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Abstract. Modal Transition System (MTS) is a well studied formal-
ism for partial model specification. It allows a modeller to distinguish
between required, prohibited and possible transitions. Disjunctive MTS
(DMTS) is an extension of MTS that has been getting attention in
recent years. A key concept for (D)MTS is refinement, supporting a
development process where abstract specifications are gradually refined
into more concrete ones. Refinement comes in different flavours: strong,
observational (where τ -labelled transitions are taken into account), and
alphabet (allowing the comparison of models defined on different alpha-
bets). Another important operation on (D)MTS is that of merge: given
two models M and N , their merge is a model P which refines both M
and N , and which is the least refined one.

In this paper, we fill several missing parts in the theory of DMTS
refinement and merge. First and foremost, we define observational refine-
ment for DMTS. While an elementary concept, such a definition is miss-
ing from the literature to the best of our knowledge. We prove that our
definition is sound and that it complies with all relevant definitions from
the literature. Based on the new observational refinement for DMTS, we
examine the question of DMTS merge, which was defined so far for strong
refinement only. We show that observational merge can be achieved as a
natural extension of the existing algorithm for strong merge of DMTS.
For alphabet merge however, the situation is different. we prove that
DMTSs do not have a merge under alphabet refinement.

1 Introduction

Labelled Transition Systems (LTSs) [15] are a formalism for modelling and rea-
soning about system behaviour. Modal Transition Systems (MTSs) [17] are an
extension of LTSs that distinguishes between required, prohibited and possible
transitions, allowing a model to be only partially specified. MTSs come equipped
with the notion of refinement, supporting a development process where abstract
model specifications can be gradually refined into more concrete ones, until a
fully defined model – an LTS – is obtained. An MTS thus serves as a specification
for a set of LTSs – its implementations.
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Refinement of MTSs was investigated along two different dimensions. The
first examines modal vs. thorough refinements [1,2,16]. Given MTSs M and N ,
we say that N modally refines M if there exists a relation R between the states of
M and N such that required transitions in M are simulated by N , and possible
transitions from N are simulated by M . In contrast, N thoroughly refines M if its
set of implementations (denoted by �N�) is a subset of �M�. Modal refinement is
sound but not complete with respect to implementations. That is, if N modally
refines M then �N� ⊆ �M�, but the opposite does not always hold [16]. Thorough
refinement however, is much more complex to determine (EXPTIME-complete
for thorough refinement vs. PTIME-complete for modal refinement [6]), making
modal refinement more attractive for practical applications.

The second dimension of MTS refinement is that of refinement flavour.
Three different flavours have been defined for refinement of MTSs: strong [17],
where required transitions in the original model must exist in the refined model;
observational [11,14], where unobservable (τ -labelled) transitions are taken into
account; and alphabet refinement [12], where MTSs defined on different sets of
labels can be compared. In an alphabet refinement, labels in one MTS that
are not known to the other MTS are being hidden, by replacing them with τ
transitions. An observational refinement is then used for the comparison.

The first part of this paper deals with the refinement definition of an exten-
sion of MTSs, known as Disjunctive MTSs (DMTSs) [18]. In a DMTS, a dis-
junction of required transitions can be defined, increasing the expressiveness of
model specifications. DMTSs have been attracting growing attention in recent
years. Their conjunction as well as model checking were considered in [4], and
structural refinement was defined for them in [7]. Different variants of DMTSs
have been defined and analyzed [8,9,19], and DMTSs are treated as first-class
citizens in the family of transition systems [1,5,16].

Yet, to the best of our knowledge, modal observational refinement of DMTSs
was never fully defined. While strong refinement was already given in [18], where
DMTSs were first introduced, we found only two places in the literature where
observational refinement of DMTSs was considered. In [19] the authors proposed
a modal observational refinement definition for a subset of DMTS called dMTS,
where all transitions of a single disjunct must have the same label. τ -labels
were allowed on “possible” transitions only. In [3], we proposed an observational
implementation definition. Using that definition, a model L was said to be a
refinement of a DMTS M only if L was an LTS (making it a thorough refinement
definition). τ -transitions were allowed to exist only in L and not in M . Modal
observational refinement for full DMTSs is thus still missing from the literature.

Such a definition is the first contribution of our paper. We provide the defin-
ition, which is subtle and non-trivial, and prove that it agrees with the relevant
definitions from the literature. Specifically, we prove that it agrees with [3] when
implementations are concerned; with strong refinement of DMTS [18] when the
compared models have no τ -transitions; and with observational refinement of
MTSs [14] when models compared are MTSs. Most importantly, we prove that
our definition is sound with respect to implementations.



Observational Refinement and Merge for Disjunctive MTSs 289

The second part of the paper deals with the operation of conjunction, or
merge of modal transition systems. Given two models, it is often desirable
to compute a new model that captures all of their common implementations.
Such an operation supports independent development of different aspects of an
intended behaviour, followed by the composition of them into a single model
that accurately captures all aspects. The merge of two (D)MTSs M and N is a
(D)MTS that is a common refinement of both, and is the least refined one. Thus
it is sometimes called the least common refinement or the LCR.

Merge has been investigated in the literature for MTSs as well as for DMTSs,
for strong, observational and alphabet refinements [3,4,10,12,13,19,20]. It was
shown that MTSs are not closed for merge under strong refinement [10,13] (which
implies that they are not closed under observational and alphabet merges as well,
since observational merge must agree with strong merge when no τ -transitions
are involved). For DMTSs, a strong merge algorithm was given in [4]. Obser-
vational merge however, was only considered for the restricted subset of dMTS
where τ -labels are allowed on possible transitions only [19].

Our second contribution is thus an observational merge algorithm for DMTS.
Using our new observational refinement definition, we show that the strong merge
algorithm of [4] can be naturally extended to support observational merge as well.

Our third contribution deals with minimal common refinements (MCRs) [20]
under alphabet refinement. An MCR of two models M and N is a common refine-
ment P of them such that no other common refinement is less refined than it.
Other common refinements may exist though, that are incomparable with P . For
cases where a least common refinement (LCR) does not exist, it was suggested
that the merge of two models could be represented by a (possibly infinite) set of
MCRs. Algorithms for finding MCRs in special cases were proposed in [10,12,20],
for strong as well as for alphabet merge. It was assumed that, unlike LCR, an
MCR of two models always existed (given that the models are consistent, i.e.,
they have at least one implementation in common). We prove this assumption
to be wrong: we give an example of two DMTSs that, although consistent, do
not have an MCR under alphabet refinement.

Table 1 summarizes the known results for refinement and merge of MTSs and
DMTSs. We use ‘(?)’ to indicate the parts that were missing before this paper,
and mark our results in blue.

Table 1. Known results for MTS and DMTS. Our contributions are indicated by (?).
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The rest of the paper is organized as follows. In Sect. 2 we give preliminary
definitions. We present observational refinement of DMTSs in Sect. 3, and then
answer positively the question of merge for DMTSs under observational refine-
ment (Sect. 4). Section 5 answers negatively the question of the existence of an
MCR under alphabet refinement. We conclude the paper in Sect. 6. Proofs of
most theorems are omitted due to lack of space.

2 Preliminaries

2.1 LTSs and MTSs

All models considered in this paper are finite-state, where the set of states, the
set of labels and the set of transitions are all finite.

We start with the concept of Labelled Transition Systems (LTSs) [15] which
are commonly used for modeling concurrent systems.

Definition 1 (LTS [15]). A Labeled Transition System (LTS) is a structure
(S,L, δ, s0), where S is a set of states, L is a set of labels, δ ⊆ (S × L × S) is
the transition relation, and s0 ∈ S is the initial state.

Modal Transition Systems (MTSs) [17] are used to specify sets of LTSs. An MTS
distinguishes between two types of transitions – possible and required. Transitions
that do not appear at all are considered to be prohibited.

Definition 2 (MTS [17]). A Modal Transition System (MTS) M is a structure
(S,L, δp, δr, s0), where S is a set of states, L is a set of labels, s0 ∈ S is the initial
state, δp ⊆ (S × L × S) is the possible transition relation, δr ⊆ (S × L × S) is
the required transition relation. In addition, it is required that δr ⊆ δp.

Note that in an MTS, every ‘required’ transition is also ‘possible’. When the
required and possible transitions coincide, the MTS is actually an LTS.

We use the notation m
�−→p m′ to denote a possible transition (m, �,m′) ∈

δp, and m
�−→r m′ to denote a required transition (m, �,m′) ∈ δr. In figures, we

use m
�?−→ m′ for a possible transition and m

�−→ m′ for a required transition.
If the model is an LTS, all transitions are simply i

�−→ i′.
Strong refinement for MTSs has been defined by Larsen and Thomsen [17].

Definition 3 (Strong Modal Refinement of MTS [17]). Let M = (SM , L, δp
M ,

δr
M ,m0) and N = (SN , L, δp

N , δr
N , n0) be MTSs. We say that N is a strong

refinement of M (denoted M �sN) if there exists a strong refinement relation
Rs ⊆ SM × SN , such that (m0, n0) ∈ Rs and if (m,n) ∈ Rs then

1. for every transition (n �−→p n′) in N , there exists a transition (m �−→p m′)
in M such that (m′, n′) ∈ Rs; and

2. for every transition (m �−→r m′) in M , there exists (n �−→r n′) in N such
that (m′, n′) ∈ Rs.
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Since every LTS is also an MTS, we can compare MTSs and LTSs using
modal refinement. Let M be an MTS and I be an LTS. We say that I is an
implementation of M if M �sI. The set of all implementations of a model
M is denoted by �M�. An MTS N is said to thoroughly refine a model M if
�N� ⊆ �M�. As mentioned above, modal refinement is sound with respect to
implementations: M �sN implies �N� ⊆ �M�, but it is not complete [16].

Adding Unobservable Actions. MTSs have also been considered in a situa-
tion where some of the actions are internal (labeled τ), and are unobservable to
the outside viewer. When τ -transitions are present, we use a relaxed, observa-
tional, version of refinement, allowing a finite sequence of τ -transitions to exist
between observable ones. Huttel and Larsen [14] were the first to suggest an
observational refinement for MTSs. Fischbein et al. [10,11] demonstrated some
unintuitive phenomena allowed by the definition of [14], and proposed a different,
more intuitive observational refinement, which we adopt here.

We use Lτ to denote the set of labels L ∪ {τ}. We use m
�̂−→r m′ (or

m
�̂−→p m′) to mean that either � �= τ and m

�−→r m′ (m �−→p m′) holds, or
� = τ and m = m′. If � = τ , no transition (and therefore no label) exists at all.
Note that �̂ can never be τ .

Definition 4 (Observational Modal Refinement of MTSs [10]). Let M =
(SM , Lτ , δp

M , δr
M ,m0) and N = (SN , Lτ , δp

N , δr
N , n0) be MTSs. We say that N

is an observational refinement of M , denoted M �o N , if there exists a relation
Ro ⊆ SM × SN such that (m0, n0) ∈ Ro, and whenever (m,n) ∈ Ro, we have:

1. for every (n �−→p n′) in N , there exists a sequence of transitions in M :

m0
τ−→p m1

τ−→p · · · τ−→p mj
�̂−→p m′, such that m = m0, (mk, n) ∈ Ro for

0 ≤ k ≤ j, and (m′, n′) ∈ Ro; and
2. for every (m �−→r m′) in M , there exist a sequence of transitions in N :

n0
τ−→r n1

τ−→r · · · τ−→r nj
�̂−→r n′, such that n = n0, (m,nk) ∈ Ro for

0 ≤ k ≤ j, and (m′, n′) ∈ Ro.

Note that by Definition 4, a refining τ -sequence can be of length 0. If � = τ ,
then no refining transition is required to exist at all. Like in the strong refinement
case, if I is an LTS and M �o N , we say that I is an observational implementa-
tion of M . The set of observational implementations of M is denoted by �M�o.
N is a thorough observational refinement of M iff �N�o ⊆ �M�o.

2.2 DMTSs

Disjunctive Modal Transition Systems (DMTSs) [18] extend MTS by allowing
required transitions to be disjunctive.

Definition 5 (DMTS [18]). A Disjunctive Modal Transition System (DMTS)
M is a structure (S,L, δp,Δr, s0), where S is a set of states, L is a set of labels,
δp ⊆ (S × L × S) is the possible transition relation, Δr ⊆ (S × 2L×S) is the
disjunctive required transition relation, and s0 ∈ S is the initial state.
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We denote a disjunctive required transition in Δr by 〈s, V 〉, where V is a
set of pairs V = {(l1, s1), . . . , (ln, sn)} with l1, . . . , ln ∈ L and s1, . . . , sn ∈ S.
A disjunct (li, si) ∈ V is sometimes called a leg, and the entire disjunctive
transition – a DT. In figures, a disjunction between transitions is shown using a

bullet. For example, �•↗a↘b is a DT with two legs, on a and b. For example, Fig. 1
shows a DMTS A. It has two DTs emanating from state 0: one with two legs,
on labels c and τ , and the other with 3 legs, on labels b, τ and c.

We follow [4] to require also that (1) if 〈s, V 〉 ∈ Δr then V is not empty, and
(2) for all 〈s, V 〉 ∈ Δr and (�, s′) ∈ V , we have that (s, �, s′) ∈ δp. That is, every
leg in every DT is possible in the model.

A DMTS N strongly refines a DMTS M , if, roughly speaking, every possible
transition in N is also possible in M (like in the MTS case), and if for every DT
in M , there exists a DT in N with at least one leg from the original DT.

Definition 6 (Strong Modal Refinement of DMTS [18]). Let M = (SM , L, δp
M ,

Δr
M ,m0) and N = (SN , L, δp

N , Δr
N , n0) be DMTSs. We say that N is a strong

refinement of M , denoted M �S N , if there exists a strong refinement relation
RS ⊆ SM × SN , such that (m0, n0) ∈ RS, and if (m,n) ∈ RS then

1. for every possible transition (n �−→p n′) in N , there exists a transition

(m �−→p m′) in M such that (m′, n′) ∈ RS; and
2. for every DT 〈m,V 〉 ∈ Δr

M , there exists a DT 〈n,U〉 ∈ Δr
N , such that for

every leg (�, n′) ∈ U there exists a leg (�,m′) ∈ V with (m′, n′) ∈ RS.

Like in the MTS case, we now consider models with τ -transitions. A DT
〈m,V 〉 can thus include legs (τ,m′) ∈ V . To the best of our knowledge, modal
observational refinement for DMTSs has not been defined and we do so in Sect. 3.

[3] defined observational implementation for DMTSs, thereby handling the
case where the refining model is an LTS:

Definition 7 (Observational Implementation of DMTSs [3]). Let M = (SM ,
Lτ , δp

M ,Δr
M ,m0) be a DMTS and I = (SI , Lτ , δI , i

0) be an LTS. We say that
I is an observational implementation of M if there exists an observational
implementation relation ROI ⊆ SM × SI , such that (m0, i0) ∈ ROI , and for
all (m, i) ∈ ROI the following hold:

1. for every transition i
�−→ i′ in I, there exists a sequence of possible transitions

in M , m0
τ−→p m1

τ−→p . . .
τ−→p mj

�̂−→p m′, such that m = m0, (mk, i) ∈
ROI for 0 ≤ k ≤ j, and (m′, i′) ∈ ROI ; and

2. for every DT 〈m,V 〉 ∈ Δr
M , there exists a sequence of transitions in I, i0

τ−→
i1

τ−→ . . .
τ−→ ij

�̂−→ i′, such that i = i0, (m, ik) ∈ ROI for 0 ≤ k ≤ j, and
there exists a leg (�,m′) ∈ V such that (m′, i′) ∈ ROI .

Both strong and observational refinements compare models that are defined
on the same set of labels (alphabet). Yet it is often useful to consider models that
share only a subset of their alphabets [20]. We do that via alphabet refinement:
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we first hide labels of N that are unknown to M , by replacing them with τ ’s,
and then use observational refinement to compare them.

Definition 8 (Hiding). Let M = (SM , αM, δp,Δr,m0) be a DMTS and X
be a set of labels. M with the labels of X hidden, denoted M�X, is a DMTS
(SM , (αM\X)∪{τ}, δp

1 , Δr
1, m0), where Δr

1 is derived from Δr by replacing every
leg (�,m′) ∈ V in a DT 〈m,V 〉 ∈ Δr, with a leg (τ,m′) if and only if � ∈ X.
The set δp

1 is derived from δp in the same way, replacing possible transitions
m

�−→p m′ by m
τ−→p m′ if and only if � ∈ X. For a set of labels Y , we use

M@Y to denote M�(αM \ Y ).

Definition 9 (Alphabet Refinement [20]). A (D)MTS N = (SN , LN , δp
N ,

Δr
N , n0) is an alphabet refinement of a DMTS M = (SM , LM , δp

M , Δr
M ,m0),

denoted M �A N , if LM ⊆ LN and N@LM is an observational refinement
of M .

2.3 Merge

A merge of two models M and N is a common refinement of M and N that is the
least refined. The merge of two models is therefore also called their least common
refinement (LCR). For thorough refinement, the merge is a model P such that
�P � = �M�∩�N�. For modal refinement, we look for P such that M � P and
N � P , and for every other common refinement Q, we have that P � Q (where �
can be a strong, observational or alphabet refinement relation). In practice, there
are many cases where an LCR does not exist. To relax the requirement of an
LCR, the concept of a minimal common refinement (MCR) [20] was introduced.
P is an MCR of M and N if there does not exist a common refinement that is
less refined than P . There could, however, exist common refinements that are
incomparable to P .

MTSs are not closed for merge (no LCR and no MCR) for strong refinement
[10,13]. This implies that they are not closed for observational and alphabet
refinements as well, since if an observational merge algorithm were to exist for
MTSs, it would also have to apply to the case with no τ -transitions. Note that
the other direction does not hold: if a merge over a strong refinement exists,
it does not imply the existence of its counterpart for observational or alphabet
refinement.

DMTSs were shown to be closed for strong merge [4]. Note that the existence
of an LCR implies the existence of an MCR, but the other direction does not
hold. It was shown that DMTSs are not closed for alphabet merge (no LCR
exists) [3].

3 Observational Refinement of DMTS

In this section, we define modal observational refinement for DMTSs, a notion
that we found missing from the literature. In Sect. 3.1, we define observational
refinement for DMTS, and in Sect. 3.2, we provide “sanity checks” showing that
our observational refinement is a reasonable extension of existing definitions.
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3.1 Observational Refinement Definition

In the MTS world, the difference between strong and observational refinements is
that a finite path of τ -transitions is allowed to occur before a transition labelled
� (see Definition 4). In the DMTS world, for strong refinement, a disjunctive
transition replaces MTS’s required transition. For the observational case for
DMTSs, we introduce a new construction which we call a disjunctive cone.

We start with defining a must path.

Definition 10 (Must Path). Let M = (S,Lτ , δp,Δr, s) be a DMTS, and let
x0, x

′ ∈ S be states. A must path of length i from x0 to x′ in M is a sequence

of ‘legs’ x0
l1−→ x1

l2−→ · · · li−1−→ xi−1
li−→ x′ such that there exist V0, V1, ..., Vi−1 ∈

2Lτ ×S with 〈x0, V0〉 ∈ Δr, (l1, x1) ∈ V0, 〈x1, V1〉 ∈ Δr, (l2, x2) ∈ V1, · · · ,
〈xi−1, Vi−1〉 ∈ Δr and (li, x′) ∈ Vi−1.

A must path π = x0
l1−→ x1

l2−→ · · · li−1−→ xi−1
li−→ x′ is maximal in M if

either x′ = xi for some xi on π (that is, π has a loop), or if from x′ there is no
outgoing required transition in M .

Definition 11 (Disjunctive Cone). Let M = (S,Lτ , δp,Δr, s0) be a DMTS, and
x ∈ S be a state. A disjunctive cone with a root x in M is a DMTS Cx =
(Sc, Lτ , δp

c ,Δr
c , x) such that Sc ⊆ S, δp

c ⊆ δp, Δr
c ⊆ Δr, and for every s ∈ Sc

(1) there exists a must path from x to s, and (2) there exists at most one DT
〈s, V 〉 ∈ Δr

c.

A disjunctive cone C ⊆ M is a connected sub-model of M , where each state has
a single (or none) outgoing DT. Note that each DT in M is either entirely in C
or not at all (that is, all legs of the DT should be taken). A disjunctive cone is
a natural extension of a path in MTS to the disjunctive setting of DMTS.

Since every DT may have τ -legs, a disjunctive cone may have must paths
that consist of only τ -transitions. For a given disjunctive cone Cx with a root x,
we denote the set of all maximal must paths in Cx that start at x and include
only τ -transitions by TCx

.

Example 1 (Disjunctive Cone). Consider a DMTS B in Fig. 1. State 6 of B has
two outgoing DTs: 〈6, {(c, 7)}〉 and 〈6, {(b, 8), (τ, 9)}〉. The sub-DMTSs C1

6 ⊂ B
and C2

6 ⊂ B are two of B’s disjunctive cones with root 6, each containing a single
DT from 6.

Let 〈m,V 〉 be a DT in a DMTS M . When dealing with modal refinement,
we have to compare it to a DT 〈n,U〉 in a refining model N . As in the case
of MTS, we use (�̂, n′) ∈ U to mean that either � �= τ , or � = τ and n′ = n.
Here as well, �̂ itself can never be τ . Note, however, that if (�̂, n′) ∈ U is the
single leg in U and if � = τ , then the leg (�̂, n′) does not actually exist, which
makes U empty. This contradicts our requirement that a DT should never be
empty. We thus use the notation DT* for a DT 〈n,U〉 where U is potentially
empty. Note that if a DT* 〈n, ∅〉 observationally refines a DT 〈m,V 〉 via some
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observational refinement RO, it means that there exists a leg (τ,m′) in V such
that (m′, n) ∈ RO.

We now introduce the main definition of the paper.

Definition 12 (Observational Refinement of DMTS). Let M = (SM , Lτ , δp
M ,

Δr
M ,m0) and N = (SN , Lτ , δp

N , Δr
N , n0) be DMTSs. We say that N observa-

tionally refines M (M �O N) if there exists an observational refinement relation
RO ⊆ SM ×SN , such that (m0, n0) ∈ RO, and if (m,n) ∈ RO then the following
hold:

1. for every transition (n �−→p n′) in N , there exists a possible path in M :

m0
τ−→p m1

τ−→p m2
τ−→p · · · τ−→p mj

�̂−→p m′ such that m0 = m and
(mi, n) ∈ RO for 0 ≤ i ≤ j and (m′, n′) ∈ RO; and

2. for every DT 〈m,V 〉 ∈ Δr
M , there exists a disjunctive cone Cn ⊆ N with root

n and set of τ -paths TCn
, such that all paths in TCn

are finite, and for every
π = n0

τ−→r n1
τ−→r n2

τ−→r · · · τ−→r nj in TCn
, for every ni on π where

0 ≤ i ≤ j,
(a) (m,ni) ∈ RO, and
(b) there exists a DT* 〈ni, Ui〉 ∈ Δr

c, such that for every leg (�̂, n′
i) ∈ Ui there

is a leg (�,m′) ∈ V with (m′, n′
i) ∈ RO.

The refining disjunctive cone in N for a DT 〈m,V 〉 consists of DTs that may
have both τ -labelled and �-labelled legs, with � �= τ . All the �-labelled legs must
have a corresponding leg in V . τ -legs do not correspond to legs in V . Thus, if a
DT includes only τ -labelled legs, then it satisfies Condition 2(b) of Definition 12
vacuously, although the DT is not empty. This is because Condition 2(b) talks
only about legs that are not labelled with τ . Note also that the DT 〈ni, Ui〉 must
include the leg (τ, ni+1) (for i < j), since ni has at most one outgoing DT in
Cn. Paths with τ -transitions are finite, guaranteeing that a DT with no τ -legs
is reached eventually on every τ -path.

Example 2 (Observational Refinement). The DMTS B in Fig. 1 is an obser-
vational refinement of the DMTS A from the same figure, with the observational
refinement relation RO = {(0, 6), (5, 7), (2, 8), (0, 9), (3, 10), (0, 11), (3, 12)}. The
disjunctive cone C1

6 refines the DT 〈0, V 〉 ∈ A, where V = {(b, 2), (τ, 1), (c, 3)}.

0 1

2

3

45

A:

b
τ

c

τc
6

7
8

9

10

11 12
B:

c b
τ

c

τ c

6

8

9

10

C1
6:

b
τ

c

6 7
c

C2
6:

Fig. 1. Example DMTSs. DMTS B is an observational refinement of DMTS A. Sub-
DMTSs C1

6 ⊂ B and C2
6 ⊂ B are examples of disjunctive cones.
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The set of τ -paths of C1
6 consists of the transition 6 τ−→ 9. Both (0, 6) and (0, 9)

belong to RO as required by Condition 2.(a) of Definition 12. Condition 2.(b) of
Definition 12 also holds: from state 6 there exists a DT with leg (b, 8) refining V ,
and from state 9 the leg (c, 10) refines V as well.

3.2 Compatibility with Existing Definitions

We verify the validity of Definition 12 by proving a few theorems that ensure
its compatibility with the relevant definitions from Sect. 2. The proofs of all
theorems are given in the Appendix.

Theorem 1 ensures our definition agrees with observational implementation
refinement for DMTSs.

Theorem 1 (Compatibility with Observational Implementations). Let M be a
DMTS and I be an LTS. I is an observational implementation of M (Defini-
tion 7) if and only if it is an observational refinement of M (Definition 12).

For DMTSs with no τ -transitions, Theorem 2 indicates that our definition
agrees with strong refinement of DMTSs (Definition 6).

Theorem 2 (Compatibility with Strong Refinement). Let M and N be two
τ -free DMTSs. Then M �S N if and only if M �O N .

Next, since DMTSs extend MTSs, we need to make sure that observational
refinement for DMTSs agrees with the one for MTSs.

Theorem 3 (Compatibility with the MTS Refinement). Let M and N be MTSs.
Then M �o N (Definition 4) if and only if M �O N (Definition 12).

Finally, Theorem4 is the main result of this section, stating that our defini-
tion is in fact sound, that is, if N refines M according to Definition 12, then the
set of implementations of N is included in the set of implementations of M .

Theorem 4 (Soundness). If M �O N then �N� ⊆ �M�.

Note that an observational refinement relation for DMTS cannot be complete
with respect to implementations. This is because the definition must be com-
patible with strong refinement and with MTS refinement, and thus the simple
examples showing non-completeness for MTSs [16] hold in this case as well.

4 DMTS Merge Under Observational Semantics

In this section, we examine the question of DMTS merge in light of the new
modal observational refinement semantics. DMTSs were shown to be closed for
merge under strong refinement semantics [4]. We show that DMTSs are closed
under observational merge as well.
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In order for two DMTSs to be merged, the models must be consistent, that
is, they must have at least one common observational implementation. The algo-
rithm for merging two DMTSs is based on a consistency relation between the
states of the models to be merged. States m and n are in a consistency relation if
for each DT 〈m,V 〉, at least one leg in V has a corresponding possible transition
from n (possibly after a finite sequence of possible τ -transitions) and vice versa:

Definition 13 (Observational DMTSs Consistency Relation (based on [4])). An
observational consistency relation between DMTSs M = (SM , Lτ , δp

M ,Δr
M ,m0)

and N = (SN , Lτ , δp
N ,Δr

N , n0) is a relation C ⊆ SM × SN s.t. (m0, n0) ∈ C and
∀(m,n) ∈ C, the following holds:

1. ∀〈m,V 〉 ∈ Δr
M , ∃(l,m′) ∈ V and a sequence of possible transitions n0

τ−→p

n1
τ−→p · · · τ−→p nj

�̂−→p n′ in N such that (m,ni) ∈ C for 0 ≤ i ≤ j, and
(m′, n′) ∈ C; and

2. ∀〈n,U〉 ∈ Δr
N , ∃(�, n′) ∈ U and m0

τ−→p m1
τ−→p · · · τ−→p mj

�̂−→p m′ in M
such that (mi, n) ∈ C for 0 ≤ i ≤ j and (m′, n′) ∈ C.
Based on a consistency relation C between M and N , we can now merge

them into a single DMTS that represents models that are common to both.
The composition is done by constructing, for each DT 〈m,V 〉 in M (or N), a
corresponding DT 〈p,W 〉 in the merged model P , where a leg (�, p′) exists in W

whenever (i) (�,m′) exists in V , (ii) a sequence of transitions n0
τ−→p n1

τ−→p

· · · τ−→p nj
�̂−→p n′ is possible in N , such that (m,ni) ∈ C for 0 ≤ i ≤ j, and

(iii) (m′, n′) ∈ C.

Definition 14 (Merge (based on [4])). Let M and N be DMTSs with the same
vocabulary L, and let C be a consistency relation between them. The + operator
between M and N is defined as [M + N ]C = (C, Lτ , δp

M+N ,Δr
M+N , (m0, n0)).

δp
M+N and Δr

M+N are defined to be the smallest relations that satisfy the follow-
ing rules:

(RP ) 〈m,V 〉
〈(m,n),W 〉 , whereW = {(l, (m′, n′)) | (l,m′) ∈ ∧
n

τ−→p n1
τ−→p · · · τ−→p nj

�̂−→p n′ inN,∧(m,nj) ∈ C ∧ (m′, n′) ∈ C}
(PR) 〈n,U〉

〈(m,n),W 〉 , whereW = {(l, (m′, n′)) | (l, n′) ∈ U ∧
m

τ−→p m1
τ−→p · · · τ−→p mk

�̂−→p m′ inM,∧(mj , n) ∈ C ∧ (m′, n′) ∈ C}
(PP1) m

�−→pm′, n
τ−→pn1

τ−→p··· τ−→pnj
�̂−→pn′∧(mj ,n)∈C∧(m′,n′)∈C

(m,n)
�−→p(m′,n′)

(PP2) n
�−→pn′, m

τ−→pm1
τ−→p··· τ−→pmk

�̂−→pm′∧(m,nj)∈C∧(m′,n′)∈C
(m,n)

�−→p(m′,n′)

The difference between the above definition and the one in [4] is in the treat-
ment of the τ -transitions (just like the difference between the strong and the
observational refinement). When constructing a DT 〈(m,n),W 〉 ∈ [M + N ]C
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Fig. 2. H is an observational merge of F and G. The nodes of H are labelled with pairs
of the consistency relation between F and G.

that corresponds to a DT 〈m,V 〉 ∈ M (rule RP), we skip τ -transitions in N
that lead to an appropriate transition corresponding to a leg in V . The skipped
τ -transitions are instead considered by rule PR when a DT in [M + N ]C is
introduced for N .

Example 3. Consider DMTSs F and G from Fig. 2. The two models are consis-
tent, with the maximal consistency relation C = {(0, 5), (3, 5), (4, 6), (0, 7), (1, 8),
(2, 8)}. DMTS H is their merge. It includes two DTs, one corresponding to the
single DT of F (constructed by the RP rule), and the other – corresponding to
the DT of G (constructed by the PR rule).

When C is the largest consistency relation between M and N , the composition
[M + N ]C becomes the merge of M and N . We state that formally below.

Theorem 5 (Correctness of Observational DMTS Merge). Let M and N be
DMTSs with the same vocabulary. If C is the largest consistency relation between
the states of M and N , then [M + N ]C is the LCR of M and N .

5 No MCR Under Alphabet Refinement

We now look at the merge of two models that are defined over different alphabets.
In such a case, we deal with the alphabet merge, that is, we use the alphabet
refinement (Definition 9) to determine if a model P is a common refinement of
models M and N . In [3], we showed that DMTSs are not closed for merge under
thorough alphabet refinement. Since modal refinement is sound with respect
to implementations, this implies non-closure of merge w.r.t. modal alphabet
refinement as well. Thus the question of the existence of an LCR is answered
negatively. What about an MCR? Recall that the existence of an LCR implies
the existence of an MCR, but the opposite direction does not hold. Can the
merge of two DMTSs be represented as a set of minimal common refinements
P1, P2, · · · such that no other common refinement is strictly less refined than
them? In this section, we answer the MCR question negatively as well.

What makes alphabet merge different from strong and observational ones is
the fact that different types of refinements are mixed together. Let M and N be
DMTSs over the alphabets LM and LN , respectively, with no τ -transitions. A
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common refinement P of M and N is defined over the alphabet LM ∪ LN . We
then use hiding and observational refinement to compare P to M and N . Let Q
be another common refinement of M and N . Note that P and Q are now defined
over the same alphabet, and if no τ -transitions exist, we use strong refinement
to compare them. Thus, transitions in P that were considered unobservable
when a relation was defined between P and M , are treated as observable in a
refinement relation between P and Q. While the number of τ -transitions for the
observational refinement does not matter, as long as the sequence is finite, this
number does matter for strong refinement. This difference makes it impossible
to find a minimal common alphabet refinement, as we show in this section.

In Sect. 5.1, we introduce two lemmas proven in the Appendix. We use them
to prove the main theorem in Sect. 5.2.

5.1 Facts About Strong Refinement

We examine a strong refinement relation between two DMTSs, and show that a
sequence of possible transitions is preserved under such a relation, and so does
a sequence of required transitions.

Definition 15 (Maybe Path). Let M = (SM , Lτ , δp,Δr, sm) be a DMTS and

y, y′ ∈ SM be states. A sequence of possible transitions y
l1−→p y1

l2−→p ...
li−1−→p

yi−1
li−→p y′ in M is called a maybe path of length i from y to y′.

Lemma 1. Let M = (SM , Lτ , δp,Δr, sm) and N = (SN , Lτ , δp,Δr, sn) be
DMTSs such that M �S N , with a strong refinement relation RS. Let (m,n) ∈
RS. Let y1 ∈ SN be a state in N . If there exists a maybe path from n to y1 of
length i in N , then there must exist a state x1 ∈ SM and a maybe path of length
i from m to x1 such that (x1, y1) ∈ RS.

Let Cx be a disjunctive cone. States with no outgoing DTs in Cx are called
front states. We denote the set of front states of Cx by FCx

. The depth of a
disjunctive cone is the length of the longest maximal must path in Cx (see
Definition 10). Note that if Cx is of depth i < ∞, then all maximal must paths
in Cx are finite, and each of them ends in a front state of Cx.

Example 4. Consider the disjunctive cone C1
6 in Fig. 1 (Sect. 3.1). Its depth is

2, and its set of front states is FC1
6

= {8, 10}.
Lemma 2. Let M = (SM , L, δp,Δr, sm) and N = (SN , L, δp,Δr, sn) be DMTSs
such that M �S N with the strong refinement relation RS. Let (m,n) ∈ RS. Let
Cm be a disjunctive cone from m of depth i < ∞, and let FCm

be the set of front
states in Cm. Then there exists a must path π from n to a state y ∈ SN and
there exists a state x ∈ FCm

, such that (x, y) ∈ RS and |π| ≤ i.
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Fig. 3. Two DMTSs D and E that do not have an MCR. M is an example of an alphabet
common refinement of D and E, and C3 ⊂ M is a disjunctive cone.

5.2 No MCR

We now prove the main result of the section, stated in the theorem below.

Theorem 6. Consistent DMTSs do not always have a minimal common alpha-
bet refinement.

In order to prove this theorem we introduce two very simple DMTSs, D and
E, shown in Fig. 3. They are consistent with each other and have many common
alphabet refinements, yet they do not have an MCR, as we prove below.

Let us first study the nature of a common alphabet refinement M of D and E.
Since D �A M, all states in M correspond, in the observational alphabet relation,
to either D0 or D1. We call them 0-states and 1-states, respectively. 0-states in
M are those that appear before a transition labeled b on a path from the initial
state. 1-states in M appear after a transition labeled b. 0-states and 1-states
cannot be related via the observation alphabet relation since from a 0-state we
eventually reach a b-labelled transition, while from a 1-state such a transition
cannot be reached. We thus have the following observation.

Observation 1. Let M and N be common refinements of D and E such that
M �S N with the refinement relation RS. For every (x, y) ∈ RS, either both x
and y are 0-states, or they are both 1-states.

From every 0-state x, a 1-state is guaranteed to be reached. Otherwise, x
cannot correspond to D0 since there is a required transition on b from D0. An
observational refinement allows a finite number of τ -transitions to exist, after
which a required transition on b must be present. Thus, from every 0-state x,
there must exist a DT such that all of its legs lead, without loops, to a 1-state.

Observation 2. Let M be a common refinement of D and E. From every 0-state
in M there must exist a DT such that none of its legs form a loop on c-labelled
transitions.

Otherwise, there is a refinement of x that does not reach a 1-state. More
formally, we have the following claim.

Claim 1. From every 0-state x in M, there exists a disjunctive cone Cx with
finite maximal must paths such that all of its front states are 1-states.
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Proof. Assume by way of contradiction that there exists a 0-state x such that
for all disjunctive cones starting from x, at least one front state is a 0-state.
Let us examine a maximal such disjunctive cone Cx, in the sense that no DT
can be added from any front state s (either because a DT does not exist from
s or because adding any DT will form a directed loop). Then s contradicts
Observation 2. ��
Example 5. DMTS M in Fig. 3 is a common alphabet refinement of D and E.
Its 0-states are 3,5,8 and its 1-states are 4,6,7,9. DMTS C3 is a disjunctive cone
for which all of its front states are 1-states. By Claim 1, such a disjunctive cone
must exist in every common alphabet refinement of D and E.

Based on the above observations and Claim 1, we can now prove Theorem 6.
The idea of the proof is to construct, for any given common refinement M of D
and E, a common refinement M′ that is strictly less refined than M (M′ �S M
and M ��S M′). This would show that no common refinement can be minimal.

Proof of Theorem 6. Let M = (SM , L, δp,Δr, sm) be a common alphabet
refinement of D and E. We construct a less refined common alphabet refinement
M′. We first examine disjunctive cones C in M, from 0-states, with front states
that are 1-states. By Claim 1, such a disjunctive cone exists from every 0-state.
Let DC be the set of all such disjunctive cones in M:

DC = {Cx | x is a 0-state, Cx is a disjunctive cone where FCx
has only 1-states}

Consider the depth |Cx| of disjunctive cones in DC. Let k1 = max{|Cx| | Cx ∈
DC}. Let k = 2k1. We now construct M′ = (S′

M , L, δ′p,Δ′r, s′
m) as follows:

• we define s′
m = sm;

• we add k states: S′
M = SM ∪ {y1, · · · , yk};

• we add k possible transitions to δp: δ′p = δp ∪ {s′
m

c−→p y1
c−→p y2

c−→p

· · · c−→p yk};
• and we add k required transitions to Δr: Δ′r = Δr ∪ {yk

c−→r yk−1
c−→r

· · · c−→r y1
c−→r s′

m}.

Clearly, M′ is a common alphabet refinement of D and E: all new states are 0-
states. Also, M refines M′ by removing the transition sm

c−→p y1. Thus, M′ �S M.
It remains to be shown that M ��S M′. Assume by way of contradiction

that M �S M′. Thus, there exists a refinement relation RS between M and M′

such that (sm, s′
m) ∈ RS . In M′, there is a maybe path from s′

m to yk (by
construction). By Lemma 1, there exists a maybe path in M from sm to a state
x, and (x, yk) ∈ RS . Since yk is a 0-state, and x is related to yk, we have by
Observation 1 that x is also a 0-state. By Claim 1, there exists a disjunctive cone
Cx in M from x, such that all its front states are 1-states. Let i be the depth
of Cx. We know that i ≤ k1 (by the definition of k1). Since (x, yk) ∈ RS , by
Lemma 2, there exists a must path π from yk to a 1-state in M′ with |π| ≤ i.
However, by our construction, the shortest must path in M′ from yk to a 1-
state is of length k + 1 (k transitions to get back from yk to s′

m and at least
another b-labelled transition to get to a 1-state). Recall that k = 2k1. We get
that |π| ≤ i ≤ k1 but also |π| > 2k1 – a contradiction. ��
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6 Conclusion

In this paper, we revisited DMTSs and added a few pieces to the puzzle of their
analysis. We defined DMTS modal observational refinement, a definition that
was missing in the literature. We then used this definition to show that DMTSs
are closed under observational merge, but that for the alphabet merge, even a
minimal common refinement cannot be found.

In [3], we introduced a new formalism, rDMTS, and characterized the class
of rDMTSs that are closed for alphabet merge. Since no modal observational
refinement existed at that time, we defined merge using thorough refinement.
We plan to extend the theory of rDMTSs to support modal alphabet refinement
as well. This will provide the first practical solution for merging of models defined
over different alphabets, since the complexity of modal refinement is much lower
than that of thorough (PTIME-complete vs. EXPTIME-complete [6]).
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5. Beneš, N., Křet́ınský, J., Larsen, K.G., Møller, M.H., Srba, J.: Parametric modal
transition systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol.
6996, pp. 275–289. Springer, Heidelberg (2011)
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