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Abstract. We propose a novel scalable parallel algorithm for synthe-
sis of interdependent parameters from CTL specifications for non-linear
dynamical systems. The method employs a symbolic representation of
sets of parameter valuations in terms of the first-order theory of the
reals. To demonstrate its practicability, we apply the method to a class
of piecewise multi-affine dynamical systems representing dynamics of bio-
logical systems with complex non-linear behaviour.

1 Introduction

Complex dynamical phenomena arising in real-world systems such as biological,
biophysical processes, or networks involving economic and social interactions are
typically formalised by means of dynamical systems employing the framework of
non-linear ordinary differential equations that are highly parameterised. In most
cases, the model complexity and the number of unknown parameters do not
allow to analyse the systems analytically. Computer-aided analysis of complex
dynamical systems and their models is a necessary precursor for design of reliable
cyber-physical and cyber-biological systems such as synthetic design and control
of living cells [21,32] or safe medical treatment [1].

Phenomena occurring in the time domain of systems dynamics can be
encoded in temporal logics (TL). TL have the advantage of rigorous and abstract
representation of sequences (or even branching structures) of desired observable
events in systems dynamics including quantitative bounds on time and variable
values [8,10,31] and can be also combined with frequency-domain analysis [19].

In this paper, we target the problem of global parameter synthesis (extended
with static constraints over parameter space). To solve the problem means to
identify parameter valuations that satisfy a given set of TL properties univer-
sally (regardless of specific initial conditions) provided that the specified static
constraints are also satisfied. Static constraints include a priori known restric-
tions, dependencies and correlations of individual parameter valuations (e.g.,
restrictions on production/degradation parameters ratio [36]).
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In general, computationally efficient (scalable) global parameter synthesis
under large uncertainty of a number of unknown parameters and unrestricted
initial conditions with respect to satisfaction of a given TL specification remains
a challenge. Existing techniques do not sufficiently target non-quantitative
branching-time properties that can efficiently cope with decision events and
multi-stability arising in complex real-world systems (e.g., existence and char-
acteristics of unstable states in chemical or electric power systems [14,28], or
reachability of multiple stable states in a biological switch [24,37]). The situa-
tion is even worse if the parameters are interdependent.

We introduce a novel approach to global parameter synthesis based on dis-
tributed CTL model checking. In particular, parameter synthesis for a given
CTL specification and the given parameter space is solved by the coloured model
checking technique [3,11] extended with symbolic encoding of parameter valua-
tions and constraints. The main principle of our new technique relies on symbolic
representation of parameters. The parameter encoding relies on the first-order
theory of reals for which the satisfiability can be algorithmically solved [6]. In
particular, we employ Satisfiability Modulo Theories (SMT) as a subprocedure
wrapped inside the enumerative distributed CTL model checking algorithm. This
allows for every state to synthesise a first-order formula that encodes the para-
meter valuations for which the CTL specification is guaranteed to be satisfied in
that state. A significant advantage of employing enumerative CTL model check-
ing for parameter synthesis is its capability of computing integrated information
in a single parallel run. In particular, the parameter valuations are synthesised
for every state and every subformula of the given CTL property. This allows to
compute the parameter synthesis for a set of CTL formulae at once.

The distributed algorithm is based on assumption-based CTL model check-
ing we have introduced in [13]. Its extension to parameter synthesis for interval-
representation of parameter sets has been considered in [11]. The main drawback
of that approach has been the restriction to synthesis of algebraically indepen-
dent parameters. By using SMT, we significantly generalise the method to para-
meterisations including interdependent parameters. The new algorithm retains
good scaling with increasing number of computing nodes. Since the number
of calls to the SMT solver is proportional to the size of the state space, dis-
tribution of the state space and related computing tasks realise efficiently the
divide&conquer paradigm while minimising the number of SMT calls and par-
allelising their computation on independent computing nodes.

The typical application domains for our method are highly parameterised
systems appearing in systems biology (e.g., dynamics of gene regulatory networks
represented by Boolean networks or non-linear continuous systems [3]) or control
and verification of hybrid systems [18].

Summary of Our Contribution. The main result of this paper is a new
parallel algorithm for parameter synthesis from CTL specifications for dynamical
systems with interdependent parameters. Our method is unique in combining
enumerative model checking with SMT solvers for parameter synthesis. It is
distinctive in the following aspects:
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1. universality – the method works on a large family of finite-state discrete
dynamical systems or finite-state qualitative abstractions of continuous sys-
tems in which parameterisations can be encoded in a first-order logic over
reals,

2. user feedback – the resulting parameter sets are sampled from the SMT repre-
sentation and further post-processed by third-party tools such as Symba [29],

3. high-performance – the method is supplied with a parallel distributed-
memory algorithm that allows good scalability in a distributed environment.

In order to evaluate our approach, we apply the method to piecewise multi-
affine dynamical systems where the systems dynamics is a linear function of the
parameters. In the case study we use a model of a gene regulatory network.

Related Work. Monitoring-based synthesis techniques have been developed for
continuous-time and discrete-time dynamical systems [4,10,17,34,35] and linear-
time TL. These techniques rely on numerical solvers which are well-developed
for systems with fixed parameters or small parameter spaces (perturbations).
An advantage of these techniques is that they consider the function defining the
systems dynamics as a black box provided that there is basically no limitation
on the form of parameterisation of the system. The main drawback is the need
to sample the parameter space and initial states while losing robust guarantees
for the results. This drawback can be overcome by replacing numerical solvers
with Satisfiability Modulo Theories (SMT) solvers that can cope with non-linear
functions and real domains up to required precision [23]. However, these tech-
niques are limited to reachability analysis [30] and their extension to work with
general TL specifications is a non-trivial task yet to be explored. The method
in [16] targets reachability analysis and combines guided random exploration of
the state space together with sensitivity analysis.

Existing techniques for global parameter synthesis from TL specification are
either based on model checking performed directly on a qualitative finite quotient
of systems dynamics [3,7,8,11] or on techniques from hybrid systems [9]. Typical
limitation of these methods is determined by restrictions on the form of allowed
parameterisations. By employing SMT, we obtain support for all parameterisa-
tions and constraints that can be encoded in a first-order logic over reals. This is
a significant improvement over our previous work [11] that has been limited to
algebraically independent parameters only. In [8,26] parameter sets are encoded
symbolically in terms of polytopes allowing linear dependencies only. In [25], the
authors employ symbolic bounded model checking with SMT to parameter syn-
thesis of discrete synchronous models of weighted genetic regulatory networks.
To the best of our knowledge, none of these methods have been parallelised.

In [20], the authors provide a parameter synthesis algorithm for polynomial
dynamical systems based on the Bernstein polynomial representation. The app-
roach targets discrete time dynamical systems.
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2 Definitions and Problem Statement

The general setting of the parameter synthesis problem is given by the notion
of a parameterised Kripke structure [3]. This notion encapsulates a family of
Kripke structures with the same state space but with different transitions. The
existence of transitions is governed by parameter valuations.

Definition 1. Let AP be a set of atomic propositions. A parameterised Kripke
structure (PKS) over AP is a tuple K = (P, S, I,→, L) where P is a finite set of
parameter valuations, S is a finite set of states, I ⊆ S is the set of initial states,
L : S → 2AP is a labelling of the states and → ⊆ S×P ×S is a transition relation
labelled with the parameter valuations. We write s

p→ t instead of (s, p, t) ∈ →.
We assume that the PKS is total, i.e. for all s, p there exists at least one t such
that s

p→ t.

Fixing a concrete parameter valuation p ∈ P reduces the parameterised
Kripke structure K to a standard Kripke structure Kp = (S, I,

p→, L). We use the
notation P(s, t) = {p ∈ P | s

p→ t} to denote the set of all parameter valuations
that enable the transition from s to t. A parameterised Kripke structure can be
seen as a Kripke structure with labelled transitions, where the transition labels
are the sets P(s, t).

In the following, we assume that parameter valuations of the PKS are repre-
sented symbolically. We thus assume that we are given a (first-order) theory that
is interpreted over the parameter valuations; every P(s, t) is then described via
a formula Φs,t such that P(s, t) = {p ∈ P | p |= Φs,t}. The symbolic representa-
tion of a PKS can be thus seen as a Kripke structure with labelled transitions,
where the transition labels are the formulae Φs,t.

To express properties of interest, we employ the standard branching time
logic CTL. The formulae of CTL are defined by the following abstract syntax:

ϕ ::= q | ¬ϕ | ϕ1 ∧ ϕ2 | AXϕ | EXϕ | A(ϕ1 Uϕ2) | E(ϕ1 Uϕ2)

where q ranges over the atomic propositions from the set AP. We use the stan-
dard abbreviations such as EFϕ ≡ E(ttUϕ) and AGϕ ≡ ¬EF¬ϕ.

Note that there are two sets of formulae we use here: the CTL formulae that
consider the states of the PKS and the formulae that are used to symbolically
describe the parameter sets in the PKS. To easily distinguish between these two
kinds of formulae, we shall adopt the convention to denote CTL formulae by
lower-case Greek letters ϕ, ψ, etc., and the parameter formulae by upper-case
Greek letters Φ, Ψ , etc.

The Problem Formulation. Let K = (P, S, I,→, L) be a parameterised
Kripke structure over AP with symbolic description as explained above and
let ΦI be an initial parameter constraint, described using the same theory as the
one used in the symbolic description. Let further ϕ be a CTL formula over AP.
The parametric synthesis problem is, given K, ΦI , and ϕ, to find the function
F that assigns to every state of the Kripke structure the set of parameters that
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ensure the satisfaction of the CTL formula. Formally, the function is described
as follows:

F(s) = {p ∈ P | p |= ΦI , s |=Kp
ϕ}. (1)

We extend the basic parametric synthesis problem with the possibility of
an optimisation criterion, given as an objective function f : P → R that assigns
a real value to every parameter valuation. The parametric optimisation problem
is, given K, ΦI , ϕ, and f , to find the maximal value of f over the set F(s) for
every state s, i.e. to find the function m satisfying m(s) = max{f(p) | p ∈ F(s)}.
We are also interested in the parameter valuations that realise this maximum.

3 Parallel Algorithm

We are now going to describe the distributed-memory semi-symbolic parameter
synthesis algorithm that solves the parameter synthesis problem described above,
i.e. finding the function F . The parametric optimisation problem is then solved
using the result of this algorithm as an input to further tools that provide SMT
optimisation, such as Symba [29]. We assume that the symbolic description of
the parameters is given in a decidable first-order theory.

We adapt the assumption-based distributed CTL model checking algo-
rithm [11,13] as the basis for our work. In this approach, the algorithm is run on
a cluster of n computational nodes (workstations). Each workstation owns a part
of the original PKS as defined by a partition function. This part is extended with
the so called border states. Intuitively, border states are states that in fact belong
to another computational node and represent the missing parts of the state space.
They serve as a proxy between two parts.

More precisely, we define a PKS fragment Ki to be a substructure of the PKS
K satisfying the property that every state in Ki has either no successor in Ki or
it has exactly the same successors as in K. The states without any successors in
Ki are called the border states of Ki. A partition of the PKS K is a finite set
of PKS fragments K1, . . . ,Kn such that every state of K is present in exactly
one Ki as a non-border state; it may be present in several other Kj as a border
state. In fact, every border state is stored several times: as original one on the
node that owns it and as duplicates on nodes that own its predecessors.

To define the semantics of CTL formulae over fragments we need to adapt
the standard semantic definition. To that end, we define the notion of the truth
under assumptions associated with border states. We start by recalling the notion
of an assumption function of [11], itself an extension of the original assumption
functions of [13]. However, as we want to deal with the parameters in a symbolic
way, we then adapt the notions to our semi-symbolic setting.

For a CTL formula ψ, let cl(ψ) denote the set of all subformulae of ψ and let
tcl(ψ) denote the set of all temporal subformulae of ψ. An assumption function
for a parameterised Kripke structure K and a CTL formula ψ is defined as
a partial function of type A : P × S × cl(ψ) → Bool. The values A(p, s, ϕ) are
called assumptions. We use the notation A(p, s, ϕ) = ⊥ to say that the value
of A(p, s, ϕ) is undefined. By A⊥ we denote the assumption function which is
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undefined for all inputs. Intuitively, A(p, s, ϕ) = tt if we can assume that ϕ
holds in the state s under parameter valuation p, A(p, s, ϕ) = ff if we can
assume that ϕ does not hold in the state s under parameter valuation p, and
A(p, s, ϕ) = ⊥ if we cannot assume anything.

Instead of working with the explicit assumption functions as described in [11],
we want to deal with the parameters symbolically. We thus replace the assump-
tion functions with symbolic assumption functions defined as follows. A symbolic
assumption ˜A is a function that assigns to each pair (s, ϕ) a pair of formulae
(Φt, Φf ) such that for all p ∈ P: p |= Φt iff A(p, s, ϕ) = tt and p |= Φf iff
A(p, s, ϕ) = ff. Each such function thus divides the set of all parameter valu-
ations into three sets: those parameters that ensure the satisfaction of ϕ (Φt),
those that ensure that ϕ is not satisfied (Φf ), and finally those parameter valu-
ations under which the satisfaction of ϕ is undefined (¬Φt ∧ ¬Φf ).

To simplify some of the notation in the algorithms below, we sometimes
deal with the two parts (true and false) of the symbolic assumption function
separately and use the notation ( ˜At(s, ϕ), ˜Af (s, ϕ)) = ˜A(s, ϕ).

The main operation of the distributed algorithm is the iterative computation
of the symbolic assumption functions starting from the simplest subformulae of
ψ (the atomic propositions) and moving towards ψ. The algorithm takes into
account the symbolic assumptions of border states, initially set to ⊥. The sym-
bolic assumptions for non-temporal subformulae are easily computed as follows:

˜A(s, p) = (tt, ff) if p ∈ L(s), (ff, tt) otherwise
˜A(s, ϕ1 ∧ ϕ2) = ( ˜At(s, ϕ1) ∧ ˜At(s, ϕ2), ˜Af (s, ϕ1) ∨ ˜Af (s, ϕ2))

˜A(s,¬ϕ) = ( ˜Af (s, ϕ), ˜At(s, ϕ))

The symbolic assumptions for temporal subformulae are computed via Algo-
rithms 1, 2, and 3 . Each of these algorithms assumes that all possible assump-
tions for all subformulae have been already computed (given the current assump-
tions on border states).

Algorithm 1 computes the assumptions for temporal subformulae of the form
EXϕ (existential next). Initially, the assumption function is set to “false for
all parameter valuations”. Then, the algorithm iteratively collects assumptions
about ϕ and propagates the information into predecessor states. This propaga-
tion extends the set of parameters for which the assumption is true and reduces
the set of parameters for which the assumption is false. This ensures that if
a state under given parameter valuation has at least one successor that satisfies
ϕ (under the same parameter valuation), this valuation is going to be included in
the true assumption formula for that state. Moreover, if all successors of a state
under given parameter valuation refute ϕ, that valuation is going to be included
in the false assumption formula for that state. Finally, if a state under given
parameter valuation has no successors that satisfy ϕ and at least one successor
whose satisfaction of ϕ is undefined in the current assumption, this parame-
ter valuation is not going to be included in either the true or false assumption
function.
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Algorithm 2 computes the assumptions for temporal subformulae of the form
E(ϕ1 Uϕ2) (existential until). Initially, the assumption function for all non-
border states is set to the assumption for ϕ2. The propagation of assumptions
works similarly to the previous case, with the two differences that (a) assump-
tions are only changed for states that satisfy ϕ1 and (b) once a state’s assump-
tions change, the state is returned to the queue for processing. This ensures that
the assumptions propagate as much as possible. To determine whether a state’s
assumptions have changed, we employ the SMT-solver. The convergence of this
procedure is guaranteed due to the monotonicity of the computation. As there is
only a finite number of states and a finite number of parameter formulae in the
system, the symbolic assumptions ˜At(s′, ψ) and ˜Af (s′, ψ), which are build out of
these parameter formulae using conjunctions and disjunctions, shall eventually
reach a fixed point.

The last Algorithm 3, which computes the assumptions for temporal subfor-
mulae of the form A(ϕ1 Uϕ2) (universal until), is slightly more complex. Con-
trary to the EXϕ and E(ϕ1 Uϕ2) cases, which required at least one successor
of a state to be valid in order to add assumptions to the true part, the computa-
tion of A(ϕ1 Uϕ2) needs all successor states (under given parameter valuation)
to be valid. In order to ensure this, we need an auxiliary formula T (s, s′) for
each pair of states s, s′. One can see this auxiliary formula as a “copy” of the
transitions in the PKS. During the propagation phase, the encountered transi-
tions are removed from T and only as a parameter valuation leaves T (s′, s) for
all s, it may be added to the true assumption function. Note that the formula
̂Φs′ ∧

∧

s′→s ¬T (s′, s) may be interpreted as a set difference between the set of
all outgoing transitions of s′ and the set of those outgoing transitions of s′ that
remain in T .

We are now ready to describe the main algorithm for distributed-memory
parameter synthesis. In order to compute the assumption function in the distrib-
uted environment, we iteratively compute assumption functions that are defined
on fragments of the system K. The algorithm starts by partitioning the given
state space of K among the nodes using a partition function. There are many
different partition functions that can be used; one function that is often used is
random partitioning.

The main idea of the entire distributed computation, summarised in Algo-
rithm5, is the following. Each fragment Ki is managed by a separate process
(node) Pi. These processes are running in parallel (simultaneously on each node).
Each process Pi initialises the assumption function Ai to the undefined assump-
tion function A⊥. After initialisation, it computes the new assumption function
from the initial assumption function using the algorithms described above.

Once the algorithm has finished computing the symbolic assumptions, the
node exchanges information about border states with other nodes. It sends to
each other node the information it has about that node’s border states and
receives similar information from other nodes. After this exchange is completed,
the computation is restarted. These steps are repeated until the whole network
reaches a fixpoint, i.e. until no new information is computed by any node.
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Algorithm 1. Compute symbolic assumptions for EXϕ

Require: PKS fragment K, CTL formula ψ = EXϕ, initial assumptions ˜Ain

Ensure: new symbolic assumptions ˜A
˜A := ˜Ain

set ˜A(s, ψ) := (ff, tt) for all non-border states s

init := {(s, Φt, Φf ) | ˜Ain(s, ϕ) = (Φt, Φf )}
for (s, Φt, Φf ) in init do

for (s′, Φs′,s) in pred(s) do
˜At(s′, ψ) := ˜At(s′, ψ) ∨ (Φt ∧ Φs′,s)
˜Af (s′, ψ) := ˜Af (s′, ψ) ∧ (Φf ∨ ¬Φs′,s))

Algorithm 2. Compute symbolic assumptions for E(ϕ1 Uϕ2)

Require: PKS fragment K, CTL formula ψ = E(ϕ1 Uϕ2), initial assumptions ˜Ain

Ensure: new symbolic assumptions ˜A
˜A := ˜Ain

set ˜A(s, ψ) := ˜Ain(s, ϕ2) for all non-border states s
queue := S (all states)
while queue not empty do

select and remove s from queue
for (s′, Φs′,s) in pred(s) do

˜At(s′, ψ) := ˜At(s′, ψ) ∨
(

˜At(s′, ϕ1) ∧ ˜At(s, ψ) ∧ Φs′,s

)

˜Af (s′, ψ) := ˜Af (s′ψ) ∧
(

˜Af (s′, ϕ1) ∨ ˜Af (s, ψ) ∨ ¬Φs′,s

)

if ˜A(s′, ψ) was changed and s′ �∈ queue then
add s′ to queue

Algorithm 3. Compute symbolic assumptions for A(ϕ1 Uϕ2)

Require: PKS fragment K, CTL formula ψ = A(ϕ1 Uϕ2), initial assumptions ˜Ain

Ensure: new symbolic assumptions ˜A
˜A := ˜Ain

for all non-border states s do
̂Φs :=

∨

s→s′ Φs,s′

set ˜At(s, ψ) := ˜At(s, ϕ2)

set ˜Af (s, ψ) := ( ˜Af (s, ϕ1) ∨ ¬̂Φs) ∧ ¬ ˜At(s, ϕ2)
T (s, s′) := Φs,s′ for all s → s′

queue := S (all states)
while queue not empty do

select and remove s from queue
for (s′, Φs′,s) in pred(s) do

T (s′, s) := T (s′, s) ∧ ¬ ˜At(s, ψ)

˜At(s′, ψ) := ˜At(s′, ψ) ∨
(

˜At(s′, ϕ1) ∧ ̂Φs′ ∧
∧

s′→s ¬T (s′, s)
)

˜Af (s′, ψ) := ˜Af (s′, ψ) ∨
(

˜Af (s, ψ) ∧ ¬ ˜At(s′, ψ) ∧ Φs′,s

)

if ˜A(s′, ψ) was changed and s′ �∈ queue then
add s′ to queue
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Algorithm 4. Solve cycles
Require: PKS fragment K, CTL formula ψ, initial assumptions ˜Ain

Ensure: new symbolic assumptions ˜A
Ms := tt for all non-border states s
for ϕ ∈ tcl(ψ) {sorted from smallest} do

for s ∈ S do
U := Ms ∧ ¬ ˜At(s, ϕ) ∧ ¬ ˜Af (s, ϕ)
˜Af (s, ϕ) := ˜Af (s, ϕ) ∨ U
Ms := Ms ∧ ¬U

Algorithm 5. Main Idea of the Distributed Algorithm
Require: parameterised KS K, CTL formula ψ, function f
Ensure: F

Partition K into K1, . . . , Kn

for all Ki where i ∈ {1, . . . , n} do in parallel
Take the initial assumption function
repeat

repeat
Compute the new assumptions using the node algorithms (Alg. 1, 2, 3)
Exchange relevant information with other nodes

until all processes reach fixpoint
Modify the assumption function to deal with cycles (Alg. 4)

until everything is computed

Once the fixpoint is reached, there is additional computation to be made, as
there still may be undefined assumptions left. This may happen in the case of the
two until operators EU, AU; for more details see [13]. The minimal undefined
assumptions are found and set to ff, as described in Algorithm 4, and the compu-
tation is again restarted. These steps are repeated until a fixpoint is reached and
no new assumptions are set in Algorithm 4.

It remains to explain the way of dealing with the initial parameter con-
straint ΦI . The initial parameter constraint is orthogonal to the whole computa-
tion and we could, in principle, intersect the symbolic true assumptions with ΦI

after the distributed algorithm is finished. However, to prune the search space
and speed up the computation somewhat, we intersect the symbolic assumption
functions with ΦI whenever we pass them to the SMT solver (i.e. whenever we
need to know whether a symbolic assumption has changed).

Although the node algorithms have been (for clarity) formulated as recom-
puting everything in each iteration, this is of course unnecessary and we only
recompute the part of assumption functions that have been computed as unde-
fined (⊥) in the previous iteration. Formally, we restrict the computation of
˜A(s, ψ) to ¬ ˜At

in(s, ψ) ∧ ¬ ˜Af
in(s, ψ).
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4 Application to Piecewise Multi-affine ODE Models

Let P ⊆ R
m
≥0 denote the continuous parameter space of dimension m. A parame-

terised piecewise multi-affine ODE model (PMA) is given by a system of ODEs
of the form ẋ = f(x, μ) where x = (x1, . . . , xn) ∈ R

n
≥0 is a vector of variables,

μ = (μ1, . . . , μm) ∈ P is a vector of parameters, and f = (f1, . . . , fn) is a vector
of functions that satisfy the criterion that every fi is piecewise multi-affine in x
and affine in μ.

To approximate the PMA model with its finite quotient represented in terms
of a discrete state-transition system, we employ the rectangular abstraction
defined in [8] and further adapted in [3,12,26] (see [15] for overview).

We assume there is given a set of thresholds {θi
1, . . . , θ

i
ni

} for each variable
xi satisfying θi

1 < θi
2 < · · · < θi

ni
. Each fi is assumed to be multi-affine on

each n-dimensional interval [θ1j1 , θ
1
j1+1] × · · · × [θn

jn
, θn

jn+1]. We call these inter-
vals rectangles. Each rectangle is uniquely identified via an n-tuple of indices:
R(j1, . . . , jn) = [θ1j1 , θ

1
j1+1] × · · · × [θn

jn
, θn

jn+1], where the range of each ji is
{1, . . . , ni − 1}. We also define VR(j1, . . . , jn) to be the set of all vertices of
R(j1, . . . , jn).

In order to establish a finite rectangular abstraction of the PMA model, spe-
cial care has to be given to boundary rectangles. A boundary rectangle is any
rectangle R(j1, ..., jn) where for some i either ji = 1 or ji = ni − 1. Any dimen-
sion i satisfying that condition is called a boundary dimension of R(j1, ..., jn).
We restrict ourselves to models where the dynamics is bounded in the range
specified by lower and upper thresholds – trajectories cannot exit that range
(note that this could occur only in boundary rectangles). Formally, all trajec-
tories determined by the PMA model are required to keep xi ∈ [θi

1, θ
i
ni

]. We
restrict ourselves to parameter spaces where this requirement is satisfied for all
parameter valuations. More precisely, for every boundary rectangle R(j1, ..., jn)
we assume that for all μ ∈ P, i ∈ {1, ..., n}, x ∈ R(j1, ..., jn) it holds that
(ji = 1 ∧ xi = θi

1) ⇒ fi(x, μ) > 0 and (ji = ni − 1 ∧ xi = θi
ni

) ⇒ fi(x, μ) < 0.
In [15] it has been shown that rectangular abstraction is conservative with

respect to almost all trajectories of the original (continuous) PMA model. In
particular, almost every continuous trajectory in the PMA model is covered by
a corresponding sequence of rectangles in its rectangular abstraction. However,
there may exist a sequence of rectangles for which there is no corresponding
continuous trajectory in the original PMA model.

The rectangular abstraction is encoded as a PKS K = (P, S, I,→, L) with
S = {(j1, . . . , jn) | ∀i : 1 ≤ ji ≤ ni} where each α ∈ S represents the rectangle
R(α). Let now α = (j1, . . . , jn) ∈ S, 1 ≤ i ≤ n and d ∈ {−1,+1}. We define
αi,d = (j1, . . . , ji+d, . . . , jn) (if ji+d is in the valid range). Thus αi,d describe all
the neighbouring rectangles of α. We further define vi,+1(α) = VR(α)∩{(..., ji +
1, ...)} and vi,−1(α) = VR(α)∩{(..., ji, ...)}. To define the transition relation →,
every pair of states α, αi,d ∈ S, 1 ≤ i ≤ n, d ∈ {−1, 1}, is associated with a
formula Φα,αi,d symbolically encoding the set of parameter valuations μ ∈ P for
which the transition α → αi,d is valid:
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Φα,αi,d :=
∨

v∈vi,d(α)

d · fi(v, μ) > 0 (2)

Additionally, the rectangular abstraction approximates the potential exis-
tence of a fixed point in any rectangle α ∈ S. This is achieved by means of
introducing a self-transition α → α [8]. In particular, a self-transition is valid in
a state α ∈ S for all parameter valuations μ ∈ P satisfying 0 ∈ hull{f(v, μ) | v ∈
VR(α)} (the zero vector included in the convex hull of the rectangle vertices).
This is symbolically encoded by the formula Φα,α defined in the following way:

Φα,α := ∃c1, . . . , ck :

(

k
∧

i=1

ci ≥ 0

)

∧
(

k
∑

i=1

ci = 1

)

∧
(

k
∑

i=1

ci · f(vi, μ) = 0

)

(3)

where k = |VR(α)| is the number of vertices of the rectangle α.
To express properties of rectangular abstraction dynamics, the atomic propo-

sitions are set to represent concentration inequalities, AP = {xi �θi
j | 1 ≤ i ≤ n,

1 ≤ j ≤ ni},� ∈ {≤,≥}}. States of the PKS are labelled with the adequate
constraints of AP . To partition the state space into PKS fragments, we utilise
the regular structure of the state space as described in [27]. Note that the PKS
constructed by the rectangular abstraction is always total.

5 Experimental Evaluation

We have implemented the distributed algorithm from Sect. 3 in a prototype tool
written in Java using the MPJ Express implementation of MPI [2] and the Z3
SMT solver via its Java API [33]. In this section we report on experiments
demonstrating scalability and practicability of our approach on case studies of
two well-known biological systems.

In order to minimise computational overhead caused by calling Z3 on first-
order SMT formulae with quantifiers constructed during the computation, we
employ a simplification of abstraction of piecewise multi-affine systems that has
been introduced in [3]. In particular, the non-trivial formula (3) representing the
convex hull of vectors in rectangle vertices gives a minimal overapproximation of
self-transitions by excluding a zero vector from linear combination of rectangle
vertices vectors. This formula is replaced with a quantifier-free formula giving
a coarser overapproximation:

Φα,α := ¬
∨

1≤i≤n

(

(Φαi,−1,α ∧ Φα,αi,+1 ∧ ¬Φα,αi,−1 ∧ ¬Φαi,+1,α)

∨ (¬Φαi,−1,α ∧ ¬Φα,αi,+1 ∧ Φα,αi,−1 ∧ Φαi,+1,α)
)

In particular, we exclude self-transitions only in rectangles where there exists
a dimension i in which the flow is guaranteed to be one-directional. More specif-
ically, there is either the pair of transitions αi,−1 → α → αi,+1 or the pair
of transitions αi,+1 → α → αi,−1 provided that the respective two transitions
are the only transitions allowed in ith dimension through the rectangle α. This
situation implies that the zero vector is not included in the convex hull of the
rectangle vertices (its ith component must be non-zero). The condition is only
necessary thus this simplification increases occurrence of spurious self-loops.
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5.1 Case Study I: Repressilator

To demonstrate the scalability of the algorithm, we consider a PMA model of
the repressilator [12]. It is an approximation of the original model of a genetic
regulatory network representing a set of genes mutually inhibited in a closed
circle [22].

On this model, we evaluate the scalability of the algorithm from Sect. 3 on
a homogeneous cluster with 16 nodes each equipped with 16 GB of RAM and
a quad-core Intel Xeon 2 GHz processor. The analysis is provided according to the
number of states in combination with one independent and two interdependent
parameters, respectively. The considered property is AGϕ where ϕ is an atomic
proposition specifying a particular subset of states.
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Fig. 1. Scalability achieved for two models approximating the repressilator system:
a rough model of the size 90 · 103 states and a refined model of the size 160 · 103 states.
Variants 1P represent analyses with a single uncertain parameter whereas variants 2P
reflect results achieved for two uncertain mutually dependent parameters. (Color figure
online)

5.2 Case Study II: Regulation of G1/S Cell Cycle Transition

To demonstrate the applicability, we employ our approach on a non-linear ODE
model [37] describing a two-gene regulatory network of interactions between
the tumour suppressor protein pRB and the central transcription factor E2F1
(Fig. 2 (left)). For suitable parameter valuations, two distinct stable attractors
may exist (the so-called bistability). In [37], the authors have provided numerical
bifurcation analysis of E2F1 stable concentration depending on the degradation
parameter of pRB (φpRB). Note that traditional methods for bifurcation analysis
hardly scale to more than a single parameter.

We demonstrate that our algorithm can overcome some of the drawbacks of
numerical methods. In particular, we focus on synthesis of values of two interde-
pendent model parameters with respect to satisfaction of the bistability property.
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E2F1pRB

d[pRB]
dt = k1

[E2F1]
Km1+[E2F1]

J11
J11+[pRB] − φpRB [pRB]

d[E2F1]
dt = kp + k2

a2+[E2F1]2

K2
m2+[E2F1]2

J12
J12+[pRB] − φE2F1[E2F1]

a = 0.04, k1 = 1, k2 = 1.6, kp = 0.05, φpRB = 0.005
φE2F1 = 0.1, J11 = 0.5, J12 = 5, Km1 = 0.5, Km2 = 4

Fig. 2. G1/S transition regulatory network (left) and its ODE model with default
values according to [37] (right).

We deal with the degradation parameter φpRB and the production parameter
of pRB (k1). Additionally, we perform post-processing of achieved results by
employing additional constraints on the parameter space (i.e., imposing a lower
and upper bound on the production/degradation parameter ratio).

The original non-linear model (Fig. 2 (right)) is first converted into a PMA
model by employing the approach introduced in [26]. This involves replacement
of each non-linear function by an optimal sum of piecewise affine segments (40
segments for pRB and 20 for E2F1). Finally, the rectangular abstraction [8] is
employed to obtain the PKS for model checking analysis.

The model has been analysed with respect to the properties ϕ1 = (AG low),
ϕ2 = (AG high) and ϕ3 = (EFAG low ∧ EFAG high) where low = (E2F1 >
0.5 ∧ E2F1 < 2.5) (representing safe cell behaviour) and high = (E2F1 >
4 ∧ E2F1 < 7.5) (representing excessive cell division). Both properties ϕ1 (resp.
ϕ2) describe the presence and stability of low (resp. high) state and are guaran-
teed by the rectangular abstraction due to its conservativeness. More specifically,
synthesised parameter valuations underapproximate the exact parameter valu-
ation set. Note that ϕ1 and ϕ2 are subformulae of ϕ3, hence all three formulae
have been verified in a single run due to the principle of Algorithm5.

The property ϕ3 expresses the possibility of reaching both stable states from
a given (initial) state. Such a state thus represents a decision point in the system
dynamics. Due to the mixing of existential and universal quantifiers, the property
is not preserved by the rectangular abstraction and can thus only be used for
estimation (detailed numerical investigation needs to be employed further in the
significantly restricted area of the parameter space).

The output of parameter synthesis follows Eq. (1), in particular, we obtain
a table of all states satisfying a particular property provided that every state is
accompanied with a synthesised constraint on the parameters. Technically, the
constraints are given in the SMT-LIB format 2.5 [5]. Consequently, in order to
compare and visualise satisfactory parameter valuations in a human-readable
form the obtained results have to be further post-processed. The valid area of
the parameter space can be visualised by solving the obtained constraints in
sampled points. In Fig. 3 (up left), the parameter space with areas constrained
by each of the three formulae is depicted (reachability of bistability is shown in
green; low and high stable states are shown in blue and red, respectively).

Additionally, we can employ a static constraint ΦI := α < k1
ΦpRB

<

β to restrict the resulting parameter space to a desired range of the
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φpRB k1

[E2F1]

k1

φpRB

ϕ1 = AG low

[E2F1] ∈ [0.60189, 0.83853]

α = 81.387

β = 496.527

k1

φpRB

ϕ2 = AG high

[E2F1] ∈ [4.27494, 5.07745]

α = 38.355

β = 77.123

k1

φpRB

ϕ3 = (EFAG low ∧ EFAG high)

[E2F1] ∈ [2.69048, 3.39526]

α = 70.991

β = 85.159

Fig. 3. Parameter space of G1/S gene regulatory network. Each area meets the respec-
tive property: ϕ1 (blue), ϕ2 (red) and ϕ3 (green). (Upper left) Valid parameter spaces
sampled for arbitrary initial concentration of E2F1 (from 0 to 15 AU). (Other figures)
Areas displaying valid ranges of the production/degradation ratio for respective for-
mulae, computed by optimisation. Every figure displays the result for a distinct initial
state of E2F1. Values of α and β were computed by optimisation. They represent the
minimal (α) and maximal (β) ratio k1

ΦpRB
satisfying the particular property.

production/degradation parameters ratio. Moreover, we can use an SMT-based
optimisation tool to solve a parametric optimisation problem to find a maximal
bound α and a minimal bound β satisfying ΦI . In our case we employ the tool
Symba [29] to compute an over- (resp. under-) approximation of α (resp. β). The
achieved ranges of parameters ratio that guarantee the respective formulae are
shown in Fig. 3.
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6 Conclusion

We have presented a novel parallel algorithm for parameter synthesis on systems
with CTL specifications. The method uses a symbolic representation of parame-
ters and employs the satisfiability modulo theories (SMT) approach to deal with
first-order formulae that represent sets of parameters. The general description
of the algorithm allows it to be used with various families of systems with para-
meters. In particular, to evaluate the applicability of our algorithm, we have
presented a biologically motivated case study.

While evaluating our algorithm we have found the bottleneck to be the large
number of calls to the SMT solver. To alleviate this problem somewhat, our
implementation uses some optimisation techniques such as query caching and
formula simplification. The main simplification relies on the observation that
many transition constraints are actually strict subsets of other transition con-
straints in the model. We plan to explore more of these techniques to reduce
both the number and the complexity of the SMT solver calls. We also plan to
employ various other SMT solvers, e.g. dReal [23], and compare the efficiency.

References

1. Arney, D., Pajic, M., Goldman, J.M., Lee, I., Mangharam, R., Sokolsky, O.: Toward
patient safety in closed-loop medical device systems. In: ICCPS 2010, pp. 139–148.
ACM (2010)

2. Baker, M., Carpenter, B., Shafi, A.: MPJ express: towards thread safe Java HPC.
In: IEEE Cluster Computing 2006. IEEE Computer Society (2006)
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10. Brim, L., Dluhoš, P., Šafránek, D., Vejpustek, T.: STL*: extending signal temporal
logic with signal-value freezing operator. Inf. Comput. 236, 52–67 (2014). Special
Issue on Hybrid Systems and Biology

http://dx.doi.org/10.1007/978-3-319-26287-1_2


Parallel SMT-Based Parameter Synthesis with Application 207

11. Brim, L., Češka, M., Demko, M., Pastva, S., Šafránek, D.: Parameter synthesis by
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