
Synchronous Products of Rewrite Systems

Óscar Mart́ın(B), Alberto Verdejo, and Narciso Mart́ı-Oliet

Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
{omartins,jalberto,narciso}@ucm.es

Abstract. We present a concept of module composition for rewrite sys-
tems that we call synchronous product, and also a corresponding con-
cept for doubly labeled transition systems (as proposed by De Nicola
and Vaandrager) used as semantics for the former. In both cases, syn-
chronization happens on states and on transitions, providing in this way
more flexibility and more natural specifications. We describe our imple-
mentation in Maude, a rewriting logic-based language and system. A
series of examples shows their use for modular specification and hints at
other possible uses, including modular verification.

1 Introduction

In this paper we propose a composition of rewrite systems [19] by means of
synchronous products with the aim of using it for modular specification of sys-
tems. We also define a synchronous product for doubly labeled transition systems
(L2TS) as defined in [7]. We use the latter to semantically ground the former.

Our concept of synchronous product is akin to the one from automata theory,
whence it borrows its name, but also to the composition of processes in CCS
[22], to request-wait-block threads in behavioral programming [13], and to other
formalisms for module composition. Most of these formalisms rely on action
identifiers for synchronization, that is, actions with the same name in both com-
ponent systems execute simultaneously. Some, like [16], synchronize states: the
ones simultaneously visited by the component systems must agree on the atomic
propositions they satisfy: if s1 |= p and s2 |= ¬p for some proposition p, then
〈s1, s2〉 is not even a state of the composed system.

As explained in several papers [8,14,18,21], state-only based or action-only
based settings are often not enough for a natural specification of systems and
temporal properties. In some cases, we are interested in the propositions of the
states; in other cases, it is the action that took the system to that state that
matters. In many cases, the combined use of propositions on states and on tran-
sitions results in more natural formulas. For instance, the formula

�♦ enabled-a → �♦ taking-a

Partially supported by MINECO Spanish projects StrongSoft (TIN2012–39391–
C04–04) and TRACES (TIN2015–67522–C3–3–R), Comunidad de Madrid program
N-GREENS Software (S2013/ICE-2731), and UCM-Santander grant GR3/14.

c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 141–156, 2016.
DOI: 10.1007/978-3-319-46520-3 10

142 Ó. Mart́ın et al.

(from [21]) expresses fairness for action a: if action a is infinitely often enabled,
then it is infinitely often taken. Here, enabled-a is a property of states (that they
allow the execution of a on them), but taking-a is a property of the transition
taking place. In the same spirit, this paper suggests that composition of mod-
ules is better approached by synchronizing both states and actions. The papers
[18,21] show how it is always possible to cook a system so that all relevant infor-
mation about transitions is included in states. Thus, strictly speaking, action
synchronization is not needed, but is most convenient.

L2TSs are a kind of amalgamation of LTSs (labeled transition systems) and
Kripke structures: they label states with sets of propositions (as Krikpe struc-
tures do), and transitions with action identifiers (as LTSs do). They are state-
and action-based, and are appropriate for our discussion.

The theoretical contribution of this paper is the definition of the synchronous
product for both L2TSs and rewrite systems. States synchronize based on their
atomic propositions, and transitions based on their action identifiers or rule
labels. We show how rewrite systems (and their synchronous product) can be
given semantics on L2TSs (and their own synchronous product).

As a more practical contribution, the aim of our definitions is to allow the
modular specification of rewrite systems. This is shown in the examples. We
foresee that this would make modular verification possible. Also, as a composed
system only has the behaviors that are possible in both component systems,
it can be used as a means to control a system with another one tailored for
that purpose. We see this as a possible implementation of strategies for rewrite
systems—and one suited to modular verification. These two possibilities are work
in progress and are just hinted at in the examples.

The rest of this paper is divided into six sections. Section 2 recalls L2TSs and
defines their synchronous product. Section 3 focuses on the synchronous product
for rewrite systems and on their semantics. Section 4 shows some examples of
modular specification. Section 5 discusses some issues having to do with the
prototype implementation of the synchronous product that we have developed
in Maude. Section 6 proposes directions for future work and mentions, at the
same time, related literature. Section 7 summarizes the conclusions of the paper.

There is an extended version of this paper available at our website: http://
maude.sip.ucm.es/syncprod. The Maude code for our implementation and the
examples can also be found there.

2 Synchronous Products of L2TSs

We start at the semantic level, presenting the particular kind of transition sys-
tems convenient to our discussion, and showing how they can be composed by
the operation we call synchronous product.

2.1 L2TS: Doubly Labeled Transition Systems

Doubly labeled transition systems were introduced by De Nicola and Vaandrager
in [7] with the aim of comparing properties of Kripke structures and of labeled

http://maude.sip.ucm.es/syncprod
http://maude.sip.ucm.es/syncprod

Synchronous Products of Rewrite Systems 143

transition systems (LTSs). Indeed, L2TSs join in a single object the character-
istics of these different structures. That is, their states are labeled by sets of
atomic propositions (the ones that hold true in the state) and their transitions
are labeled by action identifiers. The original definition from [7] includes invisible
actions, but we will not need them.

Formally, an L2TS is defined as a tuple (S,Λ,→,AP, L), where S is a set of
states, Λ is an alphabet of action identifiers, → ⊆ S×Λ×S is a transition relation
(denoted as s

λ−→ s′), AP is a set of atomic propositions, and L : S → 2AP is
a labeling function, that assigns to each state the atomic propositions that hold
true on it.

2.2 Synchronous Products

The synchronous product of two systems is a way to make them evolve in par-
allel, making sure that they agree at each step and in every moment. Given
two L2TSs Li = (Si, Λi,→i,APi, Li), we define next their synchronous product
L1 ‖L2 = (S,Λ,→,AP, L). The synchronization is specified by relating prop-
erties and actions common to both structures, that is, existing with the same
name in both. For a state s1 ∈ S1 to be visited by L1 at the same time as
s2 ∈ S2 is visited by L2 it is necessary that, for each common atomic propo-
sition p ∈ AP1 ∩AP2, we have that p holds for s1 iff it holds for s2; more
formally: L1(s1) ∩ AP2 = L2(s2) ∩ AP1. We denote this by s1 ≈ s2 and say that
s1 and s2 are compatible or that the pair 〈s1, s2〉 is compatible. For a transition
s1

λ1−→1 s′
1 to occur in L1 simultaneously with s2

λ2−→2 s′
2 in L2 it is necessary

that λ1 = λ2 (in addition to s1 ≈ s2 and s′
1 ≈ s′

2). However, actions existing
only in one of the systems can execute by themselves. This is the definition of
L1 ‖L2 = (S,Λ,→,AP, L):

– S := S1 × S2;
– Λ := Λ1 ∪ Λ2;
– regarding transitions (assuming s1 ≈ s2):

• 〈s1, s2〉 λ−→ 〈s′
1, s

′
2〉 iff s1

λ−→ s′
1 and s2

λ−→ s′
2 and s′

1 ≈ s′
2,

• 〈s1, s2〉 λ−→ 〈s′
1, s2〉 iff s1

λ−→ s′
1 and λ �∈ Λ2 and s′

1 ≈ s2,
• 〈s1, s2〉 λ−→ 〈s1, s′

2〉 iff s2
λ−→ s′

2 and λ �∈ Λ1 and s1 ≈ s′
2;

– AP := AP1 ∪AP2;
– L(〈s1, s2〉) := L1(s1) ∪ L2(s2).

Some notes on the definition and its consequences are in order:

– We let the space state S include non-compatible pairs. However, only tran-
sitions going into compatible states are allowed, so that all states reachable
from a compatible initial state are compatible.

– The resulting composed system includes all the propositions and action iden-
tifiers from both component systems (we take their unions), but for synchro-
nization only the ones that are common are taken into account (their inter-
sections).

144 Ó. Mart́ın et al.

– Renaming of propositions and actions in a structure can be done with no harm
to get equal names in both structures as needed for synchronization.

– When the two systems being composed have no common propositions and
no common actions (AP1 ∩AP2 = ∅ and Λ1 ∩ Λ2 = ∅), they progress with
no consideration to each other: any state can pair with any other, and each
action is executed by itself.

– A system controls the actions the other one can perform. Consider the situa-
tion where the composed system is in state 〈s1, s2〉 (with s1 ≈ s2) and L1 can
execute action λ from s1 (s1

λ−→ s′
1). There are three possibilities to consider

in L2:
• if λ �∈ Λ2, the action can be run in L1 by itself: 〈s1, s2〉 λ−→ 〈s′

1, s2〉
(provided s′

1 ≈ s2);
• if λ ∈ Λ2, but it cannot be executed from s2, then λ cannot be executed

in the composed system at the moment;
• if λ ∈ Λ2 and can be executed from s2 in L2 (s2

λ−→ s′
2), then λ can

only be executed simultaneously in both systems: 〈s1, s2〉 λ−→ 〈s′
1, s

′
2〉

(provided s′
1 ≈ s′

2).

3 Synchronous Products of Rewrite Systems

Our aim is to implement and practically use synchronous products for modular
specification. Thus, we now reflect the abstract definitions above in the more
concrete realm of rewrite systems.

3.1 Rewrite Systems

Rewriting logic takes on the concept of term rewriting and tailors it to the spec-
ification of concurrent and non-deterministic systems. It was introduced as such
by Meseguer in [19]. Maude [5] is a language (and system) for specification and
programming based on this idea. A specification in rewriting logic contains equa-
tions and rewrite rules. Equations work much like in functional programming;
rules describe the way in which a system state evolves into a different one.

Maude’s flavor of rewriting logic is based on order-sorted equational logic—
membership equational logic indeed [20], but we are not using such a feature
in this paper. Thus, a rewrite system has the form R = (Σ,E ∪ Ax,R), where:
Σ is a signature containing declarations for sorts, subsorts, and operators; E
is a set of equations; Ax is a set of equational axioms for operators, such as
commutativity and associativity; and R is a set of labeled rewrite rules of the
form [�] s → s′.

In Sect. 3.2 below, we show a way to compose and synchronize rewrite sys-
tems. Synchronization on states happens on coincidence on their common propo-
sitions. For that to be meaningful, we need a way to handle propositions, which
are not, in principle, an ingredient of rewrite systems. Thus, we require of each
rewrite system R = (Σ,E ∪ Ax,R) the following:

Synchronous Products of Rewrite Systems 145

– the sort in Σ that represents the states of the system is called State;
– Σ includes a sort Prop, representing atomic propositions, composed by a finite

amount of constants (this requirement is needed in Sect. 3.2 to define the
synchronous product);

– R includes the definition of a theory of the Booleans declaring, in particular,
the sort Bool, and the constants true and false;

– Σ includes an infix relation symbol |= : State×Prop → Bool, and E includes
equations that completely define |=, that is, each expression s |= p is reduced
to true or false by E ∪ Ax.

These conventions are a standard way to introduce propositions in rewrite
systems. It is the setting needed to use Maude’s LTL model checker [10], for
instance. However, we are using propositions only for synchronization. Even if
model checking were performed on any of these systems, the propositions used
for that need not be the same ones used for synchronization.

We have one additional technical requirement: the system has to be topmost.
A topmost rewrite system is one in which all rewrites happen on the whole state
term—not on its subterms. (Formally, this is guaranteed by requiring that all
rules involve terms of sort State, and that the sort State is not an argument
of any constructor, so that no term of sort State can be subterm of another
term of the same sort). The aim of this requirement is that rules preserve their
meaning after composition. For instance, the non-topmost rule a → a′ would
rewrite the term f(a) to f(a′), because a is a subterm of f(a); but the composed
rule 〈a, t〉 → 〈a′, t′〉 would not rewrite the composed term 〈f(a), s〉, whatever s
and t could be, because 〈a, t〉 is not a subterm of 〈f(a), s〉. Many rewrite systems
are topmost or can be easily transformed into an equivalent one that is formally
similar and topmost [11].

3.2 Synchronous Products

Given two rewrite systems as above, Ri = (Σi, Ei ∪ Axi, Ri), for i = 1, 2, their
synchronous product, denoted R1 ‖R2, is a new rewrite system R = (Σ,E ∪
Ax,R) as specified below.

A technical detail is needed about names and namespaces. The conditions
in Sect. 3.1 require that each system includes some sorts and operators: State,
|=, and so on. This does not mean that sorts with the same name in different
systems are the same sort. Indeed, we consider that each system has implicit
its own namespace. Names for sorts, constants, and the other elements must
be understood within the namespace of their respective systems. When needed,
we qualify a name with a prefix showing the system it belongs to or where it
originated: R.State. We omit the prefix whenever there is no danger of confusion.
Sometimes we say that something is true “in R” to avoid cluttering the text with
prefixes for each element that would need it.

We refer as naked names to the ones without the qualifying prefixes. These
are needed for synchronization, as it is done on coincidence of naked names, and
those names remain as such in the product system, with different qualification.

146 Ó. Mart́ın et al.

For instance, the value of R1.p has to be the same as the one of R2.p and both
give rise to R.p.

With this convention about namespaces, signatures Σ1 and Σ2 are naturally
disjoint, as are the sets of equations, axioms, and rule labels. Equations, in par-
ticular, are included verbatim from each system into the synchronous product,
according to the definition below; any equational deduction valid in one of the
systems is still valid in the product. Rules, instead, are not included verbatim
from the component systems, but synchronized as formalized below.

As also mentioned in Sect. 2.2, we assume that renaming has previously taken
place as needed, so that synchronization happens on the set of rule labels and
the set of atomic propositions whose naked names are common to both systems.

This is the rather long definition of the synchronous product:

– Σ := Σ1 Σ2 Σ′, where Σ′ contains:
• declarations for sorts R.State and R.Prop;
• declarations for R.Bool, R.true, and R.false;
• a declaration for the operator R.|= : R.State × R.Prop → R.Bool;
• a new constructor symbol 〈 , 〉 : R1.State × R2.State → R.State;
• a set of declarations for operators to make R.Prop the union of R1.Prop

and R2.Prop, that is:

{R.p : R.Prop | R1.p : R1.Prop ∈ Σ1 or R2.p : R2.Prop ∈ Σ2 or both};

• a declaration for the predicate: R.≈ : R1.State × R2.State → R.Bool.
– E := E1 E2 E′, where E′ contains:

• equations for a theory of the Booleans;
• equations to reduce s1 ≈ s2 to true in R iff (s1 |= p = true in R1 ⇐⇒

s2 |= p = true in R2, for every proposition whose naked name p exists in
both systems), and to R.false otherwise;

• for each p such that R1.p : R1.Prop ∈ Σ1, the equation:

〈x1, x2〉 R.|= R.p = x1 R1.|= R1.p,

• for each p not in the previous item but such that R2.p : R2.Prop ∈ Σ2,
the equation:

〈x1, x2〉 R.|= R.p = x2 R2.|= R2.p.

In these equations x1 and x2 are variables of sorts R1.State and R2.State,
respectively. Because of the conditions on the rules below, only compatible
pairs 〈x1, x2〉 are reachable. And only for such pairs we will need to use some
of the last two equations above. Thus, for a proposition p whose naked name
exists in both systems, we have arbitrarily but harmlessly chosen to use the
value from the first system.

– Ax := Ax1 Ax2.
– R is composed of the following set of rules:

• for each rule label � that exists in both systems, say [�] si → s′
i ∈ Ri, we

have in R the conditional rule [�] 〈s1, s2〉 → 〈s′
1, s

′
2〉 if s′

1 ≈ s′
2;

Synchronous Products of Rewrite Systems 147

• for each rule label � that exists in R1 but not in R2, say [�] s1 → s′
1 ∈ R1,

we have in R the conditional rule [�] 〈s1, x2〉 → 〈s′
1, x2〉 if s′

1 ≈ x2 (with
x2 a variable of sort R2.State);

• correspondingly for rule labels in R2 but not in R1.
In these three kinds of rules, the condition guarantees that only compatible
states are reached.

Several items above include universal quantification on atomic propositions.
This could be problematic, and it is the reason why we require the sorts Prop to
consist only of a finite amount of constants.

3.3 Semantics

Given a rewrite system as above, R = (Σ,E ∪ Ax,R), its semantics is an L2TS
L = (S,Λ,→,AP, L), based on the usual term-algebra semantics (see [19], for
instance) in this way:

– S := TΣ/E∪Ax,State, the set of terms of sort State modulo equations;
– Λ is the set of rule labels in R;
– → corresponds to the transition relation generated by rewriting with the rules

from R [19], that is, s
λ−→ s′ iff there is a rule in R with label λ that allows

rewriting s to s′ in one step within R;
– AP := TΣ/E∪Ax,Prop, the set of terms of sort Prop modulo equations;
– L(s) := {p ∈ AP | s |= p = true modulo E ∪ Ax}.

Let “sem” denote the semantics operator, which assigns to each rewrite sys-
tem an L2TS as just explained. All previous definitions have been chosen so that
the following result holds.

Theorem. For any rewrite systems R1 and R2, we have that sem(R1 ‖R2) is
isomorphic to sem(R1) ‖ sem(R2). The isomorphism is in the sense that there
exist bijections between their sets of states, between their sets of actions, and
between their sets of atomic propositions that preserve the transition relation
and the labeling.

4 Examples

We present examples of synchronous products of rewrite systems. Many of them
show systems made up to control others. They are coded in Maude [5], the
rewriting based language and system we have used to develop our implementa-
tion of the synchronous product. They should be easily understood by anyone
acquainted with rewriting logic or algebraic programming. All the examples are
downloadable from our website: http://maude.sip.ucm.es/syncprod. Many of the
examples build on previous ones. The first one involves no synchronization, but
it uses modular specification, and serves as basis for subsequent ones.

http://maude.sip.ucm.es/syncprod

148 Ó. Mart́ın et al.

4.1 Modular Specification: Two Railways

Consider this sketchy implementation of a railway in Maude:
mod RAILWAY1 is

including BOOL .
including SATISFACTION . --- declares State, Prop, and |=.
ops waiting crossing to-station in-station from-station : -> State .
rl [t1wc] : waiting => crossing .
rl [t1ct] : crossing => to-station .
rl [t1ti] : to-station => in-station .
rl [t1if] : in-station => from-station .
rl [t1fw] : from-station => waiting .

endm

Modules BOOL and SATISFACTION are conveniently predefined in Maude. We can
picture the system as a closed loop railway with a station and a crossing with
another railway. Indeed, we model this other railway in the same way and call
it RAILWAY2. The rule names in this new system have a 2 instead of a 1 (our
framework does not allow for parametric modules).

The whole system is given by RAIL := RAILWAY1 ‖ RAILWAY2, with rules like:
rl [t1wc] : < waiting, T2 > => < crossing, T2 > .

with T2 a variable of sort RAILWAY2.State. No synchronization is possible, because
all rule labels are different and there are no propositions, but the modular spec-
ification is simpler and more natural than a monolithic one would be.

With this specification, both trains are allowed, but not mandated, to wait
before the crossing. They need to be controlled to avoid crashes.

4.2 Synchronizing Actions: Safety Control

We want to control the whole system so as to ensure that trains do not cross
simultaneously. Consider this controller system:

mod SAFETY is
including BOOL .
including SATISFACTION . --- declares State, Prop, and |=.
ops none-crossing one-crossing : -> State .
rl [t1wc] : none-crossing => one-crossing .
rl [t2wc] : none-crossing => one-crossing .
rl [t1ct] : one-crossing => none-crossing .
rl [t2ct] : one-crossing => none-crossing .

endm

Note that the rule labels used are some of the ones appearing in RAILWAY1 and
RAILWAY2. The rules ensure that from state one-crossing only transitions out of
the crossing are allowed. The system RAIL ‖ SAFETY behaves as desired. The rules
of this composed system have, for example, this shape:

rl [t1wc] : < < waiting, T2 >, none-crossing > =>
< < crossing, T2 >, one-crossing > .

This is certainly equivalent to
crl [t1wc] : < waiting, T2 > => < crossing, T2 > if T2 =/= crossing .

Synchronous Products of Rewrite Systems 149

But, to obtain this latter one, we would need to modify RAIL—not extending,
but overwriting it. The advantage of modularity, in this case, is that it allows
an external, non-intrusive control.

This example showed synchronization on actions; the next focuses on states.

4.3 Synchronizing States: Alternative Safety Control

In more complex implementations of the RAIL system, controlling all the ways in
which trains can get into the crossing can be involved. For instance, both trains
could be allowed to move into the crossing at the same time, so that controlling
individual isolated movements as above would not be enough. In such cases, it
can be easier to base the control on the states.

We extend the system RAIL with the following lines, declaring and defining
the atomic proposition safe to hold when at least one train is out of the crossing:

mod RAIL-EXT is
including RAILWAY1 || RAILWAY2 .
op safe : -> Prop .
eq < crossing, crossing > |= safe = false .
eq < T1, T2 > |= safe = true [owise] .

endm

The new controller system we propose, SAFETY2, has a single state, named o,
that satisfies the proposition safe, and no rules:

mod SAFETY2 is
including BOOL .
including SATISFACTION .
op o : -> State .
op safe : -> Prop .
eq o |= safe = true .

endm

Consider RAIL-EXT ‖ SAFETY2. A typical rule in this composed system is
crl [t1wc] : < < waiting, T2 >, X > => < < crossing, T2 >, X >

if compatible(< crossing, T2 >, X) .

It is not too different from the previous t1wc, except for the compatibility con-
dition. As o is always safe, also < crossing, T2 > must be safe for the rule to
be applied. So, SAFETY2 restricts RAIL-EXT to visit only safe states, as desired.

Note again the advantage of a modular specification: once RAIL-EXT is given,
we can easily choose the control that fits better, either SAFETY or SAFETY2 or some
other given module with the same purpose.

4.4 Repeated Composition: Controlling Performance

Now that safety is guaranteed, experts have decided that for a better perfor-
mance of the public transport network, it is worth letting two trains pass through
way 1 for each one passing through way 2. This can be achieved by a synchronous
product of RAIL ‖ SAFETY with this new system:

150 Ó. Mart́ın et al.

mod PERFORMANCE is
including BOOL .
including SATISFACTION .
ops 0cross 1cross 2cross : -> State .
rl [t1wc] : 0cross => 1cross .
rl [t1wc] : 1cross => 2cross .
rl [t2wc] : 2cross => 0cross .

endm

This accumulated control is possible because synchronized rules in RAIL ‖ SAFETY

keep their names and are still visible from the outside.
Note that the product SAFETY ‖ PERFORMANCE is meaningful by itself: it is a sys-

tem that, when composed with any uncontrolled implementation of the railway
crossing (using the same rule labels), guarantees both safety and performance.

4.5 Instrumentation: Counting Crossings

Instrumentation is the technique of adding to the specification of a system some
code in order to get information about the system’s execution: number of steps,
timing, sequence of actions, etc. To some extent, it can be done by using syn-
chronous products.

This time we want to keep track of the number of crossings for each train.
For RAILWAY1 we propose this very simple system:

mod COUNT1 is
including BOOL .
including SATISFACTION .
including NAT .
subsort Nat < State .
var N : Nat .
rl [t1wc] : N => N + 1 .

endm

A state of RAILWAY1 ‖ COUNT1 is a pair whose second component is the counter. The
initial state must be < in-station, 0 > (if in-station was the initial state for
RAILWAY1). The same can be done to RAILWAY2. Then, the instrumented systems
can be controlled in any of the ways described above.

4.6 Separation of Concerns: Dekker’s Algorithm

Consider this new module:
mod DEKKER is

including BOOL .
including SATISFACTION .
sorts Waiting Turn .
ops 0w 1w 2w : -> Waiting .
ops t1 t2 : -> Turn .
op (_,_) : Waiting Turn -> State .
var T : Turn .
rl [t1wc] : (1w,T) => (0w,t2) . rl [t2wc] : (1w,T) => (0w,t1) .
rl [t1wc] : (2w,t1) => (1w,t2) . rl [t2wc] : (2w,t2) => (1w,t1) .
rl [t1fw] : (0w,T) => (1w,T) . rl [t2fw] : (0w,T) => (1w,T) .

Synchronous Products of Rewrite Systems 151

rl [t1fw] : (1w,T) => (2w,T) . rl [t2fw] : (1w,T) => (2w,T) .
endm

This module can be used to ensure absence of starvation in the controlled system,
that is, that no process waits indefinitely. The Waiting component of the state
stores how many processes are waiting to enter the critical section: both, one,
or none. The Turn component stores whose turn is next, in case both processes
are waiting (if only one process is waiting, it can just go on).

Usual presentations of Dekker’s algorithm also include mutual exclusion con-
trol. Our module DEKKER does not control when processes exit the critical section
so it cannot ensure mutual exclusion by itself. In our case, the combined control
is achieved by the product SAFETY ‖ DEKKER. Separation of different concerns in
different modules is made possible by the synchronous product construction.

4.7 State and Rule Synchronization: Two Trains in a Linear
Railway

As an example that sometimes synchronization is convenient on states and on
transitions in the same system, consider this one, taken from [6], told again in
terms of train traffic. There is a single linear railway divided into tracks, and
there are two trains going along it from track to track, always in the same
direction—to the right, say. Each train can move at any time from one track
to the next, but they can never be at the same time on the same track. Thus,
whenever the trains are in adjacent tracks, only the rightmost one can move.
This is the specification for the train on the left:

mod LTRAIN is
including BOOL .
including SATISFACTION .
including NAT .
subsort Nat < State .
var Track : Nat .
rl [lmove] : Track => Track + 1 .

endm

The one on the right is specified in module RTRAIN which is the same as above
except that the rule is called rmove. The controller we need has to detect
when the trains are in adjacent tracks, and this is a property on the states of
LTRAIN ‖ RTRAIN. To make the control possible, we extend this composed system
with the declaration of the proposition adjacent:

mod TRAINS-EXT is
including LTRAIN || RTRAIN .
op adjacent : -> Prop .
vars T T’ : Nat .
eq < T, T + 1 > |= adjacent = true .
eq < T, T’ > |= adjacent = false [owise] .

endm

The controller is this:
mod CONTROL is

including BOOL .

152 Ó. Mart́ın et al.

including SATISFACTION .
ops adj nonadj : -> State .
var S : State .
rl [lmove] : nonadj => nonadj .
rl [lmove] : nonadj => adj .
rl [rmove] : S => nonadj .
op adjacent : -> Prop .
eq adj |= adjacent = true .
eq nonadj |= adjacent = false .

endm

Only the movement of the train on the left can take the system to a configuration
with adjacency. When it does, the controller remembers it in its state, and the
next movement can only be made by the train on the right. Note that both kinds
of synchronization, on states and on transitions, are present in this example, and
that using only one of them would result in a more involved specification.

5 Notes on the Implementation

Our prototype implementation of the synchronous product in Maude can be
downloaded from our website: http://maude.sip.ucm.es/syncprod. The extended
version of this paper contains a brief appendix with instructions. The implemen-
tation largely follows the explanations in Sect. 3.2. Some details, however, could
be appreciated by those familiar with Maude or rewriting logic.

Choice of Tools. We want a program that takes as arguments two Maude
modules and produces a new one containing their synchronous product. Our
program has to handle rules, equations, labels and so on. Even complete modules
have to be treated as objects by the program we seek. It turns out that Maude
itself is a very convenient tool for this second-order programming task.

Rewriting logic is reflective, and that implies in particular that constructs
of the language can be represented and handled as terms [5]. Maude provides a
set of metalevel functions for this purpose. The function getRls, to name just
an example, takes as argument a module and returns its set of rules. Modules,
rules, and the rest of Maude’s syntactic constructs must be meta-represented
for these metalevel functions to be able to handle them. That is, they cease to
be Maude code and become terms of sorts Module, Rule, and so on. Maude also
provides functions to perform such meta-representation. We have chosen this
as the natural way to the implementation. We have coded a Maude function
syncprod that receives two terms of sort Module and produces one representing
their synchronous product.

But that function can only be invoked at the metalevel, feeding it with two
terms of sort Module, not with two Maude modules. A decent implementation
must allow a simpler use. For those acquainted with Maude, the tool of choice
for such a task is Full Maude. Full Maude [5,9] is a re-implementation of the
Maude interpreter using Maude itself. It is adaptable and extensible, and allows
the definition of new module expressions, as we need. We have extended Full

http://maude.sip.ucm.es/syncprod

Synchronous Products of Rewrite Systems 153

Maude to include an operator || on modules to represent the synchronous prod-
uct. A module containing including MODULE1 || MODULE2 can refer to any of the
constructs of the synchronous product, like pairs of states, propositions inherited
from the operand systems, and so on.

Name Clashes. We discussed in Sect. 3.1 that names State, Prop, Bool, and so
on are required to appear in each operand system, and in the resulting system
as well. In the theoretical description we assumed each occurrence of them to be
qualified by its namespace. In practice, there are three cases to be considered:

– Sorts such as Bool and Nat, and their operators, are most probably going to
be defined and used in the same way in every system. Keeping several copies
of them would not harm, but is pointless.

– The sort State for the resulting system is defined as pairs of operand States.
Thus, all three State sorts need to be present in the resulting system, with
different names. The same applies to the operator |=, whose definition uses
the corresponding operators from each system.

– The sort Prop is somewhat special in that we identify elements with the same
name in the three systems. Having just one sort Prop makes things easier.

This is what our implementation does: First, for each operand module, it
renames its sort State to ModName.State, if ModName is the name of the module;
also, it renames the satisfaction symbol from |= to ModName.|=. Once this is done
for both operand modules, their union is computed, thus leaving only one sort
Prop, and also one sort Bool, and so on. A fresh sort State and a fresh operator |=

are then declared. The just mentioned union affects declarations and equations,
but not rules, that are individually computed in their composed forms.

6 Related and Future Work

Some of the proposals of this paper set the ground on which interesting work is
already being done. Let’s be more concrete.

Egalitarian Synchronization. In [18] we presented a class of transition sys-
tems called egalitarian structures. They are egalitarian in the sense that they
treat states and transition as equals. In particular, they allow using atomic
propositions on transitions. That paper also showed how rewrite systems are
egalitarian in nature, because transitions are represented by proof terms in the
same way as states are represented by terms of the appropriate sort.

As pointed in the introduction and also in [18], the expression of temporal
properties by formulas benefits from an egalitarian view. Composition of systems
should benefit in the same way. An egalitarian synchronous product would allow
transitions to synchronize not just on labels, but on their common propositions
(depending, in particular, on variable instantiations).

154 Ó. Mart́ın et al.

Strategies. The examples have shown how it is possible to control a system
with another one made up for that purpose. It is fair to call strategic this kind
of control. Indeed, we see the synchronous product as a means to implement
strategies for rewrite systems. As also shown in [18], strategies can also benefit
from an egalitarian treatment. We expect to be able to develop automatic trans-
lations from some strategy languages to equivalent Maude modules, although
the precise power of such a technique is still to be seen.

From its origin in games, the concept of strategy, under different names and
in different flavors, has become pervasive, particularly in relation to rewriting
(see the recent and excellent survey [15]). Maude [5] includes flexible strate-
gies for the evaluation of terms (like lazy, innermost and so on), and external
implementations have been proposed in [17] and in [25]. ELAN [2], Tom [1], and
Stratego [26] include strategies built-in. They also appear in graph rewriting sys-
tems (see references in [15] and also [23], where they are called just programs).
The same concept is used in theorem provers: it allows the user to guide the
system towards the theorem, or to represent the whole proof once found.

Modularity for Specification and Verification. Modular systems are easier
to write, read, and verify. For the writing phase, the separation of concerns
among modules has great simplifying power: one module implements the base
system, another ensures mutual exclusion, another deals just with starvation.

Model checking [3] performed in a modular way can be more efficient, given
that the size of the state space of the composed system is of the order of the
product of the individual sizes. An attractive possibility is that of providing the
specifier with a library of pre-manufactured and pre-verified modules ready to
be used (through synchronous product) for specific tasks. For ensuring mutual
exclusion, for instance, one could readily choose among SAFETY or SAFETY2 or
some other. Care is needed, however, as it is not always the case that a composed
system preserves the properties of the components.

Much work already exists on modular model checking and verification, but
not many tools allow for it and, to the best of our knowledge, no implemen-
tation on rewriting logic has been developed. The papers [4,16], among many
others, show techniques for drawing conclusions compositionally. Adapting such
techniques to our framework is pending work.

Composition of modules can generate new deadlocks in cases where the com-
ponents do not agree on a common next step. The system SAFETY2 from Sect. 4.3
is a very simple example: as it constrains the base system to visit only safe

states, absence of new deadlocks is only guaranteed assuming that in the base
system, RAIL-EXT, a safe state is always reachable in one step. This is the same
assume-guarantee paradigm proposed in [16] for modular model checking.

We are particularly interested in model checking strategically controlled sys-
tems. Once the concept of control through synchronous products is in place,
existing tools can be used, ideally in a modular way (particularly, for us, Maude’s
LTL model checker [10]). The nearest works on this we are aware of are GP 2,
that includes Hoare-style verification in the context of graph rewriting [24], and
the BPmc prototype tool for model checking behavioral programs in Java [12].

Synchronous Products of Rewrite Systems 155

Behavioral Programming. Based on the idea that a system can be decom-
posed into several synchronized threads, each of them implementing a behavior
of the system, behavioral programming [13] bears many similarities with our
proposal. Formally, it uses the request-wait-block paradigm. According to it, at
each synchronization point, each thread declares three sets of events: the ones it
requests (it needs one of them to go on), the ones it does not request, but wants
to be informed when they happen, and the ones it blocks. An external scheduler
chooses an event requested by some thread and blocked by none, and so the sys-
tem goes on to the next synchronization point. Although there is not a perfect fit
between their formalization and ours, the resulting settings are very similar, and
the examples in [12,13] are easily translatable to synchronized Maude modules.

7 Conclusions

The concept of synchronous product can be extended from automata theory to
the specification of systems, where it represents composition of modules. It can
be equivalently defined on abstract transition systems (namely, L2TSs) and on
rewrite systems. For more flexible and natural specifications, it is possible and
convenient to synchronize at the same time on states and on transitions. We have
used atomic propositions to synchronize states, but just rule labels (or action
names) for transitions. We intend to generalize this in the near future.

The examples (to be run in our implementation in Maude) show how the
synchronous product makes modular specifications easier in rewriting logic. We
expect that it will also make possible the implementation of some kind of strate-
gies and the modular verification of systems, even after they have been controlled
by strategies. All this is work in progress.

References

1. Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., Reilles, A.: Tom: piggybacking
rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47.
Springer, Heidelberg (2007)

2. Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.E.: ELAN from a rewriting
logic point of view. Theor. Comput. Sci. 285(2), 155–185 (2002)

3. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2001)

4. Clarke, E.M., Long, D., McMillan, K.: Compositional model checking. In: Proceed-
ings of Logic in Computer Science, LICS 1989, pp. 353–362 (1989)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

6. De Nicola, R., Fantechi, A., Gnesi, S., Ristori, G.: An action-based framework for
verifying logical and behavioural properties of concurrent systems. Comput. Netw.
ISDN Syst. 25(7), 761–778 (1993)

7. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995)

156 Ó. Mart́ın et al.

8. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

9. Durán, F., Meseguer, J.: The Maude specification of Full Maude (1999). Man-
uscript, Computer Science Laboratory, SRI International. http://maude.cs.uiuc.
edu/papers

10. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In:
Gadducci, F., Montanari, U. (eds.) Proceedings of WRLA 2002. (Electron. Notes
Theor. Comput. Sci. 71, 162–187 (2004). Elsevier)

11. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using
narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer,
Heidelberg (2007)

12. Harel, D., Lampert, R., Marron, A., Weiss, G.: Model-checking behavioral pro-
grams. In: Proceedings of EMSOFT 2011. ACM (2011)

13. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM 55(7),
90–100 (2012)

14. Kindler, E., Vesper, T.: ESTL: a temporal logic for events and states. In: Desel, J.,
Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 365–384. Springer, Heidelberg
(1998)

15. Kirchner, H.: Rewriting strategies and strategic rewrite programs. In: Mart́ı-Oliet,
N., Ölveczky, P.C., Talcott, C. (eds.) Meseguer Festschrift. LNCS, vol. 9200, pp.
380–403. Springer, Heidelberg (2015)

16. Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to modular model
checking. ACM Trans. Program. Lang. Syst. 22(1), 87–128 (2000)

17. Mart́ı-Oliet, N., Meseguer, J., Verdejo, A.: A rewriting semantics for Maude strate-
gies. In: Roşu, G. (ed.) Proceedings of WRLA 2008. (Electron. Notes Theor. Com-
put. Sci. 238(3), 227–247 (2009). Elsevier)

18. Mart́ın, Ó., Verdejo, A., Mart́ı-Oliet, N.: Egalitarian state-transition systems. In:
Lucanu, D. (ed.) WRLA 2016. LNCS, vol. 9942, pp. 98–117. Springer, Heidelberg
(2016)

19. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

20. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

21. Meseguer, J.: The temporal logic of rewriting: a gentle introduction. In: Degano,
P., Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol.
5065, pp. 354–382. Springer, Heidelberg (2008)

22. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

23. Plump, D.: The design of GP 2. In: Escobar, S. (ed.) Proceedings of WRS 2011.
(Electron. Proc. Theor. Comput. Sci. 82, 1–16 (2011))

24. Poskitt, C.M., Plump, D.: Hoare-style verification of graph programs. Fundam.
Inform. 118(1–2), 135–175 (2012)

25. Roldán, M., Durán, F., Vallecillo, A.: Invariant-driven specifications in Maude. Sci.
Comput. Program. 74(10), 812–835 (2009)

26. Visser, E.: A survey of rewriting strategies in program transformation systems. In:
WRS 2001 (Electron. Notes Theor. Comput. Sci. 57, 109–143 (2001))

http://maude.cs.uiuc.edu/papers
http://maude.cs.uiuc.edu/papers

	Synchronous Products of Rewrite Systems
	1 Introduction
	2 Synchronous Products of L2TSs
	2.1 L2TS: Doubly Labeled Transition Systems
	2.2 Synchronous Products

	3 Synchronous Products of Rewrite Systems
	3.1 Rewrite Systems
	3.2 Synchronous Products
	3.3 Semantics

	4 Examples
	4.1 Modular Specification: Two Railways
	4.2 Synchronizing Actions: Safety Control
	4.3 Synchronizing States: Alternative Safety Control
	4.4 Repeated Composition: Controlling Performance
	4.5 Instrumentation: Counting Crossings
	4.6 Separation of Concerns: Dekker's Algorithm
	4.7 State and Rule Synchronization: Two Trains in a Linear Railway

	5 Notes on the Implementation
	6 Related and Future Work
	7 Conclusions
	References

