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Abstract. We consider the problem of finding an optimal policy in a
Markov decision process that maximises the expected discounted sum of
rewards over an infinite time horizon. Since the explicit iterative dynami-
cal programming scheme does not scale when increasing the dimension of
the state space, a number of approximate methods have been developed.
These are typically based on value or policy iteration, enabling further
speedups through lumped and distributed updates, or by employing suc-
cinct representations of the value functions. However, none of the existing
approximate techniques provides general, explicit and tunable bounds on
the approximation error, a problem particularly relevant when the level
of accuracy affects the optimality of the policy. In this paper we propose
a new approximate policy iteration scheme that mitigates the state-space
explosion problem by adaptive state-space aggregation, at the same time
providing rigorous and explicit error bounds that can be used to control
the optimality level of the obtained policy. We evaluate the new approach
on a case study, demonstrating evidence that the state-space reduction
results in considerable acceleration of the policy iteration scheme, while
being able to meet the required level of precision.

1 Introduction

Dynamic programming (DP) is one of the most celebrated algorithms in com-
puter science, optimisation, control theory, and operations research [3]. Applied
to reactive models with actions, it allows synthesising optimal policies that opti-
mise a given reward function over the state space of the model. According to
Bellman’s principle of optimality, the DP algorithm is a recursive procedure
over value functions. Value functions are defined over the whole state and action
spaces and over the time horizon of the decision problem. They are updated
backward-recursively by means of locally optimal policies and, evaluated at the
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initial time point or in steady-state, yield the optimised global reward and the
associated optimal policy. By construction, the DP scheme is prone to issues
related to state-space explosion, otherwise known as the “curse of dimensional-
ity”. An active research area [5,6] has investigated approaches to mitigate this
issue: we can broadly distinguish two classic approaches.

Sample-based schemes approximate the reward functions by sampling over
the model’s dynamics [6,14], either by regressing the associated value function
over a given (parameterised) function class, or by synthesising upper and lower
bounds for the reward function. As such, whilst in principle avoiding exhaustive
exploration of the state space, they are associated to known limitations: they
often require much tuning or selection of the function class; they are not always
associated with quantitative convergence properties or strong asymptotic statis-
tical guarantees; and they are prone to requiring näıve search of the action space,
and hence scale badly over the non-determinism. In contrast to the state-space
aggregation scheme presented in this paper, they compute the optimal policy
only for the explored states, which can be in many cases insufficient.

Numerical schemes perform the recursion step for DP in a computation-
ally enhanced manner. We distinguish two known alternatives. Value iteration
updates backward-recursively value functions embedding the policy computa-
tion within each iteration. The iteration terminates once a non-linear equation
(the familiar “Bellman equation”) is verified. On the other hand, policy iter-
ation schemes [4] distinguish two steps: policy update, where a new policy is
computed; and policy evaluation, where the reward function associated to the
given policy is evaluated (this boils down to an iteration up to convergence, or
to the solution of a linear system of equations). Convergence proofs for both
schemes are widely known and discussed in [5]. Both approaches can be further
simplified by means of approximate schemes: for instance, the value iteration
steps can be performed with distributed iterations attempting a modularisation,
or via approximate value updates. Similarly to policy iteration, policy updates
can be approximated and, for instance, run via prioritised sweeping over specific
parts of the state space; furthermore, policy evaluations can be done optimisti-
cally (over a finite number of iterations), or by approximating the associated
value functions.

In this work, we focus on the following modelling context: we deal with
finite-state, discrete-time stochastic models, widely known as Markov decision
processes (MDP) [16], and with γ-discounted, additive reward decision problems
over an infinite time horizon. We set up an optimisation problem, seeking the
optimal policy maximising the expected value of the given (provably bounded)
reward function. We formulate the solution of this problem by means of a numer-
ical approximate scheme.

Key Contributions. In this work we present a number of accomplishments:

– We put forward a modified policy iteration scheme which, while retaining
the policy update step on the original MDP, performs an approximate policy
evaluation by clustering the state space of the model.
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– We derive explicit error bounds on the approximate policy evaluation step,
which depend on the model dynamics, on the reward structure, and on the
chosen state-space aggregation.

– We develop an automated policy iteration scheme, which adaptively updates
the model aggregation at each policy evaluation step, according to the com-
puted explicit error bounds.

– We argue that, unlike cognate literature, our quality certificates on the
approximate policy evaluations only depend on manipulations of the abstract
model.

– We argue that, whilst in the developed scheme the policy update is played out
over the original (concrete) MDP, our approach can be extended to encompass
an approximate policy update over the abstract model.

– With a case study, we show that the automated scheme does indeed improve
the performance of the explicit policy iteration scheme, both in terms of
state-space reduction and time.

Related Work. With emphasis on reward-based decision problems over MDP
models, we can relate our contribution to the two alternative approaches dis-
cussed above, and quantitatively compare our scheme to existing numerical
ones; note that sample-based approaches lack strong quantitative guarantees
and therefore cannot be fairly compared.

Numerical and approximate schemes are discussed in [4] in detail. Specifically,
with regards to policy iteration via approximate and optimistic policy updates,
we argue that we provide certificates that only depend on manipulations of the
abstract model and reward function, and that the approximation steps can be
automatically embedded within the global policy iteration scheme.

Sample-based schemes are discussed in [6]; they differ from the numerical
schemes in that they rarely provide guarantees. One exception is bounded real-
time dynamical programming, for which precise bounds on approximation errors
have been proposed, including policy synthesis for stochastic shortest path prob-
lems [14] and verification of quantitative specifications [7]. Further related work
can be found in [9,15].

Finally, our work can be related to approaches which resort to uncertain
(interval-based) MDPs as an abstraction framework and aim at providing lower
and upper bounds on the probability of quantitative specifications. The work
in [11] generates abstractions for MDPs using stochastic two-player games that
can be further refined. The method computes lower and upper bounds on the
minimum and maximum probability, which serve as a measure of the quality of
the abstraction. Interval-based Markov chains have been used to obtain three-
valued abstraction for discrete-space probabilistic systems [10], as well as to
abstract continuous-space stochastic systems. In [2,8] the approximation error
of the continuous dynamics is explicitly computed and can be tuned through
different partitioning of the state space. In [13] bounded-parameter MDPs are
used to abstract switched discrete-time stochastic systems.
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2 Notations and Problem Setup

Model Syntax. We work with discrete-time Markov decision processes (MDP),
with full state observations [3,16]. Formally, an MDP is defined as a triple
(S,A, P ), where

– S = {s1, . . . , sn} is the finite state space of size n;
– A = {a1, . . . , al} is the finite action (input) space of size l;
– P(·) : S × A × S → [0, 1] is the transition probability matrix, which is such

that ∀i ∈ S,∀a ∈ A :
∑n

j=1 Pa(i, j) = 1.

We have assumed, for the sake of simplifying the notation, that all actions are
available at any state s: this could be generalised by defining state-dependent
sets A(s), s ∈ S, which are such that A(s) ⊆ A.

In order to characterise a run (a path) of the MDP, we consider finite or
infinite strings of actions of the form (a0, a1, a2, . . .), ai ∈ A. Of interest to this
work, we structure actions as feedback functions from the model states S to
the action space A, namely for any k ≥ 0, ak takes the shape of a function
μk : S → A. Further, we consider infinite strings of such feedback actions μ =
(μ0, μ1, μ2, . . .), which we denote as policies. We restrict to policies μ that are
memoryless (Markovian) and deterministic (non-randomised), and denote with
μ ∈ M the set of all such admissible policies. For the problems of interest in
this work, we seek to compute time-homogeneous policies, namely of the form
μ = (μ̄, μ̄, μ̄, . . .).

Model Semantics. Consider the model (S,A, P ) and a given policy μ. The
model is initialised via distribution π0 : S → [0, 1], where

∑
s∈S π0(s) = 1, and

its transient probability distribution at time step k ≥ 0 is

πk+1(s) =
∑

s′∈S

πk(s′)Pμk
(s′, s) = PT

μk
πk, (1)

or more concisely as πk+1 = πkPμk
(where the πk’s are row vectors), and where

of course Pμk
(s′, s) = Pμk(s′)(s′, s).

The work in [1] has studied the derivation of a compact representation and
an efficient computation of the vectors πk for a Markov chain, which is an MDP
under a time-homogeneous policy.

Decision Problem and Optimal Policy Synthesis. Consider a time-
homogeneous reward function g : S ×A → R

+
0 , which we assume to be bounded,

and a discount factor γ ∈ (0, 1). Consider the following decision problem

J∗(s) := sup
μ∈M

E

[ ∞∑

k=0

γkg(s, μk)

]

,

for any s ∈ S, and where E denotes the expected value of a function of the process
(as in the previous formula). Notice that in this setup the reward function unfolds
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over an infinite time horizon; however, it is bounded in view of the presence of
the discounting factor γ and the assumption on function g. We are also interested
in deriving the optimal policy attaining the supremum, namely

μ∗(s) := arg sup
μ∈M

E

[ ∞∑

k=0

γkg(s, μk)

]

.

It is well known [3] that the class M of policies is sufficient to characterise the
optimal policy given an MDP model and the additive optimisation setup above,
namely we need not seek beyond this class (say, to randomised or non-Markovian
policies). Further, the optimal policy is necessarily stationary (homogeneous in
time).

Remark 1. It is likewise possible to consider decision problems where cost func-
tions (similar in shape as those considered above) are infimised. Whilst in this
work we focus on the first setup, our results are directly applicable to this second
class of optimisation problems. ��

Optimal Policy Synthesis: Characterisation via Dynamic Program-
ming. Consider the class F of bounded functions f : S → R

+
0 . In order to

characterise the solution of the decision problem above as a recursive dynamic
programming (DP) scheme, let us introduce operators (or mappings) T, Ta :
F → F , a ∈ A, such that

(Taf)(s) = g(s, a) + γ
∑

s′∈S

Pa(s, s′)f(s′),

(Tf)(s) = sup
a∈A

{

g(s, a) + γ
∑

s′∈S

Pa(s, s′)f(s′)

}

.

In a more succinct vector form, we can express Taf = ga + γPaf , and further
the condition fa = Tafa = ga + γPafa, so that fa = (I − γPa)−1ga, which is a
system of linear equations [3] that is relevant below (also in the form depending
on the operator T ). Further, the sequential application of this operator k times,
where k > 0, is denoted as (T k

a f)(s) = (Ta(T k−1
a f))(s), s ∈ S (and similarly for

operator T ).
Consider an initial value function J0 : S → R

+
0 . The DP algorithm hinges on

the Bellman recursion which, for s ∈ S, operates as

(T k+1J0)(s) = sup
a∈A

{

g(s, a) + γ
∑

s′∈S

Pa(s, s′)(T kJ0)(s′)

}

. (2)

At the limit, the optimal value function satisfies the following fix-point equation:

J∗(s) = sup
a∈A

{

g(s, a) + γ
∑

s′∈S

Pa(s, s′)J∗(s′)

}

, (3)
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which is succinctly expressed as J∗ = TJ∗ and known as the Bellman equation
[3]. Given a non-trivial initial value function J0 : S → R

+
0 , the following conver-

gence result holds: J∗(s) = limk→∞(T kJ0)(s), s ∈ S. The results above, focused
on the characterisation of the optimal value function, also lead to the optimal
policy μ∗.

The numerical solution of the discussed infinite-horizon decision problem
hinges on the computation of the iterations in (2), or on the solution of the
non-linear optimisation problem in (3), both of which can be computationally
expensive when the cardinality of the state space | S | is large. Several approaches
have been developed to facilitate the numerical computation of optimal value
functions and policies [5]. Two main schemes can be distinguished: value and
policy iteration.

Value iteration boils down to iteratively computing applications of the opti-
mal operator T , and exploiting monotonicity properties of the obtained value
functions (in view of the operator’s contractivity) to establish conditions for the
convergence of the quantity limk→∞ T kJ0(s), s ∈ S. Variants based on distrib-
uted and approximate iterations have also been developed [5]. We next focus on
the alternative policy iteration scheme.

DP via Policy Iteration, Exact and Approximate. The policy iteration
algorithm, which is proven to find the optimal policy in a finite number of steps,
works as follows. Assume an initial (non-trivial) value function J0 : S → R

+
0 .

Compute the corresponding optimal policy μ0, which is such that Tμ0J0 = TJ0,
namely compute

μ0(s) = arg sup
a∈A

{

g(s, a) + γ
∑

s′∈S

Pa(s, s′)J0(s′)

}

.

This is known as the policy update step. The obtained policy μ0 can be suc-
cessively evaluated over a fully updated value function Jμ0 , which is such that
Jμ0 = gμ0 + γPμ0Jμ0 (as mentioned above). The scheme proceeds further by
updating the policy as μ1 : Tμ1Jμ0 = TJμ0 ; by later evaluating it via value
function Jμ1 ; and so forth until finite-step convergence.

We stress that the value update involved with the policy evaluation is in
general quite expensive, and can be performed either as a recursive numerical
scheme, or as a numerical solution of a linear system of equations. Approximate
policy iteration schemes introduce approximations either in the policy update
or in the policy evaluation steps, and are shown to attain suboptimal policies
whilst ameliorating the otherwise computationally expensive exact scheme [4].

3 New Approximate Policy Iteration

We propose to speed up the above standard policy iteration scheme by accel-
erating the policy update step. The approach is inspired by recent work in [1],
where a sequential and adaptive aggregation approach allows us to quantifiably
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approximate the forward computation of the probability distribution in time
(namely, the transient distribution) of a given Markov chain. In this work, we
tailor this related work to the backward DP scheme, based on the fact that the
policy evaluation steps work on a closed-loop model (indeed, a Markov chain
obtained by selecting the currently optimal policy).

3.1 State-Space Aggregation for MDPs

We aggregate the MDP (S,A, P ) into the abstract model (S̄, A, P̄ ) by a proce-
dure that is inspired by our work in [1]. We partition S = ∪m

i=1Si, where the
cardinality index m has been selected so that m << n, where again n = |S|. We
denote the abstract (aggregated) state space as S̄ and its elements (the abstract
states) with φi, i = 1, . . . ,m. Introduce the abstraction and refinement maps as
α : S → S̄ and A : S̄ → 2S , respectively – the first takes concrete points into
abstract ones, whereas the latter relates abstract states to concrete partitioning
sets. We argue that no abstraction of actions is needed at this stage, namely the
aggregation of the MDP is performed for a given feedback function μ : S → A.
For any pair of indices i, j = 1, . . . ,m, define the abstract transition probability
matrix as

P̄μ(φi, φj)
.=

∑
s∈A(φi)

∑
s′∈A(φj)

Pμ(s)(s, s′)

|Si| .

This transition probability matrix can be de-aggregated piecewise constantly
over the state space, as:

∀s ∈ Si, s
′ ∈ Sj , P̃μ(s, s′) =

1
| Si | P̄μ(φi, φj).

Given an initial function J0(s), s ∈ Si, cluster it into J̄0(φi) =
1

|A(φi)|
∑

s∈A(φi)
J0(s), where φi = α(s), and de-cluster it into J̃0(s) = J̄0(φi), for

all s ∈ A(α(s)). Similarly, given an initial policy μ0, cluster the running reward
function g(s, μ0(s)) (which is evaluated under a selected policy and thus only
state dependent) into ḡ(φi) = 1

|A(φi)|
∑

s∈A(φi)
g(s, μ0(s)), and later de-cluster it

as g̃(s) = ḡ(φi). Given these definitions, the operators Tμ, T can then immedi-
ately aggregated as T̄μ, T̄ .

Remark 2. The aggregation scheme described above can be alternatively imple-
mented by selecting an arbitrary representative point within each partition
s� ∈ Si: P̄μ(φi, φj)

.=
∑

s′∈A(φj)
Pμ(s�)(s�, s′). This leads to formal connections

with the notion of (forward) approximate probabilistic bisimulation [8]. ��

3.2 Approximate Policy Iteration: Quantification and Use of Error
Bounds

Approximate Policy Iteration. Algorithm 1 summarises the approximate
policy iteration scheme. On line 2 the procedure performs an initial spatial aggre-
gation based on an initial value function which, in the absence of alternatives,
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Algorithm 1. Adaptive aggregation scheme for approximate policy iteration
Require: Finite MDP M = (S, A, P ), reward function g, initial policy μ0, allowable

error θ
Ensure: ∀s ∈ S global error �E(s) ≤ θ
1: policyTerm ← false; valueTerm ← false; μ ← μ0; J ← g

2: (S̄, P̄µ, ḡ, J̄ , �X, �Y , Z) ← initAggregation (S, Pµ, g, J)
3: while (!policyTerm) do
4: while (!valueTerm) do � Approximated policy evaluation

5: (J̄ , �E, valueTerm) ← updateValues(S̄, P̄µ, ḡ, J̄ , �X, �Y , Z)

6: if �E ≥ θ then � Maximal error has been reached

7: (S̄, P̄µ, ḡ, �X, �Y , Z) ← reAggregation
(
S, Pµ, g, J̄ , �E

)

8: J̄ ← aggregate(S̄, J) � Restart the policy iteration
9: valueTerm ← false

10: J ← deAggregation(J̄); valueTerm ← false
11: (μ, policyTerm) ← updatePolicy(P, J, μ) � Policy update step

12: (P̄µ, ḡ, �X, �Y , Z) ← updateAggregatedSystem
(
S̄, Pµ, g

)

is taken to be equal to the reward function, J0 = g, and on an initial policy μ0

(the choice of which is also quite arbitrary). The procedure builds the aggregated
system comprising state space S̄, transition matrix P̄μ0 , value function J̄0, and
reward function ḡ. The procedure also updates auxiliary data structures (for the
quantities �X, �Y and Z, to be introduced in Sect. 3.3) that are required for the
computation of the error bounds �E. Further, the procedure named updateValues
(line 5) performs policy evaluation by means of value function updates, namely
it updates the aggregated value function based on the current aggregated policy.
Note that this procedure introduces an approximation error (as further elabo-
rated in the next section): as such, it also updates the vector of error bounds �E
and checks if the termination criterion for the value iteration is reached.

If the max allowable error bound θ has been exceeded before the termina-
tion criterion is met, the closed-loop MDP is re-aggregated (based on the error,
as per line 7) and the policy evaluation step is restarted. Note that the adap-
tive re-aggregation step employs the current value function J̄ and the current
error �E, both of which reflect the model dynamics and the specific optimisation
problem. In particular, the re-aggregation refines every cluster φi for which the
current error �E(φi) is above the bound θ, and the new clustering takes J̄ into
consideration. The value function is reset using the values J corresponding to
the last policy update.

If the value iterations terminate before the maximal error is reached, the
final value function J̄ is de-aggregated into J (line 9). Afterwards, the procedure
updatePolicy updates the policy using the obtained J , and checks if a termination
criterion over the policy update has been met. If not, before the next policy
evaluation the aggregated system has to be updated: we retain the clustering S̄
from the previous step, and thus only refresh (in view of the updated policy) the
transition matrix, the reward function g, and the auxiliary data structures.
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Approximate Policy Evaluation: Quantification of Error Bounds. Hav-
ing obtained policy μk, its k-th step, policy evaluation performs the operation
J̄k+1 := J̄mk

k , where J̄mk

k = T̄mk
μk

J̄k, and where mk is a finite integer number
accounting for the optimistic evaluation over the aggregated closed-loop oper-
ator T̄μk

. This update introduces two errors: the first is due to the aggregated
computation; the second is due to the finite number of update steps (mk). We
then interpolate the obtained J̄mk

k (s̄) piecewise constantly over the concrete state
space S, obtaining J̃mk

k (s). We aim at comparing the following:
∣
∣
∣J̃

mk

k (s) − Jμk
(s)

∣
∣
∣ ≤

∣
∣
∣J̃

mk

k (s) − Tmk
μk

Jk(s)
∣
∣
∣ +

∣
∣Tmk

μk
Jk(s) − Jμk

(s)
∣
∣ . (4)

Error bounds on the approximate evaluation of the current policy resort to
the Bellman iteration. We introduce a number of terms (ζj

i (s), ξi(s), yi(s), and
the corresponding aggregated terms Zj ,X, Y ), which help in succinctly express-
ing parts of this iteration.

Definition 1. Consider an MDP (S,A, P ) with a fixed policy μk : S → A, and
the aggregated MDP (S̄, A, P̄μk

). Introduce the following quantities, ∀s ∈ Si, i ∈
{1, . . . , m}:

∣
∣Pμk

(s, Sj) − P̄μk
(φi, φj)

∣
∣ = ζj

i (s),

∣
∣
∣Jk(s) − J̃k(s)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣
Jk(s) − 1

| A(α(s)) |
∑

s′∈A(α(s))

Jk(s′)

∣
∣
∣
∣
∣
∣
≤ ξi(s),

|g(s, μk(s)) − g̃(s)| =

∣
∣
∣
∣
∣
∣
g(s, μk(s)) − 1

A(α(s))

∑

s′∈A(α(s))

g(s′, μk(s′))

∣
∣
∣
∣
∣
∣
≤ yi(s),

and further introduce

Zj
i = max

s∈Si

ζj
i (s), Zj = max

i=1,...,m
Zj

i ,

Xi = max
s∈Si

ξi(s), X = max
i=1,...,m

Xi,

Yi = max
s∈Si

yi(s), Y = max
i=1,...,m

Yi.

Theorem 1 (Error Bounds on Approximate Evaluation of a Given Pol-
icy). A bound for Eq. (4) is the following:

∣
∣
∣J̃

mk

k (s) − Jμk
(s)

∣
∣
∣ ≤ 2B(mk) + B(mk − 1) + (J̃mk

k (s) − J̃mk−1
k (s)),

where

B(mk) =
mk∑

i=0

αiY + αmkX +
mk∑

i=0

αmk−i
m∑

j=1

J̄ i
k(φj)Zj .
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Proof (Sketch). The desired upper bound on the error is obtained by first split-
ting it into two contributions:

∣
∣
∣J̃

mk

k (s) − Jμk
(s)

∣
∣
∣ ≤

∣
∣
∣J̃

mk

k (s) − Tmk
μk

Jk(s)
∣
∣
∣ +

∣
∣Tmk

μk
Jk(s) − Jμk

(s)
∣
∣ .

The first term results from performing the evaluation of policy μk over the aggre-
gated model, and an upper bound is obtained from the three contributions,
accounting respectively for the difference between concrete and aggregated run-
ning costs, initial value functions, and dynamics (namely transition probability
matrices).

On the other hand, the second term results from an optimistic policy evalua-
tion, iterating over value functions only a finite (mk) number of times. The error
can be obtained from [5, Chapter 1] and, importantly, fully computed over the
abstract model. ��
Remark 3. We comment on the asymptotics of the two contributions to the total
error. The first contribution to the error in the previous proposition is bounded
as the number of steps mk grows, whereas the second term decreases exponen-
tially. It might be meaningful to seek an empirical tradeoff, namely a parameter
mk minimising their sum. ��

Within a single iteration of the policy iteration scheme, Theorem1 has estab-
lished an explicit bound on the approximate policy evaluation part. We are inter-
ested in assessing the sub-optimality of the policy obtained upon convergence of
the approximate policy iteration scheme.

Theorem 2 (Bounds on Sub-optimality of Approximate Policy Itera-
tion). Assume that after a finite number of steps p a steady-state policy μp is
obtained. Compute the upper bound δ on the error related to the approximate
policy evaluation steps, namely δ = maxk=0,...,p

∣
∣
∣J̃

mk

k (s) − Jμk
(s)

∣
∣
∣. We obtain

the following sub-optimality bound:
∣
∣
∣J̃mp

p (s) − J∗(s)
∣
∣
∣ ≤ 2γδ

1 − γ
,

where J̃
mp
p (s) is obtained from J̄

mp
p , and where J̄

mp
p = T̄

mp
μp J̄p.

Proof. It follows from a straightforward adaptation of the results in [4, Section 3].
��
Remark 4. As a generalisation (relaxation of the assumptions) of the previous
theorem, if no steady-state policy is attained, we obtain the following bound

2γδ
(1−γ)2 . ��
Remark 5. As a side remark notice that, within the iterative policy-update eval-
uation scheme, we do not need to account for a re-aggregation error (as in [1]),
since this is already taken care by the initialisation of the policy evaluation
scheme and the error terms X. Alternatively, we can avoid restarting the policy
evaluation, which would reduce the re-aggregation overhead, and introduce a
re-aggregation error as in [1]. ��
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Remark 6. Beyond policy evaluation, we can also perform an approximate ver-
sion of policy update, and account for a global error, according to [5, Proposition
1.3.6]. ��

3.3 Tighter and Computationally Faster Matrix Bounds

The error bounds given by Theorem1 can be coarse, and thus not very useful
in practice, since they may not adequately reflect the true empirical errors.
The reason is that the error B(mk) corresponding to the aggregation is state
independent, and employs the global quantities X,Y and Zj . In this section
we will first improve the error bounds, then show how to approximate their
computation to obtain a scheme that can speed up the overall DP algorithm.

As before we focus on the first iteration of policy evaluation. Define the
matrix Z ∈ R

m×m, Zij = Zj
i and the column vector �X(i) = Xi. Then, of course,

∀s ∈ Si the third error (for the first value iteration) can be encompassed by
γZi·J̄0

0 , where J̄0
0 is a column vector and Zi· is the i-th row of matrix Z. This

leads to
∣
∣
∣J̃1

0 (s) − J1
0 (s)

∣
∣
∣ ≤ Yi + γPμ0(s, ·) �X + γZi·J̄0

0

(uniformly over s) ≤ Yi + γP̄ (φi, ·) �X + γZi·J̄0
0 ,

At the next (second) iteration, the error is

∣∣∣J̃2
0 (s) − J2

0 (s)
∣∣∣ ≤ (1 + α)Yi + γ2

m∑
k=1

P 2
µ0(s, Sk)Xk + γ2

m∑
k=1

J̄0
0 (φk)Z

k + γ

m∑
j=1

J̄1
0 (φj)Z

j

≤ (1 + α)Yi + γ2P 2
µ0(s, ·) �X + γ2Pµ0(s, ·)ZJ̄0

0 + γZi·J̄
1
0

(unif. over s) ≤ (1 + γ)Yi + γ2P̄ 2(φi, ·) �X + α2P̄ (φi, ·)ZJ̄0
0 + γZi·J̄

1
0 .

Now, uniformising over s ∈ Sj (i.e. over j-th cluster), we can directly write

sup
s∈Sj

∣∣∣J̃m0
0 (s) − Jm0

0 (s)
∣∣∣ ≤

m0∑
i=0

γiYj +γm0 P̄m0(φj , ·) �X +

m0−1∑
i=0

γm0−iP̄m0−i−1(φj , ·)ZJ̄ i
0,

(5)

where we have imposed that P̄ 0(φj , ·)Z = Zj·.
Whilst providing tighter bounds, the computation of these formulas can be

expensive due to the last term representing a number of matrix-matrix multipli-
cations that is linear with the number of value function updates. We therefore
introduce an approximate computation of the bounds, which combines the coarse
and uniform bounds that can be easily computed, with the improved but expen-
sive matrix bounds. The new computation attempts to make the approximate
policy iteration practically useful, namely to provide considerable speedup of
the computation whilst, at the same time, deriving informative bounds on the
approximation error.
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Define vectors �E and �Y such that �E(j) = sups∈Sj

∣
∣
∣J̃m0

0 (s) − Jm0
0 (s)

∣
∣
∣ and

�Y (j) = Yj . Based on Eq. (5) we obtain that

�E ≤
m0∑

i=0

γi�Y + γm0 P̄m0 �X +
m0−1∑

i=0

γm0−iP̄m0−i−1ZJ̄ i
0, (6)

where ≤ is defined element-wise. These three terms can be approximated as
follows:

(
m0∑

i=0

γi�Y

)

(j) ≤
(

B1∑

i=0

γi�Y

)

(j) +
m0∑

B1+1

γiY

(
γm0 P̄m0 �X

)
(j) ≤ γm0X (if m0 ≥ B2)

m0−1∑

i=0

γm0−iP̄m0−i−1ZJ̄ i
0 ≤

m0−1∑

i=m0−B3+1

γm0−iP̄m0−i−1ZJ̄ i
0

+
m0−B3∑

i=0

γm0−iP̄B3−1ZJ̄m0−B3
0

≤
m0−1∑

i=m0−B3+1

γm0−iP̄m0−i−1ZJ̄ i
0

+ (m0 − B3 + 1)γB3 P̄B3−1ZJ̄m0−B3
0 ,

where Bi for i ∈ 1, 2, 3 denotes three thresholds that affect the precision and
time complexity of the computations. The approximation allows us to make
the number of constant-vector, matrix-vector and matrix-matrix multiplications,
required by the error computations, independent from the number of value func-
tion updates. Intuitively increasing these thresholds increases the precision, but
also the time complexity. In our experimental evaluation we set B1 = B2 = 10
and B3 = 5.

The first inequality holds, since Y = maxi=1,...,m
�Y (i). The second inequality

holds, since X = maxi=1,...,m
�X(i) and Pm0 is a stochastic matrix. The third

term in Eq. (6) is approximated as detailed next. The error related to the last,
most significant, B3 − 1 iterations is computed using the tighter matrix bounds
(the first term in the right hand side of the last inequality). The error related
to the first k = m0 − B3 + 1 iterations is approximated using a single vector
obtained from the k-th iteration (the second term). The correctness follows from
the monotonicity of Jk

0 , i.e. Jk
0 ≤ Jk+1

0 (element-wise).
Finally, note that the computation of the bounds, as well as the policy evalua-

tion itself, can be rewritten such that the expensive matrix-matrix multiplication
can be replaced by matrix-vector multiplications.
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4 Experimental Evaluation

We have developed a prototype implementation of the approximate policy iter-
ation in PRISM [12]. Both the aggregated and the non-aggregated implementa-
tion use the explicit engine of PRISM for model construction and manipulation;
however, the models are then translated into a sparse and fixed matrix represen-
tation, that is, a similar data structure as that used in the sparse engine, which
is the fastest PRISM engine. We have run all experiments on a MackBook Pro

TM

with 2.9 GHz Intel Core i5 and 8 GB 1866 MHz RAM. Alongside memory usage,
in the following experiments we report and compare runtimes for the policy iter-
ation scheme, whereas the runtimes associated to the model construction, which
are the same for aggregated and non-aggregated computations and hinge on the
chosen engine in PRISM, are not included.

The practical performance of the proposed approximate policy iteration
scheme depends on several related aspects. In our evaluation we attempt to
dissect these aspects and identifying scenarios where our approach can achieve
significant acceleration over the explicit algorithm, and, on the other hand, where
it experiences practical performance limitations. We divide the experiments into
two parts: (1) evaluation of the method for a fixed number of policy iterations
(namely, policy updates/evaluations); and (2) evaluation of the convergence of
the scheme.

We consider a case study from robot motion planning. The MDP model
describes a finite two-dimensional discrete grid (say defined over integer variables
−D ≤ x, y ≤ D), and deals with a robot moving over this map. The size of the
state space thus is |S| = (2D +1)2. The robot dynamics is affected via 5 actions
(up, down, left, right, stay), which are not associated to fully deterministic moves,
namely, there is a probability that performing a given action might result in an
undesired output (e.g., for an action up the robot actually moves, say, to the
right, as explained below).

We are interested in synthesising a policy that steers the robot to a specific
point on the grid. We consider a reward function, which we seek to maximise over
the infinite horizon over the available actions, that attains its maximum over the
desired goal point. The reward function (which in this instance is independent
of the actions) is embedded within a discounted, additive objective, of which we
compute the expected value. As discussed earlier, the DP scheme will yield a
memoryless, deterministic, and homogeneous policy as a function of the state
space.

4.1 Fixed Number of Policy Updates and Evaluations

The required number of policy updates and evaluations (the latter obtained as
value function updates) is key in the performance of the policy iteration scheme.
This number depends on the structure of the system dynamics, which is affected
by the aggregation procedure, and on parameters controlling the termination of
the computations, which usually check the relative difference between consecu-
tive updates. As such, we first assume that the number of the updates is the
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same for both standard and approximate policy iterations, which allows us to
assess the performance of the proposed aggregation scheme with respect to the
following key aspects: (1) the number of value function updates, (2) the size of
the model, (3) the discounting factor, and (4) the shape of the reward function.
Later we evaluate how the state-space aggregation influences the convergence of
the policy and value function updates.

We consider the following instance of the robotic case study (denoted as
Robotic 1 ), where the actions are structured as follows: there is an 80 % chance of
performing the intended action, i.e. moving to a position (x, y) and the remaining
probability is uniformly distributed over four undesired local moves, namely
(x + 1, y), (x, y + 1), (x − 1, y), and (x, y − 1). The reward function is defined as

g(x, y) = e− x2+y2

ρ , over a bounded range of integers x, y. Note that the parameter
ρ affects the stiffness of the reward function. We have also added some obstacles
to the map, and our experiments indicate that the map modification does not
have a noticeable impact on the performance of the method, which demonstrates
its robustness with respect to different motion planning scenarios.

Figures 1 and 2 illustrate the experimental outcomes. The curves display how
the memory reduction factor and time speedup vary for different maximal error
bounds. The maximal bound represents the threshold that controls the model
re-aggregations, as per line 6 in Algorithm 1: whenever this threshold is reached,
a model re-clustering is performed and the value function iterations for the policy
evaluation are restarted.

Fig. 1. Robotic 1 setup with the discounting factor γ = 0.8 and stiffness ρ = 100.
Left: Fixed state space |S| = 0.5M and 50 policy updates. The figure shows results for
different numbers of value function updates for a given policy update. The runtimes for
non-aggregated computations over 100, 500 and 1000 value function updates are 137,
732 and 1174 s, respectively. Right: 50 policy updates and 1000 value function updates
for a given policy update. The figure shows results for different sizes of the state space.
The runtimes for non-aggregated computations over a model with |S| = 0.5M, 1M and
2M states are 1174, 2560 and 5571 s, respectively.
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Fig. 2. Robotic 1 setup with |S| = 2M, 50 policy updates, 1000 value function updates
per single policy update. Left: fixed stiffness ρ = 100: the figure shows results for dif-
ferent discounting factors γ. Right: fixed γ = 0.8: the figure shows results for different
values ρ. Since the parameters γ and ρ have only a negligible impact on the runtimes
of the non-aggregated computation, we report the runtime for the choice γ = 0.8,
ρ = 100, which is 5571 s.

Figure 1 (left) shows how the average number of value function updates for
a given policy update affect both the state-space reduction and the speedup.
Since both the empirical errors and error bounds grow with increasing num-
ber of value function updates, we can observe a small decrease of the reduction
factor. However, the trend becomes negligible later, likely in view of the conver-
gence of the policy and value function updates. On the other hand, the speedup
steadily increases, despite the decreasing state-space reduction: this is because
the overhead related to every policy update, including updating the aggregated
transition matrix and other data structures, becomes less relevant. Note that
the number of re-aggregations decreases with number of policy updates, which
also increases the speedup. For this case study the speedup saturates around 50
policy updates and 2000 value function updates per each policy update.

Figure 1 (right) confirms the scalability of our approach with respect to the
state space size. Both the state reduction factor and the time speedup consider-
ably grow with the increasing size of the model.

Figure 2 (left) illustrates the effect of the discounting factor γ on the policy
iteration scheme. As expected, as the factor gets closer to the max value 1.0,
both the empirical errors and the error bounds grow, and thus both the reduction
factor and the speedup decrease. Factors above 0.9 limit the performance of our
method, especially if a high precision is required: the current implementation of
the aggregated scheme requires a high number of re-aggregations, which increases
the overhead and results in a poor overall speedup. On the other hand, we do
not consider factors below 0.7 since the model would converge too fast (faster
than the 50/1000 policy/value function updates): still, the results indicate that
better reduction factors would be achieved.
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Finally, Fig. 2 (right) displays the robustness of our aggregation scheme
against varying shapes of the reward function, where in our case study the stiff-
ness of the reward is controlled by the parameter ρ. The current implementation
of the aggregation strategy uses the average value of the reward function to
adequately handle different shapes of the function. Note that for stiff functions
we could additionally tune the aggregation strategy in order to provide better
reduction and speedup, by states that are associated with small rewards (away
from the maximum of the function) in large clusters.

4.2 Convergence of the Approximate Scheme

We consider a different variant of the case study (named Robotic 2 ), where for
each action there is an 80 % probability that the robot does not move, a 15 %
probability that the action has the intended effect, and the remaining probability
is uniformly distributed over the four undesired outputs, similarly as in the
previous variant of the model. The Robotic 2 model displays slower dynamics
and convergence to the optimum in the decision problem, and thus allows us to
better evaluate how the state-space aggregation performs in time.

For both the aggregated and the non-aggregated computations, we use same
termination criteria based on the difference between successive updates. In par-
ticular, the value function iteration (for policy evaluation) terminates if the val-
ues for all states in successive iterations differ by at most 1E-6, whereas the
policy iteration terminates if there is no policy update in successive iterations,
or if policy updates improve the value function by at most 1E-12. Note that
these are the standard convergence thresholds used in PRISM for the numeri-
cal policy iteration scheme, and by decreasing them we slow down the overall
convergence. This would improve the speedup of the adaptive scheme, due to a
higher number of the value function updates and the policy updates: recall the
result in Fig. 1 (left). The sub-optimality bounds for the non-aggregated com-
putation are thus obtained as 2γ1E−6

1−γ , as per Theorem 2. Also note that there
can be more than one optimal action over a state, so the difference in the policy
does not necessarily correspond to an actual error.

Table 1 depicts the results for the discounting factor γ = 0.85 (top batch)
and γ = 0.95 (bottom batch). The columns have the following meaning (from
left to right): threshold on the maximal error bound Bmax for policy evaluation;
maximal error bound Bmax; maximal empirical error Jmax for policy evaluation;
number of states that result in a different optimal action; global error bound
Gmax given by Theorem 2; reduction factor for memory usage; total number of
policy updates and value function updates, respectively; and time speedup. We
can see that, in all cases, decreasing the error bounds improves both the empirical
errors and the optimality of the policy.

The top batch of the table demonstrates that, although the state-space reduc-
tion factor remains high for all three error thresholds, the overall time speedup is
limited due to the low average number of value function updates (which can be
run over the aggregated model) per policy update. As such, since in this case the
convergence (overall number of iterations) is not affected by the reduction factor,
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Table 1. Top: Robotic 2 setup with |S| = 1M, ρ = 100 and γ = 0.85: the non-aggregated
computation has required 12/1.3K policy/value function updates, with a sub-optimality
bound of 1.1E-5, and has taken 73 s. Bottom: Robotic 2 setup with |S| = 1M, ρ = 100
and γ = 0.95: the non-aggregated computation has required 55/11K policy/value func-
tion updates, with a sub-optimality bound of 3.8E-5, and has taken 674 s.

Errors Aggregation

Threshold Bmax Jmax Policy Gmax Reduction Iterations Speedup

1E-2 2.6E-3 1.1E-5 10.5K 5.8E-2 33.7 13/1.3K 5.7

1E-5 7.9E-6 3.7E-8 4.5K 1.9E-4 30.1 10/1.1K 4.5

1E-8 6.1E-9 5.3E-11 0.5K 1.1E-5 27.4 15/1.6K 3.0

1E-2 9.5E-3 8.6E-6 36.5K 7.2E-1 22.2 22/8.6K 13.6

1E-5 7.2E-6 3.5E-8 11.9K 5.4E-4 13.2 44/21.5K 4.0

1E-8 7.9E-9 2.5E-11 1.3K 3.8E-5 8.1 55/31.0K 1.9

also the overall performance (i.e. the speedup with respect to the non-aggregated
computation) is relatively stable.

The bottom part of the table shows that for a discounting factor closer to 1.0
the situation is different. In particular, both the reduction factor and the per-
formance of the approximate policy iteration scheme downgrade with decreas-
ing error bounds, whilst remaining faster than the iterations over the concrete
model. In particular, for the error threshold 1E-2, the aggregation provides more
than a 13-fold speedup, since the reduction factor is high and the approximate
scheme converges faster (i.e. considerably fewer policy/value function updates
are required). However, for lower error bounds both the reduction factor and the
convergence speed decrease, which results in smaller speedups.

4.3 Discussion of the Experimental Results

Our experimental evaluation dissects important aspects of the DP algorithm that
impact the performance metrics (i.e. reduction factors, convergence, precision,
overall speedup) of the proposed approximate scheme. The experimental results
clearly indicate that, for complex instances running over large state spaces and
requiring a high number of policy and value function updates, our approximate
scheme provides significant reduction of the computation time, while providing
explicit bounds on the approximation errors. The maximal permissible error is
specified by users and controls the tradeoff between the state-space reduction,
which directly affects the speedup, and the precision of the computation in the
form of maximal error of the value function.

The experiments further show that the overall performance of the method
considerably depends on the aggregation strategy, namely, on a set of parame-
ters and thresholds that control the aggregation. Intuitively, there is a tradeoff
between the reduction vs. precision ratio and the overhead related to the re-
aggregations. To provide a fair comparison we have run all experiments with the
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same setting (except for the thresholds on the maximal error bounds). However,
our observations show that a fine tuning of the parameters for a certain problem
can lead to additional performance improvements.

The overhead related to updating the aggregated model (by means of its tran-
sition matrix), proved to have a significant impact on the overall performance.
Therefore, a dynamic data structure implementing the model can improve the
performance. Such a dynamic representation supports efficient local updates that
are faster than global updates required by a static representation, and reduces
the number of operations over the non-aggregated matrix. On the other hand,
certain computations over dynamic structures (i.e. value function updates) might
require additional overhead with respect to a static representation.

5 Conclusions and Future Work

In this article we have proposed a new approximate policy iteration scheme that
mitigates the state-space explosion problem by adaptive state-space aggregation,
at the same time providing rigorous and explicit error bounds that can be used
to control the optimality level of the obtained policy.

The discussed approximate policy iteration scheme, and its associated error
bounds, can be extended to approximate policy updates. This, on the one
hand, would naturally incur an additional approximation error, but, on the
other, would allow for a computational scheme completely based on aggregated
(abstract) models.
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