques
is to use materialized views – named queries whose results are physically stored
in the system. These aggregated query results can then be used for answering
subsequent analytical queries. Materialized views are typically much smaller in
size than the original data and can be processed faster.

In this paper, we consider the problem of using materialized views in the
form of RDF graphs to speed up analytical SPARQL queries. Our approach
(MARVEL) focuses on the issues of selecting RDF views for materialization
and rewriting SPARQL aggregate queries using these views. In particular, the
contributions of this paper are:

– A cost model and an algorithm for selecting an appropriate set of views to
materialize in consideration of RDF specifics

– A SPARQL syntax for defining aggregate views
– An algorithm for rewriting SPARQL queries using materialized RDF views

Our experimental evaluation shows that our techniques lead to gains in perfor-
mance of up to an order of magnitude.

The remainder of this paper is structured as follows. Section 2 discusses
related work. Section 3 introduces the used RDF and SPARQL notation and
describes the representation of multidimensional data in RDF. Section 4 spec-
ifies the cost model for view selection, and Sect. 5 describes query rewriting.
We then evaluate MARVEL in Sect. 6, and Sect. 7 concludes the paper with an
outlook to future work.

2 Related Work

Answering queries using views is a complex problem that has been extensively
studied in the context of relational databases [13]. However, as discussed in
[13,22], aggregate queries add additional complexity to the problem.

In relational systems, the literature proposes semantic approaches for rewrit-
ing queries [22] as well as syntactic transformations [11]. However, SPARQL
query rewriting is more complex. The results for views defined as SELECT
queries represent solutions in tabular form, so that the solutions need to be
converted afterwards into triples for further storage, thus making a view
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definition in SPARQL more complex and precluding view expansion (replacing
the view by its definition).

Another problem in this context is to decide which views to materialize in
order to minimize the average response time for a query. [14] addresses this
problem in relational systems by proposing a cost model leading to a trade-
off between space consumption and query response time for an arbitrary set
of queries. [23] provides a method to generate views for a given set of select-
project-join queries in a data warehouse by detecting and exploiting common
sub-expressions in a set of queries. [2] further optimizes the view selection by
automatically selecting an appropriate set of views based on the query workload
and view materialization costs. However, these approaches have been developed
in the context of relational systems and, therefore, do not take into account RDF
specifics such as entailment, the different data organization (triples vs. tuples),
the graph-like structure of the stored data, etc.

The literature proposes some approaches for answering SPARQL queries
using views. [4] proposes a system that analyzes whether query execution can
be sped up by using precomputed partial results for conjunctive queries. The
system also reduces the number of joins between tables of a back-end relational
database system. While [4] examines core system improvements, [18] considers
SPARQL query rewriting algorithms over a number of virtual SPARQL views.
The algorithm proposed in [18] also removes redundant triple patterns coming
from the same view and eliminates rewritings with empty results. Unlike [18],
[9] examines materialized views. Based on a cost model and a set of user defined
queries, [9] proposes an algorithm to identify a set of candidate views for materi-
alization that also account for implicit triples. However, these approaches [4,9,18]
focus on conjunctive queries only. The complexity of loosing the multiplicity on
grouping attributes (by grouping on attribute X, we loose the multiplicity of X
in data) and aggregating other attributes is not addressed by these solutions.

The performance gain of RDF aggregate views has been empirically evaluated
in [17], where views are constructed manually and fully match the predefined
set of queries. Hence, the paper empirically evaluates the performance gain of
RDF views but does not propose any algorithm for query rewriting and view
selection.

Algorithms that use the materialized result of an RDF analytical query to
compute the answer to a subsequent query are proposed in [3]. The answer is
computed based on the intermediate results of the original analytical query.
However, the approach does not propose any algorithm for view selection. It is
applicable for the subsequent queries and not to an arbitrary set of queries.

Although several approaches consider answering queries over RDF views
[4,9,18], none of them considers analytical queries and aggregation. In this paper,
we address this problem in consideration of RDF specifics such as entailment
and data organization in the form of triples, and taking into account the graph
structure of the stored data. In particular, this paper proposes techniques for
cost-based selection of materialized views for aggregate queries, query rewriting
techniques, and a syntax for defining such views.
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3 RDF Graphs and Aggregate Queries

The notation we use in this paper follows [21,25] and is based on three disjoint
sets: blank nodes B, literals L, and IRIs I (together BLI). An RDF triple
(s, p, o) ∈ BI × I × BLI connects a subject s through property p to object o.
An RDF dataset (G) consists of a finite set of triples and is often represented
as a graph. Queries are based on graph patterns that are matched against G.
A Basic Graph Pattern (BGP) consists of a set of triple patterns of the form
(IV )×(IV )×(LIV ), where V (V ∩BLI = ∅) is a set of query variables. Variable
names begin with a question mark symbol, e.g., ?x. In graph notation, a BGP
can be represented as a directed labeled multi-graph whose nodes N correspond
to subjects and objects in the triple patterns. The set of edges E contains one
edge for each triple pattern and the property as its label. In data analytics, graph
patterns have a special, rooted pattern [5]. A BGP is rooted in node n ∈ N iff
any node x ∈ N is reachable from n following directed edges in the graph.

The most common SPARQL [25] aggregate queries conform to the form
SELECT RD WHERE GP GROUP BY GRP, where RD is the result descrip-
tion based on a subset of variables in the graph pattern GP. GP defines a BGP
and optionally uses functions, such as assignment (e.g., BIND) and constraints
(e.g., FILTER). GRP defines a set of grouping variables, whereas RD contains
selection description variables as well as aggregation variables with correspond-
ing aggregate functions. In this paper, we consider the standard aggregate func-
tions COUNT, SUM, AVG, MIN, and MAX.

Data that SPARQL analytical queries are typically evaluated on can be rep-
resented in an n-dimensional space, called a data cube. The data cube is defined
by dimensions (perspectives used to analyze the data) and observations (facts).
Dimensions are structured in hierarchies to allow analyses at different aggrega-
tion levels. Hierarchy level instances are called members. Observations (cells of
a data cube) have associated values called measures, which can be aggregated.

Building Locality Region
vc:locality vc:region

Report 
Date Month Year

skos:narrower

Observation Data 658.9
qb:observation gol:utilityConsumption

gol:report
DateTime

gol:refBuilding

skos:narrower

Fig. 1. Representing observations in RDF

An example of data with hier-
archical dimensions is the utilities
consumption data from electricity
and gas meters for Scottish Gov-
ernment buildings1 enhanced in the
Date dimension. The data is avail-
able as energy usage over a daily
period. Figure 1 sketches the data
with two hierarchical dimensions: Building, Locality, and Region are hierarchy
levels in the Geography dimension, Report Date, Month, and Year are hier-
archy levels in the Date dimension, and Data represents an observation with
the utility consumption measure. A dataset with such observations is stored in a
SPARQL endpoint to enable analytical querying with grouping on different hier-
archy levels. For example, the following query computes the daily consumption
of electricity in each city in September 2015:

1 http://cofog01.data.scotland.gov.uk/id/dataset/golspie/utilities.

http://cofog01.data.scotland.gov.uk/id/dataset/golspie/utilities
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SELECT ?dt ?plc (SUM(?v) as ?value) WHERE {

?slc gol:refBuilding ?bld ; gol:reportDateTime ?tm ; qb:observation ?ob .

?ob gol:utilityConsumption ?v . ?bld org: siteAddress/vc:adr/vc:locality ?plc .

?mn skos:narrower ?tm . ?mn gol:value ?mVal . FILTER (?mVal = 'September 2015')

} GROUP BY ?tm ?plc

Listing 1.1. Example query with grouping and aggregation

Based on the multidimensional data model, we can define traditional OLAP
operations over the data such as roll-up, drill-down, slicing, and dicing. Intu-
itively, the slice operator fixes a single value for a level of a dimension to define
a subcube with one dimension less. Dice uses a Boolean condition and returns a
new cube containing only the cells satisfying the condition. Roll-up aggregates
measure values at a coarser granularity for a given dimension while drill-down
disaggregates previously summarized data to a child level in order to obtain mea-
sure values at a finer granularity. In SPARQL, slice and dice can be achieved by
adding a constraint function (like FILTER) to the graph pattern, while roll-up
and drill-down can be achieved by removing/adding connected triple patterns
to the existing graph pattern of the query.

4 View Materialization in MARVEL

A high number of triples needs to be processed for evaluating OLAP queries on a
dataset. This imposes high execution costs, especially when the amount of data
increases. To enable scalable processing, we propose RDF-specific techniques to
select a set of materialized views that can be used to evaluate queries more effi-
ciently. We define a materialized view as a named graph described by a query
whose results are physically stored in a triple store. Given a query, the system
checks whether the query can be answered based on the available materialized
views. As materialized views are typically smaller than the original/raw data,
this can yield a significant performance boost. Precalculating all possible aggre-
gations over all dimension levels is usually infeasible as it requires much more
space than the raw data [24]. Thus, it is important to find an appropriate set of
materialized views to minimize the total query response time.

4.1 Creating Materialized RDF Views

Views used for rewriting conjunctive queries can be defined by CONSTRUCT
queries with WHERE clauses [18]. Views defining queries for aggregate views are
more complex since these views group and aggregate the original data. Grouping
and aggregation are achieved by using SELECT queries. However, SELECT
queries return data in a tabular format, not triples. Thus, the CONSTRUCT
clause needs to define a new graph structure and triples for the obtained results.
As only the combination of values for variables in the GROUP BY clause of a
SELECT query is unique, we can use these values to construct the new triples.

Listing 1.2 gives an example of such a query, where the SELECT query aggre-
gates utility consumptions by City and Date. We use the IRI and STRAFTER
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functions to create a resource identifier id based on the unique combination of
City and Date. The CONSTRUCT clause then creates triples by connecting the
id to the resulting aggregate and grouping values. The algorithm for constructing
such view queries is similar to the algorithm described in [17].
CONSTRUCT { ?id gol:reportDate ?date ; gol:reportLocality ?vCity ;

gol:utilityConsumption ?value . } WHERE {
SELECT ?id ?date ?vCity (SUM(?cons) as ?value)
WHERE { ?fact gol:refBuilding ?bld ; gol:reportDateTime ?date ;
qb:observation ?data . ?data gol:utilityConsumption ?cons .
?bld org:siteAddress/vc:adr/vc:locality ?vCity .
BIND(IRI(’http ://ex.org/id#’, CONCAT(STRAFTER(STR(?dt), ’http://’),
STRAFTER(STR(?vCity), ’http :// ’))) AS ?id). } GROUP BY ?id ?date ?vCity }

Listing 1.2. Query to construct materialized view

4.2 Data Cube Lattice

To represent dependencies between views, we use the notion of a data cube lat-
tice. The data cube lattice is, essentially, a schema of a data cube with connected
nodes, where a node represents an aggregation by a given combination of dimen-
sions. Nodes are connected if a node j can be computed from another node i and
the number of grouping attributes of i corresponds to the number of attributes
of j plus one. A view is defined by a query with the same grouping as in the
corresponding node. For example, in case of 3 dimensions, Part (P), Customer
(C ) and Date (D), possible nodes (grouping combinations) are PCD, PC, PD,
CD, P, C, D and All (all values are grouped into one group). In our example, the
view corresponding to node PC can be computed from the view corresponding
to node PCD. We denote this dependence relation as PC � PCD and refer to
view PCD as the ancestor of view PC. In the presence of dimension hierarchies,
the total number of different lattice nodes is

∏k
i=1(hi + 1), where hi represents

the number of hierarchy levels in dimension i and (hi + 1) accounts for the top
level All.

We use the data cube lattice since it formalizes which views (nodes) can be
used to evaluate a particular query. Given a query grouping (GROUP BY ), the
lattice node with the exact same grouping (and its ancestors) can be used. Since
these views are smaller in size than the raw data, calculating the answer from the
views will be cheaper than calculating it from the raw data. Thus, to answer user
queries we need to find an appropriate set of views so that the multidimensional
queries posed against the data can be mapped to one of these views.

The data cube lattice has originally been proposed for selecting aggregate
views in a relational framework [14]. This framework considers data that is com-
plete and complies with a predefined schema, and therefore cannot be directly
applied to RDF graphs that lack these characteristics. Additionally, RDF data
may be incomplete. For instance, the canonicalized Ontology Infobox dataset
from the DBpedia Download 3.8 contains birth place information for 266,205
persons (either as a country, a city or village, or both). However, out of 266,205
records, 16,351 records contain information only about the country of birth.
Thus, the information available in the source may not contain the information
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that holds in the world (Open World Assumption) and, therefore, should ide-
ally be present in the source. Accordingly, an incomplete data source is defined
as a pair Ω = (Ga, Gi) of two graphs, where Ga ⊆ Gi. Ga corresponds to the
available graph and Gi is the ideal graph [6]. Thus, a view is incomplete if its
defining query over the available graph does not produce the same results as the
defining query over the ideal graph: [qv]Ga �= [qv]Gi

.
Such incomplete views may not be used to answer queries involving the group-

ing over a higher hierarchy level than in the view. In the above example, the
aggregation over the city of birth is incomplete and the city level view, due to
incompleteness, cannot be used to roll-up to the country level even though the
relationship City → Country between the levels holds. Instead, the aggregation
over the country level needs to be computed from the raw data taking into
account the derived information that connects cities of birth to the countries.

In summary, we need to account for the graph-like structure of the stored
data, presence of implicit knowledge in data, and incompleteness of views for
RDF data cubes. Therefore, we propose MARVEL – a novel aggregate view selec-
tion approach that, unlike earlier approaches, supports RDF-specific require-
ments.

4.3 MARVEL Cost Model

MARVEL assumes that RDF data are stored as triples. Thus, the cost of answer-
ing an aggregate SPARQL query in a generic RDF store is defined as the num-
ber of triples contained in the materialized view used to answer the query. This
cost model is simple and works for the general case. More complex models that
account for algorithms and auxiliary structures of a particular triple store are
certainly possible.

The number of triples to represent an observation in an RDF view is (n + m)
where n is the number of dimensions and m is the number of measures. Thus,
the size of a view w is equal to Size(w) = (n + m) ∗ N , where N is the number
of observations. This number is used to calculate the benefit of materializing
the view. Note that the size of w serves as the cost of v if v is computed from
w : Cost(v) = Size(w). View sizes can be estimated using VoID statistics and
cardinality estimation techniques [12], using a small representative subset and,
in some cases, with COUNT queries.

Let Bw be the benefit of view w. For every view v such that v � w the
benefit of view w relative to v is calculated as Bw,v = (Cost(v) − Size(w)) if
Cost(v) > Size(w) and Bw,v = 0 otherwise. The difference between the current
cost of view v and the possible cost of v (if the materialized view w is used to
compute view v) contributes to the benefit of view w. We sum up the benefits for
all appropriate views to receive the full benefit of view w : Bw =

∑
Bw,vi

for all i
such that vi � w. Note that this value of benefit is absolute. If the storage space
is limited, the benefit of each view per unit space can be considered instead. In
this case, the value of the benefit is calculated by dividing the absolute benefit
of the view by its size: B

′
w = Bw

Size(w) .
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In addition, our cost model needs to account for RDF specifics, such as
incomplete views and complex and indirect hierarchies. We use an annotated
QB4OLAP schema [7] to describe the dataset and extend it with information
about the completeness of levels, the patterns for defining hierarchy steps (which
predicates are used), the types of hierarchy levels, etc. This schema reflects the
source data structure and does not require adding any triples to the graph. The
schema is also used to define aggregate queries for the view selection process
(Sect. 4.5). We chose QB4OLAP since unlike alternatives, such as AnS [5] and QB
(http://www.w3.org/TR/vocab-data-cube/), QB4OLAP allows to define mul-
tidimensional concepts such as dimensions, levels, members, roll-up relations,
complex hierarchies (e.g., ragged, recursive), etc.

For example, for a birth place dimension we can specify that the roll-up to
the Country level should be calculated from both the City and the Person levels
since for some people we might only know the birth country, whereas for others
we know the city. When a hierarchy level is computed from several ancestor
levels, we say that the view corresponding to this level should be calculated
from a set of views (to avoid double-counting in such cases, MARVEL uses the
MINUS statement). We denote this dependence relation as w � {vi, . . . , vn},
where w is the current view and {vi, . . . , vn} are the ancestor views. In general,
we can distinguish the following roll-up cases:

– Single path roll-up: a view w can be derived from any of the views v1, . . . , vn,
i.e., ∃w, v1, . . . , vn such that w � vi and vi ⊀ vj for i, j = {1, . . . , n}

– Multiple path roll-up: a view w can be derived from the union of views v1∪
· · · ∪ vn while deriving w from any single vi will be incomplete: ∃w, v1, . . . , vn
such that w � {vi, . . . , vn}, w ⊀ vi, and vi ⊀ vj for i, j = {1, . . . , n}

However, before selecting the views to materialize we should take into account
implicit triples since they are considered to be part of the graph.

4.4 RDF Entailment

Accounting for implicit triples in views is necessary for returning a complete
answer. The W3C RDF Recommendation (http://www.w3.org/RDF/) defines
a number of entailment patterns which lead to deriving implicit triples from RDF
datasets. RDF Schema (RDFS) entailment patterns are particularly interesting
since RDFS encodes the domain semantics.

Aggregate queries are designed to run only on available correct data; comput-
ing the sum over a set of unknown values, for instance, would not yield any useful
results. Hence, in this paper we focus on deriving implicit information based on
existing data and specified semantics only. Deriving information unknown due
to the Open World Assumption or adding missing information using logical rules
are orthogonal problems that are difficult to solve in general [8] and therefore
beyond the scope of this paper.

There are two main methods for processing queries when considering RDF
entailment. In the dataset saturation approach, all implicit triples are material-

http://www.w3.org/TR/vocab-data-cube/
http://www.w3.org/RDF/
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ized and added to the dataset. While requiring more space and complex mainte-
nance, this method benefits from applying plain query evaluation techniques to
compute the answer. Query reformulation, on the other hand, leaves the dataset
unchanged but reformulates a query to a union of queries and increases the
overhead during query evaluation.

MARVEL uses the RDFS entailment regime during view materialization. The
system reformulates queries to materialize the complete answer of a view, which
allows us to leave a dataset unchanged but still account for implicit triples in
query answers. Taking into account that the evaluation of the view query takes
place once and the results are reused for other queries, we believe that this
overhead is justified.

4.5 MARVEL View Selection Algorithm

Given the open nature of SPARQL endpoints, we assume that all groupings
in user queries are equally likely. Algorithm 1 outlines the method for selecting
materialized views in MARVEL; the goal is to materialize N views with the
maximum benefit, regardless of their size.

Input: Set of views W , cube schema S, number of needed views N
Output: Selected views W

′

1 W
′
= ∅ -- set of selected views ;

2 while |W ′ | ≤ N do
3 RecalculateViewCosts(W) ;
4 {V × B} = ∅ -- set of views together with the benefit ;
5 foreach view w ∈ W do
6 {V × B} = {V × B}∪(w, CalculateBenefit(w)) ;

7 foreach {w1...wn} for which ∃v such that v � {w1...wn} (according to S) do
8 {V × B} = {V × B}∪ ({w1...wn}, CalculateBenefit({w1...wn})) ;

9 Select (set of) views w from {V × B} for which Bw is MAX and

|w| ≤ (N − |W ′ |);
10 W

′
= W

′ ∪ w ; W = W \ w ;

11 return W
′

;

Algorithm 1. Algorithm for selecting views to materialize in MARVEL

Given all views as candidates, we start by assigning each view initial costs
corresponding to the size of the original dataset (line 3). View costs are recalcu-
lated in each iteration to take previously selected view(s) into account. Then, we
compute the benefit of a candidate view for the cases when it is used to derive a
full answer (single path roll-up) to another view in the cube lattice (line 6). The
benefit of the candidate view is computed according to the cost model defined in
Sect. 4.3. The same algorithm is applied when a view should be computed from
a set of views (multiple path roll-up – line 8). In these cases, all the views in the
set are considered together.
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Having calculated the benefit of the views, the algorithm selects the view with
the maximum benefit and adds it to the set of views proposed for materialization.
This process is repeated until we have identified N views.

5 Query Rewriting in MARVEL

There are several aspects that complicate the problem of rewriting queries over
SQL aggregate views. First, in SPARQL a user query and a view definition may
use different variables to refer to the same entity. Thus, the query rewriting
algorithms require variable mapping to rewrite a query. A variable mapping
maps elements of a triple pattern in the BGP of the view to the same elements
of a triple pattern in the BGP of the query. Second, the algorithms need to
match the new graph structure that is formed by the CONSTRUCT query of
the view to the graph patterns of the user query and possibly aggregate and
group these data anew. Third, complex and indirect hierarchies present in RDF
data complicate query rewriting and need to be taken into consideration.

The rewriting algorithms proposed in [9,18] target conjunctive queries and
do not consider grouping and aggregation of data. Therefore, we built upon
these algorithms and developed an algorithm to rewrite aggregate queries that
identifies the views which may be used for query rewriting and selects the one
with the least computational cost.

For ease of explanation, we split the algorithm used in MARVEL for
aggregate query rewriting using views into two parts: an algorithm for iden-
tifying the best view for rewriting (Algorithm 2) and a query rewriting
algorithm (Algorithm 3). In the algorithms, we need to look for dimension
roll-up paths (RUPs), i.e., path-shaped joins of triple patterns of the form
{(root, p1, o1), (s2, p2, o2), . . . , (sn, pn, d)} where root is the root of the BGP,
px is a predicate from the set of hierarchy steps defined for hierarchies in a
cube schema, and triple patterns in the path are joined by subject and object
values, e.g., ox−1 = sx. We denote such a RUP as δpdim

(di) where pdim is
a predicate connecting the root variable to the first variable in the roll-up
path and di represents the last variable in the path. These algorithms use
γ(aggN ) and γ(gN ) to denote sets of triple patterns in the CONSTRUCT clause
CnPtrn {(s, pVC1, g1), . . . , (s, p

V
Cn, gn), (s, pVCm, aggm), . . . , (s, pVCk, aggk)} describ-

ing the results of aggregation, e.g., (s, pVCx, aggx), and grouping, e.g., (s, pVCx, gx).
The first step in Algorithm 2 is to replace all literals and IRIs in the user query

with variables and corresponding FILTER statements (line 2): (?s, p,#o) →
(?s, p, ?o) . F ILTER(?o = #o). We do this to make graph patterns of views
and queries more compatible with each other, since the graph patterns in the
aggregated views should not contain literals. This may also potentially increase
the number of candidate views since we may now use the views grouping by the
hierarchy level of the replaced literal and then apply restrictions imposed by the
FILTER statement.

To make the user query and the view query more compatible, we rename
all variable names in the user query to the corresponding variable names in a
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Input: Set of materialized views MV , query Q, data cube schema S
Output: Selected view w

1 W = ∅ -- Set of candidate views ;
2 Q = ReplaceLiteralsAndURI(Q) ;
3 foreach v ∈ MV do
4 Q = RenameV ariables(Q, v) ;

5 {dQ
1 , . . . dQ

n } = FindMinimalRUP (Q) ;
6 {dv

1 , . . . d
v
n} = FindMinimalRUP (v) ;

7 let {hlvl(d1)
Q . . . hlvl(dn)Q} be a set of hierarchy levels of Q defined in S ;

8 let {hlvl(d1)
v . . . hlvl(dm)v} be a set of hierarchy levels of v defined in S ;

9 aggQ = {ϕ(o1), ..., ϕ(on)} -- All aggregate expressions in Q ;
10 aggv = {ϕ(o1), ..., ϕ(om)} -- All aggregate expressions in v ;

11 if aggQ ⊆ aggv and ({hlvl(d1)
Q . . . hlvl(dn)Q} � {hlvl(d1)

v . . . hlvl(dm)v})

such that hlvl(di)
Q � hlvl(di)

v for all i then
12 W = W ∪ v;

13 return w ∈ W with minimal costs ;

Algorithm 2. Algorithm for selecting a candidate view

view (line 4). We start from the root variable and replace all occurrences of this
variable name in the user query with the name that is used in the view query.
We then continue renaming variables that are directly connected to the previ-
ously renamed variables. We continue until we have renamed all corresponding
variables in the user query.

Afterwards, for each dimension of the query graph pattern we define the
appropriate roll-up path that the candidate view should have (lines 5–6). This
path depends on the conditions (FILTER statements) and/or grouping related
to the corresponding hierarchy and is the minimum of both; we take the roll-up
paths to variables in FILTER and GROUP BY for the same dimension and keep
only the triple patterns that are the same in both – common RUP. For example,
if the query groups by regions of a country but the FILTER statement restricts
the returned values to only some cities (Region � City), the required level of
the hierarchy in the view should not be higher than the City level.

Then, we identify the hierarchy levels for all dimensions in the query and all
dimensions in a view and compare them. We check that the hierarchy levels of
all dimensions defined in the view do not exceed the needed hierarchy levels of
the query and that the set of aggregate expressions defined in a view may be
used to compute the aggregations defined in the query. The views complying
with these conditions are added to the set of candidate views (line 12). Out of
these views we select one with the least cost for answering the query (line 13).

Let us consider an example. Given the materialized view described in
Listing 1.2 and the query of Listing 1.1, the system renames all variables in the
query to the corresponding variable names in the view (i.e. ?place → ?vCity ;
?fact → ?obs; ?val → ?cons) and defines the roll-up paths for the dimensions in
the query (i.e. (?fact gol:refBuilding/org:siteAddress/vc:adr/vc:locality ?vCity)
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and (?fact gol:reportDateTime ?date)). Note that the roll-up path in the Date
dimension contains the Date level and not the Month level since the query
groups by dates. Then the system identifies the roll-up paths for the dimen-
sions in the view (i.e. (?fact gol:refBuilding/org:siteAddress/vc:adr/vc:locality
?vCity) and (?fact gol:reportDateTime ?date)) and compares them. The sys-
tem also identifies aggregation expressions in the query and the view (?fact
qb:observation/gol:utilityConsumption ?cons, (SUM(?cons) as ?value)). Since
the view contains the same aggregate expression and all necessary dimensions
and the hierarchy levels of the dimensions in the view do not exceed those in the
query, this view is added to the set of candidate views.

Given one of the collected views, MARVEL uses Algorithm 3 to rewrite a
query. For every dimension in the query we identify the common roll-up path
in the query and the view. In the rewritten query Q′, these triple patterns will
be replaced by the triple patterns from the CONSTRUCT clause of the view
(γV (cV )). The remaining triple patterns belonging to the dimensions (Δ(dQ))
remain unchanged (lines 4–11).

Input: View v, query Q
Output: Rewritten query Q′

1 GP ′ = ∅; RD′ = ∅; GBD = varsQGRP ;

2 let ΦQ be assignment and constraint functions of Q ;
3 GBGP ′ = ∅; -- A graph pattern of GRAPH statement ;

4 qDims = {δp(d
Q) . . . } -- Set of RUP in query Q ;

5 vDims = {δp(d
v) . . . } -- Set of RUP in view v ;

6 foreach δp(d
Q) ∈ qDims do

7 δp(c
Q) = δp(d

Q) ∩ δp(d
v) -- Common RUP in Q and v ;

8 Δ(dQ) = δp(d
Q) \ δp(c

Q) -- Remaining part of a RUP (remaining triple
patterns) in Q after subtracting the part in common with v;

9 let γv(cv) be a triple pattern ∈ CnPtrn such that γv(cv) represents δp(c
v) ;

10 GP ′ = GP ′ ∪ Δ(dQ); GBGP ′ = GBGP ′ ∪ γv(cv);

11 RD′ = RD′ ∪ {dQ};

12 aggQ = {ϕ(o1), ..., ϕ(on)} -- Aggregate expressions in Q over variables
{o1 . . . on} ;

13 aggv = {ϕ(o1), ..., ϕ(om)} -- Aggregate expressions in v over variables
{o1 . . . om} ;

14 foreach ϕQ(x) ∈ aggQ do
15 let γv(x) be a triple pattern ∈ CnPtrn such that γv(x) represents

ϕv(x) ∈ aggv and ϕv = ϕQ ;
16 GBGP ′ = GBGP ′ ∪ γv(x) ;
17 RD′ = RD′ ∪ {f ′(γv(x))} where f ′ is a rewrite of the aggregate function ϕ ;

18 GP ′ = GBGP ′ ∪ GP ′ ∪ ΦQ);
19 Q′ = SELECT RD′ WHERE GP ′ GROUP BY GBD ;
20 return Q′ ;

Algorithm 3. Algorithm for query rewriting using a view
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Afterwards, the algorithm compares the aggregate functions of the query and
the SELECT clause of the view and identifies those that are needed for rewriting.
We add the corresponding triple pattern from the CONSTRUCT clause and
rewrite the aggregate functions to account for the type of the function (algebraic
or distributive) (lines 12–17). GROUP BY and ORDER BY clauses do not
change. Additionally, the triple patterns of the CONSTRUCT clause will be
placed inside the GRAPH statement of the SPARQL query to account for the
different storage of the view triple patterns (lines 10, 16, 18).
SELECT ?date ?vCity (SUM(?value) as ?aggValue)
FROM <http :// data.gov.uk> FROM NAMED <http :// data.gov.uk/matview1 >
WHERE { GRAPH <http :// data.gov.uk/matview1 > { ?id gol: reportDate ?date;

gol:reportLocality ?vCity; gol:utilityConsumption ?value. }
?month skos:narrower ?date . ?month gol:value ?mVal .
FILTER (?mVal = ’September 2015 ’) } GROUP BY ?date ?vCity

Listing 1.3. Rewritten query

Listing 1.3 shows the result of rewriting the query from Listing 1.1 using the
view from Listing 1.2. The algorithm identifies common roll-up paths for the two
dimensions in the view and in the query: ?fact gol:refBuilding/org:siteAddress/
vc:adr/vc:locality ?vCity and ?fact gol:reportDateTime ?date. The system replaces
these triple patterns with the triple pattern from the CONSTRUCT clause and
puts these replaced triple patterns inside the GRAPH statement. The remaining
triple patterns in the Date dimension (?month skos:narrower ?date . and ?month
gol:value ?mVal .) are added to the query graph pattern outside the GRAPH
statement. The aggregate function is rewritten; since SUM is a distributive func-
tion, it is rewritten using the same aggregation (SUM ). All assignment and con-
straint functions (e.g., FILTER) are copied to the rewritten query.

6 Evaluation

To evaluate the performance gain for queries executed over materialized views
against the queries over the raw data, we implemented MARVEL using the .NET
Framework 4.0 and the dotNetRDF (http://dotnetrdf.org/) API with Virtuoso
v07.10.3207 as triple store. The times reported in this section represent total
response time, i.e., they include query rewriting and query execution. All queries
were executed 5 times following a single warm-up run. The average runtime is
reported for all queries. The triple store was installed on a machine running 64-
bit Ubuntu 14.04 LTS with CPU Intel(R) Core(TM) i7-950, 24GB RAM, 600GB
HDD.

6.1 Datasets and Queries

Unfortunately, none of the benchmarks for SPARQL queries are applicable to
our setup. Data generators for benchmarks produce a complete set of data; they
do not have an option to withhold some data and generate instead the implicit
data that can be used to derive the missing information. Furthermore, existing
benchmarks either do not define analytical SPARQL queries or do not require

http://dotnetrdf.org/
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RDFS entailment to answer these queries. Therefore, we decided to test our
approach on 2 different datasets and adapt the data generators and queries to
our needs. All queries, schemas, and datasets are available at http://extbi.cs.
aau.dk/aggview.

LUBM [10] uses an ontology in the university domain. We decided to build
our data cube and corresponding queries on the information related to courses.
Inspired by [3], we defined 6 analytical SPARQL queries (using COUNT ) involv-
ing grouping over several classification dimensions. These queries compute the
number of courses offered by departments, number of courses taught by profes-
sors in each department, number of graduate courses in each department, etc.
The data cube schema is defined in QB4OLAP, specifying 3 dimensions (Stu-
dent, Staff, and Course), hierarchy levels, and steps between the levels. In total,
the schema contains 183 triples.

Student
Course Professor

lubm:worksFor
Department

lubm:teacherOf
lubm:takesCourse

lubm:offeringDepartmentType rdf:type

Fig. 2. Excerpt of an altered LUBM schema

We changed the data genera-
tor to omit some information that
relates staff to courses. Instead, we
introduced information about the
department that offers these courses
(lubm:offeringDepartment). In this
case, the roll-up path Course → Staff → Department needs to be complemented
by the roll-up path Course → Department and the aggregation of courses by
Department cannot be answered by the results of the aggregation by Staff. A
simplified schema of the data structure is presented in Fig. 2. We generated 3
datasets containing 30, 100, and 300 universities (4, 13.5 and 40M triples). We
applied Algorithm 1 to select a set of views providing a good performance gain
for answering user queries. The execution of the algorithm on a data cube lattice
with 60 nodes and known view sizes took 213 ms.

Fig. 3. SSB Dataset in QB4OLAP
format

To choose which views to materialize, we
ran MARVEL’s view selection algorithm and
measured (i) the total query response time
for all queries in the cube using materialized
views whenever possible and (ii) the total
space these views require. The unit in which
we measured both space and time consump-
tion is the number of triples. The results for
the first 25 views sorted by their benefit are
presented in Fig. 4a. Based on these results
we decided to materialize the first 5 views
where the benefit in total response time for
the views is good compared to the growth
in space consumption for storing these views.
Selecting more views substantially increases the used space while the total query
time does not decrease significantly. Generating the views took 2:49, 8:38, and
18:47 min with 5, 15, and 33M triples in all views.

http://extbi.cs.aau.dk/aggview
http://extbi.cs.aau.dk/aggview


Optimizing Aggregate SPARQL Queries Using Materialized RDF Views 355

In our experiments we also used the Star Schema Benchmark (SSB) [20],
originally designed for aggregate queries in relational database systems. This
benchmark is well-known in the database community and was chosen for its
well-defined testbed and its simple design.

The data in the SSB benchmark represent sales in a retail company; each
transaction is defined as an observation described by 4 dimensions (Parts, Cus-
tomers, Suppliers, and Dates). We translated the data into the RDF multidimen-
sional representation (QB4OLAP) introducing incompleteness to this dataset
as well, as illustrated in Fig. 3. An observation is connected to dimensions
(objects) via certain predicates. Every connected dimension object is in turn
defined as a path-shaped subgraph. Hierarchies in dimensions are connected
via the skos:broader predicate. Measures (represented as rectangles in Fig. 3)
are directly connected to observations. We changed the data generator to omit
some information that relates suppliers to their corresponding cities in the Sup-
plier dimension (and parts to their brands in the Part dimension). Instead, we
connected suppliers with missing city information directly to their respective
nations (ssb:s nation) and parts with missing brand information directly to the
categories (ssb:p category). Thus, in the roll-up path Supplier → City → Nation
→ Region the City level is incomplete. The Part dimension is affected in the level
Brand (Part → Brand → Category → Manufacturer). We used scaling factors 1
to 3 to obtain datasets of different sizes (122 to 365M triples).

Fig. 4. Time and space vs number of views

SSB defines 13 clas-
sic data warehouse queries
that are typical in business
intelligence scenarios. We
converted all 13 queries
into SPARQL. Then we
applied Algorithm 1 to
select a set of material-
ized views. The execution
of the algorithm on a cube
lattice with 500 nodes and
known view sizes took 11.8 seconds. We then conducted the same time and space
analysis as described above (Fig. 4b). We identified and materialized 6 views with
the maximum benefit and stored these views in named graphs. Generating the
views took 20:42, 43:21, and 59:48 min with 104, 191 and 277M triples in all
views.

6.2 Query Evaluation

LUBM. Figure 5 shows the results of executing the LUBM queries for 3 scale
factors – queries with similar runtimes are grouped into separate graphs for
better visualization. For queries over raw data we materialized the implicit triples
and saved them to the dataset to avoid the entailment during query execution.
Note that the performance gain for queries over materialized views becomes more
evident with the growth in the volume of data, due to the growing difference in
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Fig. 5. Execution times of LUBM queries over raw data and views

their sizes. For scale factor 3 the execution of the queries over materialized views
is on average 3 times faster.

We also compared the performance of the queries over views that take implicit
triples into account and those that do not. Query 3 requests information on the
number of courses taken by research assistants whose advisors are professors.
We materialized 2 views: one takes into account that all professor ranks are
subclasses of the more general class Professor and the other view does not. The
execution of Query 3 over the view with implicit information for scale factor 3
was 1.7 times faster than the execution over the other view (Fig. 5c).

SSB. Given the set of materialized views, MARVEL was able to rewrite 10
out of the 13 queries. The other 3 benchmark queries (Q1, Q2, and Q3) apply
restrictions on measures. Since the views group by dimensions and only store
aggregates over the measures, these queries cannot be evaluated on any aggregate
view.

Fig. 6. Execution times of SSB queries over raw data and views

Figure 6 shows the runtime of the queries evaluated on the original datasets
and on the views (dashed lines of the same colors indicate the execution times
over views). Our results for scale factor 3 show that evaluating queries using
views is on average 5 times faster (up to 18 times faster for Query 10). This
can be explained by the decreased size of the data and the availability of partial
results.
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We also compared the performance gain for queries over views with different
levels of incompleteness. For scale factor 3, we generated datasets with 0 %, 30 %,
and 50 % levels of incompleteness and identified a set of views for every dataset.
In each case, the set of materialized views is different due to the difference in the
size and the benefit of the views. We then evaluated the execution of Query 4
over the raw data and over the largest and the smallest view. The slight increase
in the query execution time over the raw data for incomplete datasets is caused
by a rewriting of the query into a more complex query. The results show that in
all cases the evaluation of queries over views is far more beneficial (on average
11 times more beneficial – Fig. 6c).

Additionally, we compared the performance gain of MARVEL to the app-
roach in [3] which materializes partial results of user queries to answer subse-
quent queries. We used the original (non-modified) LUBM dataset containing
approx. 100M triples, analytical queries, and views introduced in the technical
report of [3]. The execution times for the queries over the original data and views
are reported in Fig. 7. As shown in the figure, MARVEL is on average more than
twice as fast as partial result materialization [3]. This can be explained by the
difference in the size of the data – partial results contain identifiers for facts
while our materialized views contain aggregated data only.

Fig. 7. Comparison with results from [3]

In summary, the experimental results show that MARVEL accounts for RDF-
specific requirements and finds an appropriate set of views that provide a good
balance between the benefit of the views and their storage space. The rewriting
algorithm of MARVEL is able to rewrite analytical SPARQL queries based on a
set of materialized views. The experiments also show that evaluating queries over
materialized views is on average 3–11 times faster than evaluating the queries
over raw data.

7 Conclusion and Future Work

In this paper, we have addressed the problem of selecting a set of aggregate RDF
views to materialize and proposed a cost model and techniques for choosing these
views. The selected materialized views account for implicit triples present in the
dataset. The paper also proposes a SPARQL syntax for defining RDF views and
an algorithm for rewriting user queries given a set of materialized RDF views.
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A comprehensive experimental evaluation showed the efficiency and scalability
of MARVEL resulting in 3–10 times speedup in query execution. In future work,
we plan to investigate algorithms for incrementally maintaining the materialized
views in the presence of updates.
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Abstract. Alignments between ontologies usually come with numer-
ical attributes expressing the confidence of each correspondence.
Semantics supporting such confidences must generalise the semantics of
alignments without confidence. There exists a semantics which satisfies
this but introduces a discontinuity between weighted and non-weighted
interpretations. Moreover, it does not provide a calculus for reasoning
with weighted ontology alignments. This paper introduces a calculus for
such alignments. It is given by an infinite relation-type algebra, the ele-
ments of which are weighted taxonomic relations. In addition, it approx-
imates the non-weighted case in a continuous manner.

Keywords: Weighted ontology alignment · Algebraic reasoning ·
Qualitative calculi

1 Introduction

Ontology alignments are used for facilitating the integration of semantically
related ontologies [8]. They are sets of correspondences relating entities from two
ontologies using semantic relations such as equivalence (≡), subsumption (�,�)
and disjointness (⊥). Very often, these correspondences are coupled with weights
in [0, 1]. The intended meaning of these weights is a degree of confidence on the
correspondence, i.e. a measure of how much we can trust that the correspondence
is true. For example, the correspondence (AssociateProfessor, SeniorLecturer,�, 0.9)
states that the class AssociateProfessor is subsumed by the class SeniorLecturer with
a confidence degree of 0.9, and, therefore, one should trust that this subsumption
is true. The automatic treatment of ontology alignments calls for a calculus for
reasoning with weighted correspondences. However, such a calculus has not been
proposed yet.

In previous work, we advocated the algebraic approach to reasoning with
ontology alignments [6,13]. An algebraic calculus of alignments is given by an
algebra of ontology alignment relations. In this paper, we show how to compose
weighted ontology alignment relations, based on their algebraic semantics.

Previous work introduced a formal semantics for weighted ontology align-
ments [1]. A weighted correspondence between two classes C and D is written

c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 360–375, 2016.
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C r[a,b] D where r ∈ {�,≡,�,⊥} and a, b are real numbers in [0, 1]. The seman-
tics is based on the classification interpretation of alignments, when a com-
mon finite set of instances is classified under classes of different ontologies. The
weighted correspondence C �[a,b] D, for example, is interpreted as “the propor-
tion of instances classified under C that are classified under D lies in the interval
[a, b].” Although [1] provides some entailment rules for reasoning with weighted
correspondences, none of these rules allows to compose alignment relations. In
addition, the current semantics has some shortcomings, discussed below.

First, although the interval [a, b] may be any subinterval of [0, 1], in
practice we are mostly interested in intervals of the form [a, 1]. Think, for
example, of the previous correspondence (AssociateProfessor, SeniorLecturer,�, 0.9).
This should be translated into AssociateProfessor �[0.9,1] SeniorLecturer and not
AssociateProfessor �[0.9,0.9] SeniorLecturer. Indeed, the latter is interpreted as
“(exactly) 90 % of the associate professors are senior lecturers” from which it
follows that the crisp subsumption is not true. However, the former is inter-
preted as “at least 90 % of the associate professors are senior lecturers” which
leaves room for the possibility that the crisp subsumption is true. In general,
C r[a,b] D |= ¬(C r D) if b < 1. Furthermore, from a theoretical point of view, if
we restrict to [a, 1] intervals, then weighted relations can be seen as relaxed crisp
relations, i.e., C r D |= C r[a,1] D, or equivalently r |= r[a,1]. In what follows, ra

will replace r[a,1].
Second, one would expect that �1 |= ¬⊥. However, with the current seman-

tics of the disjointness relation, this is not the case. Let us illustrate this
with an example. Consider the classes BrazilianSnakes and VenomousSnakes, and
imagine that 100 snakes are classified under these two classes, and that from
these 100 snakes, 10 are Brazilian, and all of them are venomous. Thus,
BrazilianSnakes �[1,1] VenomousSnakes and BrazilianSnakes �[0.1,0.1] VenomousSnakes.
The weight of the equivalence relation is the harmonic mean of 1 and 0.1, i.e.
BrazilianSnakes ≡[0.2,0.2] VenomousSnakes, and the weight of the disjointness rela-
tion is 1 minus the harmonic mean, i.e. BrazilianSnakes ⊥[0.8,0.8] VenomousSnakes.

Finally, although in the crisp case equivalence entails subsumption, i.e. ≡
|= �, this does not hold in general for weighted correspondences, that is, from
equivalence with a confidence interval [a, 1] one cannot entail subsumption with
(at least) the same confidence: ≡a �|= �a and ≡a �|= �a for any a ∈ (0, 1). This
becomes evident in the previous example, since, although BrazilianSnakes ≡[0.2,0.2]

VenomousSnakes, BrazilianSnakes �[0.1,0.1] VenomousSnakes.
This weighted semantics is a generalization of the crisp or Boolean semantics:

if all weights are 1, then the semantics is exactly the crisp semantics. However,
the way it approaches the crisp semantics is, in a sense which will be explained
in this paper, discontinuous: as close as the weighted semantics approaches the
crisp one, these two properties (�1 |= ¬ ⊥ and ≡ |= �) do not hold, but as soon
as all weights are 1, they do.

In this paper, we propose a calculus for reasoning with weighted alignments
based on the semantics that overcomes the shortcomings explained above.
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The paper is structured as follows. Section 2 introduces the state of the art
and other related work. Section 3 contains some mathematical notions and pre-
liminary results, upon which the developments of this paper are based. The key
notion that we employ is that of a (relational) constraint language. Section 4
introduces the constraint language QTAX of quantified taxonomic relations. We
show that both crisp and weighted taxonomic relations can be expressed in
QTAX. In Sect. 5, we specify a sublanguage of QTAX consisting of the relaxed
taxonomic relations. We compare the revisited semantics of ≡a and ⊥a with the
old one and discuss its advantages. In Sect. 6, we develop the calculus of relaxed
taxonomic relations. Section 7 discusses how this calculus can be used to reason
with weighted ontology alignments. Finally, Sect. 8 summarizes the results and
provides some concluding remarks.

2 Related Work

Different semantics to weighted ontology alignments have been proposed [1,16].
[16] relies on tightly integrated description logics programs, i.e., pairs of

description logic T-boxes and answer set programs. In that work, weights are
interpreted as probabilistic distributions over models. We here concentrate on
extensional interpretations.

The semantics proposed in [1] is based on a classificational interpretation
of alignments: if O1 and O2 are two ontologies used to classify a common set
X, then correspondences between O1 and O2 are interpreted as encoding how
elements of X classified in the concepts of O1 are re-classified in the concepts
of O2, and weights are interpreted to measure how precise and complete re-
classifications are. Syntactically, a weighted correspondence between ontologies
O1 and O2, expressed in a description logic [2], is an expression of the form:

1:C r[a,b] 2:D,

such that C and D are concepts in O1 and O2 respectively, r ∈ {�,�,≡,⊥} and
a, b ∈ [0, 1] (a ≤ b).

The semantics of such correspondences is based on pairs of description logic
interpretations I1 = (U1, ·I1) and I2 = (U2, ·I2) of O1 and O2 respectively. A
pair of interpretations is a model of a weighted correspondence if the degree
dsX that can be computed from the interpretations lies within the interval [a, b]
assigned to the correspondence. The degrees are defined as follows:

dsX(I1, I2, C � D) =
|CI1

X ∩ DI2
X |

|CI1
X |

dsX(I1, I2, C � D) =
|CI1

X ∩ DI2
X |

|DI2
X |

dsX(I1, I2, C ≡ D) =
2 × dsX(I1, I2, C � D) × dsX(I1, I2, C � D)

dsX(I1, I2C,� D) + dsX(I1, I2, C � D)
dsX(I1, I2, C⊥D) = 1 − dsX(I1, I2, C ≡ D)
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The interpretation of � and � are expressed as the proportion of common indi-
viduals in the class interpretations, which can also be interpreted as the probabil-
ity of reclassification of individuals [1]. This is justifiable by extensional practice
of ontology matching. The interpretation of ≡ mitigates the impact of these two
through the use of the F-measure between them, while ⊥ is interpreted as the
complement of equivalence. This semantics of weighted alignments approximates
classical crisp semantics [4,18] in the sense that if all weights are assigned 1 or
0, i.e., [1, 1] or [0, 0], then the models are those of the crisp semantics.

However, as mentioned in the introduction, this semantics has some unde-
sirable consequences and we will show how they can be addressed. For that
purpose, we will reconsider it in the framework of algebras of relations.

The algebraic approach to reasoning with relational assertions, which we
adopt in this paper, comes from the domain of qualitative spatial and temporal
reasoning. This approach may also be applied to reasoning with aligned ontolo-
gies [6,13,15] and was extended to support relations between different kinds of
entities [12]. The central notion is that of a qualitative calculus [5,14], which is
a finite symbolic algebra used for constraint-based reasoning based on the path-
consistency method. There exist reasoning toolboxes which support qualitative
calculi [9,17]. The only principal difference of AQTAX from qualitative calculi
is that it contains infinitely many relations. This may call for adjustments to
existing reasoning algorithms.

3 Preliminaries

Here we introduce the notion of constraint languages for relations (Sect. 3.1) and
the algebras of relations that they generate (Sect. 3.2).

3.1 Constraint Languages

Constraint languages are a mathematical framework for defining semantics of
relational assertions. A (relational) constraint language is given by a collection
of relation symbols and their interpretations. We use the formal definition of a
constraint language as a relational structure in the model-theoretic sense [11].

Definition 1 (Constraint language). A relational signature is a set σ of rela-
tion symbols (also called predicate symbols), each with an associated finite arity.
A (relational) constraint language over σ, or shortly a σ-language, is a tuple
Γ = (σ,U, ·Γ ), where σ is a relational signature, U is a set called the universe
and ·Γ is the interpretation function defined on σ, which maps each relation
symbol with arity n to an n-ary relation over U .

In this paper we confine ourselves to binary constraint languages, i.e., those
that consist of binary relations.

Given a constraint language Γ = (σ,U, ·Γ ), we say that R is a Γ -relation, if
R is equal to rΓ for some relation symbol r ∈ σ. We may write R ∈ Γ , meaning
that R is a Γ -relation. When the interpretation of relation symbols in σ is clear
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from the context, we will specify a constraint language over a finite signature
as Γ = (U ; r1, r2, . . . , rn) , where U is the universe and r1, r2, . . . , rn are the
relation symbols.

Example 1. The constraint language of base taxonomic relations between sets.
baseTAX5 = (U ; ≡,�,�, �,⊥), where U is some powerset and � the partial
overlap relation symbol.

Constraint languages can be compared in terms of granularity. We start with
a general definition of granularity relations [7].

Definition 2 (Granularity). Let X and Y be two collections of sets. X is said
to be

– finer than Y if, for every X ∈ X , there exists Y ∈ Y such that X ⊆ Y ;
– coarser than Y if, for every X ∈ X , there exists Y0 ⊆ Y such that X = ∪Y0;
– a refinement of Y, if X is finer than Y and Y is coarser than X .

The relations “finer than”, “coarser than” and “refinement of” are transitive.
A σ-language Γ is said to be finer than, coarser than, or a refinement of a
σ′-language Γ ′, if so is the set of Γ -relations w.r.t. the set of Γ ′-relations.

Definition 3 (Disjunctive Expansion). Let Γ = (σ,U, ·Γ ) be a constraint
language. The disjunctive expansion of Γ is the constraint language Γ∨ =
(σ̂, U, ·Γ∨), where σ̂ consists of all subsets of σ (σ̂ = ℘(σ)) and, for every r ∈ σ̂,
rΓ∨ = ∪{rΓ

0 : r0 ∈ r}.

The signature of Γ∨ can be also defined, following the logical notation, as the
set of all disjunctions of relation symbols from σ. For the signature of Γ∨ we will
use the set-theoretic notation with one reservation: we will identify a singleton
set {r} ∈ ℘(σ) with the element r ∈ σ. Thus, for r ∈ σ we may also write that
r ∈ ℘(σ). If r ∈ σ, then the relation rΓ∨ is called a base Γ∨-relation. If r ⊆ σ,
then rΓ∨ is said to be a disjunctive Γ∨-relation.

Example 2. The disjunctive expansion of baseTAX5 (Example 1) is called the
constraint language of taxonomic relations between sets, denoted as TAX5. Among
the disjunctive TAX5-relations is subsumption and its converse: �= {�,≡} and
�= {�,≡}.

We will usually assume that different relation symbols correspond to different
relations. In these cases, for a binary relation R ∈ Γ , by Rσ we will denote the
relation symbol r ∈ σ, for which rΓ = R. If R ∈ Γ∨, then Rσ := {r ∈ σ : rΓ ⊆ R}.

3.2 Algebras Generated by Constraint Languages

If a constraint language Γ is closed under all intersections (finite or infinite)
and contains the universal relation, then we can define weak composition of Γ -
relations as follows: for R,S ∈ Γ , their weak composition is defined as R �Γ S =
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∩{T ∈ Γ : R ◦ S ⊆ T}. (When it causes no ambiguity, we will write � instead
of �Γ .) Likewise, weak converse is defined as R˘ = ∩{T ∈ Γ : R−1 ⊆ T}. The
operations of weak composition and weak converse are naturally induced on the
relation symbols: r � s = (rΓ � sΓ )σ and r˘ = ((rΓ )̆ )σ.

A more specific and well-studied case is when a constraint language is
obtained by the disjunctive expansion of a partition scheme. The notion of a
partition scheme was introduced in [14] and then extended in [5]. We refer to
the former definition as strong partition schemes and to the latter as abstract
partition schemes.

Definition 4 (Partition scheme). Let X be some nonempty set and P a set
of its subsets. P is said to be a partition of X if each element of X belongs to
one and only one element of P. A constraint language Γ = (σ,U, ·Γ ) is said to be
an (abstract) partition scheme, if Γ -relations make up a partition of U × U . In
this case Γ -relations are also said to be jointly exhaustive and pairwise disjoint
(JEPD) on U . An abstract partition scheme Γ is said to be strong, if it is closed
under converse and contains the identity relation over U .

The signature of the disjunctive expansion Γ∨ of a constraint language
Γ = (σ,U, ·Γ ) is a powerset algebra, hence a complete atomic Boolean alge-
bra [10]. If Γ is an abstract partition scheme, then Γ∨ is closed under intersec-
tion and contains the universal relation U × U . Thus, there are two additional
operations on ℘(σ): namely, weak composition and weak converse. The algebra
AΓ = (℘(σ),∪,∩,−, ∅, σ, �, )̆ is said to be generated by the abstract partition
scheme Γ . The algebra AΓ provides a symbolic calculus of Γ -relations.

Example 3. The constraint language baseTAX5 is a partition scheme only if its
universe U does not contain the empty set. Then it generates an algebra A5,
which is specified in [6]. If the universe U contains the empty set, then the
relations of baseTAX5 are not pairwise disjoint any more. In that case it takes
8 base relations to refine baseTAX5 into a partition scheme (for more details see
[12,13]).

Proposition 1 establishes an important property of algebras generated by par-
tition schemes, which says that it is enough to define weak composition and weak
converse on atoms.

Proposition 1 ([12]). Let Γ be an arbitrary (finite or infinite) abstract partition
scheme over a set U . Then weak composition and weak converse operations of
AΓ are completely additive, i.e., they completely distribute over the union.

In addition to the algebraic method for reasoning with constraint languages,
there are other approaches coming from recent research in CSP [3]. The main
advantage of the algebraic approach is that it is polynomial (cubic) time. The
disadvantage is that its reasoning capabilities vary from one constraint language
to another and in many cases are rather limited.
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4 The Constraint Language of Quantified Taxonomic
Relations

In this section, we consider the universe of all finite sets and define a constraint
language, called QTAX, of cardinality-based binary relation over this universe.
We show that QTAX contains the crisp taxonomic relations (TAX5) and also the
weighted taxonomic relations introduced in [1].

Let D be some countably infinite set, we consider the set of nonempty finite
subsets of D as the universe and denote it as UD, or simply U :

UD = {X : X ⊆ D and 0 < |X| < ω} ,

where ω is the first uncountable ordinal number. The set of all rational numbers
from 0 to 1 will be denoted as [0, 1]Q. We define a binary relational signature σ as
a set of ordered pairs (α, β), where α, β ∈ [0, 1]Q. Further, we define a σ-language
Δ on the universe U as follows:

(α, β)Δ =
{

(X,Y ) ∈ U × U :
|X ∩ Y |

|X| = α and
|X ∩ Y |

|Y | = β

}

.

Clearly, if α = 0 and β �= 0, or α �= 0 and β = 0, then (α, β)Δ = ∅. This means
that the relation symbols (0, β) or (α, 0), in which α, β �= 0, are synonyms
and all denote the empty relation; we will exclude such relation symbols from
consideration. For the rest of σ-symbols we will say (α, β) is equal to (α′, β′) iff
α = α′ and β = β′.

We denote the disjunctive expansion of Δ as QTAX and call it the constraint
language of quantified taxonomic relations. A base QTAX-relation can be visually
represented as a point on the unit square of α, β parameters (Fig. 1a), which
we will call the (α, β)-space. A disjunctive QTAX-relation correspond then to a
regions of the (α, β)-space, as shown in Fig. 1b.

β

α0

1

1

(a) base relation

0

1

1

(b) disjunctive relation

Fig. 1. Visual representation of QTAX-relations on the (α, β)-space.

Recall the constraint language TAX5 of taxonomic relations considered in
Example 2. Proposition 2 shows that, if defined on the same universe, QTAX is a
refinement of TAX5.
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Proposition 2. QTAX is a refinement of TAX5.

Proof (Sketch). Figure 2a shows that each taxonomic relation can be presented
as a disjunction of quantified taxonomic relations. This means that TAX5 is
coarser than QTAX. QTAX is also finer than TAX5, because the latter contains
the universal relation of the former. Hence, QTAX is a refinement of TAX5.

TAX-relation QTAX-relation

≡ (1, 1)

� {(α, 1) : 0 < α < 1}
� {(1, β) : 0 < β < 1}
� {(α, β) : 0 < α, β < 1}
⊥ (0, 0)

(a) signature mapping

⊥

�

�

�

≡

(b) visualization on the
(α, β)-space

Fig. 2. The constraint language TAX5 of taxonomic relations is a sublanguage of the
constraint language of quantified taxonomic relations QTAX.

The base taxonomic relations are visualized on the (α, β)-space in Fig. 2b. The
weighted taxonomic relations r[a,b] (Sect. 2) can also be expressed in QTAX, as
shown in Table 1. Figure 3 visualizes these relations on the (α, β)-space.

Table 1. Weighted taxonomic relations r[a,b] expressed in the constraint language
QTAX.

Weighted taxonomic relation QTAX-relation

�[a,b] {(α, β) ∈ σ : a ≤ α ≤ b}
�[a,b] {(α, β) ∈ σ : a ≤ β ≤ b}
≡[a,b]

{
(α, β) ∈ σ : a ≤ 2αβ

α+β
≤ b
}

⊥[a,b]

{
(α, β) ∈ σ : a ≤ 1 − 2αβ

α+β
≤ b
}

Proposition 3 says that base QTAX-relations make up a strong partition
scheme, thus they generate an algebra AQTAX.

Proposition 3. Δ is an infinite strong partition scheme.

Proof (Sketch). First, any α, β ∈ [0, 1]Q, such that α and β are either both zero or
both nonzero, the relation (α, β)Δ is not empty. Further, it is easy to check that
Δ-relations are jointly exhaustive and pairwise disjoint. Finally, it remains to
check that Δ is closed under converse and contains the identity relation. Indeed,
((α, β)Δ)−1 = (β, α)Δ and (1, 1)Δ = IdU .
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a b

�[a,b]

0

1

1

(a) subsumption

a

b

�[a,b]

0

1

1

(b) supsumption

a

a

a
2−a

b

b

b
2−b

≡[a,b]

0

1

1

(c) equivalence

1−b

1−b

1−b
1+b

1−a

1−a

1−a
1+a

⊥[a,b]

0

1

1

(d) disjointness

Fig. 3. Visualization of weighted relations r[a,b] (in the sense of [1]) on the (α, β)-space.

5 The Relaxed Taxonomic Relations

In this section, we discuss the shortcomings of weighted equivalence and dis-
jointness and propose different semantics for these relations. The revisited set
of weighted relations constitutes a sublanguage of QTAX, called the constraint
language of relaxed taxonomic relations. We compare the relaxed semantics of
equivalence and disjointness with the former one and discuss its advantages.

As mentioned in the introduction, in a weighted relation r[a,b], if the upper
bound b of the confidence interval [a, b] is less than 1, then r[a,b] negates the crisp
relation r (in symbols, r[a,b] |= ¬r), which is counter-intuitive. This issue can
be solved by confining to confidence intervals [a, 1], in which the upper bound is
always 1, as shown in Fig. 4.

We denote the relations r[a,1] as ra and call them relaxed taxonomic rela-
tions, since they are weaker than r, i.e., r |= ra for any r ∈ {≡,�,�,⊥} and
any a ∈ [0, 1]. The semantics of relaxed equivalence ≡a and relaxed disjointness
⊥a, proposed in [1], has some shortcomings. First, the “equivalence entails sub-
sumption” property, which holds for crisp equivalence and crisp subsumption
(in symbols, ≡ |= �), is not preserved by their relaxed counterparts. That is,
from equivalence with a confidence interval [a, 1] one cannot entail subsumption



Algebraic Calculi for Weighted Ontology Alignments 369

a

�[a,1]

0

1

1

(a) subsumption

a

�[a,1]

0

1

1

(b) supsumption

a

a

a
2−a

≡[a,1]

0

1

1

(c) equivalence

1−a

1−a

1−a
1+a ⊥[a,1]

0

1

1

(d) disjointness

Fig. 4. Visualization of weighted relations r[a,1] (in the sense of [1]) on the (α, β)-space.
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a

1−a

1−a

⊥a

≡a�a

�a

0

1

1

Fig. 5. Visualization of base relaxed taxonomic relations on the (α, β)-space.

with (at least) the same confidence: ≡a �|= �a, for any 0 < a < 1. Second, one
would intuitively expect the relaxed disjointness and subsumption to be mutu-
ally exclusive, as it is the case with the crisp relations. However, this property
does not hold either: for any 0 < a < 1, the assertions A ⊥a B and A �a B do
not contradict each other.
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We overcome these drawbacks by refining the semantics of relaxed equiva-
lence and disjointness as follows:

≡a = {(α, β) ∈ σ : α, β ≥ a} , ⊥a = {(α, β) ∈ σ : α, β ≤ 1 − a} .

These relations are visualized in Fig. 5. From this definition it follows that ≡a

is the intersection of �a and �a. Moreover, relaxed disjointness ⊥a does not
overlap with relaxed subsumption �a for any a > 0.5.

0

1

1

⊥

(a) based on F-measure

0

1

1

⊥

(b) the relaxed semantics

Fig. 6. Comparison of semantics for weighted disjointness.

It is now time to justify the discontinuity observed in the weighted semantics
of [1] with the help of QTAX. The crisp semantics of ⊥ is the (0, 0) point. The
weighted semantics approaches it, but because it is the result of using the F-
measure it always preserves the possibility that the segments (0, 1) and (1, 0)
denote ⊥ because F-measure(1, 0) = F-measure(0, 1) = 0. This is what is shown
in Fig. 6a. Hence, the discontinuity comes from preserving these segments —
and the points (0, 1) and (1, 0) which are in the interpretation of � and � —
whatever closed the weights are from crisp.

This is different when relations are approached by reducing a distance. This
is illustrated in Fig. 6b where ⊥ is continuously approximated through α with
the Manhattan distance.

6 The Calculus of Relaxed Taxonomic Relations

In this section, we define the algebraic calculus of QTAX, which allows for com-
posing the relaxed taxonomic relations (Sect. 6.1) and introduce two algebras
which can be used for reasoning with alignments (Sect. 6.2).

6.1 Composition of Relaxed Taxonomic Relations

Composition in QTAX distributes over union (Proposition 1). Thus, to compose
two relaxed taxonomic relations, one has to compose pairwise all constituent
base relations.

ra � sb =
⋃

(α,β)∈r
(α′,β′)∈s

(α, β) � (α′, β′).
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Before providing the formula for composing base QTAX-relations, let us intro-
duce abbreviations for some relation symbols in ℘(σ).

INT(α0, α1, k) := {(α, kα) : α0 ≤ α ≤ α1}
REC(α0, β0, α1, β1) := {(α, β) : α0 ≤ α ≤ α1 and β0 ≤ β ≤ β1}

The relation symbols INT(α0, α1, k), where α0 ≤ α1 ∈ [0, 1]Q and 0 < kα1 ≤ 1,
correspond to intervals on the (α, β)-space, as shown in Fig. 7a. We call them
interval relations (not to confuse with Allen’s temporal intervals). On the (α, β)-
space these relations lie on a line which passes through the point (0, 0). The
relation symbols REC(α0, β0, α1, β1), where α0, β0, α1, β1 ∈ [0, 1]Q, correspond
to rectangles on the (α, β)-space, the edges of which are parallel to those of the
unit square (Fig. 7b). We call them rectangle relations.

kα0

α0

kα1

α10

1

1

(a) INT(α0, α1, k)

β0

α0

β1

α10

1

1

(b) REC(α0, β0, α1, β1)

Fig. 7. Visual representation of interval and rectangle QTAX-relations.

Now we can formulate the main result. The composition of two base QTAX-
relations is either a rectangle relation, if one of the base relations is the disjoint-
ness (Theorem 1). Otherwise, the composition is an interval relation.

Theorem 1.

(α, β) � (α′, β′) =

⎧
⎪⎨

⎪⎩

REC(0, 0, 1, 1 − β′), if α, β = 0,

REC(0, 0, 1 − α, 1), if α′, β′ = 0,

INT(α′′
0 , α′′

1 , ββ′

αα′ ), if α, β, α′, β′ �= 0,

where

α′′
0 =

α

β
max (α′ + β − 1, 0) ,

α′′
1 = min

[

1,
αα′

ββ′ , α
(

min(1,
α′

β
) + min(

α′

β

1 − β′

β′ ,
1 − α

α
)
)]

Proof. The proof can be found in [12].
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6.2 Approximation and Parametrization of QTAX relations

AQTAX is an algebra of relation symbols and not of actual binary relations.
A relation symbol is a set of pairs (α, β), where α, β ∈ [0, 1]Q.

Composition of some relaxed taxonomic relations is visually represented in
Fig. 8. In general, the composition of such relations is not a relaxed taxonomic
relation, but some “irregular” QTAX-relation represented by the black area. How-
ever, it can be always approximated by a rectangle relation, and in some cases
even by another relaxed taxonomic relation, as shown in Fig. 8 by the grayed
area. The composition of relaxed equivalences ≡0.6 and ≡0.8 has a shape close
to a rectangle. The REC-approximation of composition is ≡0.4.

≡0.6 ≡0.8 ≡0.4

� =

Fig. 8. REC-approximation of composition.

All rectangle relations plus the empty relation are closed under intersection
and contain the universal relation. Thus, weak composition �REC is a valid opera-
tion on the REC sublanguage of QTAX. The operation �REC can be specified based
on numeric evaluation of a set of (α, β) relation symbols which constitute the
composition in QTAX. A union of rectangle relations may not be a rectangle
relation, but can always be approximated by one. This defines the operation
of weak union on REC, denoted as ∪w. The rectangle relations, together with
operations of weak composition, converse intersection and weak union, form an
algebra AREC:

AREC = (R,∪w,∩, ∅,REC(0, 0, 1, 1), �REC , )̆ , (6.1)

where R = {REC(α0, β0, α1, β1) : α0 ≤ α1, β0 ≤ β1 ∈ [0, 1]Q} ∪ {∅}. A general
formula for composing relaxed equivalence relations is the following:

≡x �REC ≡y = ≡max(0, x+y−1) (6.2)

Similar formulas can be obtained for other pairs of relaxed taxonomic relations.
Another approach to make AQTAX computationally feasible is to discretize

the (α, β)-space as an n×n matrix and thus obtain a finite algebra An
QTAX. This

approach was used for computing the composition of relaxed taxonomic relations
in Table 2.



Algebraic Calculi for Weighted Ontology Alignments 373

Table 2. Composition of relaxed taxonomic relations visualized on the (α, β)-space.

i j (≡i � ≡j) (≡i � �j) (≡i � �j) (≡i � ⊥j) (�i � �j) (�i � ⊥j)

0.5 0.5

0.5 0.6

0.5 0.7

0.5 0.8

0.5 0.9

0.5 1

0.6 0.5

0.6 0.6

0.6 0.7

0.6 0.8

0.6 0.9

0.6 1

0.7 0.5

0.7 0.6

0.7 0.7

0.7 0.8

0.7 0.9

0.7 1

0.8 0.5

0.8 0.6

0.8 0.7

0.8 0.8

0.8 0.9

0.8 1

0.9 0.5

0.9 0.6

0.9 0.7

0.9 0.8

0.9 0.9

0.9 1

1 0.5

1 0.6

1 0.7

1 0.8

1 0.9

1 1
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7 Application to Reasoning with Ontology Alignments

The relaxed semantics of taxonomic relations can be used by ontology matchers.
Some matchers induce relations between classes based on the instance-level data.
Since the semantic web is an open environment with potentially invalid data,
many instance-based matchers induce a relation between two concepts, if it holds
for most instances of these concepts. The level of fault-tolerance is usually set
by a threshold. This threshold may be expressed as the weight of an ontology
alignment relation, in compliance with the relaxed semantics.

To reason with weighted ontology alignments, both algebras AREC or An
QTAX

can be used. The algebra AREC contains infinitely many relations, but is compu-
tationally feasible, since REC-relations are finitely parametrized. However, using
AREC for automated reasoning requires adjustments to the existing reasoning
algorithms, which are designed for finite algebras. The algebras An

QTAX are finite,
thus can be used with existing reasoning tools that support qualitative calculi.

8 Summary and Conclusion

Weights in ontology alignments have been widely adopted. This paper shows
how to define algebraic calculi which can be used for expressing both the rela-
tion and the weight of correspondences. Its goal is to be able to provide sound
compositional reasoning for alignments.

We introduced the AQTAX calculus of relaxed taxonomic relations generalising
the previous weighted semantics as well as the semantics of crisp relations. We
provided a semantics that overcomes the problems identified and, in particular,
discontinuity. AQTAX composition is not computationally feasible, however we
discussed two different ways to make it computationally feasible: AREC based on
rectangular approximation of these relations and An

QTAX based on a discretization
of the (α, β)-space.

On the one hand, this proposal provides a way to reason by composition
with weighted alignment that is well grounded and can compose any relation.
On the other hand, [1] gave rules for reasoning with concept constructors which
are absent here. It would be worth studying if such rules still holds and can be
generalised to the new context.

Acknowledgement. This research has been partially supported by the joint NSFC-
ANR Lindicle project (12-IS01-0002) with Tsinghua university.
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Abstract. Large-scale knowledge graphs (KGs) are widely used in industry and
academia, and provide excellent use-cases for ontologies. We find, however, that
popular ontology languages, such as OWL and Datalog, cannot express even the
most basic relationships on the normalised data format of KGs. Existential rules
are more powerful, but may make reasoning undecidable. Normalising them to
suit KGs often also destroys syntactic restrictions that ensure decidability and low
complexity. We study this issue for several classes of existential rules and derive
new syntactic criteria to recognise well-behaved rule-based ontologies over KGs.

1 Introduction

Graph-based representations are playing a major role in modern knowledge manage-
ment. Their simple, highly normalised data models can accommodate a huge variety of
different information sources, and led to large-scale knowledge graphs (KGs) in indus-
try (e.g., at Google and Facebook); on the Web (e.g., Freebase [6] and Wikidata [26]);
and in research (e.g., YAGO2 [16] and Bio2RDF [5]).

cann jo

2013

s1 s2

s3

Fig. 1. Tuple as Graph

Not all data is graph-shaped, but it is usually easy
to translate into this format using well-known meth-
ods. For example, the W3C RDB to RDF Mapping
Language provides mappings from relational databases
to RDF graphs [13]. Relational tuples with three or
more values are represented by introducing new graph
nodes, to which the individual values of the tuple
are then connected directly. For example, the tuple
spouse(ann, jo, 2013), stating that Ann married Jo in
2013, may be represented by the graph in Fig. 1, where c is a fresh element introduced
for this tuple, and s1 to s3 are binary edge labels used for all tuples of the spouse rela-
tion.

In this way, KGs unify data formats, so that many heterogeneous datasets can be
managed in a single system. Unfortunately, however, syntactic alignment is not the
same as semantic integration. The KG’s flexibility and lack of schematic constraints
lead to conceptual heterogeneity, which reduces the KG’s utility. This is a traditional
data integration problem, and ontologies promise to solve it in an interoperable and
declarative fashion [19]. Indeed, ontologies can be used to model semantic relationships
between different structures, so that a coherent global view can be obtained.
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 376–392, 2016.
DOI: 10.1007/978-3-319-46523-4_23
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It therefore comes as a surprise that ontologies are so rarely used with KGs.
A closer look reveals why: modern ontology languages cannot express even the simplest
relationships on KG models. In our example, a natural relationship to model would be
that marriage is symmetric, so that we can infer spouse(jo, ann, 2013). In a KG, this fact
would again be represented by a structure as in Fig. 1, but with Ann and Jo switched,
and – importantly – using a fresh auxiliary node in place of c. This entailment could be
expressed by the following logical axiom:

∀x, y1, y2, y3. s1(x, y1)∧s2(x, y2)∧s3(x, y3) → ∃v. s1(v, y2)∧s2(v, y1)∧s3(v, y3). (1)

Two ontology languages proposed for information integration in databases are global-
as-view and local-as-view mappings [19]. Neither can express (1), since they support
only single atoms on the source and on the target side, respectively. Datalog, a popular
language for defining recursive views, cannot express (1) either, since it lacks existen-
tial quantification in conclusions of rules. Another very popular ontology language is
OWL [22], which was specifically built for use with RDF graphs. However, even OWL
cannot express (1): it supports rules with existential quantifiers, but only with exactly
one universally quantified variable occurring in both premise and conclusion.

This problem is not specific to our particular example. KGs occur in many for-
mats, which are rarely as simple as RDF. It is, e.g., common to associate additional
information with edges. Examples are validity times in YAGO2, statement qualifiers in
Wikidata, and arbitrary edge attributes in Property Graphs (a very popular data model
in graph databases). If we want to represent such data in a simple relational form that is
compatible with first-order predicate logic, we arrive at encodings as in Fig. 1.

So how can we realise ontology-based information integration on KGs? Formula (1)
is in fact what is called a tuple-generating dependency in databases [1] and an existential
rule in AI [2]. While query answering over such rules is undecidable, many decidable
fragments have been proposed (see overviews [2], [8], and [11]). These rules use a rela-
tional model, and they can be translated to a KG setting just like facts. For example, rule
(1) could be the result of translating ∀y1, y2, y3.spouse(y1, y2, y3) → spouse(y2, y1, y3).
However, this changes the rules’ syntax and semantics, and it destroys known criteria
that guarantee decidability or complexity.

We therefore ask to which extent known decidable fragments of existential rules are
applicable to KGs, and we propose alternative definitions where necessary, to recover
desirable properties. Our main results are:

– We show that acyclicity criteria and related complexities are generally preserved
when transforming rules to KGs, and we identify a restricted class of acyclic rules
that comprises transformed Datalog and retains its complexity.

– We show that the transformation destroys other basic syntactic criteria such as lin-
earity and guardedness, though it preserves the underlying semantic notions (FO-
rewritability and tree-like model property).

– We propose a new way of denormalising KG rules, based on the intuition that several
edges can be grouped into “objects”, and we exhibit cases for which this approach
succeeds in producing rule sets that fall into known decidable classes.

– We introduce a notion of incidental functional dependency, which we use to extend
our denormalisation to wider classes of rules, and we exhibit a sound procedure for
computing such dependencies.
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In all cases, we develop criteria that significantly generalise the motivating scenario of
translating relational ontologies to KGs. In practice, it is more realistic to assume that
ontologies are constructed over KGs directly. In this case, one cannot expect rules to
have a regular structure as obtained by a rigid syntactic transformation, but patterns
guaranteeing decidability and complexity bounds might still be identifiable.

Full proofs are available in an extended technical report [18].

2 Preliminaries

We briefly introduce essential notation and define the important notion of graph normal-
isation. We consider a standard language of first-order predicate logic, using predicates
p of arity ar(p), variables, and constants. A term is a constant or variable. Finite lists
of variables etc. are denoted in bold, e.g., x. We use the standard predicate logic defi-
nitions of atom and formula. An existential rule (or simply rule) is a formula of form
∀x, y.ϕ[x, y] → ∃v.ψ[x, v] where ϕ and ψ are conjunctions of atoms, called the body
and head of the rule, respectively. Rules without existentially qualified variables are
Datalog rules. We usually omit the universal quantifiers when writing rules.

We separate input relations (EDB) from derived relations (IDB). Formally, for a
set of rules P, the predicate symbols that occur in the head of some rule are called
intensional (or IDB); other predicates are called extensional (or EDB). A fact is an
atom that contains no variables. A database D is a set of facts over EDB predicates. A
conjunctive query (CQ) is a formula ∃y.ϕ[x, y], where ϕ is a conjunction of atoms. A
Boolean CQ (BCQ) is a CQ without free variables.

We only consider rules without constants. They can be simulated as usual, by replac-
ing every constant a in a rule by a new variable xa, adding the atom Oa(xa) to the body,
and extending the database to include a single fact Oa(a).

Rules and databases can be evaluated under a first-order logic semantics, and we
use |= to denote the usual first-order entailment relation between (sets) of formulae. CQ
answering over existential rules can be reduced to BCQ entailment, i.e., the problem of
deciding if D,P |= ∃y.ϕ holds for a given BCQ ∃y.ϕ, database D, and set of rules P [1].
This is undecidable in general, but many special classes of rule sets have been identified
where decidability is recovered; we will see several examples later.

We now formalise the standard transformation of n-ary facts into directed graphs
that was given in the introduction, and extend it to rules over n-ary predicates.

Definition 1. For every predicate p, let p1, . . . , par(p) be fresh binary predicates. Given
an atom p(t) and a term s, the graph normalisation GN(s, p(t)) is the set {p1(s, t1), . . . ,
par(p)(s, tn)} of binary atoms. For a database D, define GN(D) to be the union of the sets
GN(cA, A) for all facts A ∈ D where cA is a fresh constant for A. For a rule ρ = B1∧ . . .∧
Bm → ∃v.H1∧. . .∧H�, letGN(ρ) be the rule

∧m
i=1 GN(zi, Bi)→ ∃v.∃w.∧�j=1 GN(wj,Hj)

using fresh variables z and w. For a set of rules P, let GN(P) :=
⋃
ρ∈P GN(ρ).
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Example 1. Consider a database about PhD graduates and theses with facts of the form
sup(person, supervisor) and phd(person, thesis title, date). We can express that every
supervisor of a PhD graduate also has a PhD, using P for inferred (IDB) PhD relations:

phd(x, y1, y2)→ P(x, y1, y2) (2)

P(x1, y1, y2) ∧ sup(x1, x2)→ ∃v1, v2.P(x2, v1, v2) (3)

The graph normalisation of this rule set is as follows:

phd1(z, x)∧phd2(z, y1)∧phd3(z, y2)→ ∃v.P1(v, x)∧P2(v, y1)∧P3(v, y2) (4)

P1(z1, x1)∧P2(z1, y1)∧P3(z1, y2)∧sup1(z2, x1)∧sup2(z2, x2) (5)

→ ∃v, v1, v2.P1(v, x2)∧P2(v, v1)∧P3(v, v2)

3 Acyclicity

Sets of existential rules may require models to be infinite. An immediate approach for
ensuring decidability is to consider criteria that guarantee the existence of a finite uni-
versal model, which can be fully computed and used to answer queries. This led to many
so-called acyclicity criteria [11]. We review one of the simplest cases, weak acyclicity.

Definition 2. A position in a predicate p is a pair 〈p, i〉, where i ∈ {1, . . . , ar(p)}. The
dependency graph G of a rule set P is defined as follows. The vertices of G are all
positions of predicates in P. For every rule ϕ[x, y]→ ∃v.ψ[x, v] ∈ P: (1) G has an edge
from 〈p, i〉 to 〈q, j〉 if x ∈ x occurs at position 〈p, i〉 in ϕ and at 〈q, j〉 in ψ; (2) G has
a special edge from 〈p, i〉 to 〈q, j〉 if x ∈ x occurs at position 〈p, i〉 in ϕ and there is an
existentially quantified variable v ∈ v at 〈q, j〉 in ψ.

P is weakly acyclic if its dependency graph does not contain a directed cycle that
involves a special edge.

Theorem 1. If P is weakly acyclic, then so isGN(P). Analogous preservation properties
hold for rule sets that are jointly acyclic, super-weakly acyclic, model-faithful acyclic,
or that have an acyclic graph of rule dependencies.

While most acyclicity notions are thus preserved, this is not a gen-
eral rule: model-summarising acyclicity (MSA) might be destroyed by graph
normalisation [18].

BCQ entailment for acyclic rule sets is 2ExpTime-complete [11]. Datalog, however,
enjoys a lower ExpTime-complete complexity [12], so Theorem 1 does not yield tight
complexity estimates there. ExpTime complexity bounds for acyclic rules were given for
rule sets where the maximal length of paths in a (slightly different) type of dependency
graph is bounded [17, Theorem 5]. This condition is implied by the following property:

Theorem 2. If P is a set of Datalog rules, then the dependency graph of GN(P) is such
that every path contains at most one special edge.

The number of special edges on paths can therefore be used to recognise (generali-
sations of) graph-normalised Datalog for which CQ answering is in ExpTime.
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4 Beyond Acyclicity

Acyclicity is only one of several approaches for determining that reasoning is decidable
for a given set of existential rules. It turns out, however, that other syntactic criteria are
not as robust when applying graph normalisation to a set of rules, although one can
show that essential semantic properties are preserved.

Baget et al. have identified several general classes of rule sets for which reasoning
is decidable [2]. Acyclic rule sets are a typical form of finite expansion set (fes), which
have a finite universal model. Rule sets without this property may still have an infinite
universal model that is sufficiently “regular” to be presented finitely. This is the case
if there is a universal model of bounded treewidth, leading to bounded treewidth sets
(bts). A third general class of practical importance are finite unification sets (fus), cor-
responding to the class of first-order rewritable rule sets for which conjunctive queries
(CQs) can be rewritten into finite unions of CQs (UCQs).

All of these abstract properties are preserved during graph normalisation. For fes
and bts, this can be shown by noting that any (universal) model of P can be transformed
into a (universal) model of GN(P) by treating it like an (infinite) database and applying
GN(·). For fus, the result follows since we can apply graph normalisation to the UCQ
rewriting to obtain a valid rewriting for GN(P).

Theorem 3. If P is fes/bts/fus, then GN(P) is fes/bts/fus.

However, membership in these abstract classes is undecidable, so we need simpler
sufficient conditions in practice. We disregard fes here, since it is already covered in
Sect. 3. For bts, an easy-to-check criterion is (frontier) guardedness [2]:

Definition 3. A rule ϕ[x, y]→ ∃v.ψ[x, v] is frontier guarded if ϕ contains an atom that
contains all variables of x. A rule set P is frontier guarded if all of its rules are.

Frontier guarded rule sets are bts, and, by Theorem 3, so are their graph normali-
sations. Unfortunately, this is not easy to recognise, since frontier guardedness is often
destroyed when breaking apart body atoms during graph normalisation. For instance,
the original rules in Example 1 are frontier guarded, but the normalised rule (4) is not.
The only general criterion that could recognise bts in normalised rules is greedy bts
[4]; but a procedure for recognising this criterion has not been proposed yet, and the
problem is generally assumed to be of very high complexity.

The situation is similar for fus. One of the simplest syntactic conditions for this case
is linearity (a.k.a. atomic hypothesis [2]):

Definition 4. An existential rule is linear if its body consists of a single atom. A rule set
P is linear if all of its rules are.

Again, this condition is clearly not preserved by graph normalisation. For example,
rule (2) is linear while rule (4) is not.

Towards a way of recognising fus and bts rules even after graph normalisation, we
look for ways to undo this transformation, i.e., to denormalise the graph. A natural
approach of reversing the transformation from p(x) to p1(z, x1) ∧ . . . ∧ pn(z, xn) is to
group atoms by their first variable z. We may think of such groups of atoms as objects
(as in object-oriented programming), motivating the following terminology.
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Definition 5. Consider a rule ϕ→ ∃v.ψ. An object in ϕ (or ψ) is a maximal conjunction
of atoms of the form p1(z, x1) ∧ . . . ∧ pn(z, xn) that occur in ϕ (or ψ), where neither
variables xi nor predicates pi need to be mutually distinct. We call z object variable,
p1, . . . , pn attributes, and x1, . . . , xn values of the object. The interface of the object is
the set of variables y ⊆ {x1, . . . , xn} occurring in atoms in ϕ→ ∃v.ψ that do not belong
to the object.

Note that each object is confined to either body or head, but cannot span both. In
general, several attributes of an object may share a value, and several objects may use
the same attributes. The definition therefore generalises the specific conjunctions of
binary attributes introduced in graph normalisation. Existential rules may be thought of
as “creating” new objects when using existential object variables. It is suggestive to use
objects for defining KG versions of the above criteria:

Definition 6. A rule ϕ[x, y] → ∃v.ψ[x, v] over binary predicates is pseudo KG linear
if ϕ consists of a single object. It is pseudo KG frontier guarded if ϕ contains an object
ξ where all variables of x occur in. A rule is KG linear (KG frontier guarded) if it is
pseudo KG linear (pseudo KG frontier guarded), and no object variable occurs as a
value in any object.

The “pseudo” versions of the above notions are not enough to obtain the desired
properties, as the following example illustrates.

Example 2. The following rules are pseudo KG frontier guarded:

p(z, x)→ P(z, x) (6)

P(z, x)→ ∃w1,w2.H(z,w1) ∧ V(z,w2) (7)

H(z, y1) ∧ V(z, y2)→ ∃v,w.P(v,w) ∧ H(y2, v) ∧ V(y1, v) (8)

where p is EDB and the other predicates are IDB. However, the rules are not bts, since
applying them to the database with fact p(a, b) leads to models in which V and H form
(possibly among other things) an infinite grid – a structure of unbounded treewidth.

5 Graph Denormalisation

To understand how and when our intuition of “objects” can be used to recognise rules
with good properties, we introduce a systematic process for denormalising rules. Its
goal is to replace objects p1(z, x1) ∧ . . . ∧ pn(z, xn) by single atoms of the form D(z, x′),
while preserving semantics. D is a new predicate for this specific object. Note that x′
can be limited to the interface of the object with its rule. For example, rule (5) contains
the object P1(z1, x1) ∧ P2(z1, y1) ∧ P3(z1, y2), but y1 and y2 do not occur in any other
object in body or head. One could therefore replace this object by DP(z1, x1), and add a
defining rule

P1(z1, x1) ∧ P2(z1, y1) ∧ P3(z1, y2)→ DP(z1, x1) (9)

to preserve semantics. We do not need the reverse implication, since D is used in the
body only. The defining rule is essential to ensure completeness, but it is still in a nor-
malised syntactic form that is usually not acceptable. To address this, we eliminate
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defining rules by rewriting them using resolution (“backward chaining”). We define
this here for the special case of rewriting defining rules for single objects:

Definition 7. Consider rules ρ1 : ϕ1 ∧ ϕ̄1 → D(z, x) where ϕ1 ∧ ϕ̄1 is a single object,
and ρ2 : ϕ2 → ∃v.(ψ2 ∧ ψ̄2) ∧ ξ where ψ2 ∧ ψ̄2 is a single object, so that ρ1 and ρ2 do
not share variables. If there is a substitution θ that maps variables of ρ1 to variables
of ρ2 such that ϕ̄1θ = ψ̄2, and ϕ1θ does not contain any variables from v, then the rule
ϕ1θ∧ ϕ2 → ∃v.D(z, x)θ∧ ξ is a rewriting of ρ1 using ρ2. We also consider rewritings of
rules that share variables, assuming that variables are renamed apart before rewriting.

Notice that we do not require ϕ̄1 to be the maximal part of the body object for
which a rewriting is possible, as is common in (Boolean) conjunctive query rewriting
[2]. Doing so would be incomplete, since we need to derive all possible bindings for
D(x, y), which may require different parts to be unified with different rule heads. On
the other hand, it is sufficient for our purposes to weaken the result by omitting the
remaining head object parts ψ2.

Example 3. Rewriting rule (9) with rules (4) and (5) yields two rules

phd1(z, x)∧phd2(z, y1)∧phd3(z, y2)→ ∃v.DP(v, x) (10)

P1(z1, x1)∧P2(z1, y1)∧P3(z1, y2)∧sup1(z2, x1)∧sup2(z2, x2)→ ∃v.DP(v, x2). (11)

Since the Pi are IDB predicates that only follow from rules (4) and (5), this represents
all possible ways to infer new information using rule (9), and we can omit the latter. The
bodies of rules (10) and (11) can be denormalised by adding further auxiliary predicates:

Dphd(z, x, y1, y2)→ ∃v.DP(v, x) (12)

DP(z1, x1) ∧ Dsup(z2, x1, x2)→ ∃v.DP(v, x2) (13)

where Dphd and Dsup are EDB predicates that need to be defined by denormalising the
database, and D can be re-used. We have therefore found a way of expressing (9) in
terms of denormalised rules.

Our basic denormalisation algorithm needs to rewrite defining rules exhaustively,
and might require to rewrite the same rule several times using its own rewritings, with
variables renamed to avoid clashes. For a rule ρ1 and rule set P, we therefore define
rewrite(ρ1,P) to be the result (least fixed point) of the following recursive process:

– Initialise rewrite(ρ1,P) := P.
– Add to rewrite(ρ1,P) every rewriting of ρ1 using some rule in rewrite(ρ1,P).
– Repeat the previous step until no further changes occur.

This approach terminates and rewrite(ρ1,P) is finite since each new rewriting con-
tains fewer head objects than the rule used to obtain it. In particular, only rules with
more than a single head object may ever require multiple rewritings.1

1 For existential rules, replacing ϕ → ψ1 ∧ ψ2 by two rules ϕ → ψ1 and ϕ → ψ2 is only correct
if ψ1 and ψ2 do not share existential variables. Rules with multiple head objects are therefore
unavoidable in general. Inseparable parts of rule heads are called pieces [2].
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Algorithm 1. Generic denormalisation algorithm
Input : rule set P; database D

Output: denormalised rule set ResultP and denormalised database ResultD

1 Todo � {ϕ→ Dϕ(z, x) | ϕ an object with object term z and interface x in a rule body of P}
2 Done � ∅
3 Rules � P

4 while there is some rule ρ ∈ Todo do
5 Todo � Todo \ {ρ}
6 Done � Done ∪ {ρ}
7 foreach (ϕ→ ∃v.ψ) ∈ rewrite(ρ,Rules) do
8 foreach body object ξ[z, x] with object term z and interface x in ϕ→ ∃v.ψ do
9 if there is ξ′[z′, x′]→ D(z′, x′) ∈ Done such that ξ[z, x] ≡ ξ′[z′, x′] then

10 replace ξ[z, x] in ϕ by ξ′[z, x]
11 else
12 Todo � Todo ∪ {ξ[z, x]→ D(z, x)} for a fresh predicate D
13 end

14 end
15 Rules � Rules ∪ {ϕ→ ∃v.ψ}
16 end

17 end
18 ResultP � Rules with each body object replaced by its predicate as defined in Done

19 ResultD � set of all facts D(c, d1, . . . , dn) for which D,Done |= D(c, d1, . . . , dn)
20 return 〈ResultP,ResultD〉

Algorithm 1 shows the main part of our procedure, which makes use of some addi-
tional notation explained shortly. The algorithm recursively uses rewriting to eliminate
defining rules for all (body) objects that are to be denormalised. Todo and Done are
sets of defining rules that still need to be rewritten and that already have been rewrit-
ten, respectively. Rules is a set of rules obtained from the rewriting. The defining rules
needed for the body objects that occur in Rules are always found in Todo ∪ Done.

Initially, Rules are the input rules and Todo are the defining rules for their body
objects. For each rule in Todo (Line 4), we consider each rewriting using Rules (Line 7)
for being added to Rules (Line 15). First, however, we ensure that every body object of
newly rewritten rules is defined (Line 8): either we already defined an equivalent object
before (Line 9) that we can reuse, or we add a new object definition to Todo (Line 12).

By ξ[z, x] ≡ ξ′[z′, x′] in Line 9, we express that the two conjunctions are equivalent
conjunctive queries, i.e., there is a bijection {z} ∪ x→ {z′} ∪ x′ that extends to a homo-
morphism from ξ to ξ′, and whose inverse extends to a homomorphism from ξ′ to ξ [1].
Checking this could be NP-hard in general, but is possible in subpolynomial time for
our special (star-shaped) object conjunctions. By ξ′[z, x] in Line 10, we mean ξ′ with
{z′} ∪ x′ replaced by {z} ∪ x according to the bijection that shows equivalence.

If the algorithm terminates, we return the rewritten rules Rules with all body objects
replaced using the newly defined D-atoms, and the set of all denormalised facts that fol-
low from the input database. Note that the heads of rules in Rules may already contain
denormalisation atoms D(z, x), while the bodies remain normalised during the rewriting.
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In Line 19, we do not need to consider rules in Done that contain IDB predicates in their
body, so this database denormalisation is simply conjunctive query answering.

Example 4. Applying Algorithm 1 to Example 1, Todo initially contains three defining
rules: rule (9), rule phd1(z, x)∧phd2(z, y1)∧phd3(z, y2) → Dphd(z, x, y1, y2), and rule
sup1(z2, x1)∧sup2(z2, x2) → Dsup(z2, x1, x2). The latter two rules contain only EDB
predicates in their bodies and therefore have no rewritings: they are moved to Done
without adding rules to Rules or Todo. Rule (9) has two rewritings (10) and (11), with
the same body objects as the original rule set: all of them are equivalent to objects in
Done and can be reused. The algorithm terminates to return four rules: (12) and (13),
and analogous denormalisations of the original rules (4) and (5).

Theorem 4. Consider a database D and a rule set P, such that Algorithm 1 terminates
and returns 〈ResultP,ResultD〉. For any Boolean conjunctive query ∃v.ϕ[v], we have
that D,P |= ∃v.ϕ[v] iff ResultD,ResultP |= ∃v.ϕ[v].

As usual, this result extends to non-Boolean CQ answering [1]. To prove Theorem 4,
one can show the following invariant to hold before and after every execution of the
while loop: D,P |= ∃v.ϕ[v] iffD,ResultD,ResultP |= ∃v.ϕ[v], where ResultP and ResultD
are obtained as in Lines 18 and 19 using the current Done. Showing this to hold when
the program terminates successfully shows the claim, since D can be omitted as the
rules in ResultP do not use any EDB predicates from D.

6 Termination of Denormalisation

Although the results of Algorithm 1 are correct, it may happen that the computation
does not terminate at all, even in cases where an acceptable rewriting would exist.

Example 5. Consider the rule

s(z1, x1) ∧ C(z1, x2) ∧ q(z2, x1) ∧ r(z2, x2)→ C(z1, x1) (14)

where s, q, and r are EDB predicates. There are two body objects in (14), where only
the first needs rewriting. Rewriting the rule s(z1, x1)∧C(z1, x2)→ D(z1, x1, x2) with (14)
leads to a new rule s(z1, x1)∧ s(z1, x2)∧C(z1, x3) ∧ q(z2, x2)∧ r(z2, x3)→ D(z1, x1, x2).
This rule introduces a new object for object variable z1. Since the interface now contains
three variables {x1, x2, x3}, it cannot be equivalent to the previous object. A new defining
rule is added to Todo, which will subsequently be rewritten to s(z1, x1) ∧ s(z1, x2) ∧
s(z1, x3) ∧ C(z1, x4) ∧ q(z2, x3) ∧ r(z2, x4) → D′(z1, x1, x2, x3). The algorithm therefore
does not terminate, and indeed the generated rules are necessary to retain completeness.

As in this example, non-termination of Algorithm 1 is always associated with
objects of growing interface. Indeed, for a fixed interface, there are only finitely many
non-equivalent objects, so termination is guaranteed. While general (query) rewriting
techniques in existential rules tend to have undecidable termination problems, our spe-
cific approach allows us to get a more favourable result:

Theorem 5. It is P-complete to decide if Algorithm 1 terminates on a given set of rules.
For rule sets that do not contain head atoms of the form p(x, v), where x is a universally
quantified variable and v is existentially quantified, the problem becomes NL-complete.
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To see why this is the case, let us first observe that non-termination is only caused
by rules that use object variables in frontier positions:

Proposition 1. If object variables do not occur in the frontier of any rule in P, then
Algorithm 1 terminates on input P. In particular, this occurs if P is of the form GN(P′).

Indeed, consider a rewriting step as in Definition 7 where we rewrite ρ1 using ρ2. If
the object variable z in ρ1 is mapped to an existential variable in ρ2, i.e., zθ ∈ v, then
no atom of the object in ρ1 can occur in the body of the rewriting, i.e., ϕ1 is empty.
Otherwise, there would be an existential (object) variable in the body, which is not
allowed by Definition 7. Hence, the body of the rewriting is ϕ2, and no new objects are
introduced. If all rules are of this form, the overall number of objects that need to be
processed is finite and the algorithm must terminate.

Coming back to Theorem 5, we can therefore see that only rewritings using rules
with object variables in the frontier need to be considered (we call the associated objects
body frontier object and head frontier object). For investigating termination, we can
restrict to “minimal” rewritings that affect only one value y in the rewritten object, i.e.,
where ϕ̄1 from Definition 7 has the form p1(z, y) ∧ . . . ∧ pk(z, y).

In the (simpler) case that head frontier objects do not have any existentially quan-
tified values, it is even enough to rewrite single attribute-value pairs. A rule with body
frontier object p1(z, y1)∧ . . .∧ pn(z, yn) and head frontier object q1(z, x1)∧ . . .∧qm(z, xm)
thus gives rise to “replacement rules” of the form qi(z, xi) �→ p j(z, y j) that specify how
objects might be rewritten using this rule. This defines a graph on attribute-value pairs
of P. Non-termination can be shown to occur exactly if this graph has a cycle along
which the interface of the object has increased.

For the latter, we trace the size of the rewritten object’s interface during rewrit-
ing. Every rewriting with a frontier object may increase or decrease the interface. An
increase may occur if the body frontier object contains at least two values in its inter-
face (one interface value preserves size: it is either the frontier value that was unified
in the rewriting, or there is no frontier value and the rewritten value was mapped to an
existential variable and thereby eliminated). Rule (14), for example, has two interface
values, x1 and x2, causing non-termination. We can keep track of the interface size in
logarithmic space. Cycle detection in the above graph is possible in NL. This shows
membership. Hardness is also shown by exploiting the relationship to cycle detection.

Using our understanding of interface-increasing rules as a cause for non-
termination, we can also generalise Proposition 1:

Theorem 6. If every body frontier object that occurs in some rule of P has an interface
of size ≤ 2, then Algorithm 1 terminates on P.

We have only shown the NL-part of Theorem 5 yet. The general case with existential
values is more complicated and we just give the key ideas of the proof in [18]. The prob-
lem is that existential values can only be used for rewriting if all attributes of the rewrit-
ten object value are found in the head. Hence, it is not enough to trace single attribute-
value pairs. P-hardness is shown by reduction from propositional Horn logic entailment,
where we encode propositional rules a∧b→ c as pa(x, y)∧ pb(x, y)→ pc(x, y) and true
propositions a as t(x, y)→ pa(x, y). Finally, we add a rule pc(x, y)∧pc(x, z)→ ∃v.t(x, v),
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where c is a proposition. One can show that Algorithm 1 terminates on the resulting rule
set if and only if c is not entailed from the Horn rules. Membership can use a similar
cycle-detection approach, but the construction of the underlying graph now runs in P.

Even Theorem 6 does not guarantee termination for KG linear rules, and indeed our
approach may not terminate in this case. To fix this, we need to observe that we can
simplify rewriting if all rules contain only one object in their body: using the notation
of Definition 7, a linear rewriting of rule ρ1 using ρ2 is the rule ϕ1θ∧ϕ2 → ∃v.D(x, y)θ.
In words: we are reducing the head to contain only the denormalisation atom, and no
other atoms. It is easy to check that the procedure remains complete for KG linear rules.

Theorem 7. If P is KG linear, then Algorithm 1, modified to use linear rewriting of
rules, terminates and returns a rule set ResultP that is linear.

It is not hard to see that rewritings of KG linear rules must also be KG linear,
showing the second part of the claim. Termination follows since the interface of KG
linear rules as obtained during rewriting is bounded by the size of the frontier, which
cannot increase when using linear rewriting.

Finally, we remark that our denormalisation shares some similarities with CQ
rewriting for existential rules, which is known to be semi-decidable: there is an algo-
rithm that terminates and returns a finite rewriting of a BCQ over a set of rules whenever
such a rewriting exists [2]. One may wonder if we could achieve a similar behaviour
for Algorithm 1, extending it so that termination is semi-decidable and the algorithm is
guaranteed to produce a denormalisation for, e.g., all rule sets that are fus. However,
under our assumption that EDB and IDB predicates are separated, the rewritability of
BCQs is in fact no longer semi-decidable, not even for plain Datalog. Similar observa-
tions have been made for the closely related problem of Datalog predicate boundedness
[10]. Hence, there is no hope of finding an algorithm that will always compute a denor-
malisation whenever one exists, even if we cannot decide if this will eventually happen
or not. In exchange for this inconvenience, our algorithm also benefits from the sep-
aration of IDB and EDB predicates, as it enables us to eliminate defining rules after
rewriting them in all possible ways – since IDB predicates cannot occur in the data-
base, this preserves inferences, although it is not semantically equivalent in first-order
logic.

7 Frontier Guardedness and Functional Attributes

Our denormalisation procedure can also be applied to KG frontier guarded rules.

Theorem 8. If P is KG frontier guarded and Algorithm 1 terminates on P, then the
denormalised rule set ResultP is frontier guarded.

This follows since a KG frontier guarded rule can only have one object variable in
its frontier, so that the object in this case must be the guard. Rewriting therefore can
only increase the size of the guard, preserving frontier guardedness.

Theorem 8 is still weaker than Theorem 7, since it does not guarantee termination as
in the case of KG linear rules. To compensate, we add another mechanism for making
termination more likely, following our intuition of viewing conjunctions as “objects”.
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In typical objects, attributes often can have at most one value. This holds for all objects
created when normalising rules. Making this restriction formal could also ensure ter-
mination, since the size of each object would be bounded, and the number of possible
objects finite. Example 5 shows how a non-terminating case might violate this. The con-
straint that attributes have at most one value is captured by functional dependencies:

Definition 8. A functional dependency (FD) for attribute p is a rule p(z, x1) ∧
p(z, x2)→ x1 ≈ x2, where ≈ is a special predicate that is interpreted as identity relation
in all models: ≈I= {〈δ, δ〉 | δ ∈ ΔI}. The functional dependency is an EDB-FD if p is
an EDB predicate, and an IDB-FD otherwise.

We use built-in equality in this definition, making FDs a special case of equality
generating dependencies (egds) [1]. Alternatively, ≈ could also be axiomatised using
Datalog, which turns FDs into regular Datalog rules and ≈ into a regular predicate.

Intuitively, we want functional dependencies to apply to some attributes. However,
we cannot just introduce FDs as additional rules: query answering is undecidable for the
combination of (frontier) guarded existential rules and FDs [15]. Conversely, it is not
true that the given rule set entails any IDB-FDs, even if some EDB-FDs are guaranteed
to hold in the database. Indeed, any model of a set of rules can be extended by inter-
preting each IDB predicate as a maximal relation (i.e., as an arity-fold cross-product of
the domain), resulting in a model that refutes all possible IDB-FDs. Therefore, rather
than asserted or entailed FDs, we are interested in FDs that are incidental:

Definition 9. Consider a set P of rules and a set F of EDB-FDs. An IDB-FD for
attribute p is incidental to P and F if, for all databases D with D |= F and for all
BCQs ϕ, we have that D,P |= ϕ iff D,P∪ {p(z, x1)∧ p(z, x2)→ x1 ≈ x2} |= ϕ. The set of
all FDs incidental to P and F is denoted IDP(P,F).

In other words, an FD is incidental if we might as well assert it without affecting
the answer to any conjunctive query.

Given a set F of FDs and a conjunction ϕ of binary atoms of the form p(x, y), we
write F(ϕ) for the conjunction obtained by identifying variables in ϕ until all FDs in
F are satisfied. This is unique up to renaming of variables. Moreover, let θF(ϕ) denote
a corresponding substitution such that F(ϕ) = ϕθF(ϕ). For our simple attribute depen-
dencies, this can be computed in polynomial time. Using this notation, we can extend
Algorithm 1 to take a given set of FDs into account:

Definition 10. Let Algorithm 1F be the modification of Algorithm 1 that takes an addi-
tional set F of FDs as an input, and that replaces the rewriting ϕ → ∃v.ψ after Line 7
by F(ϕ) → ∃v.ψθF(ϕ), i.e., which factorises each rewriting using the given FDs before
continuing.

This may help to achieve termination, since the application of FDs may decrease
the size of objects to be rewritten next. Our approach shares some ideas with the use of
database constraints for optimising query rewriting [23], but the details are different.

Example 6. Consider again the rule of Example 5, and assume that we know that
attribute s is functional. Algorithm 1F will again obtain the rewriting s(z1, x1) ∧
s(z1, x2) ∧ C(z1, x3) ∧ q(z2, x2) ∧ r(z2, x3) → D(z1, x1, x2). Denoting the body of this
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rewriting by ϕ, we find that θF(ϕ) = {x2 �→ x1}, so that the rewriting becomes
s(z1, x1) ∧ C(z1, x3) ∧ q(z2, x1) ∧ r(z2, x3) → D(z1, x1, x1). The object for variable z1

now is equivalent to the object that has been rewritten in the first step, and so can be
replaced by D(z1, x1, x3). The algorithm terminates.

8 Obtaining Incidental FDs

The improved denormalisation of Definition 10 hinges upon the availability of a suit-
able set of functional dependencies. For EDB predicates, these might be obtained from
constraints that have been declared explicitly for the underlying database, or they might
even be determined to simply hold in the given data. Example 6 shows that this can
already help. In general, however, we would also like to use incidental IDB-FDs. This
section therefore asks how they can be computed.

Our first result is negative: it is impossible to determine all incidental FDs even for
very restricted subsets of Datalog. This can be shown by reducing from the undecidable
problem of deciding non-emptiness of the intersection of two context-free grammars.

Theorem 9. For a set P of Datalog rules containing only binary predicates and no
constants, a set F of EDB-FDs, and an IDB-FD σ, it is undecidable if σ ∈ IDP(P,F).

We therefore have to be content with a sound but incomplete algorithm for com-
puting incidental FDs. We use a top-down approach that initially assumes all possible
FDs to hold, and then checks which of them might be violated when applying rules,
until a fixed point has been reached. This approach is closely related to a work of Sagiv
[24, Sect. 9] where the author checks if a given set of existential rules is preserved non-
recursively by a given Datalog program. We extend this idea from Datalog to existential
rules and from non-recursive to (a form of) recursive preservation. For simplicity, we
give the algorithm only for checking FD preservation, but it is not hard to extend it to
arbitrary rules. We also remark that Theorem 9 settles an open question of Sagiv [24].

Our algorithm tries to discover a violation of an FD by considering a situation where
the premise holds (expressed as a CQ p(z, x1)∧ p(z, x2)), and then checking all possible
ways to derive this situation in one step, using rewriting. If any of the rewritten queries
is such that the FD does not follow from the FDs assumed to far, the FD is eliminated.

To check functionality in the presence of existential quantifiers, we first replace exis-
tential variables by Skolem terms. The actual check then has to be based on a rewriting
of p(z, x1)∧ p(z, x2) where both atoms have been rewritten, which we ensure by renam-
ing the predicates. For the next definition, recall that rewriting conjunctive queries can
be achieved like rewriting rules in Definition 7 but dropping the head in all rewritings.

Definition 11. The Skolemisation of rule ϕ[x,y]→∃v.ψ[x,v] is the rule ϕ[x,y]→ψ′[x]
where ψ′ is obtained from ψ by replacing each v ∈ v by a term fv(x), where fv is a freshly
introduced function symbol. The Skolemisation of all rules in P is denoted skolem(P).

For a conjunction of atoms ϕ, let ϕ̂ be ϕ with all predicates p replaced by fresh
predicates p̂. For a rule set P, let P̂ be the set {ϕ → ∃v.ψ̂ | ϕ → ∃v.ψ ∈ P}. The one-
step rewriting os-rewrite(ϕ,P) is the set of all conjunctions obtained by exhaustively
rewriting ϕ̂ using rules in skolem(P̂), and where no predicate from ϕ̂ occurs.
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Algorithm 2. Algorithm for computing some incidental FDs
Input : rule set P; set F of EDB-FDs
Output: set FIDB of incidental IDB-FDs

1 FIDB � {p(z, x1) ∧ p(z, x2)→ x1 ≈ x2 | p an IDB predicate}
2 repeat
3 foreach p(z, x1) ∧ p(z, x2)→ x1 ≈ x2 ∈ FIDB do

4 foreach ϕ ∈ os-rewrite(p(z, x1) ∧ p(z, x2),P) do
5 yi � the variable that xi has been mapped to for the rewriting ϕ (i ∈ {1, 2})
6 if y1θ(F∪FIDB)(ϕ) � y2θ(F∪FIDB)(ϕ) then
7 FIDB � FIDB \ {p(z, x1) ∧ p(z, x2)→ x1 ≈ x2}
8 break // continue with next FD in Line 3

9 end
10 end
11 end
12 until FIDB has not changed in previous iteration

13 return FIDB

The result of os-rewrite is finite, since heads and bodies of P̂ do not share predi-
cates. Our procedure is given in Algorithm 2. It proceeds as explained above checking,
given a pair of IDB atoms, every possible derivation for a potential violation of an FD.
A violation is detected if two values of an attribute are not necessarily equal based on
the current FDs (Line 6). Note that ϕ may not contain x1 and/or x2 since they may be
unified during rewriting. We therefore consider the values yi they have been mapped to
(Line 5). As a special case, yi can be Skolem terms, which typically causes the FD to
be violated, unless both x1 and x2 are rewritten together and replaced by the same term.

Note that the check in Line 5 uses the set FIDB, including the FD that is just checked.
Intuitively speaking, this is correct since the rewriting approach searches for the first
step (in a bottom-up derivation) where an FD would be violated. Initially, when all IDB
predicates are empty, all FDs hold.

Theorem 10. For inputs P and F, Algorithm 2 returns a set FIDB ⊆ IDP(P,F) after
polynomial time.

While the algorithm must be incomplete, and in particular cannot detect all FDs for
the rules used for our proof of Theorem 9, it can detect many cases of FDs.

Example 7. Consider the following rules, with EDB predicates p and s:

p(x, y) ∧ s(x, y)→ Q(x, y) (15)

s(x, y)→ ∃v,w.Q(v,w) ∧ R(x, v) ∧ R(x,w) (16)

Assume that p is functional. Algorithm 2 first checks the IDB-FD for Q by rewriting
Q̂(z, x1) ∧ Q̂(z, x2). We can rewrite the first atom using rule (15) (mapping z to x and
x1 to y) to obtain p(x, y) ∧ s(x, y) ∧ Q̂(x, x2). Rewriting Q̂(x, x2) using rule (15) with
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variables renamed to x′ and y′, we get p(x, y)∧ s(x, y)∧ p(x, y′)∧ s(x, y′). Hence y1 = y
and y2 = y′ in Line 5, and these variables are identified since p is functional.

Rewriting Q̂(z, x1) ∧ Q̂(z, x2) using rule (16) for both atoms, we obtain s(x, y) ∧
s(x, y′), with original variables replaced by {z �→ x, x1 �→ fw(x), x2 �→ fw(x)} where
fv(x) and fw(x) are Skolem terms. Again, the FD is preserved. As it is not possible to
rewrite one atom with rule (15) and the other with rule (16), we find that Q is functional.

In contrast, functionality for R is violated, since we cannot identify fv(x) and fw(x).

9 Discussion and Outlook

Our central observation is that support for ontological modelling and reasoning over
knowledge graphs (KGs) is severely lacking. Ontology language features needed for
KGs are not supported by mainstream approaches such as OWL and Datalog, and take
us outside of known decidable classes of existential rules. Practical tools and methods
for modelling and reasoning are even further away. A lot of research is still to be done.

Our work is a first step into this field, focussing on basic language definitions and
decidability properties. A core concept of our work is to view some conjunctive patterns
as objects with attributes and values, such that existential quantification plays the role
of object creation. This leads to a very natural view on existential rules, but it also
extends to the data, where objects correspond to groups of triples. We believe that such
grouping might also help to improve performance of reasoning with KG-based rules.

Each decidability criterion (acyclicity/fes, bts, rewritability/fus) calls for a different
reasoning procedure. For the types of acyclicity we mention, any bottom-up forward
chaining inference engine will terminate, even if rules are Skolemised. Rule engines in
RDF stores (e.g., Jena) or logic programming tools (e.g., DLV) could be used. Linear
rules (and fus in general) are supported by backward-chaining reasoners such as Graal
[3]. Interestingly, reasoners for fes and fus do not need to know if and why the rules meet
the criteria – it is enough if they do. In particular, rules do not have to be denormalised
for reasoning. Denormalisation is only needed to find out which tool to use.

Tools for guarded rules and bts seem to be missing today. They could be imple-
mented by augmenting bottom-up reasoners with additional blocking conditions to
ensure termination. Similar ideas are used successfully in OWL reasoning, but gen-
eralising them to arbitrary rules will require further research and engineering. Our work
may motivate such research by identifying a wider class of rules that would benefit from
this.

There are too many connections to other recent works to list, but we highlight some.
Ontologies for non-classical data models are currently also studied for key-value stores
[21] and for the object database MongoDB [7]. A rule language for declarative pro-
gramming on KGs was recently proposed in Google’s Yedalog [9], and several new
rule-based reasoners now support RDF graphs [20,25]. There are numerous works on
decidable classes of existential rules. We covered essential approaches, but there remain
many others, such as warded [14] or sticky rules [8], that deserve investigation for KGs.



Ontologies for Knowledge Graphs: Breaking the Rules 391

This diversity of works witnesses a huge current interest in practical data models
and rule-based ontologies, but many further works will still be needed for bringing KG-
based ontologies to the level of maturity that past semantic technologies have acquired.
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Abstract. Resolving the semantic heterogeneity in the semantic web
requires finding correspondences between ontologies describing resources.
In particular, with the explosive growth of data sets in the Linked Open
Data, linking multiple vocabularies and ontologies simultaneously, known
as holistic matching problem, becomes necessary. Currently, most state-
of-the-art matching approaches are limited to pairwise matching. In this
paper, we propose a holistic ontology matching approach that is mod-
eled through a linear program extending the maximum-weighted graph
matching problem with linear constraints (cardinality, structural, and
coherence constraints). Our approach guarantees the optimal solution
with mostly coherent alignments. To evaluate our proposal, we discuss
the results of experiments performed on the Conference track of the
OAEI 2015, under both holistic and pairwise matching settings.

Keywords: Ontology matching · Holistic matching · Linear approach

1 Introduction

Ontology matching is an essential task in the management of the semantic het-
erogeneity problem in several scientific disciplines and applied fields, notably to
support data exchange, schema/ontology evolution, data integration, and data
linkage. The typically high degree of semantic heterogeneity reflected in different
ontologies makes this task an inherently complex task [21]. Several approaches
for automatic or semi-automatic ontology matching have emerged [6] in the liter-
ature, which exploit in many different ways the knowledge encoded within each
ontology when identifying correspondences between their features or structures.

Despite the different proposals in the field, most ontology matching
approaches have been designed to deal with pairs of ontologies, a task so-called
pairwise matching. However, with the continuously increasing amount of data
sources being produced by the Linked Open Data community, designing solutions
to deal with the simultaneously matching of different schemas and ontologies is
becoming necessary [19,27]. This task is called holistic ontology matching [21].
The holistic ontology matching problem is one of the key challenges proposed
in [19] in its future research agenda. The proposal of the paper falls within the
scope of holistic approaches.
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Broadly speaking, the matching process takes as input a set of ontologies,
denoted by Ω, and determines as output a set of correspondences, called align-
ment. The pairwise ontology matching process takes as input two ontologies,
Ω = {O1, O2}, and determines as output a set of correspondences denoted as
A = {c1, c2, ..., cx}. A correspondence ci can be defined as <e1, e2, r, n>, such
that: e1 and e2 are ontology entities (e.g. properties, classes, instances) of O1

and O2, respectively; r is a relation holding between e1 and e2 (usually, ≡, �,
⊥, �); and n is a confidence measure in the [0, 1] range assigning a degree of
trust on the correspondence. The correspondence <e1, e2, r, n> asserts that the
relation r holds between the ontology entities e1 and e2 with confidence n. The
higher the confidence value, the higher the likelihood that the relation holds.
Within an individual mapping entity, one or more O1 entities can match with
one or more O2 entities. Alignments have different cardinalities; we distinguish
1:1 (one-to-one), 1:m (one-to-many), n:1 (many-to-one) or n:m (many-to-many).
An alignment may be a simple alignment 1:1, or a multiple alignment 1:n or n:1,
and n:m.

The holistic ontology matching process extends the ontology pairwise match-
ing using a set Ω = {O1, ..., ON} of ontologies with N ≥ 2. For instance, if
Ω = {O1, O2, O3}, then the alignment is defined as A = A12 ∪ A13 ∪ A23 where

– A12 = {<e1, e2, r12, c12> |e1 ∈ O1 ∧ e2 ∈ O2},
– A13 = {<e1, e3, r13, c13> |e1 ∈ O1 ∧ e3 ∈ O3},
– A23 = {<e2, e3, r23, c23> |e2 ∈ O2 ∧ e3 ∈ O3}.

Triple correspondences between entities of O1, O2, and O3 can be deduced
from A by detecting cliques; e.g., each subset of adjacent correspondences <
e1, e2, r, c12>, <e1, e3, r, c13> and <e2, e3, r, c23>.

The main limitation of the pairwise approaches regard to the holistic
approaches is that in the former, A is considered as a local solution depending
of the order with which the ontology matching is carried out; e.g. A12 ∪A(12)3 
=
A13∪A(13)2 
= A23∪A(23)1. Thus the set of correspondences in A differs according
to the order users apply the ontology matching pairwise approach. Our holistic
approach resolves the problem globally thus the solution is unique and considered
as a global solution.

In this paper, we tackle the challenges of providing an extensible holistic
ontology matching solution at schema-level. We provide an holistic approach
which is able to link multiple ontologies simultaneously from Ω with N ≥ 2. The
approach guarantees to find always the same A global optimal solution. Our
solution is extensible to operate with simple and multiple correspondences. To
identify the best correspondences, a normalized degree of similarity between 0
and 1 is calculated using various similarity metrics. We develop a linear program
based on an extension of the maximum-weighted graph matching problem [23],
which is solved in polynomial time [15]. Our linear program encompasses different
constraints related to the ontology matching problem. The constraints are used
to guarantee the structural coherence between matched ontologies.
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The main contributions of this paper are as follows:

– We provide an efficient approach to determine holistic correspondences
between multiple ontologies. We model the approach within a linear program
by reducing the ontology matching problem to the maximum-weighted graph
matching problem, which is solvable in polynomial time.

– The approach is extensible with different structural similarity strategies and
several linear constraints, which ensure mostly coherent alignments. We pro-
vide four constraints allowing the matching of classes and properties between
ontologies.

– This approach extends a contribution [1] in the field of schema matching,
especially designed to hierarchical schema structures like XML. The flexibility
of the employed technique has allowed us to adapt the previous model with
new constraints in order to take into account the specificities of the ontology
matching problem.

The rest of the paper is organised as follows. Section 2 discusses related work.
Section 3 presents our extensible linear approach for matching multiple ontolo-
gies. Section 4 discusses the experiments conducted on the Conference track of
the Ontology Alignment Evaluation Initiative Campaign (OAEI) 2015, under
both pairwise and holistic settings. Finally, Sect. 5 concludes the paper and dis-
cusses future directions.

2 Related Work

This paper concerns the problem of holistic ontology matching, which is modelled
through the maximum-weighted graph matching problem with constraints and
techniques from the combinatorial optimisation field.

Graph-Based Approaches. In [28], an association graph is built from two input
ontologies, where nodes represent candidate correspondences and edges as affini-
ties between them. The selection of correspondences is formulated as a node
ranking in the association graph using a Markov random walk process [3]. An
iterative matcher (GMO) using bipartite graphs to represent ontologies is pro-
posed in [11]. It computes structural similarities between entities by recursively
propagating their similarities in the graphs. A similar representation is adopted
by OLA [7], where the selection of alignments is reduced to a weighted bipartite
graph matching problem. This approach models structural similarity computa-
tion as a set of equations of the different properties of ontologies.

Combinatorial Optimisation Strategies. S-Match [8] reduces the semantic match-
ing to the propositional validity problem, which is theoretically a co-NP hard
problem. The elements of schemes are translated into logical formulas and the
matching consists of resolving propositional formula constructed between enti-
ties. Similarity Flooding (SF) [18] reduces the selection of correspondences to
the stable marriage problem, which returns a local optimal solution. SF pro-
poses a graph-based structural-matcher which propagates similarities between
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neighbourhood nodes until a fixed point computation. CODI [12] implements
the probabilistic markov logical framework, transforming the matching problem
into a maximum-a-posteriori (MAP) optimization problem which is equivalent to
Max-Sat problem (NP-hard). Recently, [20] proposes a multi-cultural taxonomies
matching that is modelled as a combinatorial optimisation problem using integer
linear programming and quadratic programming. Mamba [17] is another system
applying a combinatorial optimization approach with constraints and Markov
Logic.

Holistic Approaches. While state-of-the-art matching proposals mainly focus on
pairwise matching, most works on holistic matching give special attention to
pairwise-attribute matching. In [9], a probabilistic framework for hidden model
discovery is used for determining an underlying unified model capturing the cor-
respondences between attributes in different schemes. Given the input schemas as
observations, it reconstructs the hidden generative distribution by selecting con-
sistent models with highest probability. For dealing with complex attribute cor-
respondences, [10] exploit co-occurrence information across schemes and a cor-
relation mining approach. It is based on the observations that frequent attribute
co-presence indicates a synonym relationship and rare ones indicates a group-
ing relationship. This approach has been extended in [24] improving accuracy
and efficiency, by reducing the number of synonymous candidates (assuming
that two attributes co-present in the same schema cannot be synonymous can-
didates). [22] present an approach for incrementally merging 2-way schemes and
generating an integrated one by clustering the nodes based on linguistic similar-
ity and a tree mining technique. Under a different perspective, [27] proposes a
holistic matching approach for aligning large ontologies from different domains,
by grouping concepts in topics that are aligned locally. The topic identification is
based on TF-IDF applied on Wikipedia pages related to concepts, resulting in a
category trees (forests), while the similarity of topics is based on Jaccard, result-
ing in a graph containing topically related forest nodes. The correspondences
between forests are determined using a tree overlap measure, before applying
logical reasoning for removing conflicting correspondences.

Discussion. While the alignment selection strategy in [28] is based on paths in
the graph, we reduce the selection to the maximum-weighted bipartite graph
matching (MWGM) problem like OLA and we adopt a different structural simi-
larity strategy from [11]. The complexity of MWGM with linear programming is
known to be polynomial [23] even with the simplex algorithm [23]. Compared to
OLA we do not compute structural similarities but encode structural properties
as linear constraints. As CODI, we perform both structural matching (without
additional structural similarity computation) and alignment extraction phases.
Compared to CODI, we consider disjointness for all types of entities. Unlike
CODI whose pairwise approach is reduced to a NP-Hard problem, our solu-
tion extends a polynomial problem in both pairwise and holistic versions. While
MAMBA can be reduced to an NP-Hard problem, our approach is reduced to
a polynomial problem. In a holistic and monolingual setting, we apply a com-
binatorial optimisation problem using linear programming, as done in [20] in
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pairwise. The constraints proposed by [20] for multiple correspondences can be
simply added to our model to enhance the matching of multiple correspondences
in the relaxed version of our model (i.e. with relaxed decision variables). While
most holistic approaches focus on pairwise-attribute matching [9,10,24,27], our
approach is not restricted to attributes. These holistic approaches handle simple
attributes compared to the more structured schemes of ontologies. Differently
from [27], we do not perform cross-domain holistic matching. Compared to [10],
our approach can also return simple and multiple correspondences. Finally, as
some pairwise matchers [13,14], we adopt constraints that reduce the possibil-
ity of generating incoherent alignments. In that sense, an interesting direction
concerns applying repair techniques in holistic ontology matching [5].

3 Extensible Holistic Approach

3.1 Global Overview

Our approach is based on a well-known combinatorial optimisation problem, the
maximum-weighted graph matching (MWGM) problem [23]. The idea consists in
generalizing the pairwise matching on a set of N input ontologies through generic
decision variables and generic linear constraints modelled in a linear program.
The MWGM problem aims at finding a set of disjoint edges having the maximum
weights in a weighted graph G. Here, we reduce the ontology matching to the
MWGM problem1. Indeed, we consider that G expresses the potential candidate
correspondences between the input ontologies and has (i) three types of nodes
representing classes, object and data properties, and (ii) edges representing vir-
tual connections between the same types of nodes (i.e. classes related to classes,
object properties to object properties and data properties to data properties).
These edges have weights represent similarities between the nodes and can be
establish using different strategies. In our approach, the similarities are calcu-
lated in a pre-processing step (Sect. 3.2). Given this reduction, searching simple
correspondences (1:1) with a maximum weight on similarities is equivalent to
find a set of disjoint edges with a maximum weight in the MWGM problem.

Our approach processes simultaneously N ≥ 2 input ontologies. It involves a
pre-processing step and a processing step. In the pre-processing step, we apply
element-level matchers and then aggregate the results in order to produce simi-
larities between the entities of the ontologies. In the processing step, we instan-
tiate the different elements of the linear program (decision variables and linear
constraints) and then resolve the model by using the CPLEX solver2.

We will use the following notations in the remainder of this paper:

– N = |Ω| is the number of input ontologies;
– i, j are internal identifiers of the ontologies Oi and Oj ;

1 Note that we do not transform an OWL ontology into a graph but represent all
entities as nodes with connections between them representing candidate correspon-
dences.

2 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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– {k, l}, {m, n}, {q, r} refer respectively to the order of classes, object proper-
ties, data properties in the ontology (the order refers to an internal identifier
of the entity in the set of ordered entities of the same type);

– Ci , OPi, DPi refer respectively to the set of classes, object properties and
data properties in the ontology Oi;

– nbCi, nbDPi, nbOPi refer respectively to the cardinality of classes (|Ci|), the
cardinality of object properties (|OPi|) and the cardinality of data properties
(|DPi|) in Oi;

– cik is the class of order k in the ontology Oi;
– opim is the object property of order m in the ontology Oi;
– dpiq is the data property of order q in the ontology Oi;

Running Example. In order to illustrate our approach, we have chosen three
ontologies from the OAEI Conference track [26]. These ontologies are Cmt,
Sigkdd and Conf-of. For the sake of brevity, we present only some fragments of
these ontologies as depicted in Fig. 1. This example will be used in the remainder
of the paper.

(a) Cmt (b) Sigkdd (c) Conf-of

Fig. 1. Example of three ontologies from conference track in OAEI

The objective of our model is to resolve simultaneously the set of alignments
given the ontologies O1 (Cmt), O2 (Sigdkk) and O3 (Conf-of). It will resolve in
a unique run the alignments for A12, A23 and A13. As depicted in Fig. 1, O1 is
composed of nbC1 = 8 classes, nbOP1 = 2 object properties and nbDP1 = 2 data
properties. C1 = {c11 , c12 , . . . , c18}, OP1 = {op11 , op12}, DP1 = {dp11 , dp12}.

3.2 Pre-processing Step

Our linear program takes as input a set of N ≥ 2 ontologies Oi = Ci∪OPi∪DPi,
i ∈ [1, N ], and a set of N(N − 1)/2 similarity matrices representing the average
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results of different element-level matchers. These matrices are computed between
each pair of ontologies for classes, object properties and data properties. For
instance, simik,jl denotes a similarity measure computed between the classes cik
and cjl , which belong respectively to ontology Oi and Oj . We have selected a
restrictive set of element-level matchers according to their time performance and
to their quality in the recent comparative study of [25]. The selected metrics
are as follows: (1) from the character-based category metrics we have chosen
ISUB and 3-gram to compute similarity between tokens and we have applied
the generalized Mongue-Elkan method on these metrics to get the similarity
between entities, (2) from the token-based category, we have applied Jaccard and
(3) from the language-based category we applied Lin measure. These metrics are
aggregated according to the average function in order to keep a balanced result.

3.3 Linear Program

In this section, we describe the formalization of our linear program for holistic
matching named LPHOM. The formalization is generalizable for N ≥ 2 graphs.

Decision Variables. Our model is composed of three types of binary deci-
sion variables referring respectively to the three simple types of alignments in
ontologies:

– The first type refers to the possible correspondences between classes. For each
Oi and Oj , ∀i ∈ [1, N − 1], j ∈ [i + 1, N ], xik,jl is a binary decision variable
equals to 1 if the class cik in the ontology Oi aligns with the class cjl in Oj

and 0 otherwise. ontology Oj and 0 otherwise.
– The second type refers to the possible correspondences between object prop-

erties. For each Oi and Oj , ∀i ∈ [1, N − 1], j ∈ [i + 1, N ], yim,jn is a binary
decision variable equals to 1 if the object property opim in the ontology Oi

aligns with the object property opjn in the ontology Oj and 0 otherwise.
– The third type refers to the possible correspondences between data properties.

For each Oi and Oj , ∀i ∈ [1, N − 1], j ∈ [i + 1, N ], ziq,jr is a binary decision
variable equals to 1 if the data property dpiq in the ontology Oi aligns with
the data property dpjr in the ontology Oj and 0 otherwise.

Example 1. For the concept c11 in the ontology O1, we have the follow-
ing decision variables: x11,21 , x11,22 . . . , x11,29 , x11,31 , . . . , x11,38 . For the object
property op11 in the ontology O1, we have the following decision variables:
y11,21 , y11,22 , y11,31 . For the data property dp11 in the ontology O1, we have the
following decision variables: z11,21 , . . . , z11,31 .

Linear Constraints. LPHOM involves four types of constraints:

– Constraints of type C1 express the matching cardinality, we apply this type
of constraint on classes, object properties and data properties;

– Constraints of type C2 allow reducing the incoherences by limiting the corre-
spondences to non-disjoint entities;
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– Constraints of type C3 express restrictions in aligning object properties con-
sidering that classes represent ranges and domains of object properties;

– Constraint of type C4 express the relationships between data properties and
classes by mean of involving the domain restrictions of data properties. We
have not considered ranges because they are less restrictive than domains.

In the following, we detail and illustrate each constraint. For binary decision
variables, we propose to use this classical C1 constraint in order to resolve 1:1
alignments. This constraint is equivalent to resolve a set of disjoint edges in the
MWGM problem.

Definition 1 (C1 Constraint). We define a C1 constraint for each type
of decision variables. Each class cik (respectively object property opim , data
property dpiq ) in the ontology Oi could match with at most one class cjl
(respectively object property opjn , data property dpjr ) in the ontology Oj ,
∀i × j ∈ [1, N − 1] × [i + 1, N ]. These constraints are defined as follows:

– C1 constraints for classes are :
∑nbCj

l=1 xik,jl ≤ 1, ∀k ∈ [1, nbCi]
– C1 constraints for object properties are :

∑nbOPj

n=1 yim,jn ≤ 1, ∀m ∈
[1, nbOPi]

– C1 constraints for data properties are:
∑nbDPj

r=1 ziq,jr ≤ 1, ∀q ∈ [1, nbDPi]

Example 2. Applying C1 for object properties in O1, O2 and O3 generates the
following constraints:
y11,21 + y11,22 ≤ 1; y12,21 + y12,22 ≤ 1; y11,21 + y12,21 ≤ 1; y11,22 + y12,22 ≤ 1
y21,31 + y22,31 ≤ 1 ; y11,31 + y12,31 ≤ 1

The C2 constraint aims at reducing the possibility of producing incoherent
alignments by considering the disjointness between entities. If we suppose that
we have two disjoint classes cik and cik′ in the ontology Oi ( cik 
 ¬cik′ ) so
each class cjl in the ontology Oj should align either with cik or cik′ . By this
mean, we take into consideration the disjointness between classes, object and
data properties.

Definition 2 (C2 Constraint). For each pair of ontologies Oi, Oj ∀i × j ∈
[1, N − 1] × [i + 1, N ] such as i 
= j, we define C2 constraint for each type of
decision variables:

– For disjoint classes, ∀k, k′ ∈ [1, nbCi] ∀l ∈ [1, nbCj ], C2 constraint is defined
as follows: xik,jl + xik′ ,jl ≤ 1

– For disjoint object properties, ∀m,m′ ∈ [1, nbOPi] ∀n ∈ [1, nbOPj ], C2 con-
straint is defined as follows: yim,jn + xim′ ,jn ≤ 1

– For disjoint data properties, ∀q, q′ ∈ [1, nbDPi] ∀r ∈ [1, nbDPj ], C2 constraint
is as follows: ziq,jr + xiq′ ,jr ≤ 1

Example 3. In O1, Person is disjoint with Document, (c15 
 ¬c12). A part of
instantiated C2 constraints is as following:
x15,2l + x12,21 ≤ 1; x15,22 + x12,22 ≤ 1; x15,3l + x12,31 ≤ 1; x15,32 + x12,32 ≤ 1
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The C3 constraint takes the advantage of the restrictions of domain and
range of each object property in order to make a sense between aligned object
properties and aligned classes. We have noticed that when some object prop-
erties are aligned, we have either domains aligned or ranges aligned or both of
them aligned. The following constraint aims to guide alignments according to
this observation. If we suppose that we have some object property opim in the
ontology Oi and some other object property opjn in the ontology Oj , such that
T 
 ∀opim−.cik′ and T 
 ∀opim .cik′′ and T 
 ∀opjn−.cjl′ and T 
 ∀opjn .cjl′′ .
Supposing that opim aligns with opjn so either cik′ aligns with cjl′ (i.e. domain
of opim aligns with domain of opjn) or cik′′ aligns with cjl′′ (i.e. range of opim
aligns with range of opjn) or both of them.

Definition 3 (C3 Constraint). For each pair of ontologies Oi, Oj ∀i × j ∈
[1, N − 1] × [i + 1, N ] such as i 
= j and ∀m ∈ [1, nbOPi] ∀k′, k′′ ∈ [1, nbCi] and
∀n ∈ [1, nbOPj ] ∀l′, l′′ ∈ [1, nbCj ], we express C3 constraints as follows:

yim,jn ≤ xik′ ,jl′ + xik′′ ,jl′′

Example 4. In O1 and O2, the properties submit and submitPaper are similar. By
applying the constraint C3 between these object properties we obtain: y11,21 ≤
x17,210 + x13,24 . This constraint leads to aligning both domains and ranges. We
can also observe that due to the similarity between reviews in O3 and writeReview
in O1 we obtain Member PC aligned to Reviewer by the following constraint:
y31,12 ≤ x35,18 + x31,14 .

Finally, for the C4 constraint, we investigate the domains of the data prop-
erties. The idea consists of making classes be aligned when data properties gets
aligned. If we suppose that some data property dpiq in the ontology Oi get aligned
with another data property dpjr in the ontology Oj , such that T 
 ∀dpiq−.cik′

and T 
 ∀dpjr−.cjl′ so the class cik′ in ontology Oi will align with the class cjl′
in ontology Oj .

Definition 4 (C4 Constraint). For each pair of ontologies Oi, Oj ∀i × j ∈
[1, N − 1] × [i + 1, N ] such as i 
= j and ∀q ∈ [1, nbOPi] ∀k′ ∈ [1, nbCi] and
∀r ∈ [1, nbOPj ] ∀l′ ∈ [1, nbCj ], C4 constraints are defined as follows:

ziq,jr ≤ xik′ ,jl′

Example 5. We can illustrate the constraint C4 through the similar data prop-
erties hasEmail in O3 and email in ontology O1: z31,12 ≤ x33,15 as hasEmail and
email are similar, their domains, which are also similar will also be aligned.

We summarize our linear program for holistic ontology matching (LPHMO)
as depicted in Fig. 2. We emphasize that our model focuses on 1:1 alignments
by using binary decision variables. We must however also point out that by
relaxing the decision variables in the [0, 1] interval, this model is able to find
n:m alignments. Moreover, we have to emphasize too that by using thresholds
for entities similarities, we reduce significantly the size of the generated problem.
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Fig. 2. LPHOM Linear model
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4 Experimental Evaluation

In the following we present the results of our approach in both pairwise and
holistic matching settings. For both settings, our approach has been evaluated
for similarities higher than a fixed threshold equals to 0.65 for both classes and
properties. Furthermore, all generated correspondences have a confidence degree
of 1.0.

4.1 OAEI Conference Data Set

The evaluation of LPHOM is carried out using the OAEI Conference track3.
The intent of this track is to provide expressive and real-world matching prob-
lems over expressive ontologies covering the same domain [2]. This data set is
composed of 16 ontologies covering the domain of conference organization and
a subset of 21 reference alignments involving 7 ontologies. The track evaluation
is based on crisp reference alignments (RA1) and two other entailed alignments
(RA2 and RAR2) deduced from RA1. Our evaluation is restricted to the RA1
alignments as they are the only publicly available set. RA1 is divided into three
sub-evaluations, as follows:

– In RA1-M1 only alignments between classes are evaluated;
– In RA1-M2 only alignments between properties (object and data) are evalu-

ated;
– In RA1-M3 both alignments between classes and properties are evaluated.

4.2 Pairwise Matching Evaluation

Here, we compare the results of our approach with the results of the 14 match-
ers participating in the 2015 OAEI campaign. These results have been obtained
from the Web page describing the results of the campaign4. With exception of
MAMBA, that applies an optimization method with constraints and Markov
Logic, these matchers apply different matching strategies than us. For example,
AML is based o lexical similarities, external resources and alignment coher-
ence; XMAP applies both lexical and structural contexts and exploits external
resources; LogMap applies consistency and locality principles while their vari-
ants LogMap-C further implements the conservativity principle and LogMapLite
essentially applies string matching techniques; GMAP uses a sum-product net-
work encoding the similarities on individuals and disjointness axioms and a
noisy-or model encoding probabilistic matching rules; RSDLWB exploits lexical
and structural heuristics and machine learning on statistical patterns and DKP-
AOM is based on linguistic, synonym and axiomatic based alignment. Although
MAMBA is very performing in this track, it can not deal with more than 1000
classes [17], contrarily to LPHOM. (e.g., for the anatomy track, 2744 and 3305
3 http://oaei.ontologymatching.org/2015/conference/.
4 http://oaei.ontologymatching.org/2015/conference/eval.html.

http://oaei.ontologymatching.org/2015/conference/
http://oaei.ontologymatching.org/2015/conference/eval.html
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P F0.5 F1 F2 R
AML 0.83 0.8 0.76 0.72 0.7
Mamba 0.84 0.8 0.74 0.69 0.66
XMAP 0.86 0.8 0.73 0.67 0.63
GMAP 0.76 0.75 0.73 0.72 0.71
LogMap 0.82 0.78 0.73 0.68 0.65
LogMap-C 0.84 0.78 0.71 0.65 0.62

our approach 0.76 0.73 0.69 0.66 0.64
DKP-AOM 0.84 0.77 0.69 0.63 0.59
Edna 0.88 0.78 0.67 0.59 0.54
COMMAND 0.84 0.76 0.66 0.58 0.54
RSDLWB 0.88 0.78 0.66 0.58 0.53
LogMapLite 0.84 0.76 0.66 0.58 0.54
ServOMBI 0.64 0.64 0.64 0.65 0.65
StringEquiv 0.88 0.76 0.64 0.55 0.5
Lily 0.59 0.6 0.61 0.62 0.63
CroMacher 0.72 0.67 0.6 0.54 0.51
JarvisOM 0.88 0.73 0.59 0.49 0.44

(a) RA1-M1

P F0.5 F1 F2 R
Mamba 0.89 0.79 0.67 0.59 0.54
AML 0.89 0.78 0.58 0.46 0.41
LogMap-C 1 0.51 0.39 0.32 0.28
LogMap 0.65 0.5 0.39 0.31 0.28
CroMatcher 0.62 0.31 0.34 0.37 0.39
JarvisOM 0.3 0.31 0.34 0.37 0.39
GMAP 0.3 0.46 0.31 0.23 0.2

our approach 0.23 0.24 0.25 0.26 0.26
LogMapLite 0.29 0.27 0.25 0.23 0.22
ServOMBI 0.29 0.27 0.24 0.21 0.2
XMAP 0.67 0.37 0.22 0.15 0.13
Edna 0.24 0.19 0.15 0.12 0.11
COMMAND 0.18 0.11 0.07 0.05 0.04
RSDLWB 0.03 0.04 0.05 0.1 0.24
StringEquiv 0.08 0.05 0.03 0.02 0.02

(b) RA1-M2

Fig. 3. Average results for RA1-M1 and RA1-M2 in the conference track. Results are
ranked according to the F1-Measure

classes, LPHOM spent about 36sec with a F-measure of 0,76). However, it is out
of the scope of this paper to provide a deep analysis of the results obtained by
each tool.

The evaluation is based on Precision (P), Recall (R), F1-measure (F1), F2-
measure (F2) and F0.5-measure (F0.5) computed for the threshold that provides
the highest average F1-measure computed for each matcher. F1-measure is the
harmonic mean of precision and recall. F2-measure weights recall higher than
precision and F0.5-measure weights precision higher than recall.

RA1-M1 . For this evaluation, we have evaluated LPHOM with the constraints
exclusively dedicated to classes (C1 and C2). The average results for the 21 pairs
of alignments are summarize in the table of Fig. 3a. We observe that our results
are situated in the middle, we are better than 8 participants but lower than the
other 6 participants. The best approaches benefits from more elaborate strategies
and external resources to compute similarities. Even if our approach uses simple
average similarities between known measures in the literature, we can observe
that the strategy to find the best set of alignments checking coherence seems
returning very good results on recall. These results are slightly closer, see even
better than the recall of XMap and LogMap-C participants.

RA1-M2. Here, only one type of constraints exclusively dedicated to proper-
ties is applied (C1 on data properties and on object properties). As shown in
the table of Fig. 3b, we observe that except Mamba and AML perform well in
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this task, all the other approaches have difficulties in aligning properties. The
results of our approach are once again in the middle. We have noticed that the
chosen threshold (65 %) applied on properties is not a very good compromise
for this task. We have observed several properties having similarities equal to 0
(according to our measures), that we have not been able to capture. The results
of baseline approaches Edna and StringEquiv confirm our observations, since
these approaches uses very high similarity threshold.

RA1-M3. Finally, Table 1 summarises our results compared to the results of the
other participants for the evaluation on both classes and proprieties. We have

Table 1. Average results for RA1-M3 in the conference track

Precision F0.5-Measure F1-Measure F2-Measure Recall
AML 0.84 0.8 0.74 0.69 0.66

AML (semantic) 0.84 0.79 0.79 0.69 0.67
Mamba 0.83 0.78 0.72 0.67 0.64

Mamba(semantic) 0.84 0.79 0.79 0.68 0.66
XMAP 0.85 0.77 0.68 0.6 0.56

XMAP (semantic) 0.87 0.79 0.79 0.62 0.58
LogMap 0.8 0.75 0.68 0.62 0.59

LogMap (semantic) 0.82 0. 77 0.77 0.65 0.62
LogMap-C 0.82 0.75 0.67 0.61 0.57

LogMap-C (semantic) 0.83 0.77 0.77 0.63 0.6
GMAP 0.66 0.66 0.65 0.65 0.65

GMAP (semantic) 0.68 0.68 0.68 0.69 0.7
DKP-AOM 0.84 0.74 0.63 0.54 0.5

DKP-AOM (semantic) 0.86 0.76 0.76 0.56 0.52
Our approach 0.65 0.63 0.61 0.59 0.58

Our approach (semantic) 0.65 0.65 0.66 0.66 0.67
ServOMBI 0.61 0.6 0.59 0.59 0.58

ServOMBI (semantic) 0.58 0.6 0.6 0.69 0.73
COMMAND 0.78 0.69 0.59 0.51 0.47

COMMAND (semantic) 0.6 0.6 0.6 0.63 0.65
LogMapLite 0.73 0.67 0.59 0.53 0.5

LogMapLite (semantic) 0.75 0.7 0.7 0.58 0.56
Edna 0.79 0.7 0.59 0.51 0.47
Lily 0.59 0.58 0.56 0.54 0.53

Lily (semantic) 0.58 0.58 0.58 0.61 0.62
StringEquiv 0.8 0.68 0.56 0.47 0.43
CroMatcher 0.59 0.57 0.54 0.52 0.5

CroMatcher (semantic) 0.61 0.59 0.59 0.54 0.53
JarvisOM 0.84 0.67 0.51 0.42 0.37

JarvisOM (semantic) 0.84 0.69 0.69 0.45 0.41
RSDLWB 0.25 0.28 0.33 0.41 0.49

RSDLWB (semantic) 0.32 0.36 0.36 0.59 0.76
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evaluated our model with all the constraints (C1, C2, C3, C4). Our approach
keep a stable rank compared to other approaches. We notice that GMAP or
RSDLWB have non stable positions through the evaluations Using all constraints
seems advantageous for recall more than for precision because of the noise caused
by the false positive aligned properties.

Semantic Evaluation. As we have observed that our generated alignments
seem semantically close to the crisp reference, we have evaluated our results
and those of the other approaches, using the semantic measures [4] (Table 1).
Indeed, our results are semantically very interesting. In particular, we observe
an improvement in the recall, which is equivalent to the recall of AML and
MAMBA. We note also that the semantic evaluation reveals a slight change in
the ranking of systems.

To sum up, our approach reaches promising results for its first compar-
ison with regard to the pairwise ontology matching problem. Our model is
more efficient when we use all the proposed constraints (RA1-M3). The interac-
tion between constraints leads to semantically significant results closer to gold
references which are illustrated by a good recall on semantic distances. The
constraints proposed for reducing incoherence are experimentally efficient. We
applied the ALCOMO [16] to evaluate if there is incoherence in our results and
we get the following average results (for the 21 combinations we removed between
3 and 0 correspondences per alignment): (1) for RA1-M1 we have 0.95 removed
correspondences, (2) for RA1-M2 we have 0 removed correspondences and (3)
for RA1-M3 we have 0.85 removed correspondences.

Finally, the average runtime of LPHOM (pre-processing, linear program gen-
eration and resolution), over 21 pairs of the conference track was 2.84 s using
the different types of measures and 0.24 s using only the token-based measure
Jaccard.

4.3 Holistic Matching Evaluation

The ontology matching field lacks in benchmarks dedicated to the evaluation of
holistic ontology matching. In order to be able to evaluate our holistic approach,
we analyse:

– the differences between cliques manually deduced from reference alignments
and the cliques generated by our holistic approach (remember that cliques
define correspondences between N ontologies, which have to be matched);

– the differences between the results of pairwise and holistic matching settings.

In the following, we denote a clique as Cli =<e1, . . . , eN >, such as each ej
belongs to ontology Oj . In the first part of this evaluation, we compare the cliques
generated by LPHOM with the cliques that we have manually identified from
the reference alignments involving 3 ontologies. For the 7 available ontologies in
the Conference Track, which are classified into types (Tool, Insider and Web),
we selected 3 ontologies from the ‘Tool’ type (Cmt, Conf-Of, Edas). In order to
maximize the chance to have cliques in the reference alignments, we have tried
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to find N ≥ 2 ontologies of the same type. The only combination of ontologies
verifying that was Cmt, Conf-Of and Edas, for which the reference alignments
are available. Given O1 (Cmt), O2 (Conf-Of) and O3 (Edas), we have manually
identified the following cliques from the reference alignment:

– Cl1(reference) =<author1, author2, author3>
– Cl2(reference) =<hasBeenAssigned1, reviwes2, isReviewing3>
– Cl3(reference) =<person1, person2, person3>
– Cl4(reference) =<hasAuthor1, writtenBy2, isWrittenBy3>

Applying our approach, we have found the following cliques:

– Cl1 =<author1, author2, author3>
– Cl2 =<paper1, paper2, paper3>
– Cl3 =<person1, person2, person3>
– Cl4 =<hasAuthor1, writtenBy2, isWrittenBy3>
– Cl5 =<writePaper1, writes2, hasRelatedPaper3>
– Cl6 =<email1, hasEmail2, hasEmail3>

We first notice that cliques Cl1, Cl3 and Cl4 are the same as the cliques
identified in the reference alignments whereas the clique Cl2(reference) has
not been found by our approach. However, our model has found three other
significant cliques Cl2, Cl5 and Cl6. Cl2 is composed of the same concept Paper
occurring in all ontologies. In the reference alignments, the correspondences in
which Paper occur does not form a clique. We emphasize here the benefit of
holistic matching which inspects simultaneously all ontologies. The Cl5 clique
is particularly interesting since that the properties of Cl5 are the inverse of the
properties of Cl4. Finally, Cl6 is composed of similar data properties which is
also relevant and strangely not provided in the reference alignments.

We also analyse the differences between the results of pairwise and holistic
matching settings, applied on the example of the Fig. 1 (O1 is Cmt, O2 is Sigkdd
and O3 is Conf-Of). The holistic approach discovers simultaneously alignments
for N ontologies, from all combinations of pairs of input ontologies. The resulting
alignments are collected from a simultaneous resolution of A12, A13 and A23.
Here we focus on main differences occurring in the alignments:

– If we match O1 and O2 by producing A12, then we match with O3 by pro-
ducing A(12)3, we get the following alignments:
A12 = {<Conference, ConferenceHall,≡, 0.63>, <ConferenceMember,
Conference,≡, 0.66>, <Paper, Paper,≡, 1>}
and A(12)3 = {<Conference, Conference,≡, 1>,<Paper, Paper,≡, 1>}

– If we produce A13, then we produce A(13)2, we get the following alignments:
A13 = {< Paper, ShortPaper,≡, 0.63 >,< PaperFullV ersion, Paper,≡
, 0.66>, <Conference, Conference,≡, 1>}
and A(13)2 = {< Conference, Conference,≡, 1 >,< ShortPaper,
AuthorOfPaper,≡, 0.5>, <Paper, Paper,≡, 1>}
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Applying the holistic matching for O1, O2 and O3, we get the following
alignments:

– A12 = {<Conference, Conference,≡, 1>,<Paper, Paper,≡, 1>}
– A23 = {<Conference, Conference,≡, 1>,<Paper, Paper,≡, 1>}
– A13 = {<Conference, Conference,≡, 1>,<Paper, Paper,≡, 1>}

From these alignments, two cliques are deduced:

– Cl1 =<Paper1, Paper2, Paper3>
– Cl2 =<Conference1, Conference2, Conference3>

To sum up, the results presented in this section show the subtleties between a
local and global investigations on N ≥ 2 ontologies, which confirm the usefulness
of holistic approaches for ontology matching.

5 Conclusion and Future Work

In this paper, we have presented an extensible linear model named LPHOM
performing holistic ontology matching. The main contribution of this approach
consists in allowing simultaneous matching of multiple ontologies. We model the
approach within a linear program by reducing the ontology matching problem to
the maximum-weighted graph matching problem, which is solvable in polynomial
time. Our approach is extensible with different linear constraints handling classes
and properties of ontologies. These constraints are used to reduce the logical
incoherence in generated alignments, what is not done systematically by all
matching systems. We experimented LPHOM on the OAEI Conference set on
both pairwise and holistic settings. For future work, we intend to deeply study
the similarity computation of entities with more accurate external resources.
With respect to the constraints, we plan to add the constraint that classes can
also match with properties and other hypothesis concerning incoherence. We
also intend to extend our evaluation on the whole set of Conference and other
data sets. Finally, we plan to extend the approach to deal with holistic instance
matching and larger data sets.
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Abstract. The semantics distributed over large-scale knowledge bases
can be used to intermediate heterogeneous users’ activity logs created in
services; such information can be used to improve applications that can
help users to decide the next activities/services. Since user activities can
be represented in terms of relationships involving three or more things
(e.g. a user tags movie items on a webpage), tensors are an attractive
approach to represent them. The recently introduced Semantic Sensi-
tive Tensor Factorization (SSTF) is promising as it achieves high accu-
racy in predicting users’ activities by basing tensor factorization on the
semantics behind objects (e.g. item categories). However, SSTF currently
focuses on the factorization of a tensor for a single service and thus has
two problems: (1) the balance problem occurs when handling heteroge-
neous datasets simultaneously, and (2) the sparsity problem triggered by
insufficient observations within a single service. Our solution, Semantic
Sensitive Simultaneous Tensor Factorization (S3TF), tackles the prob-
lems by: (1) Creating tensors for individual services and factorizing them
simultaneously; it does not force the creation of a tensor from multiple
services and factorize the single tensor. This avoids the low prediction
accuracy caused by the balance problem. (2) Utilizing shared semantics
behind distributed activity logs and assigning semantic bias to each ten-
sor factorization. This avoids the sparsity problem by sharing semantics
among services. Experiments using real-world datasets show that S3TF
achieves higher accuracy in rating prediction than the current best ten-
sor method. It also extracts implicit relationships across services in the
feature spaces by simultaneous factorization with shared semantics.

1 Introduction

Recently, many large-scale knowledge bases (KBs) have been constructed, includ-
ing academic projects such as YAGO [8], DBpedia [2], and Elementary/ Deep-
Dive [15], and commercial projects, such as those by Google [6] and Walmart
[4]. These knowledge repositories hold millions of facts about the world, such
as information about people, places, and things. Such information is deemed
essential for improving AI applications that require machines to recognize and
understand queries and their semantics in search or question answering systems.
The applications include Google search and IBM’s Watson, as well as smart
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 411–427, 2016.
DOI: 10.1007/978-3-319-46523-4 25
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Fig. 1. Creating tensors for individual services whose objects are linked by semantics

mobile assistants such as Apple’s Siri and NTT docomo’s Shabette-Concier [5].
They now assist users to acquire meaningful knowledge in their daily activities;
e.g. looking up an actor’s birthday by question-answering systems or searching
restaurants near the user’s current location by smart mobile assistants.

The KBs can also be used to provide background knowledge that is shared by
the different services [2]. Thus, beyond the above described usages of facts stored
in the KBs, the semantics in those bases can be effectively used for mediating
distributed users’ activity logs in different services. Thus they have the potential
to let AI applications assist users to decide next activities across services by
analyzing heterogeneous users’ logs distributed across services. In this paper, we
assume services are different with each other if they do not share any objects, e.g.
users, venues, or reviews. For example, in Fig. 1, US restaurant review service,
Yelp1, and French one, linternaute2, are quite different services.

Tensor factorization methods have become popular for analyzing users’ activ-
ities, since users’ activities can be represented in terms of relationships involving
three or more things (e.g. when a user tags venues on a webpage) [9,11,13,17,20].
Among the proposals made to date, Bayesian Probabilistic Tensor Factorization
(BPTF) [20] is promising because of its efficient sampling of large-scale datasets
and simple parameter settings. Semantic Sensitive Tensor Factorization (SSTF)
[11,13] extends BPTF and applies semantic knowledge in the form of vocabular-
ies/taxonomies extracted from Linked Open Data (LOD) to tensor factorization
to solve the sparsity problem caused by sparse observation of objects. By incor-
porating the semantics behind objects, SSTF achieves the best rating prediction
accuracy among the existing tensor factorization methods [13].

However, SSTF cannot enhance prediction accuracy across services for two
reasons: (1) SSTF suffers from the balance problem that arises when handling
heterogeneous datasets, e.g. the predictions for the smaller services are greatly

1 http://www.yelp.com.
2 http://www.linternaute.com/restaurant/.

http://www.yelp.com
http://www.linternaute.com/restaurant/
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biased by the predictions for the larger services [10]. Even if we merge user
activity logs across services based on objects that appear across services, SSTF
prediction results are poor when faced with merged logs. (2) SSTF focuses on
only the factorization of a tensor representing users’ activities within a single
service and cannot solve the sparsity problem. Even if the logs in different services
share some semantic relationships, SSTF can not make use of them.

We think that a tensor factorization method that uses the semantics in the
KBs to intermediate different services is needed since LOD project aims to medi-
ate distributed data in different services [1]. Thus, this is an important goal for
the Semantic Web community. For example, we can simultaneously analyze logs
in an American restaurant review service and those in an equivalent Japan ser-
vice by using semantics even if they share no users, restaurant venues, and review
descriptions. As a result, we can improve the prediction accuracy of the individ-
ual services, extract the implicit relationships across services, and recommend
good Japanese restaurants to users in the United States (and vice verse). So,
this paper enhances SSTF and proposes Semantic Sensitive Simultaneous Tensor
Factorization (S3TF) that simultaneously factorizes tensors created for different
services by relying on the semantics shared among services. It overcomes the
above mentioned problems by taking the following two ideas:

(1) It creates tensors for individual services whose objects are linked by seman-
tics. This means that S3TF does not force a tensor to be created from
multiple services and then factorize that single tensor to make predictions.
Below, for ease of understanding, this paper uses the scenario in which there
are two different restaurant review services in different countries (they share
no users, restaurants, or food reviews); e.g. Yelp and linternaute in Fig. 1.
Figure 1(a) presents an example of users’ activities involving three objects:
a user who assigned tags about impressive foods served by restaurants with
ratings on those relationships. The restaurants and foods are linked by the
semantics from the KB. In the figure, say American user u1 assigned tag
“Banana cream pie” to restaurant “Lady M”. French user u2 assigned tag
“Tarte aux pommes” to restaurant “Les Deux Gamins”. In Fig. 1(b), S3TF
creates tensors for two different services while sharing semantic classes; e.g.
Food “Banana cream pie” is linked with food class “Sweet pies” and restau-
rant “Lady M” is linked with restaurant class “Bars” in a tensor for “America
East Coast”. Food “Tarte aux pommes” is linked with the food class “Sweet
pies” and restaurant “Les Deux Gamins” is linked with the restaurant class
“Bars” in a tensor for “French”. As a result, S3TF can factorize those indi-
vidual tensors “individually” while sharing semantics across tensors. This
solves the balance problem.

(2) It uses the shared semantics present in distributed services and uses the
semantics to bias the latent features learned in each service’s tensor factoriza-
tion. Thus, it can avoid the sparsity problem of tensor factorization, by using
not only the semantics shared within a service but also those shared among
services. This has another effect: the semantic biases are shared in latent
features for the tensors of individual services and thus S3TF can extract
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the implicit relationships among services present in the latent features. For
example, in Fig. 1(a), user u1 and u2 share no foods and no restaurants with
each other, though they may share almost the same tendencies in food choice
(e.g. they both tend to eat “Sweet pies” at “Bars” and “Cuts of beef” at
nice restaurants). If such multi-object relationships are sparsely observed in
each country, they cannot be well predicted by current tensor factorization
methods because of the sparsity problem. S3TF solves this by using the
shared semantics among services. It propagates observations for “Banana
cream pie” and “Tarte aux pommes” to the class “Sweet pie” as well as
the observations for “Lady M” and “Les Deux Gamins” to the class “Bar”.
It then applies the semantic biases from food class “Sweet pie” to “Banana
cream pie” as well as those from restaurant class “Bars” to restaurant “Lady
M” when the tensor for United States is factorized. It also applies seman-
tic biases from food class “Sweet pie” to “Tarte aux pommes” as well as
those from restaurant class “Bars” to restaurant “Les Deux Gamins” when
the tensor for France is factorized. In this way, S3TF solves the sparsity
problem by using the semantics shared across services. It also can find the
implicit relationships from the latent features (e.g. the relationships shared
by users u1 and u2 described above) by the mediation provided by the shared
semantics.

We evaluated S3TF using restaurant review datasets across countries. The
reviews do not share any users, restaurant venues, or review descriptions as the
languages are different. Thus, they are considered to be different services. The
results show that S3TF outperforms the previous methods including SSTF by
sharing the semantics behind venues and review descriptions across services.

The paper is organized as follows: Sect. 2 describes related works while Sect. 3
introduces the background of this paper. Section 4 explains our method and
Sect. 5 evaluates it. Finally, Sect. 6 concludes the paper.

2 Related Work

Tensor factorization methods have recently been used in various applications
such as recommendation systems [11,17] and LOD analyses [7,14]. For example,
[14] proposed methods that use tensor factorization to analyze huge volumes of
LOD datasets in a reasonable amount of time. They, however, did not use the
simultaneous tensor factorization approach and thus could not explicitly incorpo-
rate the semantic relationships behind multi-object relationships into the tensor
factorization; in particular, they failed to use taxonomical relationships behind
multi-object relationships such as “subClassOf” and “subGenreOf”, which are
often seen in LOD datasets. A recent proposal, SSTF [11,13], solves the spar-
sity problem by providing semantic bias from KBs to the feature vectors for
sparse objects in multi-object relationships. SSTF was, however, not designed
to perform cross-domain analysis even though LOD can be effectively used
for mediating distributed objects in different services [2]. Generalized Coupled
Tensor Factorization (GCTF) methods [22] and recent Non-negative Multiple
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Tensor Factorization (NMTF) [19] try to incorporate extra information into
tensor factorization by simultaneously factorizing observed tensors and matri-
ces representing extra information. They, however, do not focus on handling
semantics behind objects while factorizing tensors created for different services.
Furthermore, according to the evaluations in [13], they have much worse perfor-
mance than SSTF.

Other than tensor methods, [23] applies embedding models including het-
erogeneous network embedding and deep learning embedding to automatically
extract semantic representations from the KB. Then it jointly learns the latent
representations in collaborative filtering as well as items’ semantic representa-
tions from the KB. There are, however, no embedding methods that analyze
different services by using shared KBs.

Recent semantic web studies try to find missing links between entities [21] or
find an explanation on a pair of entities in KBs [16]. [12,18] incorporate semantic
categories of items into the model and improve the recommendation accuracies.
They, however, do not focus on the analysis of users’ activities across services
and find implicit relationships between entities by the above mentioned analysis.

3 Preliminary

Here, we explain Bayesian Probabilistic Tensor Factorization (BPTF) since S3TF
was implemented within the BPTF framework due to its efficiency with simple
parameter settings.

This paper deals with the relationships formed by user um, venue vn, and tag
tk. A third-order tensor R is used to model the relationships among objects from
sets of users, venues, and tags. Here, the (m,n, k)-th element rm,n,k indicates
the m-th user’s rating of the n-th venue with the k-th tag. Tensor factoriza-
tion assigns a D-dimensional latent feature vector to each user, venue, and tag,
denoted as um, vn, and tk, respectively. Here, um is an M -length, vn is an N -
length, and tk is a K-length “column” vector. Accordingly, each element rm,n,k

in R can be approximated as the inner-product of the three vectors as follows:

rm,n,k ≈ 〈um,vn, tk〉 ≡
D∑

d=1

um,d · vn,d · tk,d (1)

where index d represents the d-th “row” element of each vector.
BPTF [20] models tensor factorization over a generative probabilistic model

for ratings with Gaussian/Wishart priors over parameters. The Wishart distri-
bution is most commonly used as the conjugate prior for the precision matrix of
a Gaussian distribution.

We denote the matrix representations of um, vn, and tk as U ≡
[u1,u2, . . . ,uM ], V ≡ [v1,v2, . . . ,vN ], and T ≡ [t1, t2, . . . , tK ]. To account for
randomness in ratings, BPTF uses the following probabilistic model for gener-
ating ratings:

R|U,V,T ∼
M∏

m=1

N∏

n=1

K∏

k=1

N (〈um,vn, tk〉, α−1).
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This represents the conditional distribution of R given U, V, and T in terms
of Gaussian distributions, each with means of 〈um,vn, tk〉 and precision α.

The generative process of BPTF requires parameters μ0, β0, W0, ν0, W̃0, Λ̃,
and ν̃0 in the hyper-priors, which should reflect prior knowledge about a specific
problem and are treated as constants during training. The process is as follows:

1. Generate ΛU, ΛV, and ΛT ∼ W(Λ|W0, ν0), where ΛU, ΛV, and ΛT are
the precision matrices (a precision matrix is the inverse of a covariance
matrix) for Gaussians. W(Λ|W0, ν0) is the Wishart distribution of a D × D
random matrix Λ with ν0 degrees of freedom and a D × D scale matrix
W0:W(Λ|W0, ν0) = |Λ|(ν0−D−1)/2

c exp(−Tr(W0
−1Λ)

2 ), where C is a constant.
2. Generate μU ∼ N (μ0, (β0ΛU)−1), where μU is used as the mean vector

for a Gaussian. Similarly, generate μV ∼ N (μ0, (β0 ΛV)−1) and μT ∼
N (μ0, (β0ΛT)−1), where μV and μT are mean vectors for Gaussians.

3. Generate α ∼ W(Λ̃|W̃0, ν̃0).
4. For each m ∈ (1 . . . M), generate um ∼ N (μU,ΛU

−1).
5. For each n ∈ (1 . . . N), generate vn ∼ N (μV,ΛV

−1).
6. For each k ∈ (1 . . . K), generate tk ∼ N (μT,ΛT

−1).
7. For each non-missing entry (m,n, k), generate rm,n,k ∼ N (〈um,vn, tk〉, α−1).

Parameters μ0, β0, W0, ν0, W̃0, Λ̃, and ν̃0 should be set properly according to
the objective dataset; fortunately, varying their values, has little impact on the
final prediction [20].

BPTF views the hyper-parameters α, ΘU ≡ {μU,ΛU}, ΘV ≡ {μV,ΛV},
and ΘT ≡ {μT,ΛT} as random variables, yielding a predictive distribution for
unobserved ratings R̂, which, for observable tensor R, is given by:

p(R̂|R) =
∫

p(R̂|U,V,T, α)

p(U,V,T, α,ΘU, ΘV, ΘT|R)d{U,V,T, α,ΘU, ΘV, ΘT}. (2)

BPTF computes the expectation of p(R̂|U,V,T, α) over the posterior distri-
bution p(U,V,T, α,ΘU, ΘV, ΘT|R); it approximates the expectation by averag-
ing samples drawn from the posterior distribution. Since the posterior is too com-
plex to be directly sampled, it applies the Markov Chain Monte Carlo (MCMC)
indirect sampling technique to infer the predictive distribution for unobserved
ratings R̂ (see [20] for details on the inference algorithm of BPTF).

The time and space complexities of BPTF are O(#nz × D2 + (M + N +
K) × D3). #nz is the number of observation entries, and M , N , and K are all
much greater than D. BPTF can also compute feature vectors in parallel while
avoiding fine parameter tuning during factorization.

4 Method

We now explain S3TF. We first explain how to create augmented tensors, which
share semantics among services, from individual services’ tensors. Table 1 sum-
marizes the notations used by our method.
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Table 1. Definition of main symbols

Symbols Definitions

Ri Tensor that includes ratings by users of venues with tags for the i-th
service

αi Observation precision for Ri

ui
m m-th user feature vector for i-th service

vi
n n-th venue feature vector for i-th service

tik k-th tag feature vector for i-th service

Ui Matrix representation of ui
m for i-th service

Vi Matrix representation of vi
n for i-th service

Ti Matrix representation of tik for i-th service

X Number of services

V
i
s Set of the most sparse venues for the i-th service

T
i
s Set of the most sparse tags for the i-th service

Av The augmented tensor that includes the classes of sparse venues in all
services

At The augmented tensor that includes classes of sparse tags in all services

cvj j-th semantically biased venue feature vector from Av

ctj j-th semantically biased tag feature vector from At

Cv Matrix representation of cvj

Ct Matrix representation of ctj

Sv Number of classes that include sparse venues in all services

St Number of classes that include sparse tags in all services

f(o) Function that returns the classes of object o

δ Parameter that adjusts the number of the most sparsely observed objects
in each service

Fig. 2. Examples of our factorization process
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4.1 Creating Augmented Tensors

Following SSTF, S3TF creates the augmented tensor Av that has all the obser-
vations across X services (those services do not share any object) as well as the
observations for sparsely observed venues lifted in the augmented venue classes.
The classes are chosen from shared KBs such as DBPedia and Freebase, and thus
they are shared among services; e.g. for restaurant review services, the types of
restaurants and the food categories are listed in DBPedia or Freebase in detail.

First, S3TF extracts the observations for sparsely observed venues. Here, the
set of sparse venues for the i-th service (1 ≤ i ≤ X), denoted as Vi

s, is defined as
the group of the most sparsely observed venues, vi

ss, among all venues in the i-th
service. We set a 0/1 flag to indicate the existence of relationships composed of
user ui

m, venue vi
n, and tag tik as oim,n,k. Then, Vi

s is computed as follows:

(1) S3TF first sorts the venues from the rarest to the most common
in the i-th service (1 ≤ i ≤ X) and creates a list of venues:
{vi

s(1), v
i
s(2), . . . , v

i
s(Ni−1), v

i
s(Ni)} where N i is the number of venues in the

i-th service. For example, vi
s(2) is not less sparsely observed than vi

s(1).
(2) It iterates the following step (3) from j = 1 to j = N i.
(3) If it satisfies the following equation, S3TF adds the j-th sparse venue vi

s(j) to
set Vi

s: (|Vi
s|/

∑
m,n,k oim,n,k) < δ where Vi

s initially does not have any venues
and |Vi

s| is the number of venues in set Vi
s. If not, it stops the iterations and

returns the set V
i
s as the most sparsely observed venues in the i-th service.

Here, δ is a parameter used to determine the number of sparse venues in V
i
s.

Typically, we set δ to range from 0.05 to 0.20 in accordance with the long-tail
characteristic such that sparse venues account for 5–20% of all observations
[13].

Second, S3TF constructs the augmented tensor Av as follows:.

(1) S3TF inserts the multi-object relationship composed of user ui
m, venue vi

n,
and tag tik, observed in the i-th service, into Av. Here, the rating rim,n,k

corresponding to the above relationship is inserted into the ((M i−1
1 + m),

(N i−1
1 + n), (Ki−1

1 + k))-th element in Av where we denote M i−1
1 , N i−1

1 ,
and Ki−1

1 as the sum of number of users, that of venues, and that of tags in
services whose identifiers are from 1 to (i−1), respectively. As a result, Av has
all users, all venues, and all tags in all services. In Fig. 2(i), all observations
in R1 and R2 are inserted into Av.

(2) S3TF additionally inserts the multi-object relationships composed of user
ui
m, a class of sparse venue cvj , and tag tik into Av if vi

n is included in V
i
s

and cvj is one of the classes of vi
n. Thus, the rating rim,n,k is inserted into

the ((M i−1
1 + m), (NX

1 + j), (Ki−1
1 + k))-th element in Av. If sparse venue

vi
n has several classes, S3TF inserts the rating rim,n,k into all corresponding

elements in Av. In Fig. 2(i), observations for classes for sparse venues (“Lady
M” in service 1 and “Les Deux Gamins” in service 2) are added to Av (in the
elements corresponding to their class “Bars”). Here, the number of classes
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that have the sparse venues in all services is denoted as Sv; it is computed as:
Sv = |⋃

Vi
s
f(vi

s)|(1≤i≤X) where f(vi
s) is a function that returns the classes

of sparse venue vi
s in the i-th service.

The set of sparse tags Ti
s is defined as the group of the most sparsely observed

tags in i-th service and is computed using the same procedure as it creates V
i
s.

The augmented tensor for tags At is also computed in the same way as it creates
Av. So we omit the explanations of the procedures for creating those here.

Tensor creation by S3TF has the following two benefits: (1) It solves the bal-
ance problem by creating individual tensors for services and so avoids strongly
biasing any particular service. (2) It overcomes the sparsity problem by propa-
gating observations in sparse objects to their classes shared among services in
the augmented tensor.

4.2 Simultaneously Factorizing Tensors Across Services

S3TF factorizes individual services’ tensors and augmented tensors simultane-
ously. We first explain our approach and then the algorithm.

Approach. S3TF takes the following three techniques in factorizing tensors.

(A) It factorizes individual service tensors Ris (1 ≤ i ≤ X), and augmented
tensors Av and At simultaneously. In particular, it creates feature vectors
for users, ui

ms, those for venues, vi
ns, and those for tags, ctjs, by factorizing

tensor Ri for each i-th service as well as feature vectors for their venue
classes cvj s by Av and those for their tag classes ctjs by At. As a result,
S3TF factorizes individual tensors while enabling the semantic biases from
cvj s and ctjs to be shared during the factorization process. This approach to
“simultaneously” factorizing individual service tensors solves the balance
problem. In the example shown in Fig. 2(ii), R1, R2, and Av are factorized
simultaneously into D-dimensional “row” feature vectors.

(B) It shares feature vectors ui
m, vi

n, tik which are computed by factorizing Ri,
in the factorization of augmented tensors Av and At. This means that it
computes the feature matrix for users for the augmented tensor Ua by join-
ing X numbers of service feature matrices for users, [U1, . . . ,Ui, . . . ,UX ].
Similarly, it computes the feature matrix for venues, Va, and that for tags,
Ta, for the augmented tensor. Then, it computes the feature matrix for
venue (or tag) classes by reusing the joined feature matrices Ua and Ta (or
Ua and Va). As a result, it can, during the factorization process, share the
tendencies of users’ activities across services via those shared parameters.
In Fig. 2(ii), ua

m,d is computed as: [u1
m,d,u

2
m,d] and tak,d is as: [t1k,d, t

2
k,d].

(C) It updates latent feature vectors for sparse venues (or tags) in the i-th ser-
vice, vi

ss (or tiss), by incorporating semantic biases from cvj s (or ctjs) to vi
ss

(or tiss). Here, cvj s (or ctjs) are feature vectors for classes of the sparse venues
vi
ss (or sparse tags tiss). This process incorporates the semantic tendencies of
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users’ activities across services captured by idea (B) into each service’s fac-
torization; this is useful in solving the sparsity problem. In Fig. 2(iii), each
row vector cv:,d has latent features for (N1 + N2) venues and for Sv classes.
The features in cv:,d share semantic knowledge of sparse venues across ser-
vices. For example, the feature for “Bars” in cv:,d share semantic knowledge
of sparse venues “Lady M” and “Les Deux Gamins” across US restaurant
review service and French one (see also Fig. 1).

Algorithm. Here we explain how to compute the predictive distribution for unob-
served ratings. Differently from the BPTF model (see Eq. (2)), S3TF considers
the tensors for individual services and augmented tensors in computing the dis-
tribution. Thus, the predictive distribution is computed as follows:

p(R̂|R,Av,At) =
∫

p(R̂|U,V,T,Cv,Ct, α, αa)

p(U,V,T,Cv,Ct, ΘU, ΘV, ΘCv , ΘCt , α, αa|R,Av,At)
d{U,V,T,Cv,Ct, ΘU, ΘV, ΘT, ΘCv , ΘCt , α, αa} (3)

where R ≡ {Ri}Xi=1, α ≡ {αi}Xi=1, U ≡ {Ui}Xi=1, V ≡ {Vi}Xi=1, T ≡ {Ti}Xi=1,
ΘU ≡ {ΘUi}Xi=1, ΘV ≡ {ΘVi}Xi=1, and ΘT ≡ {ΘTi}Xi=1.

Equation (3) involves a multi-dimensional integral that cannot be com-
puted analytically. Thus, S3TF views Eq. (3) as the expectation of
p(R̂|R,Av,At) over the posterior distribution p(U,V,T,Cv,Ct, ΘU, ΘV, ΘCv ,
ΘCt , α, αa|R,Av,At), and approximates the expectation by MCMC with the
Gibbs sampling paradigm. It collects a number of samples, L, to approximate
the integral in Eq. (3) as:

p(R̂|R,Av,At) ≈
L∑

l=1

p(R̂|U[l],V[l],T[l],Cv[l],Ct[l], α[l], αa[l]) (4)

where l represents the l-th sample.
The MCMC procedure is as follows (detail is given in the supplemental mate-

rial3):

(1) Initialize Ui[1], Vi[1], and Ti[1] (1 ≤ i ≤ X) for each i-th service as well as
Cv[1] and Ct[1] for the augmented tensors by Gaussian distribution as per
BPTF. Cv[1] and Ct[1] are used for sharing the semantics across services
(see our approach (A)). Next, it repeats steps (2) to (8) L times.

(2) Samples the hyperparameters for each i-th service as per BPTF i.e.:
• αi[l + 1] ∼ p(αi[l]|Ui[l],Vi[l],Ti[l],Ri)
• ΘUi [l + 1] ∼ p(ΘUi [l]|Ui[l])
• ΘV i [l + 1] ∼ p(ΘV i [l]|Vi[l])
• ΘT i [l + 1] ∼ p(ΘT i [l]|Ti[l])
here, ΘX ≡ {μX, ΛX} and is computed in the same way as BPTF.

3 Please see https://sites.google.com/site/sapplementalfile/appendix-html.

https://sites.google.com/site/sapplementalfile/appendix-html
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(3) Samples the feature vectors the same way as is done in BPTF:
• ui

m[l + 1] ∼ p(ui
m|Vi[l],Ti[l], αi[l + 1], ΘUi [l + 1],Ri)

• vi
n[l + 1] ∼ p(vi

n|Ui[l + 1],Ti[l], αi[l + 1], ΘV i [l + 1],Ri)
• tik[l + 1] ∼ p(tik|Ui[l + 1],Vi[l + 1], αi[l + 1], ΘT i [l + 1],Ri)

(4) Joins the feature matrices in services in order to reuse them as the feature
matrices for the augmented tensors as (see our approach (B)):
• Ua[l + 1] = [U1[l + 1], · · · ,Ui[l + 1], · · · ,UX [l + 1]]
• Va[l + 1] = [V1[l + 1], · · · ,Vi[l + 1], · · · ,VX [l + 1]]
• Ta[l + 1] = [T1[l + 1], · · · ,Ti[l + 1], · · · ,TX [l + 1]]

(5) Samples the hyperparameters for the augmented tensors similarly:
• αa[l + 1] ∼ p(αa[l]|Ua[l + 1],Va[l + 1],Ta[l + 1],Ra)
• ΘCv [l + 1] ∼ p(ΘCv [l]|Cv[l])
• ΘCt [l + 1] ∼ p(ΘCt [l]|Ct[l])

(6) Samples the semantically-biased feature vectors by using αa[l+1], Ua[l+1],
Va[l + 1], and Ta[l + 1] as follows (see our approach (B)):
• cvj [l + 1] ∼ p(cvj |Ua[l + 1],Ta[l + 1], αa[l + 1], ΘCv [l + 1],Av)
• ctj [l + 1] ∼ p(ctj |Ua[l + 1],Va[l + 1], αa[l + 1], ΘCt [l + 1],At)

(7) Samples the unobserved ratings r̂im,n,k[l +1] by applying Ui[l +1], Vi[l +1],
Ti[l + 1], Cv[l + 1], Ct[l + 1], αi[l + 1] to equation (4).

(8) Updates vi
n[l+1] as follows and uses it in the next iteration (see our approach

(C)):

vi
n =

{
1
2

(
vi
n +

∑
cv
j

∈f(vi
n) c

v
j

|f(vi
n)|

)
(vi

n ∈ V
i
s)

vi
n (otherwise)

(5)

Updates tik[l + 1] similarly (we halt the explanation here).

The complexity of S3TF in each MCMC iteration is O(#nz × D2 + (MX
1 +

NX
1 + KX

1 + SV + ST ) × D3). Because the first term is much larger than the
rest, the computation time is almost the same as that of BPTF. Parameter δ and
parameters for factorization can be easily set based on the long-tail characteristic
and the full Bayesian treatment inherited by the BPTF framework, respectively.
S3TF is faster than SSTF when analyzing X numbers of services since S3TF
creates and factorizes only one set of augmented tensors (Av and At) for all
services while SSTF needs X sets of augmented tensors.

5 Evaluation

The method’s accuracy was confirmed by evaluations.

5.1 Dataset

We used the Yelp ratings/reviews4 together with DBPedia [2] food vocabularies.
Yelp datasets contain user-made ratings of restaurant venues and user reviews

4 Available at http://www.yelp.com/dataset challenge/.

http://www.yelp.com/dataset_challenge/
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of venues across four countries (United Kingdom (UK), United States (US)5,
Canada6, and Germany). The logs of users who are included in several countries
are excluded from the datasets. Thus we can consider the datasets of individual
countries are made from different services. Food vocabularies are extracted from
food ontology7 and categories are extracted from DBPedia article categories.
We first extracted English food entries and then translated them into French
or German by using BabelNet8, which is a multilingual encyclopedic dictionary
based on Wikipedia entries. Thus, the resulting food entries share the same
categories. We then extracted tags from the reviews that match the instances in a
DBPedia food vocabulary entry as was done in [13]. Consequently, we extracted
988, 1,100, 1,388, and 435 tags for UK, US, Canada, Germany, respectively.
We used the genre vocabulary provided by Yelp as the venue vocabulary, it
has 179 venue classes. The tag vocabulary provided by DBPedia has 1,358 food
classes. The size of the user-venue-tag tensors in UK, US, Canada, and Germany
were 2, 052 × 1, 398 × 988, 10, 736 × 1, 554 × 1, 100, 10, 700 × 3, 085 × 1, 388, and
286 × 332 × 435, respectively. The numbers of ratings in those countries were
54,774, 118,012, 172,182, and 3,062, respectively. The ratings range from 1 to 5.

5.2 Comparison Methods

We compared the accuracy of the following six methods:

1. NMTF [19], which utilizes the auxiliary information like GCTF. It factor-
izes the target tensors (user-item-tag tensors created for each countries) and
auxiliary matrices (item-class matrix and tag-class matrix) simultaneously.

2. BPTF proposed by [20].
3. SSTF, which applies Semantic Sensitive Tensor Factorization proposed by

[13] to the observed relationships in each service.
4. SSTF all, which combines observed relationships in different services to create

a merged tensor and factorizes the merged tensor by SSTF.
5. S3TFT, which utilizes only the tag vocabulary.
6. S3TFV, which utilizes only the venue vocabulary.
7. S3TF, which is our proposal.

5.3 Methodology and Parameter Setup

We split each dataset into two halves; a training set that holds reviews entered in
the first half period of all logs and a test set consisting of the reviews entered in
the last half. We then performed evaluations for the two-joint combinations (total
6) of those sets to check the repeatability of results. Following the evaluation
5 We focused on restauran reviews for Midwestern United States to efficiently perform

evaluations.
6 The Canada dataset includes venues located in the Quebec area, so the languages

used in the reviews are written in French or English.
7 http://dbpedia.org/ontology/Food/.
8 http://babelnet.org.

http://dbpedia.org/ontology/Food/
http://babelnet.org
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methodology used in previous studies [3,11,13,20], we computed Root Mean
Square Error (RMSE), which is computed by

√
(
∑n

i=1(Pi − Ri)2)/n, where n
is the number of entries in the test set, and Pi and Ri are the predicted and
actual ratings of the i-th entry, respectively. The RMSE is more appropriate to
represent model performance than the Mean Absolute Error (MAE) when the
error distribution is expected to be Gaussian. We varied D from 5 to 20 for each
method, and set the optimum value to 20 since it gave the highest accuracies
for all methods. We set the iteration count, L, to 100 since all methods could
converge with this setting. δ was set to 0.8 following [13].

5.4 Results

We first investigated the sparseness of objects observed. Figure 3 plots the dis-
tribution of venue frequencies observed in the UK dataset. From this figure, we
can confirm that venue observation frequencies exhibit the long-tail character-
istic. Thus, observations of multi-object relationships become very sparse with
respect to the possible combinations of observed objects. The distributions of
other datasets showed the same tendencies. Thus, a solution to the sparsity prob-
lem across services is required. Figure 4 presents the accuracy of the UK dataset
on the simultaneous factorization on UK and US datasets when the number of
iterations, L, was changed. This confirms that the accuracy of S3TF saturated
before L = 100. Results on other datasets showed similar tendencies.

We then compared the accuracy of the methods for the simultaneous factor-
izations on the six datasets. The results shown in Table 2 are the average RMSE
values computed for each country. They show that SSFT has better accuracy
than BPFT. This is because SSFT uses the semantics shared within a single
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Table 2. Comparing RMSE values of the methods

NMTF BPTF SSTF SSTF all S3 TFT S3TFV S3TF

UK 1.7192 1.0063 0.9928 0.9960 0.9967 0.9594 0.9501

US 1.9011 1.2303 1.2176 1.2267 1.1939 1.1733 1.1727

Canada 1.8723 1.1853 1.1431 1.1655 1.1219 1.1331 1.1215

German 1.8923 1.3266 1.2789 1.2868 1.2744 1.2847 1.2527
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service (e.g. within a service in US) and thus solves the sparsity problem. SSTF
has better accuracy by SSTF all though SSTF all uses the entire logs. This is
because SSTF all creates a tensor by mixing the heterogeneous datasets in dif-
ferent countries and thus suffers from the balance problem. S3 TFT and S 3 TFV
had better performance than BPTF or SSTF since S 3 TFT and S 3 TFV can
use the shared semantics on venues and those on tags across services, respec-
tively. Finally, S 3 TF, which utilizes the semantic knowledge across services
while performing coupled analysis of two tensors, yielded higher accuracy than
the current best method, SSTF, with the statistical significance of α < 0.05.

The RMSEs of NMTF are much worse than those of S3TF. This is mainly
because: (1) NMTF straightforwardly combines different relationships, i.e., rat-
ing relationships among users, items, and tags, link relationships among items
and their classes, and link relationships among tags and their classes. Thus, it
suffers from the balance problem. (2) NMTF uses the KL divergence for optimiz-
ing the predictions since its authors are interested in “discrete value observations
such as stars in product reviews”, as described in [19]. Our datasets are those
they are interested in; however, exponential family distributions like Poisson
distribution do not fit our rating datasets so well.

Table 3. Computation time (seconds) when L = 100

German×UK German×US

BPTF SSTF S3TF BPTF SSTF S3TF

63 113 109 85 142 134

Table 3 presents the computation times of BPTF, SSTF, and S 3 TF when
simultaneously factorizing tensor for German and that for UK datasets as well
as simultaneously factorizing tensor for German and that for US datasets. All
experiments were conducted on a Linux 3.33 GHz Intel Xeon (24 cores) server
with 192 GB of main memory. All methods were implemented with Matlab and
GCC. We can see that the computation time of S 3 TF is shorter than that of
SSTF. Furthermore, we can set L smaller than 100 (see Fig. 4). Thus, we can
conclude that S3 TF can compute more accurate predictions quickly; it works
better than SSTF and BPTF on real applications.

Table 4. Prediction examples for US (the upper row) and German (the lower row)

Training dataset Rating predictions by SSTF (S) and S3TF (S3)

Tag in review sentence Item/genre Rating Tag in review sentence Item/genre S S3 Actual

Berry streusel is tasty A/Bakeries 5.0 Bratwurst was incredible B/American 3.8 4.7 5.0

A enchilada is perfect C/Tex-Mex 4.0 An amazing pretzel roll D/Breakfast 3.8 4.8 5.0

Ich genoss Marzipan E/Bakeries 5.0 Burrito war wirklich gut F/Bars 3.1 3.7 4.0

nachos ist wertvoll G/Bars 4.0 Schnitzel ist lecker H/German 3.9 3.4 3.0
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We then show the examples of the differences between the predictions output
by SSTF and S 3TF in Table 4. The columns “S”, “S3”, and “Actual” list
prediction values by SSTF, those by S3 TF, and actual ratings given by users
as found in the test dataset, respectively. In the US dataset, the combination
of tag “streusel” at Bakeries “A” and “enchilada” at Tex-Mex restaurant “C”
were highly rated in the training set. In the test set, the combination of tag
“bratwurst” at American restaurant “B” and “pretzel” at Breakfast restaurant
“D” were highly rated. The tags “streusel”, “bratwurst”, and “pretzel” (they are
included in “german cuisine” class) are sparsely observed in the US’s training set.
In the Germany dataset, the combination of tag “marzipan” at Bakeries “E” and
“nachos” at Bars “G” were highly rated in the training set. In the test set, the
combination of tag “burrito” at Bars “F” and “Schnitzel” at German restaurant
“H” were highly rated. The tags “nachos” and “burrito” (they are included in
“mexican cuisine” class) are sparsely observed in the German’s training set.
S3 TF accurately predicted those observations formed by sparse tags since it
uses knowledge that the tags “streusel” and “marzipan” both lie in tag class
“german cuisine”, as well as the knowledge that tags “enchilada” and “nachos”
both lie in tag class “mexican cuisine”. Thus, S3 TF can use such knowledge
that the combinations of “german cuisine” and “mexican cuisine” are often seen
in datasets across countries. SSTF predictions were inaccurate since they were
not based on the semantics behind the objects being rated across services.

We also show the implicit relationships extracted when we factorized three
datasets, UK, US, and Canada, simultaneously. The implicit relationships were
computed as: (1) The probability that the relationship composed by um, vn,
and tk is included in the i-th dimension is computed by ui,m · vi,n · ti,k where
1 ≤ i ≤ D. (2) Each observed relationship is classified into the dimension that
gives the highest probability value among all D dimensions. (3) The relationships
included in the same dimension are considered to form implicit relationships
across services. Figure 5 presents examples as the extraction results. The first
line, the second line, and the third line in balloons in the figure indicate the
representative venues, venue classes, and foods, respectively. The relationships

Fig. 5. Examples of implicit relationships extracted by S3TF
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in the same dimension are represented by the same marks; circles (1) or triangles
(2): (1) This dimension includes several local dishes with alcoholic content across
countries. E.g. People in UK who love “Haggis” and drink “Scotch whisky” are
implicitly related to those in US who love “Cheeseburger” and drink “Indian
pale ale” as well as those in Canada who love “Lobster roll” and drink “White
wine”. (2) This dimension includes several sweet dishes across countries. E.g.
People in UK who love “Shortbread” are implicitly related to those in US who
love “Sundae” as well as those in Canada who love “Maple tart”. Such implicit
relationships can be used to create recommendation lists for users across services.
BPTF and SSTF cannot extract such implicit relationships since they cannot
use shared semantics, and thus latent features, across services.

6 Conclusion

This is the first study to show how to include the semantics behind objects
into tensor factorization and thus analyze users’ activities across different ser-
vices. Semantic-Sensitive Simultaneous Tensor Factorization, S3TF, proposed
here, presents a new research direction to the use of shared semantics for the cross
service analysis of users’ activities. S3TF creates individual tensors for different
services and links the objects observed in each tensor to the shared semantics.
Then, it factorizes the tensors simultaneously while integrating semantic biases
into tensor factorization. Experiments using real-world datasets showed that
S3TF achieves much higher accuracy than the current best tensor method and
extracts implicit relationships across services during factorization. One interest-
ing future direction is to apply our idea to the recent embedding models (e.g.
[23]) and analyze different services simultaneously by using KBs.
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Abstract. With the success of Open Data a huge amount of tabu-
lar data sources became available that could potentially be mapped
and linked into the Web of (Linked) Data. Most existing approaches
to “semantically label” such tabular data rely on mappings of textual
information to classes, properties, or instances in RDF knowledge bases
in order to link – and eventually transform – tabular data into RDF.
However, as we will illustrate, Open Data tables typically contain a large
portion of numerical columns and/or non-textual headers; therefore solu-
tions that solely focus on textual “cues” are only partially applicable for
mapping such data sources. We propose an approach to find and rank
candidates of semantic labels and context descriptions for a given bag
of numerical values. To this end, we apply a hierarchical clustering over
information taken from DBpedia to build a background knowledge graph
of possible “semantic contexts” for bags of numerical values, over which
we perform a nearest neighbour search to rank the most likely candi-
dates. Our evaluation shows that our approach can assign fine-grained
semantic labels, when there is enough supporting evidence in the back-
ground knowledge graph. In other cases, our approach can nevertheless
assign high level contexts to the data, which could potentially be used
in combination with other approaches to narrow down the search space
of possible labels.

1 Introduction

With the uptake of the Open Data movement a large number of tabular data
sources become freely available comprising a wide range of domains, such as
finance, mobility, tourism, sports, or cultural heritage, just to name a few. The
published data is a rich corpus that could be mapped and linked into the Web
of Data, but RDF and Linked Data still remain too high an entry barrier in
many cases, such that “3-star Open Data” (cf. http://5stardata.info/) in the form
of tabular CSV data remains the predominant data format of choice in the
majority of Open Data portals [19]. Connecting CSV data to the Web of Linked
Data involves typically two steps, that is, (i) transforming tabular data to RDF
and (ii) mapping, i.e. linking the columns (which adhere to different arbitrary
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schemata) and contents (cell values) of such tabular data sources to existing RDF
knowledge bases. While a recent W3C standard [18],1 provides a straightforward
canonical solution for (i), the mapping step (ii) though remains difficult.

Mapping involves to semantically label columns by linking column headers or
cell values to either properties or classes in ontologies or instances in knowledge
bases, and to determine the relationship between columns [17]. For the seman-
tic labelling, most approaches so far rely on mapping textual values [16,20,21];
these work well e.g. for HTML/Web tables which have rich textual descriptions,
as they are published mainly for human consumption. However, in typical Open
Data portals many data sources exist where such textual descriptions (such as
column headers or cell labels) are missing or cannot be mapped straightforwardly
to known concepts or properties using linguistic approaches, particularly when
tables contain many numerical columns for which we cannot establish a semantic
mapping in such manner. Indeed, a major part of the datasets published in Open
Data portals comprise tabular data containing many numerical columns with
missing or non human-readable headers (organisational identifiers, sensor codes,
internal abbreviations for attributes like “population count”, or geo-coding sys-
tems for areas instead of their names, e.g. for districts, etc.) [9]. We verified this
observation by inspecting 1200 tables collected from the European Open Data
portal and the Austrian Government Open Data Portal and attempted to map
the header values using the BabelNet service (http://babelnet.org): on average,
half of the columns in CSV files served on these portals contain numerical values,
only around 20 % of which the header labels could be mapped with the Babel-
Net services to known terms and concepts (cf. more details in our evaluation in
Sect. 6.3). Therefore, the problem of semantically labelling numerical values, i.e.,
identifying the most likely property or classes for instances described by a bag
of numerical values remains open.

Some early attempts focus on specific “known” numerical datatypes, such
as longitude and latitude values [3], or – more generally – on classify-
ing numerical columns using (manually) pre-labelled numeric value sets [11].

Fig. 1. Hierarchical background
knowledge

To the best of our knowledge, so far
no unsupervised approaches have been
devised for semantic labelling of numer-
ical value sets. Additionally, the lat-
ter approach by Ramnandan et al. only
assigns a single predefined semantic label,
corresponding to a “property” per col-
umn. In the context of RDF, we deem
such semantic labelling insufficient in (at
least) two aspects: (a) We do not only
need to map columns to properties, but
to what we will call “contexts”, that is
property-domain pairs. (b) Since, given
the variety and heterogeneity of Open

1 Or, likewise with RDB2RDF direct mapping [2], the basis of [18].

http://babelnet.org
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Data, it is likely we cannot rely on a manually curated, pre-defined set of semantic
labels. Therefore, there is a need to build a hierarchical “background knowledge
graph” of semantic labels in an unsupervised manner, cf. Fig. 1. As an exam-
ple for (a), we do not only want to label a bag of numerical values as height,
but instead we want to identify that the values represent the heights of basket-
ball players who played in the NBA, or that the values represent the heights of
buildings.

Even if we cannot identify such precise labels, we still want to assign the
most likely contexts the values belong to, e.g. height of a person. To this end,
and in order to achieve (b), we automatically generate a hierarchical background
knowledge base of contexts from DBpedia. Different than previous approaches
that assign a single label to a bag of values, we assign different labels/contexts,
with different confidence values. This way, our approach could potentially be
combined with textual labelling techniques for further label refinement, which is
left for future work. In this particular paper, we focus on the following concrete
contributions:

1. We propose a hierarchical clustering over an RDF knowledge base to build
a background knowledge graph containing information about typical numer-
ical representatives of contexts, i.e., grouped by properties and their shared
domain (subject) pairs, e.g. city temperatures, peoples ages, longitude and
latitudes of cities.

2. We perform a k-nearest neighbours search and aggregate the results of seman-
tically label numerical values at different levels in our knowledge graph.

3. We evaluate our approach by cross-validating over a sample of DBpedia data
generated from the most widely used numeric properties and their associated
domain concepts.

4. We test our approach “in the wild” on tabular data extracted from Open
Data portals and report valuable insights and upcoming challenges which we
have to tackle in order to successfully label data from the Open Data domain.

In the remainder of this paper, after an overview of related works (Sect. 2),
we describe our overall approach (Sect. 3). Next, we present the construction of
the background knowledge graph from DBpedia in Sect. 4, as well as the actual
semantic labelling of a column (i.e., a bag of numeric values) in Sect. 5. Finally,
we present the evaluation results of the efficiency of different background graph
construction strategies and our experiments with attempting to find matching
columns in Open Data, Sect. 6. We conclude with a summary and ideas for future
work (Sect. 7).

2 Related Work

There exists an extensive body of research in the Semantic Web community to
derive semantic labels for attributes in structured data sources (such as columns
in tables) which are used to (i) map the schema of the data source to ontologies
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or existing semantic models or (ii) categorise the content of a data source (e.g. a
table talking about politicians, i.e., in our case mapping the rows of a table into
classes). The majority of these approaches [1,5,11,12,17,20,21] assume well-
formed relational tables, rely on textual information, such as table headers and
string cell values in the data sources, and apply common, text-based entity link-
age techniques for the mapping (see [24] for a good survey). Moreover, typical
approaches for semantic labelling such as [1,20,21] recover the semantics of Web
tables by considering as additional information the, again textual, “surrounding”
(section headers, paragraphs) of the table and leverage a database of class labels
and relationships automatically extracted from the Web. Note, that in contrast
to our concept of “context” of a column, the labels here are one-dimensional.
In summary, the main focus of all these works is on textual relations inside the
tables and in their surroundings. Techniques for recovering numerical relation-
ships are often left for future work. As for used techniques, while these are out
of the scope of our paper, many advanced textual entity recognition and linkage
techniques are implemented in the Babelnet system [10], as we highlighted in
the previous section these techniques are not necessarily applicable to a large
portion of (numerical) Open Data. In contrast, our approach assumes that we
only have a bag of numerical values available, in the worst case lacking any other
rich textual information.

Most closely related to our efforts is the work by Ramnandan et al. [11],
where the authors proposed to semantically label tuples of attribute-value pairs
(textual and numerical). The semantic labelling of numerical values is achieved
by analysing the distribution of the values and compare it to known and labelled
distributions given as input by using statistical hypothesis testing. In contrast
to their approach, we build a knowledge hierarchy and annotate sources not only
with a single label but with a possible type and shared property-object pairs.
Also complementary to our efforts is the work of Cruz et al. [3] which focus on
detecting geolocation information in tables and apply heuristics specifically for
numerical longitude and latitude values.

Outside the area of semantic labeling as such, but as an inspiration for
our approach, the authors of [6,22] developed approaches to detect natural
errors/outliers in RDF knowledge bases and automatically clustered candidate
sets from the RDF knowledge base they want to analyse by grouping numerical
values of a selected property by their types. We use a similar approach to build
our background knowledge: we also group the subjects (and their corresponding
values) by their types. However, we use a more fine-grained notion of “type”, not
only considering named classes but also “subtypes” defined in terms of shared
property-object pairs.

While our present work explicitly focuses on instance sets labeling in the
absence of a schema, previous work that addressed the automatic labeling prob-
lem using different combinations of instance and schema matching are relevant
and will be considered in future extensions of our work [8,13,23].
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3 Approach

Next, we outline the steps of our approach of finding the most likely semantic
label and to determine the context in which a bag of numerical values are derived.
In the following we formally define our notation and state the problem.

We denote a bag of numerical values annotated by a given label and context
description <l, c> as V<l,c> = {v1, v2, · · · , vn}, with vi ∈ R. Similar to [11], we
define a semantic label l as an attribute of a set of values, which can potentially
appear in different contexts. In this work, the semantic label l is a property
from an ontology. However, this could be generalised. The concept of context
description corresponds to a set of attribute-value pairs which explain/describe
the commonalities of the values in V<l,c>. As such, one can assume that the set
of input values V<l,c> are the result of applying a query over a knowledge base
(V<l,c> = Q(KB) = {v1, v2, · · · , vk}) with the semantic label and the set of
attribute value pairs as filter attributes of the query. For instance, the following
SPARQL query returns the set of values labelled with height and sharing the
attribute-value pair a basketball player :

SELECT ?v WHERE {[a dbo:BasketballPlayer] dbp:height ?v.}

Numerical values for a semantic label can appear in different contexts. For
instance, values can represent the height of a building, mountain or a person.
Even further, we might find values representing the height of basketball players
that played in the NBA. We model this observation in form of a tree for each
label l. The root node in such a tree corresponds to the set of all values which
fulfill the property l. The remaining nodes of the tree represent further semantic
information for this values, i.e., a shared context in the form of attribute-value
pair. Edges in the tree are subset-relations between these values, directed from
the superset to the subset. For instance, considering the semantic label height,
the root node could have child nodes corresponding to the context a mountain
and a person.

The background knowledge can be constructed in an either top-down or
bottom-up approach The former starts with the root node of the graph and
then detects subsets while the latter starts with leaf nodes which are then com-
bined into parent/super nodes. The top-down approach is suitable for building
the context graph from RDF knowledge bases and requires to start with a set
of entities which are described by several attribute-value pairs. Next, we can
group such entities by attributes which have numerical values, and then detect
subgroups of entities with shared attribute-value pairs. We will show in the next
section how we can build the background knowledge graph from an RDF knowl-
edge base.

The bottom-up approach is more suitable for building the background knowl-
edge from a set of CSV files. We first find a set of annotated numerical value
triples {(v1, l1, c1), (v2, l1, c2), · · · , (vn, lm, cn)}, each consisting of a set of numer-
ical values vi, a label lj and a context ci. An input triple (v, l, c) can be extracted
from a numerical column which was either manually or automatically annotated
with semantic labels (e.g. based on the column header). The possible context
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Table 1. Example table

name capacity city country

Ernst Happel... 50865 Vienna Austria

Franz Horr Stadium 13400 Vienna Austria

Red Bull Arena 32000 Salzburg Austria

· · · · · · · · · · · ·

Fig. 2. Resulting tree

information can be modelled from column headers, the author or title of the
table, or shared attributes within the table. For instance, take the example table
in Table 1 and the numerical column capacity, as context we could extract that
the numerical values describe an attribute of entities which are of type foot-
ball stadium. Further, all values share the attribute-value pair country: Austria.
Additionally, we could build a subset of values with the common context city:
Vienna and another subgroup with the context city: Salzburg (cf. Fig. 2). The
resulting background knowledge can be exploited by machine learning algorithms
or statistical methods to predict the most likely label and context for a given
bag of input values. We will outline how we apply a nearest neighbour search
approach to derive the most likely label and context pair for a set of values in
Sect. 5.

4 Background Knowledge Graph Construction
from DBpedia

In this section, we outline our automatic top-down approach to build a back-
ground knowledge base from RDF data. To do so, we execute the following steps:

1. We extract all RDF properties which have numerical values as their objects
and group the subjects by their numerical properties. These properties are
used as labels. We derive the list of RDF properties which have numerical
values as their range; the following SPARQL query could be used, cf. [6],
however, we note that this query does not return results on the live DBpedia
SPARQL endpoint due to timeouts:

SELECT ?p, COUNT(DISTINCT ?o) AS ?cnt
WHERE {?s ?p ?o. FILTER (isNumeric(?o))} GROUP BY ?p

Another approach would be to directly query the vocabularies if we know that
the RDF KB contains OWL vocabulary listing all datatype properties. We
resorted to just filtering triples of the DBpedia dump with numeric objects,
sorting them by property and counting via a script.

2. Next (in another pass/sorting), we collect/group by subjects in the different
property groups the values of the numerical properties l. For “typing” of these
subjects we collect property-object pairs – what we call context – for which
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the object is an RDF resource (an IRI); this includes rdf:type-Class triples,
but also others, e.g. dbo:locatedIn-dbr:Japan.

3. Next, we also extract and materialise the OWL class hierarchy for the Classes.
This can be done directly by extracting the rdfs:subClassOf hierarchy from
the DBpedia ontology for these Classes; we will use this type hierarchy to
further enrich our background graph collecting contexts.

After grouping the entities by the selected context labels we construct our back-
ground knowledge graph as follows: An abstraction of our graph is depicted on
the left hand side of Fig. 3: the graph consists of multiple trees, each tree corre-
sponding to a property. The root node of such a tree is labelled by the property
and contains the bag (i.e., multiset) of all numerical values of this property.

Fig. 3. background knowledge and prediction

4. The first “layer” of our knowledge graph is the so-called type hierarchy which
represents the rdfs:subClassOf relation for all available types of the triples
for property l from the type hierarchy. Since subjects can be of more than one
type, the sibling nodes in this layer can share values from the same triples. In
order to not keep too fine grained, rare classes, we filter by discarding types
with less than δ instances (e.g., property-class combinations with less than
50 instances).

5. Next, we construct the second layer, termed p-o hierarchy for the identified
non-rdf:type property-object pairs to further refine out context structure,
beyond classes, using a divisive hierarchical clustering approach. We start
with one node/group and split/compute sub-contexts recursively as we move
down the hierarchy, to further refine the type hierarchy. In order to decide how
to split a node, we impose the following requirements for possible candidates:
(a) constrain property-object: we use the same constraint as [6] that sub-

jects in a candidate node share the same property-object pair.
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(b) constrain size: again, in order to avoid too fine-grained subdivision, the
size of a candidate node has to be larger than 1 % of the parent node size
(or, resp. larger than δ) and smaller than 99 % of the parent node size.

Once the set of possible sub-contexts is computed, we sort the candidates by
their distance to the parent node in descending order. Details on the distance
measures used to compare bags of numerical values are given in Sect. 5.1.
To guarantee a high diversity as well as disjointedness of the sub-contexts
within the hierarchy, we select the candidate with the biggest distance first,
and then subsequently the non-overlapping sub-contexts from the list with
decreasing parent distance. Additionally, the disjointedness requirement also
helps to limit the number of sub groups. We recursively perform the above
steps for the new selected groups. Consequently, shared property-object pairs
of a node on the p-o hierarchy are encoded in the path to the resp. p-o node.

Node type terminology: Regarding terminology, we refer to the exact type of
a context graph node as the lowest type node in the path to a p-o node. For
instance, considering node P3 in our example in Fig. 3, the exact type would
be T2. As a super type, we consider all type nodes on the path between the
exact type node and the p-o node (e.g. T1 would be a super type of node P3).
Eventually, the root type of a node, is the highest type node on the path to the
p-o node (e.g. T1 is the root type of P3).

5 Prediction Approach

We use nearest neighbours classification over our background knowledge graph
to predict the most likely “semantic context” for a given bag of numerical val-
ues. Given an input bag, we compute the distance between the values to all
context nodes in our background knowledge graph and return the resp. contexts
in ascending order of distance. Ideally, the node with the closest distance is the
most likely semantic context/description for the input values. However, obviously
numerical values for different types and properties might share the same value
range and distribution and so we cannot even expect that the correct semantic
description is always the top ranked result. As such, we also provide aggregation
functions for predicates, type and p-o nodes over the top-k results. The idea is
similar to the K-nearest neighbour classification for which the classification of
an object is based on a majority vote over the top-k neighbour contexts.

5.1 Distance Measures

An important part for any prediction algorithm, be it based on machine learning
or statistical methods, is the distance measure to determine how closely related
two items (e.g. feature vectors) are. We consider two distance measures, namely
(i) the euclidean distance between two feature vectors and (ii) the distribution
similarity between two bags of numerical values.
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Euclidean Distance Between Descriptive Features. The first distance
function is the euclidean distance between two numerical n-dimensional feature
vectors. For our use case we consider the following features for the vectors:

– min and max value: The range of minimum and maximum values is an impor-
tant feature which allows us to easily discard “out of scope” labels or contexts.
For instance, the heights of humans might have a maximum range of 213 cm
which distinguishes it from buildings which have much higher max height.

– 5% and 95% quantile: Due to the fact that minimum and maximum values as
features are prone to outliers and errors in the set of values we also consider
quantiles and inter-quantile ranges, e.g., using 5 %- and 95 %-quantile instead
of min and max as features in a feature vector [6].

– Additional descriptive statistics (mean, stddev): Additionally, descriptive fea-
tures such as the mean and the standard deviation of a set of values give
better results for values which are within the same range but follow different
distributions.

Distribution Similarity. Another distance measure is the similarity of two
distributions of numeric values. This approach was already successfully used in
a similar setup by Ramnadan et al. [11]. The authors also showed in their eval-
uation that the Kolmogorov-Smirnov (KS) test performs best for this particular
setup compared to tests such as Welch’s t-test or Mann-Whitney’s U-test.

Kolmogorov-Smirnov (KS) distance: The KS test is a non-parametric test which
quantifies the distance between two empirical distribution functions with the
advantage of making no assumptions about the distribution of the data. As a
distance measure between two samples, the KS test computes the KS-statistic D
for two given cumulative distribution functions F1 and F2 in the following way:

D = sup
x

|F1(x) − F2(x)| (1)

where sup is the supremum of the distances. If two samples are equally dis-
tributed, i.e., the two bags hold the same numeric values, then the statistic D
converges to 0.

5.2 Aggregation Function

As in the K-nearest neighbour classification, we also aggregate the top-k nearest
neighbours by their properties, types and property object pairs. This allows us
to classify the input values at several levels:

Before we apply the specific voting function, we aggregate the neighbours for
the following different levels:

– property level: aggregation of the top-k neighbours by their properties
– exact type level: aggregation of the top-k neighbours by their exact type
– root type level: aggregation of the top-k neighbours by their root type
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– all types level: aggregation of the top-k neighbours by each of their types
(including the exact and all super types)

– p-o level: aggregation of the top-k neighbours by each of their p-o nodes

We consider the following two aggregation functions:

– Majority vote: This is the standard method for the K-nearest neighbour clas-
sification for which the input values are classified based on a majority vote
over the k nearest neighbours. Therefore, given an aggregation level, we rank
the aggregated results (e.g. properties) based on the appearance in the top-
k neighbours. Consider the right part of Fig. 3 in which we illustrate such a
ranking process. For instance, the property aggregation would rank p1 higher
than p2 since p1 appears three times in comparison to p2 which only appears
2 times.

– Aggregated distance: Our second aggregation function, we rank the aggregated
results not by the number of their appearances, but compute the average
distance. For instance, we would compute the distance for p1 in Fig. 3 by
averaging the distance of node P3, P2 and T1.

In addition to the aggregation of properties, types and property-object pairs,
we can also perform a nested level aggregation. For instance, we could aggregate
first on the property level and then inside each property on the type level. An
example for the nested aggregation based on the majority vote is depict in Fig. 3;
the most likely type for p1 would be t1 with 2 votes, followed by t2 and t3.

6 Evaluation and Experiments

We have implemented a prototype system in Python to evaluate our approach
with different functions. As a dataset to construct our background knowledge
we use the DBpedia 3.9 dump.2 The aim of our evaluation is twofold: We first
automatically evaluate the accuracy of our prediction functions with different
setups of the background knowledge in a controlled environment by splitting the
DBpedia data into a test and training dataset. Secondly, we manually test our
approach over Open Data CSV files to gain first insights for future directions,
whether there is a chance to label tabular columns outside of DBpedia.

6.1 Background Knowledge Construction

We selected 50 of the the most frequently used numerical DBpedia proper-
ties to build our background knowledge for both evaluation scenarios:3 we
excluded properties which clearly indicate internal DBpedia ids only, such as
dbo:wikiPageRevisionID as well as properties which are not directly in the root
2 http://downloads.dbpedia.org/3.9/en/mappingbased properties en.nt.bz2, last

accessed 2016-04-28.
3 The full list of properties is online at http://data.wu.ac.at/iswc2016 numlabels/

properties.html.

http://downloads.dbpedia.org/3.9/en/mappingbased_properties_en.nt.bz2
http://data.wu.ac.at/iswc2016_numlabels/properties.html
http://data.wu.ac.at/iswc2016_numlabels/properties.html
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path of the http://dbpedia.org/ontology/ prefix. Figure 4 plots in the left figure the
5 % to 95 % inter-quantile ranges of our selected properties (in logarithmic scale)
and in the right figure the total number of numeric values for each property. The
range plot visualises the overlap of numerical values for our different properties
and the quantiles are used to smoothen the ranges and eliminate possible out-
liers. About 60 % of the properties have values within the range 0–1000 and about
90 % within 0–2000.4 The shortest range has the property dbp:displacement
(inter-quantile range of 0.0058) and the maximum range of 2.56 billion has the
property dbp:areaTotal. Regarding the total number of values, the longest bar,
with 421k values, corresponds to the dbp:years property and the shortest to
dbp:width (9.6k values).

Fig. 4. 5 %–95 % inter-quantile ranges and number of values of training properties

We built three versions of our background knowledge graph to better under-
stand the impact of the three different distance functions. One function is based
on the Kolmogorov - Smirnov distribution test, and two based on the euclidean
distance over feature vectors. The first type of vector uses the minimum and
maximum of the values as features while the other uses the 5 % and 95 % quan-
tile as features. We add to both vectors the mean and standard deviation as
additional dimensions. Table 2 gives an overview of our three knowledge bases
together with the number of nodes, the construction time of the background
knowledge graph and the average prediction time for a given set of values (based
on our evaluation runs).

In addition we added our average prediction times for the different setups.
However, please note that we did not optimize our system wrt. runtimes.

Table 2. Setup of our three background knowledge graphs

ID Distance measure Nodes Build time Avg. pred. time

KS Kolmogorov-Smirnov test 11431 30 m 2.5 s

FV1 (min, max, mean, std) 11432 24 m 2.3 s

FV2 (5-q, 95-q, mean, std) 11432 38 m 4.6 s

4 Note, that around 30% of the properties have values in the range of 1000–2000 and
mainly describe years.

http://dbpedia.org/ontology/
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In future work we plan the improvement of these prediction times in order
to provide our algorithm as a live service. All evaluation are conducted on a
machine with 30 GB of RAM.

6.2 Model Evaluation

Our first experiment is designed to obtain the performance characteristics of our
prediction for different distance functions.

Test and training data selection: To get an unbiased assessment we randomly
assigned 20 % of the subjects for each property as test data and the remaining
subjects are used to build the knowledge bases. The test data is further processed
to find suitable test groups. To build those test-groups, we proceed in a similar
manner as for the construction of the background knowledge base. That is, we
analogously built type hierarchy and p-o hierarchy for per property, however, this
time without imposing any constraints and creating all possible test contexts and
sub-contexts. Eventually, we randomly select the leaf nodes of this “test context
graph” and the respective numerical value bags as test data. This process ensures
that we select context nodes which are not necessarily contained 1-to-1 in the
background knowledge graph.

Evaluating Distance Functions. Our first evaluation aims to (i) test the
impact of the distance function for the prediction and (ii) to select the best
setup for further tests. We set up an initial experiment by randomly selecting a
maximum of 50 leave nodes from each property tree in our test dataset; resulting
in 1787 test nodes.

Table 3. Accuracy in % for different distance functions

FV1 FV2 KS

Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

exact 2.5 8.2 8.2 2.5 8.2 8.2 12.3 41.8 47.9

prop 45.4 60.3 60.3 45.4 60.3 60.3 57.1 74.1 79.8

type 11.3 24.9 24.9 11.3 24.9 24.9 16.1 43.9 56.0

stype 24.9 41.1 41.1 24.9 41.1 41.1 35.8 58.6 67.5

To initially measure the accuracy of the top-k neighbours, we introduce the
following evaluation measures:

– exact: the top-k neighbours contain the correct node in the graph, that is, the
test node and predicted node share the same property, type and p-o pairs.

– prop: the top-k neighbours contain the correct property/label
– type: the top-k neighbours contain the correct type
– stype: the top-k neighbours contain the correct super type of the test node
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The results in Table 3 show the accuracy for different metrics for the
top-k neighbours, with the best results marked bold. We can clearly see that
the Kolmogorov-Smirnov based distance function (KS) outperforms for all met-
rics the feature vectors based functions in terms of prediction accuracy. The
initial results show that our approach already predicts the correct property of
the input values in the top-10 neighbours for 79 % of all test and the right type
in 56 % of the cases. Based on the clear results, we decided to use the predic-
tion approach based on Kolmogorov-Smirnov distance function in the remaining
evaluation.

Large-Scale Model Validation: The next experiment focuses on the evalu-
ation of the different aggregation functions and levels. We randomly sampled
33657 test nodes by selecting a maximum of 20 % of the leave nodes for each
property in our test data set. The test data is ∼18 times larger than in the
previous experiment and 3 times the size of our training nodes. In addition, only
9 % of the test context nodes are contained 1-to-1. This allows us to study our
approach for input data for which we have only partial evidences available. We
evaluate the accuracy for the different levels by measuring if the top-k aggre-
gated results contain the correct property, type, parent types or any p-o context
of the test instance.

Table 4 summarises the accuracy (in %) over 33k test instances for two aggre-
gation functions over the top-k nearest neighbours. Overall, the results show a
high prediction accuracy of over 92 % across all different levels for the top-10
aggregated results using the top-50 closest neighbours. For the root-type pre-
diction, we observe the highest accuracy within the top-5 aggregated results.
Regarding test nodes for which we have only partial information available, our
approach can still predict the correct property, (parent) type and even some
of the shared p-o pairs. Our results also show that doubling the number of
neighbours significantly improves the prediction accuracy by up to 15 %. Con-
sidering the two aggregation functions, we see that ranking the results based on
majority votes performs slightly better than using the average distance, with the

Table 4. Accuracy in % for different aggregation levels and functions (maj. = majority
vote, avg. = average distance)

Top-k prop type all-types root-type p-o level

Neigh. Agg. results Maj. Avg. Maj. Avg. Maj. Avg. Maj. Avg. Maj. Avg.

25 1 59.3 34.5 64.7 57.8 64.7 57.8 66.4 69.2 20.4 24.9

5 87.9 82.9 91.4 85.3 91.4 85.3 94.7 94.7 75.8 66.2

10 98.5 98.5 94.7 94.7 94.7 94.7 94.7 94.7 83.8 74.0

50 1 57.4 23.7 66.4 37.6 66.4 37.6 66.7 70.7 20.4 24.9

5 98.4 83.7 93.2 65.4 93.2 65.4 96.3 96.3 75.8 66.2

10 99.3 99.3 96.3 96.1 96.3 96.1 96.3 96.3 83.8 74.0
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biggest impact for the p-o level aggregation. Interestingly, inspecting the top-1
aggregated results using the 50 nearest neighbours, we see that the root-type
accuracy is lower than the all types accuracy. This is a false negative classi-
fication which can happen if there exists more than k results with equal votes
or average distances. In such case, we rank the results in alphabetical order and
return only the top-k, leading to a cutoff of possible correct results.

Looking at the top-10 of the aggregated results, we correctly predicated
99.5 % of the properties, 96.3 % of the exact and parent types and 92 % of the p-o
pairs. These results are encouraging to use our approach for labelling numerical
columns in tabular data, especially since we can also partially label values for
which we do not have full evidences in our background knowledge graph.

6.3 Semantic Labelling of Numerical Columns in Open Data Tables

Eventually, we study how our approach performs for numerical columns in Open
Data tables. We have to emphasise upfront, that this experiment is of rather
exploratory than quantitative nature, since - due to the heterogeneity of data
typically published in Open Data portals vs. DBpedia, we could not expect a
lot of exact matches.

To conduct our experiment, we downloaded and parsed in total 1343 CSV files
from two Open Data portals, namely the Austrian Open Government Data portal
(AT5) and the European Open Data portal (EU6). We used the standard Python
CSV parser to analyse the tables for missing header rows and performed a simple
datatype detection to identify numerical columns. In order to get insights into the
descriptiveness of these headers we tried to map header labels to BabelNet [10] in
a non-restrictive manner: we performed a simple preprocessing on the headers
(splitting on underscores and camel case) and retrieved all possible mappings
from the BabelNet API.

Table 5 shows some basic statistics of the CSV tables in the two portals.
An interesting observation is that the AT portal has an average number of 20
columns per table with an average of 8 numerical columns, while the EU portal
has larger tables with an average of 4 out of 20 columns being numerical. Regard-
ing the descriptiveness of possible column headers, we observed that 28 % of the
tables have missing header rows. Eventually, we extracted headers from 7714
out of around 10K numerical columns and used the BabelNet service to retrieve
possible mappings. We received only 1472 columns mappings to BabelNet con-
cepts or instances, confirming our assumption that many headers in Open Data
CSV files cannot easily be semantically mapped.

Exploratory Experiments: We used the numerical columns from our CSV
corpus as input for our system and manually study select columns to gain first
insights. Initially, we ranked the columns by their average distance over the 50

5 http://data.gv.at/.
6 http://open-data.europa.eu/.

http://data.gv.at/
http://open-data.europa.eu/
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Table 5. Header mapping of CSVs in Open Data portals

Portal Tables cols num.cols w/o Header Num. H Mapped

AT 968 13 8 154 6,482 1,323

EU 357 20 4 223 1,233 349

nearest neighbours and inspected the top-100 columns for each portal. We share
the interesting results for tables and columns online.7

Our first observation observation is related to the time coverage of numerical
values and the difference between Open Data and DBpedia. For instance, the
Austrian Open Data portal hosts tables as specific as numbers of cars per brands
per district in Vienna, or current (every 15 min) weather data from different
weather stations in Austria. We do not expect matches for such specific numbers
or even for temperature values if they are given in the form of timelines. In
contrast, DBpedia typically has numeric values only for “current” or “latest” for
many properties, taking population numbers of settlements as an example. Still,
we are curious to see what the method would return and partially could explore
interesting findings.

Another observation is that our knowledge base does not cover some of the
domains and attributes of the numerical Open Data columns. For instance, many
columns describe “counts” or “statistics”. Examples for such count columns are
the number of registered car model per district, the count of tourists grouped
by their nationality, month of year and country/region they visit or the count of
valid or invalid votes for an election. Examples for statistics are election results
or the percentage of registered people for different age groups and districts in
a city. For instance, take the 14th ranked Column#148 which describes elec-
tion results divided by different regions, with a non-descriptive header UNG. (we
assume this means “invalid votes”). The second-ranked property is population-
Total which is arguable a related labelling, since election results are basically
sub-populations of different regions. Looking at the results of the type aggrega-
tion for this column, we find five times the type Settlement within the first ten
neighbours, which further indicates that the values rise from (sub-)populations.
Similarly, Column#19 holds counts of car models grouped by regions which our
algorithm again labelled as population. This shows clearly that to label Open
Data columns we need a very broad coverage of numerical domains in our back-
ground knowledge.

We also aggregate the results across columns to identify the “domain” of a
table using the top-10 results of our all-types level aggregation and manu-
ally inspected some results. Again, we ranked the tables based on their average
distances across all their numerical columns. For instance, consider the second

7 http://data.wu.ac.at/iswc2016 numlabels/.
8 http://data.wu.ac.at/iswc2016 numlabels/submission/col14.html.
9 http://data.wu.ac.at/iswc2016 numlabels/submission/col1.html.

http://data.wu.ac.at/iswc2016_numlabels/
http://data.wu.ac.at/iswc2016_numlabels/submission/col14.html
http://data.wu.ac.at/iswc2016_numlabels/submission/col1.html
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ranked Table#210 which consists of multiple columns which describe population
counts for different districts. Aggregating and ranking the types across these
columns results in the types Town and PopulatedPlace which proved to be right.

Discussion of Findings: While the findings did not yet provide, clear and con-
vincing matches, we could collect valuable insights from this results on challenges
to be tackled in future work:

– Dealing with timeline data: To correctly handle timeline data, we first need
to be able to detect the time dependency and than regroup or transform the
table.

– Domain specific background knowledge: Open Data contains many tabular
data which is similar in itself, but not necessarily matching DBpedia cate-
gories and values reported there, e.g. reports for spendings/budget election
results, tourism or population demographics. Our results highlight the limited
coverage of DBpedia, which was also observed in the work from Ritze et al.
[14]. Therefore, we have to gradually enrich the background knowledge graph
from categories learned from Open Data tables themselves.

– Aggregating column scores: While single columns provided partially bad recog-
nition, in some cases combined recognition of columns revealed interesting
combinations.

– Combine with existing complementary approaches: Lastly, while we deliber-
ately left it out of scope in this paper, linguistic cues could and probably
should be used in combination with our numerical methods as an additional
cue to gradually improve labelling/matching capabilities, as we explore and
collect more Open Data sources.

7 Conclusions and Future Work

To the best of our knowledge, this is the first work addressing semantic labelling
of numerical values by applying k-nearest neighbours search over a background
knowledge graph, which is constructed in an unsupervised manner using hierar-
chical clustering. Our evaluation shows that we can assign fine-grained semantic
labels when there is enough supporting evidence in our background knowledge
graph. In other cases, our approach can nevertheless assign high level contexts
to the data. Given a bag of numerical values, we correctly identified in 99.5 %
of the test cases the properties, in 96.3 % the exact or parent type, and in 92 %
the shared property-object pairs. Despite the simplicity of our solution, we can
confirm that a knowledge base can be harnessed to perform automatic semantic
labelling of datasets with promising results.

The obtained results are encouraging for labelling numerical columns in tab-
ular data. A first feasibility evaluation using numerical columns in Open Data
CSV files showed that further research is needed to extend our knowledge graph
to cater for the specifics of the Open Data domain, such as addressing timeliness.
10 http://data.wu.ac.at/iswc2016 numlabels/submission/tab2.html.

http://data.wu.ac.at/iswc2016_numlabels/submission/tab2.html
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In future work, we plan to extend our background knowledge, using more prop-
erties from DBpedia and combining it with knowledge from other RDF datasets,
such as WikiData or eurostats. To achieve better results in such combined datasets
the handling of units of measurement and the time dimension is a vital exten-
sion of our system [23]. Complementary, we will focus on building the background
knowledge in a bottom-up approach from information extracted out of CSV files
as outlined in this work. We will also investigate performance optimization tech-
niques, since our prediction time increases linearly with the number of context
nodes. For example, we will explore range indices or pre-filtering to reduce the
search space in the context graph. Another direction is to exploit our system in
combination with other approaches for labelling tables based on textual header;
e.g., [8] nicely complements our approach: Halevy et al. group together semanti-
cally related attributes and relate them to corresponding classes.

We believe that our approach can provide important clues about the context
of numerical values which can be exploited in other domains, e.g., as input for
ontology alignment between two different RDF datasets [7,15] or as input for
computing the relatedness between tables such as used in [4].

Acknowledgments. This work has been supported by the Austrian Research Pro-
motion Agency (FFG) under the project ADEQUATe (grant no. 849982).

References

1. Adelfio, M.D., Samet, H.: Schema extraction for tabular data on the web. Proc.
VLDB Endow. 6(6), 421–432 (2013)

2. Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J.: A direct mapping of
relational data to RDF, W3C Recommendation, September 2012. http://www.w3.
org/TR/rdb-direct-mapping/

3. Cruz, I.F., Ganesh, V.R., Mirrezaei, S.I.: Semantic extraction of geographic data
from web tables for big data integration. In: Proceedings of the 7th Workshop on
Geographic Information Retrieval, GIR 2013, pp. 19–26. ACM, New York (2013)

4. Das Sarma, A., Fang, L., Gupta, N., Halevy, A., Lee, H., Wu, F., Xin, R., Yu, C.:
Finding related tables. In: Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pp. 817–828. ACM (2012)

5. Ermilov, I., Auer, S., Stadler, C.: User-driven semantic mapping of tabular data.
In: Proceedings of the 9th International Conference on Semantic Systems, I-
SEMANTICS 2013, pp. 105–112. ACM, New York (2013)

6. Fleischhacker, D., Paulheim, H., Bryl, V., Völker, J., Bizer, C.: Detecting errors
in numerical linked data using cross-checked outlier detection. In: Mika, P., et al.
(eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 357–372. Springer, Heidelberg
(2014)

7. Gal, A., Roitman, H., Sagi, T.: From diversity-based prediction to better ontology
& schema matching. In: Proceedings of the 25th International Conference on World
Wide Web, WWW 2016, Montreal, Canada, pp. 1145–1155 (2016)

8. Halevy, A.Y., Noy, N.F., Sarawagi, S., Whang, S.E., Yu, X.: Discovering struc-
ture in the universe of attribute names. In: Proceedings of the 25th International
Conference on World Wide Web, WWW 2016, Montreal, Canada, pp. 939–949
(2016)

http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/rdb-direct-mapping/


Multi-level Semantic Labelling of Numerical Values 445

9. Lopez, V., Kotoulas, S., Sbodio, M.L., Stephenson, M., Gkoulalas-Divanis, A.,
Aonghusa, P.M.: QuerioCity: a linked data platform for urban information man-
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Abstract. Semantic labeling is the process of mapping attributes in
data sources to classes in an ontology and is a necessary step in hetero-
geneous data integration. Variations in data formats, attribute names
and even ranges of values of data make this a very challenging task. In
this paper, we present a novel domain-independent approach to auto-
matic semantic labeling that uses machine learning techniques. Previous
approaches use machine learning to learn a model that extracts features
related to the data of a domain, which requires the model to be re-trained
for every new domain. Our solution uses similarity metrics as features to
compare against labeled domain data and learns a matching function to
infer the correct semantic labels for data. Since our approach depends
on the learned similarity metrics but not the data itself, it is domain-
independent and only needs to be trained once to work effectively across
multiple domains. In our evaluation, our approach achieves higher accu-
racy than other approaches, even when the learned models are trained
on domains other than the test domain.

1 Introduction

Mapping attributes in data sources to a domain ontology is a necessary step
in integrating different sources and mapping them to a domain ontology. The
problem, which we call semantic labeling, requires annotating source attributes
with classes and properties of ontologies. There has been a number of studies
conducted to automate the process since labeling attributes manually is labori-
ous and requires a sufficient amount of domain knowledge. However, automatic
semantic labeling is difficult to perform accurately for several reasons. First,
people have different ways to represent data of same labels. Table 1 shows dif-
ferent formats that PlayerPosition can be found in soccer data. On the other
hand, data from different labels can be very similar. For example, data of Num-
berOfGoalsScores and NumberOfGamesPlayed in soccer data are very similar
because both of them are in numeric format with values ranged mainly from
0 to 50. Therefore, a good semantic labeling approach needs to deal with two
different issues: to distinguish similar labels and to recognize the same labels
from different data, both of which generally make the problem very hard.

To address these issues, we present a domain-independent machine learning
approach for semantic labeling. Our contribution is a novel way of using machine
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 446–462, 2016.
DOI: 10.1007/978-3-319-46523-4 27
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Table 1. Different representations of PlayerPosition

Code Abbreviation Full form

1 GK Goalkeeper

2 DF Defender

3 MF Midfieder

4 FW Forward

learning to solve semantic labeling as a combination of many binary classification
sub-problems. Our machine learning model uses similarity metrics as features
and learns a matching function to determine whether attributes have the same
labels to infer the correct semantic labels. Because the matching function is
not related to specific labels, our model is independent from labels and thus
independent from the domain ontologies.

We evaluate our approach on many datasets from different domains. When
the machine learning models are trained on another domain, the system achieves
an average mean reciprocal rank (MRR) [3] over 80 % on 4 datasets. The results
are even better if models are trained on the same domain. We also run experi-
ments on the T2D Gold Standard data and achieve a higher F1-measure com-
pared to the property-matching approach in the T2K system [12].

2 Motivating Example

In this section, we provide an example to explain the problem of mapping source
attributes to semantic types in a domain ontology. Suppose that we want to map
attributes in a data source named WC2014 (Table 2), which contains information
about players of national teams in World Cup 2014, to the DBpedia ontology.
First, we define our target label, which we call semantic type, as a pair of val-
ues consisting of a domain class and one of its properties <class, property>. For
example, in Table 2, the correct semantic types of column player, height and posi-
tion are <dbo:SoccerPlayer, dbo:birthName>, <dbo:SoccerPlayer, dbo:height>
and <dbo:SoccerPlayer, dbo:draftPosition>. Semantic labeling systems attempt
to automatically identify these mappings. However, this cannot be done without
knowing about these semantic types in a domain.

Table 2. Sample data from World Cup 2014 players (WC2014)

Player Height Position

Alan PULIDO 176 Forward

Robin VAN PERSIE 186 Forward

Miiko ALBORNOZ 180 Defender

Marouane FELLAINI 194 Midfielder
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Table 3. Sample data from England Premier League (EPL)

First name Position Height

<SoccerPlayer, birthName> <SoccerPlayer, draftPosition> <SoccerPlayer, height>

Hazard, Eden Midfielder 172

Cahill, Gary Defender 191

Felliani, Marouane Midfielder 194

Oezil, Mesut Midfielder 180

Therefore, the semantic labeling problem refers to a situation where we have
already mapped one or more sources to a common ontology and we want to
label new sources using the same ontology. For example, we have the data
source EPL containing information about all England Premier League play-
ers and it is already labeled with DBpedia semantic types (Table 3). Since we
have information about the DBpedia ontology from the EPL source, we can
label source attributes of WC2014 based on this information. There are dif-
ferent ways to leverage domain data from labeled sources for semantic label-
ing. Previous work uses labeled sources such as EPL as training data to learn
the characteristic of data in different attributes. Table 4 shows some feature
values extracted from <dbo:SoccerPlayer, dbo:birthName> data. In our app-
roach, we use EPL as our base data and compare attributes in WC2014 with
attributes in EPL. If these two attributes are similar such as column first
name in EPL and column player in WC2014, we conclude that they have the
same semantic types. Because we know that the semantic type of first name is
<dbo:SoccerPlayer, dbo:birthName>, we infer that the semantic type of player
is also <dbo:SoccerPlayer, dbo:birthName>.

Table 4. Some feature values extracted from <SoccerPlayer, birthName>

Feature Value

All capitalized token 1

Starts with char C 0.25

Num. len. 0

The main difference between our approach and previous work is when faced
with unseen semantic types. For example, consider the case where we have
another labeled source named BGL containing information about players in
Germany Bundesliga League (Table 5). BGL contains a column salary which
is labeled as <dbo:Person, dbo:salary> - an unseen semantic type. In previous
approaches, learned models need to be retrained to capture the data characteris-
tic of <dbo:Person, dbo:salary> and this process needs to be repeated for every
unseen semantic type. There are a huge number of data sources and semantic
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types, which makes the possibility of facing new semantic types very high and it
is time-consuming to retrain the learning models each time. For our approach,
we just need to store data with the new semantic types for later comparison
with unlabeled attributes.

Table 5. Sample data from Germany Bundesliga League (GBL)

Name <SoccerPlayer, birthName> Salary <SoccerPlayer, salary>

Neuer; Manuel 150,000

Boateng; Jerome 90,000

Dante 100,000

3 Approach

In this section, we explain our approach to determine similarities between unla-
beled and labeled attributes and use machine learning techniques to find the
correct semantic type. Section 3.1 describes various similarity metrics that we
use as our features and how we compute them. Section 3.2 describes details of
how we use machine learning for semantic labeling problem.

3.1 Similarity Metrics

In our approach, we exploit different similarity metrics that measure how
attributes are similar to others. In this section, we describe these similarity
metrics and explain how they can help in semantic labeling.

Attribute Name Similarity. In relational databases, web tables or spread-
sheets, tabular structures usually have titles for each column. We consider these
titles as attribute names and use them to compare similarities between two
attributes.

Definition 1. Given two attributes named a and b, we have A and B as sets of
character tri-grams extracted from a and b. The attribute name similarity is
calculated using Jaccard similarity [8] as follows:

S(a, b) =
|A ∩ B|
|A ∪ B| (1)

In data sources, people usually name attributes based on the meaning of
the data so that similarity in attribute names provides a good indication of the
similarity in semantic types. However, as attribute names usually correspond
only to ontology properties, using attribute names as the only metric can lead
to false positives in labeling. For example, a column named name can refer to
<dbo:Person, dbo:birthName> or <dbo:SportsTeam, dbp:clubName> depending
on the sources. Collecting data sources from the web can also result in missing
or noisy attribute names, which provide no information about the attributes.
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Value Similarity. Value similarity is the most common similarity metric, which
is widely used in different matching systems. In semantic labeling, attribute val-
ues play an important role in identifying attributes that have the same semantic
types because they usually contain similar values. In our approach, we compute
three different value similarity metrics: Jaccard similarity and TF-IDF cosine
similarity for textual data, as well as a modified version of Jaccard similarity for
numeric values.

Definition 2. Given two attributes named a and b with va and vb as the cor-
responding sets of values, the textual Jaccard similarity [8] is computed as
follows:

S(a, b) =
|va ∩ vb|
|va ∪ vb| (2)

Definition 3. Given set of attributes {a1, a2, . . . , an} with a corresponding sets
of values {v1, v2, . . . , vn}, the TF-IDF cosine similarity [8] is computed using
the following steps:

1. We concatenate the values in {v1, v2, . . . , vn} by attribute to generate a set of
documents: {D1,D2, . . . , Dn}

2. For a document Di, we calculate the corresponding TF-IDF vector Wi

3. We compute TF-IDF cosine similarity between two attributes a and b:

S(a, b) =
Wa · Wb

|Wa| × |Wb| (3)

For numeric attributes, set-based similarity metrics such as Jaccard and cosine
similarity do not work effectively because numeric data have continuous ranges of
values. Therefore, we customize Jaccard similarity to work with range of values
instead of sets of values.

Definition 4. Given two attributes named a and b with va and vb as the cor-
responding sets of values, the numeric Jaccard similarity is computed as
follows:

S(a, b) =
min(max(va),max(vb)) − max(min(va),min(vb))
max(max(va),max(vb)) − min(min(va),min(vb))

(4)

For example, the numeric Jaccard similarity s of two attributes with values
in range [1912, 1980] and [1940, 2000] is computed as follows:

s =
1980 − 1940
2000 − 1912

= 0.45. (5)

To reduce sensitivity to outliers, we only use the subsets containing values
from first quartile to third quartile instead of the whole set of values in attributes.
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Distribution Similarity. For numeric data, there are semantic types that
we are unable to distinguish by using value similarity because they have the
same range of values. However, since they have different underlying meanings,
their distribution of values may be different. For example, consider the example
about NumberOfGoalsScored and NumberOfGamesPlayed in Sect. 1. Although
they have the same range of values, NumberOfGoalsScored has skewed distribu-
tion because the high values are mostly distributed to Forwards and Midfielders
while NumberOfGamesPlayed is more likely to follow a near-uniform distribu-
tion.

Therefore, we analyze the distribution of numeric values contained in the
attributes using statistical hypothesis testing as one of the similarity metrics. For
statistical hypothesis testing used in our approach, the null hypothesis is that
the two sets of values are drawn from a same population (distribution), which
may indicate that they come from a same semantic type. We use Kolmogorov-
Smirnov test (KS test)[6] as our statistical hypothesis test based on evaluation
of different statistical tests in Ramnandan et al.’s research [11].

Histogram Similarity. For textual data, normal statistical hypothesis test-
ing cannot be applied because there is no order in textual values. Moreover,
we cannot use traditional correlation methods such as mutual information or
KL-divergence since we are comparing attributes that do not appear in the
same source. Therefore, we calculate value histograms in textual attributes and
compare their histograms instead. The statistical hypothesis tests used for the
histogram case is the Mann-Whitney test (MW test) [6]. The reason we use MW
test instead of KS test is that histograms are not ordinal and using methods
that compare two empirical value distributions such as KS test is not suitable.
Mann-Whitney test computes distribution distances based on medians and, thus,
is more appropriate to use for histograms.

When comparing a textual attribute with a numeric attribute, we also trans-
form numeric data into histogram form and use MW test to compute histogram
similarity. For the example of PlayerPosition in Table 1, even though they have
different representations, they have similar histogram forms because every posi-
tion usually have similar frequencies over the different sources of data. For
instance, because every soccer team usually has 1 goalkeeper, 4 defenders, 4
midfielders and 2 forwards, the histogram frequencies are likely to be [ 1

11 , 4
11 ,

4
11 , 2

11 ].

Mixtures of Numeric and Textual Data. As we have described above, there
are similarity measures that can only applied for the textual part of attribute
values while some others only work on numeric parts (Table 6). Because textual
similarity metrics are more important when comparing attributes with mostly
text and numeric similarities are more important for attributes with numeric
data, we need to adjust the values of these similarity measures based on the
fraction of textual and numeric values contained in attributes.
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Table 6. Similarity feature vector

Feature name Explanantion Applied data types

ATT NAME Jaccard similarity for attribute names All

TEXT JACCARD Jaccard similarity for textual data Textual

TF-IDF COSINE TF-IDF cosine similarity for textual data Textual

NUM JACCARD Modified Jaccard similarity for numeric data Numeric

NUM KS KS statistical test for numeric data Numeric

MW HISTOGRAM MW test for histogram All

Given r1 and r2 are fractions of textual data in the pair of attributes, the
adjusted value of textual similarity value is computed as follows:

vadjusted =
(r1 ∗ r2)
(r1 + r2)

∗ voriginal (6)

On the other hand, the adjusted value of numeric similarity value is computed
as follows:

vadjusted =
[(1 − r1) ∗ (1 − r2)]
[(1 − r1) + (1 − r2)]

∗ voriginal (7)

The adjusted value is the product of the harmonic mean over r1, r2 and the
original value. The reason for using harmonic mean follows the intuition that
the corresponding similarity values are more reliable when two attributes have
similar fractions of textual data or numeric data and vice versa.

3.2 Semantic Labeling

The overall framework is illustrated in Fig. 1. The input of our system is an
unlabeled attribute and a set of labeled attributes as domain data and the output
is a set of top-k semantic types corresponding to the unlabeled attribute.

Overall Approach. Given a set of attributes {a1, a2, . . . an}, we compute M-
dimensional feature vectors fij (i �= j). Each dimension k corresponds to a
similarity metric, so f [k] represents how similar attributes ai and aj are under
metric k.

During training we label each fij as True/False, where True means that
attributes ai and aj have the same semantic type and vice versa. To set up a
new domain, we store a set of labeled attributes {a1, a2, . . . an} as domain data
and use them to compare against new attributes to infer the semantic types.

Given a new attribute a0, the algorithm computes f0j for all j (j �= 0), and
uses the learned classifier to label each f0j as True/False. If the label of f0j is
yes, the algorithm says that the semantic type of a0 is the semantic type that
was recorded for aj . From that, we can conclude the semantic type of a0.



Semantic Labeling: A Domain-Independent Approach 453

Fig. 1. Overall framework of our semantic labeling system

Previous approaches, tried to predict the semantic label of a0 based on char-
acteristic of recorded ai. In contrast, our approach learns a classifier over simi-
larity vectors. It is domain-independent because classification does not depend
on the values in attributes, but rather on the similarity scores of multiple metrics
between the attributes.

Since there are no constraint on the number of True labels for each attribute,
we develop a ranking method and only take the top-k results of semantic types.
The ranking algorithm uses the predicted probabilities of the True class in clas-
sification as the confidence scores and ranks the candidate semantic types based
on that.

Classifiers for Semantic Labeling. To choose the best classifier for semantic
labeling, we ran experiments on various of classifiers and compare the results.
Because we use class probabilities of classifiers as confidence scores, classifiers
need to have class probabilities calculated from the feature vector in order to be
applicable. Therefore, we only consider Logistic Regression and Random Forests
[2]. Details of the experiments are described in Sect. 4.2. According to the results
from Tables 8, 9 and 10, Logistic Regression achieves the best performance and
thus is the selected classifier in our system.

4 Evaluation

In our experiments, we use four different datasets: city [11], weather [1], museum
[14], and soccer. The soccer data set was created to provide a wide variety
of semantic types and consists of numerous real-world data sets about soccer.
The purpose of using many datasets from different domains is to evaluate our
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classifiers when applying a single learned classifier to multiple domains. Table 7
shows the overall information about these data sets. The datasets and code used
in our experiments have been published online1.

Table 7. Data sets from different domains in experiments

Data set No. sources No. semantic types No. attributes

Museum 29 20 217

City 10 52 520

Soccer 12 14 97

Weather 4 11 44

4.1 Experimental Setup

In this section, we evaluate the performance of our system, which is called DSL
(Domain-independent Semantic Labeler). The evaluation metric that we measure
is the mean reciprocal rank (MRR) [3]. The details of the experimental setup is
as follows:

1. Choose a labeling dataset A.
2. Suppose A consists of n sources {s1, s2, . . . , sn}, choose the number of labeled

sources m in the dataset (m < n).
3. For every source si in A, perform semantic labeling using m labeled sources

from si+1 to sm+i+1.

For example, the soccer dataset has 12 sources. If we have one labeled source,
we label s1 with labeled data from s2, label s2 with labeled data from s3 and so
on. Likewise, if we have five labeled sources, we label s1 with labeled data in set
of sources s2, s3, . . . , s6 and continue through the entire data set.

For classifier training data, we follow the same process as above but we man-
ually label the computed feature vectors generated instead of running semantic
labeling. To assure that classifier training data is disjoint from labeling data, if
labeling dataset and training dataset are the same, we choose distinct labeled
sources for each process.

4.2 Classifier Analysis

In this experiment, we evaluate 2 classifiers: Logistic Regression and Random
Forests to choose the best classifier for semantic labeling.

Tables 8, 9 and 10 lists results of two classifiers when being trained and tested
on different datasets. We use city, museum and soccer datasets to train Logistic

1 https://github.com/minhptx/iswc-2016-semantic-labeling.git.

https://github.com/minhptx/iswc-2016-semantic-labeling.git
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Table 8. MRR scores of different classifiers when training on soccer

Soccer Museum City Weather

Logistic Regression 0.814 0.863 0.944 0.951

Random Forests 0.794 0.799 0.947 0.86

Table 9. MRR scores of different classifiers when training on museum

Soccer Museum City Weather

Logistic Regression 0.815 0.845 0.940 0.951

Random Forests 0.820 0.778 0.830 0.898

Table 10. MRR scores of different classifiers when training on city

Soccer Museum City Weather

Logistic Regression 0.782 0.807 0.965 0.955

Random Forests 0.802 0.728 0.912 0.807

Regression and Random Forest since we can generate a sufficient amount of
samples for training data. For semantic labeling, we use all 4 datasets: soccer,
museum, city and weather with the numbers of labeled sources is 50 % of the
total numbers of sources in these datasets.

Overall, Logistic Regression achieves a comparable performance to Random
Forests, which is a surprising result, because Random Forests have been shown to
be the better classifiers in other research. However, because of the issue where we
need to use class probabilities as confidence scores, the results can be explained.

Logistic Regression class probabilities are computed using the following func-
tion:

P (y = 1|x) = sigmoid(wTx) (8)

where x is the feature vector and w are its coefficients. Because P (y = 1|x) is
a monotonically increasing function of wTx, P (y = 1|x) increases when wTx
increases. Thus, feature vectors with higher similarity values have higher class
probabilities in Logistic Regression models.

Random Forests, on the other hand, calculate class probabilities based on
fraction of samples of the same class in decision tree leaves. As long as the values
are higher than splitting values in decision trees, feature vectors are split to the
same branches and are likely to receive similar class probabilities. Therefore,
using class probabilities of Random Forests as confidence scores performs worse.

Since the labeling accuracy of Logistic Regression and Random Forests are
comparable, we consider the training time and labeling time of each classifier
as additional measurements. Table 11 lists average system training time and
labeling time of these classifiers.
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Table 11. Training and labeling time of different classifiers

Training time Labeling time

Logistic Regression 144 s 0.31 s

Random Forests 157 s 0.36 s

The results in Table 11 show that Logistic Regression has a smaller training
and labeling time. Although the differences are minor, it provides an advantage,
especially in real-world scenarios with large amounts of data. Using Logistic
Regression also provides more meaningful insights of features because of its lin-
ear combination compared with a randomized algorithm as Random Forests.
Therefore, we use Logistic Regression as the classifier for the remaining experi-
ments.

4.3 Feature Analysis

In machine learning classifiers, different features have different degrees of influ-
ence on the classification results. To analyze the importance of features in our
similarity vectors, we train Logistic Regression on different datasets and extract
coefficients of features. Table 12 shows coefficients of features when Logistic
Regression models are trained on city, museum and soccer data.

Table 12. Coefficients of features in Logistic Regression classifier

Feature Train on soccer Train on museum Train on city

ATT NAME 4.41 6.08 0

TEXT JACCARD 1.88 0.88 9.16

TEXT TF-IDF 3.91 1.03 3.20

NUM JACCARD 4.21 3.28 12.68

NUM KS 1.78 0.78 7.25

MW HISTOGRAM 0.32 1.14 3.83

In general, all of our similarity features have positive correlation with the
classification results, which means that higher values in these similarity metrics
results in higher probabilities that the attributes have the same semantic type. As
we can see from the results, value similarity features play the most important
role in Logistic Regression classifiers regardless of training domain. Attribute
names similarity has a good impact on soccer and museum data but not in city
because city dataset does not have headers or titles for attributes. Distribution
and histogram similarity metrics have higher coefficients in city data because
city dataset contains mostly numeric attributes.
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In conclusion, we have demonstrated that our similarity features contribute
to the similarity in the semantic types of attributes. However, the importance
of features in the learned classifiers can vary according to the training data as
shown in Table 12.

4.4 Semantic Labeling

In this experiment, we evaluate performance of DSL (Domain-independent
Semantic Labeler) in comparison with SemanticTyper [11]. To follow real-world
scenarios where labeled sources are hard to find and manually labeling sources
is tedious, our experiments run on configuration with only 1 to 5 labeled data
sources for every dataset (Weather dataset has only 4 sources so the maximum
number of labeled sources is 3). For DSL, we follow the setup in Sect. 4.1 while
having soccer, city and museum as our classifier training dataset iteratively.
For SemanticTyper, the MRR scores reported are the MRR scores when being
trained on the testing domains. The weather domain is only used in seman-
tic labeling because it cannot provide a sufficient number of feature vectors for
training classifiers.

The results in Tables 13, 14, 15 and 16 show that our approach outperforms
SemanticTyper in all four evaluation datasets. Although there are slight changes
in performance when the classifiers are trained on different domains, the changes
are not significantly different and it shows that our approach is robust across
multiple data datasets. According to the table, training the classifier from the
same domain, which provides more information about the characteristic of data
in domains, slightly improves the accuracy of the classifier.

Table 13. MRR scores of DSL and SemanticTyper on soccer dataset

Number of labeled sources 1 2 3 4 5

DSL (train on soccer) 0.625 0.782 0.777 0.800 0.815

DSL (train on city) 0.601 0.785 0.788 0.808 0.820

DSL (train on museum) 0.600 0.781 0.788 0.808 0.810

SemanticTyper 0.608 0.711 0.720 0.720 0.732

Table 14. MRR scores of DSL and SemanticTyper on museum dataset

Number of labeled sources 1 2 3 4 5

DSL (trained on soccer) 0.471 0.665 0.719 0.755 0.790

DSL (trained on museum) 0.463 0.652 0.709 0.752 0.792

DSL (trained on city) 0.472 0.659 0.706 0.713 0.730

SemanticTyper 0.491 0.615 0.656 0.699 0.697
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Table 15. MRR scores of DSL and SemanticTyper on city dataset

Number of labeled sources 1 2 3 4 5

DSL (trained on soccer) 0.913 0.932 0.932 0.941 0.945

DSL (trained on museum) 0.912 0.927 0.928 0.941 0.944

DSL (trained on city) 0.914 0.928 0.930 0.939 0.944

SemanticTyper 0.856 0.893 0.893 0.913 0.919

Table 16. MRR scores of DSL and SemanticTyper on weather dataset

Number of labeled sources 1 2 3

DSL (trained on soccer) 0.899 0.951 0.977

DSL (trained on museum) 0.899 0.951 0.977

DSL (trained on city) 0.902 0.955 0.977

SemanticTyper 0.852 0.920 0.955

We also evaluate our system on the T2D Gold Standard dataset2 and compare
our result with T2K system’s approach for properties matching [12]. As described
in Ritze’s work, labeled sources are extracted from the DBpedia ontology. After
that, they divided the T2D Gold Standard dataset into two equal-sized parts: an
optimization set and an evaluation set. The optimization set is used to optimize
the essential parameters for the system and the result are evaluated on the
evaluation set. Although we are unable to reconstruct the exact experiment, we
approximated the result by using the following configuration as an alternative:

1. Collect DBpedia ontology data in table format as labeled sources.
2. For every attribute in the ontology, extract only 1000 first values as the set

of values for the attribute.
3. Train the classifiers on combination of soccer, museum and city datasets to

enrich the training data.
4. Test semantic labeling (properties matching) on the entire T2D Gold Stan-

dard dataset.

Table 17. MRR scores of DSL and T2K on T2D Gold Standard dataset

DSL T2K (evaluation) T2K (optimization)

0.773 0.730 0.700

Table 17 shows the results of DSL in comparisons with T2K. Although our
approach is not optimized on the optimization set as T2K, we achieve a better
2 http://webdatacommons.org/webtables/goldstandard.html.

http://webdatacommons.org/webtables/goldstandard.html
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accuracy on the dataset. Moreover, our classifiers have been trained on different
domains and we only use 1000 values for every attribute as domain data instead
of the entire set of values. Because we exploit more similarity features, our app-
roach achieves better discriminative ability for the various semantic types. The
evaluation also shows that we have a robust, domain-independent system that
only needs to be trained once before using it for semantic labeling in a wide
range of domains.

5 Related Work

Ramnandan et al. [11] describe an approach that captures and compares distrib-
utions and properties of data corresponding to semantic types as a whole. They
apply heuristic rules to separate numeric and textual data and then use TF-IDF
and KS as measures to compare the data. In our approach, we use more similar-
ity features besides of TF-IDF and KS test, which enables our system to better
discriminate between semantic types. Our similarity metrics can be applied to
both textual and numeric attributes by the method described in Sect. 3.1.

Ritze et al. [12] propose a new approach for annotating HTML tables with
DBpedia classes, properties, and entities. Their system, which is named T2K, use
metrics like Jaccard, Levenshtein and deviation similarity to match attributes
to properties and values. T2K also uses a iterative process to adjust property
weights and filter the candidate sets until the similarity values converge. The
system provides good results in entity and class matching but not in property
matching. Since they exploit only value similarity for textual data and numeric
similarity for numeric data for property matching, they face the same limitation
as Ramnandan’s work and achieve a lower performance compared to DSL.

A number of approaches have used probabilistic graphical models to solve the
problem of semantic labeling. Goel et al. [4] exploit the underlying relationships
between attributes and values with attribute characteristics as features and use
Conditional Random Fields (CRF) to label attributes. They assign semantic
types to every value in an attribute and then combine these semantic types to
infer the semantic type for the whole attribute. Limaye et al. [7] use probabilis-
tic graphical models in a broader problem as they annotate tables on the web
by entities for cells, types for columns, and relationships for binary relations
between columns. They exploit two feature functions that describe the depen-
dency of column type with its values and header. The labels of all columns are
then assigned simultaneously using a message passing algorithm to maximize the
potential function formulated by features and their weights. Mulwad et al. [9]
extend the work of Limaye et al. by proposing a novel Semantic Message Pass-
ing algorithm that uses Linked Open Data (LOD) knowledge to improve the
existing semantic message algorithm. These approaches require the probabilistic
graphical models to be retrained when handling new semantic types. The reason
for this is that their feature weights are calculated associated with labels and
need to be re-estimated for new semantic types. Also, graphical models do not
scale well as the number of semantic types increases because of the explosion of
different enumerations in the search space.
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Mulwad [10] also extend their work into a full system with multiple func-
tions. They incorporated probabilistic semantic labeling with domain knowledge
processing and data cleaning to produce a domain-independent semantic labeling
system. However, their domain independence is limited in that it requires users
to provide domain knowledge or apply preprocessing modules. In our semantic
labeling system, the process is automatic and the domain-independent learning
models only require a small amount of domain data to perform well on semantic
labeling.

Venetis et al. [15] present an approach to annotate tables on the web by
leveraging existing data on the web. An isA database in the form of {instance,
class} is extracted from the web using linguistic patterns and is used to pro-
duce column labels. The column labels are assigned by a maximum likelihood
estimator that assigns a column with a class label that maximize the fraction of
column values in that label. Syed et al. [13] use Semantic Web data to infer the
semantic models of tables. They annotate the table columns by using the column
names if available and values inside the columns to build a query to Wikitology.
After that, columns are mapped to classes returned in the query result. Both
the work of Venetis et al. and Syed et al. extract a huge amount of data from
various sources to estimate the probability that a value belongs to a semantic
type. Thus, their approach is restricted to domains where online data is widely
available. In our approach, our learning model is not domain-specific and thus,
we can use any domain as our training data and the system can still label data
from other domains effectively.

Gunaratna et al. [5] address a related problem, which is called entity class
resolution. Entity class resolution is similar to semantic labeling except that
their targets are entity classes instead of semantic types. Their system, FACES,
applies natural language processing (NLP) techniques to identify focus terms
and uses text similarities to compare focus terms with entity class names in the
ontology. Although FACES’ approach works well in text documents because it
is easy to detect focus terms in grammatical documents, it cannot be applied
to most of web data such web tables, spreadsheets, or RDF stores because data
values are mostly unstructured and do not follow grammar rules such as numbers
and named entity mentions. In contrast, our approach does not rely on NLP
algorithms so that it can perform effectively in noisy data sources from the web.

6 Conclusion and Future Work

In this paper, we presented a novel domain-independent approach for semantic
labeling that leverages similarity measures and machine learning techniques. In
our system, we capture the patterns of matching decisions given the similarity
scores between unlabeled attributes and labeled data to find the correct semantic
types. The approach allows us to train the machine learning model only once
and use it in multiple different domains. Moreover, our similarity features are
independent within a semantic type and across other semantic types. We can
compute feature vectors using a parallel and distributed implementation which
reduces the running time while maintaining labeling accuracy.
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In the future, we plan to exploit transfer learning to incorporate some specific
information about the domain data to adjust the weights of our features. For
example, if a domain contains mostly numeric data, we may give more weight to
numeric features. In view of the machine learning model, we can leverage data
from Linked Open Data to enrich our learning models. In this way, the model can
have information about many difficult cases and, therefore, it will be more likely
to generalize well. Finally, although our approach allows new semantic types
to be easily integrated, it lacks the ability to detect whether the true semantic
type exists in the labeled data. This inability can lead to incorrect mappings in
unseen cases and decrease the overall system accuracy. One of the directions of
future work is to have the machine learning model detect these cases.
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Abstract. We build on our earlier finding that more than 95 % of the
triples in actual RDF triple graphs have a remarkably tabular structure,
whose schema does not necessarily follow from explicit metadata such as
ontologies, but for which an RDF store can automatically derive by look-
ing at the data using so-called “emergent schema” detection techniques.
In this paper we investigate how computers and in particular RDF stores
can take advantage from this emergent schema to more compactly store
RDF data and more efficiently optimize and execute SPARQL queries.
To this end, we contribute techniques for efficient emergent schema aware
RDF storage and new query operator algorithms for emergent schema
aware scans and joins. In all, these techniques allow RDF schema proces-
sors fully catch up with relational database techniques in terms of rich
physical database design options and efficiency, without requiring a rigid
upfront schema structure definition.

1 Emergent Schema Introduction

In previous work [15], we introduced emergent schemas: finding that >95 %
of triples in all LOD datasets we tested, including noisy data such as Web-
Data Commons and DBpedia, conform to a small relational tabular schema. We
provided techniques to automatically and at little computational cost find this
“emergent” schema, and also to give the found columns, tables, and “foreign key”
relationships between them short human-readable labels. This label-finding, and
in fact the whole process of emergent schema detection, exploits not only value
distributions and connection patterns between the triples, but also additional
clues provided by RDF ontologies and vocabularies.

A significant insight from that paper is that relational and semantic prac-
titioners give different meanings to the word “schema”. It is thus a misfortune
that these two communities are often distinguished from each other by their dif-
ferent attitude to this ambiguous concept of “schema” – the semantic approach
supposedly requiring no upfront schema (“schema-last”) as opposed to relational
databases only working with a rigid upfront schema (“schema-first”).

Semantic schemas, primarily ontologies and vocabularies, aim at modeling a
knowledge universe in order to allow diverse current and future users to denote
these concepts in a universally understood way in many different contexts. Rela-
tional database schemas, on the other hand, model the structure of one particular
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 463–479, 2016.
DOI: 10.1007/978-3-319-46523-4 28



464 M.-D. Pham and P. Boncz

dataset (i.e., a database), and are not designed with a purpose of re-use in dif-
ferent contexts. Both purposes are useful: relational database systems would be
easier to integrate with each other if the semantics of a table, a column and even
individual primary key values (URIs) would be well-defined and exchangeable.
Semantic data applications would benefit from knowledge of the actual patterns
of co-occurring triples in the LOD dataset one tries to query, e.g. allowing users
to more easily formulate SPARQL queries with a non-empty result (this often
results from using a non-occurring property in a triple pattern).

In [15], we observed partial and mixed usage of ontology classes across LOD
datasets: even if there is an ontology closely related to the data, only a small
part of its class attributes actually occur as triple properties (partial use), and
typically many of the occurring attributes come from different ontologies (mixed
use). DBpedia on average populates <30 % of the class attributes it defines
[15], and each actually occurring class contains attributes imported from no less
than 7 other ontologies on average. This is not necessarily bad design, rather
good re-use (e.g. foaf), but it underlines the point that any single ontology
class is a poor descriptor of the actual structure of the data (i.e., a “relational”
schema). Emergent schemas are helpful for human RDF users, but in this paper,
we investigate how RDF stores can exploit emergent schemas for efficiency.

We address three important problems faced by RDF stores. The first and
foremost problem is the high execution cost resulting from the large amount
of self-joins that the typical SPARQL processor (based on some form of triple
table storage) must perform: one join per additional triple pattern in the query.
It has been noted [7] that SPARQL queries very often contain star-patterns
(triple patterns that share a common subject variable), and if the properties
of the patterns in these stars reference attributes from the same “table”, the
equivalent relational query can be solved with a table scan, not requiring any
join. Our work achieves the same reduction of the amount of joins for SPARQL.

The second problem we solve is the low quality of SPARQL query optimiza-
tion. Query optimization complexity is exponential in the amount of joins [17].
In queries with more than 12 joins or so, optimizers cannot analyze the full
search space anymore, potentially missing the best plan. Note that SPARQL
query plans typically have F times more joins than equivalent SQL plans. Here
F is the average size of a star pattern1. This leads to a 3F times larger search
space. Additionally, query optimizers depend on cost models for comparing the
quality of query plan candidates, and these cost models assume independence of
(join) predicates. In case of star patterns on “tables”, however, the selectivity
of the predicates is heavily correlated (e.g. subjects that have an ISBN property,
typically instances of the class Book, have a much higher join hit ratio with
AuthoredBy triples than the independence assumption would lead to predict)
which means that the cost model is often wrong. Taken together, this causes the
quality of SPARQL query optimization to be significantly lower than in SQL.

1 A query of X stars has X ×F triple patterns, so needs P1 = X ×F − 1 joins. When
each star is collapsed into one tablescan, just P2 = (X − 1) joins remain: P1

P2
≥ F

times.
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Our work eliminates many joins, making query optimization exponentially eas-
ier, and eliminates the biggest source of correlations that disturb cost modeling
(joins between attributes from the same table).

The third problem we address is that mission-critical applications that
depend on database performance can be optimized by database administrators
using a plethora of physical design options in relational systems, yet RDF system
administrators lack all of this. A simple example are clustered indexes that store
a table with many attributes in the value order of one or more sort key attributes.
For instance, in a data warehouse one may store sales records ordered by Region
first and ProductType second – since this accelerates queries that select on a
particular product or region. Please note that not only the Region and Product-
Type properties are stored in this order, but all attributes of the sales table,
which are typically retrieved together in queries (i.e. via a star pattern). A simi-
lar relational physical design optimization is table-partitioning or even database
cracking [9]. Up until this paper, one cannot even think of the RDF equiva-
lent of these, as table clustering and partitioning implies an understanding of
the structure of an RDF graph. Emergent schemas allow to leave the “pile of
triples” quagmire, so one can enter structured data management territory where
advanced physical design techniques become applicable.

In all, we believe our work brings RDF datastores on par with SQL stores in
terms of performance, without losing any of the flexibility offered by the RDF
model, thus without introducing a need to create upfront or enforce subsequently
any explicit relational schema.

2 Emergent Schema Aware RDF Storage

The original emergent schema work allows to store and query RDF data with
SQL systems, but in that case the SQL query answers account for only those
“regular” triples that fit in the relational tables. In this work, our target is to
answer SPARQL queries over 100 % of the triples correctly, but still improve the
efficiency of SPARQL systems by exploiting the emergent schema.

RDF systems store triple tables T in multiple orders of Subject (S), Property
(P) and Object (O), among which typically TPSO (“column-wise”), TSPO (“row-
wise”) and either TOSP or TOPS (“value-indexed”) – or even all permutations.2

In our proposal, RDF systems storage should become emergent schema aware
by only changing the TPSO representation. Instead of having a single TPSO triple
table, it gets stored as a set of wide relational tables in a column-store – we use
MonetDB here. These tables represent only the regular triples, the remaining
<5 % of “exception” triples that do not fit the schema (or were updated recently)
remain in a smaller PSO table Tpso. Thus, TPSO is replaced by the union of a
smaller Tpso table and a set of relational tables.

2 To support named RDF graphs, the triples are usually extended to quads. Our
approach trivially extends to that but we discuss triple storage here for brevity.
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Relational storage of triple data has been proposed before (e.g. property
tables [20]), though these prior approaches advocated an explicit and human-
controlled mapping to a relational schema, rather than a transparent, adaptive
and automatic approach, as we do. While such relational RDF approaches have
performance advantages, they remained vulnerable in case SPARQL queries do
not consist mainly of star patterns and in particular when they have triple pat-
terns where the P is a variable. This would mean that many, if not all, relational
tables could contribute to a query result, leading to huge generated SQL queries
which bring the underlying SQL technology to its knees.

Our proposal hides relational storage behind TPSO, and has as advantage
that SPARQL query execution can always fall back on existing mechanisms –
typically MergeJoins between scans of TSPO, TPSO and TOPS . Our approach at
no loss of flexibility, just makes TPSO storage more compact as we will discuss
here, and creates opportunities for better handling of star patterns, both in query
optimization and query execution, as discussed in the following sections.

Formal Definition. Given the RDF triple dataset Δ = {t|t = (tS , tP , tO)}, an
emergent schema (Δ, E , μ) specifies the set E of emergent tables Tk, and mapping
μ from triples in Δ to emergent tables in E . A common idea we apply is rather
than storing URIs as some kind of string, to represent them as an OID (object
identifier) – in practice as a large 64-bit integer. The RDF system maintains
a dictionary D : OID → URI elsewhere. We use this D dictionary creatively,
adapting it to the emergent schema.

Definition 1. Emergent tables (E = {T1, ..}): Let s, p1, p2,. . . , pn be subject
and properties with associated data types OID and D1,D2, . . . , Dn, then Tk =
(Tk.s:OID, Tk.p1:D1, Tk.p2:D2, . . . , Tk.pn:Dn) is an emergent table where Tk.pj

is a column corresponding to the property pj and Tk.s is the subject column.

Definition 2. Dense subject columns: Tk.s consists of densely ascending
numeric values βk, .. βk + |Tk| − 1, so s is something like an array index, and
we denote Tk [s] .p as the cell of row s and column p. For each Tk its base OID
βk = k ∗ 240. By choosing βk to be sufficiently apart, in practice the values of
column Ti.s and Tj .s never overlap when i �= j.3

Definition 3. Triple-Table mapping (μ : Δ → E): For each table cell Tk [s] .pj

with non-NULL value o, ∃(s, pj , o) ∈ Δ and μ(s, pj , o) = Tk. These triples we
call “regular” triples. All other triples t ∈ Δ are called “exception” triples and
μ(t) = Tpso. In fact Tpso is exactly the collection of these exception triples.

The emergent schema detection algorithm [15] assigns each subject to at most 1
emergent table – our storage exploits this by manipulating the URI dictionary
D so that it gives dense numbers to all subjects s assigned to the same Tk.

3 In our current implementation with 64-bit OIDs we thus can support up to 216

emergent tables with each up to 240 = 1 trillion subjects, still leaving the highest 8
bits free, which are used for type information – see footnote 4.
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Except% Null% Compr

Synthetic RDF datasets

LUBM 0.0% 6.0% 1.8x

BSBM 0.0% 4.2% 2.5x

SP2Bench 0.4% 5.2% 2.0x

LDBC SNB 0.0% 12.2% 2.0x

RDF datasets with Relational Roots

MusicBrz 0.4% 3.9% 2.2x

Eurostat 0.5% 3.8% 1.4x

DBLP 0.4% 12.6% 1.7x

PubMed 0.3% 15.3% 1.9x

Native RDF datasets

WebData 7.5% 42.7% 1.4x

DBpedia 3.8% 32.2% 1.4x

Fig. 3. Exception percentage,
NULL percentage and Compres-
sion Factor achieved by Emergent
Table-aware PSO storage, over
normal PSO storage

Columnar Relational Storage. On the physical level of bytes stored on disk,
columnar databases can be thought of as storing all data of one column consecu-
tively. Column-wise data generally compresses better than row-wise data because
data from the same distribution appears consecutively, and column-stores exploit
this by having advanced data compression methods built-in in their storage and
query execution infrastructure. In particular, the dense property of the columns
Tk.s will cause column-stores to compress it down to virtually nothing, using
a combination of delta encoding (the difference between subsequent values is
always 1) and run-length encoding (RLE), encoding these subsequent 1’s in just
a single run. Our evaluation platform MonetDB supports densely ascending OIDs
natively with its VOID (virtual OID) type, that requires no storage.

Figure 1 shows an example of representing RDF triples using the emergent
tables {T1, T2, T3} and the triple table of exception data Tpso (in black, below).
We have drawn the subject columns Tk.s transparent and with dotted lines to
indicate that there is no physical storage needed for them.

For each individual property column Tk.pj , we can define a triple table view
Pj,k = (pj , Tk.s, Tk.o), the first column being a constant value (pj) which thanks
to RLE compression requires negligible storage and the other two reusing storage
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from emergent table Tk. If we concatenate these views Pj,k ordered by j and k,
we obtain table PPSO = ∪j,kPj,k. This PPSO is shown in Fig. 2. Note that PPSO

is simply a re-arrangement of the columns Tk.pj . Thus, with emergent schema
aware storage, one can always access the data PPSO as if it were a PSO table at
no additional cost.4 In the following, we show this cost is actually less.

Space Usage Analysis. PPSO storage is more efficient than PSO storage in
an efficient columnar RDF store such as Virtuoso would be. Normally in a PSO
table, the P is highly repetitive and will be compressed away. The S column is
ascending, so delta-compression will apply. However, it would not be dense and
it will take some storage (log2(W ) bits per triple, where W is the average gap
width between successive s values5) – while a dense S column takes no storage.

Compressing-away the S column is only possible for the regular part PPSO,
whereas the exception triples in Tpso must fall back to normal PSO triple storage.
However, the left table column of Fig. 3 shows that the amount of exception
triples is negligible anyway – it is almost 0 in synthetic RDF data (stemming from
the LUBM, BSBM, SP2Bench and LDBC Social Network Benchmark), as well
as in RDF data with relational roots (EuroStat, PubMed, DBLP, MusicBrainz),
and is limited to <10 % in more noisy “native” RDF data (WebData Commons
and DBpedia). A more serious threat to storage efficiency could be the NULL
values that emergent tables introduce, which are table cells for which no triple
exists. In the middle column we see that the first-generation RDF benchmarks
(LUBM, BSBM, SP2Bench) ignore the issue of missing values. The more recent
LDBC Social Network benchmark better models data with relational roots where
this percentage is roughly 15 %. Webdata Commons, which consists of crawled
RDFa, has most NULL values (42 %) and DBpedia roughly one third. We note
that the percentage of NULLs is a consequence of the emergent table algorithm
trying to create a compact schema that consists of relatively few tables. This
process makes it merge initial tables of property-combinations into tables that
store the union of those properties: less, wider, tables means more NULLs. If
human understandability were not a goal of emergent table detection, parameters
could be changed to let it generate more tables with less NULLs. Still, space
saving is not really an argument for doing so, as the rightmost table column
of Fig. 3 shows that emergent table storage is overall at least a factor 1.4 more
compact than default PSO storage.

Query Processing Microbenchmark. While the emergent schema can be
physically viewed as a compressed PSO representation, we now will argue that
every use a RDF store will give to a PSO table can be supported at least as
efficiently on emergent table aware storage.

Typically, the PSO table is used for three access patterns during SPARQL
processing: (i) Scanning all the triples of a particular property p (i.e., p is known),
(ii) Scanning with a particular property p and a range of object value (i.e., p is
known + condition on o), and (iii) Having a subset of S as the input for the scan

4 SQL-based SPARQL systems (MonetDB, Virtuoso) still allow SQL on Tk tables.
5 W = 1

n−1

∑n−1
1 (si+1 − si) where si is the subject OID at row i (table with n rows).
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Fig. 4. PSO join performance vs input
size (no exceptions)

Fig. 5. PSO join performance vs input
size (with exceptions)

on a certain p value (i.e., typically s is sorted, and the system performs a filtering
MergeJoin). The first and the second access patterns can be processed on the
emergent schema in the similar way as with the original PSO representation by
using a UNION operator: σ(pso, p, o) = σ(PPSO, p, o) ∪ σ(Tpso, p, o).

The third access pattern, which is a JOIN with s candidate OIDs is very
common in SPARQL queries with star patterns. We test two different cases:
with and without of exceptions (i.e. Tpso).

Without Tpso. In this case, the JOIN can be pushed through the PPSO view
and is simply the UNION of JOINs between the s candidates and dense Tk.s
columns in each emergent table Tk. MonetDB supports joins into VOID columns
very efficiently, essentially this is sequential array lookup.

We conducted a micro-benchmark to compare the emergent schema aware
performance with normal PSO access. It executes the JOIN between a set of I.s
input OIDs with two different Tk.s columns: a dense column and a sorted (but
non-dense) column; in both cases retrieving the Tk.o object values. The bench-
mark data is extracted from the subjects corresponding to the Offer entities in
BSBM benchmark, containing ≈5.7 million triples. Each JOIN is executed 10
times and the minimum running time is recorded. Figure 4 shows that dense OID
joins are 3 times faster on small inputs: array lookup is faster than MergeJoin.

With Tpso. Handling exception data requires merging the result produced by the
JOIN between input (I.s) and the dense S column of emergent table Tk.s with
the result produced by the JOIN between I.s and the exception table Tpso.s
– the latter requires an actual MergeJoin. We implemented an algorithm that
performs both tasks simultaneously. In order to form the JOIN result between
I.s with both Tk.s and Tpso.s simultaneously, we modify the original MergeJoin
algorithm by checking for each new index of I.s, whether the current element
from I.s belongs to the dense range of Tk.s.
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Fig. 6. Optimization time as a function
of query size (#triple patterns)
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Fig. 7. Example SPARQL graph with
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We conducted another micro-benchmark using the same 5.7 million triples.
The exception data is created by uniformly sampling 3 % of the regular data
(BSBM itself is perfectly tabular and has no exceptions). We note that 3 % is
already more than the average percentage of exception data in all our tested
datasets. The list of input I.s candidates is also generated by sampling from 5 %
to 90 % of the regular data. Figure 5 shows that the performance of the JOIN
operator on the emergent schema still outperforms that on the original PSO
representation even though it needs to handle exception data.

The conclusion of this section is that emergent schema aware storage reduces
space by 1.4 times, provides faster PSO access, and importantly hides the rela-
tional table storage from the SPARQL processor – such that query patterns
that would be troublesome for property tables (e.g. unbound property variables)
can still be executed without complication. We take further advantage of the
emergent schema in many common query plans, as described next.

3 Emergent Schema Aware SPARQL Optimization

The core of each SPARQL query is a set of (s,p,o) triple patterns, in which s,
p, o are either literal values or variables. Viewing each pattern as a property-
labeled edge between a subject and object, these triples form a SPARQL graph.
We group these triple patterns, where originally each triple pattern is a group of
one.

Definition 4. Star Pattern (ρ = ($s, p1, o1), ($s, p2, o2), . . .): A star pattern is
a collection of more than one triple patterns from the query, that each have a
constant property pi and an identical subject variable $s.
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To exploit the emergent schema, we identify star patterns in the query and
at the query optimization, group query’s triple patterns by each star. Joins are
needed only between these triple pattern groups. Each group will be handled by
one table scan subplan that uses a new “RDFscan” operator described further
on. SPARQL query optimization then largely becomes a join reordering problem.
The complexity of join reordering is exponential in the number of joins.

To show the effects on query optimization performance, we created a micro-
benchmark that forms queries consisting of (small) stars of size F = 4. The
smallest query is a single star, followed by one with two stars that are con-
nected by sharing the same variable for an object in the first star and the sub-
ject of the star, etc. (hence queries have 4, 8, 12, 16 and 20 triple patterns).
Our optimization identifies these stars, hence after grouping star patterns their
join graph reduces to 0, 1, 2 and 3 joins respectively. We ran the resulting
queries through MonetDB and Virtuoso and measured only query optimization
time. Figure 6 shows that emergent schema aware SPARQL query optimization
becomes orders of magnitude faster thanks to its simplification of the join order-
ing problem. The flattening Virtuoso default line beyond 15 patterns suggests
that with large amount of joins, it stops to fully traverse the search space using
cutoffs, introducing the risk of choosing a sub-optimal plan.

4 Emergent Schema Aware SPARQL Execution

The basic idea of emergent schema aware query execution is to handle a complete
star pattern ρ with one relational table scan(Ti, [p1, p2, ..]) on the emergent table
Ti with whose properties pi from ρ. Assuming a SQL-based SPARQL engine, as is
the case in Virtuoso and MonetDB, it is crucial to rely on the existing relational
table scan infrastructure, so that advanced relational access paths (clustered
indexes, partitioned tables, cracking [9]) get seamlessly re-used.

In case of multiple emergent tables matching star pattern ρ, the scan plan
(denoted ϑρ) we generate consists of the UNION of such table scans. In ϑρ we
also push-down certain relational operators (at least simple filters) below these
UNIONs – a standard relational optimization. This push-down means that selec-
tions are executed before the UNIONs and optimized relational access methods
can be used to e.g. perform IndexScans. For space reasons we cannot go into all
details, although we should mention that OPTIONAL triple patterns in ρ are
marked and can be ignored in the generated scans (because missing property
values are already represented as NULL in the relational tables). Another detail
is that on top of ϑρ, we must introduce a Project operator to cast SQL literal
types to a special SPARQL value type, that allows multiple literal types as well
as URIs to be present in one binding column.6 Executing (pushed-down) filter
operations while values are still SQL literals allows to avoid most casting effort,
since after selections much fewer tuples remain.

6 In our MonetDB implementation, the 64-bits OID that encodes (subject) URIs, also
encodes literals by using other patterns in its highest 8 bits.
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T1 T2 Tpso Result
s p1 p2 p3 s p1 p3 p4 p s o s o1 o2

100 11 2 5 200 11 7 1 p1 0 20 100 11 2

101 13 4 6 201 5 2 p1 1 9 104 15 8

102 14 5 202 13 9 3 p1 201 15 0 20 8

103 9 6 p2 0 8 102 14 6

104 15 8 5 p2 102 6 201 15 4

p2 201 4

p3 0 5

p6 6 7

Fig. 8. Example RDF data and expected query
result. (Color figure online)

∪

ϑρ
σo1>10,o3=5

RDFscan(ρ)

Fig. 9. Query plan for hand-
ing exception

This whole approach will still only create bindings for the “regular” triples.
To generate the 100 % correct SPARQL result, we introduce an operator called
RDFscan, that produces only the missing bindings. The basic idea is to put
another UNION on top of the scan plan ϑρ that adds the RDFscan(ρ) bindings
to the output stream, as shown in Fig. 9. Unlike normal scans, we cannot push
down filters below the RDFscan - hence these selections remain placed above it,
at least until optimization 1 (see later).

Generating Exception Bindings. Correctly generating all result bindings
that SPARQL semantics expect is non-trivial, since the exception triples in Tpso

when combined with any emergent table Tk (not only those covering ρ) could
produce valid bindings. Consider the example SPARQL query, consisting of a
single star pattern and two selections (o1 > 10, o3 = 5):

SELECT ?s ?o1 ?o2 WHERE { ?s p1 ?o1 .
?s p2 ?o2 .
?s p3 5 . FILTER (?o1 > 10) }

Figure 8 shows the expected result of this query on an example data. (For
a better view of the example, we assume s base OID of T1, T2 are 100, 200,
respectively). In this result, the first two tuples come from the regular triples
while the last three tuples is the combination of triples stored in Tpso table (i.e.,
in red color) with those stored in tables T1 and T2.

Basic Approach. RDFscan returns all the bindings for a star pattern, in which
each binding is generated by at least one irregular triple (the missing bindings).
Formally, given a star pattern ρ = {(s, pi, oi), i = 1, .., k}, the RDF dataset Δ,
the output of the RDFscan operator for this star pattern is defined as:

RDFscan(ρ) = {(s, o1, . . . , ok)}|(s, pi, oi) ∈ Δ ∧ (∃i : (s, pi, oi) ∈ Tpso) (1)

RDFscan generates the “exception” bindings in 2 steps:
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E1 E3

s o1 s o3

0 20 0 5

1 9

201 15 Output(S1)
E2 s o1 o2 o3

s o2 0 20 8 5

0 8 1 9

102 6 102 6

201 4 201 15 4

Fig. 10. Step 1

Require: S1: Step 1 output
lstP : List of required properties
E : Emergent tables

Ensure: Tfin: Merging results
1: for each tuple t=(s, o1,...,ok) in S1 do
2: id, r = getT row(t.s) # table & row id
3: accept = true
4: for each pi in lstP do
5: if t.oi = null & E [id] [r].pi = null then
6: accept = false
7: Continue next tuple
8: else
9: store cand(bind, t.oi, E [id] [r].pi)

10: end if
11: end for
12: if accept = true then
13: append(Tfin, bind)
14: end if
15: end for

Fig. 11. Merge-exception-regular algorithm

E1 Output(S1)
s o1 s o1 o2 o3

0 20 0 20 8 5

201 15 102 6

201 15 4

Fig. 12. Step 1 output with
pushing down Selection pred-
icates

Step 1 : Get all possible bindings (s, o1, . . . , ok) where each oi stems from triple
(s, pi, oi) ∈ Tpso (for those pi from ρ), or oi = NULL if such a triple does not
exist, with the constraint that at least one of the object values oi is non-NULL.
Step 2 : Merge each binding (s, o1, . . . , ok) with the emergent table Tk corre-
sponding to s (βk ≤ s < βk + |Tk|) to produce output bindings for RDFscan.

Step 1 is implemented by first extracting the set Ei of all {(s, oi)} corre-
sponding to each property pi from the Tpso: Ei = σp=pi

(Tpso). Then, it returns
the output, S1, by performing a relational OuterJoin on s between all Ei. We
note that, as Tpso table is sorted by p, extracting Ei from Tpso can be done with
no cost by reading a slice of Tpso from the starting row of pi and the ending row
of pi (the information on starting, ending rows of each p in Tpso table is pre-
loaded before any query processing). Furthermore, as for each p in Tpso, {(s, o)}
are sorted according to s, Ei are also sorted by s. Thus, the full OuterJoin of all
Ei can be efficiently done by using a multi-way sort merging algorithm. Figure 10
demonstrates Step 1 for the example query.

Step 2 merges each tuple in S1 with a tuple of the same s in the regular table
in order to form the final output of RDFscan. For example, the 4th tuple of
S1 (201, 15, 4, null) merged with the 2nd tuple of T2 (201, null, 5, 2) returns
a valid binding (201, 15, 4) for the (s, o1, o2) of the example query. Figure 11
shows the detailed algorithm of Step 2. For each tuple t in S1, it first extracts
the corresponding regular table and row Id of the current t.s from encoded
information inside each s OID (Line 2). Then, for each property pi, the algorithm
will check whether there is any non-NULL object value appearing in either t
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(i.e., t.oi) or the regular column pi (i.e., E [id] [r] .pi) (Line 5). If yes, the non-
NULL value will be placed in the binding for pi (Line 9). Otherwise, if both
of the values are NULL, there will be no valid binding for the current checking
tuple t. Finally, the binding that has non-NULL object values for all non-optional
properties will be appended to the output table Tfin.

Optimization 1: Selection Push-Down. Pushing selection predicates down
in the query plan is an important query optimization technique to apply filters
as early as possible. This technique can be applied to RDFscan when there
is any selection predicate on the object values of the input star pattern (e.g.,
o1 > 10, o3 = 5 in the example query). Specifically, we push the selection
predicates down in Step 1 of the RDFscan operator to reduce the size of each
set Ei (i.e., σp=pi

(Tpso)), accordingly returning a smaller output S1 of this step.
Formally, given λi being a selection predicate on the object oi, the set Ei of
{(s, oi)} from Tpso) is computed as: Ei = σp=pi,λi

(Tpso). In the example query,
E1 = σp=p1,o1>10(Tpso). Figure 12 shows that the size of E1 and the output
S1 are reduced after applying the selection pushdown optimization, which thus
improves the processing time of RDFscan operator.

Optimization 2: Early Check for Missing Property. If a regular table Tk

does not have pi in its list of columns, to produce a valid binding by merging a
tuple t of S1 (i.e., output of Step 1) and T , the exception object value t.oi must
be non-NULL. Thus, we can quickly check whether t is an invalid candidate
without looking into the tuple from Tk by verifying whether t contains non-NULL
object values for all missing columns of Tk. We implement this by modifying the
algorithm for Step 2. Before considering the object values of all properties from
both exception and regular data (Line 4), we first check exception object value
t.oi of each missing property to prune the tuple if any t.oi is NULL. Then, we
continue the original algorithm with the remaining properties.

Optimization 3: Prune Non-matching Tables. The exception table Tpso

mostly contains triples whose subject was mapped to some emergent table. For
example, the triple (201, p2, 4) refers to the emergent table T2 because s ≥
200 = β2. During the emergent schema exploration process [15] this triple was
temporarily stored in the initial emergent table T ′

2, but was then moved to Tpso

during the so-called “schema and instance filtering” step. This filtering moves
not only triples but also whole columns from initial emergent tables to Tpso, in
order to derive a compact and precise emergent schema. Assume column p2 was
removed from T2 during schema filtering. We observe that before filtering, all
triples (regular + exception triples) of subject s were part of the initial emergent
table which means that had a particular set of properties. Accordingly, if C is
the set of columns of an initial emergent table T ′ and if C does not contain the
set of properties in ρ, there cannot be a matching subject with all properties of ρ
stemming from T ′ even with the help of Tpso. This observation can be exploited
to prune all subject ranges corresponding to (initial) emergent tables that cannot
have any matching for ρ from the pass over Tpso.
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Specifically, we pre-store, for each emergent table, its set of columns C before
schema and instance filtering was applied during emergent schema detection.
Then, given the input star pattern ρ, the possible matching tables for ρ are
those tables whose set of columns C contain all properties in ρ. Finally, Step 1
is optimized by removing from Ei all the triples that the subject does not refer
to any of the matching tables.

5 Performance Evaluation

We tested with both synthetic and real RDF datasets BSBM [1], LUBM [8],
LDBC-SNB [6] and DBpedia (DBPSB) [12]; and their respective query work-
loads. For BSBM, we also include its relational version, namely BSBM-SQL,
in order to compare the performance of the RDF store against a SQL system
(i.e., MonetDB-SQL). We used datasets of 100 million triples for LUBM and
BSBM, and scale factor 3 (≈200 million triples) for LDBC-SNB. The experi-
ments were conducted on a Linux 4.3 machine with Intel Core i7 3.4 GHz CPU
and 16 GBytes RAM. All approaches are implemented in the RDF experimental
branch of MonetDB.

Query Workload. For BSBM, we use the SELECT queries from Explore work-
load (ignoring the queries with DESCRIBE and CONSTRUCT). For LUBM, we
use its published queries and rewrite some queries (i.e., Q4, Q7, Q8, Q9, Q10,
Q13) that requires certain ontology reasoning capabilities in order to account
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Fig. 13. Query processing time: Emergent schema-based vs triple-based
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Table 1. Properties of DBpedia queries

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Operators: OPTIONAL, FILTER, UNION - - O - U F - F,U O,F,U O

Modifiers: Distinct, Limit, ORDER D D D,L,O D D,L D D,L - - D

# of triple pattern 4 5 5 3 10 3 6 4 6 7

# constraints on O? 1 0 1 1 2 2 1 4 2 0

Has multi-valued prop.?
√ √ √ √ √ √ √

-
√

-

for the ontology rules and implicit relationships. For LDBC-SNB, we use its
short read queries workload. DBPSB exploits the actual query logs of the DBpe-
dia SPARQL endpoints to build a set of templates for the query workload.
Using these templates, we create 10 non-empty result queries w.r.t DBpedia
3.9 dataset7. Table 1 shows the features of tested DBpedia queries. In Figs. 13,
14 and 15, X-axis holds query-numbers: 1 means Q1. For each benchmark query
we run three times and record the last query execution (i.e., Hot run).

Emergent Schema Aware vs Triple-Based RDF Stores. We perform the
benchmarks against two different approaches of MonetDB RDF store: the orig-
inal triple-based store (MonetDB-triple) and the emergent schema-based store
(MonetDB-emer).

Figure 13 shows the query processing time using two approaches over four
benchmarks. For BSBM and LDBC-SNB, the emergent schema aware approach
significantly outperforms the triple-based approach in all the queries, by up to
two orders of magnitude faster (i.e., Q1 SNB). In a real workload such as DBpe-
dia where there is significant amount of exception triples, our approach is still
much faster (note: logscale) by up to more than an order of magnitude (Q8). We
also note that multi-valued properties appear in most of DBpedia queries, and
this is costly for the emergent schema aware approach as it requires additional
MergeJoins to retrieve the object values. In Fig. 13d, the best-performing query
Q8 is the one having no multi-valued property.

For LUBM, a few queries (i.e. 7, 14) show comparable processing times for
triple-table based and emergent schema aware query processing. The underlying
reason is that each subject variable in these queries only contains one or two
common properties (e.g., Q14 only contains one triple pattern with the properties
rdf:type). Thus, the emergent schema aware approach will not improve the
query execution time – however as the optimization does not trigger then it
also does not degrade performance in absence of fruitful star patterns. For the
queries having discriminative properties [15] in a star pattern (e.g., Q4, 11,
12), the emergent schema aware approach significantly outperforms the original
triple-based version, by up to two order of magnitude (i.e., Q4).

Emergent Schema-Based RDF Store vs RDBMS. As shown in Fig. 13c,
the emergent schema aware SPARQL processing (MonetDB-emer) provides com-
parable performance on most queries (i.e., Q1, Q3, Q4, Q5, Q8) compared to

7 The detailed DBpedia queries can be found at goo.gl/RxzOmy.
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MonetDB-SQL. In other queries (Queries 7,10), the emergent schema aware app-
roach also significantly reduces the performance gap between SPARQL and SQL,
from almost two orders of magnitude slower (MonetDB-triple vs MonetDB-SQL)
to a factor of 3.8 (MonetDB-emer vs MonetDB-SQL).
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Fig. 14. Query processing with/with-out optimizations

RDFscan Optimizations. Figure 14 shows the effects of each of the three
described RDFscan optimization by running the DBpedia benchmark without
using with each of them. All optimizations have positive effects, though in dif-
ferent queries, and the longer running queries show stronger effects. Selection
push-down (Opt. 1) has most influence, while the early check in Tpso to see if
it delivers missing properties has the least influence. Obviously, selection push-
down does not give any performance boost when there is no constraint on the
object variables in the queries (e.g., Query 2). For queries having constraints on
the object variables, which are quite common in any query workload, it does
speed up query processing by up to a factor of 24 (i.e., Q8).
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Query Optimization Time. Figure 15 shows query optimization time on
LDBC-SNB and DBPSB (due to lack of space, we omit similar results for BSBM
and LUBM). For all queries, the emergent schema aware approach significantly
lowers optimization time, by even up to two orders of magnitude (Q1 SNB)
or a factor of 37 (Q7 DBPSB). Note also that due to the smaller plan space
and strong reduction of join correlations, query optimization also qualitatively
improves, a claim supported by its performance improvements across the board.

6 Related Work

Most state-of-the-art RDF systems store their data in triple- or quad-tables
creating indexes on multiple orders of S,P,O [5,14,16,19]. However, according to
[7,15], these approaches have several RDF data management problems including
unpredictably bad query plans and low storage locality.

Structure-aware storage was first exploited in RDF stores with the“property
tables” approach [4,10,18,20]. However, early systems using this approach [4,20]
do not support automatic structure recognition, but rely on a database adminis-
trator doing the table modeling manually. Automatic recognition is introduced
in some newer systems [10,11,18], however unlike emergent schemas these struc-
tures are not apt for human usage, nor did these papers research in depth inte-
gration with relational systems in terms of storage, access methods or query
optimization. Recently, Bornea et al. [2] built an RDF store, DB2RDF, on top
of a relational system using hash functions to shred RDF data into multiple
multi-column tables. This approach (nor any of the others) allows both SQL
and SPARQL access to the same data, as emergent schemas do. Gubichev et al.
[7] and Neumman et al. [13] use structure recognition to improve join ordering
in SPARQL queries alone. Brodt et al. [3] proposed a new operator, called Pivot
Index Scan, to efficient deliver attribute values for a resource (i.e., subject) with
less joins using something similar to a SPO index – as such it does not recognize
structure in RDF to leverage it on the physical level.

7 Conclusion

Emergent Schema detection is a recent technique that automatically analyzes
the actual structure an RDF graph, and creates a compact relational schema
that fits most of the data. We investigate here how these Emergent Schemas,
beyond helping humans to understand a RDF dataset, can be used to make RDF
stores more efficient. The basic idea is to store the majority of data, the “reg-
ular” triples (typically >95 % of all data) in relational tables under the hood,
and the remaining “exception” triples in a reduced PSO triple table. This stor-
age still allows to see the relational data as if it were a PSO table, but is in fact
>1.4x more compact and faster to access than a normal PSO table. Furthermore,
we provide a simple optimization heuristic that groups triple patterns by star-
shape. This reduces the complexity of query optimization by often more than
a magnitude, since the size of the join graph is reduced thanks to only joining
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these groups. Finally, we contribute the RDFscan algorithm with three impor-
tant optimizations. It is designed to work in conjunction with relational scans,
which perform most of the heavy-lifting, and can benefit from existing physical
storage optimizations such as table clustering and partitioning. RDFscan keeps
the overhead of generating additional binding results for “exception” triples low,
yielding overall speed improvements of 3–10x on a wide variety of datasets and
benchmarks, closing the performance gap between SQL and SPARQL.
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Abstract. Evaluating joins over RDF data stored in a shared-nothing
server cluster is key to processing truly large RDF datasets. To the best of
our knowledge, the existing approaches use a variant of the data exchange
operator that is inserted into the query plan statically (i.e., at query com-
pile time) to shuffle data between servers. We argue that such approaches
often miss opportunities for local computation, and we present a novel
solution to distributed query answering that consists of two main compo-
nents. First, we present a query answering algorithm based on dynamic
data exchange, which exploits data locality to maximise the amount of
computation on a single server. Second, we present a partitioning algo-
rithm for RDF data based on graph partitioning whose aim is to increase
data locality. We have implemented our approach in the RDFox system,
and our performance evaluation suggests that our techniques outperform
the state of the art by up to an order of magnitude in terms of query
evaluation times, network communication, and memory use.

1 Introduction

RDF datasets used in practice are often too large to fit on a single server. For
example, in performance-critical applications, it is common to use an in-memory
RDF store, but the comparatively high cost of RAM limits the capacity of such
systems. Moreover, linked data applications often require integrating several
large datasets that cannot be processed jointly even using disk-based systems.
To attain scalability sufficient for such applications, numerous approaches for
storing and querying RDF data in a shared-nothing server cluster have been
developed [7–10,12,15,17–19,21,22].

Such approaches typically consist of a query answering algorithm and a data
partitioning strategy, both of which must address a specific set of challenges.
First, triples participating in a join may be stored on different servers, so net-
work communication during join evaluation should be minimised. Second, to
ensure that servers can progress independently of each other, one must minimise
synchronisation between the servers. Third, the intermediate results produced
during join evaluation often grow with the overall data size and so they may
easily exceed the capacity of individual servers.

The Volcano [5] database system was one of the first to address these challenges
by introducing the data exchange operator that encapsulates the communication
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 480–497, 2016.
DOI: 10.1007/978-3-319-46523-4 29
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between query execution processes.1 Data exchange operators are added into the
query plan to move the data within the system in order to ensure that each opera-
tor in the query plan receives all the relevant data. Data exchange can be avoided
if the data partitioning strategy guarantees that the triples participating in a join
are colocated on the same sever. For example, exchange is not needed for subject–
subject joins if all triples with the same subject are assigned to the same server.
Data partitioning strategies often replicate data across servers to increase the level
of guarantees they offer. As we discuss in detail in Sect. 3, all existing distributed
RDF systems we are aware of can be seen as using a variant of the data exchange
operator, and they aim to balance the trade-off between data replication and data
exchange. Moreover, in all of the existing approaches, the decision about when and
how to exchange data is made statically—that is, at compile time and indepen-
dently from the data encountered during query evaluation. In Sect. 3 we argue that
this can incur a communication cost even when the data is stored in such a way
that no communication is needed in principle.

In this paper we present a new approach to query answering in distributed
RDF systems. We focus here on conjunctive SPARQL queries (i.e., basic graph pat-
terns extended with projection), but we believe that our approach can be extended
to handle all SPARQL constructs. As is common in the literature, our solution also
consists of a query answering algorithm and a data partitioning strategy.

In Sect. 4 we present a novel distributed query answering algorithm that
employs dynamic data exchange: the decision when and how to exchange data
is made during query processing, rather than statically at query compile time.
In this way, each join between triples stored on the same server is computed on
that server. Unlike in the existing solutions, local computation in our algorithm
is independent of any guarantees about data partitioning, and is determined
solely by the actual placement of the data. Our algorithm thus gives the data
partitioning strategy more freedom regarding data placement. Moreover, our
algorithm uses asynchronous communication between servers, ensuring that a
server’s progress in query evaluation is largely independent of that of other
servers. Finally, our algorithm uses a novel technique that limits the amount of
memory each server needs to store intermediate results.

In Sect. 5 we present a novel RDF data partitioning method that aims to
maximise data locality by using graph partitioning [11]—the task of dividing
the vertices of a graph into sets while satisfying certain balancing constraints
and simultaneously minimising the number of edges between the sets. Graph
partitioning has already been used for partitioning RDF data [7,10], but these
approaches duplicate data across servers to increase the chance of local process-
ing. In contrast, our approach does not duplicate any data at all, and it uses a
special pruning step to reduce the size of the graph being partitioned. Finally, a
balanced partition of vertices does not necessarily lead to a balanced partition
of triples so, to achieve the latter, we use weighted graph partitioning.

1 These processes may be threads within a single server or processes running on differ-
ent servers, and so intra- and inter-server communication is handled using the same
abstraction.
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We have implemented our approach in the in-memory RDF management
system RDFox [13], and have compared its performance with that of TriAD
[7]—a system that was shown to outperform other state of the art distributed
RDF systems on a mix of data and query loads. In Sect. 6 we present the results
of our evaluation using the LUBM [6] and WatDiv [1] benchmarks. We show
that our approach is competitive with TriAD in terms of query evaluation times,
network communication, and memory usage; in fact, RDFox often outperforms
TriAD by an order of magnitude.

2 Preliminaries

To make this paper self-contained, in this section we recapitulate certain defin-
itions and notation. For f a function, dom(f) is its domain; for D a set, f |D is
the restriction of f to D ∩ dom(f); and if f ′ is a function such that f(x) = f ′(x)
for each x ∈ dom(f) ∩ dom(f ′), then f ∪ f ′ is a function as well.

The vertices of RDF graphs are taken from a countable set of resources R
that consists of IRI references, blank nodes, and literals. A triple has the form
〈ts, tp, to〉, where ts, tp, and to are resources. An RDF graph G is a finite set of
triples. The vocabulary voc(G) of G is the set of all resources that occur in G;
moreover, for a position β ∈ {s, p, o}, set vocβ(G) contains each resource r for
which a triple 〈ts, tp, to〉 ∈ G exists such that tβ = r. SPARQL is an expressive
language for querying RDF graphs; for example, the following SPARQL query
retrieves all people that have a sister:

SELECT ?x WHERE { ?x rdf:type :Person . ?x :hasSister ?y }
SPARQL syntax is verbose, so we use a more compact notation. An (RDF)
term is a resource or a variable. An atom (aka triple pattern) A is an
expression of the form 〈ts, tp, to〉, where ts, tp, and to are terms; thus, each
triple is an atom. For A an atom, let vars(A) be the set of variables occur-
ring in A; and for β ∈ {s, p, o}, let termβ(A) = tβ . A conjunctive query (CQ)
has the form Q(�x) = A1 ∧ · · · ∧ An, where each Ai is an atom. Our defi-
nition of CQs captures basic graph patterns with projection in SPARQL;
e.g., Q(x) = 〈x, rdf :type, :Person〉 ∧ 〈x, :hasSister , y〉 captures the above query.
A subject-join query is a query where the same term occurs in the subject posi-
tion of all query atoms; such queries are used very frequently in practice.

Evaluation of CQs on an RDF graph produces partial mappings of variables
to resources called (variable) assignments. For α a term or an atom and σ an
assignment, ασ is the result of replacing each variable x in α with σ(x). An
assignment σ is an answer to a CQ Q(�x) = A1 ∧ · · · ∧ An on an RDF graph G
if an assignment ν exists such that σ = ν|�x, dom(ν) = vars(A1) ∪ · · · ∪ vars(An),
and {A1ν, . . . , Anν} ⊆ G holds. SPARQL uses bag semantics, so ans(Q,G) is the
multiset that contains each answer σ to Q on G with multiplicity equal to the
number of such assignments ν.

Finally, we formalise the computational problems we consider in this paper.
Let C be a finite set called a cluster ; each element k ∈ C is called a server.
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A partition of an RDF graph G is a function G that assigns to each server k ∈ C
an RDF graph Gk, called a partition element, such that G =

⋃
k∈C Gk. Partition

G is strict if Gk ∩ Gk′ = ∅ for all k, k′ ∈ C with k 
= k′. A (data) partitioning
strategy takes an RDF graph G and produces a partition G. Given a CQ Q, a
distributed query answering algorithm computes ans(Q,G) on a cluster C where
each server k ∈ C stores Gk. An answer σ to Q on G is local if k ∈ C exists such
that σ is an answer to Q on Gk.

3 Motivation and Related Work

We now illustrate the difficulties of distributed query answering and present an
overview of the existing approaches.

Data Exchange Operator by Example. To make our discussion concrete,
let G be the RDF graph from Fig. 1a partitioned to elements G1 and G2 by
subject hashing ; resource c is shown in grey because it occurs in both partition
elements. Subject hashing is one of the simplest data partitioning strategies
that assigns triple 〈ts, tp, to〉 to partition element (h(ts)mod 2) + 1 for a suitable
hash function h. It was initially studied in the YARS2 [9] system, but modern
distributed RDF systems use more elaborate strategies.

To understand the main issue that distributed query processing must address,
let Q1(x, y, z) = 〈x, S, y〉 ∧ 〈y,R, z〉. Answer σ1 = {x �→ b, y �→ c, z �→ e} spans
partition elements so servers must exchange intermediate answers to compute σ1.
The Volcano system [5] proposed the solution in form of a data exchange oper-
ator that encapsulates all communication between servers in the query pipeline.
In particular, variable y occurs in the second atom of Q1 in the subject posi-
tion so, for each triple 〈tx, S, ty〉 matching the first atom of Q1, subject hashing
ensures that any join counterparts are found on server (h(ty)mod 2) + 1. Thus,
we can answer Q1 using the query plan shown in Fig. 1b, where ⊗ is a data
exchange operator that (i) sends each variable assignment σ from its input to
server (h(σ(y))mod 2) + 1, and (ii) receives variable assignments sent from other
servers and forwards them to the parent join operator. Thus, the rest of the query
plan is completely isolated from any data exchange issues.
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Fig. 1. Example RDF data and query plans
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Guarantees about data partitioning can be used to avoid data exchange in
some cases. For example, subject hashing ensures that all triples with the same
subject are colocated, so subject-join queries can be evaluated without any data
exchange. Thus, we can evaluate Q2(x, y, z) = 〈x,R, y〉 ∧ 〈x, S, z〉 independently
over G1 and G2.

The decision when to introduce the data exchange operators is made
statically (i.e., at query compile time), which can introduce unnecessary
data exchange. For example, let Q3(x, y, z, w) = 〈x,R, y〉 ∧ 〈x, S, z〉 ∧ 〈w, T, z〉.
As in Q2, we can evaluate the first two atoms locally. In contrast,
join variable z occurs in Q3 only in the object position so, given a
value for z, subject hashing does not tell us where to find the rele-
vant triples. Consequently, we need a query plan from Fig. 1c with two
data exchange operators that hash their inputs based on the value of z,
which allows us to compute answers σ2 = {x �→ b, y �→ a, z �→ c, w �→ d} and
σ3 = {x �→ b, y �→ a, z �→ c, w �→ g}. Note that data exchange is necessary for σ3;
however, σ2 can be obtained by evaluating Q in G1, but resource c is hashed to
server 2 so σ2 is unnecessarily computed on server 2.

Data Exchange in Related Approaches. Static data exchange has been
extensively used in practice. For example, the map phase in MapReduce [3]
assigns to each data record a key that is used to redistribute data records in the
shuffle phase; hence, distributed MapReduce-based RDF systems [10,15,17,18]
can be seen as using a variant of static data exchange. Moreover, systems such
as Sempala [19] implemented on top of big data databases such as Impala and
Spark, as well as custom-built systems such as TriAD [7], SemStore [21], and
SHAPE [12], use similar ideas. Trinity.RDF [22] uses one master and a number of
worker servers: the workers first to compute candidate bindings for each variable
using graph exploration, and they then send these bindings to the master to
compute the final join, which is a variant of static data exchange.

Some approaches provide stronger locality guarantees by data duplication.
For example, Huang et al. [10] distribute the ownership of the resources of G
to partition elements using graph partitioning, and they assign each triple to
the element that owns the triple’s subject. Moreover, they duplicate data using
n-hop duplication: each server containing a resource r is extended with all triples
so that it contains all paths of length n from r. Thus, each query with paths of
length less than n can be answered locally, and all other queries are answered
using MapReduce. Duplication, however, is costly: for example, query Q3 needs
2-hop duplication, and Huang et al. [10] show that this can increase the data in
the system by a factor of 4.8; this factor is unlikely to scale linearly with the
total data size since RDF graphs typically have small diameters. Furthermore,
SemStore [21] partitions every rooted subgraph in the original graph. SHAPE
[12] partitions subject, object or subject-object groups, extending each group
with n-hop duplication and applying optimisations to reduce duplication. Trin-
ity.RDF [22] hashes all triples on subject and object. TriAD [7] first divides
resources into groups using graph partitioning, then it computes a summary of
the input graph by merging all resources in each group, and it assigns groups
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from the summary to servers by hashing on subject and object. Hashing by sub-
ject and object at most doubles the data, and so it is more likely to scale, and it
also reduces data exchange: for Q3, we can use the query plan from Fig. 1c, but
without the right-hand data exchange operator.

Our Contribution. In contrast to all of these approaches that use static data
exchange, in Sect. 4 we present a novel algorithm for distributed query answering
that decides when and how to exchange data independently from any locality
guarantees provided by data partitioning. On our example query Q3, our algo-
rithm computes answer σ2 on server 1 by discovering that all the data needed
for σ2 is colocated on server 1, and it exchanges only the data necessary for σ3.
Similarly to TriAD, servers in our system exchange messages asynchronously,
without coordinating progress through the query plan. This promotes concur-
rency, but it complicates detecting termination since an idle server can always
receive a message from other servers and become busy. We solve this problem
using a novel, fully decentralised termination condition. Finally, by processing
messages in a specific order we limit the amount of memory needed to store
messages.

Although our query answering algorithm does not rely on locality guarantees,
ensuring that most answers to a query are local is critical to its efficiency. Thus, in
Sect. 5 we present a novel data partitioning strategy based on graph partitioning.
Our approach uses no replication, and it produces partition elements that are
more balanced in sizes than those produced by related strategies based on graph
partitioning [7,10,16].

4 Query Answering Algorithm

We now present our distributed query answering algorithm that uses dynamic
data exchange. Throughout this section, we fix a cluster C of shared-nothing
servers, a strict partition G of an RDF graph G distributed over C, and a
CQ Q. Our algorithm outputs ans(G,Q) as pairs 〈σ,m〉 of assignments and
multiplicities; each σ can be output several times, but the sum of all m for σ is
equal to the multiplicity of σ in ans(G,Q).

4.1 Intuition

We evaluate Q over G using nested index loop joins: starting with an empty
assignment, we recursively extend the assignment by matching the atoms of
Q; we call each assignment that matches a prefix of the atoms of Q a partial
answer. By letting all servers evaluate Q in parallel over their respective partition
element, we obtain all local answers to Q without any network communication or
synchronisation between the servers. To also obtain answers that are not local,
whenever some server k attempts to extend a partial answer σ so that it matches
some atom A of Q, the server must take into account that other servers in the
cluster may contain facts matching A as well. To identify such situations, server
k uses the key notion of occurrences that, for any resource r in Gk, allow server
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k to identify all servers that contain r. Server k can thus use the occurrences of
the resources in A and σ to identify the servers that can potentially extend σ to
a match for A, so server k forwards σ only to those servers; each server receiving
σ then continues matching the remaining atoms of Q. The occurrences are thus
used to avoid sending σ to servers that definitely cannot extend σ to an answer
of Q on G, which considerably reduces communication in the cluster.

Consider again our example query Q3 from Fig. 1c. Evaluating the
first two atoms of Q3 in G1 left-to-right produces a partial answer
σ = {x �→ b, y �→ a, z �→ c}, so we must next evaluate 〈w, T, z〉σ = 〈w, T, c〉. By
keeping the occurrences of the resources from G1, server 1 determines that
resource c occurs in both G1 and G2 so it branches its execution: it continues
evaluating the query locally and thus computes σ2, but it also sends the partial
answer σ and atom index 3 to server 2. Upon receiving this message, server 2
continues evaluating the query starting from atom 3 and produces answer σ3.

Data exchange in our setting is thus dynamic (i.e., it is determined by the
occurrences), which allows servers to always compute all local answers locally.
Moreover, messages are exchanged asynchronously, without predetermined syn-
chronisation points in the query plan: partial answers can be sent and processed
as soon as they are produced, which promotes parallelisation. However, as we
shall see, the asynchronous nature of our algorithm makes detecting termination
nontrivial.

Our notion of occurrences exhibits two important properties. First, we require
each server k to store only the occurrences for the resources that are present in
Gk. As we discuss in Sect. 4.3, this complicates determining where to forward
partial answers; however, this assumption is critical for scalability because it
makes the size of the occurrences at server k proportional to the size of Gk,
rather than to the size of G. Second, we track the occurrences of resources for
subject, predicate, and object position independently, which we use to further
limit communication. For example, if an atom A to be matched next contains
a resource r in the subject position, then a partial answer is sent to server
k′ only if r occurs in Gk′ in the subject position. As a consequence of this
optimisation, if the data is partitioned such that all triples containing the same
resource in the subject are colocated, subject-join queries are answered without
any communication.

4.2 Setting

Before presenting our approach in detail, we discuss the assumptions we make
on each server in the cluster.

We assume that each server k ∈ C stores the partition element Gk. For A
an atom and X a set of variables, Evaluate(A,Gk,X) evaluates A in Gk and
returns the multiset containing one occurrence of ρ|X for each assignment ρ with
dom(ρ) = vars(A) and Aρ ∈ Gk. For reasons we discuss in Sect. 4.3, this multiset
must be represented as a set of pairs 〈ρ|X , c〉 where c is the multiplicity of ρ|X .
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In addition to Gk, for each β ∈ {s, p, o}, server k must also store the occur-
rences mapping μk,β : vocβ(Gk) → 2C that, for each resource r ∈ vocβ(Gk),
returns the occurrences of r as μk,β(r) = {k′ ∈ C | r ∈ vocβ(Gk′)}.

Finally, we assume that each server can use Send(L,msg) to send a message
msg to all servers listed in set L. Message delivery must be guaranteed: each
sent message must be eventually received and processed; however, we make no
assumptions about the order of message delivery, not even for messages sent from
the same server. For the moment, we assume that the call always succeeds—that
is, each sent message is delivered to all the servers in L in a finite amount of
time. In Sect. 4.5, we show how Send(L,msg) can be realised so that it handles
the case where each server can accept only a bounded number of messages.

4.3 Computing Query Answers

The client can submit Q for processing to any sever kc in the cluster, and so
server kc becomes the coordinator for Q; the client will receive all answers from
server kc. Coordinator processes Q using Algorithm 1. In line 2, the coordinator
determines an efficient ordering of the query atoms; this can be done using any
of the well-known query planning techniques. In line 4 the coordinator sends the
reordered query to all servers; this is done synchronously so that no server starts
sending partial answers to servers that have not yet accepted Q. Finally, to start
the processing of Q in the cluster, in line 5 the coordinator sends to each server
in the cluster the empty partial answer.

Each server k ∈ C (including the coordinator) accepts Q for processing using
procedure Start(kc, �x,A1, . . . , An) from Algorithm 2. The procedure initialises
certain local variables, starts a number of message processing threads, and then
terminates; all further processing at server k is driven by the messages that the
server receives. The server processes messages in lines 15–21. The ANS mes-
sages represent partial answers produced at other servers and we discuss them
shortly; moreover, the FIN messages are used to detect termination and we dis-
cuss them in Sect. 4.4. Each message is associated with a stage integer i that
satisfies 1 ≤ i ≤ n + 1.

Message ANS[i, σ,m, λs, λp, λo] informs a server that σ is a partial answer
with multiplicity m. As we discuss later, the algorithm eagerly removes certain
variables from partial answers to save bandwidth; thus, although σ does not nec-
essarily cover all the variables of A1, . . . , Ai−1, for each σ there exists an assign-
ment ν that coincides with σ on dom(σ) and that satisfies {A1ν, . . . , Ai−1ν} ⊆ G.
Finally, for β ∈ {s, p, o} a position, λβ : R → 2C is a partial function that deter-
mines the location of certain resources in σ; we discuss the role of λβ shortly.
Such a message is forwarded in line 16 to the MatchAtom procedure that imple-
ments index nested loop join. Line 23 determines the recursion base: if i = n + 1,
then σ is an answer to Q on G and it is output to the client in line 24. Otherwise,
in line 27 atom Aiσ is evaluated in Gk and, for each match ρ, assignment σ is
extended with ρ to σ′ in line 28 so that the remaining atoms can be evaluated
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recursively. Due to data distribution, however, recursion may also need to con-
tinue on other servers. The set L of relevant servers is identified in lines 29–35
using the following observations.

– If all atoms have been matched, then line 30 ensures that the answer σ′ is
forwarded to the coordinator so that it can be delivered to the client.

– Otherwise, atom Ai+1σ
′ containing a resource r in position β cannot be

matched at a server 	 ∈ C that does not contain r in position β; hence, lines
32–35 determine the servers that contain all resources occurring in Ai+1σ

′ at
the respective positions.

After the set L of relevant servers has been computed, the computation branches
to the servers in L \ {k} by sending them an ANS message in line 36; and if k ∈ L,
processing also continues on server k via a recursive call in line 38.

The Role of λs, λp, and λo. As we have already explained, each server tracks
the occurrences only for the resources that it contains, which introduces a compli-
cation. For example, consider evaluating query Q4 over the following partition:

Q4(x, y, z) = 〈x,R, y〉 ∧ 〈y, S, z〉 ∧ 〈x, T, z〉
G1 = {〈a,R, b〉, 〈a, T, c〉} G2 = {〈b, S, c〉} G3 = {〈e, T, f〉}

Now let σ′ = {x �→ a, y �→ b} be the partial answer obtained by matching the first
two atoms in G1 and G2, respectively, and consider processing in line 28. Then,
we have Ai+1σ

′ = 〈a, T, z〉, but resource a does not occur in G2, and so server
2 has no way of knowing where to forward σ. To remedy this, our algorithm
tracks the location of resources matched thus far using partial mappings λs, λp,
and λp. When Aiσ is matched at server k, the server’s mappings μk,β contain
information about each resource r occurring in Aiσ

′; now if r also occurs in Ajσ
′

with j > i + 1, then the information about the location of r might be relevant
when evaluating such Aj . Therefore, the algorithm records the location of r in
λ′

β , which is sent along with partial answers.

Handling Projected Variables. To optimise variable projection, line 26
determines the set X of variables that are needed after Ai. Variables not occur-
ring in X are removed from σ′ in line 28 in order to reduce message size. Fur-
thermore, Aiσ is evaluated in line 27 using Evaluate by grouping the resulting
assignments X, which can considerably improve performance. For example, let
Q5(x) = 〈x,R, y〉 ∧ 〈x, S, z〉, and let Gk contain triples 〈a,R, bi〉 and 〈a, S, cj〉
for 1 ≤ i ≤ u and 1 ≤ j ≤ v. A näıve evaluation of the index nested loop join
requires u · v steps, producing the same number of answer messages. In con-
trast, our algorithm uses u + v steps: evaluating the first atom returns the pair
〈ρ = {x �→ a}, u〉 using u steps, and evaluating the second atom returns the pair
〈ρ′ = ∅, v〉 using v steps. In addition, our algorithm sends just one answer mes-
sage in this case, which is particularly important in a distributed setting.

4.4 Detecting Termination

Termination is detected by tracking the per-server completion of each atom
(stage) in the query. In particular, server k can finish processing stage i if (i)
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Algorithm 1. Initiating the Query at Coordinator kc

1: procedure AnswerQuery(Q)
2: Reorder the query atoms as Q(�x) = A1 ∧ · · · ∧ An to obtain an efficient plan
3: for k ∈ C do
4: Call Start(kc, �x, A1, . . . , An) on server k synchronously

5: Send(C,ANS[1, ∅, 1, ∅, ∅, ∅])

it knows that all servers in C have finished processing stages up to i − 1 by
receiving the respective FIN messages, and (ii) it has processed all received mes-
sages for this stage. At this point, server k sends a FIN message to all other
servers informing them that they will not receive further messages from k for
stage i. To this end, each server k keeps several counters: Pi and Ri count the
ANS messages for stage i that the server processed and received, respectively;
and Ni counts the FIN messages that servers have sent to inform k that they
have finished processing stage i. Thus, if Ni = |C| holds at server k, then all
other servers have finished sending all messages for all stages prior to i and so
server k will not get further partial answers to process for stages up to i. If in
addition Pi = Ri, then server k has finished stage i and it then sends his FIN mes-
sage for i. Only one thread must detect this condition line 40, which is ensured
by Swap(Fi, true): this operation atomically reads Fi, stores true into Fi, and
returns the previous value of Fi. Hence, this operation returns false just once,
in which case server k then informs in line 47 all servers (or just the coordinator
if i = n) of this by sending a message FIN[i, Si,�], where Si,� is the number of
ANS messages that server k sent to 	 for stage i. Server 	 processes this message
in line 19 by incrementing Ri and Ni, which can cause further termination mes-
sages to be sent. Since each server sends |C| messages to all other servers per
stage, detecting termination requires Θ(n|C|2) messages in total.

4.5 Dealing with Finite Resources

Nested index loop joins require just one iterator per query atom, so a query with
n atoms can be answered using O(n) memory; this is particularly important when
servers store their data in RAM. The algorithm as presented thus far does not
have this property: partial answers produced in line 36 must be stored on the
sending and/or the receiving server before they are processed. In the worst case,
queries can produce exponentially many answers and so the number of messages
sent in line 36 can be large; consequently, the cumulative size of all messages
sent to a server can exceed the server’s capacity. We now describe how our query
answering algorithm overcomes this drawback.

To formulate our idea abstractly, we assume that each server in the clus-
ter contains n + 1 finite queues. Moreover, function PutIntoQueue(	, i,msg)
instructs the message passing infrastructure to insert message msg into queue i
on server 	. The function returns true if the infrastructure can guarantee that
msg will be placed into the appropriate queue eventually, otherwise it returns
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Algorithm 2. Processing at Server k

6: procedure Start(kc, �x, A1, . . . , An)
7: for 1 ≤ i ≤ n + 1 do
8: for � ∈ C do Si,� := 0 � # (partial) answers sent to server � for stage i

9: Pi := 0 � # processed (partial) answers for stage i
10: Ri := (i = 1 ? 1 : 0) � # received (partial) answers for stage i
11: Ni := (i = 1 ? |C| : 0) � # servers finished sending messages for stage i
12: Fi := false � has this server finished stage i?

13: Start message processing threads that, until exit is called, repeatedly
extract an unprocessed message msg and call ProcessMessage(msg)

14: procedure ProcessMessage(msg)
15: if msg = ANS[i, σ, m, λs, λp, λo] then � Partial/query answer
16: MatchAtom(i, σ, m, λs, λp, λo)
17: Pi := Pi + 1
18: CheckTermination(i
19: else if msg = FIN[i, m]) then � Atom/query termination
20: Ri := Ri + m, Ni := Ni + 1
21: CheckTermination(i)

22: procedure MatchAtom(i, σ, m, λs, λp, λo)
23: if i = n + 1 then
24: Output answer 〈σ, m〉 to the client
25: else
26: X := �x ∪ vars(Ai+1) ∪ · · · ∪ vars(An)
27: for each 〈ρ, h〉 ∈ Evaluate(Aiσ,Gk, X) do
28: σ′ := (σ ∪ ρ)|X , m′ := m · h
29: if i = n then
30: L := {kc}, λ′

s := λ′
p := λ′

o := ∅
31: else
32: L := C
33: for β ∈ {s, p, o} do
34: λ′

β := (λβ ∪ μk,β)|Y for Y = R ∩ {termβ(Ajσ
′) | i + 1 < j ≤ n}

35: if termβ(Ai+1σ
′) ∈ dom(λ′

β) then L := L ∩ λ′
β(termβ(Ai+1σ

′))

36: Send(L \ {k},ANS[i + 1, σ′, m′, λ′
s, λ

′
p, λ′

o])
37: for � ∈ L \ {k} do Si+1,� := Si+1,� + 1

38: if k ∈ L then MatchAtom(i + 1, σ′, m′, λ′
s, λ

′
p, λ′

o)

39: procedure CheckTermination(i)
40: if Pi = Ri and Ni = |C| and Swap(Fi, true) = false then
41: if i = n + 1 then
42: Tell client that Q has been answered and exit
43: else if i = n then
44: Send({kc},FIN[i + 1, Si+1,kc ])
45: if k �= kc then exit

46: else
47: for � ∈ C do Send({�},FIN[i + 1, Si+1,�])
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Algorithm 3. Message Sending for Resource-Constrained Servers
48: procedure Send(L, msg)
49: i := the stage index that message msg is associated with
50: loop
51: for all � ∈ L do
52: if PutIntoQueue(�, i, msg) then L := L \ {�}
53: if L = ∅ then return

54: If an unprocessed message for stage j with j > i exists,
extract one such message msg and call ProcessMessage(msg)

false. Note that the return value of true does not imply that the message has
actually been delivered; thus, message passing can still be asynchronous. Queues
can be implemented in many different ways using common networking infrastruc-
ture. For example, TCP uses sliding window protocol for congestion control, so
one TCP connection could provide a pair of queues. Another solution is to mul-
tiplex n+1 queues onto a single TCP connection. Yet another solution is to use
explicit signalling: when a server sees that it is running out of queue space, it
tells the sender not to send any more data until further notice.

To handle finite resources, our algorithm implements Send(L,msg) in terms
of PutIntoQueue as shown in Algorithm 3: as long as some queue for stage i is
blocked, server k keeps processing messages for stages larger than i. This ensures
recursion depth of at most n + 1, so each server’s thread uses O(n2) memory.
To see why Algorithm 2 necessarily terminates, even with queues of bounded
size, we make two observations. First, processing a message for stage i only calls
PutIntoQueue(	, j,msg) for j > i, which fails only if queue j on server 	 is
full. Second, at any given point in time the cluster contains at least one highest-
indexed nonempty queue across the cluster. As a result of these observations,
messages from the highest-indexed nonempty queue can always be processed.
Thus, although individual servers in the cluster can become blocked at different
points in time, at least one server in the cluster makes progress at any given
point in time, which eventually ensures termination.

The following theorem captures the properties of our algorithm, and its proof
is given online at http://www.cs.ox.ac.uk/people/anthony.potter/rdfox-tr.pdf.

Theorem 1. When Algorithm 1 is applied to a strict partition G of an RDF
graph G distributed over a cluster C of servers where each server has n+1 finite
message queues, the following claims hold:

1. the coordinator for Q correctly outputs ans(Q,G),
2. each server sends Θ(n|C|2) FIN messages and then terminates, and
3. each server thread uses O(n2) memory.

5 Data Partitioning Algorithm

Ensuring that computation is not passed from server to server often is key to
ensuring efficiency of our approach. Therefore, in this section we present a new

http://www.cs.ox.ac.uk/people/anthony.potter/rdfox-tr.pdf
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data partitioning strategy based on weighted graph partitioning that (i) aims to
maximise the number of local answers on common queries, (ii) does not duplicate
triples, and (iii) produces partitions balanced in the number of triples. Through-
out this section, let G be an RDF graph that we wish to partition into |C|
elements. Our algorithm proceeds in three steps.

First, we transform G into an undirected weighted graph (V,E,w) as follows:
we define the set of vertices as V = vocs(G)—that is, V is the set of resources
occurring in G in the subject position; we add to the set of edges E an undirected
edge {s, o} for each triple 〈s, p, o〉 ∈ G if p 
= rdf :type and o is not a literal (e.g.,
a string or an integer); and we define the weight w(r) of each resource r ∈ V as
the number of triples in G that contain r in the subject position. Classes and
literals often occur in RDF graphs in many triples, and the presence of such
hubs can easily confuse partitioners such as METIS, so we prune such resources
from (V,E,w). As we discuss shortly, this does not affect the performance of
distributed query answering for the queries commonly used in practice.

Second, we partition (V,E,w) by weighted graph partitioning [11]—that is,
we compute a function π : V → C such that (i) the number of edges spanning
partitions is minimised, while (ii) the sum of the weights of the vertices assigned
to each partition is approximately the same for all partitions.

Third, we compute each partition element by assigning triples based on
subject—that is, we assign each triple 〈s, p, o〉 ∈ G to partition element Gπ(s).
Note that this ensures no duplication between partition elements.

This data partitioning strategy is tailored to efficiently support common
query loads. By analysing more than 3 million real-world SPARQL queries, it
was shown [4] that approximately 60% of joins are subject–subject joins, 35%
are subject–object joins, and less than 5% are object–object joins. Now prun-
ing classes and literals before graph partitioning makes it more likely that such
resources will end up in different partitions; however, this can affect the per-
formance only of object–object joins, which are the least common in practice.
In other words, pruning does not affect the performance of 95% of the queries
occurring in practice, but it increases the chance of obtaining a good parti-
tion, as well as reduces the size of (V,E,w). Furthermore, by placing all triples
with the same subject on a single server in the third step, we can answer the
most common type of join without any communication; this includes subject-
join queries, which are particularly important in practice. Finally, the weight
w(r) of each vertex r in (V,E,w) determines exactly the number of triples are
added to Gπ(r) as a consequence of assigning r to partition π(r); since weighted
graph partitioning balances the sum of the weights of vertices in each partition,
this ensures that the resulting partition elements are balanced in terms of their
size. As we experimentally show in Sect. 6, our partitions are indeed much more
balanced than the ones produced by the existing approaches based on graph
partitioning [7,10,16]. This is important because it ensures that the servers in
the cluster use roughly the same amount of memory for storing their respective
partition elements.



Distributed RDF Query Answering with Dynamic Data Exchange 493

6 Evaluation

We implemented our query answering and data partitioning algorithms in our
RDFox system.2 The authors of TriAD [7] have already shown that their system
outperforms Trinity.RDF [22], SHARD [17], H-RDF-3X [10], 4store [8], RDF-3X
[14], BitMat [2], and MonetDB [20]; therefore, we have evaluated our approach
by comparing it with TriAD only. We have conducted our experiments using the
m4.2xlarge servers of the Amazon Elastic Compute Cloud.3 Each server had 32
GB of RAM and eight virtual cores of 2.4GHz Intel Xeon E5-2676v3 CPUs.

We generated the WatDiv-10K dataset of the WatDiv [1] v0.6 benchmark,
and used the 20 basic testing queries, which are divided into four groups: complex
(C), snowflake (F), linear (L), and star (S) queries. We also generated the LUBM-
10K dataset of the widely used LUBM [6] benchmark. Many of the LUBM
queries return no answers if the dataset is not extended via reasoning, so we
used the seven queries from [22] that compensate for the lack of reasoning (Q1–
Q7), and we manually generated three additional complex queries (Q8–Q10). All
queries that we used in the evaluation are given online at http://www.cs.ox.ac.
uk/people/anthony.potter/rdfox-tr.pdf.

6.1 Evaluating Query Answering

To evaluate the effectiveness of our distributed query answering algorithm, we
compared RDFox and TriAD using a cluster of ten servers. For RDFox, we parti-
tioned the data into ten partition elements as described in Sect. 5. For TriAD, one
master server partitioned the data across nine workers using TriAD’s summary
mode. Both systems produced the answers on one server, but without printing
them. For each query, we recorded the wall-clock query time, the total amount
of data sent over the network, and the maximum amount of memory used by a
server for query processing.

WatDiv-10K results are summarised in Table 1. TriAD threw an exception on
queries F4 and S5, which is why the respective entries are empty. Both RDFox
and TriAD offer comparable performance for linear and star queries, which in
both cases require little network communication. On complex queries, RDFox
was faster in two out of three cases despite the fact that TriAD uses a summary
graph optimisation [7] to aggressively prune the search space on complex queries.
RDFox could process queries F2, F3, and F5 by up to two orders of magnitude
quicker and with up to two orders of magnitude less data sent over the network.
Moreover, all queries apart from C3 do not return large datasets, so the memory
used for query processing was comparable.

LUBM-10K results are summarised in Table 2. RDFox was quicker than TriAD
on all queries apart from Q5 and Q8, on which the two systems were roughly
comparable. The difference was most pronounced on Q1, Q7, Q9, and Q10, on

2 http://www.cs.ox.ac.uk/isg/tools/RDFox/.
3 http://aws.amazon.com/ec2/.

http://www.cs.ox.ac.uk/people/anthony.potter/rdfox-tr.pdf
http://www.cs.ox.ac.uk/people/anthony.potter/rdfox-tr.pdf
http://www.cs.ox.ac.uk/isg/tools/RDFox/
http://aws.amazon.com/ec2/
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Table 1. Query answering results on WatDiv-10K

RDFox TriAD

Query Answer Time Network Max Mem. Time Network Max Mem.

count (ms) use (KB) (MB) (ms) use (KB) (MB)

C1 1, 504 148 9, 043 31 248 3,170 27

C2 288 493 32,866 2 343 45, 520 97

C3 42, 441, 808 373 1, 190 13 419 423 8

F1 324 62 4, 013 1 15 265 1

F2 188 10 92 1 263 11, 461 25

F3 865 15 199 1 208 337 29

F4 2, 879 25 471 1 − − −
F5 65 5 61 1 348 29, 900 76

L1 2 3 29 1 11 227 1

L2 16, 132 41 259 1 15 1, 106 1

L3 24 2 20 1 6 76 1

L4 5, 782 14 92 1 5 299 1

L5 12, 957 21 306 1 17 940 1

S1 12 5 79 1 41 142 1

S2 6, 685 12 183 1 33 517 1

S3 0 25 35 1 8 91 1

S4 153 19 3, 096 1 22 108 1

S5 0 10 37 1 − − −
S6 453 8 37 1 8 151 1

S7 0 2 29 1 3 58 1

which TriAD used significant amounts of memory. This is because TriAD eval-
uated queries using bushy query plans consisting of hash joins; for example, on
Q10 TriAD used over 6 GB—more than half the amount needed to store the
data. In contrast, RDFox uses index nested loop joins that require very little
memory: at most 147 MB were used in all cases, mainly to store the messages
passed between the servers. Furthermore, on most queries RDFox sent less data
over the network, leading us to believe that dynamic data exchange can consid-
erably reduce communication during query processing.

6.2 Effectiveness of Data Partitioning

To evaluate our data partitioning algorithm, we have partitioned our test data
into ten elements in four different ways: with both weighted partitioning and
pruning as described in Sect. 5, without pruning, without weighted partitioning,
and by subject hashing. For each partitioning obtained in this way, Table 3 shows
the minimum and maximum number of triples, the average number of resources
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Table 2. Query answering results on LUBM-10K

RDFox TriAD

Query Answer Time Network Max Mem. Time Network Max Mem.

count (ms) use (KB) (MB) (ms) use (KB) (MB)

Q1 2, 528 1,927 2,261 33 13, 410 197, 762 1, 144

Q2 10, 799, 863 701 150, 565 147 927 104,657 154

Q3 0 443 1, 809 1 771 466 708

Q4 10 4 45 1 7 115 1

Q5 10 2 18 1 2 63 1

Q6 125 4 39 1 85 153 1

Q7 439, 994 975 10,860 8 7, 294 29, 592 844

Q8 2, 528 1, 771 5,497 20 1,755 8, 154 232

Q9 4, 111, 592 6,281 141,603 103 23, 711 184, 661 3, 501

Q10 2, 225, 206 1,096 38,030 29 33, 661 111, 571 6, 645

Table 3. Comparing the partitioning strategies of RDFox and TriAD

WatDiv LUBM

Partitioning Min Max Avg. Res. P Min Max Avg. Res. P

Weighted, pruning 103.1 M 113.0 M 20.9 M 72.1% 126.4 M 138.2 M 32.9 M 0.3%

Weighted, no pruning 102.1 M 113.0 M 21.6 M 72.3% 123.6 M 139.8 M 35.7 M 13.3%

Unweighted, no pruning 22.5 M 410.7 M 18.1 M 63.0% 123.7 M 142.3 M 36.0 M 14.5%

Subject hashing 109.0 M 109.3 M 24.2 M 79.2% 133.3 M 133.7 M 52.5 M 46.8%

Table 4. Comparing the idle memory use of RDFox and TriAD

WatDiv LUBM

System Mean (GB) Max (GB) Sdev (GB) Mean (GB) Max (GB) Sdev (GB)

RDFox 4.39 5.42 0.54 5.49 5.61 0.15

TriAD 9.57 10.99 0.73 12.04 19.26 3.98

per partition, and the average percentage of the resources that occur in more
than one partition. In all cases, subject hashing produces very balanced par-
titions, but the percentage of resources that occur on more than one server is
large. Weighted partitioning reduces this percentage on LUBM dramatically to
0.3 %. Our partitioning is not as effective on WatDiv, but it still offers some
improvement. Partitions are well balanced in all cases, apart from WatDiv with
unweighted partitioning: WatDiv contains several hubs, so a balanced number
of resources in partitions does not ensure a balanced number of triples.

We also compared the idle memory use (excluding dictionaries) of RDFox
and TriAD’s workers, in order to indirectly compare the partitioning approaches
used by the two systems. Table 4 shows the minimal and maximal memory use
per server after the data is loaded, as well as the standard deviation across all
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servers. As one can see, RDFox uses about half of the memory of TriAD. We
believe is due to the fact that our partitioning strategy does not duplicate data,
whereas TriAD hashes its groups by subject and object. Furthermore, memory
use per server is more balanced for RDFox, which we believe is due to weighted
graph partitioning.

7 Conclusion

We have presented a new technique for query answering in distributed RDF sys-
tems based on dynamic data exchange, which ensures that all local answers to
a query are computed locally and thus reduces the amount of data transferred
between servers. Using index nested loops and message prioritisation, the algo-
rithm is very memory-efficient while still guaranteeing termination. Furthermore,
we have presented an algorithm for partitioning RDF data based on weighted
graph partitioning. The results of our performance evaluation show that our algo-
rithms outperform the state of the art, sometimes by orders of magnitude. In our
future work, we shall focus on adapting the known query planning techniques to
the distributed setting. Moreover, we shall evaluate our approach against modern
big data systems such as Spark and Impala.
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Abstract. Linked Open Data has been recognized as a valuable source
for background information in data mining. However, most data mining
tools require features in propositional form, i.e., a vector of nominal or
numerical features associated with an instance, while Linked Open Data
sources are graphs by nature. In this paper, we present RDF2Vec, an app-
roach that uses language modeling approaches for unsupervised feature
extraction from sequences of words, and adapts them to RDF graphs.
We generate sequences by leveraging local information from graph sub-
structures, harvested by Weisfeiler-Lehman Subtree RDF Graph Kernels
and graph walks, and learn latent numerical representations of entities in
RDF graphs. Our evaluation shows that such vector representations out-
perform existing techniques for the propositionalization of RDF graphs
on a variety of different predictive machine learning tasks, and that fea-
ture vector representations of general knowledge graphs such as DBpedia
and Wikidata can be easily reused for different tasks.

Keywords: Graph embeddings · Linked open data · Data mining

1 Introduction

Linked Open Data (LOD) [29] has been recognized as a valuable source of back-
ground knowledge in many data mining tasks and knowledge discovery in general
[25]. Augmenting a dataset with features taken from Linked Open Data can, in
many cases, improve the results of a data mining problem at hand, while exter-
nalizing the cost of maintaining that background knowledge [18].

Most data mining algorithms work with a propositional feature vector rep-
resentation of the data, i.e., each instance is represented as a vector of features
〈f1, f2, . . . , fn〉, where the features are either binary (i.e., fi ∈ {true, false}),
numerical (i.e., fi ∈ R), or nominal (i.e., fi ∈ S, where S is a finite set of sym-
bols). LOD, however, comes in the form of graphs, connecting resources with
types and relations, backed by a schema or ontology.

Thus, for accessing LOD with existing data mining tools, transformations
have to be performed, which create propositional features from the graphs in
LOD, i.e., a process called propositionalization [10]. Usually, binary features
(e.g., true if a type or relation exists, false otherwise) or numerical features
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 498–514, 2016.
DOI: 10.1007/978-3-319-46523-4 30
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(e.g., counting the number of relations of a certain type) are used [20,24]. Other
variants, e.g., counting different graph sub-structures are possible [34].

In this work, we adapt language modeling approaches for latent represen-
tation of entities in RDF graphs. To do so, we first convert the graph into a
set of sequences of entities using two different approaches, i.e., graph walks and
Weisfeiler-Lehman Subtree RDF graph kernels. In the second step, we use those
sequences to train a neural language model, which estimates the likelihood of
a sequence of entities appearing in a graph. Once the training is finished, each
entity in the graph is represented as a vector of latent numerical features.

Projecting such latent representations of entities into a lower dimensional
feature space shows that semantically similar entities appear closer to each other.
We use several RDF graphs and data mining datasets to show that such latent
representation of entities have high relevance for different data mining tasks.

The generation of the entities’ vectors is task and dataset independent, i.e.,
once the vectors are generated, they can be used for any given task and any
arbitrary algorithm, e.g., SVM, Naive Bayes, Random Forests, Neural Networks,
KNN, etc. Also, since all entities are represented in a low dimensional feature
space, building machine learning models becomes more efficient. To foster the
reuse of the created feature sets, we provide the vector representations of DBpe-
dia and Wikidata entities as ready-to-use files for download.

The rest of this paper is structured as follows. In Sect. 2, we give an overview
of related work. In Sect. 3, we introduce our approach, followed by an evaluation
in section Sect. 4. We conclude with a summary and an outlook on future work.

2 Related Work

In the recent past, a few approaches for generating data mining features from
Linked Open Data have been proposed. Many of those approaches are supervised,
i.e., they let the user formulate SPARQL queries, and a fully automatic feature
generation is not possible. LiDDM [8] allows the users to declare SPARQL queries
for retrieving features from LOD that can be used in different machine learning
techniques. Similarly, Cheng et al. [3] propose an approach feature generation
after which requires the user to specify SPARQL queries. A similar approach has
been used in the RapidMiner1 semweb plugin [9], which preprocesses RDF data
in a way that it can be further processed directly in RapidMiner. Mynarz and
Svátek [16] have considered using user specified SPARQL queries in combination
with SPARQL aggregates.

FeGeLOD [20] and its successor, the RapidMiner Linked Open Data Exten-
sion [23], have been the first fully automatic unsupervised approach for enriching
data with features that are derived from LOD. The approach uses six different
unsupervised feature generation strategies, exploring specific or generic relations.
It has been shown that such feature generation strategies can be used in many
data mining tasks [21,23].

1 http://www.rapidminer.com/.

http://www.rapidminer.com/
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A similar problem is handled by Kernel functions, which compute the dis-
tance between two data instances by counting common substructures in the
graphs of the instances, i.e. walks, paths and trees. In the past, many graph
kernels have been proposed that are tailored towards specific applications [7], or
towards specific semantic representations [5]. Only a few approaches are general
enough to be applied on any given RDF data, regardless the data mining task.
Lösch et al. [12] introduce two general RDF graph kernels, based on intersec-
tion graphs and intersection trees. Later, the intersection tree path kernel was
simplified by Vries et al. [33]. In another work, Vries et al. [32,34] introduce an
approximation of the state-of-the-art Weisfeiler-Lehman graph kernel algorithm
aimed at improving the computation time of the kernel when applied to RDF.
Furthermore, the kernel implementation allows for explicit calculation of the
instances’ feature vectors, instead of pairwise similarities.

Our work is closely related to the approaches DeepWalk [22] and Deep Graph
Kernels [35]. DeepWalk uses language modeling approaches to learn social repre-
sentations of vertices of graphs by modeling short random-walks on large social
graphs, like BlogCatalog, Flickr, and YouTube. The Deep Graph Kernel app-
roach extends the DeepWalk approach, by modeling graph substructures, like
graphlets, instead of random walks. The approach we propose in this paper dif-
fers from these two approaches in several aspects. First, we adapt the language
modeling approaches on directed labeled RDF graphs, compared to the undi-
rected graphs used in the approaches. Second, we show that task-independent
entity vectors can be generated on large-scale knowledge graphs, which later can
be reused on variety of machine learning tasks on different datasets.

3 Approach

In our approach, we adapt neural language models for RDF graph embeddings.
Such approaches take advantage of the word order in text documents, explicitly
modeling the assumption that closer words in the word sequence are statis-
tically more dependent. In the case of RDF graphs, we consider entities and
relations between entities instead of word sequences. Thus, in order to apply
such approaches on RDF graph data, we first have to transform the graph data
into sequences of entities, which can be considered as sentences. Using those sen-
tences, we can train the same neural language models to represent each entity
in the RDF graph as a vector of numerical values in a latent feature space.

3.1 RDF Graph Sub-structures Extraction

We propose two general approaches for converting graphs into a set of sequences
of entities, i.e., graph walks and Weisfeiler-Lehman Subtree RDF Graph Kernels.

Definition 1. An RDF graph is a graph G = (V, E), where V is a set of vertices,
and E is a set of directed edges.
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The objective of the conversion functions is for each vertex v ∈ V to generate
a set of sequences Sv, where the first token of each sequence s ∈ Sv is the vertex v
followed by a sequence of tokens, which might be edges, vertices, or any substruc-
ture extracted from the RDF graph, in an order that reflects the relations between
the vertex v and the rest of the tokens, as well as among those tokens.

Graph Walks. In this approach, for a given graph G = (V,E), for each vertex
v ∈ V we generate all graph walks Pv of depth d rooted in the vertex v. To
generate the walks, we use the breadth-first algorithm. In the first iteration, the
algorithm generates paths by exploring the direct outgoing edges of the root node
vr. The paths generated after the first iteration will have the following pattern
vr → e1i, where i ∈ E(vr). In the second iteration, for each of the previously
explored edges the algorithm visits the connected vertices. The paths generated
after the second iteration will follow the following patter vr → e1i → v1i. The
algorithm continues until d iterations are reached. The final set of sequences for
the given graph G is the union of the sequences of all the vertices

⋃
v∈V Pv.

Weisfeiler-Lehman Subtree RDF Graph Kernels. In this approach, we
use the subtree RDF adaptation of the Weisfeiler-Lehman algorithm presented
in [32,34]. The Weisfeiler-Lehman Subtree graph kernel is a state-of-the-art,
efficient kernel for graph comparison [30]. The kernel computes the number of
sub-trees shared between two (or more) graphs by using the Weisfeiler-Lehman
test of graph isomorphism. This algorithm creates labels representing subtrees
in h iterations.

There are two main modifications of the original Weisfeiler-Lehman graph
kernel algorithm in order to be applicable on RDF graphs [34]. First, the RDF
graphs have directed edges, which is reflected in the fact that the neighborhood
of a vertex v contains only the vertices reachable via outgoing edges. Second, as
mentioned in the original algorithm, labels from two iterations can potentially be
different while still representing the same subtree. To make sure that this does
not happen, the authors in [34] have added tracking of the neighboring labels in
the previous iteration, via the multiset of the previous iteration. If the multiset
of the current iteration is identical to that of the previous iteration, the label of
the previous iteration is reused.

The procedure of converting the RDF graph to a set of sequences of tokens
goes as follows: (i) for a given graph G = (V,E), we define the Weisfeiler-Lehman
algorithm parameters, i.e., the number of iterations h and the vertex subgraph
depth d, which defines the subgraph in which the subtrees will be counted for the
given vertex; (ii) after each iteration, for each vertex v ∈ V of the original graph
G, we extract all the paths of depth d within the subgraph of the vertex v on the
relabeled graph. We set the original label of the vertex v as the starting token of
each path, which is then considered as a sequence of tokens. The sequences after
the first iteration will have the following pattern vr → T1 → T1 . . . Td, where Td

is a subtree that appears on depth d in the vertex’s subgraph; (iii) we repeat step
2 until the maximum iterations h are reached. (iv) The final set of sequences is
the union of the sequences of all the vertices in each iteration

⋃h
i=1

⋃
v∈V Pv.
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3.2 Neural Language Models – Word2vec

Neural language models have been developed in the NLP field as an alterna-
tive to represent texts as a bag of words, and hence, a binary feature vector,
where each vector index represents one word. While such approaches are simple
and robust, they suffer from several drawbacks, e.g., high dimensionality and
severe data sparsity, which limits the performances of such techniques. To over-
come such limitations, neural language models have been proposed, inducing
low-dimensional, distributed embeddings of words by means of neural networks.
The goal of such approaches is to estimate the likelihood of a specific sequence
of words appearing in a corpus, explicitly modeling the assumption that closer
words in the word sequence are statistically more dependent.

While some of the initially proposed approaches suffered from inefficient
training of the neural network models, with the recent advancements in the field
several efficient approaches has been proposed. One of the most popular and
widely used is the word2vec neural language model [13,14]. Word2vec is a par-
ticularly computationally-efficient two-layer neural net model for learning word
embeddings from raw text. There are two different algorithms, the Continuous
Bag-of-Words model (CBOW) and the Skip-Gram model.

Continuous Bag-of-Words Model. The CBOW model predicts target words
from context words within a given window. The model architecture is shown in
Fig. 1a. The input layer is comprised from all the surrounding words for which the
input vectors are retrieved from the input weight matrix, averaged, and projected
in the projection layer. Then, using the weights from the output weight matrix,
a score for each word in the vocabulary is computed, which is the probability
of the word being a target word. Formally, given a sequence of training words
w1, w2, w3, . . . , wT , and a context window c, the objective of the CBOW model
is to maximize the average log probability:

1
T

T∑

t=1

logp(wt|wt−c . . . wt+c), (1)

where the probability p(wt|wt−c . . . wt+c) is calculated using the softmax
function:

p(wt|wt−c . . . wt+c) =
exp(v̄T v′

wt
)

∑V
w=1 exp(v̄T v′

w)
, (2)

where v′
w is the output vector of the word w, V is the complete vocabulary of

words, and v̄ is the averaged input vector of all the context words:

v̄ =
1
2c

∑

−c≤j≤c,j �=0

vwt+j
(3)

Skip-Gram Model. The skip-gram model does the inverse of the CBOW model
and tries to predict the context words from the target words (Fig. 1b). More
formally, given a sequence of training words w1, w2, w3, . . . , wT , and a context
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a) CBOW architecture b) Skip-gram architecture

Fig. 1. Architecture of the CBOW and Skip-gram model.

window c, the objective of the skip-gram model is to maximize the following
average log probability:

1
T

T∑

t=1

∑

−c≤j≤c,j �=0

logp(wt+j |wt), (4)

where the probability p(wt+j |wt) is calculated using the softmax function:

p(wo|wi) =
exp(v′T

wovwi)
∑V

w=1 exp(v′T
w vwi)

, (5)

where vw and v′
w are the input and the output vector of the word w, and V is

the complete vocabulary of words.
In both cases, calculating the softmax function is computationally inefficient,

as the cost for computing is proportional to the size of the vocabulary. Therefore,
two optimization techniques have been proposed, i.e., hierarchical softmax and
negative sampling [14]. Empirical studies haven shown that in most cases neg-
ative sampling leads to a better performance than hierarchical softmax, which
depends on the selected negative samples, but it has higher runtime.

Once the training is finished, all words (or, in our case, entities) are pro-
jected into a lower-dimensional feature space, and semantically similar words
(or entities) are positioned close to each other.

4 Evaluation

We evaluate our approach on a number of classification and regression tasks,
comparing the results of different feature extraction strategies combined with
different learning algorithms.

4.1 Datasets

We evaluate the approach on two types of RDF graphs: (i) small domain-specific
RDF datasets and (ii) large cross-domain RDF datasets. More details about the
evaluation datasets and how the datasets were generated are presented in [28].
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Small RDF Datasets. These datasets are derived from existing RDF datasets,
where the value of a certain property is used as a classification target:

– The AIFB dataset describes the AIFB research institute in terms of its staff,
research groups, and publications. In [1], the dataset was first used to predict
the affiliation (i.e., research group) for people in the dataset. The dataset
contains 178 members of five research groups, however, the smallest group
contains only four people, which is removed from the dataset, leaving four
classes.

– The MUTAG dataset is distributed as an example dataset for the DL-Learner
toolkit2. It contains information about 340 complex molecules that are poten-
tially carcinogenic, which is given by the isMutagenic property. The molecules
can be classified as “mutagenic” or “not mutagenic”.

– The BGS dataset was created by the British Geological Survey and describes
geological measurements in Great Britain3. It was used in [33] to predict the
lithogenesis property of named rock units. The dataset contains 146 named
rock units with a lithogenesis, from which we use the two largest classes.

Large RDF Datasets. As large cross-domain datasets we use DBpedia [11]
and Wikidata [31].

We use the English version of the 2015-10 DBpedia dataset, which contains
4, 641, 890 instances and 1, 369 mapping-based properties. In our evaluation we
only consider object properties, and ignore datatype properties and literals.

For the Wikidata dataset we use the simplified and derived RDF dumps from
2016-03-284. The dataset contains 17, 340, 659 entities in total. As for the DBpe-
dia dataset, we only consider object properties, and ignore the data properties
and literals.

We use the entity embeddings on five different datasets from different domains,
for the tasks of classification and regression. Those five datasets are used to pro-
vide classification/regression targets for the large RDF datasets (see Table 1).

– The Cities dataset contains a list of cities and their quality of living, as cap-
tured by Mercer5. We use the dataset both for regression and classification.

– The Metacritic Movies dataset is retrieved from Metacritic.com6, which con-
tains an average rating of all time reviews for a list of movies [26]. The initial
dataset contained around 10, 000 movies, from which we selected 1, 000 movies
from the top of the list, and 1, 000 movies from the bottom of the list. We use
the dataset both for regression and classification.

– Similarly, the Metacritic Albums dataset is retrieved from Metacritic.com7,
which contains an average rating of all time reviews for a list of albums [27].

2 http://dl-learner.org.
3 http://data.bgs.ac.uk/.
4 http://tools.wmflabs.org/wikidata-exports/rdf/index.php?content=dump

download.php\&dump=20160328.
5 https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html.
6 http://www.metacritic.com/browse/movies/score/metascore/all.
7 http://www.metacritic.com/browse/albums/score/metascore/all.

http://dl-learner.org
http://data.bgs.ac.uk/
http://tools.wmflabs.org/wikidata-exports/rdf/index.php?content=dump_download.php&dump=20160328
http://tools.wmflabs.org/wikidata-exports/rdf/index.php?content=dump_download.php&dump=20160328
https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html
http://www.metacritic.com/browse/movies/score/metascore/all
http://www.metacritic.com/browse/albums/score/metascore/all
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Table 1. Datasets overview. For each dataset, we depict the number of instances, the
machine learning tasks in which the dataset is used (C stands for classification, and R
stands for regression) and the source of the dataset

Dataset # instances ML task Original source

Cities 212 R/C (c = 3) Mercer

Metacritic Albums 1600 R/C (c = 2) Metacritic

Metacritic Movies 2000 R/C (c = 2) Metacritic

AAUP 960 R/C (c = 3) JSE

Forbes 1585 R/C (c = 3) Forbes

AIFB 176 C (c = 4) AIFB

MUTAG 340 C (c = 2) MUTAG

BGS 146 C (c = 2) BGS

– The AAUP (American Association of University Professors) dataset contains
a list of universities, including eight target variables describing the salary
of different staff at the universities8. We use the average salary as a target
variable both for regression and classification, discretizing the target variable
into “high”, “medium” and “low”, using equal frequency binning.

– The Forbes dataset contains a list of companies including several features of
the companies, which was generated from the Forbes list of leading companies
20159. The target is to predict the company’s market value as a regression
task. To use it for the task of classification we discretize the target variable
into “high”, “medium”, and “low”, using equal frequency binning.

4.2 Experimental Setup

The first step of our approach is to convert the RDF graphs into a set of
sequences. For each of the small RDF datasets, we first build two corpora of
sequences, i.e., the set of sequences generated from graph walks with depth 8
(marked as W2V), and set of sequences generated from Weisfeiler-Lehman sub-
tree kernels (marked as K2V). For the Weisfeiler-Lehman algorithm, we use 4
iterations and depth of 2, and after each iteration we extract all walks for each
entity with the same depth. We use the corpora of sequences to build both
CBOW and Skip-Gram models with the following parameters: window size = 5;
number of iterations = 10; negative sampling for optimization; negative sam-
ples = 25; with average input vector for CBOW. We experiment with 200 and
500 dimensions for the entities’ vectors. The remaining parameters have the
default value as proposed in [14].

As the number of generated walks increases exponentially [34] with the
graph traversal depth, calculating Weisfeiler-Lehman subtrees RDF kernels, or
all graph walks with a given depth d for all of the entities in the large RDF graph

8 http://www.amstat.org/publications/jse/jse data archive.htm.
9 http://www.forbes.com/global2000/list/.

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.forbes.com/global2000/list/


506 P. Ristoski and H. Paulheim

quickly becomes unmanageable. Therefore, to extract the entities embeddings for
the large RDF datasets, we use only random graph walks entity sequences. More
precisely, we follow the approach presented in [22] to generate limited number
of random walks for each entity. For DBpedia, we experiment with 500 walks
per entity with depth of 4 and 8, while for Wikidata, we use only 200 walks per
entity with depth of 4. Additionally, for each entity in DBpedia and Wikidata,
we include all the walks of depth 2, i.e., direct outgoing relations. We use the
corpora of sequences to build both CBOW and Skip-Gram models with the fol-
lowing parameters: window size = 5; number of iterations = 5; negative sampling
for optimization; negative samples = 25; with average input vector for CBOW.
We experiment with 200 and 500 dimensions for the entities’ vectors. All the
models, as well as the code, are publicly available10.

We compare our approach to several baselines. For generating the data min-
ing features, we use three strategies that take into account the direct relations
to other resources in the graph [20], and two strategies for features derived from
graph sub-structures [34]:

– Features derived from specific relations. In the experiments we use the rela-
tions rdf:type (types), and dcterms:subject (categories) for datasets linked to
DBpedia.

– Features derived from generic relations, i.e., we generate a feature for each
incoming (rel in) or outgoing relation (rel out) of an entity, ignoring the value
or target entity of the relation.

– Features derived from generic relations-values, i.e., we generate feature for each
incoming (rel-vals in) or outgoing relation (rel-vals out) of an entity including
the value of the relation.

– Kernels that count substructures in the RDF graph around the instance node.
These substructures are explicitly generated and represented as sparse feature
vectors.

• The Weisfeiler-Lehman (WL) graph kernel for RDF [34] counts full sub-
trees in the subgraph around the instance node. This kernel has two para-
meters, the subgraph depth d and the number of iterations h (which deter-
mines the depth of the subtrees). We use two pairs of settings, d = 1, h = 2
and d = 2, h = 3.

• The Intersection Tree Path kernel for RDF [34] counts the walks in the
subtree that spans from the instance node. Only the walks that go through
the instance node are considered. We will therefore refer to it as the root
Walk Count (WC) kernel. The root WC kernel has one parameter: the
length of the paths l, for which we test 2 and 3.

We perform two learning tasks, i.e., classification and regression. For classifi-
cation tasks, we use Naive Bayes, k-Nearest Neighbors (k = 3), C4.5 decision tree,
and Support Vector Machines. For the SVM classifier we optimize the parame-
ter C in the range {10−3, 10−2, 0.1, 1, 10, 102, 103}. For regression, we use Linear
Regression, M5Rules, and k-Nearest Neighbors (k = 3). We measure accuracy for

10 http://data.dws.informatik.uni-mannheim.de/rdf2vec/.

http://data.dws.informatik.uni-mannheim.de/rdf2vec/
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Table 2. Classification results on the small RDF datasets. The best results are marked
in bold. Experiments marked with “\” did not finish within ten days, or have run out
of memory

Strategy/

dataset

AIFB MUTAG BGS

NB KNN SVM C4.5 NB KNN SVM C4.5 NB KNN SVM C4.5

rel in 16.99 47.19 50.70 50.62 \ \ \ \ 61.76 54.67 63.76 63.76

rel out 45.07 45.56 50.70 51.76 41.18 54.41 62.94 62.06 54.76 69.05 72.70 69.33

rel in & out 25.59 51.24 50.80 51.80 \ \ \ \ 54.76 67.00 72.00 70.00

rel-vals in 73.24 54.54 81.86 80.75 \ \ \ \ 79.48 83.52 86.50 68.57

rel-vals out 86.86 55.69 82.39 71.73 62.35 62.06 73.53 62.94 84.95 65.29 83.10 73.38

rel-vals in & out 87.42 57.91 88.57 85.82 \ \ \ \ 84.95 70.81 85.80 72.67

WL 1 2 85.69 53.30 92.68 71.08 91.12 62.06 92.59 93.29 85.48 63.62 82.14 75.29

WL 2 2 85.65 65.95 83.43 89.25 70.59 62.06 94.29 93.47 90.33 85.57 91.05 87.67

WC 2 86.24 60.27 75.03 71.05 90.94 62.06 91.76 93.82 84.81 69.00 83.57 76.90

WC 3 86.83 64.18 82.97 71.05 92.00 72.56 86.47 93.82 85.00 67.00 78.71 76.90

W2V CBOW 200 70.00 69.97 79.48 65.33 74.71 72.35 80.29 74.41 56.14 74.00 74.71 67.38

W2V CBOW 500 69.97 69.44 82.88 73.40 75.59 70.59 82.06 72.06 55.43 73.95 74.05 65.86

W2V SG 200 76.76 71.67 87.39 65.36 70.00 71.76 77.94 68.53 66.95 69.10 75.29 71.24

W2V SG 500 76.67 76.18 89.55 71.05 72.35 72.65 78.24 68.24 68.38 71.19 78.10 63.00

K2V CBOW 200 85.16 84.48 87.48 76.08 78.82 69.41 86.47 68.53 93.14 95.57 94.71 88.19

K2V CBOW 500 90.98 88.17 86.83 76.18 80.59 70.88 90.88 66.76 93.48 95.67 94.82 87.26

K2V SG 200 85.65 87.96 90.82 75.26 78.53 69.29 95.88 66.00 91.19 93.24 95.95 87.05

K2V SG 500 88.73 88.66 93.41 69.90 82.06 70.29 96.18 66.18 91.81 93.19 96.33 80.76

classification tasks, and root mean squared error (RMSE) for regression tasks.
The results are calculated using stratfied 10-fold cross validation.

The strategies for creating propositional features from Linked Open Data
are implemented in the RapidMiner LOD extension11 [21,23]. The experiments,
including the feature generation and the evaluation, were performed using the
RapidMiner data analytics platform.12 The RapidMiner processes and the com-
plete results can be found online.13

4.3 Results

The results for the task of classification on the small RDF datasets are given in
Table 2. From the results we can observe that the K2V approach outperforms
all the other approaches. More precisely, using the skip-gram feature vectors
of size 500 in an SVM model provides the best results on all three datasets.
The W2V approach on all three datasets performs closely to the standard graph
substructure feature generation strategies, but it does not outperform them. K2V
outperforms W2V because it is able to capture more complex substructures in
the graph, like sub-trees, while W2V focuses only on graph paths.

11 http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension.
12 https://rapidminer.com/.
13 http://data.dws.informatik.uni-mannheim.de/rmlod/LOD ML Datasets/.

http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension
https://rapidminer.com/
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/
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a) DBpedia vectors b) Wikidata vectors

Fig. 2. Two-dimensional PCA projection of the 500-dimensional Skip-gram vectors of
countries and their capital cities.

The results for the task of classification on the five different datasets using
the DBpedia and Wikidata entities’ vectors are given in Table 3, and the results
for the task of regression on the 5 different dataset using the DBpedia and
Wikidata entities’ vectors are given in Table 4. We can observe that the latent
vectors extracted from DBpedia and Wikidata outperform all of the standard
feature generation approaches. In general, the DBpedia vectors work better than
the Wikidata vectors, where the skip-gram vectors with size 200 or 500 built on
graph walks of depth 8 on most of the datasets lead to the best performances.
An exception is the AAUP dataset, where the Wikidata skip-gram 500 vectors
outperform the other approaches.

On both tasks, we can observe that the skip-gram vectors perform better
than the CBOW vectors. Also, the vectors with higher dimensionality and paths
with bigger depth on most of the datasets lead to a better representation of the
entities and better performances. However, for the variety of tasks at hand, there
is no universal approach, i.e., embedding model and a machine learning method,
that consistently outperforms the others.

4.4 Semantics of Vector Representations

To analyze the semantics of the vector representations, we employ Principal
Component Analysis (PCA) to project the entities’ feature vectors into a two
dimensional feature space. We selected seven countries and their capital cities,
and visualized their vectors as shown in Fig. 2. Figure 2a shows the correspond-
ing DBpedia vectors, and Fig. 2b shows the corresponding Wikidata vectors.
The figure illustrates the ability of the model to automatically organize enti-
ties of different types, and preserve the relationship between different entities.
For example, we can see that there is a clear separation between the countries
and the cities, and the relation “capital” between each pair of country and the
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corresponding capital city is preserved. Furthermore, we can observe that more
similar entities are positioned closer to each other, e.g., we can see that the
countries that are part of the EU are closer to each other, and the same applies
for the Asian countries.

4.5 Features Increase Rate

Finally, we conduct a scalability experiment, where we examine how the number
of instances affects the number of generated features by each feature generation
strategy. For this purpose we use the Metacritic Movies dataset. We start with
a random sample of 100 instances, and in each next step we add 200 (or 300)
unused instances, until the complete dataset is used, i.e., 2, 000 instances. The
number of generated features for each sub-sample of the dataset using each of
the feature generation strategies is shown in Fig. 3.

From the chart, we can observe that the number of generated features sharply
increases when adding more samples in the datasets, especially for the strategies
based on graph substructures. However, the number of features remains the same
when using the RDF2Vec approach, independently of the number of samples in
the data. Thus, by design, it scales to larger datasets without increasing the
dimensionality of the dataset.

5 Conclusion

In this paper, we have presented RDF2Vec, an approach for learning latent
numerical representations of entities in RDF graphs. In this approach, we first
convert the RDF graphs in a set of sequences using two strategies, Weisfeiler-
Lehman Subtree RDF Graph Kernels and graph walks, which are then used to

Fig. 3. Features increase rate per strategy (log scale)
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build neural language models. The evaluation shows that such entity represen-
tations could be used in two different machine learning tasks, outperforming
standard feature generation approaches.

So far we have considered only simple machine learning tasks, i.e., classifi-
cation and regression, but in the future work we would extend the number of
applications. For example, the latent representation of the entities could be used
for building content-based recommender systems [4]. The approach could also be
used for link predictions, type prediction, graph completion and error detection
in knowledge graphs [19], as shown in [15,17]. Furthermore, we could use this
approach for the task of measuring semantic relatedness between two entities,
which is the basis for numerous tasks in information retrieval, natural language
processing, and Web-based knowledge extractions [6]. To do so, we could easily
calculate the relatedness between two entities as the probability of one entity
being the context of the other entity, using the softmax function given in Eqs. 2
and 5, using the input and output weight matrix of the neural model. Simi-
larly, the approach can be extended for entity summarization, which is also an
important task when consuming and visualizing large quantities of data [2].

Acknowledgments. The work presented in this paper has been partly funded by the
German Research Foundation (DFG) under grant number PA 2373/1-1 (Mine@LOD).
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12. Lösch, U., Bloehdorn, S., Rettinger, A.: Graph kernels for RDF data. In: Simperl,
E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS,
vol. 7295, pp. 134–148. Springer, Heidelberg (2012)

13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

15. Minervini, P., Fanizzi, N., d’Amato, C., Esposito, F.: Scalable learning of entity
and predicate embeddings for knowledge graph completion. In: 2015 IEEE 14th
International Conference on Machine Learning and Applications (ICMLA), pp.
162–167. IEEE (2015)
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27. Ristoski, P., Paulheim, H., Svátek, V., Zeman, V.: The linked data mining challenge
2016. In: KNOWLOD (2016)

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1503.00759


514 P. Ristoski and H. Paulheim

28. Ristoski, P., de Vries, G.K.D., Paulheim, H.: A collection of benchmark datasets for
systematic evaluations of machine learning on the semantic web. In: International
Semantic Web Conference. Springer, Berlin (2016, to appear)

29. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014, Part
I. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014)

30. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)
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Abstract. To realise a semantic Web of Things, the challenge of achiev-
ing efficient Resource Description Format (RDF) storage and SPARQL
query performance on Internet of Things (IoT) devices with limited
resources has to be addressed. State-of-the-art SPARQL-to-SQL engines
have been shown to outperform RDF stores on some benchmarks. In this
paper, we describe an optimisation to the SPARQL-to-SQL approach,
based on a study of time-series IoT data structures, that employs meta-
data abstraction and efficient translation by reusing existing SPARQL
engines to produce Linked Data ‘just-in-time’. We evaluate our app-
roach against RDF stores, state-of-the-art SPARQL-to-SQL engines and
streaming SPARQL engines, in the context of IoT data and scenarios.
We show that storage efficiency, with succinct row storage, and query
performance can be improved from 2 times to 3 orders of magnitude.

Keywords: SPARQL · SQL · Query translation · Analytics · Internet
of Things · Web of Things

1 Introduction

The Internet of Things (IoT) envisions a world-wide, interconnected network
of smart physical entities with the aim of providing technological and societal
benefits [9]. However, as the W3C Web of Things (WoT) Interest Group charter1

states, the IoT is currently beset by product silos and to unlock its potential,
an open ecosystem based upon open standards for identification, discovery and
interoperation of services is required.

We see a semantic Web of Things as such an information space, with rich
descriptions, shared data models and constructs for interoperability that utilises
but is not limited to semantic and web technologies to provide an application
layer for IoT applications. As Barnaghi et al. [3] have proposed, semantic tech-
nologies can serve to facilitate interoperability, data abstraction, access and inte-
gration with other cyber, social or physical world data.

The semantic WoT does present a set of unique challenges: handling and
storing time-series data as RDF, querying with SPARQL on limited IoT devices
and distributed usage scenarios. Buil-Aranda et al. [5] have examined traditional
1 https://www.w3.org/2014/12/wot-ig-charter.html.
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SPARQL endpoints on the web and shown that performance for generic queries
can vary by up to 3–4 orders of magnitude. Endpoints generally limit or have
worsened reliability when issued with a series of non-trivial queries. IoT devices
have added resource constraints, however, we argue that time-series IoT data
and distribution also present the opportunity for specific optimisation.

The contribution of this paper is to present an optimisation of SPARQL-to-
SQL query translation for the particular case of time-series data, both historical
and streaming, with a novel approach that uses existing SPARQL engines to
resolve Basic Graph Patterns and mappings that allow intermediate nodes of
observations to be ‘collapsed’. This is advised by our study of IoT schemata
which exhibits a flat and wide structure. Our approach compares favourably
to native RDF storage, SPARQL-to-SQL engines and RDF stream processing
engines deployed on compact, resource-constrained devices, showing 2 times to 3
orders of magnitude performance and storage improvements on published sensor
benchmarks and IoT use cases like smart homes.

In Sect. 2, we first study the structure of time-series IoT data which leads us,
in Sect. 3, to study related work. We then describe the design and implementa-
tion of our approach, that employs metadata abstraction through mappings and
SPARQL-to-SQL translation for performance, reusing, at the core, any existing
SPARQL engine in Sect. 4. Finally, we evaluate our approach against traditional
RDF stores, SPARQL-to-SQL engines and streaming engines using an estab-
lished benchmark and a common IoT scenario in Sect. 5. Results are presented
and discussed in Sect. 6 with the conclusion in Sect. 7.

2 Structure of Internet of Things Data

To investigate the structure of data produced by sensors in the Internet of
Things, we collected the schemata of 19,914 unique IoT devices from public
data streams on Dweet.io2 over a one month period in January 2016.

Dweet.io is a cloud platform that supports the publishing of time-series data
from IoT devices in JavaScript Object Notation (JSON). The schema represented
in JSON can be flat (row-like with a single level of data) or complex (tree-
like/hierachical with multiple nested levels of data). It was observed from the
schemata, removing the 1542 (7.7 %) that were empty, that 18,280 (99.5 %) of
the non-empty schemata were flat while only 92 (0.5 %) were complex.

We also analysed the schemata to investigate how wide the IoT data was.
Wideness is defined as the number of properties beside the timestamp and a
schema is considered wide if there are 2 or more such properties. We found
that 92.2 % of the devices sampled had a schema that was wide. The majority
(53.2 %) had 4 properties related to each timestamp. We also obtained a smaller
alternative sample of 614 unique devices (over the same period) from Sparkfun3,
that only supports flat schemata, which confirmed that most (76.3 %) IoT devices
sampled have wide time-series schemata.
2 http://dweet.io/see.
3 https://data.sparkfun.com/streams.

http://dweet.io/see
https://data.sparkfun.com/streams
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We concluded that our sample of over 20,000 unique IoT devices from
Dweet.io and Sparkfun contained (1) flat and (2) wide IoT time-series data. It fol-
lows that a possible succinct representation of such data is as rows in a relational
database with column headings corresponding to properties. SPARQL-to-SQL
translation is then a possibility for querying. Investigating column stores was
out of the scope of this study, however provides for interesting future work and
comparison, as tension between inserts/updates and optimising data structures
for reads [15] are reduced for time-series data which are already sorted by time
in entry sequence order. The IoT schemata we collected is available on Github4.

3 Related Work

The fact that we are dealing with time-series sensor data, represented as Linked
Data with ontologies like the Semantic Sensor Network (SSN) ontology and
Linked Sensor Data [12] for interoperability, prescribes the study of: (i) RDF
stores, (ii) R2RML and SPARQL-to-SQL translation with relational databases
to improve performance and storage efficiency for time series-data as rows and
(iii) streaming engines for efficient processing on real-time streams.

RDF Stores. Virtuoso [8] is based on an Object Relational DBMS optimised
for RDF storage while Jena Tuple Database (TDB) is a native Java RDF store
using a single table to store triples/quads. Indexes, like the 6 SPO (Subject-
Predicate-Object) permutations that Neumann et al. [11] propose often improve
query performance on tables by reducing scans. TDB creates 3 triple indexes
(OSP, POS, SPO) and 6 quad indexes while Virtuoso creates 5 quad indexes
(PSOG, POGS, SP, OP, GS; G is graph). Commercial stores like GraphDB,
formerly OWLIM, have also shown to perform well on benchmarks [4] with 6
indexes (PSO, POS, entities, classes, predicates, literals). Indexing, however,
increases the storage size and memory required to load them.

Relational Databases (SPARL-to-SQL). Efficient SPARQL-to-SQL trans-
lation that improves performance and builds on previous literature has been
investigated by Rodriguez-Muro and Rezk [14] and Priyatna et al. [13] with state-
of-the-art engines ontop and morph respectively. Both engines support R2RML5,
a W3C recommendation based on the concept of mapping logical tables in rela-
tional databases to RDF via Triples Maps (the subject, predicate and object in
a triple can be mapped to columns in a table). They also optimise query trans-
lation to remove redundant self-joins. Ontop, which translates mappings and
queries to a set of Datalog rules, applies query containment and semantic query
optimisation to create efficient SQL queries. However, (1) R2RML is designed for

4 https://github.com/eugenesiow/iotdevices/releases/download/data/dweet release.
zip.

5 http://www.w3.org/TR/r2rml/.

https://github.com/eugenesiow/iotdevices/releases/download/data/dweet_release.zip
https://github.com/eugenesiow/iotdevices/releases/download/data/dweet_release.zip
http://www.w3.org/TR/r2rml/
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generality rather than abstracting and ‘collapsing’ (reducing self joins on iden-
tifier columns in tables mapping to IRI templates) intermediate nodes (Sect. 4)
(2) Time-series data can be different from relational data (e.g. does not have
primary keys) (3) The round-trip to retrieve database metadata (ontop) could
be significant on devices with slower disk/memory access.

Streaming Engines. The C-SPARQL [1] engine supports continuous pull-
based SPARQL queries over RDF data streams by using Esper6, a complex event
processing engine, to form windows in which SPARQL queries can be executed
on an in-memory RDF model. CQELS [10] is a native RDF stream engine, sup-
porting push and pull queries, that takes a ‘white-box’ approach for full control
over query optimisation and execution. morph-streams, from SPARQLstream

[6], supports query rewriting with R2RML mappings and execution with Esper.

4 Designing a SPARQL-to-SQL Engine for the IoT

Based on the ontologies for integrating time-series sensor data, the SSN ontol-
ogy7, Semantic Sensor Web and Linked Sensor Data (LSD) [12] mentioned in
the previous section, we observe that semantic sensor data is modelled as (1) IoT
device metadata like the location and specifications of sensors, (2) IoT observa-
tion metadata like the units of measure and types of observation (3) IoT obser-
vation data like timestamps and actual readings. Listing 1.1 shows an example
division into the 3 categories from the Linked Sensor Data dataset in RDF
Turtle.

Listing 1.1. LSD example, rainfall from Station 4UT01 (abbreviated)
@prefix ssw:<http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>
@prefix weather:<http :// knoesis.wright.edu/ssw/ont/weather.owl#>
@prefix wgs:<http ://www.w3.org /2003/01/ geo/wgs84_pos#>
@prefix time:<http ://www.w3.org /2006/ time#>
@prefix sen:<http :// knoesis.wright.edu/ssw/>
sen:System_4UT01 ssw:processLocation // Device Metadata

[wgs:lat "40.82944"; wgs:long " -111.88222"].
_:obs a weather:RainfallObservation; // Observation Metadata

ssw:observedProperty weather:_Rainfall;
ssw:procedure sen:System_4UT01;
ssw:result _:data; ssw:samplingTime _:time.

_:data a ssw:MeasureData;
ssw:uom weather:degrees.

_:time a time:Instant;
time:inXSDDateTime "2003 -03 -31 T12 :35:00". // Observation Data

_:data ssw:floatValue "0.1".

Although Linked Data as implemented in RDF is flexible and expressive
enough to represent both data and metadata as triples as seen in Listing 1.1,
however, given the resource constraints of IoT devices, we make these hypotheses:

1. Storing flat and wide IoT observation data as rows is more efficient than
storage as RDF as each field value in a row, under a column header, does not
require additional subject and predicate terms (Table 1).

6 http://www.espertech.com/products/esper.php.
7 https://www.w3.org/2005/Incubator/ssn/ssnx/ssn.

http://www.espertech.com/products/esper.php
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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Table 1. LSD example, abbreviated row from the Table 4TU01

Time Rainfall RelativeHumidity ...

2003-03-31T12:35:00 0.1 37.0 ...

2. Queries that retrieve more fields from a row (e.g. Rainfall & RelativeHumid-
ity) will require less joins as compared to RDF stores’ and perform better.

3. Most device and observation metadata can be abstracted and stored in-
memory, with a mapping language that can express this. Metadata triples
can be produced ‘just-in-time’ and intermediate nodes (e.g. ssw:MeasureData
in Listing 1.1), if not projected in queries, can be ‘collapsed’ (reduces joins in
RDF stores and self joins on identifier columns in tables that map to inter-
mediate nodes, e.g. :obs, :data and :time for SPARQL-to-SQL).

4. Efficient queries can be produced without relying on primary keys within
time-series data and retrieving database schema from IoT devices.

4.1 sparql2sql and sparql2stream

We present, based on our hypotheses, sparql2sql (translates SPARQL-to-SQL)
and sparql2stream (translates SPARQL to Event Processing Language (EPL)
for streams) engines. They utilise the same core to provide a holistic approach
to SPARQL translation for both historical and streaming IoT datasets.

Firstly, to support SPARQL-to-SQL translation, a mapping for IoT data
stored as rows is required. R2RML (as in Sect. 3) is designed for generality rather
than for specific IoT time-series data. As such, we propose S2SML in Sect. 4.2,
an R2RML-compatible mapping language designed for metadata abstraction,
collapsing intermediate nodes and in-memory storage.

Next, in Sect. 4.3, we explain how S2SML mappings can be used to translate
SPARQL to SQL, reusing any existing SPARQL engine. Finally, in Sect. 4.4, we
show how this applies for SPARQL on streams.

4.2 S2SML Mapping

Sparql2Sql Mapping Language (S2SML) mappings serve the dual purpose of pro-
viding bindings from rows and abstracting sensor and observation metadata from
observation data stored as rows. Mappings are pure RDF and compatible with
R2RML (can be translated to and from). Furthermore, S2SML is also designed
to support ‘collapsing’ intermediate nodes of observation metadata through the
use of blank nodes or faux nodes, nodes containing identifiers only created on
projection. Listings 1.2 and 1.3 show a comparison of S2SML and R2RML from
Listing 1.1. R2RML is more verbose and uses the {time} column for IRI tem-
plates, which might not be unique and cannot be ‘collapsed’ (Sect. 6.2).
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Listing 1.2. S2SML
: b a weather : Ra in fa l lObse rvat ion ;
ssw : r e s u l t : c .
: c a ssw : MeasureData ;
ssw : f l oa tVa lue
”4UT01 . Ra i n f a l l ”ˆˆ<: LiteralMap >.

Listing 1.3. R2RML
: t1 a r r : TriplesMap ; r r : l o g i c a lTab l e : 4UT01 ;
r r : subjectMap [ r r : template ”http : / / . . . o/{ time}” ;
r r : c l a s s weather : Ra in fa l lObse rvat ion ] ;

r r : predicateObjectMap [ r r : p r ed i ca t e ssw : r e s u l t ;
r r : objectMap [ r r : parentTriplesMap : t2 ] ] .

: t2 a r r : TriplesMap ; r r : l o g i c a lTab l e : 4UT01 ;
r r : subjectMap [ r r : template ”http : / / . .m/{ time}” ;
r r : c l a s s ssw : MeasureData ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e ssw : f l oa tVa lue ;
r r : objectMap [ r r : column ” Ra i n f a l l ” ] ] .

To define S2SML, we adopt the notation introduced by Chebotko et al. [7]
where I, B, L denote pairwise disjoint infinite sets of IRIs, blank nodes and lit-
erals while Imap, Lmap, F are IRI Map, Literal Map and Faux Node respectively.
Examples can be found in Table 2. Combinations of these terms (e.g. ImapIBF )
denote the union of their component sets (e.g. Imap ∪ I ∪ B ∪ F ).

Definition 1 (S2SML Mapping, m). Given a set of all possible S2SML map-
pings, M , an S2SML mapping, m ∈ M , is a set of triple tuples, (s, p, o) ∈
(ImapIBF ) × I × (ImapIBLmapLF ) where s, p and o are subject, predicate and
object respectively.

Table 2. Examples of elements in (s, p, o) sets

Symbol Name Example

I IRI <http://knoesis.wright.edu/ssw/ont/weather.owl#degrees>

Imap IRI Map <http://knoesis.wright.edu/ssw/{sensors.sensorName}>

B Blank Node :bNodeId

L Literal “-111.88222”ˆˆ <xsd:float>

Lmap Literal Map “readings.temperature”ˆˆ <s2s:literalMap>

F Faux Node <http://knoesis.wright.edu/ssw/obs/{readings.uuid}>

As shown in Table 2, Imap are IRI templates that consist of the union of
IRI string parts (e.g. http://knoesis.wright.edu/ssw/) and reference bindings to
table columns (e.g. {tableName.colName}). Lmap are RDF literals whose value
contains reference bindings to table columns (e.g. ”tableName.colName”) with
a datatype of <s2s:literalMap>.

Definition 2 (Faux Node, F ). F is defined as an IRI template that consists
of the union of a set of IRI string parts, Ip and a set of placeholders, Uid,
referencing a table, so that F = Ip ∪ Uid and |Uid| >= 1, |Ip| >= 1.

http://knoesis.wright.edu/ssw/
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The example F in Table 2 shows how a placeholder is defined in the format
of {tableName.uuid} with keyword ‘.uuid’ identifying this as a Faux node.

Listing 1.2 shows an S2SML mapping of an LSD weather station 4UT01 in
Salt Lake City. Observation data is referenced from table columns with Literal
Maps, Lmap (e.g. ”4UT01.Rainfall”). Observation metadata which serves to con-
nect nodes (e.g. :c) is ‘collapsed’ through the use of blank nodes, B, which in
R2RML (Listing 1.3) is mapped to {time} columns. The R2RML specification
does support blank nodes but none of the other engines support their use yet.
Faux nodes in S2SML are used if there is a possibility that the identifier/inter-
mediate node will be projected in queries (described in Sect. 4.3). Finally, device
metadata also contains constant Literals, L (e.g. the latitude of the sensor).

Mapping Closures. IoT devices might also have multiple sensors, each pro-
ducing a time-series with a corresponding S2SML mapping. In Fig. 1, there might
be multiple observations mappings each in different readings tables and a single
sensors mapping and sensors table all forming a mapping closure.

Definition 3 (Mapping Closure, Mc). Given the set of all mappings on a
device, Md = {md|md ∈ M}, where M is a set of all possible S2SML mappings,
a mapping closure is the union of all elements in Md, so Mc =

⋃
m∈Md

m.

Implicit Join Conditions. Observation data that is represented across mul-
tiple tables within a mapping closure might need to be joined if matched by a
SPARQL query. In R2RML, one or more join conditions (rr:joinCondition) may
be specified between triple maps of different logical tables.

In S2SML, these join conditions are automatically discovered as they are
implicit within mapping closures from IRI template matching involving two or
more tables. We define IRI template matching as follows.

Definition 4 (IRI Template Matching). Let Ip be the set of IRI string parts
in an element of Imap. Imap1 and Imap2 are matching if

⋃
i1∈Ip1

i1 =
⋃

i2∈Ip2
i2

and ∀i1 ∈ Ip1 ,∀i2 ∈ Ip2 : pos(i1) = pos(i2) where pos(x) is a function that
returns the position of x within its Imap.

Given matching Imap, join conditions can be inferred. Figure 1 shows
a mapping closure consisting of a sensor and observation mapping. An
IRI map in each of the mappings, sen:system{sensors.name} in Imap1 and
sen:system{readings.sensor} in Imap2 , fulfil a template matching. A join con-
dition is inferred between the columns sensors.name and readings.sensor as a
result.

Compatibility with R2RML. S2SML is compatible with R2RML as they can
be mutually translated without losing expressiveness. Triple Maps are translated
to triples based on the elements in Table 2. Table 3 defines additional R2RML
predicates and the corresponding S2SML construct. rr:inverseExpression, for
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Fig. 1. Graph representation of an implicit join within a mapping closure

example, is encoded within a literal, Liv, with a datatype of <s2s:inverse> and
the rr:column denoted with double braces {{COL2}}. rr:sqlQuery is encoded
by generating a context/named graph to group triples produced from that
TripleMap and the query is stored in a literal object with context as the subject
and <s2s:sqlQuery> as predicate. Faux nodes are translated as IRI templates.
A specification of S2SML is available on the sparql2sql wiki on Github.

Table 3. Other R2RML predicates and the corresponding S2SML construct

R2RML predicate S2SML example

rr:language “literal”@en

rr:datatype “literal”ˆˆ <xsd:float>

rr:inverseExpression ”{COL1} = SUBSTRING({{COL2}}, 3)”ˆˆ <s2s:inverse>

rr:class ?s a <ont:class>

rr:sqlQuery <context1> {<sen:sys {table.col}> ?p ?o.}
<context1> s2s:sqlQuery ”query”

4.3 Translation

Building a Mapping Closure. Following from Definition 3 of a Mapping
Closure, Mc, a translation engine needs to perform,

⋃
m∈Md

m, a union of all
mappings on a device, Md. To support template matching with any in-memory
RDF store and SPARQL engine, as described in Definition 4, we replace all Imap

within each mapping m with Ip, the union of IRI string parts, and extract C, the
set of table column binding strings. C is then stored within map, mjoin, with
Ip as key and C as value. For example, in Fig. 1, <sen:system > will replace
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both <sen:system {sensors.name}> and <sen:system {readings.sensor}> while
mjoin will store (<sen:system >, {sensors.name, readings.sensor}).

SPARQL Algebra and BGP Resolution. A SPARQL query, sparql, can
be translated by the function trans(Mc, sparql). The first step within trans is
algebra(sparql) →∝, where ∝ is a SPARQL algebra expression. For example,
SRBench [17] query 68, which looks for weather stations that have observed
low visibility within an hour of time by projecting stations that have either (by
union) low visibility, high rainfall or snowfall observations, has ∝ as follows.

Project

Union

Filtertime

BGPsnow

Union

Filter>30,time

BGPrain

Filter<10,time

BGPvisibility

Basic graph patterns (BGPs) are sets of triple patterns within the query.
trans walks through ∝ from the leaf nodes executing function σ(Mc, BGP ) on
each BGP. As the Mc is pure RDF and represents the graph as it is, it can
be loaded into an RDF store, ideally, in-memory. A SPARQL select * query
containing the BGP within its where clause can then be executed on the Mc

within the store. Literal datatypes are removed from the query and stored in
a map. In the above example, BGPsnow and BGPvisibility return no results for
4UT01 (Listing 1.1) but BGPrain returns a result from σ. Each result from σ is a
map of (vk, vv) ∈ V ×(ImapIBLmapLF ) where V is a variable in a triple pattern.
The (vk, vv) maps are passed to the operator, ∝op above in ∝. Eventually, an
SQL union is performed at the project operator π for all |σ| > 1. We have
implemented a pluggable BGP resolution interface to show various in-memory
RDF stores can be supported, with Jena and Sesame as reference examples.

Syntax Translation. trans continues its walk from BGP leaf nodes through ∝
to the root. At each node, ∝op, a syntax translation syn(SQLi, (vk, vv)i,∝op) →
(SQLo, (vk, vv)o) is performed, producing an updated SQL query, SQLo. In the
example, at the Filter>30,time ∝op, SQLi which consists of a blank SQL where
clause is updated using (vk, vv)i to translate restrictions on ?time and ?value
to those with bindings 4UT01.time<...T17:00:00 and 4UT01.Rainfall>30. The
SQL from clause is also updated with the table 4UT01. An unchanged (vk, vv)o
and the updated SQLo are output from syn and passed upwards.

Table 4 shows a list of common operators ∝op and their corresponding SQL
clauses and syn descriptions. If an operator uses (vk, vv) for mapping a V and
8 https://github.com/eugenesiow/sparql2sql/wiki/Q06.

https://github.com/eugenesiow/sparql2sql/wiki/Q06
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Table 4. Operators ∝op and corresponding SQL Clauses

∝op SQL clause Remarks

Project π Select, From Restricts relation to subset using (vk, vv)

Extend ρ Select Renames an attribute in (vk, vv)

Filter ς Where, Having, From Restriction translated using (vk, vv)

Union ∪ From Add unrestricted select of SQLi in FROM

Group γ Group By, From Aggregation translated using (vk, vv)

Slice ςS Limit Add a LIMIT clause

Distinct ςD Select Add a DISTINCT to SELECT clause

Left Join �� Left Join..On, Select If I add to (vk, vv), else LEFT JOIN

retrieves a Imap, Lmap or F , it adds the table binding to the FROM clause. If
there are tables in the FROM without join conditions, a cartesian product (cross
join) of two tables is taken. Finally, if faux nodes, F , are encountered in π, an
SQL update (UPDATE table SET col=RANDOM UUID()) is run to generate
identifiers and vv in (vk, vv) is updated from {table.uuid} to {table.col}.

4.4 Streaming

The mapping and translation design can be used to translate SPARQL to Event
Processing Language (EPL) for streams. Listing 1.4 shows the additional syntax
in the SPARQL from clause specified in Extended Backus Naur Form.

Listing 1.4. SPARQL FROM Clause Definition for sparql2stream
FromClause = FROM NAMED STREAM <StreamIRI > [RANGE Time TimeUnit WindowType]
TimeUnit = ms | s | m | h | d
WindowType = TUMBLING | STEP

A TUMBLING window is a pull-based buffer that reevaluates at the specified
time interval while the STEP window is a push-based sliding window extending
for the specified time interval into the past. The syn function is modified to
support EPL as an SQL dialect. Streaming for the IoT is useful for 1) scenarios
with high sampling (e.g. accelerometers) or insertion rate (e.g. many sensors
to a device/hub) and 2) applications that perform real-time analytics requiring
push-based results from queries rather than results at pull intervals.

5 Experiment

To evaluate our approach against RDF stores, SPARQL-to-SQL engines and
streaming engines in an WoT context, we selected two unique IoT scenarios
using published datasets. Code and experiments can be found on Github9.

9 https://github.com/eugenesiow/sparql2sql.

https://github.com/eugenesiow/sparql2sql
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Distributed Meteorological System. The first scenario uses Linked Sensor
Data with sensor metadata and observation data from about 20,000 weather sta-
tions across the United States. In particular, we used the period of the Nevada
Blizzard (100k triples) for storage and performance tests and the largest Hurri-
cane Ike period (300k triples) for storage tests. SRBench [17] is an accompanying
analytics benchmark for streaming SPARQL queries but can be applied, with
similar effect, to SPARQL queries constrained by time. Queries10 1 to 10 were
used as they involve time-series sensor data while the remaining queries involved
integration or federation with DBpedia or Geonames which was not within the
scope of the experiment. Queries are available on Github11. The experiment sim-
ulates a distributed setup as each station’s data is stored on an IoT device as
RDF or rows with S2SML or R2RML mappings. Queries are broadcast to all
stations, total query time was the maximum time as the slowest station was the
limiting factor. Due to resource constraints, we assumed broadcast and individ-
ual connection times to be similar over a gigabit switch, hence, distributed tests
for the 4700+ stations were run in series, recording individual times, averaging
over 3 runs and taking the maximum amongst stations for each query.

Smart Home Analytics Benchmark. This scenario uses smart home IoT
data collected by Barker et al. [2] over 3 months in 2012. 4 queries12 requiring
space-time aggregations with a variety of data for descriptive and diagnostic ana-
lytics were devised. (1) hourly aggregation of temperature, (2) daily aggregation
of temperature, (3) hourly and room-based aggregation of energy usage and (4)
diagnosis of unattended devices through energy usage and motion, aggregating
by hour and room. Time taken for queries were averaged over 3 runs.

Environment and Stores. The IoT devices used were Raspberry Pi 2 Model
B+s’ with 1GB RAM, 900MHz quad-core ARM Cortex-A7 CPU and Class 10 SD
Cards, as they are widely available and relatively powerful. 512mb was assigned
to the Java Virtual Machine on Raspbian 4.1. Ethernet connections were used
between the querying client (i5 3.2GHz, 8GB RAM, hybrid drive) and the Pis’.

RDF stores compared were TDB (Open Source) and GraphDB (Commer-
cial). Virtuoso 7 was not supported on the 32-Bit Raspbian and Virtuoso 6
did not support SPARQL 1.1 time functions like hours. H213 (disk mode) was
used as the relational store for all SPARQL-to-SQL tests. ontop and morph
were tested within the limits of query compatibility and a quantitative evalua-
tion of SQL queries and translation time was done. Native SPARQL streaming
engine CQELS was compared for push-based performance. As CQELS already
benchmarked against C-SPARQL and push results for real-time analytics helped
differentiate streams, we did not compare against C-SPARQL.

10 http://www.w3.org/wiki/SRBench.
11 https://github.com/eugenesiow/sparql2sql/wiki.
12 https://github.com/eugenesiow/ldanalytics-PiSmartHome/wiki/.
13 http://www.h2database.com/.

http://www.w3.org/wiki/SRBench
https://github.com/eugenesiow/sparql2sql/wiki
https://github.com/eugenesiow/ldanalytics-PiSmartHome/wiki/
http://www.h2database.com/


526 E. Siow et al.

6 Results and Discussion

6.1 Storage Efficiency

Table 5 shows the store sizes of different datasets for the H2, TDB and GraphDB
setups. As time-series sensor data benefits from succinct storage as rows, H2
outperformed the RDF stores, which also suffered from greater overheads for
multiple stores and indexing [16], from about one to three orders of magnitude.

Table 5. Store size by dataset (in MB)

Dataset #Store(s) H2 TDB GraphDB Ratio

Nevada Blizzard 4701 90 6162 121694 1:68:1352

Hurricane Ike 12381 761 85274 345004 1:112:453

Smart home 1 135 2103 1221 1:15:9

6.2 Query Performance

Figure 2 shows the performance of SRBench queries on the various stores with
the Nevada Blizzard dataset. We see that our sparql2sql approach performs bet-
ter consistently on all queries with stable average execution times. We argue
that this was the result of SQL queries produced not having joins as each sta-
tion was a single time-series (wide) and intermediate nodes not being projected
(could be ‘collapsed’). GraphDB generally performed better than the TDB store
especially on query 9 due to TDB doing a time consuming join operation in
the low-resource environment between two subtrees, WindSpeedObservation and
WindDirectionObservation. If queries were executed to retrieve subgraphs indi-
vidually with TDB, each query cost a 100 times less. Query 4 was similar but
with TemperatureObservation and WindSpeedObservation subgraphs instead.

Both ontop (v1.6.1) and morph (v3.5.16), at the time of writing, will only
support the aggregation operators required for queries 3 to 9 sans query 6 in
future versions. morph was also unable to translate queries 6 and 10 as yet
while ontop’s SQL query 10 did not return from the H2 store on some stations
(e.g. BLSC2). ontop performs better than the RDF stores on queries 2 and 6.
Although queries 1 and 2 are similar in purpose, query 2 has an OPTIONAL on
the unit of measure term, hence as shown in Table 6, ontop generates different
structured queries, explaining the discrepancy in time taken.

We did an additional comparison between SPARQL-to-SQL engines in terms
of the structure of queries generated and translation time. Table 6 shows the
average translation time, ttrans of the 3 engines on the client. The plugin BGP
resolution engine for sparql2sql (s2s) used was Jena. Both ontop and morph have
additional inference/reasoning features and ontop makes an extra round trip to
the Pi to obtain database metadata explaining the longer translation times.
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Fig. 2. Max time taken for distributed SRBench queries

In R2RML, as shown in Listing 1.3, in the absence of row identifiers in time-
series data, time has to be used in IRI templates for intermediate observation
metadata nodes. As timestamps are not unique in LSD (observed from data),
they are not suited as a primary key, hence cannot be used to chase equality
generating dependencies in the semantic query optimisation ontop does [14]. The
resulting queries from ontop and morph both have redundant inner joins on the
time column (used to model intermediate IRIs in R2RML).

In the smarthome scenario, sparql2sql query performance on aggregation
queries as shown in Fig. 3 is still ahead of the RDF stores. GraphDB also has
all-round better performance than TDB. All the queries performed SPARQL 1.1
space-time aggregations, excluding the other SPARQL-to-SQL engines.

Through the experiments, we observe that although other SPARQL-to-SQL
engines have reported significant performance improvements over RDF stores
on various benchmarks and deployments, there is still room for optimisation
for IoT devices and scenarios and perform below RDF stores on Pis’ or do not
yet support queries relevant to IoT scenarios such as aggregations. sparql2sql
with S2SML, utilises the strengths of SPARQL-to-SQL on IoT scenarios and

Table 6. SPARQL-to-SQL translation time and query structure

Q ttrans (ms) Joins Join type and structure

s2s Ontop Morph s2s Ontop Morph Ontop (qview) Morph

1 16 702 146 0 6 4 implicit 4 inner

2 17 703 144 0 6 4 5 nested, 1 left outer 4 inner

6 19 703 - 0 5 - 5 implicit -

10 32 846 - 0 6 - UNION(2x3 implicit) -
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time-series data and performed better than both RDF stores and SPARQL-to-
SQL engines. Table 8 summarises the average query times for all the tests.

6.3 Push-Based Streaming Query Performance

Table 8 shows the average time taken to evaluate a query from the insertion
of an event to the return of a push-based result from sparql2stream, ts2r and
CQELS, tCQELS with 1 s delays in between. This was averaged over 100 results.
For sparql2stream, the one-off translation time at the start (ranging from 16ms
to 32ms) was added to the sum during the average calculation. Query 6 of
SRBench was omitted due to EPL and CQELS not supporting the UNION
operator. The sparql2stream engine (using Esper to execute EPL) showed over
two orders of magnitude performance improvements over CQELS. Queries 4,
5 and 9 that involved joining subgraphs (e.g. WindSpeed and WindDirection
in 9) and aggregations showed larger differences. It was noted, that although
CQELS returned valid results for these queries, they contained an increasing
number of duplicates (perhaps from issues in the adaptive implementation) which
caused a significant slowdown over time and when averaged over 100 pushes. The
experiments are available on Github14,15.

This ability to answer queries in sub-millisecond average times in a push-
based fashion makes sparql2stream a viable option for real-time analytics on
IoT devices like medical devices that require reacting instantaneously.

To verify that sparql2stream was able to answer SRBench queries close to
the rate they are sent, even at high velocity, we reduced the delay between inser-
tions from 1000 ms to 1 ms and 0.1 ms. Table 8 shows a summary of the average
latency (the time from insertion to when query results to be returned) of each
query (in ms). We observe that the average latency is slightly higher than the
inverse of the rate. The underlying stream engine, Esper, maintains context par-
tition states consisting of aggregation values, partial pattern matches and data
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Fig. 3. Average time taken for smarthome analytical queries

14 https://github.com/eugenesiow/cqels.
15 https://github.com/eugenesiow/sparql2stream.

https://github.com/eugenesiow/cqels
https://github.com/eugenesiow/sparql2stream
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Table 7. Average query run times (in ms)

SRBench ts2s tTDB tGDB tot tmorph Ratio ts2r tCQELS Ratio

1 365 1679 1223 4589 1747702 1:5:3:13:4k 0.47 138 1:294
2 415 1651 1627 945 2097159 1:4:4:2:5k 0.46 119 1:261
3 375 1258 2251 - - 1:3:6 0.66 202 1:306
4 533 47084 3004 - - 1:88:6 0.67 186k 1:277k
5 415 1119 1404 - - 1:3:3 0.63 1476k 1:3243k
6 457 2751 2181 987 - 1:6:5:2 - - -
7 455 6563 1082 - - 1:14:2 0.66 2885 1:5245
8 320 1785 1162 - - 1:6:4 0.67 282 1:426
9 436 1328197 1175 - - 1:3k:3 0.67 188k 1:280k

10 354 2514 685 - - 1:7:2 0.73 72 1:98

Smarthome ts2s tTDB tGDB Ratio ts2r tCQELS Ratio

1 466 13709 3132 1:29:7 0.64 125 1:196
2 2457 21898 6914 1:9:3 0.77 129 1:167
3 4685 322357 59803 1:69:13 0.81 - -
4 147649 527184 147275 1:4:1 3.78 - -

Table 8. Average latency (in ms) at different rates

R Q# 1 2 3 4 5 7 8 9 10

1 1.300 1.374 1.279 1.303 1.2561 1.268 1.267 1.295 1.255

10 0.155 0.159 0.143 0.161 0.1291 0.137 0.141 0.155 0.129

R = Rate(rows/ms), Q# = Query number

windows. At high rates, the engine introduces blocking to lock and protect con-
text partition states. However, Fig. 4 shows the effect of this blocking is minimal
as the percentage of high latency events is less than 0.3 % (note that x-axis is
99 % to 100 %) across various rates. This comparison which groups messages by
latency ranges is also used in the Esper benchmark and by Calbimonte et al. [6].

We also tested the size of data that can fit in-memory for sparql2stream with
SRBench Query 8, that uses a long TUMBLING window. The engine ran out of
memory after 33.5 million insertions. Given a ratio of 1 row to 75 triples within
the SSN mapping (each observation type with 10+ triples), by projection, an
RDF dataset size of 2.5 billion triples was ‘fit’ in a IoT devices’ memory.

Queries 1 and 2 of the smart home scenario also corroborated the 2 orders
of magnitude performance advantage of sparql2stream over CQELS. Queries 3
and 4 were not run on CQELS due to issues with the FILTER operator in the
version tested. Query 4 which involved joins on motion and meter streams and
an aggregation saw the average latency of sparql2stream increase, though still
stay under 4ms. The latency for this query was measured from the insertion time
of the last event involved (that trips the push) to that of the push result.
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7 Conclusion

A Web of Things based on open standards and the innovations introduced in
the Semantic Web and Linked Data can encourage greater interoperability and
bridge product silos. This paper shows how time-series Internet of Things data
that is flat and wide, can be stored efficiently as rows on devices with limited
resources. By optimising SPARQL-to-SQL translation and ‘collapsing’ interme-
diate nodes, performance on smart home monitoring and a distributed meteo-
rological system show storage and query performance improvements that range
from 2 times to 3 orders of magnitude. The independence from primary keys and
database metadata also resulted in less joins in resultant SQL queries and faster
query translation times respectively. Future work will expand experimentation
to consider additional datasets, data sizes, queries and include a greater variety
of stores and stream processing use cases for time-series data e.g. column stores,
stream analytics and compression/approximation.

The limitations of this approach lie in the assumption that the bulk of IoT
time-series data is flat and read-only which might change in the future. Exploit-
ing the wideness of time-series data for row access performance is also query
dependant. Current state-of-the-art Ontology-Based Data Access (OBDA) sys-
tems, which do query translation, support general use cases (web/enterprise
relational database mapping) and support reasoning which our approach does
not seek to address at the moment.
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Abstract. Combinatorial creativity combines existing concepts in a
novel way in order to produce new concepts. For example, we can imag-
ine jewelry that measures blood pressure. For this, we would combine
the concept of jewelry with the capabilities of medical devices. In this
paper, we concentrate on creating new concepts in the description logic
EL. We propose a novel language to this effect, and study its proper-
ties and complexity. We show that our language can be used to model
existing inventions and (to a limited degree) to generate new concepts.

1 Introduction

What if cars had wings? What if tables could serve as beds? What if spoons
could talk? These questions may seem completely absurd. And yet, the follow-
ing questions are much less absurd: What if phones could go online? What if
cars could be used to sleep in them? What if tap water contained medicine?
Much of what may seem absurd today may become reality in the future. The
field that is concerned with combining components of existing concepts into new
concepts is called combinatorial creativity1. This field serves different purposes.
Most prominently, it serves to describe new inventions: a smartphone is a tele-
phone that is connected to the Internet; a Segway is a vehicle with two wheels
on the same axis; a Hyperloop is a train without wheels. But combinatorial cre-
ativity can also serve to develop new business ideas, to find plots for books or
movies, to understand human creativity, to disrupt conventional assumptions,
to find design alternatives, or to foster thinking outside the box.

A prominent current of research uses description logics (DLs) to model real-
world concepts [2,11], so it is natural to try to use DLs to capture the types of
concept modification underlying combinatorial creativity. Suppose for example
that cars are defined using the following (simplified) DL axiom:

Car ≡ V ehicle � ∃hasPart.Wheel

1 A more constrained subfield of computational creativity in general.

c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 532–548, 2016.
DOI: 10.1007/978-3-319-46523-4 32
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Now suppose that we wish to consider the concept obtained by removing the
wheels from car. Any construction of the form Car � ¬∃hasPart.Wheel simply
leads to a contradiction, i.e., the empty concept ⊥. Thus, standard DL construc-
tors do not provide any direct means of expressing modifications like taking the
concept Car and removing the property ∃hasPart.Wheel from it.

Much work has been done on conceptual blending [1,4,6,7,11,14,20,26], in
which two concepts from different thematic areas are blended to create a new
concept. However, blending is concerned more with describing analogies and
metaphors than with describing modifications of concepts. Blending can, e.g.,
explain how a human understands an expression such as “sign forest”, but it
cannot express an atomic operation such as removing the wheels from a car.
Non-standard reasoning services for DLs, like semantic matchmaking, consider
the problem of modifying concepts to achieve certain objectives, but do not
provide a means of expressing explicit updates of concepts. What we would
want is a language that allows writing Remove the wheels from the car, or: Car
“minus” ∃hasPart.Wheel.

In this paper, we propose a formal language for concept modifications that
can serve as a basis for combinatorial creativity. More precisely:

– We define a language that allows modeling the transition from one concept to
another one explicitly – by adding, removing, or modifying its constituents.

– We explain the design rationale for our operators, discuss design alternatives,
and prove their formal properties.

– We show that our language can be used to describe real-world inventions, and
(in a limited manner) to generate new concepts.

This paper is structured as follows. We start with a discussion of related work in
Sect. 2 and give the preliminaries in Sect. 3. The main part of our paper, Sect. 4,
describes our language. Section 5 shows concrete applications of our language.
We conclude in Sect. 6.

2 Related Work

Cognitive Sciences. Combinatorial creativity has first been studied in the cog-
nitive sciences [5,8,24]. These analyses center on understanding human cognition
and have not led to a formal theory based in logic. The COINVENT project [21]
aims to develop a computationally feasible, cognitively-inspired, formal model
of concept invention. The project, however, has started only recently, and the
model is still in the process of development. Fictional ideation generates new
concepts for narratives [16]. In a larger sense, computational creativity is con-
cerned also with creative human-computer interaction, art, figurative language,
humor, music, argumentation, generating narratives or poetry, and scientific dis-
covery [25]. We concentrate here on works that come closest to a formal language
for describing modifications of concepts.

Conceptual Blending. One of the areas that cognitive science investigates
is amalgams and analogies [4]. An amalgam of two input concepts is any new
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concept that combines constraints from abstractions of each of the input con-
cepts. In this way, “a red French sedan” and “a blue German minivan” can be
combined to “a red German sedan”. Analogies, on the other hand, find common-
alities between a combined concept (such as “sign forest”) and source concepts
(such as “forest”). The Structure Mapping Engine [7], likewise, is concerned
with analogies. Analogies and amalgams fall into the broader field of concep-
tual blending [11,14,26]. Recent work in the area of linguistics [1] also discusses
conceptual blending, as does the Heuristic-Driven Theory Projection [20]. Clos-
est to our work in conceptual blending is work on upward refinement in the DL
EL++ [6]. All of these analyses are centered on describing the space between two
concepts. However, they do not give us a language with operators to explicitly
modify a single input concept. For example, none of the approaches can express
the operation of taking a car, removing a plastic part, and replacing it by an
aluminium part.

Modifying DL Concepts. Given a DL description of a product on offer and
of a product in demand, semantic matchmaking is concerned with modifying
the product in demand so that it matches the product on offer [17]. Work on
identifying missing negative constraints also involves generation and manipula-
tion of concepts [9]. However, while concept modification is central to these (and
other) works on non-standard reasoning in DLs, they do not provide any means
to explicitly express modifications of a concept, like Remove the wheels from a
car. To the best of our knowledge, the only work that proposes such an operator
is Teege [23]. We compare their subtraction operator with our own in Sect. 4.2.
Also loosely related is work on belief change in DLs, which aims to modify a
knowledge base to consistently incorporate new information, see e.g. [10,18].

3 Preliminaries

Description logics (DLs) are a family of logical formalisms that describe semantic
knowledge about a domain in terms of concepts (= classes, unary relations) and
roles (=properties, binary relations). For example, the first line in Fig. 1 says
that the concept PlasticRoof is defined as the intersection of the concept Roof
and the concept of all those things that are made of plastic. We concentrate here
on one particular DL, EL [2]. We assume fixed sets NC and NR of concept names
and role names, respectively. A concept is anything of the form

� | A | C � D | ∃r.C

where C and D are concepts, A ranges over NC, and r ranges over NR ∪ {u},
where u is the universal role. The set of these concepts will be denoted by L.

A concept is basic if it is a named concept, �, or an existential concept. By
definition, every concept in L is a conjunction of one or more concepts. We will
therefore understand every concept C as a conjunction C = C1 � · · · � Cn. If
any Ci is a conjunction, then Ci can be folded into the conjunction. In all of the
following, we will therefore assume that every concept is a conjunction of basic
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PlasticRoof ≡ Roof � ∃madeOf.P lastic
Car ≡ V ehicle � ∃hasPart.P lasticRoof

� ∃hasPart.Wheel � ∃usedFor.Travel

Fig. 1. An example terminology T

concepts. To simplify notation, we will talk of “the conjunct Ci of C” to mean
that C = C1 � · · · � Cn and 1 ≤ i ≤ n.

DL semantics relies on interpretations I = (ΔI , ·I), where ΔI is a non-
empty domain, which can be understood as a set of real-world entities, and ·I
is an interpretation function which maps each A ∈ NC to a subset AI of ΔI ,
and each r ∈ NR to a subset rI of ΔI × ΔI . The universal role u is mapped to
ΔI × ΔI . This interpretation is extended to all concepts as follows: �I = ΔI ,
(C1 � C2)I = CI

1 ∩ CI
2 , and (∃r.C)I = {x | ∃(x, y) ∈ rI such that y ∈ CI}. We

say that a concept C is subsumed by (or implies) a concept D, written C � D,
if CI ⊆ DI in all interpretations I.

Subsumption between EL concepts can be decided in polynomial time [3] and
adding the universal role does not increase the complexity. To test for subsump-
tion between two concepts (C � D), we can employ a polynomial algorithm
based upon a syntactic characterization of subsumption [13] that works anal-
ogously to the well-known structural subsumption algorithm [2, Sect. 2.3.1] for
the FL0 language. Details can be found in our technical report [22].

Concepts can contain redundant conjuncts, as in ∃r.A � ∃r.�. We call a
concept C fully reduced if there does not exist a concept C ′ such that (1) C ′ � C,
(2) every conjunct of C ′ appears in C, and (3) C ′ has less conjuncts than C. By
removing redundant conjuncts from C, we can compute a fully reduced concept
red(C) equivalent to C. The normal form of a concept C, written norm(C), is
defined as follows:

– norm(A) = A, if A is a named concept or �
– norm(∃r.C) = ∃r.norm(C)
– norm(C1 � · · · � Cn) = red(norm(C1) � · · · � norm(Cn))

We show in our technical report [22] that the normal form of a concept is unique
up to reordering of conjuncts and can be computed in polynomial time.

Ordering. We assume that the set of concept names NC is ordered by a complete
order ≺NC , and the set of relation names NR is ordered by a complete order ≺NR .
Based on these, it is easy to define a complete order ≺ on concepts, as follows.

Definition 1 (Order): Given a complete order ≺NC on concept names NC ∪ {�}
and a complete order ≺NC on relation names R ∪ {u}, the complete order ≺ on
minimal concepts L is defined as follows:

– A ≺ B iff A ≺NC B, for A,B ∈ NC

– A ≺ C, for A ∈ NC and C �∈ NC

– ∃r.C ≺ D for conjunctions D
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– ∃r.C ≺ ∃s.D iff r ≺NR s
– ∃r.C ≺ ∃r.D iff C ≺ D
– C ≺ D for conjunctions C,D is given by the lexicographical extension of ≺.

This order is purely syntactic; it does not relate to concept subsumption. If
the conjuncts of a conjunction C1 � · · · � Cn are written in increasing order
C1 ≺ · · · ≺ Cn, we will talk of an ordered conjunction. In all of the follow-
ing, we will assume conjunctions to be ordered. For example, from Fig. 1, we
will understand that V ehicle ≺ ∃hasPart.P lasticRoof ≺ ∃hasPart.Wheel ≺
∃usedFor.Travel, because the concepts are written in that order. Ordered con-
junctions have an important property, which follows from the properties of the
normal form:

Property 1 (Ordered Conjunctions in Normal Form): Two ordered conjunctions
in normal form are equivalent iff they are identical.

Terminologies. A concept definition takes the form A ≡ C, where A ∈ NC

and C ∈ L. A terminology T is a set of concept definitions, in which no concept
name occurs more than once on the left-hand side of a concept definition. Figure 1
shows an example terminology. We will see the terminology as a function T :
NC → L, which, given a named concept, replaces it by the right-hand-side of
its definition in T . We consider only acyclic terminologies, i.e., there are no
cyclic dependencies between the concept definitions. This allows us to define the
complete recursive unfolding T ∗(·), with T ∗(A) = A for concept names that do
not have a definition in T , T ∗(A) = T ∗(T (A)) for concept names that have a
definition, T ∗(∃r.C) = ∃r.T ∗(C) and T ∗(C1�· · ·�Cn) = T ∗(C1)�· · ·�T ∗(Cn).
We say that a concept name A is a declared child of a concept name B if B
appears as a conjunct of the definition of A.

4 Operators for Concept Modification

We will now define the operators of our language for combinatorial creativity.
Our operators will work directly on DL concepts. The background terminology
T will play no role in defining the operators, but will serve instead to provide
the DL concepts upon which we will apply the operators. This may seem uncon-
ventional at first, but perhaps this is only fitting for a paper that treats matters
of creativity.

4.1 Addition

Definition 2 (Addition): For two concepts C and D, we define addition as C +
D := norm(C � D).

Example 2 (Addition): In our example from Figure 1, the
expression T (Car) + (∃hasPart.Wing � ∃usedFor.F ly) de-
notes a car with wings that is used for flying. This yields
V ehicle�∃hasPart.Wheel�∃hasPart.P lasticRoof�∃usedFor.Travel�
∃hasPart.Wing � ∃usedFor.F ly.
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Addition has the following properties, which follow directly from the prop-
erties of � and the normalization.

Property 2 (Inclusion): If C � D for two concepts C and D, then C + D = C.

Property 3 (Commutative Monoid): For any three concepts C,D,E, the follow-
ing hold: Addition is closed, C + D ∈ L. Addition is monotone, C + D � C.
Addition is commutative, C+D = D+C. Addition is associative, C+(D+E) =
(C + D) + E. � is its neutral element. (+,�) forms a commutative monoid.

4.2 Subtraction

Definition 3 (Subtraction): For a basic concept A, and a concept C that has
an ordered normal form norm(C) = C1 � · · · � Cn, we define subtraction as
C − A := norm(C1 � · · · � Cj−1 � Cj+1 � · · · � Cn), where j = argmin i{Ci :
Ci � A}. If there is no such j, then C − A = C. Subtraction is left-associative.
For a conjunction D with norm(D) = D1 � · · · � Dm, subtraction is defined as
C − D = C − D1 − · · · − Dm.

In other words, the subtraction C−A removes the first conjunct of the ordered
conjunction C that implies A. If the subtrahent is a conjunction, subtraction
removes each conjunct of the subtrahent.

Example 3 (Subtraction): In our example from Figure 1, the ex-
pression T (Car) − (∃hasPart.� � ∃usedFor.Travel) removes the first
hasPart association and the usedFor association. This yields V ehicle �
∃hasPart.Wheel.

The definition of subtraction offers several design choices. We could, e.g.,
define subtraction simply as the set difference of the conjuncts, without consid-
ering subsumption of concepts. However, the proposed definition has the advan-
tage that we can remove a part of a car even if we do not fully specify it, as in
T (Car)−∃hasPart.�. Another design alternative for a subtraction C−A would
be to remove not just the first conjunct from C that implies A, but all conjuncts
in C that imply A. However, we can easily express this design alternative in
terms of the proposed definition by subtracting A several times, whereas it is
not possible to express the subtraction of just one conjunct with an operator
that subtracts all implied conjuncts simultaneously. We could define subtrac-
tion to remove not the first matching conjunct, but an arbitrary conjunct. This,
however, would result in non-determinism. We could also define subtraction so
as to return the set of all possible ways of subtracting the subtrahent. However,
the result of this operation would be a set, not a concept. Thus, it would not be
possible to use this result with the other operators.

Finally, the subtraction of a conjunction (C − D) offers a design alternative.
Instead of subtracting each conjunct of D separately, we could remove from C all
those conjuncts that are subsumed by the complete concept term D. This, how-
ever, would violate the usual set semantics: subtracting a conjunction with more
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conjuncts would have less effect than subtracting a conjunction with only one con-
junct. We could also make subtraction distributive, by defining C − (A � B) =
(C −A)� (C −B). This, however, would entail that (A�B)− (A�B) = (A�B),
which would defeat the purpose of subtraction.

The subtraction operator from Definition 3 has the following properties,
which follow from the definition and the normalization.

Property 4 (Monotonicity): For any two concepts C and D, the following holds:
Subtraction is closed, C − D ∈ L. Subtraction is monotone, C � C − D.

Property 5 (Destruction): If C � D for a basic concept C and a concept D, then
C − D = �. In particular, C − � = �.

Property 6 (Self-Destruction): For any concept C, C − C = �.

Property 7 (Reversibility): If, for two conjunctions in normal form C and D,
every conjunct of D appears in C, then (C − D) + D = C.

Proof. If C and D are in normal form, and every conjunct of D appears in C,
then C −D is obtained by removing every conjunct of D from C (the subsequent
normalization will have no effect). Adding back these conjuncts yields C. ��

We can generalize subtraction to remove an arbitrary conjunct among the
implied conjuncts, as follows.

Definition 4. (Generalized Subtraction): For a concept C, a basic concept A, and
a natural number i, we define

C −1 A := C − A C −i A := ((C − A) −i−1 A) + (C − (C − A))

Property 8. (Generalized Subtraction): The generalized subtraction C −i A
removes the ith conjunct of the normalized ordered conjunction of C that
implies A. If no such conjunct exists, then C −i A = C.

Proof. Assume that C has been transformed into an ordered conjunction in
normal form. We proceed by induction. For i = 1, the claim follows from Def-
inition 3. Now assume that C −i−1 A removes the (i − 1)th conjunct of C that
implies A. We observe that C − A removes the first such conjunct. Hence, the
expression ((C − A) −i−1 A) removes the first such conjunct and the ith such
conjunct. The expression (C − (C − A)) yields the first such conjunct.
Hence, ((C − A) −i−1 A) + (C − (C − A)) is C without the ith such conjunct.
If the ith such conjunct does not exist, then ((C − A) −i−1 A) = C − A. Then,
C −i A = (C − A) + (C − (C − A)) = C. ��

Example 4 (Generalized Subtraction): With generalized subtraction, we
can remove, e.g., the second part of our example car from Figure 1, by say-
ing T (Car)−2∃hasPart.�. This yields V ehicle�∃hasPart.P lasticRoof�
∃usedFor.Travel.
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Comparison to Related Work. Teege [23, Definition 2.1] defines subtraction
as C − D := max�{E ∈ L : D � E ≡ C}. We first note that this operator is
undefined if C �� D, while our operator is always defined. Let us now assume
that C � D and that C and D are conjunctions in normal form. If every conjunct
of D appears in C, then Property 7 tells us that our operator is equivalent to
Teege’s. In general, however, the operators are different. Our definition allows
removing a conjunct that “matches” the subtrahent, as in (A�∃r.B)−∃r.T = A.
Teege’s operator has a different behavior: (A � ∃r.B) − ∃r.T = (A � ∃r.B). This
allows our operator to remove the first, second, or nth matching conjunct, while
Teege’s operator does not offer this functionality. We will show in Sect. 5 how
this functionality can be used in practice.

4.3 Succession

Definition 5. (Succession): For an existential concept ∃r.E and a concept C, we
define succession as C → ∃r.E := E′, where ∃r′.E′ is the first conjunct of the
ordered normal form norm(C) with ∃r′.E′ � ∃r.E. If there is no such conjunct,
succession is undefined. For a conjunction D with norm(D) = D1 � · · · � Dm,
succession is defined as C → D = norm(�i(C → Di)).

Succession finds the first existential conjunct in C that implies ∃r.E, and
returns the inner concept in that existential conjunct. If succession is used with
a conjunction, the operator joins all the target concepts in a conjunction.

Example 5 (Succession): For our example from Figure 1, the expression
T ∗(Car) → ∃hasPart.(∃madeOf.P lastic) asks for a plastic part of a car.
This yields the plastic roof, Roof � ∃madeOf.P lastic.

The definition of succession allows several design choices. The current defi-
nition picks the first target concept. We could equally well use the operator to
pick one of them at random. This, however, would result in non-determinism.
Another design alternative is to return not the first matching conjunct, but the
set of all matching conjuncts. Then, however, the result would no longer be a
concept, and could no longer be used with the other operators.

We could also combine all target concepts of all matching conjuncts into a
conjunction. Then, however, the target concepts could no longer be manipulated
individually. If we want to compute such a conjunction nonetheless, we can do so
with the current definition of succession. It suffices to extract one concept after
the other through generalized succession (see below), and join them by addition.

Succession has the following properties, which follow from Definition 5.

Property 9. (Closedness): For any concepts C and D, C → D is either undefined
or a concept.

Property 10. (Inclusion): If C � D, then ∃r.C → ∃r.D = C, for any concepts
C,D and role r.
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Like for subtraction, we can define a succession for the ith matching conjunct.

Definition 6. (Generalized Succession): For concepts C, an existential concept
∃r.E, and a natural number i, we define

(C →1 ∃r.E) := C → ∃r.E

(C →i ∃r.E) := (C − ∃r.E) →i−1 ∃r.E

Property 11. (Generalized Succession): The generalized subtraction C →i A
returns the inner concept of the ith existential conjunct of the normalized ordered
conjunction of C that implies A.

Proof. Assume that C has been transformed into an ordered conjunction in
normal form. We proceed by induction. For i = 1, the claim follows from Defi-
nition 5. Now assume that C →i−1 A returns the (i − 1)th existential conjunct
of C that implies A. We observe that (C − A) removes the first such conjunct.
Hence, (C − A) →i−1 A returns the ith such conjunct. ��

Example 6 (Generalized Succession): In our example from Figure 1, the
expression T (Car) →2 ∃hasPart.� retrieves the second part of a car.
This yields Wheel.

Comparison to Related Work. To the best of our knowledge, the succession
operator has no analog in the formalisms of previous work [6,7,17,23].

4.4 Selection and Replacement

We can define a selection operator by using multiple applications of subtraction:

Definition 7. (Selection): For a concept C, a basic concept A, and a natural
number i, we define

C ↑i A = (C � χ) − (C � χ −i A)

where χ is a fresh concept name that comes last in the order ≺N .

Property 12. (Selection): The selection C ↑i A returns the ith conjunct of the
ordered normal form of C that implies A, or else �.

Proof. Assume that C has been transformed into an ordered conjunction in
normal form. If there is no ith conjunct of C that implies A, then (C �χ−i A) =
C � χ, and hence C ↑i A = �. Otherwise, (C � χ −i A) will remove that ith

conjunct, and (C � χ) − (C � χ −i A) will deliver that conjunct. This holds
in particular for the case where i = 1, A = � and C is basic. In this case,
C ↑1 � = (C � χ) − (C � χ − �) = (C � χ) − χ = C. Note that without the
addition of χ, we would obtain C ↑1 � = C − (C − �) = C − � = �. ��
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Example 7 (Selection): In our example from Figure 1, we can select the
second hasPart-conjunct of a car by saying T (Car) ↑2 ∃hasPart.�. This
yields ∃hasPart.Wheel.

We can also combine addition and subtraction to define an operator that
replaces a certain conjunct, as follows:

Definition 8. (Replacement): For concepts C,P,D with P taking the form
∃r1.∃r2. . . . ∃rn.A (with n ≥ 0, all ri �= u, and A a concept name), we define

C.replace(P,D) := (C − P ) + D for P a named concept
C.replace(∃r.P,D) := (C − ∃r.P ) + ∃r.((C → ∃r.P ).replace(P,D))

Example 8 (Replacement): In our example from Figure 1, we can replace
the material of the roof of the car by aluminium by stating

T ∗(Car).replace(∃hasPart.(∃madeOf.P lastic), Aluminium)
This expression first unfolds Car completely w.r.t. T . Then, the replace-
ment operator descends into the hasPart conjunct and into the madeOf
conjunct, where Plastic is replaced by Aluminium. This yields:

V ehicle � ∃hasPart.(Roof � ∃madeOf.Aluminium)
�∃hasPart.Wheel � ∃usedFor.Travel

Property 13. (Replacement): The replacement C.replace(∃r1.∃r2. . . . ∃rn.A,D)
descends inside the first existential conjunct of norm(C) that implies
∃r1.∃r2. . . . ∃rn.A by ‘entering’ ∃r1, then enters ∃r2 for the first conjunct that
implies ∃r2. . . . ∃rn.A, continues in this manner until entering ∃rn, and finally
replaces the first occurrence of A in the resulting concept by D.

Proof. Let P = ∃r1.∃r2. . . . ∃rn.A, and assume that C has been transformed into
an ordered conjunction in normal form. We proceed by induction. For n = 0,
we have C.replace(A,D). The first case of Definition 8 will then remove the first
conjunct A in C, and then add D. Next assume that the claim holds when the
chain of existentials has length at most n − 1. The second case of Definition 8
will first remove from C the first conjunct that implies P . Suppose this conjunct
is ∃r1.F . Then we will add back the concept ∃r1.(F.replace(P,D)). As F has a
chain of n − 1 existentials, we can apply the induction hypothesis to infer that
F.replace(P,D) is obtained by following the chain ∃r2 . . . ∃rn to reach a concept
containing A (always choosing the first ∃ri conjunct that entails ∃ri . . . ∃rn.A)
and replacing there the first occurrence of A by D. By adding the prefix ∃r1 to
the resulting concept, we obtain a concept with the stated property. ��

We define C.replacei(P,D) as the i-fold application of the operator.

4.5 Tractability and Generality

All of the above operations are defined on concepts without the use of a back-
ground theory (TBox). Subtraction, e.g., removes a conjunct that is subsumed



542 F.M. Suchanek et al.

by a given concept, but this subsumption is purely syntactic and independent
of a terminology (� instead of �T ). If we want a terminology T to come into
play, we have to explicitly unfold a concept by the operator T ∗(·). The rea-
son for this design choice is that for the goal of modifying concepts, it can be
counter-intuitive if concepts are automatically expanded. Consider again our
example from Fig. 1, and assume that we are looking for the first conjunct in
the definition of Car: T (Car) ↑1 � = V ehicle. If concepts were automatically
expanded, then adding a definition of V ehicle to T would change this result.
Moreover, a full recursive concept expansion would be of exponential complexity
[2, Sect. 2.2.4.2]. Our framework avoids this complexity.

All of our operations are defined for normal forms. This means that, before
applying an operator, its arguments have to be reduced to their normal forms.
This guarantees that, for any operator ⊗, (C⊗D) ≡ (C ′⊗D) if C ≡ C ′. Consider
for example the (redundant) concept C = (��A). The term C−� yields A. Now
consider the equivalent concept C ′ = A. Now, C ′ − � yields �. To avoid such
artifacts, all concepts have to be brought to their normal form before applying
the operators. Since two equivalent concepts have the same normal form, we can
guarantee that (C ⊗D) ≡ (C ′ ⊗D), if C ≡ C ′. Bringing a concept to its normal
form can be done by a simple polynomial algorithm [22].

All of our operators are polynomial-time operations. For addition, this is
easy to see: it suffices to join the arguments in a conjunction, and to apply the
normalization algorithm. For subtraction, we have to run through all conjuncts
in the left argument, and perform a (polynomial) subsumption check for each of
them. This yields a polynomial algorithm. The same is true for succession. We
conclude our discussion of operators by noting that our language can transform
any concept into any target concept. This can always be achieved trivially by
subtracting all conjuncts of the original concept and adding all conjuncts of the
target concept.

5 Evaluation

We conducted three types of evaluations: a case study on a business case of
a French start-up; a descriptive study, where we use our language to describe
inventions; and a generative study, where we use it to generate new concepts.

5.1 Case Study

As a case study, we consider a business case by Stim2, a French consulting firm
founded in 2013. Stim studies the product or service of the client company, and
then uses the C-K method [12] to rethink it and suggest alternatives. We look
here at the case of the client Turbomeca3, a French manufacturer of gas turbine
engines for helicopters. The original technology that Turbomeca employed was

2 http://www.wearestim.com/.
3 http://www.turbomeca.com/.

http://www.wearestim.com/
http://www.turbomeca.com/
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a motor working with two symmetric turbines, which both run during the whole
flight. The suggested alternative was a “hybrid motor”, which works with two
different turbines that can run and stop during the flight according to power
needs. After a feasibility study, Turbomeca is now developing this new motor,
which reduces the energy consumption by half.

We focus here on how the transition from the old motor to the new one
can be written down explicitly. Assuming suitable sets of named concepts and
relations, the original motor looks as follows:

Original ≡ Motor � ∃worksWith.(Turbine � ∃placed.Left � ∃runsDuring.F light)

�∃worksWith.(Turbine � ∃placed.Right � ∃runsDuring.F light)

The motor is then modified as follows:

Original.replace2(∃worksWith.∃runsDuring.F light, (Duration � ∃partOf.F light))

The resulting motor is:

Motor � ∃worksWith.(Turbine � ∃placed.Right � ∃runsDuring.(Duration � ∃partOf.F light))

�∃worksWith.(Turbine � ∃placed.Left � ∃runsDuring.(Duration � ∃partOf.F light))

This shows that it is possible to model the transition from the old motor to the
new one in our language. However, it also shows that we cannot replace both
turbines at the same time. We have to apply the replace operation twice (by
help of the superscript “2”, see Sect. 4.4). This can be traced back to a design
choice in our language, which allows subtracting the first matching conjunct, but
not all conjuncts. This choice was made because subtracting all conjuncts can
be achieved by successively removing individual conjuncts. What is more, sub-
traction becomes idempotent after all matching conjuncts have been removed,
so that one can simulate the removal of all conjuncts by iterating the removal
of individual conjuncts a large number of times (the same is true for replace()).
We leave such extensions for future work.

5.2 Descriptive Study

We wanted to analyze to what degree real-world inventions can be described
in our language. For this purpose, we considered the top 25 inventions of
2015 according to Time Magazine4. We asked computer-science students in our
department to model, for each invention, a pair of two concepts: the original
concept (say, a toy that can talk) and the innovative concept (say, a toy that
can engage in a dialog with the child). Each concept had to be drawn as a graph
of concept nodes that are connected by role edges. The students were allowed to
use any concept and role names. Figure 2 shows the talking toy as an example
(in vectorized form).

We translated the graphs to EL, making modifications where necessary. For
example, we translated numeric items such as the age range 5–9 into atomic

4 http://time.com/4115398/best-inventions-2015/.

http://time.com/4115398/best-inventions-2015/
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5-9
ageRangeEducation

Teacher
goal

goal

Fig. 2. A talking toy (left) and a toy that can engage in a dialog (right).

concepts (FiveNine). We translated incoming edges (as in the Education node
in Fig. 2 on the right) by introducing new roles (e.g. isGoalOf ).

Our goal was then to make the transition of the original concept to the new
concept explicit, by modeling it in our language. Figure 3 exemplifies this process
for the talking toy. In general, we found that the transitions could be modeled
with a few operators in our language. The most useful operation proved to be
replace(). It was used 29 times. The next most frequent operator was addition,
with 16 cases. Subtraction was used in 7 cases. We discuss more details of this
experiment in our technical report [22].

(((Toy � ∃input.None � ∃output.Messages � ∃hasUser.Child)
.replace(∃input.None,Voice)).replace(∃hasUser.Child,(Child�∃ageRange.FiveNine))
+ ∃goal.(Education � ∃isGoalOf.Teacher))

...
((((Toy � ∃output.Messages � ∃hasUser.Child � ∃input.Voice) - ∃hasUser.Child)
+ ∃hasUser.((((Toy � ∃output.Messages � ∃hasUser.Child � ∃input.Voice)
→ ∃hasUser.Child)).replace(Child, (Child � ∃ageRange.FiveNine)))) +
∃goal.(Education � ∃isGoalOf.Teacher))

...
(Toy � ∃output.Messages � ∃input.Voice � ∃hasUser.(Child � ∃ageRange.FiveNine)
� ∃goal.(Education � ∃isGoalOf.Teacher))

Fig. 3. Transition from a talking toy to a toy that engages in dialog. Top line: original
concept. Following lines: transition formula. In the middle: an example step from the
actual transition. Bottom lines: new concept.

5.3 Generative Study

We want to show that our language can also be used (in a limited manner) to
generate new concepts. More precisely, our goal is to show that our operators
can be used to model something similar to brainstorming.

We use ConceptNet [15], a large knowledge base of commonsense facts. Con-
ceptNet knows, e.g., that cars have wheels, and that they are used for loco-
motion. Since we are interested in generating new objects, we remove relations
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that describe words (EtymologicallyDerivedFrom, etc.), as well as relations that
describe agents and events. To clean out noise, we also remove all definitions
that have 2 or less conjuncts. This leaves us with a terminology T of 28 relations
and 5485 concept definitions, each of which contains 41 conjuncts on average.

To generate new concepts, we use the following formulas. Here, childT
i (·)

retrieves the ith declared child of a concept in T .

1. Addition of a conjunct of a sibling concept:

(T (childT
i (T (x) ↑j �)) ↑k ∃u.�) − T (x)

For integers i, j, k and a concept x, this formula selects the jth conjunct
of the input concept x. In the example of Fig. 1 with j = 1, this yields
V ehicle. The formula then asks for the ith child of that conjunct in the
terminology. This could be, e.g., Plane (a sibling of Car under V ehicle).
From this sibling concept, we choose the kth existential conjunct. This could
be, e.g., ∃has.Wing. We make sure that the chosen conjunct does not already
appear in the original concept x. If the result of this operation exists5, and if
the result is not �, we propose to add this conjunct to the original concept.

2. Removal of a conjunct: T (x) ↑i ∃u.�
We select the ith existential conjunct of the input concept x. In Fig. 1, we
could e.g., choose the 3rd conjunct, ∃hasPart.Wheel. Then we propose to
remove it.

3. Reversal of a conjunct:

∃HasProperty.(T (T (x) →i ∃HasProperty.�) → ∃Antonym.�)

This formula takes the ith HasProperty conjunct of the input concept x (e.g.,
∃HasProperty.Fast), and picks its target concept (Fast). It expands this
target concept from the terminology, and finds its antonym (Slow). If the
result of this operation exists and is not �, we propose to replace the original
conjunct by the conjunct with the antonym.

For each of these cases, we automatically generate a human-readable question
such as “Can you imagine a car with wings?” (for Addition), “Can you imagine
a car without wheels?” (for Removal), and “Can you imagine a car that is slow?”
(for Reversal).

Experiment. We randomly chose 100 concepts from our terminology. Then
we applied the above formulas to each of them, increasing each variable i, j, k
from 1 to 100. For each formula, we took the first two concepts generated this
way (if they exist). Then we asked 9 computer science students to judge the
generated concepts. We wanted to know whether the proposed modification is
nonsense, already exists in the real world, can be imagined, or is considered
creative. Some of concepts in our filtered ConceptNet do not describe objects,
but people, actions, or events. We could not filter these out automatically, and
hence added an option “This sentence does not describe a physical object”.
A final option is “I don’t understand the sentence”.
5 The operation childTi may fail if the concept is undefined in the terminology.
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Table 1. Human judgement of generated concepts per technique

Addition Reversal Removal

Already exists 15 (19%) 7 (41 %) 50 (31 %)

Can be imagined 29 (37%) 5 (29 %) 66 (40 %)

Funny or creative 10 (12%) 1 (5 %) 18 (11 %)

Nonsense 23 (29%) 4 (23 %) 27 (16 %)

Total 77 (100%) 17 (100%) 161 (100 %)

In total, we generated 313 new concepts. Of these, 39 did not describe a
physical item. 19 used concepts from ConceptNet that the judge did not under-
stand (such as ny). For the remaining concepts, Table 1 shows the distribution
of human judgements. In up to 29 % of the cases, our techniques return non-
sensical concepts, e.g., A solar wind that is used for learning. The addition of a
sibling conjunct is the most risky technique here. In a large number of cases, our
techniques return an existing concept. This is not surprising: it indicates that
ConceptNet is incomplete. Interestingly, it also indicates that our techniques
actually generated a reasonable concept. 29 %–40 % of the concepts we generate
can be imagined, e.g., A patio that is used for an orchestra to sit. Finally, around
10 % of our concepts are considered funny or creative. Examples are Broken glass
that does not cut feet, A front door without a doorbell, or Jelly beans that contain
chocolate.

Many improvements to our generative formulas can be envisaged, but a full
investigation is outside the scope of the present paper. Here, we only show that
one of the applications of our language is to express formulas that can generate
concepts. We leave the study of better concept generation and more extensive
experimental evaluation (using e.g., criteria proposed in [19]) for future work.

6 Conclusion

In this paper, we have introduced a formal language for combinatorial creativ-
ity. We have justified the choice of our operators and discussed their formal
properties. In our experiments, we have shown that our language can be used
to describe real-world inventions. In another experiment, we have demonstrated
that our language can also be used, to a limited degree, to generate new con-
cepts. For future work, we plan to investigate how our language can be used
to generate reasonable concepts more systematically, thus working towards the
goal of making machines truly creative one day.
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Abstract. Mapping data to a shared domain ontology is a key step
in publishing semantic content on the Web. Most of the work on auto-
matically mapping structured and semi-structured sources to ontologies
focuses on semantic labeling, i.e., annotating data fields with ontology
classes and/or properties. However, a precise mapping that fully recovers
the intended meaning of the data needs to describe the semantic relations
between the data fields too. We present a novel approach to automati-
cally discover the semantic relations within a given data source. We mine
the small graph patterns occurring in Linked Open Data and combine
them to build a graph that will be used to infer semantic relations. We
evaluated our approach on datasets from different domains. Mining pat-
terns of maximum length five, our method achieves an average precision
of 75 % and recall of 77% for a dataset with very complex mappings to
the domain ontology, increasing up to 86 % and 82 %, respectively, for
simpler ontologies and mappings.

Keywords: Semantic model · Semantic relation · Semantic label ·
Linked data · Semantic web

1 Introduction

A critical task in generating rich semantic content from information sources
such as relational databases and spreadsheets is to map the data to a domain
ontology. Manually mapping data sources to ontologies is a tedious task. Sev-
eral approaches have been proposed to automate this process [3,4,6–12,17,18],
nonetheless, most approaches focus on semantic labeling, annotating data fields,
or source attributes, with classes and/or properties of a domain ontology. How-
ever, a precise mapping needs to describe the semantic relations between the
source attributes in addition to their semantic types.

In our earlier Karma work [5], we build a graph from learned semantic types
and a domain ontology and use this graph to map a source to the ontology. Since
only using the ontology does not necessarily generate accurate models, we had
the user in the loop to interactively refine the suggested mappings. Later, we
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Fig. 1. Sample data from the Crystal Bridges Museum of American Art

introduced an automatic approach that exploits the mappings already created
for similar sources in addition to the domain ontology to learn a model for a new
unknown source (target source) [15]. One limitation of this approach is that the
quality of the generated mappings is highly dependent on the availability of the
previous mappings. However, in many domains, there are none or very limited
number of known mappings available, but we still want to learn the mapping of
a new source without requiring the user to map some similar sources first.

We present a novel approach that exploits Linked Open Data (LOD) to auto-
matically infer the semantic relations within a given data source. LOD contains
a vast amount of semantic data in many domains that can be used to learn how
instances of different classes are linked to each other. The new approach leverages
the instance-level data in LOD rather than schema-level mappings as in previous
work. Our work in this paper focuses on learning the relationships between the
source attributes once they are annotated with semantic labels. The main contri-
bution of our work is leveraging the graph patterns occurring in the linked data
to disambiguate the relationships between the source attributes. First, we mine
graph patterns with different lengths occurring in the linked data. We combine
these patterns into one graph and expand the resulting graph using the paths
inferred from the domain ontology. Then, we explore the graph starting from
the semantic labels of the source to find the candidate mappings covering all the
labels.1

We evaluated our approach on different datasets and in different domains.
Using patterns of maximum length five, our method achieved an average preci-
sion of 75 % and recall of 77 % in inferring the semantic relations within a dataset
with complex mappings to the domain ontology, including 13.5 semantic types
and 12.5 object properties on average per mapping. The precision and recall are
over 80 % for datasets with simpler mappings. Our evaluation shows that longer
patterns yield more accurate semantic models.

2 Motivating Example

In this section, we provide an example to explain the problem of inferring seman-
tic relations within structured sources. We want to map a data source containing
data about artwork in the Crystal Bridges Museum of American Art (Fig. 1) to
the CIDOC-CRM ontology (www.cidoc-crm.org). We formally write the signa-
ture of this source as s(title, creation, name) where s is the name of the source
and title, creation, and name are the names of the source attributes (columns).

1 This paper is a significantly extended version of a workshop paper [16].

www.cidoc-crm.org
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The first step in mapping the source s to the ontology is to label its attributes
with semantic types. We formally define a semantic type to be a pair consist-
ing of a domain class and one of its data properties 〈class uri,property uri〉
[6,9]. In this example, the correct semantic types for the columns title, creation,
and name are 〈E35 Title,label〉, 〈E52 Time-Span,P82 at some time within〉, and
〈E82 Actor Appellation,label〉. A mapping that only includes the types of the
attributes is not complete because it does not necessarily reveal how the
attributes relate to each other. To build a precise mapping, we need a second
step that determines how the semantic labels should be connected to capture
the intended meaning of the data. Various techniques can be employed to auto-
mate the labeling task [4,6–10,17,18], however, in this work, we assume that the
labeling step is already done and we focus on inferring the semantic relations.

We use a conceptual graph called semantic model to represent the complete
set of mappings between the sources and ontologies. In a semantic model, the
nodes correspond to ontology classes and the links correspond to ontology prop-
erties. Figure 2 shows the correct semantic model of the source s. As we can see
in the figure, none of the semantic types corresponding to the source columns are
directly connected to each other, which makes the problem of finding the cor-
rect semantic model more complex. There are many paths in the CIDOC-CRM
ontology connecting the assigned labels. For instance, we can use the classes
E39 Actor and E67 Birth to relate the semantic types E82 Actor Appellation
and E52 Time-Span:

(E39 Actor, P1 is identified by, E82 Actor Appellation)
(E39 Actor, P98i was born, E67 Birth)
(E67 Birth, P4 has time-span, E52 Time-Span)

However, this way of modeling does not correctly represent the semantics
of this particular data source (Fig. 2 shows the correct model). In general, the
ontology defines a large space of possible semantic models and without additional
knowledge, we do not know which one is a correct interpretation of the data.

E12_Production

E52_Time-Span

 P4_has_time-span

E21_Person
P14_carried_out_by

E82_Actor_Appellation

name

 label

creation

 P82_at_some_time_within

E22_Man-Made_Object

E35_Title

P102_has_title  P108i_was_produced_by

title

 label

Fig. 2. The semantic model of the source s. Class nodes (ovals) correspond to ontology
classes and data nodes (rectangles) correspond to the source attributes

The LOD cloud includes a vast and growing collection of semantic content
published by various data providers in many domains. Suppose that some other



552 M. Taheriyan et al.

museums have already mapped their data to the CIDOC-CRM ontology and
published it as linked data. Can we exploit the available linked data as back-
ground knowledge to infer relationships between attributes of s? The basic idea
of our approach is to leverage this linked data to bias the search space to prefer
those relationships that are used for related sources. Once we have identified the
semantic types of the source attributes, we can search the linked data to find the
frequent patterns connecting the corresponding classes. For example, by query-
ing the available linked data corpus, we find that P131 is identified by is more
popular than P1 is identified by to connect instances of E82 Actor Appellation
and instances of E21 Person, and this makes sense when we investigate the def-
initions of these two properties in the ontology. The property P1 is identified by
describes the naming or identification of any real world item by a name or any
other identifier, and P131 is identified by is a specialization of P1 is identified by
that identifies a name used specifically to identify an instance of E39 Actor
(superclass of E21 Person). We can query the linked data to find longer paths
between entities. For instance, by inspecting the paths with length two between
the instances of E22 Man-Made Object and E21 Person, we observe that the
best way to connect these two classes is through the path: E22 Man-Made Object
P108i was produced by−−−−−−−−−−−−−−−→ E12 Production

P14 is carried out by−−−−−−−−−−−−−−→ E21 Person.

3 Inferring Semantic Relations

In this section, we explain our approach to automatically deduce the attribute
relationships within a data source. The inputs to our approach are the domain
ontology, a repository of (RDF) linked data in the same domain, and a data
source whose attributes are already labeled with the correct semantic types.2 The
output is a semantic model expressing how the assigned labels are connected.

3.1 Extracting Patterns from Linked Data

Given the available linked data, we mine the schema-level patterns connecting
the instances of the ontology classes. Each pattern is a graph in which the nodes
correspond to ontology classes and the links correspond to ontology properties.
For example, the pattern c1

p−→ c2 indicates that at least one instance of the
class c1 is connected to an instance of the class c2 with the property p.

Depending on the structure of the domain ontology, there might be a large
number of possible patterns for any given number of ontology classes. Suppose
that we want to find the patterns that only include the three classes c1, c2, and
c3. Figure 3 exemplifies some of the possible patterns to connect these classes.
We define the length of a pattern as the number of links (ontology properties) in
a pattern. Thus, the general forms of the patterns with length two will be c1⇒c2,
c1�c2, c1→c2→c3 (chain), c1→c2←c3 (V-shape), or c2←c1→c3 (A-shape).
2 For this paper, we assume that the correct semantic types are given, but our approach

can support the more general case where a set of candidate semantic types are
assigned to each attribute.
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Fig. 3. Sample structures of the patterns connecting the classes c1, c2, and c3

We can write SPARQL queries to extract patterns with different lengths from
a triplestore. For example, the following SPARQL query extracts the patterns
with length one and their frequencies from the linked data:

SELECT DISTINCT ?c1 ?p ?c2 (COUNT(*) as ?count)
WHERE { ?x ?p ?y. ?x rdf:type ?c1. ?y rdf:type ?c2. }
GROUP BY ?c1 ?p ?c2

Pattern mining is a preprocessing step in our approach and can be done
offline. Yet, using SPARQL queries to extract long patterns from a large number
of triples is not efficient. For example, having a Virtuoso repository containing
more than three million triples on a Linux machine with a 2.4 GHz Intel Core
CPU and 16 GB of RAM, the response time to the query to extract V-shape
patterns of length two was roughly 1 h. We were only able to collect a few forms
of the patterns with length three, four, and five in a 5-hour timeout. The problem
is that the SPARQL queries to extract long patterns include many joins and there
is no binding between the variables in the queries and the classes and properties
in the ontology. Therefore, we adopt a different approach to extract patterns of
length two or more.

Algorithm 1 shows our method to find patterns from a triplestore. This is
a recursive algorithm that incrementally generates longer patterns by joining
shorter patterns with patterns of length one. The intuition is that we enumerate
the candidate patterns and create SPARQL queries whose variables are bound
to ontology classes and properties rather than writing a join-heavy query with
unbound variables. This technique allows us to exploit the indexes created by
triplestore over subjects, predicates, objects, and different combinations of them.

First, we use the SPARQL query shown above to retrieve all the patterns
of length one from the linked data. Then, we construct candidate patterns of
length two by joining patterns of length one with themselves (join on the shared
ontology class). For example, the pattern c1

p1−→ c2 can be joined with c1
p2−→ c3

on c1 to construct a pattern of length two: c2
p1←− c1

p2−→ c3. For each candidate
pattern, we query the linked data to see whether an instance of such pattern
exists in the data. Once we find the patterns of length two that occur in the
linked data, we join them with patterns of length one and check the occurrence
of the newly formed patterns (length three) in the triplestore. We can repeat
the same process to retrieve longer patterns. To prevent generating duplicate
patterns, we perform some optimizations in the code that are not shown in
Algorithm 1. Using this algorithm, we could extract all patterns of length 1, 2,
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Algorithm 1. Extract LD Patterns
Input: LD (the linked data repository), k (maximum length of patterns)
Output: A set of LD patterns

1: P1 ← extract patterns of length one from LD
2: P ← P1, i ← 1
3: while i < k do
4: for each pattern pi ∈ Pi do
5: for each ontology class c in pi do
6: P1,c ← all the patterns in P1 that include c
7: for each pattern p1,c ∈ P1,c do
8: pjoin ← construct a pattern by joining pi and p1,c on node c
9: if pjoin exists in LD then
10: Pi+1 ← Pi+1 ∪ pjoin
11: end if
12: end for
13: end for
14: end for
15: P ← P ∪ Pi+1, i ← i + 1
16: end while

return P

Algorithm 2. Construct Graph G
Input: LD Patterns, Semantic Types, Domain Ontology
Output: Graph G
� Add LD patterns

1: sort the patterns descending based on their length
2: exclude the patterns contained in longer patterns
3: merge the nodes and links of the remaining patterns into G

� Add Semantic Types
4: for each semantic type 〈class uri,property uri〉 do
5: add the class to the graph if it does not exist in G
6: end for

� Add Ontology Paths
7: for each pair of classes ci and cj in G do
8: find the directed and inherited properties between ci and cj in the ontology
9: add the properties that do not exist in G
10: end for

return G

3, and 4 from the same triplestore in only 10 min, and all patterns of length 5 in
less than one hour.

3.2 Merging Linked Data Patterns into a Graph

Once we extract the patterns from the linked data (LD patterns), we combine
them into a graph G that will be used to infer the semantic relations. Building
the graph has three parts: (1) adding the LD patterns, (2) adding the semantic
labels assigned to the source attributes, and (3) expanding the graph with the
paths inferred from the ontology.

The graph G is a weighted directed graph in which nodes correspond to
ontology classes and links correspond to ontology properties. The algorithm to
construct the graph is straightforward (Algorithm2). First, we add the LD pat-
terns to G. We start from the longer patterns and merge the nodes and links
of patterns into G if they are not subgraphs of the patterns already added to
the graph (lines 1–3). Next, we add the semantic types of the target source for
which we want to learn the semantic model (lines 4–6). As we mentioned before,
we assume that the source attributes have already been labeled with semantic
types. Each semantic type is a pair consisting of a domain class and one of its
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data properties 〈class uri,property uri〉. If G does not contains any node with
the label class uri, we add a new node to G and label it with class uri. The final
step in building the graph is to find the paths in the ontology that relate the
current classes in G. The goal is to connect class nodes of G using the direct
paths or the paths inferred through the subclass hierarchy in the ontology.

The links in G are weighted. We adopt a subtle approach to assign weights
to the links. There are two types of links; the links that are added from the LD
patterns, and the links that do not exist in any pattern and are inferred from the
ontology. The weight of the links in the former group has an inverse relation with
the frequency of the links. If the number of instances for the pattern c1

p→ c2 in
the linked data is x and the total number of instances of patterns with length
one is n, the weight of the link p from c1 to c2 in G is computed as 1 − x/n.
Since we are generating minimum-cost models in the next section, this weighting
strategy gives more priority to the links occurring more frequently in the linked
data. For the links in the second category, the ones added from the ontology,
we assign a much higher weight comparing to the links in the LD patterns. The
intuition is that the links used by other people to model the data in a domain
are more likely to represent the semantics of a given source in the same domain.
One reasonable value for the weight of the links added from the ontology is the
total number of object properties in the ontology. This value ensures that even
a long pattern costs less than a single link that does not exist in any pattern.

The other important feature of the links in the graph is their tags. We assign
an identifier to each pattern added to the graph and annotate the links with the
identifiers of the supporting patterns. Suppose that we are adding two patterns
m1 : c1

p1→ c2
p2→ c3 and m2 : c1

p1→ c2
p3→ c4 to G. The link p1 from c1 to c2 will be

tagged with {m1,m2}, the link p2 from c2 to c3 will have only {m1} as its tag
set, and the link p3 from c2 to c4 will be tagged with {m2}. We use the link tags
later to prioritize the models containing larger segments from the LD patterns.

We provide an example to help the reader to understand our algorithm for
creating the graph. Suppose that we are trying to infer a semantic model for
the source s in Fig. 1 and we only extract the patterns with length one and two
from the available linked data. Table 1 lists the extracted LD patterns. Figure 4
shows the graph constructed using Algorithm 2. The black links are the links
added from the LD patterns. The weight of these links is calculated as 1 −
(link frequency)/(sum of frequencies). For example, the weight of the link
P98i was born from E21 Person to E67 Birth is 1 − 5/63 = 0.92 (total number
of instances of the patterns with length one is 63). The black links are also
tagged with the identifier of the patterns they originate from. For instance, the
link P98i was born is tagged with m1 because the pattern m1 contains this link.
Note that only the patterns m1, m2, m3, and m4 are added to the graph and the
rest of the patterns are ignored by the algorithm. This is because the patterns m5,
m6, m7, m8, m9, and m10 are subgraphs of the longer patterns that are already
added to the graph (line 2 in Algorithm2). The blue node E53 Title does not
exist in any pattern, however, it is added to the graph since the semantic type of
the column title in the source s, 〈E53 Title,label〉, contains E53 Title (line 5 in
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Table 1. The sample patterns extracted from the linked data. Each pattern is a set of
(c1, p, c2) triples where c1 and c2 are ontology classes and p is an ontology property. The
second and third columns are the length and frequency of patterns (only the frequency
of the patterns with length one matters in our algorithm)

Id Pattern Len Freq

m1 (E21 Person,P98i was born,E67 Birth), 2 -

(E67 Birth,P4 has time-span,E52 Time-Span)

m2 (E22 Man-Made Object,P108i was produced by,E12 Production), 2 -

(E12 Production,P4 has time-span,E52 Time-Span)

m3 (E22 Man-Made Object,P14 carried out by,E39 Actor), 2 -

(E39 Actor,P131 is identified by,E82 Actor Appellation)

m4 (E21 Person,P131 is identified by,E82 Actor Appellation) 1 12

m5 (E22 Man-Made Object,P108i was produced by,E12 Production) 1 8

m6 (E12 Production,P4 has time-span,E52 Time-Span) 1 3

m7 (E22 Man-Made Object,P14 carried out by,E39 Actor) 1 10

m8 (E39 Actor,P131 is identified by,E82 Actor Appellation) 1 20

m9 (E21 Person,P98i was born,E67 Birth) 1 5

m10 (E67 Birth,P4 has time-span,E52 Time-Span) 1 5

Algorithm 2). The red links are the links that do not exist in the LD patterns but
are inferred from the ontology. For example, the red link P14 carried out by is
added because E21 Person is a subclass of the class E39 Actor, which is in turn
the range of the object property P14 carried out by. We assign a high weight to
the red links, e.g., the total number of object properties in the ontology (in this
example, assume that the ontology consists of 100 object properties).

3.3 Generating and Ranking Semantic Models

The final part of our approach is to compute the semantic model of the
source s from the graph. First, we map the semantic types of s to the
nodes of the graph. In our example, the semantic types are 〈E53 Title,label〉,
〈E52 Time-Span,P82 at some time within〉, and 〈E82 Actor Appellation,label〉,
and they will be mapped to the nodes E53 Title, E52 Time-Span, and
E82 Actor Appellation of the graph in Fig. 4. Then, we compute the top k trees
connecting the mapped nodes based on two metrics: cost and coherence. Cost of
a tree is the sum of the link weights. Because the weights of the links have an
inverse relation with their popularity, computing the minimum-cost tree results
in selecting more frequent links. However, selecting more popular links does not
always yield the correct semantic model. The coherence of a model is another
important factor that we need to consider. Coherence in this context means the
ratio of the links in a computed tree that belong to the same LD pattern. The
coherence metric gives priority to the models that contain longer patterns. For
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example, a model that includes one pattern with length 3 will be ranked higher
than a model including two patterns with length 2, and the latter in turn will
be preferred over a model with only one pattern with length 2. Our algorithm
prefers the coherence over the cost in choosing the best model. If two models
are equivalent as far as coherence, the model with the lowest cost will be ranked
higher.
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E67_Birth E52_Time-Span
 P4_has_time-span

E22_Man-Made_Object

E12_Production
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Fig. 4. The graph constructed from the patterns in Table 1, the semantic types of the
source s, and an example subset of the CIDOC-CRM ontology

The algorithm that finds the top k trees is a customized version of the
BANKS algorithms [1]. The BANKS algorithm computes the top k minimum-
cost trees that span a subset of the nodes in a graph (the nodes that the semantic
types are mapped to). It creates one iterator for each of the nodes corresponding
to the semantic types, and then the iterators follow the incoming links to reach
a common ancestor. The BANKS algorithm uses the iterator’s distance to its
starting point to decide which link should be followed next. To incorporate the
coherence into the algorithm, we use a heuristic that prefers the links that are
parts of the same pattern even if they have higher weights. In our example, the
algorithm creates three iterators, one starting from the node E53 Title, one from
E52 Time-Span, and one from E82 Actor Appellation. Each iterator has a queue
consisting of the candidate links to traverse. At each step, the algorithm chooses
a link and adds the incoming links of the source node of the selected link to the
queue of the corresponding iterator. At the beginning, the candidates are:

e1 (itr 1 ): (E22 Man-Made Object,P102 has title,E53 title), distance = 100
e2 (itr 2 ): (E67 Birth,P4 has time-span,E52 Time-Span), distance = 0.92
e3 (itr 2 ): (E12 Production,P4 has time-span,E52 Time-Span), distance = 0.95
e4 (itr 3 ): (E21 Person,P131 is identified by,E21 Actor Appellation), distance = 0.80

e5 (itr 3 ): (E39 Actor,P131 is identified by,E21 Actor Appellation), distance = 0.68

The algorithm pulls e5 from the queue of the third iterator because e5 is
the lowest-cost link in the candidates. Then, it inserts the incoming links of the
source node of e5 (E39 Actor) to the queue:

e6 (itr 3 ): (E22 Man-Made Object,P14 carried out by,E39 Actor), distance = 1.52
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Now the candidate links to traverse are e1, e2, e3, e4, and e6. Although the
distance of e4 to the starting point is less than other links, our algorithm prefers
e6. This is because e6 is part of the pattern m3 which includes the previously
traversed link e5. Considering the coherence in traversing the graph forces the
algorithm to converge to models that include larger segments from the patterns.

Once we compute top k trees, we rank them first based on their coherence
and then their cost. The model in Fig. 5 shows the top semantic model computed
by our algorithm for the source s. Our algorithm ranks this model higher than
a model that has E21 Person instead of E39 Actor, because the model in Fig. 5
is more coherent and has lower cost (the weight of the link P14 carried out by
from E22 Man-Made Object to E21 Person is 100, while the link with the same
label from E22 Man-Made Object to E39 Actor has a weight of 0.84).

It is important to note that the trees containing longer patterns are not
necessarily more coherent. Suppose that a source has two semantic labels A
and B, and there are only two LD patterns: p1 = {(A, e1, B)} and p2 =
{(A, e2, B)(B, e3, C)}. After constructing the graph, we compute top k trees
based on both coherence and cost. The candidate trees are T1 = {(A, e1, B)},
T2 = {(A, e2, B)}, T3 = {(A, e2, B)(B, e3, C)}, and T4 = {(A, e1, B)(B, e3, C)}.
The trees T1, T2, and T3 have a coherence value equal to 1 (all the links belong
to one pattern), while coherence of T4 is 0.5 (one link is from p1 and one link
is from p2). Between T1, T2, and T3, our algorithm ranks T3 third because it
is longer (higher cost) and ranks T1 and T2 as the top two trees (based on the
frequency of e1 and e2 in the linked data). Thus, the algorithm does not always
prefer the longer patterns.

4 Evaluation

To evaluate our approach, we performed four experiments on different datasets,
using different ontologies, and in different domains. The details of the experi-
ments are as follows:

– Task 1: The dataset consists of 29 museum data sources in CSV, XML,
or JSON format containing data from different art museums in the US.
The domain ontology is CIDOC-CRM, and the background linked data is
the RDF triples generated from all sources in the dataset except the target
source (leave-one-out settings).
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E22_Man-Made_Object

E12_Production

 P108i_was_produced_by

E53_Title

 P102_has_title  P14_carried_out_by

E52_Time-Span

 P4_has_time-span

Fig. 5. The top semantic model computed for the source s
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– Task 2: The dataset and the domain ontology are the same as the ones in
Task 1, but we use the linked data published by Smithsonian American Art
Museum3 as the background knowledge. This linked data repository contains
more than 3 million triples mapping the artwork collection in Smithsonian
museum to the CIDOC-CRM ontology.

– Task 3: The dataset is the same as the one in Task 1, but we use a dif-
ferent domain ontology, EDM4, which is much simpler and less structured
than CIDOC-CRM. The goal is to evaluate how our approach performs with
respect to different representations of knowledge in a domain. We use a
leave-one-out setting is this task.

– Task 4: The dataset includes 15 data sources in a domain containing ads
for weapons. The ontology is an extension of the schema.org ontology, and
the experiment adopts a leave-one-out setting.

Table 2 shows more details of the evaluation tasks. In each task, we applied
our approach on the dataset to find the top 50 candidate semantic models for
each source. We then ranked the candidate models and compared the first ranked
models with the gold standard models created by an expert in the test domain.
The datasets including the sources, the domain ontologies, and the gold standard
models are available on GitHub.5 The source code of our approach is integrated
into Karma which is available as open source.6

We assume that the correct semantic labels for the source attributes are
known. The goal is to see how well our approach learns the relationships having
the correct semantic types. For example, from the total of 825 links in the ground-
truth models in Task 1, 458 of them correspond to data properties connecting
the semantic types to the source attributes. Therefore, the 367 internal links are
the semantic relations that we want to infer using our approach.

Table 2. The evaluation tasks

Dataset Ontology Ground Truth

#sources #attributes #classes #properties #nodes #links

Task 1 29 458 147 409 852 825

Task 2 29 458 147 409 852 825

Task 3 29 329 119 351 470 441

Task 4 15 175 736 1081 261 246

We measured the accuracy of the computed semantic models by comparing
them with the gold standard models in terms of precision and recall. Assuming
that the correct semantic model of the source s is sm and the semantic model
learned by our approach is sm′, we define the precision and recall as:
3 http://americanart.si.edu/collections/search/lod/about.
4 http://pro.europeana.eu/page/edm-documentation.
5 https://github.com/taheriyan/iswc-2016.
6 https://github.com/usc-isi-i2/Web-Karma (directory: karma-research).

http://americanart.si.edu/collections/search/lod/about
http://pro.europeana.eu/page/edm-documentation
https://github.com/taheriyan/iswc-2016
https://github.com/usc-isi-i2/Web-Karma
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precision =
rel(sm) ∩ rel(sm′)

rel(sm′)
, recall =

rel(sm) ∩ rel(sm′)
rel(sm)

where rel(sm) is the set of triples (u, v, e) in which e is a link from the class node
u to the class node v in the semantic model sm. Note that we do not consider the
links from the classes to the source attributes since they are part of the semantic
types that are given as input to our algorithm. Consider the semantic model of
the source s in Fig. 2, rel(sm)={(E22 Man-Made Object, P108i was produced by,
E12 Production), · · · }. Assuming that the semantic model in Fig. 5 is what
our algorithm infers for s, we will have precision = 3/5 = 0.6 and recall =
3/5 = 0.6. Note that we are using a strict evaluation metric. The learned
semantic model is not semantically wrong because E21 Person is a subclass of
E39 Actor according to the CIDOC-CRM ontology. However, our formula treats
both (E22 Man-Made Object, P14 carried out by, E39 Actor) and (E39 Actor,
P131 is identified by, E82 Actor Appellation) as incorrect links.

Table 3. The evaluation results

Task 1 Task 2 Task 3 Task 4

Precision Recall Precision Recall Precision Recall Precision Recall

Max length of

patterns = 0

0.07 0.05 0.07 0.05 0.01 0.01 0.03 0.02

Max length of

patterns = 1

0.60 0.60 0.28 0.29 0.85 0.78 0.84 0.79

Max length of

patterns = 2

0.64 0.67 0.53 0.58 0.81 0.81 0.83 0.79

Max length of

patterns = 3

0.67 0.68 0.55 0.60 0.84 0.83 0.86 0.81

Max length of

patterns = 4

0.74 0.76 0.55 0.60 0.83 0.82 0.86 0.82

Max length of

patterns = 5

0.75 0.77 0.61 0.67 0.83 0.82 0.86 0.82

Table 3 shows the average precision and recall for all sources in the evalua-
tion tasks for different maximum lengths of LD patterns (the input parameter
k in Algorithm 1). The maximum length 0 means that we did not incorporate
the LD patterns and only used the domain ontology to build a graph on top of
the semantic labels. An interesting observation is that when we do not use the
LD patterns, the precision and recall are close to zero. This low accuracy comes
from the fact that in most of the gold standard models, the attributes are not
directly connected and there are multiple paths between each pair of classes in
the ontology (and thus in our graph), and without additional information we
cannot resolve the ambiguity. Leveraging LD patterns as background knowledge
yields a remarkable improvement in both precision and recall compared to the
case in which we only consider the domain ontology. Since we are using the pat-
tern frequencies in assigning the weights to the links of the graph, using patterns
of length one means that we are only taking into account the popularity of the
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links in computing the semantic models. Leveraging longer patterns improves
both precision and recall. This means that considering coherence in addition to
the link popularity empowers our approach to derive more accurate models.

As we can see in the table, the precision and recall in Task 2 are lower than
Task 1 even though they have the same dataset and ontology. The reason is that
Task 2 employs the triples from the Smithsonian museum rather than the triples
generated from other sources in the same dataset, and the overlap between these
triples and the ground truth models is less than Task 1. The results in Task 3 are
better than both Task 1 and Task 2 because the ground-truth models created
using EDM are simpler and smaller than the models created using CIDOC-CRM
(441 links vs. 825 links). Although CIDOC-CRM is well structured, the level of
ambiguity in inferring the relations is more than simpler ontologies with a flat
structure because there are many links (and paths) between each pair of classes
(many properties are inherited through the class hierarchy). We achieve high
precision and recall in Task 4. The ontology in this task is much larger than the
ontologies in the other tasks (cf. Table 2), however, the hierarchy level is less
than the CIDOC-CRM ontology, and the models are also smaller. We believe
that extracting longer patterns (length > 5) will improve the results for Task 1
and Task 2 as many of the semantic models in these tasks include more than 5
internal links. However, as Table 3 suggests, longer patterns do not contribute
to the precision and recall for Task 3 and Task 4.

The results show that our method suggests semantic models with high preci-
sion and recall for large, real-world datasets even in complex domains. There are
several reasons explaining why we did not achieve higher accuracy in Task 1 and
Task 2. First and foremost, there were sources in the dataset whose semantic
model contained structures that did not exist in any pattern. In other words,
some sources did not have much overlap with other sources in the dataset. A
simple example of this case is where the semantic model of a source includes
an ontology class that does not have any instance in the linked data, and con-
sequently, no LD pattern contains relations of that class. A second important
reason is that in some cases, more than one pattern can be used to connect
semantic labels. For example, many sources contain two columns labeled with
the class E52 Time-Span. We have a pattern with length four in which one
E52 Time-Span is connected to E12 Production and the other one is connected
to E67 Birth (or E69 Death). We also have another pattern with length four in
which one E52 Time-Span is connected to E67 Birth and the second one is linked
to E69 Death. In such situations, our algorithm may select the wrong pattern.
Inspecting these cases convinced us that taking into account longer patterns will
resolve the issue. For a few sources, the ground-truth semantic model was not
a rooted tree, while our algorithm computes only tree candidate models. There-
fore, we missed some of the links in our learned semantic models. Finally, our
strict evaluation metric penalizes the precision and recall even though some of the
learned models are not semantically wrong. For instance, the correct model of one
source includes the link P138 has representation from E22 Man-Made Object to
E38 Image. Our algorithm infers the inverse link P138i represents to connect
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these two classes because it is more frequently used in other models, and thus, it
is more popular in the linked data. Our evaluation considers this link as an incor-
rect inference. Another example is the one we discussed earlier where our method
suggests E39 Actor instead of E21 Person. We are exploring the possibility of
defining a looser evaluation metric that provides more flexible interpretation of
“correct” models. Our initial idea is to consider the subclass and subproperty
definitions in the ontology. For example, we can give some credit if the algo-
rithm infers a parent property of the one in the ground-truth model (instead of
considering it completely wrong).

To compare the work in this paper with our previous approach that exploits
the known semantic models [15], we applied the previous approach on the same
dataset in Task 1, which resulted in semantic models with 81 % precision and
82 % recall. The reason why the accuracy is lower in the current work is that
we only used patterns of maximum length five in our experiment. On the other
hand, our previous work exploits complete semantic models of previously mod-
eled sources, which are more coherent than the small graph patterns we used
in this work. Our work in this paper complements our previous work in more
common and critical case where few, if any, known semantic models are available.

We ran our experiments on a single machine with a Mac OS X operating
system and a 2.3 GHz Intel Core i7 CPU. The total time to extract all the
patterns of length one, two, three, and four from our Virtuoso repository was
less than 10 min, and it was approximately one hour for the patterns of length
five. Then, we fed the extracted patterns to Algorithm2. Let T be the time from
combining LD patterns into a graph until generating and ranking candidate
semantic models. The average value of T is different when we run the code with
different maximum length for patterns. However, the average value of T never
exceeds 5 s (for most of the sources, the actual value of T was less than a second).

5 Related Work

There have been many studies to automatically describe the semantics of data
sources as a mapping from the source to an ontology. Since the focus of our work
is on inferring the semantic relations, we compare our work with the ones that
pay attention to inferring semantic relationship and not only semantic labeling.

Limaye et al. [7] use the YAGO ontology to annotate web tables and gener-
ate binary relationships using machine learning approaches. Venetis et al. [17]
present a scalable approach to describe the semantics of tables on the Web. To
recover the semantics of tables, they leverage a database of class labels and rela-
tionships automatically extracted from the Web. They attach a class label to a
column if a sufficient number of the values in the column are identified with that
label in the database of class labels, and analogously for binary relationships.
Although these approaches are very useful in publishing semantic data from
tables, they are limited in learning the semantics of sources as a united model.
Both of these approaches only infer individual binary relationships between pairs
of columns. They are not able to find the link between two columns if no relation
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is directly instantiated between the values of those columns. Our approach can
connect one column to another one through a path in the ontology.

Carman and Knoblock [2] use known source descriptions to learn a semantic
description that describes the relationship between the inputs and outputs of a
source. However, their approach is limited in that it can only learn sources whose
models are subsumed by the models of known sources. That is, the description
of a new source is a conjunctive combination of known source descriptions.

Our work is closely related to other work leveraging the Linked Open
Data (LOD) cloud to capture the semantics of sources. Mulwad et al. [8] use
Wikitology [14], an ontology which combines some existing manually built knowl-
edge systems such as DBpedia and Freebase, to link cells in a table to Wikipedia
entities. They query the background LOD to generate initial lists of candidate
classes for column headers and cell values and candidate properties for relations
between columns. Then, they use a probabilistic graphical model to find the
correlation between the columns headers, cell values, and relation assignments.
The quality of the semantic data generated by this category of work is highly
dependent on how well the data can be linked to the entities in LOD. While
for most popular named entities there are good matches in LOD, many tables
contain domain-specific information or numeric values (e.g., temperature and
age) that cannot be linked to LOD. Moreover, these approaches are only able
to identify individual binary relationships between the columns of a table. How-
ever, an integrated and united semantic model is more than fragments of binary
relationships between the columns. In a complete semantic model, the columns
may be connected through a path including the nodes that do not correspond
to any column in the table.

The most closely related work to ours is the recent work by Schaible
et al. [13]. They extract schema-level patterns (SLPs) from LOD and gener-
ate a ranked list of vocabulary terms for reuse in modeling tasks. The main
difference between their work and our method is the complexity of the pat-
terns. SLPs are (sts, ps, ots) triples where sts and ots are sets of RDF types
and ps is a set of RDF properties. For example, the SLP ({Person,Player},
{knows},{Person,Coach}) indicates that some instances of Person ∩ Player are
connected to some instances of Person ∩ Coach via the property knows. In our
approach, we mine graph patterns that are more complex than SLPs allowing us
to automatically compose a complete semantic model for a target source rather
than presenting recommendations in an interactive mapping task.

6 Discussion

We presented a novel approach to infer semantic relations within structured
sources. Understanding how the source attributes are related is an essential part
of building a precise semantic model for a source. Such models are the key
ingredients to automatically integrate heterogeneous data sources. They also
automate the process of publishing semantic data on the Web. The core idea of
our work is to exploit the small graph patterns occurring in the Linked Open
Data to hypothesize attribute relationships within a data source.
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Manually constructing semantic models, in addition to being time-consuming
and error-prone, requires a thorough understanding of the domain ontologies.
Tools such as Karma can help users to model data sources through a graphi-
cal user interface. Yet, building the models in Karma without any automation
requires significant user effort. Incorporating our method in source modeling
tools enables them to infer an initial semantic model for the input source that
can be transformed to the correct model with only a few user actions.

The evaluation shows that our approach infers the semantic relations with a
high precision and recall for a dataset with very complex semantic models (on
average 13.5 classes and 12.6 object properties per semantic model). We have
shown that we gain higher precision and recall when we apply our method on
data sources with simpler models. The results support the theory that more accu-
rate models can be constructed when longer LD patterns are used. We observed
that the structure of the patterns also affects the quality of the learned models.
For example, using only the chain-shape patterns resulted in more precise mod-
els for some of the sources. One direction of our future work is to investigate the
correlation between the shape of the LD patterns, the structure of the domain
ontology, and the ground-truth semantic models. This can help us to incorporate
certain types of patterns when mapping a data source to a domain ontology.

Our work plays a role in helping communities to produce consistent Linked
Data so that sources containing the same type of data use the same classes and
properties when published in RDF. Often, there are multiple correct ways to
model the same type of data. A community is better served when all the data
with the same semantics is modeled using the same classes and properties. Our
work encourages consistency because our algorithms bias selection of classes and
properties towards those used more frequently in existing data.
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Abstract. The assessment of risk in medicine is a crucial task, and depends on
scientific knowledge derived by systematic clinical studies on factors affecting
health, as well as on particular knowledge about the current status of a particular
patient. Existing non-semantic risk prediction tools are typically based on hard-
coded scientific knowledge, and only cover a very limited range of patient states.
This makes them rapidly out of date, and limited in application, particularly for
patients with multiple co-occurring conditions. In this work we propose an inte-
gration of Semantic Web and Quantified Self technologies to create a framework
for calculating clinical risk predictions for patients based on self-gathered bio-
metric data. This framework relies on generic, reusable ontologies for repre-
senting clinical risk, and sensor readings, and reasoning to support the integration
of data represented according to these ontologies. The implemented framework
shows a wide range of advantages over existing risk calculation.

Keywords: Health � Comorbidities � Risk factor � Scientific modelling �
Knowledge capture � Semantics � Ontology � Linked data

1 Introduction

An important task in medicine is the assessment of risk. This depends on scientific
knowledge derived by rigorous clinical studies regarding the (quantified) factors
affecting clinical changes. Existing risk prediction tools typically only cover a very
limited range of patient states, and the scientific knowledge informing the predictions is
hardcoded into the tool. This makes them limited in application, particularly for
patients with comorbidities (multiple co-occurring conditions), and rapidly out of date.
An explicit representation of this knowledge, covering a wide (and, more importantly,
expandable) range of risks and outcomes, would enable more sophisticated and
maintainable risk prediction, prevention and management.
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In order actually to assess risk for an individual patient, it is necessary to link this
generic clinical knowledge of risk to actual data relating to that patient’s physical state.
Traditionally, a doctor will make specific observations of a patient, and mentally
determine the relevant known clinical evidence to make a risk prediction. In recent
years, risk calculators based on individual clinical studies have been implemented as,
e.g., web tools, where a patient can enter certain observations and be presented with
numerical risks. With the advent of “Quantified Self” (QS) devices for low-cost and
easy collection of individual physical and emotional data, there is a significant
opportunity for personalized predictive medicine to combine this data with up-to-date
knowledge of risk.

We present here a framework for calculating clinical risk predictions for patients
based on self-gathered biometric data, using Semantic Web technologies at the core.
The framework is shown to enable a large body of medical knowledge to be encoded in
a common framework, and faithfully applied to QS data to perform automatic risk
calculation, providing qualitative and quantitative improvements over the state of
the art.

2 Previous Work

Existing algorithms for risk prediction for, e.g., cardiovascular risk, include the
Framingham equation [1], the Joint British Societies (JBS) formula [2] and the
ASSIGN score [3]. These take account of a limited set of risk factors and possible
outcomes, as these have been produced by specific clinical studies – thus can be limited
in application. For example, the ASSIGN score is specialized for Scottish populations,
and, while Framingham includes diabetes as a risk factor, it is omitted from the JBS
formula (diabetic patients are always high-risk). The Framingham equation takes
account of 9 different patient observables and predicts the risk of only one outcome.
More fundamentally, each of these hardcode the scientific knowledge about risk into
the prediction formula itself, thus requiring new versions to be created to accommodate
new scientific knowledge. This limited and non-extensible approach motivates our
construction of a generic semantic model.

As there is no other model addressing the concept of risk factor, to the best of our
knowledge, we compare related work addressing similar concepts and level of
abstraction. A number of models have been proposed for capturing various aspects of
clinical research at various levels of granularity. In particular, the Ontology-Based
eXtensible data model (OBX) [4] has been developed to represent results of clinical
research in order to promote data reuse, but does not address the concept of
population-level risk factor. Models maintained by the Clinical Data Interchange
Standards Consortium (CDISC) [5], and the Ontology of Clinical Research (OCRe) [6]
take a more top-down approach to the modelling of clinical research and focus on data
interchange formats and on the conceptual modelling of proposed and ongoing clinical
trials. Overall, existing models aim to support the process of generating new scientific
knowledge in medicine, rather than represent the actual knowledge itself, which is
required for the task of risk prediction. In order to capture this scientific knowledge, we
have developed an ontology for medical risk factors.
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The “Quantified Self” (QS) refers to the use of technology for automated tracking
of various measurements related to oneself (e.g., daily step count, distance walked,
weight, and so on). Although considered a new trend with the potential to transform
healthcare, it has received only a small amount of attention from the Semantic Web
community. The MoodMap app [8] represents emotional states using an ontology, in
order to support analysis of mood as tracked in the workplace, but does not concern
itself with other Quantified Self measurements. An ontology for QS was presented in
[9], but this is very high-level and at an early stage, lacking the detail needed to
implement a Semantic Web system making use of it. This paper presents a detailed and
practical ontology for representing QS measurements semantically, in a way which
encourages flexibility and reuse, linking to other concepts related to each measurement,
and which is usable in practical systems.

Finally, in order to achieve the integration between medical knowledge and QS
data, it is necessary to express rules describing when a particular piece of knowledge is
relevant to an individual on the basis of gathered data. There are two main candidate
standards for representing rules for the Semantic Web – SWRL [10] and RIF [11] - as
well as widely-used systems such as Jena [12]. Unfortunately, none of these rule
systems can offer the expressive power needed to describe the conditions necessary to
personalize a risk factor description to an individual person’s data. In particular, it is
common that the conditions under which clinical risks can be identified depend on
a range of functions, e.g., body mass index, or the time since the occurrence of a
myocardial infarction. This requirement rules out Jena, SWRL, and the Core dialect of
RIF. These conditions can often also require disjunction to express correctly – “if
estimated glomerular filtration rate is less than 44 OR chronic kidney disease is
diagnosed at stage 3 or 4 or 5”, and negation (“if the patient is male and does not have a
family history of ischemic heart disease”). While the RIF Basic Logic Dialect
(RIF-BLD) does support disjunction (where SWRL and Jena do not), and is compatible
with OWL [13], it does not support negation. It is therefore necessary to develop a
dedicated rules expression format, in a way which is, by design, easily interpreted and
evaluated, supports the required logical features, and which allows the contents of rules
to be easily authored and understood by clinicians.

The risk ontology implements the model described in [7]. The measurements
ontology and data integration via rules are presented for the first time here.

3 Risk Factors

In medicine, risk is the probability of a negative outcome on the health of a population
of subjects. The agents responsible for that risk are called risk factors when they
aggravate a situation and are used to predict (up to a degree) the occurrence of a
condition or deterioration of a patient’s health dividing the population into high and
low risk groups [14]. The following paragraphs present our model of the concept of
risk factor in medicine [7] which is shown schematically in Fig. 1.

In general, risk factors can be: environmental (e.g. chemical, physical, mechanical,
biological and psychosocial elements that constitute risk factors to public health);
demographic (e.g. age, sex, race, location, occupation); genetic; behavioral and lifestyle
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related (e.g. smoking, overeating, unprotected sexual life, excessive alcohol drinking,
drug abuse and sedentary lifestyle); and biomedical (i.e. conditions present in a patient
that can influence his/her health by creating or affecting other conditions). Extending
work on general risk analysis [15, 16], we can present a risk factor as a triplet, which
includes the source of the risk, the outcome (target) and an expression of their
association. The source of the risk is an agent (an event, a condition, a disorder or any
other factor) that is shown via empirical studies to be associated with a consequence,
that is, the outcome. The outcome itself is a negative health condition or disorder. Most
often the outcome itself is found to be a source of another risk factor.

Thus in the general case the source and the outcome can both be treated as health
related conditions (including disorders). In this work, we collectively refer to both the
source and the outcome as risk elements. A risk association between the source and
the outcome is a complex construct which describes the type of relation, the likelihood
of an outcome to occur, and the initial conditions under which such likelihood can be
estimated. The existence of a risk factor is not a determinant of consequence but the
degree of its influence can be statistically calculated. The way to measure the likelihood
requires a certain quantitative biomarker and observational studies that statistically
calculate a probability. Different study designs and analyses can generate different
types of probability measures [17] - a Risk Ratio (RR), such as the Relative Risk or
Hazard Ratio (HR). A probability determined from a clinical study lies within a

Fig. 1. Basic concepts and their relationships.
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confidence interval, and the study design/analysis may have been adjusted, or not, for
certain factors (for example, age, sex, and so on). In order to be able properly to
represent risk factors, these must be included – especially where the goal is to produce
personalized risk calculations.

An event, a condition, a disorder or any other factor becomes a risk source when
certain conditions are met. These conditions are associated with one or more
observables, which is either environmental or a physical or mental property of the
patient. Therefore, in order to describe properly a risk association we have to state a
specific observable that provides a measure/description of the risk source and the
specific condition or value of this observable. For the same risk factor, a number of
different risk associations can be measured in the literature, each association corre-
sponding to a different observable or a different observable condition or even different
combinations of observables corresponding to different concurrent risk sources. The
circumstances under which a risk association is relevant to an individual are ascertained
via an explicit logical expression that involves observables; this logical expression is
termed ‘observable condition’.

Finally, risk associations in medicine are determined from clinical studies as
reported in evidence based medical literature. Thus, each association is directly related
to an evidence source which is a specific scientific publication.

To ensure that the model can be seamlessly integrated into existing medical
information systems, we adopt commonly used standards and controlled vocabularies
in the description of the concepts presented above. For example, risk elements of type
biomedical include an ICD-10 [18] classifier, of type demographic, a SNOMED-CT
[19] classifier. Other controlled vocabularies used for risk elements of type environ-
mental or intervention include SNOMED-CT, RxNorm [20], and EnvO [21]. Mea-
surements and units follow the QUDT [22] and UO [23] ontologies. Evidence sources
are described using their DOI and/or their PubMed identifier, while evidence level
follows the OCEBM system [24]. In general, where available UMLS [25] codes are
also used.

Figure 2 shows the risk associations relevant to the risk factor “central obesity is an
issue in acute myocardial infarction”, with the risk ratio values associated with patients
who satisfy each observable condition, respectively. Although omitted here for reasons
of space, each of these ratios is also associated with the original publication providing
the evidence for it, as well as a confidence interval and specific ratio type.

Fig. 2. Example of risk associations and corresponding observable conditions
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4 Measurements and Sensors

The aim of the readings and measurements ontology is to represent the concepts
involved in the gathering of data from personal Quantified Self sensors. In particular, it
is important to represent details which are common to measurements generically, while
allowing details relevant to specific measurement types to be captured also. Crucially
for data integration, each measurement should be associated with a canonical type
(representing, e.g., “systolic blood pressure”) and a unit (e.g., “mmHg”), both
preferably denoted by terms in standardized external vocabularies where possible.
Figure 3 illustrates the ontology for the CARRE measurements and sensors.

A user (an individual whose data is being represented using the terms of this
ontology) has an identifier and connections. A connection represents that user’s login
details to the cloud data source, usually in practice provided by a device manufac-
turer, which has a name and a website.

Procedurally, data for an individual user is gathered from a manufacturer by means
of the connection. Data is in the form of one or more device readings. Every device
reading must of course have a date at which the reading was taken. Some manufac-
turers also provide location information in the form of latitude and longitude. A device
reading may represent a set of measurements, all of which are semantically related.
For example, a device reading may originate with the user stepping onto a set of body
analysis scales, which can provide measurements of weight, body fat percentage,
muscle mass, and so on. A reading may also have a provenance, which at the time of
writing is simply whether the measurement came from a device automatically, or was
manually entered into a web form by the user, and an actuality: manufacturers may

Fig. 3. The CARRE Sensors and Measurements Ontology, including some specific types of
measurement to illustrate types of data which can be represented.

Integrating Medical Scientific Knowledge 571



provide actual measurements from devices or users, or goal measurements (e.g., a
target weight). Finally, a device reading may be associated with a textual note added by
the user.

The device reading class may be sub-classed, for measurements of, for example,
activity, weight, blood pressure, and so on. Each of these has properties relating to the
type of measurement value represented: for example, an individual blood pressure
measurement relates to both systolic and diastolic blood pressure valuess.

Every measurement value has a common structure. A measurement value has a
measurement type and a unit, which are its type and unit expressed in an external
vocabulary wherever possible, a value which can be an integer, string, floating point
value, and so on, and a label, which is a human-readable string.

To ensure that the model can be seamlessly integrated into existing medical
information systems, we adopt the commonly used standards and controlled vocabu-
laries in the description of the concepts presented above. The FOAF ontology [28] is
extremely widely used and well-known, and allows easy representation of data relating
to people. Types of measurement are indicated with respect to the Logical Observation
Identifier Names and Codes ontology (LOINC) [29] and the Clinical Measurements
Ontology (CMO) [30], with preference given to CMO on the basis of coverage for the
set of measurement types currently being used. For units, we use QUDT [22] and the
Unit Ontology [23], with preference for the Unit Ontology, again, on the basis of
coverage.

5 Data Aggregation and Enrichment

These two ontologies are generic, describing the structure of data relating to mea-
surements and to risk factors. To be useful, we need to populate them with instances of
particular measurements and risk factors, respectively. The output of the relevant data
aggregation processes is Linked Data, expressed according to the vocabularies defined
by the relevant ontology, and stored in an RDF quad-store (Virtuoso, [31]).

Measurement data is subject to some extra constraints compared to the risk factor
data. While clinical knowledge relating to risk is generic, and therefore can (and, we
would argue, should) be public, measurement data is specific to an individual, and, as
personal health-related data, required to be kept private. We thus maintain a separation
between them at the quad-store level. Risk data is stored in a (curated, for quality and
safety purposes) publicly accessible RDF graph, where measurement data relating to an
individual is stored in an authentication-protected RDF graph belonging to that indi-
vidual, accessible only via HTTPS.

There is a wide range of different wearable and personal sensors available which
can, usually via a smartphone connection, automatically upload measurements to a
manufacturer service. Such devices exist to measure activity levels (step counts, dis-
tance travelled), heart rate, blood pressure, blood oxygen saturation, weight, body fat,
and others. In this work we have developed aggregators for data from devices from
multiple manufacturers, including Fitbit, Medisana, iHealth, and Withings [32–35]. In
each of these cases, the measurements are available for programmatic access via a
Web API secured by some variant of the OAuth authentication schemes. Each such
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API is supported in the aggregator by a plugin module, which, when supplied with
access tokens for a particular user, retrieves that user’s measurements, enriches them
with RDF, and stores them in the relevant graph in the quad-store. Once set up,
measurements are retrieved automatically, according to either the device’s or user’s
chosen sampling interval, unless the user chooses to revoke access.

The risk ontology was populated with scientific information on medical risk factors
in the area of cardiorenal disease. Chronic cardiorenal disease is the condition char-
acterized by simultaneous kidney and heart disease while the primarily failing organ
may be either the heart or the kidney. The cardio-renal patient (or the person at risk of
this condition) presents an interesting case example for exploring risk factors, as (a) it is
a complex comorbid condition which involves and is affected by a number of related
health disorders as well as lifestyle related factors; (b) chronic cardiorenal disease has
an increasing incidence and a number of serious (and of increasing incidence)
comorbidities, including diabetes and hypertension, and may lead to serious chronic
conditions such as nephrogenic anemia, renal osteodystrophy, peripheral neuropathy,
malnutrition, and various systemic diseases (e.g. rheumatoid arthritis, lupus erythe-
matosus); and (c) prevention is of major importance. Good appreciation of risks
therefore plays an important role for the various stages of cardiorenal disease evolution,
from normal health condition, to chronic disease, to end-stage renal and/or heart failure.

The process of collecting risk factor data begins with a literature review by the
medical experts, to identify risk associations and associated entities and properties
according to the ontology model. Identified risk factors are recorded in a tabular format,
which mirrors the structure of the model, and these are reviewed by multiple clinicians.
Observables, evidence sources, risk elements and associations are then translated to
RDF.

6 Data Integration

The integration between the medical scientific knowledge and the semantic QS data is
achieved using observable conditions. Each specific risk association is associated with
a list of relevant observables, and an observable condition written in terms of these
observables. Observable conditions are built using two basic types of operators, logical
and comparison operators. More precisely, we follow prefix notation syntax for logical
operators and infix notation syntax for comparison operators, and support as logical
operators the disjunction “OR” and the conjunction “AND”, and as comparison
operators the equality “=”, inequality “!=”, greater than “>”, greater than or equal to
“>=”, less than “<” and less than or equal to “<=”. We have also identified functions
which occur in the current domain of application, and use the idea of “calculated
observable” to represent them. For example, “time since myocardial infarction” is
calculable given the current date and a (non-calculated) observation of a myocardial
infarction event. Generic functions such as averages over time are also important to
take account of possible differences in sampling interval in measurement data. These
calculated observables can be used in observable conditions.
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Figure 4 shows a user-friendly interface that is used to build the observable con-
ditions. This interface is implemented in HTML5, CSS and JavaScript using the
AngularJS framework. As output of this expression builder, we support two different
formats, an abstract syntax tree format (Fig. 5a) and a simple free text format (Fig. 5b).
The first one is more suitable for expression editors and other parsers because it follows
formal JSON syntax, and the second is more suitable for humans and evaluation
algorithms and tools because it follows formal plain text syntax.

Fig. 4. Web based interface of expression builder.

Fig. 5. Observable condition: (a) abstract syntax tree format (b) simple free text format.
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The software evaluates these conditions by retrieving the relevant measurement
data for the patient in question, and substituting values into the condition expression.
The (boolean) result of this evaluation determines whether or not the condition’s risk
factor applies to that patient, and hence with what particular ratio the patient is at risk of
its target.

For example, if we evaluate the expression of Fig. 5 with observable values waist
circumference (OB_80) equal to 98 and sex (OB_64) “male”, the expression evaluates
to true. Referring back to Fig. 2, we can see that this therefore means that with regard
to the risk factor “central obesity is an issue in acute myocardial infarction”, there is a
risk ratio of 1.1 that the central obesity of the patient concerned will be an issue in the
probability of acute myocardial infarction.

Data integration of this form remains scalable over large numbers of both risk
factors and users, since each observable condition is only ever evaluated with respect to
one patient at a time, and, for clinical relevance, only ever with regard to (a small set
of) that patient’s most recent measurements.

7 Evaluation

To test the expressive utility of the risk ontology, as well as to populate it with data for
use with QS data, a group of 8 medical doctors (members of the CARRE project team)
reviewed current medical literature to identify major risk factors related to cardiorenal
syndrome. At this time, 96 different risk factors were identified and described formally.
The evidence sources used were 60 scientific publications. The evidence selection
methodology and the available descriptions in text (tabular) format are provided in
CARRE Deliverable 2.2 available from the project site [26]. A web entry system [27]
allows these descriptions to be entered and reviewed, and produces RDF data repre-
senting their contents in accordance with the ontology. The manual curation of this data
is necessary for regulatory and ethical reasons: as the aim of the system is to be used
with patients, it is important to maintain strict quality control.

In addition, 10 project members connected a range of QS devices to the data
aggregators and used or wore them to build up a sample corpus of semantically-
annotated QS data. The aggregators collected data over a period of at least 12 months for
all users (some users wore devices for longer), and stored them as RDF (with an average
of 110,483 triples per user, at the time of writing). This length of time allowed the
overall physical activity patterns of each user to be determined at different times of year
and in different conditions, and thoroughly tested the data aggregators, and, importantly,
was able to capture measurements which vary slowly over time, such as body weight.
Other measurements, such as blood pressure, do not typically need to be measured over
a long period of time to be useful in risk calculations – although it is worth noting that
this commonly-held belief may simply result from a lack of data, as the ability to capture
such measurements over long periods easily from non-hospitalized subjects is a com-
paratively recent development.

The rules expression evaluator, which evaluates the observable conditions and
calculates a risk ratio for an individual for the target of a particular risk factor, is
applied to each user, for each risk association stored in the system. The same
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calculations were performed manually to check the fidelity of the knowledge capture.
(Despite the quantity of potential risk factors, this manual process can be streamlined
effectively by discarding all those risk factors which can never apply to a particular user
– e.g., those which only apply to male populations need never be evaluated for female
users.)

The risk ontology population process resulted in 253 respective associations from
96 risk factors. There were 53 involved risk elements, corresponding to a total of 90
different observables. This is an order of magnitude greater than the observables taken
account of by existing risk calculators. The automatic calculation of risks agreed with
the manual calculation in every case. It should be noted that, of course, this assesses
solely whether the risk calculations are faithful to the evidence sources, not whether the
evidence source itself provides good predictions (already validated via the original
clinical systematic review processes) nor what, if any, effect our approach has on user
behaviour to minimise risk; this will be the subject of an upcoming randomized con-
trolled trial. For reasons of confidentiality, particularly given the small and potentially
deanonymisable set of participants, the QS data cannot be made public. The online
tools, however, permit reproducibility testing with new participants.

This process of testing and using the risk ontology resulted in the following
qualitative findings, derived via a focus group analysis of the testing participants. The
medical experts found the model straightforward to use to describe risk factors. The
terminology used was found to be familiar and thus easy to understand and apply to
describe risk factors found in the literature and also to read descriptions already pro-
duced by colleagues. The only difficulty identified related to expressing accurately and
rigorously the observable condition that has to be satisfied in order for a risk associ-
ation to hold. Initially, medical experts were asked to produce this condition in the
conventional way it is written in the literature, using natural language – which was a
straightforward task. Subsequently, they were asked to reformat this condition using a
logical operator expression (so that this expression can be easily translated to computer
readable format). This task proved to be more cumbersome and required 1-2 h training
and testing before the medical experts could independently produce correct
expressions.

By using standard semantic technologies, it is possible to link both model and data
to other clinical models (such as OCRe and OBX trial and data descriptions) and to
external sources of data (e.g., environmental risk factors could be linked to open
sources of environmental data). In particular, the semantic annotations on observables
relating to medical diagnoses have made it possible to integrate the QS aggregation
with Personal Health Record systems, by using UMLS to identify relevant medical
concepts. Because of the semantic nature of the model, the outputs of risk calculation
are also more useful for automated analysis, since it is always clear what a risk ratio
value means in probability terms.

Nothing in either model is specific to the motivating domain of cardiorenal condi-
tions, and extension to risk factors relating to other domains of medicine is not antici-
pated to pose any problems; the terminology and working practices with regard to risk
calculation are common across medicine. Extending to more ‘distant’ domains where
evidence-based risk calculation is relevant (e.g., climate science) ought also to be
practical. The ontology already accommodates different representations of probability,
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and so could be adapted to those representations suitable to the new domain’s con-
ventions. The concept of “observable” is already generic. It would be necessary to
extend the notion of evidence, and in particular, evidence quality, which is currently
dependent on medical definitions.

The measurement ontology has also proved to be reusable. Having been conceived
as a model for capturing numerical time series data from QS devices, it has proved to
be conveniently usable without modification to represent qualitative data, such as that
relating to diagnoses and the severity of conditions, as well as, in preliminary work,
data relating to changes in patient state. For example, if a patient becomes higher risk
for a particular outcome, it is proving to be both natural and useful to clinicians to
record the state change as an observation of the patient.

While the motivation and initial thinking was focused on factors which increase the
probability of negative consequences, the end result is equally as capable of modelling
factors which decrease those probabilities, or which increase the probability of positive
consequences. In other words, it is just as straightforward to represent, for example, an
intervention with the potential to lower a patient’s chance of acute myocardial
infarction as a risk association with a risk ratio less than 1. It is interesting to note that
this flexibility came as something of a surprise to the medical experts on the project – it
appears that the linguistic conventions in medical practice around terms such as “risk
factor” and “effectiveness of treatment” obscure, to some degree, the common prob-
abilistic structure underneath – and required a shift in philosophical approach from the
clinicians to accommodate. In the same way, having to make explicit the observable
conditions for grounding risk predictions in data also required a change in thinking,
where conditions easily understood by experienced humans need to be spelled out in
precise detail in order to be implementable. Both of these changes in thinking were
seen as positive by the clinicians involved. While only a qualitative observation of a
small number of people, it is perhaps reasonable to expect similar changes in thinking
to be necessary for domain experts in other fields where Semantic Web approaches
become more practical and applicable to more situations, and it suggests an interesting
avenue for future research into the social aspects of the move to data-based approaches.

Another benefit of modelling risks explicitly in this way is that it gives a very easy
to follow overview of the field of medicine under consideration, showing at a glance
both which risks are increased by multiple factors, which factors lead to multiple risks,
as well as which associations have received more (or less) research attention. Figure 6
illustrates a projection of the various risk factors, as captured by the medical experts in
the context of our project. Highlighted is the example of age and ischemic heart disease
increasing a patient’s risk of a stroke. It can also be seen how many risk elements
increase the risk of heart failure, and how many new risks appear in obese patients.
Again, this is suggestive of an interesting avenue for future research, to see what may
be discovered by analysis of the semantic risk data as a whole with regard to the
medical research field of which it represents the output. The semantic nature of our
representation is likely to be a significant advantage in such research, enabling, as it
does, the integration of the wide variety of different data sources which can be relevant
to the study of scientific endeavour.
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8 Conclusion

The risk model presented in this paper enables clinical experts to encode the risk
associations between biological, demographic, lifestyle and environmental elements
and clinical outcomes in accordance with evidence from the clinical literature. The
measurements model enables the automatic capture of Quantified Self data relating to
individual patients in a semantically annotated form. The integration of these datasets
by means of the “observable condition” rule language makes it possible to compute
risks automatically.

Compared to existing risk prediction models, this approach has a significant
advantage in being able to be expanded and updated easily as clinical knowledge
increases and changes, as well as being transparent and traceable in function and origin.
The Semantic Web approach simplifies and encourages the integration of both clinical
knowledge and QS data with other sources of relevant data, and, crucially, allows an
area of very complex meanings to be expressed in a machine-readable fashion. We
have also shown unanticipated extra benefits of having explicit ontological models
relating these types of data. In particular, analysis of risk data en masse may provide
insight into the current state of overall knowledge regarding a clinical domain, and the
process of knowledge capture with clinical experts required some interesting, and
positive, changes in thinking and approach, drawing out commonalities and possibil-
ities which had not before been seen. We argue that such insights are likely to be
encountered in other complex domains to which Semantic Web techniques are applied.

The work presented here illustrates the value of applying the Semantic Web to
Quantified Self and health data, both in and of itself and also as an illustration of using
semantics to connect sources of data at very different levels of granularity and acquired
through very different methods. The development of the rules language was vital to
enabling our results, and we believe it would be beneficial to explore the general
question of the use of rules to “bridge” distinct data sources in this way.

Fig. 6. A visual overview of currently encoded risk factors, with some examples highlighted,
available online at http://ontology.carre-project.eu/
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Abstract. The goal of this work is to learn a measure supporting the
detection of strong relationships between Linked Data entities. Such rela-
tionships can be represented as paths of entities and properties, and
can be obtained through a blind graph search process traversing Linked
Data. The challenge here is therefore the design of a cost-function that
is able to detect the strongest relationship between two given entities,
by objectively assessing the value of a given path. To achieve this, we
use a Genetic Programming approach in a supervised learning method to
generate path evaluation functions that compare well with human eval-
uations. We show how such a cost-function can be generated only using
basic topological features of the nodes of the paths as they are being
traversed (i.e. without knowledge of the whole graph), and how it can be
improved through introducing a very small amount of knowledge about
the vocabularies of the properties that connect nodes in the graph.

1 Introduction

The goal of the work here presented is to automatically discover what makes a
strong relationship between two entities of the Web of Linked Data. Identifying
the strength of the relationship between entities can have many applications,
the most common of which is to measure entity relatedness, i.e. identifying
how related two entities are. This is a well-known problem for a wide range
of tasks, such as text-mining and named-entity disambiguation in Natural Lan-
guage Processing, or ontology population and query expansion in Semantic Web
activities.

From a Web of Data perspective, a relationship can be identified in the graph
of Linked Data as a semantic path (expressed as a chain of entities and prop-
erties) between two given entities, and graph search techniques can be used to
reveal them. When applying such techniques to the Linked Data graph, how-
ever, the entities and properties included in the found paths might come from
a number of different, unknown data sources. In order to avoid having to index
and locally pre-process a necessarily partial subset of the graph, a natural app-
roach is to rely on link traversal, which allows to incrementally and agnostically
explore the graph from entity to entity until paths between them are found.
In other words, finding relationships between entities in the Linked Data graph
requires a uniformed (or blind) search, which does not need pre-computation or
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 581–597, 2016.
DOI: 10.1007/978-3-319-46523-4_35
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knowledge over the entire graph. However, to drive such an uniformed search,
a function to measure the strength of the explored paths (a “cost-function”) is
necessary to ensure that only the most promising ones will be followed.

Our goal is therefore to figure out which of (and how) the features of the
Linked Data graph along the explored paths could be used by such cost-function.
While one could intuitively think that the shortest paths reveal the strongest
connections, this assumption does not necessarily hold within the Linked Data
space, where entities of different datasets are connected by multiple paths of sim-
ilar lengths. Our challenge is to find which Linked Data structural information
we need in order to design a cost-function that objectively assesses the value of
a path. More specifically, we aim at discovering which topological and seman-
tic features of the traversed entities and properties can be used to reveal the
strongest relationships.

To answer this question, the approach we propose is to use a supervised method
based on Genetic Programming whose scope is to learn the path evaluation func-
tion to integrate in a Linked Data blind search. Our idea is that, starting from a
randomly generated population of cost-functions created from a set of topologi-
cal and semantic characteristics of the Linked Data graph, the evolutionary algo-
rithm will reveal which functions best compare with human evaluations, and will
show us what is really important to assess strong relationships in Linked Data.
The learnt cost-functions are compared and discussed in our experiments, where
we show not only that good results are achieved using basic topological features
of the nodes of the paths as they are being traversed, but also how those results
can be improved through introducing a very small amount of knowledge about the
vocabularies used to label the edges connecting the nodes.

2 Related Work

As already mentioned, the goal of our work is to learn a measure to assess
strong Linked Data relationships, so that this can be integrated in an uninformed
graph search within Linked Data. For this reason, we divided this related work
section in three parts. First, we study works that focus on assessing Linked Data
entity relatedness, in order to discover which types of interestingness measures
have been proposed. Then, we analyse works based on Linked Data traversal,
to see how uninformed graph searches can be applied in the context of Linked
Data. Finally, we explore works that focused on designing a measure empirically,
namely by learning it through Genetic Programming.

Linked Data Entity Relatedness. There is a solid body of literature on entity
relatedness, which can be categorised according to the corpus used to assess
it [10,18]. Here, we focus mainly of approaches that compute the relatedness
based on Linked Data. A first area comprehends Linked Data-based metrics
to assess the strength of a relationship between entities quantitatively [10,14,
20,21,24]. They can be divided into entity-based approaches, which compute
the similarity between neighbouring concepts based on the entity description
(i.e. triples where the entity is involved as a subject or object) [14,21,24], and
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path-based metrics [10,20], which compute relatedness between concepts that
are not directly connected. As in our work, these approaches are motivated by
the idea of exploiting the rich resource descriptions existing in (and across)
Linked Data. From our perspective, these works are too restrictive for two main
reasons: first, they present ad-hoc measures, which have been either manually
designed based on the analysed datasets or adapted from existing information
theoretical measures; second, the strength of a relationship can only be assessed
quantitatively.

A second area includes works that define entity relationships qualitatively,
as Linked Data paths or subgraphs. The strongest relationships are identified
through information theoretical measures based on node centrality, node fre-
quency or edge informativeness applied on the paths retrieved from one or
more Linked Data datasets. We find in this category systems for data visual-
isation and exploratory searches, such as RelFinder [8], REX [5], Explass [1]
and, more recently, Recap [18]. These approaches first identify all possible rela-
tionships between two entities, either using SPARQL queries aiming at retrieving
paths up to a certain length [8,18], or by extracting them from a pre-computed
dataset [1,5], and then rank the results based on some predefined interesting-
ness measures. Pathfinding techniques have also been used to identify entity
relationships [3,12,15]: similar to our work is the use of cost-functions based on
the Linked Data graph structure to drive the informed searches (e.g. A*, ran-
dom walks), prioritising nodes and pruning the search space. With that said,
their major limitation consist in exploiting Linked Data with an a priori knowl-
edge, either by indexing and pre-processing datasets, or by using queries against
SPARQL endpoints, therefore pre-defining the desired portion of data to be
analysed.

Linked Data Traversal. The idea behind the Linked Data Traversal (link tra-
versal in short) is to exploit URI dereferencing1 to discover connections between
entities across datasets on-the-fly and in a follow-your-nose fashion, so that no or
very little domain knowledge has to be introduced. Link traversal relies on the fact
that if data are connected (through owl:sameAs, skos:exactMatch, rdfs:seeAlso or
simply by vocabulary reuse), then one can naturally span datasources and gather
new knowledge serendipitously. Various studies have shown that Linked Data can
be traversed agnostically in contexts such as SPARQL query extensions [7] or (cor-
)relation explanation [18,22]. So far, however, uninformed graph searches have
been only used for Linked Data crawling or indexing [9,20]. To the best of our
knowledge, no work has focused on identifying a cost-function suitable to be inte-
grated in an uninformed search over Linked Data.

Genetic Programming. Evolutionary algorithms have proven to perform well
in those tasks where it was necessary to identify suitable functions based on a
desired output. For instance, Genetic Programming has been successfully applied
in Information Retrieval to reveal the most appropriate document ranking func-
tions for search engines [2,4,13,23]. In the Linked Data context, Genetic Pro-

1 Retrieving a representation of a resource identified by a URI.
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gramming was used to identify similarity functions for discovering links [16,17],
instance clustering [6] or matching [11] across different datasets, but not, prior
to the work presented here, to assess relationship strength between Linked Data
entities.

3 Motivation, Challenges and Approach

Our motivating scenario is a uniform-cost search process which traverses Linked
Data on-the-fly with the aim of identifying the best relationship given two input
entities. Uniform-cost search (ucs) is an uninformed, non-greedy best-first search
strategy where a cost-function g(n) chooses the next node to expand based on
the cumulative cost of the edges from the start to that node n. When expanded,
new children are created and stored in the queue accordingly. Since the nodes
are generated iteratively, ucs does not require holding the whole graph in mem-
ory, which makes it suitable for large graphs; secondly, g(n) being cumulative
(i.e. paths never get shorter as the nodes are added), the search expands nodes
in the order of their optimal path, which guarantees search optimality. These
characteristics make ucs particularly suitable to a context such as Linked Data.

Our process is designed as a bi-directional search, whose aim is to find the
path p = 〈nl . . . nr〉 that best represents the relation between two entities nl and
nr. By “best”, it is intended that the relatedness between nl and nr, expressed as
a score assigned by the cost-function, is maximised. Because ucs does guarantee
optimality, but its bi-directional version does not, we use a maximum number
of node expansions to perform as a termination criterion. An example of such a
process, showing how different structural information might be needed to find the
best relationship, is presented below. Here, we used entities of the same dataset
for clarity purposes but, as demonstrated by the experiments, the process can
be applied on entities of two arbitrary datasets.

3.1 Example Scenario

Let us imagine that we want to identify the strongest relationship between two
DBpedia entities, e.g. n1=db:ASongOfIceAndFire(novel) and n2=db:GOT-TV-
series(episodes) of Fig. 1. The process consists in:

(1) Bi-directional search. Given the two nodes nl and nr, two uniform-cost
searches ucsl and ucsr are performed simultaneously. Their objective is to
iteratively build two search spaces, a left-directed one from nl and a right-
directed one from nr, to find a common node nc.

(2) Entity dereferencing. Each search space is expanded by dereferencing the
entity labelling the next node in the queue, and by finding all the entities
that are linked to it. We do consider as “link” any edge of the node, i.e. both
incoming and outgoing RDF properties of the dereferenced entity. In the
example, n1 is linked to 5 entities and n2 to 4. As said, nodes are queued
and dereferenced according to their cumulative cost from the start node nj

(with j ∈ {l, r}), which guarantees optimality to both ucsj . This step is
repeated until one or more common nodes nc are found.
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Fig. 1. Paths between db:ASongOfIceAndFire(novel) and db:GOT-TVseries(episodes)

(3) Path building. For each common node nc, we build the two subpaths pj =
〈nj . . . nc〉, and then merge them into a path p = 〈nl . . . nc . . . nr〉. Each path
then identifies a relationship between the initial two entities. For instance,
the graph of Fig. 1 represents all the paths existing between n1 and n2 after
a few iterations.

(4) Path scoring. The cost of each path is evaluated as an approximation (most
often, a sum) of the costs of the paths from nl to nc and from nr to nc.
The one with the highest score, highlighted in the Figure, is chosen as the
strongest relationship between the initial entities.

3.2 Challenge and Proposed Approach

From the process described above, it becomes clear that the problem to tackle
are how to find a good cost-function is necessary to choose among a set of alter-
native paths between two entities, and how to avoid computational efforts or
inconclusive searches. The question arising here is what is the best strategy to
find the most representative relationships, and if we can exploit the information
in the Web of Data to guide the two searches in Linked Data in the right direc-
tion, so that they can quickly get to convergence. When looking at the paths in
Fig. 1, an interesting observation can be made: the node corresponding to the
entity db:GameOfThrones-TVseries has a lower indegree, which is generally used
to measure the authority (its “popularity”) of a node, when compared to other
nodes, as the ones labelled as ASongOfIceAndFire(topic) or db:UnitedStates.
This information could be used to rank nodes so that the path that best specifies
the relation between n1 and n2 is soon revealed. In other words, the structural
features of the graph could be a good insight to drive a blind search in Linked
Data. Given this, our challenge is to answer the question: what makes a path
strong? Which are the topological or semantic features of a node or an edge,
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which can be used when deciding if a path is better than another? To reformu-
late the problem: can we use the structure of the Linked Data graph to assess
relationship strengths?

Our proposition is to use a supervised Genetic Programming (GP) approach
to identify the cost-function that best performs in ranking sets of alternative
relationship paths. Starting from a random population of cost-functions cre-
ated on a set of features related to possible topological or semantic features
of the nodes and edges of the path, the evolutionary algorithm will learn the
cost-function that best performs when compared to a benchmark of human-
evaluated relationship paths. The choice of Genetic Programming over other
supervised learning techniques (e.g. SVMs, Neural Networks, Linear Regression
or learning-to-rank) is motivated by three main reasons: first, its results are not
assessed by comparing directly the path scores, which are hardly comparable
to the human rankings provided in the benchmark, but by assessing the ade-
quacy of the cost-functions through a fitness function; secondly, these formulas
are human-understandable, which means that they can be used to identify the
structural features of Linked Data that matter for a successful search; finally,
because they are understandable, they can be directly implemented in a graph
search mechanism. Additionally, the GP learning process is flexible, so it allows
us to easily refine parameters and impose new constraints on the fitness func-
tion, and it comfortably deals with wide search spaces, so we can study large
populations of possible cost-functions without worrying about scalability issues.

The contributions of this work can be summarised as follows: (i) we present
a measure to detect strong entity relationships that can be integrated in unin-
formed searches over Linked Data, therefore avoiding data pre-processing; (ii) we
demonstrate that such function can be derived empirically, which improves over
the state-of-the-art approaches presenting domain-specific or manually-defined
measures; (iii) we show that good results are achieved using basic topological
features of the nodes of the paths as they are being traversed, and how those
results can be improved through introducing a very small amount of knowledge
about the vocabularies used to label the edges connecting the nodes.

4 Learning Functions to Evaluate Paths

In this section, we first give and overview of the Genetic Programming framework
and then present the supervised approach that we propose to discover the cost-
functions to assess entity relationships.

4.1 Genetic Programming Foundations

Inspired by Darwin’s theory of evolution, Genetic Programming is an Artifi-
cial Intelligence technique that aims at automatically solving problems in which
the solution is not known in advance [19]. The general idea is to create a ran-
dom population of computer programs, which are the candidate solutions for a
problem, that the algorithm stochastic transforms (“evolves”) into new, possibly
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improved, programs. The stochastic process guarantees that the GP proposes
diverse solutions to a given problem.

In GP, programs are generally represented as trees of primitive elements,
where the internal nodes (mathematical or logical operations) are called func-
tions, while the leaf nodes (constants or variables) are called terminals. A fitness
function measures how good each program is with respect to the problem to
be solved. Given a population, a new population is created by adding programs
using one of the three following genetic operations: (1) reproduction, in which a
new child program is generated by copying a randomly selected parent program;
(2) crossover, where a child program is generated by combining randomly chosen
parts from two randomly selected parent programs; (3) mutation, where a new
child program is generated by randomly altering a randomly chosen part of a
selected parent. This process is iterated until a termination condition is met:
typically either a maximum number of generations is reached, or a satisfying,
possibly optimal solution (i.e. a desired fitness) is found. Along with the prim-
itive set, the fitness and the termination condition, a set of parameters such as
the population size, the probabilities of performing the genetic operations, the
selection methodology or the maximum size for programs need to be decided to
control the GP process.

4.2 Preparatory Steps

The described framework can be used to learn the cost-function that best ranks
a set of alternative paths between two Linked Data entities. For a better under-
standing, we invite the reader to use as a reference the graph of Fig. 1 and the
three following paths:

p1 =

p2 =

p3 =

Process. Let Pi = {p1, . . . , p|Pi|} be the set of |Pi| alternative paths between
two Linked Data entities, with i being the ith pair in D = {P1, . . . , P|D|}, the
set of |D| examples that have been ranked by humans, and G = {g1, . . . g|G|} a
starting population of randomly generated cost-functions gj . The GP algorithm
iteratively evolves the population into a new, possibly improved one, until the
stopping condition is met. The evolution consists first in assigning a fitness score
to the cost-functions, which in our case reflects how “good” a cost-function is
in ranking paths compared to the human evaluators. For instance, assuming 3
users have agreed on ranking the paths as p2, p3 and p1, those functions scoring
the them in the same order will obtain the highest fitness. Then, reproduction,
mutation and crossover are applied to some randomly (with bias from fitness)
chosen individuals, and the generated children are added to the new population.
The current population is replaced by the evolved one once they reach the same
size, and a new generation starts.
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Primitives. Terminals and functions are called primitives. A terminal can be:
(i) a constant, i.e. a randomly chosen integer in the set Z = {0, . . . , 1000}, or
(ii) a combination of an edge weighting function w(e) (with e being the edge)
and one aggregator a. We call this combination a.w an aggregated terminal.

Edge weighting functions w(e) assign a weight to each edge of the path, based
on the information of its source. We define 10 edge weighting functions, that we
divide in topological and semantic terminals. Topological terminals focus on the
Linked Data graph structure, and are as follows.

• Fixed Weight (1): the edge is assigned a score of 1. This is equivalent to
performing a breadth-first search, where nodes are queued and explored in
the order they are found.

• Indegree (in): the edge is weighted according to the number of incoming
links of its source. For instance, the edge db:birthPlace(db:GeorgeRRMartin,
db:UnitedStates) of Fig. 1 has a weight of 2, since the source db:GeorgeRR-
Martin has 2 incoming links. This feature is chosen to understand the impor-
tance of “authority” nodes, i.e. the ones with many incoming links.

• Outdegree (ou): the edge is weighted according to the number of outgoing links
of its source, e.g. the weight in the previous example is 2. ou helps us study
the importance of “hub” nodes that point to many other nodes.

• Degree (dg): an edge is weighted based on the degree of the source, i.e. the
sum of in and ou. To the previous example, dg would assign a score of 4.

• Conditional Degree (cd): the weight attributed to the edge depends on the
RDF triple from which the edge has been generated. In fact, each edge
e(u, v) is generated from a dereferenced RDF triple, either ‹ u, e, v›, as in
the case of db:birthPlace(db:GeorgeRRMartin, db:UnitedStates), or ‹ v, e, u›,
as for db:pro- ducer(db:GeorgeRRMartin, db:GOT-TVseries). The cd termi-
nal returns either the indegree or the outdegree of the source depending on
whether the triple represents a back or a forward link. Therefore, cd would
return 2 in the former case (the indegree of the node for db:GeorgeRRMartin)
and 2 in the latter case (its outdegree). The conditional degree analyses the
importance of paths going through large hubs, that are also common to many
other paths.

We define semantic terminals those features that are more specific to Linked Data
than to common graphs. For that, we first considered the vocabulary usage, then
analysed the most frequent RDF properties, as provided by both Linked Open
Vocabularies2 and LODStats3. Note that, since we rely upon entity dereferencing
to traverse Linked Data, we only considered the most frequent object properties.

• Namespace Variety (ns): an edge is weighted depending on the number of
namespaces of its source node. For instance, the node db:GeorgeRRMartin
has the two namespaces owl: and db: for its three links, while the node
db:GOT-TVseries has the 3 namespaces dc:, db: and skos: for its 5 links.

2 http://lov.okfn.org/dataset/lov/terms.
3 http://lodstats.aksw.org/.

http://lov.okfn.org/dataset/lov/terms
http://lodstats.aksw.org/
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Namespaces variety is intended to analyse the use of vocabularies when seman-
tically describing an entity. While initially we considered incoming and out-
going namespaces separately, we did not find any substantial difference in the
process, and eventually reduced the two terminals to one.

• Type Degree (td): the edge weight depends on the number of rdf:type declared
for the source entity. For example, db:ASongOfIceAndFire(novel) has a type
degree of 1 but, assuming this was declared as a skos:Concept too, its score
would be 2. td focuses on the taxonomical importance of an entity, with the
idea that the more a node is generic (i.e. the entity belongs to many classes),
the less informative the path might be. Since rdf:type is unidirectional, there
is no need to distinguish between in- and outdegree.

• Topic Outdegree (so): the edge weight is assigned by counting the number of
outgoing edges labeled as dc:subject, foaf:primaryTopic and skos:broader of the
starting node. The edge db:author(db:ASongOfIceAndFire(novel), db:George-
RRMartin) has a score of 2. The topic outdegree focuses on authority nodes
in topic taxonomies (controlled vocabularies or classification codes).

• Topic Indegree (si): similarly, the edge weight is assigned by counting the
number of incoming dc:subject, foaf:primaryTopic and skos:broader edges. The
same edge has a score of 1 in this case. si considers hub nodes on controlled
vocabularies.

• Node Equality (sa): the edge is weighted according to how much its source
is connected to the external datasets, based on the number of links labeled
as owl:sameAs, skos:exactMatch or rdf:seeAlso. For instance, db:UnitedStates
is connected to its Geonames4 corresponding entity gn:6252001 so, accord-
ing to the sa weight, the edge db:airedIn(db:UnitedStates, db:GOT-TVseries
(episodes)) is scored 1. sa considers the importance of the inter-dataset connec-
tions. Since those properties are bi-directional, we do not distinguish between
in- and outdegree.

Aggregators are functions to combine the weights of edges across the whole
path: sum returns the sum of the w(e) for each of the l edges of the path; avg
returns the average edge weight across the path; min and max the path minimal
an maximal w(e), respectively.

To generate an individual, the aggregated terminals are randomly combined
through the GP function set, composed of addition x + y, multiplication x ∗ y,
division x/y and logarithm log(x). For example, g1 = sum.1 + (1/avg.td) is
interpreted as a function acting almost as a depth-first search, with a small
added value from the average type degree of the nodes of the path.

Fitness Evaluation. The fitness of a cost-function is measured with the Nor-
malised Discounted Cumulative Gain (nDCG), generally used in Information
Retrieval to assess the quality of rankings provided by the web search engines
based on the graded relevance of the returned documents5. The closer it gets to 1,

4 http://www.geonames.org/.
5 https://www.kaggle.com/wiki/NormalizedDiscountedCumulativeGain.

http://www.geonames.org/
https://www.kaggle.com/wiki/NormalizedDiscountedCumulativeGain
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the more the engine judges the documents as relevant as the human evaluators
did. We apply the same idea by considering a path as a document, therefore
evaluating first the DCG for a path pk at rank k as:

DCG(pk) = rel1 +
k∑

m=2

relm
log2(m)

(1)

where relk is the average of the relevance scores given to pk by human evaluators.
The DCG(pk) is then normalised by comparing it to its ideal score iDCG(pk),
as assessed by the gold standard.

The function avg(Pi) then averages each nDCG(pk) in the set Pi, so that to
obtain the performance of the function for the i-th pair, as in Eq. 2. The overall
fitness of a function is obtained by averaging each avg(Pi) of all the |D| pairs of
the dataset as in Eq. 3.

avg(Pi) =

∑

pk∈Pi

nDCG(pk)

|Pi| (2) f(gj) =

∑

Pi∈D

avg(Pi)

|D| (3)

We also add a penalty weight to avoid long and complex cost-functions, by
comparing the length l of a function with its ideal length L. The weighted fitness
of a function is defined as:

fw(gj) = f(gj)− (w × (l − L)2) (4)

where w is the penalty weight.

Genetic Operations. We perform the following genetic operations.

• Reproduction. Given a cost-function parent, a new individual is copied in the
new generation without alterations.

• Crossover. Given two parents, two children are generated by swapping two
random subtrees of the parents.

• Mutation. Given a selected parent, one node (the mutation point mp) is modi-
fied. We designed different kinds of mutations, as in Table 1, depending on the
type of mp: if it is a constant x, the node is mutated with a new constant y that
is either higher (1) or lower (2) than x in the range of y = [x − 100, x+ 100];
if mp is an aggregated terminal, the node is mutated by either modifying its
aggregator (3), modifying its edge weighting function (4), or by replacing it
with a new constant (5); if mp is a function, it can be replaced either with a
new constant (7) an aggregated terminal (8), or with a new function (8), in
which case we might remove (9) or add (10) a child depending on the arity of
the new function.

Training and Testing. We randomly split the dataset into a training set and
a test set. Then, we run the GP process on the training set and store a small set
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Table 1. Mutation examples for g1 = sum.1 + (1/avg.td)

n mp Mutation type Example

1 Constant x< y < x+100 sum.1 + (18/avg.td)
2 Constant x−100< y < x sum.1 + (−18/avg.td)
3 Terminal New a sum.1 + (1/max.td)
4 Terminal New w sum.1 + (1/avg.in)
5 Terminal New x sum.1 + (1/20)
6 Function New a.w sum.1 +max.ns
7 Function New x sum.1 + 40
8 Function New function (same arity) sum.1 + (1× avg.td)
9 Function New function (delete child) log(1/avg.td)
10 Function New function (add child) min.ou×(sum.1 + (1/avg.td))

of the fittest individuals, i.e. the cost-functions that performed better in ranking
paths, while the rest are discarded. Third, the surviving individuals are tested
on the test set, and if their fitness is not consistent with the one of the training
set, we screen them out. This helps in avoiding overfitting and in obtaining more
valid cost-functions. We then keep the best individual of each run.

5 Experiments

The section introduces our experimental scenario, describing the dataset we built
and the control parameters for the Genetic Programming learning process. Then,
it presents the obtained results, including the discovered cost-function6.

5.1 Experimental Setting

As previously mentioned, the fitness is assessed on a dataset composed by sets
of alternative paths between random pairs of entities. In order to create more
variety in the final dataset, so that the learnt functions would not be overfitted
to a specific type of data source, we used different types of entities, randomly
extracted from different Linked Data sources, namely: (i) 12,630 events (from
battles to sport to music events) from Yago7; (ii) 8,185 people from the Vir-
tual International Authority File (VIAF)8; (iii) 999 movies from the Linked
Movie Database9; and (iv) 1,174 countries and capitals from Geonames and the
UNESCO10 datasets.

6 Dataset and results are available online at http://linkedu.eu/dedalo/pathfinding/.
7 http://yago-knowledge.org.
8 http://viaf.org/.
9 http://www.linkedmdb.org/.

10 http://uis.270a.info/.html.

http://linkedu.eu/dedalo/pathfinding/
http://yago-knowledge.org
http://viaf.org/
http://www.linkedmdb.org/
http://uis.270a.info/.html
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To make sure to span at least to another dataset when finding paths, therefore
guaranteeing more path heterogeneity, we used the DBpedia SPARQL endpoint
as a pivot, i.e. we chose a desired ?_class (event, country, person etc.) and the
?_dataset we wanted to retrieve it from, and then ran the simple query:

select distinct ?same where {
?entity a ?_class. # select the entities of a desired class
?entity <http://www.w3.org/2002/07/owl#sameAs> ?same. # get owl:sameAs
FILTER(strStarts(str(?same), ?_dataset)). # filter by dataset

}
ORDER BY RAND() # make sure to get random entities

Next, given a random pair, we ran a bi-directional breadth-first search limited
to 30 iterations in order to find a set of possible paths between them. Note
that other iterations thresholds were also tested (between 20 and 50), and 30
cycles seemed the most reasonable trade-off between missing some relationships
and taking more time to obtain almost the same relationships. We discarded
the pairs for which no path was found. 8 judges were asked to evaluate each
set, assigning the paths rel scores between 2 (“highly informative”) and 0 (“not
informative at all”), and discarded the pairs whose agreement was below 0.1
according to the Fleiss’k rating agreement11. The choice of using different scores
was motivated to represent the gradation between meaningless relations, valide
but weak relations and strong relations. An example of a path to be ranked,
showing that the movie “The Skin Game” and the actress Dina Korzun are both
based in Europe, is presented in Fig. 2. The final dataset consisted of 100 pairs,
whose paths were assigned a score corresponding to the average of the scores
given by the users.

Fig. 2. A path example

Finally, Table 2 presents the control parameters we used during the GP
process. Because a perfect agreement between the functions with the users could

Table 2. Control parameters for the GP runs

Population size 100 individuals Reproduction 10% population size

Max generations 300 Elitism 10% population size

Termination Max generation Penalty weight w 0.001

Selection 5-sized tournament Ideal length L 3

Crossover rate: 0.65 Validation split 70% −30%

Mutation rate: 0.15 Num. individuals (testing) 5

11 https://en.wikipedia.org/wiki/Fleiss%27_kappa.

https://en.wikipedia.org/wiki/Fleiss%27_kappa
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not be reached, we use a maximum number of generations as a termination
condition. In order to not bias the generation process, we also generated trees
without limit in depth, and equally distributed the probability of functions, con-
stants and aggregated terminals being chosen. It is worth mentioning that other
parameters were also tested but, due to space limitation, we only present the
ones giving the best results according to our tests.

5.2 Results

First, we present the results of different runs of the Genetic Programming learn-
ing process presented in the previous Section. Table 3 shows the unweighted
fitness on training set (ftr) and test set (fts) of the best cost-functions learnt
during 3 different runs (therefore different dataset cuts). We divided the GP
runs depending on whether we used topological terminals only (T), or both
topological and semantic terminals (S).

Results show that some terminals, i.e. the conditional degree cd, the
namespace variety ns and the topic indegree si, are recurrent across different
runs of the same block, which demonstrate the stability of our learning process.
Given the regularity we noticed of the min.ns aggregated terminal, Table 3 also
includes a third block of experiments (N), in which we used only the topolog-
ical terminals and min.ns. We observe that both the T- and the N-functions,
based mostly on topological features, have a lower performance when compared
to the S-ones, that include semantic terminals too. Nevertheless, the S-functions
confirm the importance of min.ns.

We then performed a comparative evaluation between the learnt cost-
functions and some related work of the literature, namely RelFinder (RF [8]),
Recap [18] and the two measures presented by the Everything is connected
Engine (EICE [3]) and by Moore et al. (M&V [15]). Figure 3 presents the avg(Pi)
score (Y axis) that each of the functions obtained on each of the examples in D
(X axis).

Table 3. Best cost-functions for different runs

Run Fittest individual gj ftr fts

T1 log(log(min.cd×min.cd))/max.cd 0.79 0.79
T2 log(min.cd)/(avg.cd+ 87) 0.77 0.78
T3 min.cd× (min.cd/max.cd) 0.78 0.72
N1 (log((max.ns/max.cd))/avg.ns) +min.ns 0.82 0.81
N2 ((min.dg/sum.cd)/sum.ou) +min.ns 0.79 0.77
N3 min.ns/(log(max.cd)/avg.ns) 0.83 0.75
S1 min.ns+ (sum.ns/log(log(sum.si))) 0.88 0.83
S2 min.ns+ (min.cd/log(log(sum.si))) 0.88 0.86
S3 min.ns+ (log(max.in)/log(log(sum.si))) 0.87 0.86
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Fig. 3. avg(Pi) of each measure on the full dataset D

What can be noticed from the Figure is a considerable difference between the
existing approaches, which are based on ad-hoc information theoretical measures,
and the ones that were automatically learnt through Genetic Programming.
Indeed, the combination of several topological characteristics sensibly improves
a cost-function performance, as demonstrated by the overall fitness of f(gi) of
T1, T2 and T3 (also presented in Table 4, first row). This means that the rank-
ing the T-functions give for a set of path is much more similar to the ones of a
human evaluator than the ones attributed by hand-crafted measures. The low
performance of the existing measures suggests that they are not suitable to cor-
rectly evaluate paths that connect entities across several Linked Data datasets,
as the ones we have collected in our experiments. A slight improvement can also
be observed with the N-functions: the overall fitness f(gi) for them improves
roughly by 0.02-0.04 when compared to the T-functions. With that said, the
Figure clearly shows that adding some semantic information is the key to obtain
more precise results, as the S-function overall fitnesses f(S1)=0.86, f(S2)=0.88
and f(S3)=0.87 demonstrate (i.e. fitness improvement is ca. 0.09–0.11).

In Table 4, the cost-functions are compared to the baselines to assess if they
perform in a stable way across different datasets sources. We removed, in turn,
pairs whose entities belonged to one of the Linked Data sources presented in
Sect. 5.1, and then calculated the functions’ fitness f(gi) on the filtered dataset.
Results confirm that the S-functions are consistent even with different datasets.

We finally analyse the cost-function that reported the best performance:

S2 = min.ns+
min.cd

log(log(sum.si))
(5)

and observe that the terminals here included are the same that we had already
noted as being the most recurrent among the different runs of Table 3. As can
be seen from its shape, this function prioritises paths that:
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Table 4. Overall fitness of the functions across datasets. D\ indicates from which
dataset the entities were removed; s indicates the size of the filtered dataset

D\ s RF RECAP EICE M&V T1 T2 T3 S1 S2 S3
∅ (tot) 100 0.399 0.481 0.449 0.446 0.784 0.763 0.749 0.871 0.873 0.865

Geonames 23 0.455 0.457 0.584 0.605 0.756 0.710 0.641 0.909 0.911 0.887

Yago 77 0.371 0.513 0.432 0.424 0.819 0.820 0.819 0.883 0.881 0.880

VIAF 69 0.378 0.492 0.418 0.414 0.832 0.828 0.801 0.880 0.888 0.880

UNESCO 79 0.390 0.457 0.442 0.437 0.784 0.764 0.750 0.858 0.860 0.849

LMDB 73 0.439 0.382 0.438 0.435 0.740 0.728 0.705 0.846 0.847 0.843

• pass through nodes with rich node descriptions (the higher min.ns is, the
more relevant the path is considered);

• do not include high level entities (that have many incoming dc:subject/foaf:pri-
maryTopic/skos:broader links, since many other entities are also of the same
category), since the higher sum.si is, the lower the path score is;

• include only specific entities (not hubs) for paths with a small number of
topic categories. Indeed, because of the use of the double log function, the
ratio between min.cd and log(log(sum.si)) is negative if sum.si is lower than
10. However, min.cd becomes a positive factor when sum.si is above 10.

In other words, the function prioritises specific paths (e.g. a movie and a person
are based in the same region) to more general paths (e.g. a movie and a person
are based in the same country).

6 Conclusions

In this paper, we presented a supervised method based on Genetic Programming
in which we learnt a measure to detect strong relationships between entities in the
Linked Data graph. Such measure is a cost-function to be used in a blind graph
search over Linked Data, in which relationships between entities are identified
as Linked Data paths of entities and properties. With the assumption that the
topological and semantic structure of Linked Data can be used by a cost-function
to identify the strongest connections, we used Genetic Programming to generate
a population of cost-functions that was evolved iteratively, based on how well
the individuals compared with a human evaluated training data. The results
proved our idea that successful path evaluation functions can be built empirically
using basic topological features of the nodes traversed by the paths, and that a
little knowledge about the vocabularies of the properties connecting nodes in the
explored graph is fundamental to obtain the best cost-functions. We analysed the
obtained functions to detect which features are important in Linked Data to find
the strongest entity relationships, and finally presented the cost-function that
we learnt. As future work, we will integrate this cost-function in a Linked Data
pathfinding process that can be used in frameworks for on-the-fly knowledge
discovery over Linked Data.
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Abstract. In recent years, there has been an increasing effort to develop
techniques for related entity recommendation, where the task is to
retrieve a ranked list of related entities given a keyword query. Another
trend in the area of information retrieval (IR) is to take temporal aspects
of a given query into account when assessing the relevance of documents.
However, while this has become an established functionality in docu-
ment search engines, the significance of time has not yet been recognized
for entity recommendation. In this paper, we address this gap by intro-
ducing the task of time-aware entity recommendation. We propose the
first probabilistic model that takes time-awareness into consideration for
entity recommendation by leveraging heterogeneous knowledge of entities
extracted from different data sources publicly available on the Web. We
extensively evaluate the proposed approach and our experimental results
show considerable improvements compared to time-agnostic entity
recommendation approaches.

1 Introduction

The ever-increasing quantities of entities in large knowledge bases on the Web,
such as Wikipedia, DBpedia and YAGO, pose new challenges but at the same
time open up new opportunities of information access on the Web. In recent
years, many research activities involving entities have emerged and increasing
attention has been devoted to technologies aimed at identifying entities related
to a user’s information need. Entity search has been defined as finding an entity
in the knowledge base that is explicitly named in a keyword query [1]. A variant
of entity search is related entity recommendation, where the goal is to rank rela-
tionships between a query entity and other entities in a knowledge base [2,3]. In
the context of Web search, entity recommendation has been defined as finding
the entities related to the entity appearing in a Web search query [4].

On the other hand, temporal dynamics and their impact on information
retrieval (IR) have drawn increasing attention in the last decade. In particular,
the study of document relevance by taking into account the temporal aspects
of a given query is addressed within temporal IR [5]. To support a temporal
search, a basic solution is to extend keyword search with the creation or publi-
cation date of documents, such that search results are restricted to documents
from a particular time period given by a time constraint [6,7]. This feature is
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 598–614, 2016.
DOI: 10.1007/978-3-319-46523-4 36



A Probabilistic Model for Time-Aware Entity Recommendation 599

Fig. 1. Examples of the query and related entities for the user query “Germany Brazil”
and the given time range “July 2014”

already available in every major search engine, e.g., Google also allows users
to search Web documents using a keyword query and a customized time range.
For the effectiveness of temporal IR, the time dimension has been incorporated
into retrieval and ranking models, also called time-aware retrieval and ranking.
More precisely, documents are ranked according to both textual and temporal
similarity w.r.t. the given temporal information needs [5].

Inspired by temporal IR, we believe that the time dimension could also have a
strong influence on entity recommendation. Existing entity recommendation sys-
tems aim to link the initial user query to its related entities in the knowledge base
and provide a ranking of them. Typically, this has been done by exploiting the rela-
tionships between entities in the knowledge base [2–4]. However, the (temporal)
entity importance and relatedness is often significantly impacted by real-world
events of interest to users. For example, a sports tournament could drive searches
towards the teams and players that participate in the tournament and the acquisi-
tion of a company by another company could establish a new relationship between
them and thus affect their relatedness. Some efforts have already been devoted to
improve the quality of recommendations in particular with respect to data fresh-
ness. For example, Sundog [8] uses a stream processing framework for ingesting
large quantities of Web search log data at high rates such that it can compute fea-
ture values and entity rankings in much less time compared to previous systems,
such as Spark [4], and thus can use more recently collected data for the ranking
process. However, the time-awareness, which should be a crucial factor in entity
recommendation, has still not been addressed.

Let us suppose users issue the keyword query “Germany Brazil” (see Fig. 1).
Then they are likely looking for related geographic or political entities. However,
when additionally specifying the time range “July 2014”, their interest is more
likely related to the German and Brazilian national football teams during the
2014 FIFA World Cup. Obviously, once time information is available, the goal
for a related entity search approach should be to improve entity recommendation
such that the ranking of related entities depends not only on entity information
in the knowledge base but also on the real-world events taking place in a specific
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time period. Therefore, it is essential to make time-awareness a top priority in
entity recommendation when a customized time range is given.

In this paper, we introduce the problem of time-aware entity recommendation
(TER), which allows users to restrict their interests of entities to a customized
time range. In general, the goal of TER is to (1) disambiguate the query entities
mentioned in the user query and (2) find the related entities to the query entities
as well as (3) rank all these query entities and related entities according to time
in order to match information needs of users, where the time dimension plays
an important role. As shown in Fig. 1, the keywords “Germany” and “Brazil”
result in different potential query entities. Since Germany national football team
and Brazil national football team are of particular interest during the given time
range “July 2014”, they should more likely be the intended query entities. For
each query entity, its related entities will be found through the relations between
entities, which can also be influenced by the time dimension. For example, the
query entity Brazil national football team results in the related entities Dunga,
the current coach of Brazilian national football team, and Luiz Felipe Scolari,
the coach during 2014 FIFA World Cup. By taking into account the time dimen-
sion, Luiz Felipe Scolari should be preferred over Dunga since the user requests
information from July 2014.

To achieve this, we propose a probabilistic model by decomposing the TER
task into several distributions, which reflect heterogeneous entity knowledge
including popularity, temporality, relatedness, mention and context. The para-
meters of these distributions are then estimated using different real-world data
sources, namely Wikipedia1, Wikilinks2, Wikipedia page view statistics3 and a
multilingual real-time stream of annotated Web documents. Please note that
the data sources used by existing systems are mostly not publicly accessible.
Particularly the major Web search engines keep their own usage data, like query
terms and search sessions as well as user click logs and entity pane logs, secret,
since they are crucial to optimizing their own entity recommendation systems,
like the ones of Yahoo! [4,8] and Microsoft [9,10]. In contrast, our approach does
not rely on datasets taken from commercial Web search engines, but only resorts
to data sources publicly available on the Web.

The main contributions of this paper are: (1) We introduce a formal definition
of the TER problem (2) and propose a statistically sound probabilistic model that
incorporates heterogeneous entity knowledge including the temporal context. (3)
We show how all parameters of our model can be effectively estimated solely
based on data sources publicly available on the Web. (4) Due to the lack of
benchmark datasets for the TER challenge, we have created new datasets to
enable empirical evaluations and (5) the results show that our approach improves
the performance considerably compared to time-agnostic approaches.

The rest of the paper is organized as follows. We present the overall approach,
especially the probabilistic model in Sect. 2. Then, we describe the estimation of

1 https://dumps.wikimedia.org/.
2 http://www.iesl.cs.umass.edu/data/wiki-links/.
3 https://dumps.wikimedia.org/other/pagecounts-raw/.

https://dumps.wikimedia.org/
http://www.iesl.cs.umass.edu/data/wiki-links/
https://dumps.wikimedia.org/other/pagecounts-raw/
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model parameters in Sect. 3. The experimental results are discussed in Sect. 4.
Finally, we survey the related work in Sect. 5 and conclude in Sect. 6.

2 Approach

We first formally define the time-aware entity recommendation (TER) task and
then describe the probabilistic model of our approach.

Definition 1 (Time-Aware Entity Recommendation). Given a knowl-
edge base with a set of entities E = {e1, · · · , eN}, the input is a keyword
query q, which refers to one or more entities, and a continuous date range
t = {dstart, · · · , dend} where dstart ≤ dend, and the output is a ranked list of
entities that are related to q, especially within t.

We use DBpedia as the knowledge base in this work, which contains an enormous
number of entities in different domains by extracting various kinds of structured
information from Wikipedia, where each entity is tied to a Wikipedia article.

2.1 Probabilistic Model

We formalize the TER task as estimating the probability P (e|q, t) of each entity
e given a keyword query q and a date range t. The goal is then to find a ranked
list of top-k entities e, which maximize the probability P (e|q, t). Based on Bayes’
theorem, the probability P (e|q, t) can be rewritten as follows

P (e|q, t) =
P (e, q, t)
P (q, t)

∝ P (e, q, t) (1)

where the denominator P (q, t) can be ignored as it does not influence the ranking.
To facilitate the discussion in the following, we first introduce the concepts of

mention and context. For a keyword query q, a mention is a term in q that refers
to an entity eq, also called query entity, and the context of eq is the set of all other
mentions in q except the one for eq. For each query entity eq, the keyword query
q can be decomposed into the mention and context of eq, denoted by seq

and ceq

respectively. For example, given the query entity Germany national football team,
the keyword query “Germany Brazil” results in the mention “Germany”and the
context {“Brazil”}. Based on that, the joint probability P (e, q, t) is given as

P (e, q, t) =
∑

eq

P (eq, e, q, t) =
∑

eq

P (eq, e, seq
, ceq

, t)

=
∑

eq

P (e)P (t|e)P (eq|e, t)P (seq
|eq, e, t)P (ceq

|eq, e, t) (2)

=
∑

eq

P (e)P (t|e)P (eq|e, t)P (seq
|eq)P (ceq

|eq, t) (3)
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where we assume in (2) seq
and ceq

are conditionally independent given eq and t,
in (3) seq

is conditionally independent of e and t given eq, and ceq
is conditionally

independent of e given eq and t. The intuition behind these assumptions is that
a mention seq

should only rely on the query entity eq it refers to and a context
ceq

that appears together with eq should depend on both eq and t.
The main problem is then to estimate the components of P (e, q, t) including

the popularity model P (e), the temporality model P (t|e), the relatedness model
P (eq|e, t), the mention model P (seq

|eq) and the context model P (ceq
|eq, t).

2.2 Data Sources

To derive the estimation of these distributions in our model, we present several
publicly available data sources. Based on these data sources, we discuss the
details of model parameter estimation in Sect. 3.

Wikipedia and Wikilinks. Wikipedia provides several resources, including
article titles, redirect pages and anchor text of hyperlinks, that associate each
entity with terms referring to it, also called surface forms [11]. Wikilinks [12] also
provides surface forms of entities by finding hyperlinks to Wikipedia from a Web
crawl and using anchor text as mentions. Based on such sources, we construct a
dictionary that maps each surface form to the corresponding entities.

Based on the observation that a more popular entity usually has more pages
linking to it, we take link frequency as an indicator of popularity. For example,
in Wikipedia the famous basketball player Michael Jeffrey Jordan is linked over
10 times more than the Berkeley professor Michael I. Jordan.

Wikipedia link structure has also been used to model entity relatedness [13],
without considering temporal aspects, where the intuition is that Wikipedia
pages containing links to both of the given entities indicate relatedness, while
pages with links to only one of the given entities suggest the opposite.

Page View Stream. Wikipedia page view stream provides the number of times
a particular Wikipedia page is requested per hour and thus can be treated as
a query log of entities. In general, a well-known entity usually gets more page
views than the obscure ones, such that the page view frequency also captures
the popularity of entities.

In addition, an entity is likely to get more page views when an event related
to it takes place. For example, during the FIFA World Cup, many participating
football teams and players will get more page views. This explains the significant
page view spike during an event when the entity receives media coverage, which
has been utilized for the event detection task [14]. In this sense, the page view
spike captures a user-driven measure of the temporality of entities.

Furthermore, an event could result in more page views for all the involved
entities. For example, when Facebook acquires WhatsApp, both of them get high
page view spikes. Based on this observation, simultaneous page view spikes of
entities can help with modeling the dynamic relatedness between entities.
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Annotated Web Document Stream. Another data source is a real-time
aggregated stream of semantically annotated Web documents. We first employ a
news feed aggregator4 to acquire a multilingual real-time stream of news articles
publicly available on the Web [15], where the enormous number of collected Web
documents are in various languages, such as English (50 % of all articles), Ger-
man (10 %), Spanish (8 %) and Chinese (5 %). Then we employ a cross-lingual
semantic annotation system5 to annotate the multilingual Web documents with
DBpedia entities, i.e., to link entity mentions to their referent entities [16]. Based
on that, entity co-occurrence statistics extracted from the annotated Web doc-
uments can help to identify dynamically related entities and the co-occurrence
frequency can be utilized to measure the dynamic relatedness between entities
w.r.t. a specific time range.

2.3 Candidate Selection

As there are millions of entities in DBpedia, it is extremely time-consuming to
calculate P (e, q, t) for all entities. To improve the efficiency of TER, we employ
a candidate selection process to filter out the impossible candidates. Given a
query q and a date range t, the candidate related entities are generated in three
different ways: (1) Based on the dictionary containing entities and their surface
forms extracted from Wikipedia and Wikilinks datasets, all query entities, whose
mentions can be found in q, are selected as a set of candidates, denoted by Eq.
(2) Given the set of subject, predicate and object triples {(s, p, o)} in DBpedia,
where all subjects and objects are entities, the potential candidate related entities
that have a relation to the query entities are identified as {e|∃p : (e, p, eq), eq ∈
Eq}∪{e|∃p : (eq, p, e), eq ∈ Eq}. (3) By analyzing the annotated Web documents,
the entities that co-occur with the query entities in the Web documents published
during the date range t are also considered as candidate related entities.

3 Model Parameter Estimation

Our probabilistic model is parameterized by Φe = P (e), Φt|e = P (t|e), Φe′|e,t =
P (e′|e, t), Φs|e = P (s|e) and Φc|e,t = P (c|e, t). In the following, we present the
details of parameter estimation based on the introduced data sources.

3.1 Popularity Model Φe

The distribution P (e) captures the popularity of entity e. By leveraging both
Wikipedia link structure and page view statistics, we first calculate C(e) as

C(e) = Clink(e) + βCview(e) (4)

where Clink(e) denotes the number of links pointing to e and Cview(e) denotes the
average number of page views on e per day. While Clink(e) represents the prior
4 http://newsfeed.ijs.si/visual demo/.
5 http://km.aifb.kit.edu/sites/xlisa/.

http://newsfeed.ijs.si/visual_demo/
http://km.aifb.kit.edu/sites/xlisa/
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popularity of e in Wikipedia, Cview(e) captures the popularity of e based on user
interests. Due to the different scales of link and page view frequencies, Cview(e)
is adjusted by a balance parameter β = total number of links in Wikipedia

average number of page views per day , which
accounts for the difference in frequencies of Wikipedia links and per-day page
views. Then the probability P (e) is estimated as follows

P (e) =
log (C(e)) + 1

∑
ei∈W log (C(ei)) + |W | (5)

where W denotes the set of all entities. The estimation is smoothed using Laplace
smoothing for avoiding the zero probability problem.

3.2 Temporality Model Φt|e
The distribution P (t|e) captures the temporality of entity e w.r.t. date range t.
We employ the page view statistics as a proxy for interest of each entity and
equate the page view spike with it. For each entity e, we track its per-day page
view counts for each date d. Then we compute the mean μ(e, d) and standard
deviation σ(e, d) of page views for entity e in a window of n days before d

μ(e, d) =
1
n

d−1∑

di=d−n

C(e, di) (6)

σ(e, d) =

√
√
√
√ 1

n

d−1∑

di=d−n

(C(e, di) − μ(e, d))2 (7)

where C(e, di) denotes the number of page views of e on date di. Inspired by [17],
we calculate the page view spike S(e, d) of entity e on date d as

S(e, d) =

{
C(e,d)−μ(e,d)

σ(e,d) if C(e,d)−μ(e,d)
σ(e,d) ≥ κ,

0 otherwise
(8)

where we assume that only the page view count C(e, d) that is abnormally large
compared with the previously seen page views of e, i.e. C(e,d)−μ(e,d)

σ(e,d) > κ (κ is a
fixed parameter set as 2.5 here), indicates an event and thus will be taken into
account to compute the page view spike S(e, d).

Based on the page view spike S(e, d) of entity e for date d, the estimation of
P (d|e), which is further smoothed using Laplace smoothing, is given as

P (d|e) =
S(e, d) + κ

∑
di∈T S(e, di) + κ|T | (9)

where |T | is the number of days contained in the longest date range T supported
by the system, which is set as one year here. Consequently, the probability P (t|e)
reflecting events about e happening within t can be calculated as follows (here
we assume that the dates within t are independent given the entity e)

P (t|e) =
∑

di∈t

P (di|e) (10)
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3.3 Relatedness Model Φe′|e,t

The distribution P (e′|e, t) models the entity relatedness between e and e′ w.r.t. t.
To estimate P (e′|e, t), we consider both static and dynamic entity relatedness as

P (e′|e, t) = λ
RS(e, e′)

∑
e′ RS(e, e′)

+ (1 − λ)
RD(e, e′, t)

∑
e′ RD(e, e′, t)

(11)

where RS(e, e′) measures the static relatedness between e and e′, RD(e, e′, t)
measures the dynamic relatedness between e and e′ w.r.t. t and λ is a parameter,
which is set as 0.2 by default and will be discussed in detail in the experiments.
For the special case that e = e′, we define P (e′|e, t) = 1.

For each pair of entities e and e′, we calculate their static relatedness RS(e, e′)
by adopting the Wikipedia link based measure introduced by [13] as

RS(e, e′) = 1 − log(max(|E|, |E′|)) − log(|E ∩ E′|)
log(|W |) − log(min(|E|, |E′|)) (12)

where E and E′ are the sets of entities that link to e and e′ respectively, and W
is the set of all entities.

In order to measure the dynamic relatedness RD(e, e′, t), we propose a novel
approach based on entity co-occurrence in Web documents and spike overlap of
page views, which will be discussed in the following.

Entity Co-occurrence. Based on the real-time stream of multilingual Web
news articles annotated with entities, we investigate entity co-occurrence in the
Web documents, which expresses the strength of dynamic entity association.
For each pair of e and e′ w.r.t. t, we calculate the entity co-occurrence measure
EC(e, e′, t) by adopting the method of χ2 hypothesis test introduced by [18] as

EC(e, e′, t) =
N(t)(C(e, e′, t)C(e, e′, t) − C(e, e′, t)C(e, e′, t))2

C(e, t)C(e′, t)(N(t) − C(e, t))(N(t) − C(e′, t))
(13)

where N(t) is the total number of Web documents published within the date
range t, C(e, e′, t) denotes the co-occurrence frequency of e and e′ in the Web
documents within t, C(e, t) and C(e′, t) denote the frequencies of e and e′ occur-
ring in the Web documents within t, respectively, and e, e′ indicate that e, e′ do
not occur in Web documents, i.e., C(e, e′, t) is the number of documents within
t where neither e nor e′ occurs, and C(e, e′, t) (C(e, e′, t)) denotes the number
of documents within t where e (e′) occurs but e′ (e) does not.

Spike Overlap. Based on the page view spike of entities, we propose spike
overlap SO(e, e′, t) to affect the dynamic relatedness between entities e and e′

w.r.t. t. The intuition is that the page view spike of e and e′ on the same date d
will contribute to the dynamic relatedness between e and e′. In this regard, we
calculate SO(e, e′, t) by adopting the weighted Jaccard similarity as

SO(e, e′, t) =
∑

d∈I min{S(e, d), S(e′, d)}
∑

d∈t max{S(e, d), S(e′, d)} (14)
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where I can be defined as the given date range t, i.e., I = t. However, the above
defined measure is only based on page view spikes of entities and thus suffers
from the situation that entities with significant page view spike on the same date
might not be associated in reality. Therefore, we construct the date set I as

I = {d|C(e, e′, d) ≥ τ, d ∈ t} (15)

where the co-occurrence frequency C(e, e′, d) of e and e′ in the Web documents
published on d has to exceed a threshold τ , which helps to determine if the page
view spike overlap is more likely to indicate an association between e and e′ than
just by chance. Based on our observation, it is reasonable to set τ as 10.

By taking both entity co-occurrence in Web documents and spike overlap of
page views into consideration, we calculate the dynamic relatedness RD(e, e′, t)
between entities e and e′ for a specific date range t as follows

RD(e, e′, t) = EC(e, e′, t) · SO(e, e′, t)2 (16)

3.4 Mention Model Φs|e

The distribution P (s|e) models the likelihood of observing the mention s given
the intended entity e. To estimate P (s|e), we employ Wikipedia and Wikilinks
datasets and propose a point-wise mutual information (PMI) based method as

P (s|e) =
PMI(e, s)

∑
si∈Se

PMI(e, si)
(17)

where Se is the set of surface forms of entity e and PMI(e, s) is calculated as

PMI(s, e) = log
P (s, e)

P (s)P (e)
= log

C(e, s) × N

C(s) × C(e)
(18)

where we have P (s) = C(s)
N , P (e) = C(e)

N , P (s, e) = C(e,s)
N based on maximum

likelihood estimation (MLE), C(s) is the number of links using s as anchor text,
C(e) is the number of links pointing to e, C(e, s) is the number of links using s
as anchor text pointing to e and N is the total number of links.

3.5 Context Model Φc|e,t

The probability P (c|e, t) models the likelihood of observing the context c given
the query entity e and the date range t. The context c of e contains the surface
forms of other entities related to e. Assuming that all surface forms sc in the
context c are independent given e and t, the probability P (c|e, t) is estimated as

P (c|e, t) =
∏

sc∈c

P (sc|e, t) (19)

The problem remains to estimate P (sc|e, t), the probability that a surface form
sc appears in the context of e w.r.t. t.
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Given the query entity e and date range t, we consider a generation process
of the context, where the context model first finds the related entities of e w.r.t. t
based on the relatedness model, and then generates the surface form sc of such
related entities as the context of e based on the mention model. The form of the
context generation for the query entity e and date range t is given as

PR(sc|e, t) =
∑

esc∈Esc

P (esc
, sc|e, t) =

∑

esc∈Esc

P (esc
|e, t)

︸ ︷︷ ︸
Relatedness

P (sc|esc
)

︸ ︷︷ ︸
Mention

(20)

where Esc
denotes the set of entities having surface form sc and we assume that

sc is independent of e and t given esc
, i.e., P (sc|esc

, e, t) = P (sc|esc
).

The above estimation suffers from the sparse data problem, i.e., some entities
are not related to a given query entity e, but might appear as the context of e in
the query q, which results in zero probability. Therefore, we perform smoothing
by giving some probability mass to such unrelated entities. The general idea is
that a surface form sc of entities that are not related to the query entity e should
also be possible to appear in the context of e and can be generated by chance.
In this regard, we define the probability P (s) of surface form s, which is built
from the entire collection of entities and surface forms, as

P (s) =

∑
e∈Es

C(e, s)
∑

si∈S

∑
ei∈Esi

C(ei, si)
(21)

where S is the set of all surface forms, Es is the set of entities having surface
form s, and C(e, s) denotes the frequency that s refers to e.

In order to achieve a robust estimation of the context model, we further
smooth PR(sc|e, t) using P (s) based on Jelinek-Mercer smoothing as follows

P (sc|e, t) = γPR(sc|e, t) + (1 − γ)P (sc) (22)

where γ is a tunable parameter that is set to 0.9 by line search in our experiments.
This estimation mixes the probability of sc derived from the related entities of
e with the general collection frequency of sc used to refer to any entities.

4 Evaluation

We now discuss the experiments we have conducted to assess the performance
of our approach to TER based on our newly created benchmark datasets.

4.1 Experimental Setup

In our experiments, we employ DBpedia 20146 as the knowledge base and the
Wikipedia snapshot of June 2014 as the auxiliary data source. Existing datasets
for the evaluation of entity recommendation aim to quantify the degree to which

6 http://wiki.dbpedia.org/Downloads2014.

http://wiki.dbpedia.org/Downloads2014
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entities are related to the query without involving temporal aspects, which makes
such datasets unsuitable for the TER task. There are some studies using a sub-
set of TREC queries for time-aware information retrieval, where the goal is
to investigate the user’s implicit temporal intent for document retrieval [19,20].
However, such datasets do not contain the time ranges of interest explicitly given
by users along with the queries and thus cannot be used for the TER evaluation.
Therefore, we have created a new dataset where we asked 6 volunteers, who also
serve as judges of the experimental results, to provide information needs of both
queries and date ranges. By removing the duplicate ones, it results in a final set
of 22 information needs in different domains including Sports, Entertainment,
Business, Emergencies, Society, Science and Politics. The datasets used in our
experiments are available at http://km.aifb.kit.edu/sites/ter/.

To the best of our knowledge, no existing work on the TER task can be found.
Therefore, we build the following baselines for comparison with our approach:
(1) the first baseline is a static method using an ad hoc ranking function without
considering the given time range t, defined as Score(e, q) =

∑
eq

C(eq)RS(eq, e),
where C(eq) represents the commonness of each query entity eq w.r.t. the cor-
responding mention in the query q, which has been introduced by [11,21], and
RS(eq, e) denotes the Wikipedia link based relatedness between each query entity
eq and the candidate entity e [13]; (2) the second baseline is similar to our
probabilistic model, but without taking into account the time range t, defined
as P (e, q) =

∑
eq

P (e)P (eq|e)P (seq
|eq)P (ceq

|eq), where P (e) and P (seq
|eq) are

estimated using our popularity and mention models respectively, P (eq|e) and
P (ceq

|eq) are also estimated using our relatedness and context models, but with
λ = 1 (see Eq. 11), i.e., only the static relatedness between entities is considered
in these models. For a comparative analysis, we have conducted the experiments
with several methods: the above described two baselines, denoted by BSL1 and
BSL2, respectively; our proposed method leaving out each of the popularity,
temporality, relatedness, mention and context models, denoted by −Φe, −Φt|e,
−Φe′|e,t, −Φs|e and −Φc|e,t, respectively; and our method with all these five
models, denoted by Full Model.

The existing work, such as the Spark system from Yahoo! [4] and the similar
one published by Microsoft [9,10], could also be used for comparison with our
method, even though they are not dedicated to the TER task. However, these
systems assume that a query refers to only one entity, so they cannot deal with
our more general case, where the query could involve multiple query entities.
More importantly, these systems rely on the datasets that only major Web search
engines have and are not publicly accessible. Due to these reasons, it is difficult
to re-implement such systems and compare them with our method.

4.2 Results of Entity Retrieval

To assess the quality of entities retrieved by our method, we employ Normalized
Discounted Cumulative Gain (nDCG) at rank k [22] as quality criteria, which
is defined as nDCG@k = DCG@k

IDCG@k , where DCG@k =
∑k

i=0
2reli−1

log2(i+1) and reli is

http://km.aifb.kit.edu/sites/ter/
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Table 1. nDCG@k of retrieved entities (with the best results in bold)

nDCG@k

BSL1 BSL2 −Φe −Φt|e −Φe′|e,t −Φs|e −Φc|e,t Full Model

k=5 0.597 0.622 0.805 0.778 0.140 0.800 0.797 0.824

k=10 0.594 0.621 0.817 0.786 0.176 0.803 0.804 0.839

k=15 0.596 0.640 0.846 0.810 0.505 0.830 0.823 0.859

k=20 0.616 0.642 0.865 0.831 0.521 0.853 0.847 0.879

k=30 0.635 0.658 0.898 0.877 0.552 0.895 0.887 0.925

Table 2. Recall@k of temporally related entities (with the best results in bold)

Recall@k

BSL1 BSL2 −Φe −Φt|e −Φe′|e,t −Φs|e −Φc|e,t Full Model

k=5 0.273 0.264 0.464 0.464 0.091 0.491 0.491 0.518

k=10 0.318 0.309 0.582 0.591 0.146 0.591 0.600 0.646

k=15 0.318 0.336 0.655 0.655 0.182 0.700 0.700 0.736

k=20 0.346 0.346 0.709 0.682 0.255 0.746 0.736 0.755

k=30 0.364 0.364 0.791 0.827 0.318 0.846 0.809 0.855

the graded relevance assigned to the result at position i and IDCG@k is the
maximum attainable DCG@k. This measure captures the goodness of a retrieval
model based on the graded relevance of the top-k results. For each information
need, all the entities retrieved by different methods are judged on 1–5 relevance
scale by the 6 volunteers based on the criteria including both relevance and
timeliness w.r.t. the underlying information needs. The final relevance of each
candidate entity is determined by the relevance score voted by most judges and
ties are resolved by the authors. More details about the description of each
graded relevance are available in our datasets.

The experimental results of nDCG@k with varying k for different methods
are shown in Table 1. Our method with Full Model performs the best for different
k. Compared with the static baseline BSL2 using a similar probabilistic model,
it achieves 32.5%, 35.1%, 34.2%, 36.9% and 40.6% improvements when k is 5,
10, 15, 20 and 30, respectively. The baselines only obtain better results compared
with our method without the relatedness model, while our method leaving out
any other model still greatly outperforms the baselines. By comparing the two
static baselines, BSL2 clearly outperforms BSL1, which also shows the advantage
of the method based on our probabilistic model over the ad hoc method.

As we focus on the TER task, the capability of our method to find temporally
related entities is of great importance such that we have created an additional
dataset consisting of only temporally related entities, which are also determined
based on the votes of the 6 judges. Firstly, they are asked to select the entities
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Table 3. The gold-standard ranking of 10 entities (with dynamically related ones in
bold) for the query “Germany Brazil” and the date range “July 2014” as well as the
rankings by the baseline BSL2 and our method with Full Model

Gold standard BSL2 Full model

Germany nat’l football team Latin America Brazil nat’l football team

Brazil nat’l football team Brazil nat’l football team Germany nat’l football team

2014 FIFA World Cup Brazil nat’l basketball team 2014 FIFA World Cup

Joachim Löw 2014 FIFA World Cup Luiz Felipe Scolari

Toni Kroos Germany nat’l football team FIFA World Rankings

Luiz Felipe Scolari FIFA World Rankings Toni Kroos

Neymar Luiz Felipe Scolari Neymar

FIFA World Rankings Neymar Joachim Löw

Latin America Joachim Löw Latin America

Brazil nat’l basketball team Toni Kroos Brazil nat’l basketball team

that are temporally related to each information need and such entities are then
ranked by the number of times being selected. Only the top-5 ranked candidates
are included into the final dataset, where ties are resolved by the authors. This
results in 110 entities in total (5 for each of the 22 information needs).

In this experimental setting, we are concerned with whether these temporally
related entities can appear on top of the ranked list of the retrieved entities. For
this, we consider recall at rank k (recall@k) as quality criteria, where recall
defines the number of relevant results that are retrieved in relation to the total
number of relevant results and recall@k is defined by only taking into account the
top-k results. The experimental results of recall@k with varying k for different
methods are shown in Table 2. While the two static baselines exhibit only minor
differences, our method with Full Model achieves a considerable performance
improvement over the baselines for different k.

For both measures of nDCG@k and recall@k, we observe that our method
achieves better results by adding each individual model and the relatedness
model that incorporates both static and dynamic entity relatedness contributes
the most. For example, when k = 30, nDCG@k and recall@k decrease 40.1%
and 62.8% respectively, by ablating the relatedness model, while the performance
reduction without the other models ranges from 5.2% to 2.9% for nDCG@k and
from 7.5% to 1.1% for recall@k.

4.3 Results of Entity Ranking

The measures of nDCG@k and recall@k assess the quality of only top-k results,
while we would like to evaluate the ranking of entities from highly relevant
ones to only remotely relevant or even not relevant ones. Therefore, we have
created another dataset, where the authors select 10 candidate entities for each
information need in a way that their relevances are clearly distinguishable among
each other. Similar to [23], the gold-standard ranking of the 10 candidate entities
is then created in the following way: (1) for all possible comparisons of the
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Table 4. Spearman rank correlation between the gold-standard ranking and the rank-
ing generated by different methods (with the best results in bold)

Domain (#Query) BSL1 BSL2 −Φe −Φt|e −Φe′|e,t −Φs|e −Φc|e,t Full model

Sports (6) 0.149 0.289 0.531 0.572 0.240 0.646 0.529 0.663

Entertainment (4) 0.191 0.252 0.594 0.645 0.188 0.667 0.673 0.688

Business (3) 0.596 0.596 0.790 0.834 −0.139 0.838 0.855 0.838

Emergencies (4) −0.130 −0.082 0.473 0.421 0.470 0.503 0.467 0.494

Others (5) 0.365 0.358 0.612 0.522 0.232 0.576 0.527 0.581

Average 0.216 0.272 0.586 0.582 0.219 0.634 0.588 0.642

10 candidate entities (45 in total), the 6 judges are asked which of the given two
entities is more related to the information need by considering both relevance
and timeliness; (2) all comparisons are then aggregated into a single confidence
value for each entity and the 10 candidate entities are ranked by these confidence
values as described by [24]. The final output is a set of 22 ranked lists consisting
of 10 entities for each, against which we compare the automatically generated
rankings by different methods using Spearman rank correlation, which measures
the strength of association between two ranked variables. Some examples of
different rankings are shown in Table 3.

The Spearman rank correlation between the gold-standard ranking and the
automatically generated rankings by all these methods is given in Table 4. It
shows that the experimental results of entity ranking are consistent with the
results obtained in the entity retrieval experiments. The static baseline BSL2
with a probabilistic model yields slightly better results than the baseline BSL1
that is based on an ad hoc method. Clearly, our method with Full Model achieves
the best results and considerably outperforms the baselines. Similarly, all the
individual models contribute to the final performance improvement, where the
relatedness model contributes the most. By respectively ablating the models
Φe, Φt|e, Φe′|e,t, Φs|e and Φc|e,t, the performance correspondingly reduces 8.7%,
9.3%, 65.8%, 1.2% and 8.4%.

Our method is sensitive to the parameter λ used in the relatedness model
(see Eq. 11). Intuitively, a smaller λ reflects that the dynamic entity relatedness

Table 5. Spearman rank correlation between the gold-standard ranking and the rank-
ing by our Full Model for different λ (with the best results in bold)

Domain λ = 0 λ = .1 λ = .2 λ = .3 λ = .4 λ = .5 λ = .6 λ = .7 λ = .8 λ = .9 λ = 1

Sports 0.620 0.653 0.663 0.636 0.634 0.610 0.604 0.564 0.541 0.489 0.285

Entertainment 0.573 0.670 0.688 0.636 0.612 0.530 0.512 0.473 0.445 0.439 0.348

Business 0.737 0.838 0.838 0.842 0.842 0.842 0.822 0.826 0.834 0.794 0.657

Emergencies 0.530 0.518 0.494 0.509 0.467 0.479 0.458 0.412 0.367 0.303 −0.058

Others 0.537 0.576 0.581 0.564 0.537 0.503 0.505 0.534 0.537 0.493 0.280

Average 0.592 0.639 0.642 0.625 0.606 0.579 0.568 0.549 0.531 0.489 0.284
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measure plays a more important role in the model. Table 5 shows the impact of
λ on the ranking performance of our method with Full Model, where λ = 0.2
yields the best results on average, which has been used as the default value in
our experiments. We observe that only using the dynamic relatedness measure,
i.e., λ = 0, achieves the best results for the Emergencies domain. This is because
in this domain there are more entities that are only dynamically related to the
query. For example, given the information need about the crash of Indonesia
AirAsia Flight 8501 into the Java sea in December 2014, where the query is
“Indonesia Java” and the date range is “December 2014”, the related entities
AirAsia, Aviation accidents and incidents and Search and rescue do not have a sta-
tic connection with the query. Another tunable parameter is γ (see Eq. 22). We
observe that γ = 0.9 achieves the best results, which has been set as the default
value in our experiments. For the sake of space, we omit the results based on
different γ because they exhibit only minor differences.

5 Related Work

The TER task can be placed in the context of (1) entity search, (2) related entity
recommendation and (3) temporal information retrieval.

Entity search has been defined by [1] as finding entities explicitly named in
the query. Recently, entity search becomes more complex and closer to question
answering when the query only provides a description of the target entity, where
a list of member relationships to a single entity is given in the query. A recent
development in evaluating entity search of this type was the introduction of the
Related Entity Finding using Linked Open Data (REF-LOD) task at the TREC
Entity Track in 2010 and 2011 [25], where the type of relation to the target
entity and the type of the target entity are both given as constraints.

For related entity recommendation, the Spark system developed at Yahoo!
extracts several features from a variety of data sources and uses a machine
learning model to produce a recommendation of entities to a Web search query,
where neither the relation type nor the type of the target entity are specified [4].
Following Spark, Sundog aims to improve entity recommendation, in particu-
lar with respect to freshness, by exploiting Web search log data using a stream
processing based implementation [8]. Microsoft has also developed a similar sys-
tem that performs personalized entity recommendation by analyzing user click
logs and entity pane logs [9,10].

In recent years, the time dimension has received a large share of attention in
temporal information retrieval [5]. The temporal characteristics of queries [26]
and dynamics of document content [27] have been leveraged in relevance ranking.
The real-time information extracted from Twitter has been used to train learning
to rank models [28]. To improve Web search results, the temporal information has
also been used for query understanding [29] and auto-completion of queries [30].
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6 Conclusions

In this paper, we introduce a novel task of time-aware entity recommendation
(TER), since we argue that time-awareness should be a crucial factor in entity
recommendation, which has not been addressed so far. To tackle this challenge,
we propose a probabilistic model that aims to rank related entities according to
a time-specific information need presented as a keyword query and a date range.
The main contribution of our approach is that we decompose the TER task into
several well defined probability distributions, each representing the context of
a different component in the model. Through these components, heterogeneous
entity knowledge extracted from different data sources that are publicly available
on the Web can be incorporated into our model. Experimental results show
that our method clearly outperforms approaches that are not context-aware,
specifically when being time-agnostic.

Acknowledgments. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007–2013) under grant
agreement no. 611346.
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Abstract. The amount of entities in large knowledge bases available on
the Web has been increasing rapidly, making it possible to propose new
ways of intelligent information access. In addition, there is an impending
need for technologies that can enable cross-lingual information access.
As a simple and intuitive way of specifying information needs, keyword
queries enjoy widespread usage, but suffer from the challenges including
ambiguity, incompleteness and cross-linguality. In this paper, we present
a knowledge base approach to cross-lingual keyword query interpretation
by transforming keyword queries in different languages to their semantic
representation, which can facilitate query disambiguation and expansion,
and also bridge language barriers. The experimental results show that our
approach achieves both high efficiency and effectiveness and considerably
outperforms the baselines.

1 Introduction

The ever-increasing quantities of entities in large knowledge bases (KBs), such as
Wikipedia, DBpedia, Freebase and YAGO, pose new challenges but at the same
time open up new opportunities of intelligent information access on the Web.
In recent years, many research activities involving entities have emerged, such
as entity tagging/extraction from texts and entity linking/disambiguation with
KBs. Furthermore, there is an increasing portion of Web search queries involv-
ing entities. For example, through query log analysis, Pound et al. [1] found that
more than half of Web queries are related to entities. In this regard, the exploita-
tion of entities and their relations in information retrieval (IR) research beyond
the term-based paradigm has become an area of particular interest. Recently,
almost every major commercial Web search engine has announced their work on
incorporating entity information from knowledge bases into its search process,
including Google’s Knowledge Graph, Yahoo!’s Web of Objects and Microsoft’s
Satori Graph / Bing Snapshots.

Within the context of globalization, multilingual and cross-lingual access to
information has drawn increasing attention. Nowadays, more and more people
from different countries are connecting to the Internet and many Web users are
able to understand more than one language, e.g., more than half of the citizens
in the European Union can speak at least one other language than their mother
tongue. While the diversity of languages on the Web has been growing in recent
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 615–631, 2016.
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years, for most people there is still very little content in their native language.
As a consequence of the ability to understand more than one language, users are
also interested in Web content in other languages.

In addition, keyword search has proven to be a simple and intuitive paradigm
for expressing information needs of users. However, traditional keyword search
systems mainly suffer from the following challenges.

Ambiguity. Keyword queries are naturally ambiguous due to the fact that
keywords could refer to different things in different contexts. In the multilingual
and cross-lingual settings, this problem is more serious, e.g., “WM ” could refer
to the entity Windows Mobile in English and FIFA World Cup in German1.

Incompleteness. Keyword queries are often incomplete in the sense that
instead of the full entity names, only the aliases, acronyms and misspellings are
usually given in the queries. In addition, keyword queries might contain concept
names representing a set of entities, e.g., “Internet companies of China”.

Cross-linguality. Multilingual users probably formulate their information
needs using native language. However, they are interested in relevant informa-
tion in any language that they can understand. In some other cases, multilingual
users could issue queries consisting of keywords in multiple languages. For exam-
ple, Chinese users might represent a foreign company using its original name
and a local company using its Chinese name, such as “Google ” with the
aim of finding the relationship between Google and Baidu, the largest search
engines for English and Chinese, respectively. In addition, specifying the query
language should not be the burden of users, which poses new challenges since
existing techniques for language detection, such as the well-known character n-
gram probability language model, do not work well for short keyword queries [2].

In order to address these challenges, we present a knowledge base approach
to cross-lingual keyword query interpretation. The goal is to find entity graphs
in the KB matching the keyword query, called query entity graphs (QEG), which
reflect different semantic interpretations of the keyword query. More specifically,
our approach aims to eliminate the ambiguity of keyword queries by exploiting
the semantic graph of the KB to generate the top-k QEGs. It supports keyword
queries matching entities in their incomplete forms, such as aliases, acronyms
and misspellings instead of the full names. In addition, the matching concepts
in keyword queries are automatically expanded into sets of associated entities.
To the best of our knowledge, this is the first work that allows users to issue
keyword queries in any language, which can even contain keywords in multiple
languages, for finding the query interpretations grounded in any other languages.

It is noteworthy that this work has been incorporated into XKnowSearch!2, a
novel system to entity-based cross-lingual information retrieval (IR) [3]. With the
help of the resulting QEGs, XKnowSearch! allows users to further explore entity
relations to refine the queries. For bridging the language barriers between queries
and documents, XKnowSearch! leverages the cross-lingual query interpretation
1 WM is the abbreviation of Weltmeisterschaft in German, which means World Cup.
2 http://km.aifb.kit.edu/sites/XKnowSearch/.

http://km.aifb.kit.edu/sites/XKnowSearch/
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technique in this paper and a cross-lingual semantic annotation system [4] to
construct semantic representation of keyword queries and documents in different
languages, which are then used for document retrieval.

The main contributions of this paper are: (1) the introduction of a knowledge
base approach to cross-lingual query interpretation by representing information
needs of users as entity graphs to address the challenges of traditional keyword
search; (2) a scoring mechanism for effective query interpretation ranking by
exploiting various structures in the multilingual KB; (3) a new top-k query graph
exploration algorithm aimed for efficient query interpretation generation; and (4)
a separate evaluation of the ranking mechanism and the top-k graph exploration
algorithm to show that both of them lead to a considerable improvement over
the baseline methods on effectiveness and efficiency, respectively.

The rest of the paper is organized as follows. We firstly introduce the problem
in Sect. 2 and provide an overview of our approach in Sect. 3. Details on the
scoring mechanism and the top-k query graph exploration algorithm are then
presented in Sects. 4 and 5, respectively. Experimental results are presented in
Sect. 6. Finally, we survey the related work in Sect. 7 and conclude in Sect. 8.

2 Problem Definition

We deal with the scenarios where queries formulated by users are sets of keywords
in any language or even in multiple languages, which are unknown in advance.
Given such queries, we first introduce the concepts of key term and key term set
and then define the query entity graph (QEG) as the interpretation of a query.

Definition 1 (Key Term and Key Term Set). Given a query Q consisting of a
sequence of keywords 〈k1, · · · , kn〉, a key term t = 〈ki, · · · , kj〉 is a subsequence
of Q with the start index start(t) = i and the end index end(t) = j, for which at
least one matching entity or concept can be found in the knowledge base. A key
term set T = {t1, · · · , tm} is a set of non-overlapping key terms resulting from
Q such that for any t and t′ in T either start(t) ≤ end(t′) or end(t) ≥ start(t′).

For example, the keywords “online companies of US”could result in many key
terms like online, companies, online companies, US and online companies of US,
which could lead to different key term sets, such as {online, companies, US}
and {online companies of US}. The key terms like online and US could refer to
the entities Online game and United States, respectively, while online companies
of US might refer to the concept Internet companies of the United States, which
has a list of associated entities belonging to it, such as Google, Yahoo! and EBay.

We consider the KB as a directed graph GKB(N,E), where each node n ∈ N
represents an entity and each edge e(ni, nj) ∈ E denotes the relation between
entities ni and nj . Given the key term sets resulting from a keyword query Q,
the query interpretation of Q, i.e., the query entity graph, is defined as follows:

Definition 2 (Query Entity Graph). A query entity graph (QEG) to a key-
word query Q, denoted by GQ = (NQ, EQ), is a subgraph of GKB(N,E), which
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(a) (b) (c) (d)

Fig. 1. Example QEGs generated by our system for the queries (a) “WM Götze”, (b)

“online companies of US NDX”, (c) “Google and (d) “eBay ”

satisfies the following conditions: (1) there exists at least one key term set T and
for each key term t ∈ T there is at least one entity nt ∈ N that matches t. The
set of matching entities containing one for every t ∈ T is NT ⊆ NQ; (2) for
every possible pair ni, nj ∈ NT and ni �= nj, there is a path ni � nj, i.e., an
edge e(ni, nj) ∈ E or a sequence of edges e(ni, nk) . . . e(nl, nj) in E, such that
every ni ∈ NT is connected to every other nj ∈ NT .

Problem. We are concerned with the computation of QEGs from keywords in
any language or even in multiple languages. Given a query Q, the goal is to find
the top-k ranked QEGs, where the ranking is produced by the application of a
scoring function S : GQ → s. For any given QEG GQ, S assigns a score s that
captures the degree to which GQ matches the information need of users.

Some examples of the top-ranked QEGs generated by our system for different
queries are shown in Fig. 1. To avoid the users’ burden of specifying the query
languages, our approach does not assume any input language given by users for
all the queries. In the query “WM Götze”, the keyword “WM ”, which could refer
to 212 entities in German and 11 entities in English, has been disambiguated
as FIFA World Cup based on the relation to Mario Götze. Regarding the query
“online companies of US NDX ”, the alias “online companies of US” referring
to the concept Internet companies of the United States has been resolved to the
entity Google, which is listed in NASDAQ-100 referred to by the acronym “NDX ”.
For the multilingual queries “Google ” and“eBay ”, our approach can
deal with them by supporting query keywords in multiple languages.

3 Overview of the Approach

In this section, we provide an overview of the off-line preprocessing and online
computation required in our approach to cross-lingual query interpretation.

Preprocessing. In this work, we use DBpedia as the knowledge base, which
is a crowd-sourced community effort to extract structured information from
Wikipedia in different languages. In the following, we briefly introduce the offline
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cross-lingual grounding extraction, where we construct the cross-lingual lexica3

by exploiting multilingual Wikipedia to extract the cross-lingual groundings of
DBpedia entities and concepts, which correspond to Wikipedia articles and cate-
gories, respectively. As Wikipedia provides several useful structures, such as titles
of pages, redirect pages, disambiguation pages and link anchors, which associate
entities and concepts in DBpedia with terms including words and phrases, also
called labels or surface forms, all of them can be used to refer to the corre-
sponding resources. In addition, Wikipedia pages in different languages that
provide information about the equivalent resources are often connected through
the cross-language links. Based on the above sources, for each DBpedia entity
or concept grounded in one language we extract its possible surface forms in
different languages. More details can be found in our previous work [5,6]. The
cross-lingual lexica and the knowledge extracted from DBpedia are indexed for
online computation. Based on such indexed data, we are concerned with rank-
ing the query interpretations effectively and propose a scoring mechanism for it,
which will be discussed in Sect. 4.

Query Interpretation Computation. In order to compute the QEGs as query
interpretations for a keyword query Q, all the key terms are first extracted from
Q based on the cross-lingual lexica, which has been also used for finding the
matching entities nt for each key term t, where either t can be used to refer to
nt directly or nt belongs to a concept that can be referred to by t. Such key
terms then result in different key term sets, each of which reflects one possible
information need of users. For each key term set T and all the matching entities
of its key terms, the exploration of the knowledge graph GKB starts from each
matching entity nt of a key term t ∈ T to find a connecting element, denoted by
nc, namely an entity that connects at least one starting entity nt for all t ∈ T .
Once a connecting element nc is found, a QEG can be constructed from a set of
paths that start at each nt and meet at nc. This process of exploration continues
until the top-k QEGs have been achieved. In this paper, we are concerned with
performing this query interpretation computation efficiently and propose a new
top-k graph exploration algorithm, which will be discussed in Sect. 5.

4 Query Graph Scoring

A keyword query could result in many QEGs all corresponding to possible query
interpretations. This section introduces a scoring mechanism that aims to assess
the relevance of QEGs for effective query interpretation ranking.

4.1 Key Term Set Score

Our approach supports query keywords in multiple languages and we assume
that the languages of keywords in a query Q are unknown, such that key terms
extracted from Q could be entity/concept names in any language. Therefore,

3 http://km.aifb.kit.edu/sites/xlid-lexica/.

http://km.aifb.kit.edu/sites/xlid-lexica/
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for each language L, we define the probability P (tL) that the key term t in L,
denoted by tL

4, is an entity name or a concept name as

P (tL) =
countlink(tL)

countlink(tL) + counttext(tL)
(1)

where countlink(tL) denotes the number of links using t as anchor text and
counttext(tL) denotes the frequency of t mentioned in plain text without links
in Wikipedia of language L. This estimation is further smoothed by the Laplace
smoothing method for the zero probability problem. As the languages of query
keywords are not specified, we define the probability P (t) that the key term t
refers to an entity or a concept for a set of supported languages L as

P (t) = max
L∈L

P (tL) (2)

All the possible key terms might result in many key term sets that reflect
different information needs. Therefore, we define the score of each key term set
in the following. Given a keyword query Q, for each resulting key term set T , we
take into account both its importance and informativeness. In general, the more
often a key term t is selected as anchor text for the corresponding resources,
i.e., t has larger P (t), the more likely that t is important. In addition, the more
keywords in Q are covered by all key terms t ∈ T , the more likely that T is
informative, since it can reflect more aspects of the initial keyword query. Based
on the above observation, we calculate the score of T as

S(T ) =
∑

t∈T P (t) · ∑
t∈T |t|

|T | (3)

where |t| is the number of keywords in t and |T | is the number of key terms in
T . While

∑
t∈T P (t) reflects the importance of T ,

∑
t∈T |t| captures its infor-

mativeness. The denominator |T | is a normalization factor used to reduce the
advantage of T with more key terms. For example, {online, companies, US}
might result in a larger numerator compared with {online companies of US}.

4.2 Entity Matching Score

For each key term t, there might be many entities that can be referred to by
t. Assuming that t is in language L, denoted by tL, we define the probability
P (nL′ |tL) that tL refers to the entity nL′ grounded in the target language L′ as

P (nL′ |tL) =
countlink(nL, tL) · τ(nL, nL′)
∑

nL∈NL
countlink(nL, tL)

(4)

where countlink(nL, tL) denotes the number of links using tL as anchor text
pointing to nL in Wikipedia of language L and NL is the set of entities that
4 We use t for a term whose language is not observed and tL for the same term t whose

language is considered as L.



A Knowledge Base Approach to Cross-Lingual Keyword 621

have name tL. The language mapping function τ(nL, nL′) is defined as

τ(nL, nL′) =

{
1 if nL

LL↔ nL′ or nL = nL′ ,

0 otherwise
(5)

where nL and nL′ are considered to be an equivalent entity if they are connected
by cross-language links in Wikipedia, denoted by nL

LL↔ nL′ . Given a key term t,
for which the language is not specified, we calculate the matching score of entity
nL′ based on the maximal probability P (nL′ |tL) as

Sm(nL′ , t) = max
L∈L

P (nL′ |tL) (6)

In addition, for each key term tL in language L that could be a concept
name, we first map tL to the matching concepts CL in the same language L
and then expand each CL into a set of associated entities in the target language
L′, denoted by N tL

L′ , based on the associations between entities and concepts as
well as the cross-language links between entities available in the KB (see more
details about concept matching and expansion in our TR [7]). Let |N tL

L′ | denote
the number of entities in N tL

L′ . For each entity nL′ ∈ N tL
L′ , we calculate its score

based on a uniform distribution over all entities in N tL
L′ , Similarly, the matching

score of entity nL′ is calculated based on the maximal score w.r.t. tL as

Sm(nL′ , t) = max
L∈L

1
|N tL

L′ | (7)

4.3 Query Entity Graph Score

Given a key term set T extracted from a keyword query Q and the set of matching
entities NT containing one for each key term t ∈ T , each QEG, denoted by GT

Q,
is constructed from a set of paths that start at each ns ∈ NT matching a key
term t ∈ T and meet at a connecting element nc. Based on that, we introduce a
scoring function to assess the relevance of QEGs as follows

S(GT
Q) =

∑

ns∈NT

S(T ) · Sm(ns, t) · S(Pns�nc
) (8)

where S(T ) is the score of key term set T defined in Eq. 3, Sm(ns, t) is the
matching score of entity ns defined in Eqs. 6 and 7, and S(Pns�nc

) captures the
score of edges 〈ni, nj〉 along the path Pns�nc

from ns to nc, defined as

S(Pns�nc
) =

∏

〈ni,nj〉∈Pns�nc

Sr(ni, nj) · (Sp(ni) + Sp(nj))
2

(9)

where Sr(ni, nj) measures the relatedness between entities ni and nj , and Sp(n)
reflects the popularity of entity n.
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For each pair of entities ni and nj , we adopt the Wikipedia link-based mea-
sure described in [8] to calculate their relatedness score as follows

Sr(ni, nj) = 1 − log(max(|Ni|, |Nj |)) − log(|Ni ∩ Nj |)
log(|N |) − log(min(|Ni|, |Nj |)) (10)

where Ni and Nj are the sets of entities that link to ni and nj respectively, and
N is the set of all entities in the KB.

To measure entity popularity, we exploit both Wikipedia link structure and
page view statistics. The second source captures the number of times Wikipedia
pages are requested and can be treated as a query log of entities. By leveraging
the two sources, we calculate the frequency of entity n as

freq(n) = freqlink(n) + β · freqview(n) (11)

where freqlink(n) denotes the number of links pointing to n in Wikipedia and
freqview(n) denotes the average number of page view requests on n per day.
While freqlink(n) represents the prior popularity of n in the KB, freqview(n)
captures the popularity of n based on user interests. Due to the different scales
between Wikipedia link frequency and page view request frequency, freqview(n)
is adjusted by a balance parameter β = total number of links in Wikipedia

average number of page views per day , which
accounts for the difference in frequencies of Wikipeida links and per-day page
view requests. Then the popularity score of each entity n ∈ N is calculated as

Sp(n) =
freq(n)

∑
ni∈N freq(ni)

(12)

5 Top-K Query Graph Exploration

In this section, we present the top-k query graph exploration for efficient query
interpretation generation. The goal is to find top-k QEGs that connect at least
one entity for each key term in a key term set. For pragmatic reasons, existing
solutions [9–11] use a maximal path length dmax, such that only paths of length
dmax or less between entities ni and nj , denoted by ni �dmax nj , will be taken
into account. Such restriction has also been applied to graph exploration in this
work, where dmax is set as 6. The algorithm is shown in Algorithm 1.

Input and Data Structures. The input to the algorithm comprises the list
of top-m key term sets LT = {T1, · · · , Tm} and the list LN = {Nt1 , · · · , Ntn},
where each Nti is a set of entities matching key term ti. And dmax is the maximal
path length applied to the graph exploration. For each entity n, we keep track of
the information of paths from an entity nstart matching tij ∈ Ti

5 to n, where n.Stij

is used to store each pair of the starting entity nstart and the score snstart
of the

path from nstart to n, n.stij
and n.dtij

are employed to store the maximal score

5 We use tij to denote a key term tj belonging to a specific key term set Ti, while tj
represents the same key term without considering the key term sets it belongs to.
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Algorithm 1. Top-k Exploration of QEGs
Input: LT = {T1, · · · , Tm}; LN = {Nt1 , · · · , Ntn}; dmax.
Data: n.S

ti
j
= {〈n1, sn1 〉, · · · , 〈nl, snl

〉}; n.s
ti
j
; n.d

ti
j
; LQTi

= {NQ
ti1

, · · · , NQ
ti|Ti|

};

UBTi
= {ub

ti1
, · · · , ub

ti|Ti|
}; S(G

Ti
Q ); R; θ.

Result: the top-k optimal QEGs.
1 foreach Ti ∈ LT do
2 foreach tij ∈ Ti do
3 foreach nstart ∈ Ntj

do
4 if ∀tik �=j ∈ Ti, ∃n′

start ∈ Ntk
: nstart �dmax n′

start then
5 snstart ← S(Ti) · Sm(nstart);
6 nstart.Sti

j
.add(〈nstart, snstart 〉);

7 nstart.sti
j

← snstart ;

8 nstart.dti
j

← 0;

9 NQ
ti
j
.add(nstart);

10 end
11 end
12 ub

ti
j

← maxn∈NQ
ti
j

n.s
ti
j
;

13 end

14 S(G
Ti
Q ) ←∑

ub
ti
j

∈UBTi
ub

ti
j
;

15 end
16 while not all NQ ∈ LQ are empty do

17 Ti ← argmaxTi∈LT S(G
Ti
Q );

18 tij ← argmax
tij∈Ti

ub
ti
j
;

19 n ← NQ
ti
j
.pop();

20 foreach n′ ∈ n.neighbors() do
21 n′.d

ti
j

← n.d
ti
j
+ 1;

22 if n′.d
ti
j

< dmax and ∀tik �=j ∈ Ti, ∃n′
start ∈ Ntk

: n′ �
dmax−n′.d

ti
j n′

start then

23 foreach 〈nstart, snstart 〉 ∈ n.S
ti
j
do

24 s′
nstart

← snstart · Sr(n,n′)·(Sp(n)+Sp(n′))
2 ;

25 n′.S
ti
j
.add(〈nstart, s′

nstart
〉);

26 end
27 n′.s

ti
j

← n′.S
ti
j
.maxScore();

28 NQ
ti
j
.add(n′);

29 ub
ti
j

← maxn∈NQ
ti
j

n.s
ti
j
;

30 S(G
Ti
Q ) ←∑

ub
ti
j

∈UBTi
ub

ti
j
;

31 if ∀tij ∈ Ti : n′.S
ti
j

is not empty then

32 R.add(newQEGsByMergingPath(n′));

33 if R.size() ≥ k and maxTi∈LT S(G
Ti
Q ) < θ then

34 return Top-k(R);

35 end
36 end
37 end
38 end
39 end
40 return Top-k(R);
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extracted from n.Stij
and the length of shortest path from entities matching tij

to n, respectively. For each Ti, LQTi
is a list of NQtij

, each of which is a priority
queue of entities on the paths starting at entities matching tij and UBTi

is a list
of upper bound scores ubtij

for paths starting at entities matching all tij ∈ Ti.
For supporting top-k, R is used to keep track of the obtained candidate QEGs
during graph exploration and θ denotes the lowest top-k score of the QEG in R.

Initialization. Instead of starting at entities matching each query keyword as
described in [9–12], our exploration starts with each matching entity nstart ∈ Ntj

for a key term tij ∈ Ti (Lines 1–3). For each starting entity nstart, we first
check its connectivity (Line 4) to avoid unproductive exploration, which will
be discussed later. When the connectivity condition is satisfied, we initialize
the score snstart

stored in nstart.Stij
, the maximal score nstart.stij

and the dis-
tance nstart.dtij

(Lines 5–8). Such starting entities nstart are then added into the
respective queue NQtij

∈ LQTi
(Line 9) and the upper bound score ubtij

for each
tij is initialized as the maximal score for all nstart ∈ NQtij

(Line 12).

Connectivity Checking. The aim of checking the connectivity (Lines 4 and 22)
is to predict whether an entity n could participate in any QEGs. Given an entity
n with path of length n.dtij

from nstart matching tij ∈ Ti to n, if it cannot reach
some entities n′

start matching tik ∈ Ti (k �= j) within distance dmax − n.dtij
, it is

guaranteed not to be a connecting element and thus the exploration involving
n can be avoided. For efficient entity connectivity indexing, we model paths
between entities in GKB with length no larger than d as a boolean matrix Md

KB ,
where each entry md

ij is 1, if there is a path between entities ni and nj of length
no larger than d; otherwise, md

ij is 0. The matrix Mdmax

KB is constructed iteratively
using the formula Mdmax

KB =Mdmax−1
KB × M1

KB .

Upper Bound Principle. The upper bound principle captures the goal of
exploring only necessary entities for generating the top-k QEGs. The key is to
effectively bound the ultimate score of potential QEGs based on the currently
explored paths. Since the score of each edge 〈ni, nj〉 defined in Eq. 9 is less than 1,
the score of paths satisfy the subset monotonic property, namely S(Pnstart�n) ≥
S(Pnstart�n′) if Pnstart�n ⊆ Pnstart�n′ . This implies that the score of a path
cannot increase after path expansion during graph exploration and thus the
score of all paths starting at entities matching tij can be upper bounded by the
maximal score for all n ∈ NQtij

. i.e., ubtij
= maxn∈NQ

ti
j

n.stij
, where n.stij

=

n.Stij
.maxScore(). These upper bound scores indicate the best the potential

QEGs resulting from Ti, denoted by GTi

Q , can eventually achieve, such that we

define the maximal possible score for all GTi

Q as S(GTi

Q ) =
∑

ub
ti
j
∈UBTi

ubtij
, which

will guide our graph exploration and help with early termination.

Graph Exploration. The graph exploration starts with entities in NQ ∈ LQ
(Line 16). To avoid the unnecessary exploration, our algorithm prioritizes the
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entity by the maximal possible score of the potential QEGs. At each iteration,
the most promising Ti that could result in the optimal QEG and the key term
tij ∈ Ti with the largest upper bound score ubtij

are selected (Lines 17–18). Then
the entity n achieving the maximal score of paths from entities matching tij
to n is taken from NQtij

(Line 19) and the algorithm continues to explore the
neighborhood of n, i.e., all adjacent entities n′. In case that the distance n′.dtij

does not exceed dmax and the connectivity condition is satisfied (Line 22), we
expand the path from each nstart to n by adding n′, and the score s′

nstart
of

each expanded path is calculated and added into n′.Stij
(Lines 24–25), where

the maximal score n′.stij
is extracted (Line 27). All newly explored entities n′

are then added into NQtij
for further exploration (Line 28). Since the maximal

score of paths from entities matching tij might change after expansion, the upper

bound score ubtij
and the maximal possible score S(GTi

Q ) of potential QEGs are
updated accordingly (Lines 29–30). If n′ is verified to be an connecting element,
i.e., for all tij ∈ Ti, there exists a path from nstart matching tij to n′ (Line 31),
the new QEGs generated by merging paths resulted from n′ are added into R
(Line 32). Finally, we check whether the exploration can terminate to retrieve
the top-k QEGs (Lines 33–35), which will be discussed in the following.

Early Termination. The exploration terminates when one of the following
conditions is satisfied: (1) all possible entities have been explored such that there
are no further entities in any NQ ∈ LQ or (2) the top-k QEGs are guaranteed
to be obtained. With the goal of retrieving the top-k QEGs, all entities have
to be considered as connecting element in order to keep track of all possible
QEGs. However, the upper bound principle deals with the requirement of early
termination. The maximal possible score S(GTi

Q ) for all Ti indicates the best the
potential QEGs can achieve and the lowest top-k score of the obtained QEGs
captures the threshold θ such that only the QEGs with score higher than or
equal to θ have a chance to make into the top-k. To conclude that the current k
top-ranked QEGs in R are guaranteed to qualify for the final top-k and thus the
exploration can terminate, there should be at least k QEGs in R and S(GTi

Q ) for

all Ti must be below θ, i.e., maxTi∈LT S(GTi

Q ) < θ (Lines 33–35).

6 Experimental Results

The experiments were conducted on a virtual machine with 8 Cores at 2.0 GHz
and 40GB memory and our system is implemented in Java 8. To assess both
effectiveness and efficiency of our approach addressed by Sects. 4 and 5 respec-
tively, we asked volunteers to provide keyword queries along with the underlying
information needs. It results in 21 English queries, 10 German queries, 5 Chinese
queries and 14 multilingual queries6, where the query length ranges from 2 to 7
6 It is a realistic phenomenon that queries consist of keywords in different languages,

especially for Chinese users, which is also reflected in the 14 multilingual queries in
our experiments, where only English and Chinese keywords are contained.
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with an average of 3.24. We assume that the language of each keyword query is
unknown and the target language of query interpretations is English7.

6.1 Effectiveness Evaluation

For evaluating the effectiveness of query interpretation ranking, which is mainly
addressed by Sect. 4, we consider the normalized Discounted Cumulative Gain at
rank k, denoted by nDCG@k, as quality criteria, which measures the goodness of
a retrieval model based on the graded relevance of the top-k results. According to
our query interpretation problem, the results are judged by the volunteers who
provide the keyword queries on 0–5 relevance scale based on the criteria such as
relevance, completeness and correctness w.r.t. the underlying information needs.

For a comparative analysis, we conducted the experiments with the following
approaches: (1) the baseline using an online machine translation service8 and a
keyword-based scoring function described in [11], denoted by MT+KS ; (2) the
baseline using our cross-lingual lexica for keyword-to-entity mapping and the
keyword-based scoring same as (1), denoted by CL+KS ; (3) the baseline using the
machine translation service same as (1) and an adaption of our query entity graph
scoring based on key term sets, denoted by MT+GS+KT ; (4) our approach using
the cross-lingual lexica for entity matching and the query entity graph scoring
based on key term sets as discussed in Sect. 4, denoted by CL+GS+KT.

Figure 2(a) illustrates the nDCG@20 of different approaches for the individ-
ual queries (Q1-Q50). Our approach CL+GS+KT achieves the best results for 38
queries, while MT+KS, CL+KS and MT+GS+KT perform the best for 9, 16 and

(a)

(b) (c) (d)

Fig. 2. Experimental results of query interpretation effectiveness

7 In our experiments, we use English as the target language of query interpretations,
but it can be easily extended to other languages.

8 In our experiments, we used Google Translate for translating queries in different
languages to English by selecting the input language option as “Detect language”.
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28 queries, respectively. Comparing the two methods with keyword-based scoring
function, i.e., MT+KS and CL+KS, it is observed that using our cross-lingual
lexica (CL) performs better than the machine translation service (MT) in most
cases (e.g., Q10-Q14). There is a similar conclusion for the approaches based on
our query entity graph scoring, i.e., MT+GS+KT and CL+GS+KT (e.g., Q27-
Q31). Based on the further comparison between MT+KS and MT+GS+KT as
well as CL+KS and CL+GS+KT, our query entity graph scoring based on key
term sets (GS+KT) considerably outperforms the keyword-based scoring (KS)
(e.g., Q38-Q50). By taking advantage of both CL and GS+KT compared with
MT and KS, CL+GS+KT apparently achieves the best results in most cases.

Figure 2(b) illustrates the impact of query length l, i.e., the number of key-
words, on query interpretation effectiveness. While our approach CL+GS+KT is
stable for different l, the results of other approaches change considerably when l
varies. More specifically, the performance of the approaches using keyword-based
scoring (KS), i.e., MT+KS and CL+KS, decreases rapidly when l increases. This
is due to the fact that when l is larger, the query entities are usually expressed
by more than one keyword such that the keyword-to-entity mapping doesn’t
work well.

The impact of languages on query interpretation is shown in Fig. 2(c). For
English queries (EN), by comparing MT+KS with CL+KS and MT+GS+KT
with CL+GS+KT, MT and CL exhibit only minor differences because no cross-
lingual mapping is needed when the input and target languages are both English.
However, MT+GS+KT and CL+GS+KT still considerably outperform MT+KS
and CL+KS respectively, because GS+KT has a clear advantage over KS. For
German queries (DE), all approaches achieve comparable results for two reasons:
(1) the entities in German queries are usually expressed by compound keywords
or their abbreviations, e.g., “Fußball-Weltmeisterschaft” or “WM ” correspond-
ing to “FIFA World Cup”, such that the keyword-based scoring yields a sim-
ilar performance to ours; (2) the machine translation service works well when
translating from German to English. For Chinese queries (ZH), CL+KS and
CL+GS+KT considerably outperform MT+KS and MT+GS+KT because the
machine translation service (MT) doesn’t work well for translating entity names
from Chinese to English compared with our cross-lingual lexica (CL). In addition,
in Chinese queries each entity is usually split by users as one compound keyword
such that CL+KS even yields slightly better results than CL+GS+KT. Obvi-
ously, CL+GS+KT achieves the best results for multilingual queries (ML), where
MT+KS and MT+GS+KT perform the worst because the machine translation
service (MT) cannot deal with the keywords in multiple languages simultane-
ously. The experimental results for different combinations of the query languages
are also shown in Fig. 2(c), where our approach CL+GS+KT achieves the best
results (with nDCG@20 > 0.9) for most cases.

Figure 2(d) illustrates the results of nDCG@k for different k. We observe
that the performance of all approaches decreases slightly when k becomes larger.
Among these approaches, CL+GS+KT achieves the most stable performance,
e.g., MT+KS, CL+KS, MT+GS+KT and CL+GS+KT yield 15 %, 10 %, 8 %
and 2 % performance degradation respectively, when k varies from 1 to 20.
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6.2 Efficiency Study

For assessing the efficiency of query interpretation generation, which is mainly
addressed by Sect. 5, we conducted the experiments with several approaches:
(1) the keyword-based exploration from each keyword matching entity [12],
denoted by KE ; (2) the top-k algorithm on top of the keyword-based explo-
ration [11], denoted by KE+Top-k ; (3) our key term set-based exploration
starting from the entities matching the extracted key terms, denoted by SE ;
(4) our graph exploration incorporating only connectivity checking, denoted
by SE+CC ; (5) our graph exploration incorporating only early termination,
denoted by SE+ET ; (6) our approach incorporating both connectivity checking
and early termination into the graph exploration as discussed in Sect. 5, denoted
by SE+CC+ET.

We start with a comparison between different approaches for the individual
queries. The experimental results for computing the top-20 query interpretations
for Q21-Q50 with query length from 3 to 7 are illustrated in Fig. 3(a). For the sake
of space, we omit the results for Q1-Q20 with query length 2, where individual
times do not exhibit significant differences. Clearly, SE outperforms KE for the
long queries (e.g., Q36-Q50), where 42 % performance improvement has been
achieved on average, while the performance of SE for short queries is slightly
better than KE (e.g., Q21-Q35) or similar to KE (e.g., Q1-Q20). Such differences
are primarily due to the number of starting entities for the graph exploration as
shown in Fig. 3(b). While both connectivity checking (CC) and early termination
(ET) contribute to the performance improvement individually, the incorporation
of both of them into SE yields the best results. Compared with the baselines KE
and KE+Top-k, our approach SE+CC+ET achieves a considerable performance
improvement in most cases.

(a)

(b) (c) (d)

Fig. 3. Experimental results of query interpretation efficiency
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We have investigated the impact of query length l on the performance of
different approaches. Figure 3(c) shows the average processing time for different
l. Compared with KE, the processing time for SE is relatively stable. The reason
might be the number of starting entities generated by SE is less sensitive to l
as shown in Fig. 3(b). Furthermore, our approaches SE+ET and SE+CC+ET
are not sensitive to l due to the application of early termination (ET), while the
performance of other approaches changes with varying l.

Figure 3(d) shows the average time for computing top-k query interpreta-
tions for different k. The time needed by KE+Top-k, SE+ET and SE+CC+ET
decreases rapidly when k becomes smaller. For example, KE+Top-k, SE+ET
and SE+CC+ET yield 24 %, 61 % and 62 % time reduction respectively, when k
varies from 20 to 1, while the performance of other approaches doesn’t change
with k since they have to process all results no matter what the value of k is.
In total, our approach SE+CC+ET outperforms KE by one order of magnitude
and is 5 times faster than KE+Top-k when k = 20, and it achieves even more
considerable performance improvement for smaller k, e.g., 22 times and 10 times
faster than KE and KE+Top-k respectively, when k = 1.

7 Related Work

We firstly present the related work to keyword query interpretation and then
review some existing work on cross-lingual and concept-based IR.

Keyword Query Interpretation. The main challenges in dealing with key-
word queries are their ambiguity and incompleteness. The use of thesauri to
deal with the ambiguity of keywords has a long history. Most commonly,
WordNet thesaurus has been found beneficial in disambiguating keywords and
in choosing their senses [13]. There are also proposals for mapping keyword
queries to elements in an ontology [14], where the resulting semantics provides
the basis for identifying the search intents of users. In addition, graph-based
approaches [9,11,12] have been widely used to find substructures in structured
data, including relational, XML and RDF data. The recent work [15] also aimed
to boost the scalability of interactive query construction over large scale data
from the perspective of both user interaction cost and performance.

While existing methods only deal with individual keywords in the query, our
approach relies on the extracted key terms referring to entities in KBs, which
helps to improve both efficiency and effectiveness as shown in our experiments.
In addition, most existing methods only focus on the ambiguity of keywords.
The cross-linguality issue has not been studied in the previous work.

Cross-lingual and Concept-based IR. Traditional IR is normally based on
the bag-of-words (BOW) models, which have the limitation of retrieving only the
syntactically relevant but not the semantically relevant documents. Meanwhile,
they suffer from the vocabulary mismatch problem, i.e., queries and documents,
which are semantically very related, might contain only few terms in common.
This problem is more serious in cross-lingual IR due to the fact that queries
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and documents in different languages rarely share common terms. In order to
address the problem, different concept-based solutions [16–19] and their cross-
lingual extensions [20,21] have been proposed. Instead of the BOW models used
in the classic IR, the goal is to capture queries and documents as concepts, such
that the relevance can be estimated in the concept space even in the presence of
vocabulary gap, especially for cross-lingual IR.

Unlike the previous studies, we developed XKnowSearch!, a novel system to
entity-based cross-lingual IR by exploiting multilingual knowledge bases. Based
on our cross-lingual query interpretation, XKnowSearch!, to the best of our
knowledge, is the first entity-centric system to cross-lingual IR, where users can
issue keyword queries in any language (even in multiple languages), for retrieving
documents related to the query entities in any other languages.

8 Conclusions and Future Work

We present a knowledge base approach to cross-lingual query interpretation by
transforming keywords in different languages to their semantic representation.
As the main contributions of this work, we propose a scoring mechanism for
effective query interpretation ranking and a top-k graph exploration algorithm
for efficient query interpretation generation. A separate evaluation on each of
these two aspects has been performed and it shows that our approach achieves
promising results w.r.t. both effectiveness and efficiency. In addition, this work
has been integrated into XKnowSearch!, a novel system for entity-based cross-
lingual IR. As future work, we would like to extend our approach by taking into
account entity relations expressed in keyword queries to construct the QEGs.
And it is essential to perform further evaluation to show the promising results of
our query interpretation can carry over to the performance of cross-lingual IR.

Acknowledgments. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007–2013) under grant
agreement no. 611346.
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Abstract. Navigational graph queries are an important class of queries
that can extract implicit binary relations over the nodes of input graphs.
Most of the navigational query languages used in the RDF community,
e.g. property paths in W3C SPARQL 1.1 and nested regular expres-
sions in nSPARQL, are based on the regular expressions. It is known
that regular expressions have limited expressivity; for instance, some nat-
ural queries, like same generation-queries, are not expressible with regu-
lar expressions. To overcome this limitation, in this paper, we present
cfSPARQL, an extension of SPARQL query language equipped with
context-free grammars. The cfSPARQL language is strictly more expres-
sive than property paths and nested expressions. The additional expres-
sivity can be used for modelling graph similarities, graph summarization
and ontology alignment. Despite the increasing expressivity, we show
that cfSPARQL still enjoys a low computational complexity and can be
evaluated efficiently.

1 Introduction

The Resource Description Framework (RDF) [30] recommended by World Wide
Web Consortium (W3C) is a standard graph-oriented model for data interchange
on the Web [6]. RDF has a broad range of applications in the semantic web,
social network, bio-informatics, geographical data, etc. [1]. Typical access to
graph-structured data is its navigational nature [12,16,21]. Navigational queries
on graph databases return binary relations over the nodes of the graph [9]. Many
existing navigational query languages for graphs are based on binary relational
algebra such as XPath (a standard navigational query language for trees [25])
or regular expressions such as RPQ (regular path queries) [24].

SPARQL [32] recommended by W3C has become the standard language for
querying RDF data since 2008 by inheriting classical relational languages such
as SQL. However, SPARQL only provides limited navigational functionalities
for RDF [28,37]. Recently, there are several proposed languages with naviga-
tional capabilities for querying RDF graphs [3–5,7,11,19,26,28,35]. Roughly,
Versa [26] is the first language for RDF with navigational capabilities by using
XPath over the XML serialization of RDF graphs. SPARQLeR proposed by
Kochut et al. [19] extends SPARQL by allowing path variables. SPARQL2L pro-
posed by Anyanwu et al. [7] allows path variables in graph patterns and offers
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 632–648, 2016.
DOI: 10.1007/978-3-319-46523-4 38



Context-Free Path Queries on RDF Graphs 633

good features in nodes and edges such as constraints. PSPARQL proposed by
Alkhateeb et al. [5] extends SPARQL by allowing regular expressions in general
triple patterns with possibly blank nodes and CASPAR further proposed by
Alkhateeb et al. [3,4] allows constraints over regular expressions in PSPARQL
where variables are allowed in regular expressions. nSPARQL proposed by Pérez
et al. [28] extends SPARQL by allowing nested regular expressions in triple pat-
terns. Indeed, nSPARQL is still expressible in SPARQL if the transitive clo-
sure relation is absent [37]. In March 2013, SPARQL 1.1 [33] recommended by
W3C allows property paths which strengthen the navigational capabilities of
SPARQL1.0 [11,35].

However, those regular expression-based extensions of SPARQL are still lim-
ited in representing some more expressive navigational queries which are not
expressed in regular expressions. Let us consider a fictional biomedical ontology
mentioned in [31] (see Fig. 1). We are interested in a navigational query about
those paths that confer similarity (e.g., between Gene(B) and Gene(C)), which
suggests a causal relationship (e.g., between Gene(S) and Phenotype(T)). This
query about similarity arises from the well-known same generation-query [2],
which is proven to be inexpressible in any regular expression. To express the
query, we have to introduce a query embedded with a context-free grammar
(CFG) for expressing the language of {wwT |w is a string}[31] where wT is the
converse of w. For instance, if w = “abcdfe” then wT = “e−1f−1d−1c−1b−1a−1”.
As we know, CFG has more expressive power than any regular expression [18].
Moreover, the context-free grammars can provide a simplified more user-friendly
dialect of Datalog [1] which still allows powerful recursion [18]. Besides, the
context-free graph queries have also practical query evaluation strategies. For
instance, there are some applications in verification [20]. So it is interesting to
introduce a navigational query embedded with context-free grammars to express
more practical queries like the same generation-query.

A proposal of conjunctive context-free path queries (written by Helling’s
CCFPQ) for edge-labeled directed graphs has been presented by Helling [14] by
allowing context-free grammars in path queries. A naive idea to express same
generation-queries is transforming this RDF graph to an edge-labeled directed
graph via navigation axes [28] and then using Helling’s CCFPQ since an RDF
graph can be intuitively taken as an edge-labeled directed graph. However, this
transformation is difficult to capture the full information of this RDF graph since
there exist some slight differences between RDF graphs and edge-labeled directed
graphs, particularly regarding the connectivity [13], thus it could not express
some regular expression-based path queries on RDF graphs. For instance, a
nested regular expression (nre) of the form axis::[e] on RDF graphs in nSPARQL
[28], is always evaluated to the empty set over any edge-labeled directed graph.
That is to say, an nre of the form “axis::[e]” is hardly expressible in Helling’s
CCFPQ.

To represent more expressive queries with efficient query evaluation is a
renewed interest topic in the classical topic of graph databases [2]. Hence, in
this paper, we present a context-free extension of path queries and SPARQL
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Fig. 1. A biomedical ontology [31]

queries on RDF graphs which can express both nre and nSPARQL [28]. Fur-
thermore, we study several fundamental properties of the proposed context-free
path queries and context-free SPARQL queries. The main contributions of this
paper can be summarized as follows:

– We present context-free path queries (CFPQ) (including conjunctive context-
free path queries (CCFPQ), union of simple conjunctive context-free path
queries (UCCFPQs), and union of conjunctive context-free path queries
(UCCFPQ) for RDF graphs and find that CFPQ, CCFPQ, and UCCFPQ
have efficient query evaluation where the query evaluation has the polyno-
mial data complexity and the NP-complete combined complexity. Finally, we
implement our CFPQs and evaluate experiments on some popular ontologies.

– We discuss the expressiveness of CFPQs by referring to nested regular expres-
sions (nre). We show that CFPQ, CCFPQ, UCCFPQs, and UCCFPQ exactly
express four fragments of nre, basic nre “nre0”, union-free nre “nre0(N)”,
nesting-free nre “nre0(|)”, and full nre, respectively (see Fig. 2). The query
evaluation of cfSPARQL has the same complexity as SPARQL.

– We propose context-free SPARQL (cfSPARQL) and union of conjunctive
context-free SPARQL (uccfSPARQL) based on CFPQ and UCCFPQ, respec-
tively. It shows that cfSPARQL has the same expressiveness as that of uccf-
SPARQL. Furthermore, we prove that cfSPARQL can strictly express both
SPARQL and nSPARQL (even nSPARQL¬: a variant of nSPARQL by allow-
ing nre with negation “nre¬) (see Fig. 3).

Organization of the Paper. Section 2 recalls nSPARQL and context-free gram-
mar. Section 3 defines CFPQ. Section 4 discusses the expressiveness of CFPQ.
Section 5 presents cfSPARQL and Sect. 6 discusses the relations on nre with
negation. Section 7 evaluates experiments. We conclude in Sect. 8. Due to the
space limitation, all proofs and some further preliminaries are omitted but they
are available in an extended technical report in arXiv.org [36].
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2 Preliminaries

In this section, we introduce the language nSPARQL and context-free grammar.

2.1 The Syntax and Semantics of nSPARQL

In this subsection, we recall the syntax and semantics of nSPARQL, largely
following the excellent expositions [27,28].

RDF Graphs. An RDF statement is a subject-predicate-object structure, called
RDF triple which represents resources and the properties of those resources. For
the sake of simplicity similar to [28], we assume that RDF data is composed only
IRIs1. Formally, let U be an infinite set of IRIs. A triple (s, p, o) ∈ U × U × U
is called an RDF triple. An RDF graph G is a finite set of RDF triples. We use
adom(G) to denote the active domain of G, i.e., the set of all elements from U
occurring in G.

For instance, a biomedical ontology shown in Fig. 1 can be modeled in an
RDF graph named as Gbio where each labeled-edge of the form a

p→ b is directly
translated into a triple (a, p, b).

Paths and Traces. Let G be an RDF graph. A path π = (c1c2 . . . cm) in G is a
non-empty finite sequence of constants from G, where, for every i ∈ {1, . . . , m −
1}, ci and ci+1 exactly occur in the same triple of G (i.e., (ci, c, ci+1), (ci, ci+1, c),
and (c, ci, ci+1) etc.). Note that the precedence between ci and ci+1 in a path is
independent of the positions of ci, ci+1 in a triple.

In nSPARQL, three different navigation axes, namely, next , edge, and node,
and their inverses, i.e., next−1, edge−1, and node−1, are introduced to move
through an RDF triple (s, p, o) [28].

Let Σ = {axis, axis::c|c ∈ U} where axis ∈ {self ,next , edge,node,
next−1, edge−1,node−1}. Let G be an RDF graph. We use Σ(G) to denote the
set of all symbols {axis, axis::c|c ∈ adom(G)} occurring in G.

Let π = (c1 . . . cm) be a path in G. A trace of path π is a string over Σ(G)
written by T (π) = l1 . . . lm−1 where, for all i ∈ {1, . . . , m−1}, (cici+1) is labeled
by li and li is of the form axis, axis::c, axis−1, or axis−1::c [28]. We use Trace(π)
to denote the set of all traces of π.

Note that it is possible that a path has multiple traces since any two nodes
possibly occur in the multiple triples. For example, consider an RDF graph
G = {(a, b, c), (a, c, b)} and given a path π = (abc), both (edge::c)(node::a) and
(next ::c)(node−1::a) are traces of π.

For instance, in the RDF graph Gbio (see Fig. 1), a path from Gene(B)
to Gene(C) has a trace: (next ::locatedIn)(next−1::linkedTo)(next ::linkedTo)
(next−1::locatedIn).

1 A standard RDF data is composed of IRIs, blank nodes, and literals. For the purposes
of this paper, the distinction between IRIs and literals will not be important.
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Nested Regular Expressions. Nested regular expressions (nre) are defined by
the following formal syntax:

e := axis|axis::c (c ∈ U)|axis::[e]|e/e|e|e|e∗.

Here the nesting nre is of the form axis::[e].
For simplification, we denote some interesting fragments of nre as follows:

– nre0: basic nre, i.e., nre only consisting of “axis”, “/”, and “∗”;
– nre0(|): basic nre by adding the operator “|”;
– nre0(N) to basic nre by adding nesting nre axis::[e].

Patterns. Assume an infinite set V of variables, disjoint from U . A nested
regular expression triple (or nre-triple) is a tuple of the form (?x, e, ?y), where
?x, ?y ∈ V and e is an nre2.

Formally, nSPARQL (graph) patterns are recursively constructed from nre-
triples:

– An nre-triple is an nSPARQL pattern;
– All P1 UNION P2, P1 AND P2, and P1 OPT P2 are nSPARQL patterns if P1

and P2 are nSPARQL patterns;
– P FILTER C if P is an nSPARQL pattern and C is a constraint;
– SELECTS(P ) if P is an nSPARQL pattern and S is a set of variables.

Semantics. Given an RDF graph G and an nre e, the evaluation of e on G,
denoted by �e�G, is a binary relation. More details can be found in [28]. Here,
we recall the semantics of nesting nre of the form axis::[e] as follows:

�axis::[e]�G = {(a, b)|∃ c, d ∈ adom(G), (a, b) ∈ �axis::c�G and (c, d) ∈ �e�G}.

The semantics of nSPARQL patterns is defined in terms of sets of so-called
mappings, which are simply total functions μ : S → U on some finite set S of
variables. We denote the domain S of μ by dom(μ).

Basically, the semantics of an nre-triple (u, e, v) is defined as follows:

�(u, e, v)�G = {μ : {u, v} ∩ V → U |(μ(u), μ(v)) ∈ �e�G}.

Here, for any mapping μ and any constant c ∈ U , we agree that μ(c) equals c
itself.

Let P be an nSPARQL pattern, the semantics of P on G, denoted by �P �G,
is analogously defined as usual following the semantics of SPARQL [27,28].

Query Evaluation. A SPARQL (SELECT) query is an nSPARQL pattern. Given
a RDF graph G, a pattern P , and a mapping μ, the query evaluation problem of
nSPARQL is to decide whether μ is in �P �G. The complexity of query evaluation
problem is PSpace-complete [27].

2 In nSPARQL [28], nre-triples allow a general form (v, e, u) where u, v ∈ U ∪ V . In
this paper, we mainly consider the case u, v ∈ V to simplify our discussion.
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2.2 Context-Free Grammar

In this subsection, we recall context-free grammar. For more details, we refer the
interested readers to some references about formal languages [18].

A context-free grammar (COG) is a 3-tuple G = (N,A,R) 3 where

– N is a finite set of variables (called non-terminals);
– A is a finite set of constants (called terminals);
– R is a finite set of production rules r of the form v → S, where v ∈ N and

S ∈ (N ∪ A)∗ (the asterisk ∗ represents the Kleene star operation). We write
v → ε if ε is the empty string.

A string over N ∪ A can be written to a new string over N ∪ A by applying
production rules. Consider a string avb and a production rule r : v → avb, we
can obtain a new string aavbb by applying this rule r one time and another new
string aaavbbb by applying the rule r twice. Analogously, strings with increasing
length can be obtained in this rule.

Let S, T ∈ (N ∪ A)∗. We write (S G→ T ) if T can be obtained from S by
applying production rules of G within a finite number of times.

The language of grammar G = (N,A,R) w.r.t. start non-terminal v ∈ N is
defined by L(Gv) = {S a finite string over A |v G→ S}.

For example, G = (N,A,R) where N = {v}, A = {a, b}, and R = {v →
ab, v → avb}. Thus L(Gv) = {anbn|n ≥ 1}.

3 Context-Free Path Queries

In this section, we introduce context-free path queries on RDF graphs based
on context-free path queries on directed graphs [14] and nested regular
expressions [28].

3.1 Context-Free Path Queries and Their Extensions

In this subsection, we firstly define conjunctive context-free path queries on RDF
graphs and then present some variants (it also can been seen as extensions).

Conjunctive Context-Free Path Queries. In this paper, we assume that
N ∩ V = ∅ and A ⊆ Σ for all CFG G = (N,A,R).

Definition 1. Let G = (N,A,R) be a CFG and m a positive integer. A con-
junctive context-free path query (CCFPQ) is of the form q(?x, ?y)4, where,

q(?x, ?y) :=
m∧

i=1

αi, (1)

where
3 We deviate from the usual definition of context-free grammar by not including a

special start non-terminal following [14].
4 In this paper, we simply write a conjunctive query as a Datalog rule.
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– αi is a triple pattern either of the form (?x, ?y, ?z) or of the form v(?x, ?y);
– {?x, ?y} ⊆ vars(q) where vars(q) denotes a collection of all variables occurring

in the body of q;
– {v1, . . . , vm} ⊆ N .

We regard the name of query q(?x, ?y) as q and call the right of Eq. (1) as the
body of q.

Remark 1. In our CCFPQ, we allow a triple pattern of the form (?x, ?y, ?z) to
characterize those queries w.r.t. ternary relationships such as nre-triple patterns
of nSPARQL [28] to be discussed in Sect. 4. The formula v(?x, ?y) is used to
capture context-free path queries [14].

We say a simple conjunctive context-free path query (written by CCFPQs)
if only the form v(?x, ?y) is allowed in the body of a CCFPQ. We also say a
context-free path query (written by CFPQ) if m = 1 in the body of a CCFPQs.

Semantically, let G = (N,A,R) be a CFG and G an RDF graph, given a
CCFPQ q(?x, ?y) of the form (1), �q(?x, ?y)�G is defined as follows:

{μ|{?x,?y}|dom(μ) = vars(q) and ∀ i = 1, . . . ,m, μ|vars(αi) ∈ �αi�G}, (2)

where the semantics of v(?x, ?y) over G is defined as follows:

�v(?x, ?y)�G = {μ|dom(μ) = {?x, ?y} and
∃π = (μ(?x)c1 . . . cmμ(?y)) a path in G,Trace(π) ∩ L(Gv) �= ∅}.

Intuitively, �v(?x, ?y)�G returns all pairs connected by a path in G which
contains a trace belonging to the language generated from this CFG starting at
non-terminal v.

Example 1. Let G = (N,A,R) be a CFG where N = {u, v}, A = {next ::
locatedIn,next−1::locatedIn,next ::linkedTo,next−1::linkedTo}, and P = {v →
(next ::locatedIn)u (next−1::locatedIn), u → (next−1::linkedTo)u (next ::
linkedTo), u → ε}. Consider a CFPQ q be of the form v(?x, ?y). The query
q represents the relationship of similarity (between two genes) since L(Gv) =
{(next−1::locatedIn)n(next−1::linkedTo)(next ::linkedTo)(next ::locatedIn)n|n ≥
1}. Consider the RDF graph Gbio in Fig. 1, �q(?x, ?y)�Gbio = {(?x =
Gene(B), ?y = Gene(C))}. Clearly, the query q returns all pairs with similarity.

Query Evaluation. Let G = (N,A,R) be a CFG and G an RDF graph. Given
a CCFPQ q(?x, ?y) and a tuple μ = (?x = a, ?y = b), the query evaluation
problem is to decide whether μ ∈ �q(?x, ?y)�G, that is, whether the tuple μ
is in the result of the query q on the RDF graph G. There are two kinds of
computational complexity in the query evaluation problem [1,2]:

– the data complexity refers to the complexity w.r.t. the size of the RDF graph
G, given a fixed query q; and

– the combined complexity refers to the complexity w.r.t. the size of query q and
the RDF graph G.
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A CFG G = (N,A,R) is said to be in norm form if all of its production
rules are of the form v → uw, v → a, or v → ε where v, u, w ∈ N and a ∈ A.
Note that this norm form deviates from the usual Chomsky Normal Form [22]
where the start non-terminals are absent. Indeed, every CFG is equivalent to a
CFG in norm form, that is, for every CFG G, there exists some CFG G′ in norm
form constructed from G in polynominal time such that L(Gv) = L(G′

v) for every
v ∈ N [14].

Let G be an RDF graph and G = (N,A,R) a CFG. Given a non-terminal
v ∈ N , let Rv(G) be the context-free relation of G w.r.t. v can be defined as
follows:

Rv(G) := {(a, b)|∃π = (ac1 . . . cmb) a path in G,Trace(π) ∩ L(Gv) �= ∅}. (3)

Conveniently, the query evaluation of CCFPQ over an RDF graph can be
reduced into the conjunctive first-order query over the context-free relations.
Based on the conjunctive context-free recognizer for graphs presented in [14], we
directly obtain a conjunctive context-free recognizer (see Algorithm 1) for RDF
graphs by adding a convertor to transform an RDF graph into an edge-labeled
directed graph (see Algorithm 2).

Algorithm 1. Conjunctive context-free recognizer for RDF
Input: G: an RDF graph; G = (N, A, R): a CFG in norm form; v ∈ N .
Output: {(v, a, b)|(a, b) ∈ Rv(G)}
1: Θ:={(v, a, a)|(a ∈ adom(G)) ∧ (v → ε ∈ P )}
2: ∪{(v, a, b)|((a, l, b) ∈ Convertor(G)) ∧ (v → l) ∈ P}
3: Θnew := Θ
4: while Θnew �= ∅ do
5: pick and remove a (v, a, b) from Θnew

6: for all (u, a′, a) ∈ Θ do
7: for all v′ → uv ∈ R ∧ ((v′, a′, b) �∈ Θ) do
8: Θnew:=Θnew ∪ {(v′, a′, b)}
9: Θ:=Θ ∪ {(v′, a′, b)}

10: end for
11: end for
12: for all (u, b, b′) ∈ Θ do
13: for all u′ → vu ∈ R ∧ ((u′, a, b′) �∈ Θ) do
14: Θnew:=Θnew ∪ {(u′, a, b′)}
15: Θ:=Θ ∪ {(u′, a, b′)}
16: end for
17: end for
18: end while
19: return Θ

Given a path π and a context-free grammar G, Algorithm 1 is sound and
complete to decide whether the path π in RDF graphs has a trace generated
from the grammar G.
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Algorithm 2. RDF convertor
Input: G: an RDF graph
Output: Convertor(G) = (V, E)
1: V:=adom(G)
2: E :={(c, self , c), (c, self ::c, c)|c ∈ adom(G)}
3: Gnew := G
4: while Gnew �= ∅ do
5: pick and remove a triple (s, p, o) from Gnew

6: E :=E ∪ {(s,next ::p, o), (s,next , o), (o,next−1::p, s), (o,next−1, s),
(s, edge::o, p), (s, edge, p), (p, edge−1::o, s), (p, edge−1, s),
(p,node::s, o), (p,node, o), (o,node−1::s, p), (o,node−1, p)}

7: end while
8: return Convertor(G)

Proposition 1. Let G be an RDF graph and G = (N,A,R) a CFG in norm
form. For every v ∈ N , let Θ be the result computed in Algorithm1, (v, a, b) ∈ Θ
if and only if (a, b) ∈ Rv(G).

Moreover, we can easily observe the worst-case complexity of Algorithm 1
since the complexity of Algorithm 2 is O(|G|).
Proposition 2. Let G be an RDF graph and G = (N,A,R) a CFG. Algorithm1
applied to G and G has a worst-case complexity of O((|N ||G|)3).

As a result, we can conclude the following proposition.

Proposition 3. The followings hold:

1. The query evaluation of CCFPQ has polynomial data complexity;
2. The query evaluation of CCFPQ has NP-complete combined complexity.

Union of CCFPQ. An extension of CCFPQ capturing more expressive power
such as disjunctive capability is introducing the union of CCFPQ. For instance,
given a gene (e.g., Gene(B)) in the biomedical ontology (see Fig. 1), we wonder
to find those genes which are relevant to this gene, that is, those genes either
are similar to it (e.g., Gene(C)) or belong to the same pathway (e.g., Gene(S)).

A union of conjunctive context-free path query (UCCFPQ) is of the form

q(?x, ?y) :=
m∨

i=1

qi(?x, ?y), (4)

where qi(?x, ?y) is a CCFPQ for all i = 1, . . . , m.
Analogously, we can define union of simple conjunctive context-free path

query written by UCCFPQs.
Semantically, let G be an RDF graph, we define

�q(?x, ?y)�G =
m⋃

i=1

�qi(?x, ?y)�G, (5)

where �qi(?x, ?y)�G is defined as the semantics of CCFPQ for all i = 1, . . . ,m.
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In Example 1, based on G = (N,A,R), we construct a CFG G′ = (N ′, A′, R′)
where N ′ = N ∪ {s}, A = A ∪ {next ::belongsTo,next−1::belongsTo}, and
R′ = R ∪ {s → (next ::belongsTo)s(next−1::belongsTo)}. Consider a UCCFPQ
q(?x, ?y) := v(?x, ?y) ∨ s(?x, ?y), �q(?x, ?y)�Gbio = {(?x = Gene(B), ?y =
Gene(C)), (?x = Gene(B), ?y = Gene(S))}. That is, �q(?x, ?y)�Gbio returns all
pairs where the first gene is relevant to the latter.

Note that the query evaluation of UCCFPQ has the same complexity as that
of the evaluating of CCFPQ since we can simply evaluate a number (linear in
the size of a UCCFPQ) of CCFPQs in isolation [2].

4 Expressivity of (U)(C)CFPQ

In this section, we investigate the expressivity of (U)(C)CFPQ by referring to
nested regular expressions [28] and fragments of nre.

We discuss the relations between variants of UCCFPQ and variants of
(nested) regular expressions and obtain the following results:

1. nre0-triples can be expressed in CFPQ;
2. nre0(N)-triples can be expressed in CCFPQ;
3. nre0(|)-triples can be expressed in UCCFPQs;
4. nre-triples can be expressed in UCCFPQ.

1. nre0 in CFPQ. The following proposition shows that CFPQ can express
nre0-triples.

Proposition 4. For every nre0-triple (?x, e, ?y), there exist some CFG G =
(N,A,R) and some CFPQ q(?x, ?y) such that for every RDF graph G, we have
�(?x, e, ?y)�G = �q(?x, ?y)�G.

2. nre0(N) in CCFPQ. Let G be a CFG. A CCFPQ q(?x, ?y) is in nested norm
form if the following holds:

q(?x, ?y) := ((?x′, ?y′, ?z′) ∧ v(?x, ?y)) ∧ q1(?u, ?w), (6)

where

– {?x, ?y} ∩ {?x′, ?y′, ?z′} �= ∅;
– {?x′, ?y′, ?z′} ∩ {?u, ?w} �= ∅;
– q1(?u, ?w) is a CCFPQ.

Note that (?x′, ?y′, ?z′) is used to express a nested nre of the form axis::[e] and
v(?x, ?y) is necessary to express a nested nre of the form self ::[e].

The following proposition shows that CCFPQ can express nre0(N)-triples.

Proposition 5. For every nre0(N)-triple (?x, e, ?y), there exist a CFG G =
(N,A,R) and a CCFPQ q(?x, ?y) in nested norm form (6) such that for every
RDF graph G, we have �(?x, e, ?y)�G = �q(?x, ?y)�G.
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3. nre0(|) in UCCFPQs. Let e be an nre. We say e is in union norm form if e
is of the following form e1|e2| . . . |em where ei is an nre0(N) for all i = 1, . . . , m.

We can conclude that each nre-triple is equivalent to an nre in union norm
form.

Proposition 6. For every nre-triple (?x, e, ?y), there exists some e′ in union
norm form such that �(?x, e, ?y)�G = �(?x, e′, ?y)�G for every RDF graph G.

The following proposition shows that UCCFPQs can express nre0(|).
Proposition 7. For every nre0(|)-triple (?x, e, ?y), there exists some CFG G =
(N,A,R) and some UCCFPQs q(?x, ?y) in nested norm form such that for every
RDF graph G, we have �(?x, e, ?y)�G = �q(?x, ?y)�G.

4. nre in UCCFPQ. By Propositions 5 and 7, we can conclude that

Proposition 8. For every nre-triple (?x, e, ?y), there exists some CFG G =
(N,A,R) and some UCCFPQ q(?x, ?y) in nested norm form such that for every
RDF graph G, we have �(?x, e, ?y)�G = �q(?x, ?y)�G.

However, those results above in this subsection are not vice versa since the
context-free language is not expressible in any nre.

Proposition 9. CFPQ is not expressible in any nre.

5 Context-Free SPARQL

In this section, we introduce an extension language context-free SPARQL
(for short, cfSPARQL) of SPARQL by using context-free triple patterns, plus
SPARQL basic operators UNION,AND,OPT,FILTER, and SELECT and its
expressiveness.

A context-free triple pattern (cftp) is of the form (?x,q, ?y) where q(?x, ?y)
is a CFPQ. Analogously, we can define union of conjunctive context-free triple
pattern (for short, uccftp) by using UCCFPQ.

cfSPARQL and Query Evaluation. Formally, cfSPARQL (graph) patterns
are then recursively constructed from context-free triple patterns:

– A cftp is a cfSPARQL pattern;
– A triple pattern of the form (?x, ?y, ?z) is a cfSPARQL pattern;
– All P1 UNION P2, P1 AND P2, and P1 OPT P2 are cfSPARQL patterns if

P1, P2 are cfSPARQL patterns;
– P FILTER C if P is a cfSPARQL pattern and C is a contraint;
– SELECTS(P ) if P is a cfSPARQL pattern and S is a set of variables.

Remark 2. In cfSPARQL, we allow triple patterns of form (?x, ?y, ?z) (see Item
2), which can express any SPARQL triple pattern together with FILTER [38],
to ensure that SPARQL is still expressible in cfSPARQL while SPARQL is not
expressible in nSPARQL since any triple pattern (?x, ?y, ?z) is not expressible
in nSPARQL [28]. Our generalization of nSPARQL inherits the power of queries
without more cost and maintains the coherence between CFPQ and “nested”
nre of the form axis::[e]. Moreover, this extension in cfSPARQL coincides with
our proposed CCFPQ where triple patterns of the form (?x, ?y, ?z) are allowed.
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Semantically, let P be a cfSPARQL pattern and G an RDF graph,
�(?x,q, ?y)�G is defined as �q(?x, ?y)�G and other expressive cfSPARQL pat-
terns are defined as normal [27,28].

Proposition 10. SPARQL is expressible in cfSPARQL but not vice versa.

A cfSPARQL query is a pattern.
We can define union of conjunctive context-free SPARQL query (for short,

uccfSPARQL) by using uccftp in the analogous way.
At the end of this subsection, we discuss the complexity of evaluation problem

of uccfSPARQL queries.
For a given RDF graph G, a uccftp P , and a mapping μ, the query evaluation

problem is to decide whether μ is in �P �G.

Proposition 11. The evaluation problem of uccfSPARQL queries has the same
complexity as the evaluation problem of SPARQL queries.

As a direct result of Proposition 8, we can conclude

Corollary 1. nSPARQL is expressible in uccfSPARQL but not vice versa.

On the Expressiveness of cfSPARQL. In this subsection, we show that cfS-
PARQL has the same expressiveness as uccfSPARQL. In other words, cfSPARQL
is enough to express UCCFPQ on RDF graphs.

Since every cfSPARQL pattern is a uccfSPARQL pattern, we merely show
that uccfSPARQL is expressible in cfSPARQL.

Proposition 12. For every uccfSPARQL pattern P , there exists some cfS-
PARQL pattern Q such that �P �G = �Q�G for any RDF graph G.

6 Relations on (Nested) Regular Expressions with
Negation

In this section, we discuss both the relation between UCCFPQ and nested regular
expressions with negation and the relation between cfSPARQL and variants of
nSPARQL.
Nested Regular Expressions with Negation. A nested regular expression
with negation (nre¬) is an extension of nre by adding two new operators “differ-
ence (e1 − e2)” and “negation (ec)” [37].

Semantically, let e, e1, e2 be three nre¬s and G an RDF graph,

– �e1 − e2�G = {(a, b) ∈ �e1�G|(a, b) �∈ �e2�G};
– �ec�G = {(a, b) ∈ adom(G) × adom(G)|(a, b) �∈ �e�G}.

Analogously, an nre¬-triple pattern is of the form (?x, e, ?y) where e is an
nre¬. Clearly, nre¬-triple pattern is non-monotone.

Since nre is monotone, nre is strictly subsumed in nre¬ [37]. Though property
paths in SPARQL 1.1 [29,33] are not expressible in nre since property paths allow
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the negation of IRIs, property paths can be still expressible in the following
subfragment of nre¬: let c, c1, . . . , cn+m ∈ U ,

e :=next ::c|e/e|self ::[e]|e∗|e+|next−1::[e]|
(next ::c1| . . . |next ::cn|next−1::cn+1| . . . |next−1::cn+m)c.

Note that e+ can be expressible as the expression e∗ − self .

Proposition 13. uccftp is not expressible in any nre¬-triple pattern.

Due to the non-monotonicity of nre¬, we have that nre¬ is beyond the expres-
siveness of any union of conjunctive context-free triple patterns even the star-free
nre¬ (for short, sf-nre¬) where the Kleene star (∗) is not allowed in nre¬.

Proposition 14. sf-nre¬-triple pattern is not expressible in any uccftp.

In short, nre¬-triple pattern and uccftp cannot express each other. Indeed,
negation could make the evaluation problem hard even allowing a limited form
of negation such as property paths [23].
cfSPARQL Can Express nSPARQL¬. Following nSPARQL, we can anal-
ogously construct the language nSPARQL¬ which is built on nre¬, by adding
SPARQL operators UNION,AND,OPT,FILTER, and SELECT.

Though uccftps cannot express nre¬-triple patterns by Proposition 13,
cfSPARQL can express nSPARQL¬ since nSPARQL¬ is still expressible in
nSPARQL [37].

Corollary 2. nSPARQL¬ is expressible in cfSPARQL.

6.1 Overview

Finally, Figs. 2 and 3 provide the implication of the results on RDF graphs for
the general relations between variants of CFPQ and nre and the general rela-
tions between cfSPARQL and nSPARQL where L1 → L2 denotes that L1 is
expressible in L2 and L1 ↔ L2 denotes that L1 → L2 and L2 → L1. Analo-
gously, nSPARQLsf is an extension of SPARQL by allowing star-free nre¬-triple
patterns.

7 Implementation and Evaluation

In this section, we have implemented the two algorithms for CFPQs without any
optimization. Two context-free path queries over RDF graphs were evaluated and
we found some results which cannot be captured by any regular expression-based
path queries from RDF graphs.

The experiments were performed under Windows 7 on a Intel i5-760, 2.80GHz
CPU system with 6GB memory. The program was written in Java 7 with maxi-
mum 2GB heap space allocated for JVM. Ten popular ontologies like foaf, wine,
and pizza were used for testing.
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UCCFPQ nre¬

CCFPQ nre UCCFPQs

nre0(N) CFPQ nre0(|)

nre0

Fig. 2. Known relations between vari-
ants of CFPQ and variants of nre

cfSPARQL uccfSPARQL

nSPARQL¬

nSPARQL

SPARQL

nSPARQLsf

Fig. 3. Known relations between vari-
ants of cfSPARQL and variants of
nSPARQL

Table 1. The evaluation results of Q1 and Q2

Ontology # triples Query 1 Query 2

Time (ms) # results Time (ms) # results

protege 41 468 509 5 0

funding 144 499 296 125 77

skos 254 1044 810 16 1

foaf 454 5027 1929 1154 324

generation 319 6091 2164 13 0

univ-bench 306 20981 2540 532 228

travel 327 13971 2499 281 151

people+pets 703 82081 9472 247 120

biomedical-measure-primitive 459 420604 15156 1068851 9178

atom-primitive 561 515285 15454 4711499 13940

pizza 1980 3233587 56195 255853 4694

wine 2012 4075319 66572 273 79

Query 1. Consider a CFG G1 = (N,A,R) where N = {S}, A =
{next−1::subClassOf,next ::subClassOf,next−1::type,next ::type}, and R = {S →
(next−1::subClassOf)S (next ::subClassOf), S →
(next−1::type)S (next ::type), S → ε}. The query Q1 based on the grammar G1

can return all pairs of concepts or individuals at the same layer of the hier-
archy of RDF graphs. Table 1 shows the experimental results of Q1 over the
testing ontologies. Note that #results denotes that number of pairs of concepts
or individuals corresponding to Q1.

Taking the ontology foaf, for example, the query Q1 over foaf returns pairs of
concepts like (foaf:Document, foaf:Person), which shows that the two concepts,
Document and Person, are at the same layer of the hierarchy of foaf, where the
top concept (owl:Thing) is at the first layer.
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Query 2. Similarly, consider a CFG G2 = (N,A,R) where N =
{S,B}, A = {next−1::subClassOf,next ::subClassOf}, and R = {S → BS,B →
(next ::subClassOf)B (next−1::subClassOf), B → B(next−1::subClassOf)B →
(next ::subClassOf)(next−1::subClassOf), S → ε}. The query Q2 based on
the grammar G2 can return all pairs of concepts which are at adjacent
two layers of the hierarchy of RDF graphs. We also take the ontology
foaf, for example, the query Q2 over foaf returns pairs of concepts like
(foaf:Person, foaf:PersonalProfileDocument), which denotes that Person is at
higher layer than PersonalProfileDocument, since PersonalProfileDocument is
a subclass of Document. Table 1 shows the experimental results of Q2 over the
testing ontologies.

8 Conclusions

In this paper, we have proposed context-free path queries (including some vari-
ants) to navigate through an RDF graph and the context-free SPARQL query
language for RDF built on context-free path queries by adding the standard
SPARQL operators. Some investigation about some fundamental properties of
those context-free path queries and their context-free SPARQL query languages
has been presented. We proved that CFPQ, CCFPQ, UCCFPQs, and UCCFPQ
strictly express basic nested regular expression (nre0), nre0(N), nre0(|), and nre,
respectively. Moreover, uccfSPARQL has the same expressiveness as cfSPARQL;
and both SPARQL and nSPARQL are expressible in cfSPARQL. Furthermore,
we looked at the relationship between context-free path queries and nested regu-
lar expressions with negation (which can express property paths in SPARQL1.1)
and the relationship between cfSPARQL queries and nSPARQL queries with
negation (nSPARQL¬). We found that neither CFPQ nor nre¬ can express each
other while nSPARQL¬ is still expressible in cfSPARQL. Finally, we discussed
the query evaluation problem of CFPQ and cfSPARQL on RDF graphs. The
query evaluation of UCCFPQ maintains the polynomial time data complex-
ity and NP-complete combined complexity the same as conjunctive first-order
queries and the query evaluation of cfSPARQL maintains the complexity as the
same as SPARQL. These results provide a starting point for further research on
expressiveness of navigational languages for RDF graphs and the relationships
among regular path queries, nested regular path queries, and context-free path
queries on RDF graphs.

There are a number of practical open problems. In this paper, we restrict that
RDF data does not contain blank nodes as the same treatment in nSPARQL.
We have to admit that blank nodes do make RDF data more expressive since
a blank node in RDF is taken as an existentially quantified variable [17]. An
interesting future work is to extend our proposed (U)(C)CFPQ for general RDF
data with blank nodes by allowing path variables which are already valid in some
extensions of SPARQL such as SPARQ2L [7], SPARQLeR [19], PSPARQL [5],
and CPSPARQL [3,4], which are popular in querying general RDF data with
blank nodes.
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Abstract. Entity resolution is the task of identifying all mentions that
represent the same real-world entity within a knowledge base or across
multiple knowledge bases. We address the problem of performing entity
resolution on RDF graphs containing multiple types of nodes, using the
links between instances of different types to improve the accuracy. For
example, in a graph of products and manufacturers the goal is to resolve
all the products and all the manufacturers. We formulate this problem
as a multi-type graph summarization problem, which involves clustering
the nodes in each type that refer to the same entity into one super node
and creating weighted links among super nodes that summarize the inter-
cluster links in the original graph. Experiments show that the proposed
approach outperforms several state-of-the-art generic entity resolution
approaches, especially in data sets with missing values and one-to-many,
many-to-many relations.

1 Introduction

The increasing number of entities created online raises the problem of integrating
and relating entities from different sources. In this work, we focus on the entity
resolution problem. It is a common challenge in various domains including digi-
tal libraries, E-commerce, natural language understanding, etc. For example, in
digital libraries, a challenging problem is to automatically group references that
refer to the same publication and disambiguate author names, venues, etc. In
E-commerce, a difficult problem is to match products from one domain (e.g.,
Amazon) to another domain (e.g., eBay).

Consider the example in Fig. 1, where we have five products from different
sellers represented by RDF. The entity resolution task is to group vertices of
the same product entity (e.g., 1 and 2) and vertices of the same manufacturer
entity (e.g., Bose and Bose Electronic) together and relate product entities with
manufacture entities.

There are several challenges in tacking entity resolution tasks. The first chal-
lenge is due to the poor quality of data, such as different spellings (cancel and
cancelling), missing values (e.g., missing price for product 1) and ambiguity
(e.g., the title of product 1 “Apple Noise Cancel Headphones” actually means
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 649–667, 2016.
DOI: 10.1007/978-3-319-46523-4 39
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Product 3

Bose Noise Cancelling 
Headphones 3

Price

299, 
229

Description Manufacturer Bose

IDTitle

Product 2

Noise Premium 
Cancelling Headphones

2

Price

292

DescriptionManufacturerSony

ID Title

Product 4

Quiet Comfort 25 Noise 
Cancelling Headphone4

Price

299

DescriptionManufacturer
Bose 

Electronic

ID Title

Product 5

Dish Washer
5

Price

599

Description
Manufacturer

Bosch
ID Title

Product 1

Apple Noise Cancel 
Headphones

1
Price

0

Description Manufacturer Sony

IDTitle

Fig. 1. An example of RDF graph for five products, where values of description field
are omitted

that the headphones are suitable for apple products, but not manufactured by
Apple). This makes traditional pair-wise distance measures approaches [9,25,30]
less effective with noisy content and context (see related work). The second chal-
lenge is due to the one-to-many and many-to-many relation between entities. For
instance, in the product entity resolution example, a product might be associ-
ated with many prices (normal or discount), and each manufacturer is associ-
ated with many products. The heterogeneous nature of relationships brings in
an additional challenge when performing collective entity resolution [5,10,12]:
to determine which kind of relationship is best suited for resolving a particular
type of entity.

Manufacture 

Product ID

Price

Title

Bose Bosch

1

t5

Bose Electronic

2 3 4 5

t1 t2 t3 t4

0.5 0.3

0.9 0.9 0.8

0.9

0.5

292 229 299 5990

Sony

(a) An Input Graph

Manufacture 

Product ID

Price

Title

Sony Bose, Bose 
Electronic

Bosch

1, 2 3, 4 5

t1,t2 t3, t4 t5

0, 292 229, 299 599

(b) A Summary Graph

Fig. 2. An example of multi-type graph representation for Fig. 1 and its corresponding
summary graph. The description type of vertices is omitted.

To address the aforementioned challenges, we model the observed RDF graph
as a multi-type graph and formulate the collective entity resolution as a multi-
type graph summarization problem. Particularly, the goal is to transform the
original k-type graph into another k-type summary graph composed of super
nodes and super edges. Each super node is a cluster of original vertices (of the
same type) representing a latent entity, while super edges encode potentially
valuable relations between those entities. As shown in Fig. 2(a), we model the
observed RDF graph as a multi-type graph, where vertices represent different
types of objects, and edges represent either co-occurrence between two-types
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of vertices (solid edge), or similarity between the same-type vertices (dashed
edge). The dashed similarity edge can be computed by any similarity measures
such as graph proximity based similarity (e.g., number of common neighbors)
or content-based similarity (e.g., string similarity). An example of a summary
graph is shown in Fig. 2(b), where each super node is a cluster of original vertices
representing a hidden entity and each super edge relates one type entity (e.g.,
product 1, 2) to another type entity (e.g., Sony). The weights of the super edges
also indicate which type of information is more useful when resolving certain
types of entities. For instance, for product 1 and 2 disambiguation, manufacturer
is more reliable than price, while for disambiguating product 3 and 4, price is a
more reliable indicator than manufacturer.

In this work, we thus propose a unified, multi-type graph co-summarization
based entity resolution framework (CoSum), which (1) jointly condenses a set of
similar vertices in the observation into a super node in the summary graph so that
each super node (hidden entity) is coherent; (2) reveals how entities of different
types are related with each other. Our main contributions are summarized as
follows:

1. A novel formulation for the entity resolution problem, where we model the
observed relations between different types of mentions as a multi-type graph
and reduce the entity resolution to a graph summarization problem.

2. A multi-type graph co-summarization based generic entity resolution frame-
work, which supports determining how many entities are discussed, entity
disambiguation and entity relation discovery simultaneously.

3. A generic entity resolution framework that supports different user-supplied
similarity measures as inputs. Those similarity measures can be of any general
form and are not restricted to simple distance-based metrics.

We validate the proposed approach on real-world networks from both an
E-commerce and a citation domain. The results show that the proposed approach
outperforms other state-of-the-art approaches.

2 Related Work

Entity resolution has been extensively studied under different names such
as record linkage [2,7,30], reference reconciliation [12], coreference resolu-
tion [23,29]. In the following, we review a set of representative traditional entity
resolution approaches and collective entity resolution approaches; while we refer
to tutorials [13] and surveys [6,8,36] for more throughout reviews.

Distance-based entity resolution approaches focus on learning a pairwise dis-
tance metric between entities, and then either set a distance threshold or build
a pairwise classifier to determine which entities are merged. The entire process
can be unsupervised [9,25,30], or supervised [29], or a hybrid of these two [7,15].
Limes [30] and Silk [15] are two representative entity resolution systems that
focus on a pair of records at a time, and decide whether they are the same or not
according to acceptance metrics and thresholds. Unfortunately, pairwise-based
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decision is very sensitive to noise and cannot capture the dependency between
two pair-wise decisions.

To address the limitation of pairwise distance-based resolution decision,
recently collective entity resolution has been extensively studied. This work can
be categorized into three types. First, traditional collective entity resolution
focuses on capturing the dependence among the same-type entities. For exam-
ple, Pasula et al. [31] proposed the Relational Probabilistic Model for capturing
the dependence among multiple coreference decisions. Conditional random fields
(CRFs) [21] have been successfully applied to the entity resolution domain [26]
and is one of the most popular approaches in generic entity resolution. On
another hand, Singla and Domingos [34] proposed a well-founded, integrated
solution to the entity-resolution problem based on Markov logic. Bhattacharya
and Getoor [4] proposed a novel relational clustering algorithm that uses both
attribute and relational information between the same-type entities for deter-
mining the underlying entities.

With heterogeneous data becoming more widespread, two additional types
of collective entity resolution have emerged: (1) Collective resolution for entities
with different types [5]. For instance, an extended LDA model was used in [5]
to perform entity resolution for authors and publications simultaneously; (2)
Collective resolution for entities with the same type from different domains.
For example, Dong et al. [12] models a pair of mentions or attributes from two
different domains as a node and then applies a label propagation algorithm to
perform collective entity resolution. Cudré-Mauroux et al. [10] adopt the factor-
graph model to perform collective entity resolution for personal profiles. In this
work, we propose a multi-type graph model for collective entity resolution, which
supports the three aforementioned different types of collective entity resolutions
in the same generic framework.

There is another direction of work that focused on methods to scale up
entity resolution algorithms, such as using indexing [8] or blocking techniques
[17,18,35] to facilitate pairwise similarity computation. A representative exam-
ple is the Serf system [3], which developed strategies that minimize the num-
ber of invocations to these potentially expensive black-box entity resolution
algorithms. Our framework is very generic, and any indexing/blocking technique
can be seamlessly embedded into it.

Our work is related but less relevant to named-entity relation extraction,
tagging [28,32] and entity linking [16]. This work aims to extract named entities
from a corpus and find the relation between entities deploying a fixed or universal
schema, and implicitly do entity resolution along with extraction and tagging.
However, our work focuses on resolving the same entities in a structured or semi-
structured dataset, possibly extracted from different sources. In the outputted
summary graph, our approach relates one type of entities to another type with
weighted edges, but it does not support tagging the edge with a schema type
such as “is-produced-by” between a product entity and a manufacturer entity.
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3 Problem Definition

3.1 Notations

Let G = (∪k
t=1Vt,∪k

t=1 ∪k
t′=t+1 Ett′) be a k-type graph where each Vt denote a

set of vertices of type t, and each Ett′ denote the set of edges connecting two
different types of vertices. Note that Ett′ can be empty if none of the t-type
vertices is connected to t′-type vertices. In addition, we also allow connections
between vertices with the same type by introducing the similarity function sim.
Each simt(x, y) ≥ 0 evaluates the similarity between two t-type vertices x and y.

Given an input k-type graph G, a summary graph S(G) = (∪k
t=1St, ∪k

t=1Ct,
∪k
t′>tLtt′) is another k-type graph that consists of:

– k sets of super nodes {S1, · · · , Sk}, where each super node s ∈ St (t =1 to k)
denotes a cluster of t-type vertices in the original graph,

–
(
k
2

)
sets of super links Ltt′ where each weighted edge (st, st′) denotes the

expected probability that a t-type super node st is connected with a t′-type
super node st′ ,

– k sets of “zoom-in” mappings {C1, · · · , Ck} such that each Ct denotes prob-
abilistic mapping between t-type vertices Vt and super nodes St.

Table 1. Notations and explanations

Notations Explanations

n, m, p, q, k Number of vertices, edges, super nodes, super links, types

V, E, S, L The set of vertices, edges, super nodes, super links

Ett′ Coreference links between t-type and t′-type vertices in the
original graph

Ltt′ Super links between t-type and t′-type super nodes

C ∈ Rn×p The mapping between vertices and super nodes

sim The similarity function between the same-type vertices

C(x) The xth row of a matrix C

d(x), CN(x, y) The degree of vertex x, the common neighbors of vertex x
and y

J(x), J (x) Objective function, Lagrangian function of x

◦ Element-wise multiplicative operator

Note that we use terms vertex and edge to refer to node and edge in original
graph and terms super node and super link to refer to node and edge in summary
graph. For simplicity, we use V to denote the set of vertices, E to denote the set
of edges in original graph G, S to denote the set of super nodes and L to denote
the set of super links in summary graph S(G). The total number of vertices and
edges in G are denoted as n and m, and the total number of super nodes and
super links in S(G) are denoted as p and q. We use symbols with subscript t to
denote notations that are related to type t. A summary of all the notations and
explanations are presented in Table 1.
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3.2 Problem Formulation

As explained in Sect. 1, our goal is to reduce the entity resolution problem to
a graph summarization problem, where the nodes representing different men-
tions of the same hidden entity are summarized, or condensed, into the same
super node. There are numerous ways to summarize a graph depending on spe-
cific objectives. We now provide some intuition about what constitutes a good
summarization in the context of the entity resolution task. In particular, we
postulate that the super nodes in our summary graph need to be coherent, in
the sense that the nodes comprising a given super node should be similar to
each other. The rationale behind this assumption is that different mentions of
the same hidden entity needs to share some similarities, otherwise the problem
becomes infeasible. Furthermore, we differentiate between inherent similarity,
as described by the content of those nodes themselves (e.g., string similarity
between their labels), and structural similarity, which reflects similar connectiv-
ity patterns in the multi-type graph.

To accommodate for the first type of similarity, we define the following opti-
mization problem:

arg min
S(G)

∑

t

∑

x,y∈Vt

simt(x, y)‖Ct(x) − Ct(y)‖2F (1)

This objective function ensures that any summary graph in which two highly
similar vertices (x, y) are not mapped to the same super node, incurs a penalty.
The intuition behind this term is illustrated in the example in Fig. 2. If the titles
t1 and t2 are very similar, then it is very likely that t1 and t2 will be condensed
into the same super node.

To accommodate for structural similarity, we note that if two t-type vertices
are connected to the same t′-type vertex (or a set of t′-type vertices representing
the same entity), it is likely that those two vertices are referring to the same entity
as well. For instance, as shown in Fig. 2, since both record 1 and record 2 are
connected to the manufacturer “Sony” (and their connected titles/descriptions
are very similar), it is likely that the records 1 and 2 are about the same product.
Based on this intuition, we define the following optimization criterion 1:

arg min
S(G)

∑

t

∑

t′>t

‖Gtt′ − CtLtt′Ct′T ‖2F (2)

Next, we combine Eq. (1) with Eq. (2) and formulate the following optimiza-
tion problem:

Problem 1. Given an input k-type graph G and the similarity function simt
for each vertex type t, find a summary graph S(G) for G that minimizes the
following objective:
1 Note that since the input graphs we focused are undirected, we save the half com-

putation by assuming that types of vertices are ordered and restricting edges from
a precedent type t to t′.
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J(S(G)) =
∑

t

∑

x,y∈Vt

simt(x, y)‖Ct(x) −Ct(y)‖2F +
∑

t

∑

t′>t

‖Gtt′ −CtLtt′Ct′T ‖2F
(3)

It is worthwhile to note that while both terms in Eq. 3 tend to produce more
coherent super nodes, there are also certain important differences. Namely, the
first term becomes irrelevant if two nodes are very dissimilar (simt(x, y) ≈ 0),
whereas the second term will tend to assign structurally dissimilar nodes to dif-
ferent super nodes. Furthermore, the second term favors a larger number of super
nodes, whereas the first term tends to condense similar nodes as much as pos-
sible. These differences introduce some non-trivial tradeoffs in the optimization
process, which allow us to arrive at good summary graphs.

4 Methodology

4.1 Solution Overview

In this section, we introduce our solution to Problem1. The overview of our
solution is as follows (as well as outlined in Algorithm1): Start with a random
summary graph (Line 1), we first search for an improved summary graph with
fewer super nodes, by crossing out one or many super nodes (Sect. 4.3). The
second step is to fix the number of super nodes [p1, · · · , pk], and compute the
vertex-to-clustering mapping C and super links L (Lines 4–10). These two pro-
cedures are performed alternately, until they reach a locally optimal summary
graph (Lines 2–11).

Algorithm 1. The graph summarization framework for k-partite graphs
Input: A k-type Graph G
Output: A k-type summary graph S(G)
01: Initialize a random k-type summary graph, with number of super nodes [n1, · · · , nk]
02: repeat

/∗ vertex allocation optimization (Section 4.3)∗/
03: S(G)=Search(G, S(G)) (see Alg. 2)

/∗ fix the number of super nodes, and optimize super nodes assignment (Section 4.2)∗/
04: do
05: for each t-type vertices
06: update Ct with Eq. (4)
07: for each non-empty edge set between t- and t′-type vertices
08: update Ltt′ with Eq. (5)
09: while C and L converge
10: construct the new summary graph S(G)
11: until J(S(G)) converges
12: return S(G)

4.2 Graph Summarization with Given Super Nodes

We first study the summarization algorithms with a simplified condition, in
which we assume that the number of super nodes in the summary graph
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([p1, · · · , pt] is given. With this assumption, we show that the vertex to super
nodes mapping C and the connections among super nodes L can be computed
with a standard multiplicative update rule [22]. The intuition of the multiplica-
tive rule is that whenever the solution is smaller than the local optimum, it
multiplies with a larger value; otherwise, it multiplies with a smaller value.

Lemma 1. With a non-negative initialization of Ct ∈ Rnt×pt , Ct can be itera-
tively improved via the following update rule:

Ct = Ct ◦
√
√
√
√

∑
t′>t Gtt′Ct′Ltt′T + simtCt

∑
t′>t CtEtt′Ct′TCt′Ett′T + DtCt

(4)

where Dt is the diagonal weighted degree matrix of the similarity matrix simt,
and ◦ (/) is the element-wise multiplicative (division) operator.

Proof (sketch). The update rule can be derived following the similar proof pro-
cedure proposed by Ding et al. [11] and Zhu et al. [37]. For each Ct, we introduce
the Lagrangian multiplier Λ for non-negative constraint (i.e., Ct ≥ 0) in Eq. (3),
which leads to the following Lagrangian function J (Ct):

J (Ct) =
∑

t′>t

‖Gtt′ − CtLtt′Ct′T ‖2
F +

∑

x,y∈Vt

simt(x, y)‖Ct(x) − Ct(y)‖2
F ) + tr(ΛCtC

T
t )

The next step is to optimize the above terms w.r.t. Ct. We set the deviation of
J (Ct) to zero (∇Ct

J (Ct)=0), and obtain:

ΛCt
= −2

⎛

⎝
∑

t′>t

Gtt′Ct′Ltt′T + simtCt

⎞

⎠+ 2

⎛

⎝
∑

t′>t

CtEtt′Ct′TCt′Ett′T + DtCt

⎞

⎠

Using the KKT condition ΛCt
◦ Ct=0 [20], we obtain:

⎡

⎣−2

⎛

⎝
∑

t′>t

Gtt′Ct′Ltt′T + simtCt

⎞

⎠+ 2

⎛

⎝
∑

t′>t

CtEtt′Ct′TCt′Ett′T + DtCt

⎞

⎠

⎤

⎦ ◦ Ct = 0

Since Ct is non-negative, we show that when the solution converges, the above
equation is identical to the fixed point condition of following term:

⎡

⎣−2

⎛

⎝
∑

t′>t

Gtt′Ct′Ltt′T + simtCt

⎞

⎠+ 2

⎛

⎝
∑

t′>t

CtEtt′Ct′TCt′Ett′T + DtCt

⎞

⎠

⎤

⎦◦C2
t = 0
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That is, either an entry of Ct or the corresponding entry of the left factor is
zero. We thus have:

Ct = Ct ◦
√
√
√
√

∑
t′>t Gtt′Ct′Ltt′T + simtCt

∑
t′>t CtEtt′Ct′TCt′Ett′T + DtCt

This completes the proof. 	

Note that in Eq. (4), when we compute the vertex to super nodes mapping

Ct for t-type vertices, we utilize their connections to all the other t′-type vertices
(i.e., Gtt′) and the vertex to super nodes mapping for all the other t′-type vertices
(i.e., C ′

t).
Similarly, the connections among super nodes Ltt′ ∈ Rpt×pt′ can be computed

via the following Lemma:

Lemma 2. The solution of Ltt′ can be approximated via the following multi-
plicative update rule:

Ltt′ = Ltt′ ◦
√

Ct
TGtt′Ct′

CT
t CtLtt′Ct′TCt′

(5)

Proof (sketch). The proof is omitted since it is similar to that of Lemma 1.
To develop some intuition about the above solution, let us again consider

the example in Fig. 2. Assume that the product IDs 3 and 4 share many dis-
criminative words in their respective descriptions. After the first iteration of the
algorithm, this evidence will be captured by Lemma1 and those nodes will be
grouped together in CProduct mapping. After this step, using Lemma2, the links
between the new super-node and other-type nodes will be updated. The updated
links show that “Bose” and “Bose Electronic” nodes in the manufacturer type
have a common neighbor in the product type (share the same product). This evi-
dence, along with the similarity link between those two nodes, will be captured
by Lemma 1, so that those two nodes will be clustered together. 	


4.3 Searching for the Optimal Number of Super Nodes

We have discussed the proposed algorithm that computes the “best-effort” sum-
mary graph and mapping between the original graph and the summary graph
with the assumption that the number of super nodes in the summary graph is
known in advance. However, a remaining challenge is to determine the actual
number of entities (super nodes). A possible approach is to enumerate all the
combinations of numbers of super nodes for each type of vertices and then
pick the “best” one with an exhaustive search. Unfortunately, such trial-and-
error procedures can be inefficient in practice. In the following, we propose a
greedy local search algorithm that can automatically determine the number of
super nodes for each type of vertices. The intuition of our approach is to uti-
lize a backward search procedure: starting with an initialization of a summary
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graph, where each type of vertices is assigned to a maximum number of clus-
ters, it repeatedly removes one or many super nodes from a summary graph
with the lowest information. The details of the above procedure are presented in
Algorithm 2, where Info(s) denotes the information of a super node s.

Algorithm 2. Search(G, S(G), p)
Input: A k-type Graph G, a summary graph S(G)
Output: A refined summary graph Snew(G)
01: for each t-type super nodes and vertices
02: θ = mins∈St

∑
v∈Vt

Ct(v, s)

03: for each s ∈ St

04: Info(s) =
∑

v∈Vt
Ct(v, s)

05: if Info(s) == θ and (J(S(G)) − J(S \ {s}(G)) > 0
06: delete s from S(G)
07: return S(G)

Note that our algorithm differs from the traditional bottom-up merging or
top-down split algorithm. Bottom-up merging iteratively picks two clusters such
that merging of these two cluster leads to improved performance. Therefore, at
each iteration, it requires to search over all cluster pairs, which is computation-
ally very expensive (p2 in a näıve implementation and p log p with a heap imple-
mentation). In contrast, in our search algorithm, we only have to decide whether
a super node will be removed (lines 3–6), which results in a time-complexity
that is linear in the number of super nodes p. For the top-down split algorithm,
although the computational cost of searching for the best cluster to be split is
linear, the algorithm requires sophisticated heuristics to perform a split, which
entails reassigning each vertex from one cluster to one of two smaller clusters.
In our algorithm, on the other hand, the vertices within a removed super node
can be merged into the remaining super nodes through the procedure presented
in Sect. 4.2.

4.4 Complexity Analysis

In this section, we analyze the time complexity of our proposed graph sum-
marization algorithm. The time complexity for each basic operation is sum-
marized in Table 2. In addition, for the Algorithm2, the computational cost is
dominated by the computation of the objective function in Line 7. Fortunately,
instead of computing the objective function, we are only required to compute
the change in the objective function after removing a super node. The differ-
ences (i.e., J(S(G)) − J(S \ {s}(G))) can be computed in time that is linear in
the number of nodes. Therefore, the time complexity of Search(G, S(G), p) is
O(

∑
t ptnt).

With the above analysis, the overall time complexity of Algorithm1
is O(rori[

∑
t

∑
t′>t ntnt′(pt + pt′) +

∑
t(nt)2pt]) for dense matrices and
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Table 2. The time complexity for each basic operator with both dense and sparse
matrices representation. Here (nz)t is number of non-zero entries in the matrix simt

Dense Sparse

Ct O(n2
tpt + nt

∑
t′>t(ntpt + ptpt)) O((nz)tpt +

∑
t′>t(mtt′ + ntqtt′))

Ltt′ O(ntp
2
t + pt(ntnt′ + pt′nt′ + ptpt′)) O(ntp

2
t + pt(mtt′ + qtt′ + ptnt′))

O(rori[
∑

t

∑
t′>t mtt′ +qtt′(nt+nt′)]) for sparse matrices, where ri/ro is number

of iterations within inner loops (Line 4–10)/outer loops (Line 2–11). Both ri and
ro are small in practice, which are around 20–200.

5 Experiments

5.1 Dataset and Comparable Methods

Data. We use two datasets from different domains: Product [19],
and Citeseer [4]. Product consists of product entities from two online retailers
Amazon.com and Google Products. Each record has attributes ID, title, descrip-
tion, manufacturer and price. The RDF schema of Product data is shown in Fig. 1.
Note that we only use a flat schema to model the Product data because we cannot
retrieve many-to-many relations (e.g., many-to-many relations between products
and manufacturers) due to the fact that only the product field has a unique iden-
tifier. Based on the schema, we create an input multi-type graph that consists of
two types of vertices: product and word. Each product is connected to a word that
appears in the title, manufacturer, and description. In addition, we also provide
product to product similarity and word to word similarity. The available ground
truth presents product equivalences but not manufacturer equivalences.

Normalized 
author

Author ID Title

Author

URL

(a) RDF Model for Author in
CiteSeer

Author ID Paper ID Title

Paper 

URL

Author ID

(b) RDF Model for Paper in CiteSeer

Author 1 Paper ID Title

Paper 

URL

Author 2

Normalized 
author

Author ID

URL

Normalized 
author

Author ID

URL

(c) RDF Model for Author and Paper in CiteSeer

Fig. 3. RDF Model Schema of Citeseer Data.
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In the Citeseer data set, each publication has a title and multiple authors.
We modeled the Citeseer data in two ways, with a multi-object schema pre-
serving author-to-paper, paper-to-author, and author-to-author relations (see
Fig. 3(c)), and with a flat schema only preserving author-to-paper and paper-
to-author relations (see Fig. 3(a) and (b)). Compared to the flat schema, the
former model is more informative in terms that it supports accessing the list
of co-authors in a paper for each author. However, some entity resolution sys-
tems need the data to be in CSV/XML format, and the latter flat model is
more suitable for such systems. Based on the flat schema, we create a multi-
type graph that consists of four types of vertices: normalized name, author ID,
paper ID, and word. Each author ID is connected to its normalized name and its
related paper ID; while each paper ID is connected to words from its title and
authors. In addition, we also provide the author to author similarity and paper
to paper similarity. The ground truths are whether two paper IDs refer to the
same publication and whether two author IDs refer to the same author entity.

The statistics of two multi-type graphs are summarized in Table 3.

Table 3. The statistics of graphs

Data #types # records # nodes # edges # entities Full input
mapping

Citeseer 4 2892 8591 17521 author:1165,
paper:899

8.4 Million

Product 2 4589 12397 41165 product:1104 4.4 Million

Comparable approaches. We compare our approach (CoSum) with repre-
sentative state-of-the-art unsupervised entity resolution systems Limes [30],
Silk [15], and Serf [3]. For Product data, we also report the best performance
achieved by all the entity resolution approaches and unsupervised entity resolu-
tion approaches reported in the original paper that provide the data [19]. For
Citeseer data, we report the best performance achieved by the collective entity
resolution method [4]. Moreover, Limes and Silk support reading data from a
RDF store, which takes advantage of the graph representation and therefore
more complicated data models. Thus, for Limes/Silk, we use Limes-F/Silk-F
to denote running Limes/Silk using flat models (e.g., Fig. 3(a) and (b)), and
Limes-MO/Silk-MO using multi-object models (e.g., Fig. 3(c)).

Note that various graph summarization techniques have been proposed in
terms of other purposes such as compressing minimum description length [24,27,
33]. We also compare our approach to one representative minimum-description-
length-based graph summarization approach GSum [33] in terms of entity res-
olution task.

Evaluation metrics. We evaluate the entity resolution quality using the usual
measures: precision, recall, and F-measure. We also report the running time com-
parison of different approaches, although the comparison is unfair since they are
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implemented in different languages C++ (GSum), Java (Serf, Limes and Silk),
and Matlab (CoSum). All the experiments are conducted on a single machine,
with a 4-core 2.7GHZ CPU and 16 GB memory.

5.2 Configuration

Limes and Silk require a configuration file, describing the input/output format,
as well as the acceptance metric and thresholds which determine whether a pair
of records are the same or not. In Serf, the user is required to implement a
decision-maker function that receives a pair of records and returns a true/false
decision. For all the three systems, we need to determine which attribute/field
to choose, their best similarity metrics, and how important their roles are in the
acceptance decision. In our experiments, we tried our best to choose the best
fitted metric functions based on what each system offers and the characteristic
of data. Tables 4 and 5 illustrate a summary of the acceptance metrics for dif-
ferent systems on Product and Citeseer domains respectively. The details are
described as follows.

Table 4. Configurations of different systems on Product data

Name (N) Price (P) Description (D) Manufacturer
(M)

Acceptance
Metric

Limes Trigrams Normalized
difference

Cosine - N > 0.6 AND
P > 0.5 AND
D > 0.5

Silk Trigrams Jaro 20N + 10M +
5P + D 2

Serf Jaccard+4-grams N > 0.6 AND
P > 0.5 AND
D > 0.5

2 In Silk, when choosing the weighted average score aggregation, the user just intro-
duces rejection thresholds and weights for each attribute

We first select the set of attributes according to different systems. For
instance, in Limes, the user first introduces all the attributes he wants to use for
record comparison, and Limes requires all the specified attributes to be avail-
able in both records in order to compare them. As a result, we had to ignore the
manufacturer name in Product domain, since more than 90 % of the records in
Google product dataset do not have the manufacturer name. The configuration
in Silk is very similar to Limes, except that Silk allows the user to specify which
attributes are not required for record-pair comparison and can be ignored if their
value is missing. Therefore, we still use the manufacturer attribute in Silk. With
the selected attributes and the details reported in the original work [4,19] that
provide these two benchmark datasets, we have tried combinations of various
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string and set similarity measures that are available in the systems (including
Levenshtein, Jaro, N-grams, and Jaccard) as metrics. Finally, we perform multi-
level grid search for optimal weights of attributes and the threshold. For instance,
we search for the best acceptance threshold for Limes by a top-level grid search
between [0, 1] with step size 0.2, following the bottom-level grid search with step
size 0.01. Therefore, our manual configuration performs better than the active
learning method within Silk because the learning method is based on a genetic
algorithm (ActiveGenLink [14]).

Table 5. Configurations of different systems on Citeseer data

Papers Author Acceptance Metric

Title (T) First-author

(F)

Authors

(A)

Name

(N)

Co-

authors

(C)

Papers Authors

Limes-F Trigrams Jaro-

Winkler

Jaccard Jaro-

Winkler

- 0.5T+0.4F+0.1A >0.75 N>0.85

Limes-MO Jaccard 0.8N+0.2C>0.85

Silk-F soft

Jaccard

- 20T+20F+A N>0.85

Silk-MO soft

Jaccard

6N+C

Serf - 0.5T+0.4F+0.1A >0.75 N>0.85

For graph summarization approaches, the configuration is much easier. We
do not need any acceptance metric since the decision is automatically given
by the summary graph. In addition, if no domain knowledge is available, we
could simply compute the similarity between the same-type vertices using graph
proximity measures. In the experiments, CoSum-B denotes that the similarity
between t-type vertices are computed using the weighted common neighbor app-
roach proposed by [1]. That is, for each x, y ∈ Vt,

simt(x, y) =
∑

z∈CN(x,y)

1
log d(z)

(6)

where CN(x, y) is the set of common neighbors shared by vertices x and y in the
given k-type graph, and d(z) denotes the weighted degree of vertex z. CoSum-P
denotes that we use the string similarity metrics between the same-type vertices
configured in Tables 4 and 5.

5.3 Quality Comparisons

In this section, we evaluate the performance of proposed approach in terms of
precision, recall and F-measure for entity resolution tasks.

Question 1. F-measure: How does CoSum perform compared to the state-of-
the-art entity resolution systems?
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Question 2. Algorithm: How does the proposed CoSum perform compared to
other graph summarization algorithms?

Table 6. Quality comparisons of different approaches

Precision Recall F-measure

Author Paper Product Author Paper Product Author Paper Product

Limes-F 0.958 0.827 0.446 0.864 0.761 0.160 0.909 0.792 0.236

Silk-F 0.846 0.877 0.459 0.986 0.756 0.348 0.910 0.812 0.395

Gsum 0.727 0.668 0.01 0.569 0.624 0.587 0.638 0.645 0.02

CoSum-B 0.993 0.871 0.58 0.940 0.611 0.477 0.966 0.718 0.524

Limes-MO 0.912 0.827 0.446 0.944 0.761 0.160 0.928 0.792 0.236

Silk-MO 0.932 0.877 0.459 0.958 0.756 0.348 0.945 0.812 0.395

Serf 0.985 0.837 0.436 0.687 0.808 0.186 0.809 0.822 0.261

CoSum-P 0.999 0.771 0.639 0.997 0.997 0.695 0.998 0.87 0.666

Best in Lit-

erature

NA NA 0.615

[19]

NA NA 0.63 [19] 0.995 [4] NA 0.622

[19]

Question 3. Modeling: What’s the effect of modeling on state-of-the-art entity
resolution systems?

Question 4. Similarity: What’s the effect of similarity measures to the pro-
posed CoSum approach?
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Fig. 4. Running time comparisons for different approaches.

5.4 Efficiency Comparisons

In this section, we evaluate the scalability of the proposed approach. Unfor-
tunately, examining the total running time only is unfair since the compared
approaches are implemented in different languages: C++ (GSum), Java (Limes,
Silk and Serf) and Matlab (CoSum). Therefore, we report how running time
varies with the size of data to evaluate the scalability.

Question 5. Scalability with Sample Size: How does the proposed CoSum
scale compared to other approaches?

Question 6. CoSum-B Versus CoSum-P: How does the proposed CoSum
scale compared to other approaches?

6 Conclusion

In this work, we proposed a multi-graph co-summarization-based method that
simultaneously identifies entities and their connections. This framework is very
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generic, and does not require any domain-specific knowledge such as RDF mod-
eling or tuning the pairwise similarity threshold. We applied the proposed app-
roach to real multi-type graphs from different domains and obtained good results
in terms of F-measure for entity-resolution tasks. The proposed method has some
limitations. First, the quality of entity-resolution solution depends on the quality
of the user-supplied same-type vertex similarity. We plan to extend the current
method by adaptively refining the same-type vertex similarity with a small num-
ber of training samples. Second, if the same-type vertex similarity matrices and
the observed graphs are very dense, the proposed algorithm is not scalable. In
the future, we will improve the efficiency bottleneck by embedding the blocking
techniques with the graph summarization algorithm. Finally, we plan to apply
the graph summarization algorithm to the entity linking tasks, to evaluate the
quality of super links in summary graphs.
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