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Preface

This volume contains the papers presented at ATVA 2016, the 14th International
Symposium on Automated Technology for Verification and Analysis held during
October 17–20 in Chiba, Japan. The purpose of ATVA is to promote research on
theoretical and practical aspects of automated analysis, verification, and synthesis by
providing an international forum for interaction among researchers in academia and
industry.

ATVA attracted 82 submissions in response to the call for papers. Each submission
was assigned to at least four reviewers of the Program Committee. The Program
Committee discussed the submissions electronically, judging them on their perceived
importance, originality, clarity, and appropriateness to the expected audience. The
Program Committee selected 31 papers for presentation, leading to an acceptance rate
of 38 %.

The program of ATVA also included three invited talks and three invited tutorial
given by Prof. Tevfik Bultan (University of Santa Barbara), Prof. Javier Esparza
(Technical University of Munich), and Prof. Masahiro Fujita (Fujita Laboratory and the
University of Tokyo).

The chairs would like to thank the authors for submitting their papers to ATVA
2016. We are grateful to the reviewers who contributed to nearly 320 informed and
detailed reports and discussions during the electronic Program Committee meeting. We
also sincerely thank the Steering Committee for their advice. Finally, we would like to
thank the local organizers, Prof. Mitsuharu Yamamoto and Prof. Yoshinori Tanabe,
who devoted a large amount of their time to the conference. ATVA received financial
help from the National Institute of Advanced Industrial Science and Technology
(AIST), Springer, Chiba Convention Bureau and International Center (CCB-IC), and
Chiba University.

July 2016 Cyrille Artho
Axel Legay
Doron Peled
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Synthesizing and Completely Testing Hardware
Based on Templates Through Small Numbers

of Test Patterns

Masahiro Fujita(B)

The University of Tokyo, Tokyo, Japan
fujita@ee.t.u-tokyo.ac.jp

Abstract. Here we first introduce Quantified Boolean Formula (QBF)
based approaches to logic synthesis and testing in general including auto-
matic corrections of designs. It is formulated as: If some appropriate val-
ues are assigned to what we call programmable variables, the resulting
circuits behaves as our intentions for all possible input values, that is,
they become the ones whose logic functions are the intended ones. In this
paper we only target combinational circuits and sequential circuits which
are time-frame expanded by fixed times. The QBF problems are solved
by repeatedly applying SAT solvers, not QBF solvers, with incremental
additions of new constraints for each iteration which come from counter
examples for the SAT problems. The required numbers of iterations until
solutions are obtained are experimentally shown to be pretty small (in
the order of tens) even if there are hundreds of inputs, regardless of
the fact that they have exponentially many value combinations. Then
the applications of the proposed methodology to logic synthesis, logic
debugging, and automatic test pattern generations (ATPG) for multiple
faults are discussed with experimental results. In the case of ATPG, a
test pattern is generated for each iteration, and programmable variables
can represent complete sets of functional and multiple faults, which are
the most general faults models.

1 QBF Formulation

In general the synthesis of partial missing portions of the circuits can be for-
mulated as Quantified Boolean Formula (QBF) problems. Here missing portions
can be any sets of sub-circuits or single gates, and their synthesis covers logic
synthesis/optimization, logic debugging/Engineering Change Order (ECO), and
automatic test pattern generation (ATPG) for general multiple faults. In this
paper we deal with combinational circuits or sequential circuits with fixed num-
bers of time-frame expansions. By modelling the missing portions with Look Up
Table (LUT) or some kind of programmable circuits, their synthesis, verification,
and testing problems can be formulated as QBF problems as follows.

When the portion to be filled is just one, the problem is illustrated in Fig. 1.
In the figure, on the top there is a target circuit which has a missing portion, C1.
On the bottom, there is a corresponding specification which could be another
c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 3–10, 2016.
DOI: 10.1007/978-3-319-46520-3 1



4 M. Fujita

Fig. 1. The target problem: most simple case

circuit or some sorts of logical specification. The problem here is to find out
an appropriate circuit for C1 which makes the entire target circuit logically
equivalent to the specification. There can be two situations: One is when a
logical specification as well as a formal equivalence checker which certifies the
correctness of the target circuit with C1 and can generate a counter example
in the case of non-equivalence. The other situation we consider is when only
simulation models are available and no formal verifiers are available. We present
an extended technique which can certify the correctness of the target with C1
even just with simulations.

If the inputs to the sub-circuit, C1, are fixed as shown in Fig. 1, C1 can be
generally represented as Look Up Table (LUT). By appropriately programming
the LUT, if we can make the entire target circuits equivalent to the specification,
we say that the problem is successfully resolved.

As can be seen from [1], the problems can be formulated as Quantified
Boolean Formula (QBF). That is, the problem is formulated as:

“Under appropriate programs for LUTs (existentially quantified), the cir-
cuit behaves correctly for all possible input values (universally quantified)”.

More recently, a new improved algorithm, which our work is also based on, has
been proposed [2,3]. By utilizing ideas from Counter Example Guided Abstrac-
tion Refinement (CEGAR) in formal verification fields, QBF problems can be
efficiently solved by repeatedly applying SAT solvers based on CEGAR para-
digm [4]. By utilizing this idea, much larger problems related to PPC can be
processed as shown in [2,3].

Although in [2,3] two SAT problems are solved in one iteration, the first
one is always a very simple one (as most of inputs are getting constant values)
and can be solved very quickly whereas the second one can be more efficiently
performed with combinational equivalence checkers. There had been significant
research on combinational equivalence checkers which are based on not only
powerful SAT solvers but also identification of internal equivalence points for
problem decompositions. Now they are commercialized and successfully used for
industrial designs having more than one million gates. We show that by utilizing
such combinational equivalence checkers, even if sizes of entire circuits is more
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than 100,000 gates, if the portions to be partially synthesized (C1 in Fig. 1) are
not large, we can successfully synthesize.

Most of these techniques as well as the ones for test pattern generation, which
will be discussed in the next section, have been implemented on top of the logic
synthesis and verification tool, ABC from UCB [5].

Moreover, we also show techniques which can work for cases where only
simulation models are available. In this case, we cannot use formal equivalence
checkers since no usable logical specification is available. As simulation mod-
els are available, however, if we can generate two solution candidates, we can
check which one is correct or both are incorrect by simulation. By repeating
this process, if there is only one solution candidate existing, we may be able to
conclude that candidate is actually a real solution. We show by experiments that
with reasonably small numbers of iterations (hundreds), correct circuits can be
successfully synthesized.

2 The Base Algorithm

For easiness of explanation, in this paper, we assume the number of output for the
target buggy circuit is one. That is, one logic function in terms of primary inputs
can represent the logic function for the entire circuit. This makes the notations
much simpler, and also extension for multiple outputs is straightforward. Also,
variables in this paper are mostly vectors of individual ones.

As there is only one output in the design, a specification can be written as
one logic function with the set of primary inputs as inputs to the function. For a
given specification SPEC(x) and an implementation with programmable circuits
IMPL(x, v), where x denotes the set of primary input variables and v denotes
the set of variables to configure programmable circuits inside, the problem is
to find a set of appropriate values for v satisfying that SPEC and IMPL are
logically equivalent. This problem can be described as QBF (Quantified Boolean
Formula) problem as follows:

∃v.∀x.SPEC(x) = IMPL(x, v).

That is, with appropriate values for v, regardless of input values (values of x),
the circuits must be equivalent to the specification (i.e., the output values are
the same), which can be formulated as the equivalence of the two logic functions
for the specification and the implementation. There are two nested quantifiers
in the formula above, that is, existential quantifiers are followed by universal
quantifiers, which are called QBF in general. Normal SAT formulae have only
existential quantifiers and no universal ones.

In [2,3], CEGAR (Counter-Example Guided Abstraction Refinement) based
QBF solving method is applied to the circuit rectification problem. Here, we
explain the method using 2-input LUT for simplicity, although LUT having
any numbers of inputs can be processed in a similar way. Logic functions of a
2-input LUT can be represented by introducing four variables, v00, v01, v10, v11,
each of which corresponds to the value of one row of the truth table. Those
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Fig. 2. LUT is represented with multiplexed four variables as truth table values.

four variables are multiplexed with the two inputs of the original gate as control
variables, as shown in Fig. 2. In the figure a two-input AND gate is replaced
with a two-input LUT. The inputs, t1, t2, of the AND gate becomes the control
inputs to the multiplexer. With these control inputs, the output is selected from
the four values, v00, v01, v10, v11. If we introduce M of 2-input LUTs, the circuit
has 4 × M more variables than the variables that exist in the original circuit.
We represent those variables as vij or simply v which represents a vector of
vij . v variables are treated as pseudo primary inputs as they are programmed
(assigned appropriate values) before utilizing the circuit. t variables in the figure
correspond to intermediate variables in the circuit. They appear in the CNF of
the circuits for SAT/QBF solvers.

If the logic function at the output of the circuit is represented as fI(v, x)
where x is an input variable vector and v is a program variable vector, after
replacements with LUTs, the QBF formula to be solved becomes:

∃v.∀x.fI(v, x) = fS(x),

where fS is the logic function that represents the specification to be implemented.
Under appropriate programming of LUTs (assigning appropriate values to v), the
circuit behaves exactly the same as specification for all input value combinations.

Although this can simply be solved by any QBF solvers theoretically, only
small circuits or small numbers of LUTs can be successfully processed [2,3].
Instead of doing that way, we here like to solve given QBF problems by repeatedly
applying normal SAT solvers using the ideas shown in [4,9].

Basically we solve the QBF problem only with normal SAT solvers in the fol-
lowing way. Instead of checking all value combinations on the universally quan-
tified variables, we just pick up some small numbers of value combinations and
assign them to the universally quantified variables. This would generate SAT
formulae which are just necessary conditions for the original QBF formulae.
Note that here we are dealing with only two-level QBF, and so if universally
quantified variables get assigned actual values (0 or 1), the resulting formu-
lae simply become SAT formulae. The overall flow of the proposed method is
shown in Fig. 3. For example, if we assign two combinations of values for x
variables, say a1 and a2, the resulting SAT formula to be solved becomes like:
∃v.(fI(v, a1) = fS(a1)) ∧ (fI(v, a2) = fS(a2)). Then we can just apply any SAT
solvers to them. If there is no solution, we can conclude that the original QBF
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Generate necessary conditions 
as the conjunction of formulae 
with a set of value assignments 
to the universally quantified variables
(value assignments of primary inputs)
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(with new counter example)

UNSAT
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Fig. 3. Overall flow of the rectification method in [2,3].

formulae do not have solution neither. If there is a solution found, we need to
make sure that it is a real solution for the original QBF formula. Because we
have a solution candidate vassigns (these are the solution found by SAT solvers)
for v, we simply make sure the following:

∀x.fI(vassigns, x) = fS(x).

This can be solved by either usual SAT solvers or combinational equivalence
checkers. In the latter case, circuits with tens of millions of gates may be
processed, as there have been conducted significant amount of researches for
combinational equivalence checkers which utilize not only state-of-the-art SAT
techniques but also various analysis methods on circuit topology. If they are
actually equivalent, then the current solution is a real solution of the original
QBF formula. But if they are not equivalent, a counterexample, say xsol, is
generated and is added to the conditions for the next iteration:

∃v.(fI(v, a1) = fS(a1)) ∧ (fI(v, a2) = fS(a2)) ∧ (fI(v, xsol) = fS(xsol)).

This solving process is repeated until we have a real solution or we prove the non-
existence of solution. In the left side of Fig. 3, as an example, the conjunction
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of the two cases where inputs/output values are (0, 1, 0)/1 and (1, 1, 0)/0 is
checked if satisfiable. If satisfiable, this gives possible solutions for LUTs. Then
using those solutions for LUTs, the circuit is programmed and is checked to
be equivalent with the specification. As we are using SAT solvers, usually non-
equivalence can be made sure by checking if the formula for non-equivalence is
unsatisfiable.

Satisfiability problem for QBF in general belongs to P-Space complete. In
general QBF satisfiability can be solved by repeatedly applying SAT solvers,
which was first discussed under FPGA synthesis in [6] and in program synthesis
in [7]. The techniques shown in [4,9] give a general framework on how to deal
with QBF only with SAT solvers. These ideas have also been applied to so called
partial logic synthesis in [3].

3 Automatic Test Pattern Generation (ATPG)
for General Multiple Faults

As the semiconductor technology continues to shrink, we have to expect more
and more varieties of variations in the process of manufacturing especially for
large chips. This may result in situations where multiple faults as well as non-
traditional faults are actually happening in the chips.

ATPG for multiple faults, however, has been considered to be very expensive
and except for very small circuits, it is practically impossible as there as so many
fault combinations for multiple faults. For example, if there are m possibly faulty
locations in the circuit, there are 3m −1 fault combinations for multiple stuck-at
faults. If m is 10,000, there are 310,000 − 1 ≈ 104771 fault combinations. If we
check whether each fault can be detected by the current set of test patterns,
that process will take almost forever.

Traditionally ATPG processes include pattern generation as well as fault
simulation in order to eliminate detectable faults with the current sets of test
patterns from the sets of target faults. The problem here is the fact that fault
simulators represent all faults explicitly. Therefore, fault simulators do not work
if the numbers of fault combinations becomes exponentially large which is the
case if we target all of multiple fault combinations.

We can resolve this problem by representing fault lists “implicitly” and com-
bine the detectable fault elimination process with test pattern generation process
as incremental SAT (Satisfiability checking) problems.

Moreover, in order to deal with varieties of fault models, functional modeling
methods for faults in general are introduced. That is, various faults for each
gate in the circuit are represented as resulting faulty logic functions. When fault
happens in the gate, such logic functions show which kind of functionality can
be found at the inputs and output of the faulty gate. This is realized with what
we call “parameter” variables. Basically if values of the parameter variables are
all zero, there is no fault in the gate. If some or all variables are non-zero,
however, there are corresponding faulty functions defined by the logic functions
with parameter variables.



Synthesizing and Completely Testing Hardware Based on Templates 9

a

b

cyi
xi

Circuit to model 
stuck-at 1 and 0 faults
y=1: stuck-at 1
x=1: stuck-at 0
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Primary
input

Primary
output

Fig. 4. Modeling stuck-at faults at the inputs and the output of a gate

For example, if we like to model stuck-at 0 fault at the output of a gate and
stuck-at 1 faults at the inputs of a gate, we introduce the logic circuit (or logic
function) with parameter variables, p, q, r as shown in Fig. 4. Here the target gate
is an AND gate and its output is replaced with the circuit shown in the figure.
That is, the output of the AND gate, c is replaced with ((a∨p)∧(b∨q))∧¬r, which
becomes 0 (corresponding to stuck-at 1 on signal c) when r = 1, b (corresponding
to stuck-at 1 fault on signal a) when p = 1, q = r = 0, and a (corresponding
to stuck-at 1 fault on signal b) when q = 1, p = r = 0. When a stuck-at 1 fault
happens on the input signal a, that value becomes 1 and so the logic function
observed at the output, c is b assuming that there is no more fault in this gate.
If all of p, q, r are 0, the behavior remains the same as original AND function
which is non-faulty.

Stuck-at faulty behaviors for each location are realized with these additional
circuits. That is, circuits with additional ones can simulate the stuck-at 1 and
0 effects by appropriately setting the values of p, q, r, .... For m possibly faulty
locations, we use m of p, q, r, ... variables. As we deal with multiple faults, these
circuits for modeling various faults should be inserted into each gate in the
circuit. By introducing appropriate circuit (or logic functions) with parameter
variables, varieties of multiple faults can be formulated in a uniform way.

The ATPG problems can be naturally formulated as QBF (Quantified
Boolean Formula). The ATPG methods have been implemented on top of ABC
tool [5]. Experimental results show that we can perform ATPG for all com-
binations of various multiple faults for all ISCAS89 circuits. As shown in the
experiments, complete sets of test vectors (exclusive of redundant faults) are
successfully generated for several fault models for all ISCAS89 circuits.

The fault models defined through their resulting logic functions can be con-
sidered to be transformations of gates. That is, under faults, each gate change
its behavior, which are represented by the logic functions and correspond to cir-
cuit transformations. By interpreting this way, the proposed methods can also
be used for logic synthesis based on circuit transformations. If there are p trans-
formations possible on a gate and there are in total m gates in the circuit, logic
synthesis based on the proposed method can search synthesized circuits out of
pm possible multiple transformations. Although this is a very interesting topic,
we reserve it for a future research topic.
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4 Concluding Remarks

We have shown an ATPG framework for multiple various faults with user-define
fault models and implicit representation of fault lists. The problems can be
naturally formulated as QBF (Quantified Boolean Formula), but solved through
repeated application of SAT solvers. There have been works in this direction
[4,6,7]. From the discussion in this paper we may say that those problems could
also be processed as incremental SAT problems instead of QBF problem, and
those incremental SAT problems can essentially be solved as single (unsatisfiable)
SAT problems allowing additional constraints in the fly, which could be much
more efficient.

The experimental results shown in this paper are very preliminary. Although
complete sets of test patterns for various multiple faults have been successfully
generated, which is, as long as we know, the first time ever, there are lots of rooms
in the proposed methods to be improved and to be extended. One of them is
to try to compact the test pattern sets. Also use of the proposed methods for
verification rather than testing is definitely one of the future topics.
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Abstract. We consider the problem of finding an optimal policy in a
Markov decision process that maximises the expected discounted sum of
rewards over an infinite time horizon. Since the explicit iterative dynami-
cal programming scheme does not scale when increasing the dimension of
the state space, a number of approximate methods have been developed.
These are typically based on value or policy iteration, enabling further
speedups through lumped and distributed updates, or by employing suc-
cinct representations of the value functions. However, none of the existing
approximate techniques provides general, explicit and tunable bounds on
the approximation error, a problem particularly relevant when the level
of accuracy affects the optimality of the policy. In this paper we propose
a new approximate policy iteration scheme that mitigates the state-space
explosion problem by adaptive state-space aggregation, at the same time
providing rigorous and explicit error bounds that can be used to control
the optimality level of the obtained policy. We evaluate the new approach
on a case study, demonstrating evidence that the state-space reduction
results in considerable acceleration of the policy iteration scheme, while
being able to meet the required level of precision.

1 Introduction

Dynamic programming (DP) is one of the most celebrated algorithms in com-
puter science, optimisation, control theory, and operations research [3]. Applied
to reactive models with actions, it allows synthesising optimal policies that opti-
mise a given reward function over the state space of the model. According to
Bellman’s principle of optimality, the DP algorithm is a recursive procedure
over value functions. Value functions are defined over the whole state and action
spaces and over the time horizon of the decision problem. They are updated
backward-recursively by means of locally optimal policies and, evaluated at the
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initial time point or in steady-state, yield the optimised global reward and the
associated optimal policy. By construction, the DP scheme is prone to issues
related to state-space explosion, otherwise known as the “curse of dimensional-
ity”. An active research area [5,6] has investigated approaches to mitigate this
issue: we can broadly distinguish two classic approaches.

Sample-based schemes approximate the reward functions by sampling over
the model’s dynamics [6,14], either by regressing the associated value function
over a given (parameterised) function class, or by synthesising upper and lower
bounds for the reward function. As such, whilst in principle avoiding exhaustive
exploration of the state space, they are associated to known limitations: they
often require much tuning or selection of the function class; they are not always
associated with quantitative convergence properties or strong asymptotic statis-
tical guarantees; and they are prone to requiring näıve search of the action space,
and hence scale badly over the non-determinism. In contrast to the state-space
aggregation scheme presented in this paper, they compute the optimal policy
only for the explored states, which can be in many cases insufficient.

Numerical schemes perform the recursion step for DP in a computation-
ally enhanced manner. We distinguish two known alternatives. Value iteration
updates backward-recursively value functions embedding the policy computa-
tion within each iteration. The iteration terminates once a non-linear equation
(the familiar “Bellman equation”) is verified. On the other hand, policy iter-
ation schemes [4] distinguish two steps: policy update, where a new policy is
computed; and policy evaluation, where the reward function associated to the
given policy is evaluated (this boils down to an iteration up to convergence, or
to the solution of a linear system of equations). Convergence proofs for both
schemes are widely known and discussed in [5]. Both approaches can be further
simplified by means of approximate schemes: for instance, the value iteration
steps can be performed with distributed iterations attempting a modularisation,
or via approximate value updates. Similarly to policy iteration, policy updates
can be approximated and, for instance, run via prioritised sweeping over specific
parts of the state space; furthermore, policy evaluations can be done optimisti-
cally (over a finite number of iterations), or by approximating the associated
value functions.

In this work, we focus on the following modelling context: we deal with
finite-state, discrete-time stochastic models, widely known as Markov decision
processes (MDP) [16], and with γ-discounted, additive reward decision problems
over an infinite time horizon. We set up an optimisation problem, seeking the
optimal policy maximising the expected value of the given (provably bounded)
reward function. We formulate the solution of this problem by means of a numer-
ical approximate scheme.

Key Contributions. In this work we present a number of accomplishments:

– We put forward a modified policy iteration scheme which, while retaining
the policy update step on the original MDP, performs an approximate policy
evaluation by clustering the state space of the model.
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– We derive explicit error bounds on the approximate policy evaluation step,
which depend on the model dynamics, on the reward structure, and on the
chosen state-space aggregation.

– We develop an automated policy iteration scheme, which adaptively updates
the model aggregation at each policy evaluation step, according to the com-
puted explicit error bounds.

– We argue that, unlike cognate literature, our quality certificates on the
approximate policy evaluations only depend on manipulations of the abstract
model.

– We argue that, whilst in the developed scheme the policy update is played out
over the original (concrete) MDP, our approach can be extended to encompass
an approximate policy update over the abstract model.

– With a case study, we show that the automated scheme does indeed improve
the performance of the explicit policy iteration scheme, both in terms of
state-space reduction and time.

Related Work. With emphasis on reward-based decision problems over MDP
models, we can relate our contribution to the two alternative approaches dis-
cussed above, and quantitatively compare our scheme to existing numerical
ones; note that sample-based approaches lack strong quantitative guarantees
and therefore cannot be fairly compared.

Numerical and approximate schemes are discussed in [4] in detail. Specifically,
with regards to policy iteration via approximate and optimistic policy updates,
we argue that we provide certificates that only depend on manipulations of the
abstract model and reward function, and that the approximation steps can be
automatically embedded within the global policy iteration scheme.

Sample-based schemes are discussed in [6]; they differ from the numerical
schemes in that they rarely provide guarantees. One exception is bounded real-
time dynamical programming, for which precise bounds on approximation errors
have been proposed, including policy synthesis for stochastic shortest path prob-
lems [14] and verification of quantitative specifications [7]. Further related work
can be found in [9,15].

Finally, our work can be related to approaches which resort to uncertain
(interval-based) MDPs as an abstraction framework and aim at providing lower
and upper bounds on the probability of quantitative specifications. The work
in [11] generates abstractions for MDPs using stochastic two-player games that
can be further refined. The method computes lower and upper bounds on the
minimum and maximum probability, which serve as a measure of the quality of
the abstraction. Interval-based Markov chains have been used to obtain three-
valued abstraction for discrete-space probabilistic systems [10], as well as to
abstract continuous-space stochastic systems. In [2,8] the approximation error
of the continuous dynamics is explicitly computed and can be tuned through
different partitioning of the state space. In [13] bounded-parameter MDPs are
used to abstract switched discrete-time stochastic systems.
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2 Notations and Problem Setup

Model Syntax. We work with discrete-time Markov decision processes (MDP),
with full state observations [3,16]. Formally, an MDP is defined as a triple
(S,A, P ), where

– S = {s1, . . . , sn} is the finite state space of size n;
– A = {a1, . . . , al} is the finite action (input) space of size l;
– P(·) : S × A × S → [0, 1] is the transition probability matrix, which is such

that ∀i ∈ S,∀a ∈ A :
∑n

j=1 Pa(i, j) = 1.

We have assumed, for the sake of simplifying the notation, that all actions are
available at any state s: this could be generalised by defining state-dependent
sets A(s), s ∈ S, which are such that A(s) ⊆ A.

In order to characterise a run (a path) of the MDP, we consider finite or
infinite strings of actions of the form (a0, a1, a2, . . .), ai ∈ A. Of interest to this
work, we structure actions as feedback functions from the model states S to
the action space A, namely for any k ≥ 0, ak takes the shape of a function
μk : S → A. Further, we consider infinite strings of such feedback actions μ =
(μ0, μ1, μ2, . . .), which we denote as policies. We restrict to policies μ that are
memoryless (Markovian) and deterministic (non-randomised), and denote with
μ ∈ M the set of all such admissible policies. For the problems of interest in
this work, we seek to compute time-homogeneous policies, namely of the form
μ = (μ̄, μ̄, μ̄, . . .).

Model Semantics. Consider the model (S,A, P ) and a given policy μ. The
model is initialised via distribution π0 : S → [0, 1], where

∑
s∈S π0(s) = 1, and

its transient probability distribution at time step k ≥ 0 is

πk+1(s) =
∑

s′∈S

πk(s′)Pμk
(s′, s) = PT

μk
πk, (1)

or more concisely as πk+1 = πkPμk
(where the πk’s are row vectors), and where

of course Pμk
(s′, s) = Pμk(s′)(s′, s).

The work in [1] has studied the derivation of a compact representation and
an efficient computation of the vectors πk for a Markov chain, which is an MDP
under a time-homogeneous policy.

Decision Problem and Optimal Policy Synthesis. Consider a time-
homogeneous reward function g : S ×A → R

+
0 , which we assume to be bounded,

and a discount factor γ ∈ (0, 1). Consider the following decision problem

J∗(s) := sup
μ∈M

E

[ ∞∑

k=0

γkg(s, μk)

]

,

for any s ∈ S, and where E denotes the expected value of a function of the process
(as in the previous formula). Notice that in this setup the reward function unfolds
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over an infinite time horizon; however, it is bounded in view of the presence of
the discounting factor γ and the assumption on function g. We are also interested
in deriving the optimal policy attaining the supremum, namely

μ∗(s) := arg sup
μ∈M

E

[ ∞∑

k=0

γkg(s, μk)

]

.

It is well known [3] that the class M of policies is sufficient to characterise the
optimal policy given an MDP model and the additive optimisation setup above,
namely we need not seek beyond this class (say, to randomised or non-Markovian
policies). Further, the optimal policy is necessarily stationary (homogeneous in
time).

Remark 1. It is likewise possible to consider decision problems where cost func-
tions (similar in shape as those considered above) are infimised. Whilst in this
work we focus on the first setup, our results are directly applicable to this second
class of optimisation problems. ��

Optimal Policy Synthesis: Characterisation via Dynamic Program-
ming. Consider the class F of bounded functions f : S → R

+
0 . In order to

characterise the solution of the decision problem above as a recursive dynamic
programming (DP) scheme, let us introduce operators (or mappings) T, Ta :
F → F , a ∈ A, such that

(Taf)(s) = g(s, a) + γ
∑

s′∈S

Pa(s, s′)f(s′),

(Tf)(s) = sup
a∈A

{

g(s, a) + γ
∑

s′∈S

Pa(s, s′)f(s′)

}

.

In a more succinct vector form, we can express Taf = ga + γPaf , and further
the condition fa = Tafa = ga + γPafa, so that fa = (I − γPa)−1ga, which is a
system of linear equations [3] that is relevant below (also in the form depending
on the operator T ). Further, the sequential application of this operator k times,
where k > 0, is denoted as (T k

a f)(s) = (Ta(T k−1
a f))(s), s ∈ S (and similarly for

operator T ).
Consider an initial value function J0 : S → R

+
0 . The DP algorithm hinges on

the Bellman recursion which, for s ∈ S, operates as

(T k+1J0)(s) = sup
a∈A

{

g(s, a) + γ
∑

s′∈S

Pa(s, s′)(T kJ0)(s′)

}

. (2)

At the limit, the optimal value function satisfies the following fix-point equation:

J∗(s) = sup
a∈A

{

g(s, a) + γ
∑

s′∈S

Pa(s, s′)J∗(s′)

}

, (3)
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which is succinctly expressed as J∗ = TJ∗ and known as the Bellman equation
[3]. Given a non-trivial initial value function J0 : S → R

+
0 , the following conver-

gence result holds: J∗(s) = limk→∞(T kJ0)(s), s ∈ S. The results above, focused
on the characterisation of the optimal value function, also lead to the optimal
policy μ∗.

The numerical solution of the discussed infinite-horizon decision problem
hinges on the computation of the iterations in (2), or on the solution of the
non-linear optimisation problem in (3), both of which can be computationally
expensive when the cardinality of the state space | S | is large. Several approaches
have been developed to facilitate the numerical computation of optimal value
functions and policies [5]. Two main schemes can be distinguished: value and
policy iteration.

Value iteration boils down to iteratively computing applications of the opti-
mal operator T , and exploiting monotonicity properties of the obtained value
functions (in view of the operator’s contractivity) to establish conditions for the
convergence of the quantity limk→∞ T kJ0(s), s ∈ S. Variants based on distrib-
uted and approximate iterations have also been developed [5]. We next focus on
the alternative policy iteration scheme.

DP via Policy Iteration, Exact and Approximate. The policy iteration
algorithm, which is proven to find the optimal policy in a finite number of steps,
works as follows. Assume an initial (non-trivial) value function J0 : S → R

+
0 .

Compute the corresponding optimal policy μ0, which is such that Tμ0J0 = TJ0,
namely compute

μ0(s) = arg sup
a∈A

{

g(s, a) + γ
∑

s′∈S

Pa(s, s′)J0(s′)

}

.

This is known as the policy update step. The obtained policy μ0 can be suc-
cessively evaluated over a fully updated value function Jμ0 , which is such that
Jμ0 = gμ0 + γPμ0Jμ0 (as mentioned above). The scheme proceeds further by
updating the policy as μ1 : Tμ1Jμ0 = TJμ0 ; by later evaluating it via value
function Jμ1 ; and so forth until finite-step convergence.

We stress that the value update involved with the policy evaluation is in
general quite expensive, and can be performed either as a recursive numerical
scheme, or as a numerical solution of a linear system of equations. Approximate
policy iteration schemes introduce approximations either in the policy update
or in the policy evaluation steps, and are shown to attain suboptimal policies
whilst ameliorating the otherwise computationally expensive exact scheme [4].

3 New Approximate Policy Iteration

We propose to speed up the above standard policy iteration scheme by accel-
erating the policy update step. The approach is inspired by recent work in [1],
where a sequential and adaptive aggregation approach allows us to quantifiably
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approximate the forward computation of the probability distribution in time
(namely, the transient distribution) of a given Markov chain. In this work, we
tailor this related work to the backward DP scheme, based on the fact that the
policy evaluation steps work on a closed-loop model (indeed, a Markov chain
obtained by selecting the currently optimal policy).

3.1 State-Space Aggregation for MDPs

We aggregate the MDP (S,A, P ) into the abstract model (S̄, A, P̄ ) by a proce-
dure that is inspired by our work in [1]. We partition S = ∪m

i=1Si, where the
cardinality index m has been selected so that m << n, where again n = |S|. We
denote the abstract (aggregated) state space as S̄ and its elements (the abstract
states) with φi, i = 1, . . . ,m. Introduce the abstraction and refinement maps as
α : S → S̄ and A : S̄ → 2S , respectively – the first takes concrete points into
abstract ones, whereas the latter relates abstract states to concrete partitioning
sets. We argue that no abstraction of actions is needed at this stage, namely the
aggregation of the MDP is performed for a given feedback function μ : S → A.
For any pair of indices i, j = 1, . . . ,m, define the abstract transition probability
matrix as

P̄μ(φi, φj)
.=

∑
s∈A(φi)

∑
s′∈A(φj)

Pμ(s)(s, s′)

|Si| .

This transition probability matrix can be de-aggregated piecewise constantly
over the state space, as:

∀s ∈ Si, s
′ ∈ Sj , P̃μ(s, s′) =

1
| Si | P̄μ(φi, φj).

Given an initial function J0(s), s ∈ Si, cluster it into J̄0(φi) =
1

|A(φi)|
∑

s∈A(φi)
J0(s), where φi = α(s), and de-cluster it into J̃0(s) = J̄0(φi), for

all s ∈ A(α(s)). Similarly, given an initial policy μ0, cluster the running reward
function g(s, μ0(s)) (which is evaluated under a selected policy and thus only
state dependent) into ḡ(φi) = 1

|A(φi)|
∑

s∈A(φi)
g(s, μ0(s)), and later de-cluster it

as g̃(s) = ḡ(φi). Given these definitions, the operators Tμ, T can then immedi-
ately aggregated as T̄μ, T̄ .

Remark 2. The aggregation scheme described above can be alternatively imple-
mented by selecting an arbitrary representative point within each partition
s� ∈ Si: P̄μ(φi, φj)

.=
∑

s′∈A(φj)
Pμ(s�)(s�, s′). This leads to formal connections

with the notion of (forward) approximate probabilistic bisimulation [8]. ��

3.2 Approximate Policy Iteration: Quantification and Use of Error
Bounds

Approximate Policy Iteration. Algorithm 1 summarises the approximate
policy iteration scheme. On line 2 the procedure performs an initial spatial aggre-
gation based on an initial value function which, in the absence of alternatives,
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Algorithm 1. Adaptive aggregation scheme for approximate policy iteration
Require: Finite MDP M = (S, A, P ), reward function g, initial policy μ0, allowable

error θ
Ensure: ∀s ∈ S global error �E(s) ≤ θ
1: policyTerm ← false; valueTerm ← false; μ ← μ0; J ← g

2: (S̄, P̄µ, ḡ, J̄ , �X, �Y , Z) ← initAggregation (S, Pµ, g, J)
3: while (!policyTerm) do
4: while (!valueTerm) do � Approximated policy evaluation

5: (J̄ , �E, valueTerm) ← updateValues(S̄, P̄µ, ḡ, J̄ , �X, �Y , Z)

6: if �E ≥ θ then � Maximal error has been reached

7: (S̄, P̄µ, ḡ, �X, �Y , Z) ← reAggregation
(
S, Pµ, g, J̄ , �E

)

8: J̄ ← aggregate(S̄, J) � Restart the policy iteration
9: valueTerm ← false

10: J ← deAggregation(J̄); valueTerm ← false
11: (μ, policyTerm) ← updatePolicy(P, J, μ) � Policy update step

12: (P̄µ, ḡ, �X, �Y , Z) ← updateAggregatedSystem
(
S̄, Pµ, g

)

is taken to be equal to the reward function, J0 = g, and on an initial policy μ0

(the choice of which is also quite arbitrary). The procedure builds the aggregated
system comprising state space S̄, transition matrix P̄μ0 , value function J̄0, and
reward function ḡ. The procedure also updates auxiliary data structures (for the
quantities �X, �Y and Z, to be introduced in Sect. 3.3) that are required for the
computation of the error bounds �E. Further, the procedure named updateValues
(line 5) performs policy evaluation by means of value function updates, namely
it updates the aggregated value function based on the current aggregated policy.
Note that this procedure introduces an approximation error (as further elabo-
rated in the next section): as such, it also updates the vector of error bounds �E
and checks if the termination criterion for the value iteration is reached.

If the max allowable error bound θ has been exceeded before the termina-
tion criterion is met, the closed-loop MDP is re-aggregated (based on the error,
as per line 7) and the policy evaluation step is restarted. Note that the adap-
tive re-aggregation step employs the current value function J̄ and the current
error �E, both of which reflect the model dynamics and the specific optimisation
problem. In particular, the re-aggregation refines every cluster φi for which the
current error �E(φi) is above the bound θ, and the new clustering takes J̄ into
consideration. The value function is reset using the values J corresponding to
the last policy update.

If the value iterations terminate before the maximal error is reached, the
final value function J̄ is de-aggregated into J (line 9). Afterwards, the procedure
updatePolicy updates the policy using the obtained J , and checks if a termination
criterion over the policy update has been met. If not, before the next policy
evaluation the aggregated system has to be updated: we retain the clustering S̄
from the previous step, and thus only refresh (in view of the updated policy) the
transition matrix, the reward function g, and the auxiliary data structures.
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Approximate Policy Evaluation: Quantification of Error Bounds. Hav-
ing obtained policy μk, its k-th step, policy evaluation performs the operation
J̄k+1 := J̄mk

k , where J̄mk

k = T̄mk
μk

J̄k, and where mk is a finite integer number
accounting for the optimistic evaluation over the aggregated closed-loop oper-
ator T̄μk

. This update introduces two errors: the first is due to the aggregated
computation; the second is due to the finite number of update steps (mk). We
then interpolate the obtained J̄mk

k (s̄) piecewise constantly over the concrete state
space S, obtaining J̃mk

k (s). We aim at comparing the following:
∣
∣
∣J̃

mk

k (s) − Jμk
(s)

∣
∣
∣ ≤

∣
∣
∣J̃

mk

k (s) − Tmk
μk

Jk(s)
∣
∣
∣ +

∣
∣Tmk

μk
Jk(s) − Jμk

(s)
∣
∣ . (4)

Error bounds on the approximate evaluation of the current policy resort to
the Bellman iteration. We introduce a number of terms (ζj

i (s), ξi(s), yi(s), and
the corresponding aggregated terms Zj ,X, Y ), which help in succinctly express-
ing parts of this iteration.

Definition 1. Consider an MDP (S,A, P ) with a fixed policy μk : S → A, and
the aggregated MDP (S̄, A, P̄μk

). Introduce the following quantities, ∀s ∈ Si, i ∈
{1, . . . , m}:

∣
∣Pμk

(s, Sj) − P̄μk
(φi, φj)

∣
∣ = ζj

i (s),

∣
∣
∣Jk(s) − J̃k(s)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣
Jk(s) − 1

| A(α(s)) |
∑

s′∈A(α(s))

Jk(s′)

∣
∣
∣
∣
∣
∣
≤ ξi(s),

|g(s, μk(s)) − g̃(s)| =

∣
∣
∣
∣
∣
∣
g(s, μk(s)) − 1

A(α(s))

∑

s′∈A(α(s))

g(s′, μk(s′))

∣
∣
∣
∣
∣
∣
≤ yi(s),

and further introduce

Zj
i = max

s∈Si

ζj
i (s), Zj = max

i=1,...,m
Zj

i ,

Xi = max
s∈Si

ξi(s), X = max
i=1,...,m

Xi,

Yi = max
s∈Si

yi(s), Y = max
i=1,...,m

Yi.

Theorem 1 (Error Bounds on Approximate Evaluation of a Given Pol-
icy). A bound for Eq. (4) is the following:

∣
∣
∣J̃

mk

k (s) − Jμk
(s)

∣
∣
∣ ≤ 2B(mk) + B(mk − 1) + (J̃mk

k (s) − J̃mk−1
k (s)),

where

B(mk) =
mk∑

i=0

αiY + αmkX +
mk∑

i=0

αmk−i
m∑

j=1

J̄ i
k(φj)Zj .
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Proof (Sketch). The desired upper bound on the error is obtained by first split-
ting it into two contributions:

∣
∣
∣J̃

mk

k (s) − Jμk
(s)

∣
∣
∣ ≤

∣
∣
∣J̃

mk

k (s) − Tmk
μk

Jk(s)
∣
∣
∣ +

∣
∣Tmk

μk
Jk(s) − Jμk

(s)
∣
∣ .

The first term results from performing the evaluation of policy μk over the aggre-
gated model, and an upper bound is obtained from the three contributions,
accounting respectively for the difference between concrete and aggregated run-
ning costs, initial value functions, and dynamics (namely transition probability
matrices).

On the other hand, the second term results from an optimistic policy evalua-
tion, iterating over value functions only a finite (mk) number of times. The error
can be obtained from [5, Chapter 1] and, importantly, fully computed over the
abstract model. ��
Remark 3. We comment on the asymptotics of the two contributions to the total
error. The first contribution to the error in the previous proposition is bounded
as the number of steps mk grows, whereas the second term decreases exponen-
tially. It might be meaningful to seek an empirical tradeoff, namely a parameter
mk minimising their sum. ��

Within a single iteration of the policy iteration scheme, Theorem1 has estab-
lished an explicit bound on the approximate policy evaluation part. We are inter-
ested in assessing the sub-optimality of the policy obtained upon convergence of
the approximate policy iteration scheme.

Theorem 2 (Bounds on Sub-optimality of Approximate Policy Itera-
tion). Assume that after a finite number of steps p a steady-state policy μp is
obtained. Compute the upper bound δ on the error related to the approximate
policy evaluation steps, namely δ = maxk=0,...,p

∣
∣
∣J̃

mk

k (s) − Jμk
(s)

∣
∣
∣. We obtain

the following sub-optimality bound:
∣
∣
∣J̃mp

p (s) − J∗(s)
∣
∣
∣ ≤ 2γδ

1 − γ
,

where J̃
mp
p (s) is obtained from J̄

mp
p , and where J̄

mp
p = T̄

mp
μp J̄p.

Proof. It follows from a straightforward adaptation of the results in [4, Section 3].
��
Remark 4. As a generalisation (relaxation of the assumptions) of the previous
theorem, if no steady-state policy is attained, we obtain the following bound

2γδ
(1−γ)2 . ��
Remark 5. As a side remark notice that, within the iterative policy-update eval-
uation scheme, we do not need to account for a re-aggregation error (as in [1]),
since this is already taken care by the initialisation of the policy evaluation
scheme and the error terms X. Alternatively, we can avoid restarting the policy
evaluation, which would reduce the re-aggregation overhead, and introduce a
re-aggregation error as in [1]. ��
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Remark 6. Beyond policy evaluation, we can also perform an approximate ver-
sion of policy update, and account for a global error, according to [5, Proposition
1.3.6]. ��

3.3 Tighter and Computationally Faster Matrix Bounds

The error bounds given by Theorem1 can be coarse, and thus not very useful
in practice, since they may not adequately reflect the true empirical errors.
The reason is that the error B(mk) corresponding to the aggregation is state
independent, and employs the global quantities X,Y and Zj . In this section
we will first improve the error bounds, then show how to approximate their
computation to obtain a scheme that can speed up the overall DP algorithm.

As before we focus on the first iteration of policy evaluation. Define the
matrix Z ∈ R

m×m, Zij = Zj
i and the column vector �X(i) = Xi. Then, of course,

∀s ∈ Si the third error (for the first value iteration) can be encompassed by
γZi·J̄0

0 , where J̄0
0 is a column vector and Zi· is the i-th row of matrix Z. This

leads to
∣
∣
∣J̃1

0 (s) − J1
0 (s)

∣
∣
∣ ≤ Yi + γPμ0(s, ·) �X + γZi·J̄0

0

(uniformly over s) ≤ Yi + γP̄ (φi, ·) �X + γZi·J̄0
0 ,

At the next (second) iteration, the error is

∣∣∣J̃2
0 (s) − J2

0 (s)
∣∣∣ ≤ (1 + α)Yi + γ2

m∑
k=1

P 2
µ0(s, Sk)Xk + γ2

m∑
k=1

J̄0
0 (φk)Z

k + γ

m∑
j=1

J̄1
0 (φj)Z

j

≤ (1 + α)Yi + γ2P 2
µ0(s, ·) �X + γ2Pµ0(s, ·)ZJ̄0

0 + γZi·J̄
1
0

(unif. over s) ≤ (1 + γ)Yi + γ2P̄ 2(φi, ·) �X + α2P̄ (φi, ·)ZJ̄0
0 + γZi·J̄

1
0 .

Now, uniformising over s ∈ Sj (i.e. over j-th cluster), we can directly write

sup
s∈Sj

∣∣∣J̃m0
0 (s) − Jm0

0 (s)
∣∣∣ ≤

m0∑
i=0

γiYj +γm0 P̄m0(φj , ·) �X +

m0−1∑
i=0

γm0−iP̄m0−i−1(φj , ·)ZJ̄ i
0,

(5)

where we have imposed that P̄ 0(φj , ·)Z = Zj·.
Whilst providing tighter bounds, the computation of these formulas can be

expensive due to the last term representing a number of matrix-matrix multipli-
cations that is linear with the number of value function updates. We therefore
introduce an approximate computation of the bounds, which combines the coarse
and uniform bounds that can be easily computed, with the improved but expen-
sive matrix bounds. The new computation attempts to make the approximate
policy iteration practically useful, namely to provide considerable speedup of
the computation whilst, at the same time, deriving informative bounds on the
approximation error.
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Define vectors �E and �Y such that �E(j) = sups∈Sj

∣
∣
∣J̃m0

0 (s) − Jm0
0 (s)

∣
∣
∣ and

�Y (j) = Yj . Based on Eq. (5) we obtain that

�E ≤
m0∑

i=0

γi�Y + γm0 P̄m0 �X +
m0−1∑

i=0

γm0−iP̄m0−i−1ZJ̄ i
0, (6)

where ≤ is defined element-wise. These three terms can be approximated as
follows:

(
m0∑

i=0

γi�Y

)

(j) ≤
(

B1∑

i=0

γi�Y

)

(j) +
m0∑

B1+1

γiY

(
γm0 P̄m0 �X

)
(j) ≤ γm0X (if m0 ≥ B2)

m0−1∑

i=0

γm0−iP̄m0−i−1ZJ̄ i
0 ≤

m0−1∑

i=m0−B3+1

γm0−iP̄m0−i−1ZJ̄ i
0

+
m0−B3∑

i=0

γm0−iP̄B3−1ZJ̄m0−B3
0

≤
m0−1∑

i=m0−B3+1

γm0−iP̄m0−i−1ZJ̄ i
0

+ (m0 − B3 + 1)γB3 P̄B3−1ZJ̄m0−B3
0 ,

where Bi for i ∈ 1, 2, 3 denotes three thresholds that affect the precision and
time complexity of the computations. The approximation allows us to make
the number of constant-vector, matrix-vector and matrix-matrix multiplications,
required by the error computations, independent from the number of value func-
tion updates. Intuitively increasing these thresholds increases the precision, but
also the time complexity. In our experimental evaluation we set B1 = B2 = 10
and B3 = 5.

The first inequality holds, since Y = maxi=1,...,m
�Y (i). The second inequality

holds, since X = maxi=1,...,m
�X(i) and Pm0 is a stochastic matrix. The third

term in Eq. (6) is approximated as detailed next. The error related to the last,
most significant, B3 − 1 iterations is computed using the tighter matrix bounds
(the first term in the right hand side of the last inequality). The error related
to the first k = m0 − B3 + 1 iterations is approximated using a single vector
obtained from the k-th iteration (the second term). The correctness follows from
the monotonicity of Jk

0 , i.e. Jk
0 ≤ Jk+1

0 (element-wise).
Finally, note that the computation of the bounds, as well as the policy evalua-

tion itself, can be rewritten such that the expensive matrix-matrix multiplication
can be replaced by matrix-vector multiplications.
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4 Experimental Evaluation

We have developed a prototype implementation of the approximate policy iter-
ation in PRISM [12]. Both the aggregated and the non-aggregated implementa-
tion use the explicit engine of PRISM for model construction and manipulation;
however, the models are then translated into a sparse and fixed matrix represen-
tation, that is, a similar data structure as that used in the sparse engine, which
is the fastest PRISM engine. We have run all experiments on a MackBook Pro

TM

with 2.9 GHz Intel Core i5 and 8 GB 1866 MHz RAM. Alongside memory usage,
in the following experiments we report and compare runtimes for the policy iter-
ation scheme, whereas the runtimes associated to the model construction, which
are the same for aggregated and non-aggregated computations and hinge on the
chosen engine in PRISM, are not included.

The practical performance of the proposed approximate policy iteration
scheme depends on several related aspects. In our evaluation we attempt to
dissect these aspects and identifying scenarios where our approach can achieve
significant acceleration over the explicit algorithm, and, on the other hand, where
it experiences practical performance limitations. We divide the experiments into
two parts: (1) evaluation of the method for a fixed number of policy iterations
(namely, policy updates/evaluations); and (2) evaluation of the convergence of
the scheme.

We consider a case study from robot motion planning. The MDP model
describes a finite two-dimensional discrete grid (say defined over integer variables
−D ≤ x, y ≤ D), and deals with a robot moving over this map. The size of the
state space thus is |S| = (2D +1)2. The robot dynamics is affected via 5 actions
(up, down, left, right, stay), which are not associated to fully deterministic moves,
namely, there is a probability that performing a given action might result in an
undesired output (e.g., for an action up the robot actually moves, say, to the
right, as explained below).

We are interested in synthesising a policy that steers the robot to a specific
point on the grid. We consider a reward function, which we seek to maximise over
the infinite horizon over the available actions, that attains its maximum over the
desired goal point. The reward function (which in this instance is independent
of the actions) is embedded within a discounted, additive objective, of which we
compute the expected value. As discussed earlier, the DP scheme will yield a
memoryless, deterministic, and homogeneous policy as a function of the state
space.

4.1 Fixed Number of Policy Updates and Evaluations

The required number of policy updates and evaluations (the latter obtained as
value function updates) is key in the performance of the policy iteration scheme.
This number depends on the structure of the system dynamics, which is affected
by the aggregation procedure, and on parameters controlling the termination of
the computations, which usually check the relative difference between consecu-
tive updates. As such, we first assume that the number of the updates is the
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same for both standard and approximate policy iterations, which allows us to
assess the performance of the proposed aggregation scheme with respect to the
following key aspects: (1) the number of value function updates, (2) the size of
the model, (3) the discounting factor, and (4) the shape of the reward function.
Later we evaluate how the state-space aggregation influences the convergence of
the policy and value function updates.

We consider the following instance of the robotic case study (denoted as
Robotic 1 ), where the actions are structured as follows: there is an 80 % chance of
performing the intended action, i.e. moving to a position (x, y) and the remaining
probability is uniformly distributed over four undesired local moves, namely
(x + 1, y), (x, y + 1), (x − 1, y), and (x, y − 1). The reward function is defined as

g(x, y) = e− x2+y2

ρ , over a bounded range of integers x, y. Note that the parameter
ρ affects the stiffness of the reward function. We have also added some obstacles
to the map, and our experiments indicate that the map modification does not
have a noticeable impact on the performance of the method, which demonstrates
its robustness with respect to different motion planning scenarios.

Figures 1 and 2 illustrate the experimental outcomes. The curves display how
the memory reduction factor and time speedup vary for different maximal error
bounds. The maximal bound represents the threshold that controls the model
re-aggregations, as per line 6 in Algorithm 1: whenever this threshold is reached,
a model re-clustering is performed and the value function iterations for the policy
evaluation are restarted.

Fig. 1. Robotic 1 setup with the discounting factor γ = 0.8 and stiffness ρ = 100.
Left: Fixed state space |S| = 0.5M and 50 policy updates. The figure shows results for
different numbers of value function updates for a given policy update. The runtimes for
non-aggregated computations over 100, 500 and 1000 value function updates are 137,
732 and 1174 s, respectively. Right: 50 policy updates and 1000 value function updates
for a given policy update. The figure shows results for different sizes of the state space.
The runtimes for non-aggregated computations over a model with |S| = 0.5M, 1M and
2M states are 1174, 2560 and 5571 s, respectively.
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Fig. 2. Robotic 1 setup with |S| = 2M, 50 policy updates, 1000 value function updates
per single policy update. Left: fixed stiffness ρ = 100: the figure shows results for dif-
ferent discounting factors γ. Right: fixed γ = 0.8: the figure shows results for different
values ρ. Since the parameters γ and ρ have only a negligible impact on the runtimes
of the non-aggregated computation, we report the runtime for the choice γ = 0.8,
ρ = 100, which is 5571 s.

Figure 1 (left) shows how the average number of value function updates for
a given policy update affect both the state-space reduction and the speedup.
Since both the empirical errors and error bounds grow with increasing num-
ber of value function updates, we can observe a small decrease of the reduction
factor. However, the trend becomes negligible later, likely in view of the conver-
gence of the policy and value function updates. On the other hand, the speedup
steadily increases, despite the decreasing state-space reduction: this is because
the overhead related to every policy update, including updating the aggregated
transition matrix and other data structures, becomes less relevant. Note that
the number of re-aggregations decreases with number of policy updates, which
also increases the speedup. For this case study the speedup saturates around 50
policy updates and 2000 value function updates per each policy update.

Figure 1 (right) confirms the scalability of our approach with respect to the
state space size. Both the state reduction factor and the time speedup consider-
ably grow with the increasing size of the model.

Figure 2 (left) illustrates the effect of the discounting factor γ on the policy
iteration scheme. As expected, as the factor gets closer to the max value 1.0,
both the empirical errors and the error bounds grow, and thus both the reduction
factor and the speedup decrease. Factors above 0.9 limit the performance of our
method, especially if a high precision is required: the current implementation of
the aggregated scheme requires a high number of re-aggregations, which increases
the overhead and results in a poor overall speedup. On the other hand, we do
not consider factors below 0.7 since the model would converge too fast (faster
than the 50/1000 policy/value function updates): still, the results indicate that
better reduction factors would be achieved.
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Finally, Fig. 2 (right) displays the robustness of our aggregation scheme
against varying shapes of the reward function, where in our case study the stiff-
ness of the reward is controlled by the parameter ρ. The current implementation
of the aggregation strategy uses the average value of the reward function to
adequately handle different shapes of the function. Note that for stiff functions
we could additionally tune the aggregation strategy in order to provide better
reduction and speedup, by states that are associated with small rewards (away
from the maximum of the function) in large clusters.

4.2 Convergence of the Approximate Scheme

We consider a different variant of the case study (named Robotic 2 ), where for
each action there is an 80 % probability that the robot does not move, a 15 %
probability that the action has the intended effect, and the remaining probability
is uniformly distributed over the four undesired outputs, similarly as in the
previous variant of the model. The Robotic 2 model displays slower dynamics
and convergence to the optimum in the decision problem, and thus allows us to
better evaluate how the state-space aggregation performs in time.

For both the aggregated and the non-aggregated computations, we use same
termination criteria based on the difference between successive updates. In par-
ticular, the value function iteration (for policy evaluation) terminates if the val-
ues for all states in successive iterations differ by at most 1E-6, whereas the
policy iteration terminates if there is no policy update in successive iterations,
or if policy updates improve the value function by at most 1E-12. Note that
these are the standard convergence thresholds used in PRISM for the numeri-
cal policy iteration scheme, and by decreasing them we slow down the overall
convergence. This would improve the speedup of the adaptive scheme, due to a
higher number of the value function updates and the policy updates: recall the
result in Fig. 1 (left). The sub-optimality bounds for the non-aggregated com-
putation are thus obtained as 2γ1E−6

1−γ , as per Theorem 2. Also note that there
can be more than one optimal action over a state, so the difference in the policy
does not necessarily correspond to an actual error.

Table 1 depicts the results for the discounting factor γ = 0.85 (top batch)
and γ = 0.95 (bottom batch). The columns have the following meaning (from
left to right): threshold on the maximal error bound Bmax for policy evaluation;
maximal error bound Bmax; maximal empirical error Jmax for policy evaluation;
number of states that result in a different optimal action; global error bound
Gmax given by Theorem 2; reduction factor for memory usage; total number of
policy updates and value function updates, respectively; and time speedup. We
can see that, in all cases, decreasing the error bounds improves both the empirical
errors and the optimality of the policy.

The top batch of the table demonstrates that, although the state-space reduc-
tion factor remains high for all three error thresholds, the overall time speedup is
limited due to the low average number of value function updates (which can be
run over the aggregated model) per policy update. As such, since in this case the
convergence (overall number of iterations) is not affected by the reduction factor,
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Table 1. Top: Robotic 2 setup with |S| = 1M, ρ = 100 and γ = 0.85: the non-aggregated
computation has required 12/1.3K policy/value function updates, with a sub-optimality
bound of 1.1E-5, and has taken 73 s. Bottom: Robotic 2 setup with |S| = 1M, ρ = 100
and γ = 0.95: the non-aggregated computation has required 55/11K policy/value func-
tion updates, with a sub-optimality bound of 3.8E-5, and has taken 674 s.

Errors Aggregation

Threshold Bmax Jmax Policy Gmax Reduction Iterations Speedup

1E-2 2.6E-3 1.1E-5 10.5K 5.8E-2 33.7 13/1.3K 5.7

1E-5 7.9E-6 3.7E-8 4.5K 1.9E-4 30.1 10/1.1K 4.5

1E-8 6.1E-9 5.3E-11 0.5K 1.1E-5 27.4 15/1.6K 3.0

1E-2 9.5E-3 8.6E-6 36.5K 7.2E-1 22.2 22/8.6K 13.6

1E-5 7.2E-6 3.5E-8 11.9K 5.4E-4 13.2 44/21.5K 4.0

1E-8 7.9E-9 2.5E-11 1.3K 3.8E-5 8.1 55/31.0K 1.9

also the overall performance (i.e. the speedup with respect to the non-aggregated
computation) is relatively stable.

The bottom part of the table shows that for a discounting factor closer to 1.0
the situation is different. In particular, both the reduction factor and the per-
formance of the approximate policy iteration scheme downgrade with decreas-
ing error bounds, whilst remaining faster than the iterations over the concrete
model. In particular, for the error threshold 1E-2, the aggregation provides more
than a 13-fold speedup, since the reduction factor is high and the approximate
scheme converges faster (i.e. considerably fewer policy/value function updates
are required). However, for lower error bounds both the reduction factor and the
convergence speed decrease, which results in smaller speedups.

4.3 Discussion of the Experimental Results

Our experimental evaluation dissects important aspects of the DP algorithm that
impact the performance metrics (i.e. reduction factors, convergence, precision,
overall speedup) of the proposed approximate scheme. The experimental results
clearly indicate that, for complex instances running over large state spaces and
requiring a high number of policy and value function updates, our approximate
scheme provides significant reduction of the computation time, while providing
explicit bounds on the approximation errors. The maximal permissible error is
specified by users and controls the tradeoff between the state-space reduction,
which directly affects the speedup, and the precision of the computation in the
form of maximal error of the value function.

The experiments further show that the overall performance of the method
considerably depends on the aggregation strategy, namely, on a set of parame-
ters and thresholds that control the aggregation. Intuitively, there is a tradeoff
between the reduction vs. precision ratio and the overhead related to the re-
aggregations. To provide a fair comparison we have run all experiments with the
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same setting (except for the thresholds on the maximal error bounds). However,
our observations show that a fine tuning of the parameters for a certain problem
can lead to additional performance improvements.

The overhead related to updating the aggregated model (by means of its tran-
sition matrix), proved to have a significant impact on the overall performance.
Therefore, a dynamic data structure implementing the model can improve the
performance. Such a dynamic representation supports efficient local updates that
are faster than global updates required by a static representation, and reduces
the number of operations over the non-aggregated matrix. On the other hand,
certain computations over dynamic structures (i.e. value function updates) might
require additional overhead with respect to a static representation.

5 Conclusions and Future Work

In this article we have proposed a new approximate policy iteration scheme that
mitigates the state-space explosion problem by adaptive state-space aggregation,
at the same time providing rigorous and explicit error bounds that can be used
to control the optimality level of the obtained policy.

The discussed approximate policy iteration scheme, and its associated error
bounds, can be extended to approximate policy updates. This, on the one
hand, would naturally incur an additional approximation error, but, on the
other, would allow for a computational scheme completely based on aggregated
(abstract) models.
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Abstract. Energy Markov Decision Processes (EMDPs) are finite-state
Markov decision processes where each transition is assigned an integer
counter update and a rational payoff. An EMDP configuration is a pair
s(n), where s is a control state and n is the current counter value. The
configurations are changed by performing transitions in the standard
way. We consider the problem of computing a safe strategy (i.e., a strat-
egy that keeps the counter non-negative) which maximizes the expected
mean payoff.

1 Introduction

Resource-aware systems are systems that consume/produce a discrete resource,
such as (units of) time, energy, or money, along their runs. This resource is crit-
ical, i.e., if it is fully exhausted along a run, a severe runtime error appears, so
such a situation should be avoided. Technically, resource-aware systems are mod-
elled as finite-state programs operating over an integer counter representing the
resource. A configuration is a pair s(n) where s is the current control state and
n is the number of currently available resource units. Each transition is assigned
an integer update modelling the consumption/production of the resource caused
by performing the transition.

Our Contribution. In this paper, we concentrate on the long-run average opti-
mization problem for resource-aware systems with both controllable and stochas-
tic states. That is, we assume that the finite control of our resource-aware system
is a finite-state Markov decision process (MDP), and each transition is assigned
(in addition to the integer counter update) a rational payoff 1. The resulting
model is called energy Markov decision process (EMDP). Intuitively, given an

The research was funded by the Czech Science Foundation Grant No. P202/12/G061
and by the People Programme (Marie Curie Actions) of the European Union’s
Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no
[291734].

1 The payoff may correspond to some independent performance measure, or it can
reflect the use of the critical resource represented by the counter.
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EMDP and its initial configuration, the task is to compute a safe strategy max-
imizing the expected mean payoff. Here, a strategy is safe if it ensures that the
counter stays non-negative along all runs. The value of a given configuration s(n),
denoted by Val(s(n)), is the supremum of all expected mean payoffs achievable
by a safe strategy, and a strategy is optimal for s(n) if it is safe and achieves the
value. Observe that Val(s(n)) ≥ Val(s(m)) whenever n ≥ m, and hence we can
also define the limit value of s, denoted by Val(s), as limn→∞ Val(s(n)).

Since optimal safe strategies may not exists in general, the first natural ques-
tion is the following:
[Q1]. Can we determine a “reasonable” condition under which an optimal strat-
egy exists?

By “reasonable” we mean that the condition should be decidable (with low
complexity) and tight in the sense that we should provide counterexamples wit-
nessing that optimal strategies do not necessarily exist if the condition is vio-
lated. Further, there are two basic algorithmic questions.
[Q2]. Can we compute Val(s(n)) for a given configuration s(n)? If not, can
we at least approximate the value up to a given absolute error ε > 0? Can we
compute/approximate Val(s) for a given state s? What is the complexity of these
problems?

To show that computing an ε-approximation of Val(s(n)) is computationally
hard, we consider the following gap threshold problem: given a configuration t(k)
of a given EMDP and numbers x, ε, where ε > 0, such that either Val(t(k)) ≥ x
or Val(t(k)) ≤ x − ε, decide which of these two alternatives holds2. Note that if
the gap threshold problem is X-hard for some complexity class X, then Val(s(n))
cannot be ε-approximated in polynomial time unless X = P.
[Q3]. Can we compute (a finite description of) an optimal strategy for a given
configuration (if it exists)? For a given ε > 0, can we compute an ε-optimal strat-
egy? How much memory is required by these strategies? What is the complexity
of the strategy synthesis problems?

Before formulating our answers to the above questions, we need to briefly
discuss the relationship between EMDPs and energy games [4,14,15].

The problems of [Q2] and [Q3] subsume the question whether a given con-
figuration of a given EMDP is safe. This problem can be solved by algorithms
for 2-player non-stochastic energy games [14], where we treat the stochastic ver-
tices as if they were controlled by an adversarial player. The correctness of this
approach stems from the fact that keeping the energy level non-negative is an
objective whose violation is witnessed by a finite prefix of a run. Let EG (Energy
Games) be the problem of deciding whether a given configuration in a given
energy game is safe. A PEG algorithm is a deterministic polynomial-time algo-
rithm which inputs an EMDP E (and possibly some initial configuration s(n)
of E) and uses an oracle which freely decides the safety problem for the con-
figurations of E . We assume that the counter updates and rewards used in E ,
and the n in s(n), are encoded as (fractions of) binary numbers. The size of
2 Formally, the decision algorithm answers “yes” iff, say, first possibility holds.
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E and s(n) is denoted by ||E|| and ||s(n)||, respectively. It is known that EG is
solvable in pseudo-polynomial time, belongs to NP ∩ coNP, and it is at least as
hard as the parity game problem. From this we immediately obtain that every
decision problem solvable by a PEG algorithm belongs to NP ∩ coNP, and every
PEG algorithm runs in pseudo-polynomial time, i.e., in time polynomial in ||E||,
||s(n)||, and ME , where ME is the maximal absolute value of a counter update
in E . We say that a decision problem X is EG-hard if there is a polynomial-time
reduction from EG to X.

Our results (answers to [Q1]–[Q3]) can be formulated as follows:
[A1]. We show that an optimal strategy is guaranteed to exist in a configuration
s(n) if the underlying EMDP is strongly connected and pumpable. An EMDP is
strongly connected if its underlying graph is strongly connected, and pumpable
if for every safe configuration t(m) there exists a safe strategy σ such that the
counter value is unbounded in almost all runs initiated in t(m).

The problem whether a given EMDP is strongly connected and pumpable is
in PEG and EG-hard. Further, an optimal strategy in s(n) does not necessarily
exist if just one of these two conditions is violated. We use SP-EMDP to denote
the subclass of strongly connected and pumpable EMDPs.
[A2, A3]. If a given EMDP belongs to the SP-EMDP subclass, the following
holds:

– The value of every safe configuration is the same and computable by a PEG

algorithm (consequently, the limit value of all states is also the same and
computable by a PEG algorithm). The gap threshold problem is EG-hard.

– There exists a strategy σ which is optimal in every configuration. In general,
σ may require infinite memory. A finite description3 of σ is computable by a
PEG algorithm. The same holds for ε-optimal strategies where ε > 0, except
that ε-optimal strategies require only finite memory.

Note that since the gap threshold problem is EG-hard, approximating the value
is not much easier than computing the value precisely for SP-EMDPs.

For general EMDPs, optimal strategies are not guaranteed to exist. Still, for
every EMDP E we have the following:

– The value of every configuration s(n) can be approximated up to an arbitrarily
small given ε > 0 in time polynomial in ||E||, ||s(n)||, ME , and 1/ε. The limit
value of each control state is computable in time polynomial in ||E|| and ME .

– For a given ε > 0, there exists a strategy σ which is ε-optimal in every
configuration. In general, σ may require infinite memory. A finite description
of σ is computable in time polynomial in ||E||, ME , and 1/ε.

– The gap threshold problem is PSPACE-hard.

The above results are non-trivial and based on detailed structural analysis
of EMDPs. As a byproduct, we yield a good intuitive understanding on what

3 Under a finite description we can imagine a program with unbounded integer vari-
ables encoding the strategy’s execution.
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can actually happen when we wish to construct a (sub)optimal strategy in a
given EMDP configuration. The main steps are sketched below (we also explain
where and how we employ the existing ideas, and where we need to invent new
techniques). The details and examples illustrating the discussed phenomena are
given later in Sect. 3.

The core of the problem is the analysis of maximal end components of a
given EMDP, so let us suppose that our EMDP is strongly connected (but not
necessarily pumpable). First, we check whether there exists some strategy such
that the average change of the counter per transition is positive (this can be
done by linear programming) and distinguish two possibilities:

If there is such a strategy , then we try to optimize the mean payoff
under the constraint that the average change of the counter is non-negative.
This can be formulated by a linear program whose solution allows to construct
finitely many randomized memoryless strategies and an appropriate “mixing
ratio” for these strategies that produces an optimal mean payoff. This part is
inspired by the technique used in [6] for the analysis of MDPs with multiple
mean-payoff objectives. However, here we cannot implement the optimal mixing
ratio “immediately” because we also need to ensure that the resulting strategy
is safe. We can solve this problem using two different methods, depending on
whether the EMDP is pumpable or not. If it is not pumpable, then, since we
aim at constructing an ε-optimal strategy, we can always slightly modify the
mix, adding, in a right proportion, the aforementioned strategy which increases
the counter. If the counter becomes too low, we permanently switch to some
safe strategy (which may produce a low mean payoff). Since the counter has
a tendency to increase, we can set everything up so that the probability of
visiting low counter values is very small if we start with a sufficiently large
initial counter value. Hence, for configurations with a sufficiently large counter
value, we play ε-optimally. For the configurations with “low” counter value, we
compute a suboptimal strategy by “cutting” the counter when it reaches a large
value (where we already know how to play) and applying the algorithm for
finite-state MDPs.

More interesting is the case when the EMDP is pumpable. Here, instead
of switching to some safe strategy, we switch to a pumping strategy, i.e. a safe
strategy that is capable of increasing the counter above any threshold with prob-
ability 1. Once the pumping strategy increases the counter to some sufficiently
high value, we can switch back to playing the aforementioned “mixture.” To
obtain an optimal strategy in this way, we need to extremely carefully set up the
events which trigger “(de-)activation” of the pumping strategy, so as to ensure
that it keeps the counter sufficiently high and at the same time assure that it
does not negatively affect the mean payoff. We innovatively use the martingale
techniques designed in [8] to accomplish this delicate task.

If there is no such strategy , we need to analyze our EMDP differently. We
prove that every safe strategy then satisfies the following: almost all runs end by
an infinite suffix where all visited configurations with the same control state have
the same counter value. This implies that only finitely many configurations are
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visited in the suffix, and we can analyze the associated mean payoff by methods
for finite-state MDPs.

Omitted proofs can be found in [9]. Let us note that some of the presented
ideas can be easily extended even to multi-energy MDPs. Since a full analysis
of EMDPs is rather lenghty and complicated, we leave this extension for future
work.

Related Work. MDPs with mean payoff objectives have been heavily studied
since the 60s (see, e.g., [26,30]). Several algorithms for computing optimal values
and strategies have been developed for both finite-state systems (see e.g. [6,17,
22,30]) and various types of infinite-state MDPs typically related to queueing
systems (see, e.g., [28]). For an extensive survey see [30]. Various logics were
developed for reasoning about mean payoff and other reward-based properties [3].
Model checking MDPs against specifications in these logics is supported by state
of the art tools [23].

MDPs with energy objectives have been studied in [7] as one-counter MDPs.
Subsequently, several papers concerned MDPs with counters (resources) have
been published (for a survey see [29], for recent work see e.g. [2]). A closely
related paper [15] studies MDPs with combined energy-parity and mean-payoff-
parity objectives (however, the combination of energy with mean payoff is not
studied in [15]).

A considerable amount of attention has been devoted to non-stochastic turn-
based games with energy objectives [4,14]. Solving energy games belongs to
NP∩ coNP but no polynomial time algorithm is known. Energy games are poly-
nomially equivalent to mean-payoff games [4]. Several papers are concerned with
complexity of energy games (or equivalent problems, see e.g. [11,20,24,32]). For
a more detailed account of results on energy games see [19]. Games with vari-
ous combinations of objectives as well as multi-energy objectives have also been
studied (see e.g. [1,5,10,15,16,27,31]), as well as energy constraints in automata
setting [13].

Our work is closely related to the recent papers [12,21] where the combina-
tion of expected and worst-case mean-payoff objectives is considered. In particu-
lar, [21] considers a problem of optimizing the expected multi-dimensional mean-
payoff under the condition that the mean-payoff in the first component is positive
for all runs. At first glance, one may be tempted to “reduce” [Q2] and [Q3] to
results of [21] as follows: Ask for a strategy which ensures that the mean-payoff
in the first counter is non-negative for all runs, and then try to optimize the
expected mean-payoff of the second counter. However, this approach does not
work for several reasons. First, a strategy achieving non-negative mean-payoff
in the first counter may still decrease the counter arbitrarily deep. So no matter
what initial value of the counter is used, the zero counter value may be reached
with positive probability. Second, the techniques developed in [21] do not work in
the case of “balanced” EMDPs. Intuitively, balanced EMDPs are those where we
inevitably need to employ strategies that balance the counter, i.e., the expected
average change of the counter per transition is zero. In the framework of sto-
chastic counter systems, the balanced subcase is often more difficult than the
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other subcases when the counters have a tendency to “drift” in some direction.
In our case, the balanced EMDPs also require a special (and non-trivial) proof
techniques based on martingales and some new “structural” observations. We
believe that these tools can be adapted to handle the “balanced subcase” in even
more general problems related to systems with more counters, MDPs over vector
addition systems, and similar models.

2 Preliminaries

We use Z, N, N
+, Q, and R to denote the set of all integers, non-negative

integers, positive integers, rational numbers, and real numbers, respectively. We
assume familiarity with basic notions of probability theory, e.g., probability space,
random variable, or the expected value. A probability distribution over a finite or
countably infinite set A is a function f : A → [0, 1] such that

∑
a∈A f(a) = 1.

We call f positive if f(a) > 0 for each a ∈ A, rational if f(a) ∈ Q for each a ∈ A,
and Dirac if f(a) = 1 for some a ∈ A.

Definition 1 (MDP). A Markov decision process (MDP) is a tuple M =
(S, (S�, S©), T ,Prob, r), where S is a finite set of states, (S�, S©) is a parti-
tioning of S into the sets S� of controllable states and S© of stochastic states,
respectively, T ⊆ S × S is a transition relation, Prob is a function assigning to
every stochastic state s ∈ S© a positive probability distribution over its outgoing
transitions, and r : T → Q is a reward function. We assume that T is total, i.e.,
for each s ∈ S there is t ∈ S such that (s, t) ∈ T .

We use Prob(s, t) as an abbreviation for (Prob(s))(s, t), i.e., Prob(s, t) is the
probability of taking the transition (s, t) in s. For a state s we denote by out(s)
the set of transitions outgoing from s. A finite path is a sequence w = s0s1 · · · sn

of states such that (si, si+1) ∈ T for all 0 ≤ i < n. We write len(w) = n for the
length of the path. A run (or an infinite path) is an infinite sequence ω of states
such that every finite prefix of ω is a finite path. For a finite path w, we denote
by RunM(w) the set of all runs having w as a prefix.

An end component of M is a pair (S′, T ′), where S′ ⊆ S, T ′ ⊆ S′ × S′ ∩ T ,
satisfying the following conditions: (1) for every s ∈ S′, we have that out(s)∩T ′ 	=
∅; (2) if s ∈ S′ ∩ S©, then out(s) ⊆ T ′; (3) the graph determined by (S′, T ′) is
strongly connected. Note that every end component of M can be seen as a
strongly connected MDP (obtained by restricting the states and transitions of
M). A maximal end component (MEC) is an end component which is maximal
w.r.t. pairwise inclusion. The MECs of a given MDP M are computable in
polynomial time [18].

A strategy (or a policy) in an MDP M is a tuple σ = (M,m0, update,next)
where M is a set of memory elements, m0 ∈ M is an initial memory element,
update : M × S → M a memory-update function, and next is a function which
to every pair (s,m) ∈ S� × M assigns a probability distribution over out(s).
The function update is extended to finite sequences of states in the natural
way. We say that σ is finite-memory if M is finite, and memoryless if M is a
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singleton. Further, we say that σ is deterministic if next(s,m) is Dirac for all
(s,m) ∈ S�×M . Note that σ determines a function which to every finite path in
M of the form ws, where s ∈ S�, assigns the probability distribution next(s,m),
where m = update(m0, w). Slightly abusing the notation, we use σ to denote this
function.

Fixing a strategy σ and an initial state s, we obtain the standard probability
space (RunM(s),F ,Pσ

s ) of all runs starting at s, where F is the σ-field gen-
erated by all basic cylinders RunM(w), where w is a finite path starting at s,
and P

σ
s : F → [0, 1] is the unique probability measure such that for all finite

paths w = s0 · · · sn it holds P
σ
s (RunM(w)) =

∏n
i=1 xi, where each xi is either

σ(s0 · · · si−1)(si−1, si), or Prob(si−1, si), depending on whether si−1 is control-
lable or stochastic (the empty product evaluates to 1). We denote by E

σ
s the

expectation operator of this probability space.
We say that a run ω = s0s1 · · · is compatible with a strategy σ if

σ(s0 · · · si)(si, si+1) > 0 for all i ≥ 0 such that si ∈ S�.

Definition 2 (EMDP). An energy MDP (EMDP) is a tuple E = (M, E),
where M is a finite MDP and E is a function assigning to every transition of
M an integer update.

We implicitly extend all MDP-related notions to EMDPs, i.e., for E = (M, E)
we speak about runs and strategies in E rather than about runs and strategies
in M. A configuration of E is an element of S × Z written as s(n).

Given an EMDP E = (M, E) and a configuration s(n) of E , we use ||E|| and
||s(n)|| to denote the encoding size of E and s(n), respectively, where the counter
updates and rewards used in E , as well as the n in s(n), are written as (fractions
of) binary numbers. We also use ME to denote the maximal non-negative integer
u such that u or −u is an update assigned by E to some transition.

Given a finite or infinite path w = s0s1 · · · in E and an initial configu-
ration s0(n0), we define the energy level after i steps of w as Lev (i)

n0
(w) =

n0 +
∑i−1

i=0 E(si, si+1) (the empty sum evaluates to zero). A configuration of
E after i steps of w is then the configuration si(ni), where ni = Lev (i)

n0
(w). Note

that for all n and i ≥ 0, Lev (i)
n can be understood as a random variable.

We say that a run ω initiated in s0 is safe in a configuration s0(n0) if
Lev (i)

n0
(ω) ≥ 0 for all i ≥ 0. A strategy σ is safe in s0(n0) if all runs com-

patible with σ are safe in s0(n0). Finally, a configuration s0(n0) is safe if there
is at least one strategy safe in s0(n0). The following lemma is straightforward.

Lemma 1. If s(n) is safe and m ≥ n, then s(m) is safe.

To every run ω = s0s1 · · · in E we assign a mean payoff MP(ω) collected
along ω defined as MP(ω) := lim infn→∞(

∑n
i=1 r(si−1, si))/n. The function MP

can be seen as a random variable, and for every strategy σ and initial state s we
denote by E

σ
s [MP ] its expected value (w.r.t. Pσ

s ).

Definition 3 (Energy-Constrained Value). Let E = (M, E) be an EMDP
and s(n) its configuration. The energy-constrained mean-payoff value (or simply
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the value) of s(n) is defined by Val(s(n)) := sup {Eσ
s [MP ] | σ is safe in s(n)} .

For every state s we also put Val(s) := limn→∞ Val(s(n)).

Note that the value of every unsafe configuration is −∞. We say that a
strategy σ is ε-optimal in s(n), where ε ≥ 0, if σ is safe in s(n) and Val(s(n)) −
E

σ
s [MP ] ≤ ε. A 0-optimal strategy is called optimal.

3 The Results

In this section we precisely formulate and prove the results about EMDPs
announced in Sect. 1. Let E = (M, E) be an EMDP. For every state s of E ,
let min-safe(s) be the least n ∈ N such that s(n) is a safe configuration. If there
is no such n, we put min-safe(s) = ∞. The following lemma follows from the
standard results on one-dimensional energy games [14].

Lemma 2. There is a PEG algorithm which computes, for a given EMDP E =
(M, E) and its state s, the value min-safe(s).

Next, we present a precise definition of strongly connected and pumpable
EMDPs. We say that E is strongly connected if for each pair of states s, t there
is a finite path starting in s and ending in t. The pumpability condition is more
specific.

Definition 4. Let E be an EMDP and s(n) a configuration of E. We say that a
strategy σ is pumping in s(n) if σ is safe in s(n) and P

σ
s (supi≥0 Lev (i)

n = ∞) = 1.
Further, we say that s(n) is pumpable if there is a strategy pumping in s(n),
and E is pumpable if every safe configuration of E is pumpable.

The subclass of strongly connected pumpable EMDPs is denoted by
SP-EMDP. Clearly, if s(n) is pumpable, then every s(m), where m ≥ n, is
also pumpable. Hence, for every s ∈ S, we define min-pump(s) as the least n
such that s(n) is pumpable. If there is no such n, we put min-pump(s) = ∞.

Intuitively, the condition of pumpability allows to increase the counter to an
arbitrarily high value whenever we need.

Lemma 3. For every EMDP E there exist a memoryless globally pumping
strategy σ, i.e. a strategy that is pumping in every pumpable configuration of
E. Further, there is a PEG algorithm which computes the strategy σ and the value
min-pump(s) ≤ 3 · |S| · ME for every state s of E. The problem whether a given
configuration of E is pumpable is EG-hard.

Now we can state our results about SP-EMDPs.

Theorem 1. For the subclass of SP-EMDPs, we have the following:

1. The problem whether a given EMDP E belongs to SP-EMDP is EG-hard and
solvable by a PEG algorithm.
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2. The value of all safe configurations of a given SP-EMDP E is the same.
Moreover, there is a PEG algorithm which computes this value.

3. For every SP-EMDP E and every configuration s(n) of E, there is a strategy
σ optimal in s(n). In general, σ may require infinite memory, and there is a
PEG algorithm which computes a finite description of this strategy.

4. For every SP-EMDP E, every configuration s(n) of E, and every ε > 0, there
is a finite-memory strategy which is ε-optimal in s(n). Further, there is a
PEG algorithm which computes a finite description of this strategy.

5. The gap threshold problem for SP-EMDPs is EG hard.

In particular, note that ε-optimal strategies in SP-EMDPs require only finite
memory (4), but they are not easier to compute than optimal strategies (5).

The following theorem summarizes the results for general EMDPs.

Theorem 2. For general EMDPs, we have the following:

1. Optimal strategies may not exist in EMDPs that are either not strongly con-
nected or not pumpable.

2. Given an EMDP E, a configuration s(n) of E, and ε > 0, the value of s(n)
can be approximated up to the absolute error ε in time which is polynomial
in ||E||, ||s(n)||, ME , and 1/ε.

3. Given an EMDP E and a state s of E, the limit value Val(s) is computable
in time polynomial in ||E|| and ME .

4. Let E be an EMDP, s(n) a configuration of E, and ε > 0. An ε-optimal strategy
in s(n) may require infinite memory. A finite description of a strategy σ which
is ε-optimal in s(n) is computable in time polynomial in ||E||, ME , and 1/ε.

5. The gap threshold problem for EMDPs is in EXPTIME and PSPACE-hard.

Before proving Theorems 1 and 2, we introduce several tools that are useful
for the analysis of strongly connected EMDPs. For the rest of this section, we fix
a strongly connected EMDP E = (M, E) where M = (S, (S�, S©), T ,Prob, r).

The key component for the analysis of E is the linear program LE shown in
Fig. 1 (left). The program is a modification of a one used in [6] for multi-objective
mean-payoff optimization. For each transition e of E we have a non-negative
variable fe that intuitively represents the long-run frequency of traversals of e
under some strategy (the fact that fe’s can be given this interpretation is ensured
by the flow constraints in the first three lines). The constraint in the fourth line
then ensures that a strategy that visits each transition e with frequency fe

achieves a non-negative long-run change of the energy level, i.e. it ensures that
the energy level does not have a tendency to decrease.

Intuitively, the optimal value of LE is the maximal expected mean payoff
achievable under the constraint that the long-run average change (or trend) of
the energy level is non-negative. Every safe strategy has to satisfy this con-
straint, because otherwise the probability of visiting a configuration with neg-
ative counter would be positive. Thus, using the methods adopted from [6], we
get the following.
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Lemma 4. If there is a strategy σ that is safe in some configuration s(n) of E,
then the linear program LE has a solution whose objective value is at least
E

σ
s [MP ].

On the other hand, even if a strategy achieves a non-negative (or even posi-
tive) counter trend, it can still be unsafe in all configurations of E . To see this,
consider the EMDP in Fig. 1 (right). There is only one strategy (the empty func-
tion), and it is easy to verify that assigning 1/4 to each variable in LE solves
the linear program with

∑
e∈T fe · E(e) = 1

4 . However, for every m there is a
positive probability that the decrementing loop on t is taken at least m times,
and thus the strategy is not safe.

Fig. 1. A linear program LE with non-negative variables fe, e ∈ T (left), and an
EMDP where the strategy corresponding to the solution of LE is not safe (right).
Each transition is labelled by the associated counter update (in boldface), reward, and
probability

Although the program LE does not directly yield a safe strategy optimizing
the mean payoff, it is still useful for obtaining certain “building blocks” of such
a strategy. To this end we introduce additional terminology.

Let fff = (fe)e∈T be an optimal solution of LE , and let f∗ be the corresponding
optimal value of the objective function. A flow graph of fff is a digraph Gfff whose
vertices are the states of E , and there is an edge (s, t) in Gfff iff there is a transition
e = (s, t) with fe > 0. A component of fff is a maximal set C of states that
forms a strongly connected subgraph of Gfff . The set TC consists of all (s, t) ∈ T
such that s ∈ C and f(s,t) > 0. A frequency of a component C is the number
fC =

∑
e∈TC

fe. Finally, a trend and mean-payoff of a component C are the
numbers trendC =

∑
e∈TC

(fe/fC) · E(e) and mpC =
∑

e∈TC
(fe/fC) · r(e).

Intuitively, the components of fff are those families of states that are vis-
ited infinitely often by a certain strategy that maximizes the mean payoff while
ensuring that the counter trend is non-negative. We show that our analysis can
be simplified by considering only certain components of fff . We define a type I
core and type II core of fff as follows:



42 T. Brázdil et al.

– A type I core of fff is a component C of fff such that trendC > 0 and mpC ≥ f∗.
– A type II core of fff is a pair C1, C2 of its components such that trendC1 ≥ 0,

trendC2 ≤ 0, fC1 ·trendC1 +fC2 ·trendC2 ≥ 0 and fC1 ·mpC1
+fC2 ·mpC2

≥ f∗.

The following lemma is easy.

Lemma 5. From each optimal solution fff ′ of LE one can compute, in polynomial
time, an optimal solution fff that has a type I or a type II core. Moreover, a core
of fff (of some type) can be also found in polynomial time.

3.1 Strongly Connected and Pumpable EMDPs

In this subsection, we continue our analysis under the assumption that the con-
sidered EMDP E is not only strongly connected but also pumpable. Let fff be an
optimal solution of LE having either a type I or type II core, with optimal value
f∗. We show how to use fff and its core to construct a strategy optimal in every
configuration s(n) of E . To some degree, the construction depends on the type
of the core we use.

We start with the case when we compute a type I core C of fff . Consider
two memoryless strategies: First, a memoryless deterministic globally pumping
strategy π which is guaranteed to exist by Lemma 3. Second, we define a mem-
oryless randomized strategy μC such that μC(s)(e) = fe/fC for all s ∈ C and
e ∈ out(s), and μC(s)(e) = κ(s)(e) for all s 	∈ C and e ∈ out(s), where κ is
a memoryless deterministic strategy in E ensuring that a state of C is reached
with probability 1 (such a strategy exists as E is strongly connected). In order to
combine these two strategies, we define a function lown which assigns to a finite
path w a value 1 if and only if there is 0 ≤ j ≤ len(w) such that Lev (j)

n (w) ≤
L := ME + maxs∈S min-pump(s) and Lev (i)

n (w) ≤ H := L + |S| + 2|S|2 · ME
for all j ≤ i ≤ len(w); otherwise, lown(w) = 0. We then define a strategy σ∗

n as
follows:

σ∗
n(w)(e) =

{
μC(last(w))(e) if lown(w) = 0
π(last(w))(e) if lown(w) = 1.

Proposition 1. Let s(n) be a configuration of E. Then σ∗
n is optimal in s(n).

Let us summarize the intuition behind the proof of Proposition 1. If the
counter value is sufficiently high, we play the strategy μ prescribed by LE (i.e.,
we strive to achieve the mean payoff value f∗) until the counter becomes “dan-
gerously low”, in which case we switch to a pumping strategy that increases the
counter to a sufficiently high value, where we again switch to μC . The positive
counter trend achieved by μC ensures that if we start with a sufficiently high
counter value, the probability of the counter never decreasing to dangerous levels
is bounded away from zero. Moreover, once we switch to the pumping strategy
π, with probability 1 we again pump the counter above H and thus switch back
to μC . Hence, with probability 1 we eventually switch to strategy μC and use
this strategy forever, and thus achieve mean payoff f∗.
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Let us now consider the case where we compute a type II core of fff . The
overall idea is similar as in the type I case. We try to execute a strategy that
has non-negative counter trend and achieves the value f∗ computed by LE . This
amounts to periodical switching between components C1 and C2, in such a way
that the ratio of time spent in Ci tends to fCi

. As in [6], this is done by fixing a
large number N and fragmenting the play into infinitely many iterations: in the
k-th iteration, we spend roughly k·N ·fC1 steps in C1, then move to C2 and spend
k ·N ·fC2 steps in C2, then move back to C1 and initialize the (k+1)-th iteration.
Inside the component Ci we use the strategy μCi

defined above, until it either is
time to switch to C3−i or the counter becomes dangerously low. If the latter event
happens, we immediately end the current iteration, switch to a pumping strategy,
wait until a counter increases to a sufficient height, and then begin the (k+1)-th
iteration. However, as the trend of μC2 is negative, the energy level tends to
return to the value to which we increase the level during the pumping phase: it
is thus no longer possible to prove that we eventually stop hitting dangerously
low levels. To overcome this problem, we use progressive pumping : the height to
which we increase the counter after the “pumping mode” is switched on in the k-
th iteration must increase with k, and it must increase asymptotically faster than√

k. If this technical requirement is satisfied, we can use martingale techniques
to show that progressive pumping decreases, with each iteration, the probability
of drops towards dangerous levels. However, it also lengthens the time spent on
pumping once such a period is initiated. To ensure that the fraction of time
spent on pumping still tends to zero, we have to ensure that the threshold to
which we pump increases sublinearly in k. We set the bound to roughly k

3
4 in

order to satisfy both of the aforementioned constraints. More details in [9].

Proposition 2. Each type II core of fff yields a strategy optimal in s(n).

3.2 General EMDPs

In this section we prove Theorem 2. The two counterexamples required to prove
part (1.) of the theorem are given in Fig. 2. On the left, there is a strongly
connected but not pumpable EMDP (note that t(0) is safe but not pumpable)
where Val(s(0)) = 5, but there is no optimal strategy. It can be shown that every
strategy achieving a positive mean-payoff requires infinite memory [9]. Hence,
this example also demonstrates that ε-optimal strategies may require infinite
memory, as stated in part (4) of Theorem 2). On the right, there is a pumpable
but not strongly connected EMDP where Val(a(0)) = 5, but no optimal strategy
exists in a(0).

For the rest of this section, we fix an EMDP E = (M, E). For simplicity, we
assume that for every s ∈ S there is some n ∈ N such that the configuration
s(n) is safe. The other control states can be easily recognized and eliminated
(see Lemma 2).

Since E is not necessarily strongly connected, we start by identifying and con-
structing the MECs of E (this can be achieved in time polynomial in ||E||). Recall
that each MEC of E can be seen as an EMDP, and each run eventually stays
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Fig. 2. Examples of EMDPs where optimal strategies do not exist in some configura-
tions. Probabilities are pictured only for stochastic states u and c.

in some MEC [3]. Hence, we start by analyzing the individual MECs separately.
Technically, we first assume that E is strongly connected.

The Case when E is Strongly Connected. Consider a linear program TE which
is the same as the program LE of Fig. 1 except for its objective function which
is set to maximize

∑
t∈T ft · E(t). In other words, TE tries to maximize the

long-run average change of the energy level under the constraints given in LE .
Let ggg = (ge)e∈T be an optimal solution of TE , and let g∗ be the corresponding
optimal value of the objective function. Now we distinguish two cases, which
require completely different proof techniques.
Case A. g∗ > 0.
Case B. g∗ = 0.

We start with Case A. Note that if g∗ > 0, then there exists a component
D of ggg such that trendD ≥ g∗ > 0. We proceed by solving the linear program
LE of Fig. 1, and identifying the core of an optimal solution fff of LE . Recall that
fff can have either a type I core C, or a type II core C1, C2. In the first case, we
set E1 := C and E2 := C, and in the latter case we set E1 := C1 and E2 := C2.
Let us fix some ε > 0. We compute positive rationals α1, α2 such

– α1 + α2 = 1
– α1 · mpE1

+ α2 · mpE2
≥ f∗ − ε/2

– α1 · trendE1 + α2 · trendE2 > 0.

Observe that we can compute α1, α2 so that the length of the binary encoding
of all of the above numbers is polynomial in ||E|| and ||ε||. Now we construct a
strategy which is safe and ε-optimal in every configuration with a sufficiently
high counter value. Intuitively, we again just combine the two memoryless ran-
domized strategies extracted from fff (and possibly ggg) in the ratio given by α1

and α2. Since the counter now has a tendency to increase under such a strat-
egy, the probability of visiting a “dangerously low” counter value can be made
arbitrarily small by starting sufficiently high (exponential height is sufficient for
the probability to be smaller than ε). Hence, when such a dangerous situation
occurs, we can permanently switch to any safe strategy (this is where our app-
roach bears resemblance to [21]). For the finitely many configurations where the
counter height is not “sufficiently large,” the ε-optimal strategy can be computed
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Fig. 3. An EMDP where the solution of LE is irrelevant. For the sake of succinctness
we relax the definition of MDP and allow two transitions from t to s.

by encoding these configurations into a finite MDP and optimizing mean-payoff
in this MDP using standard methods.

Now consider Case B. If g∗ = 0, the solution of LE is irrelevant, and we need
to proceed in a completely different way. To illustrate this, consider the simple
EMDP of Fig. 3. Here, the optimal solution fff of LE produces f∗ = 5 and assigns
1
2 to the transition (s, t). Clearly, we have that Val(s(n)) = 0 for an arbitrarily
large n, so we cannot aim at approaching f∗. Instead, we show that if g∗ = 0,
then almost all runs produced by a safe strategy are stable in the following sense.
We say that s ∈ S is stable at k ∈ Z in a run ω = s0s1 · · · if there exists i ∈ N

such that for every j ≥ i we have that sj = s implies Lev (j)
0 = k. Further, we

say that s is stable in ω if s is stable at k in ω for some k. Note that the initial
value of the counter does not influence the (in)stability of s in ω. Intuitively, s
is stable in ω if it is visited finitely often, or it is visited infinitely often but from
some point on, the energy level is the same in each visit. We say that a run is
stable if each control state is stable in the run.

The next proposition represents another key insight into the structure of
EMDPs. The proof is non-trivial and can be found in [9].

Proposition 3. Suppose that g∗ = 0, and let σ be a strategy which is safe in
s(n). Then

P
σ
s ({ω ∈ Run(s) | ω is stable }) = 1 .

Due to Proposition 3, we can analyze the configurations of E in the following
way. We construct a finite-state MDP where the states are the configurations of
E with a non-negative counter value bounded by |S| ·ME . Transition attempting
to decrease the counter below zero or increase the counter above |S| · ME lead
to a special sink state with a self-loop whose reward is strictly smaller than the
minimal reward used in E . Then, we apply the standard polynomial-time algo-
rithm for finite-state MDPs to compute the values in the constructed MDP, and
identify a configuration r(�) with the largest value. By applying Proposition 3,
we obtain that Val(t) = Val(r(�)) for every t ∈ S. For every ε > 0, we can easily
compute a bound Nε ∈ N polynomial in ||E||, ME , and 1/ε, and a memoryless
strategy 	 such that for every configuration t(m) where m ≥ Nε we have that
the P

�
t probability of all runs initiated in t(m) that visit a configuration r(k) for

some k ≥ � without a prior visit to a configuration where the counter is “danger-
ously low” is at least 1− (ε/2R), where R is the difference between the maximal
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and the minimal transition reward in E . Hence, a strategy which behaves like 	
and “switches” either to a strategy which mimics the optimal behaviour in r(�)
(when a configuration r(k) for some k ≥ � is visited) or to some safe strategy
(when a configuration with dangerously low counter is visited) is ε-optimal in
every configuration t(m) where m ≥ Nε. For configurations with smaller counter
value, an ε-optimal strategy can be computed by transforming the configurations
with a non-negative counter value bounded by Nε into a finite-state MDP and
optimizing mean payoff in this finite-state MDP.

The Case when E is not Strongly Connected. We finish by considering the general
case when E is not strongly connected. Here, we again rely on standard methods
for finite-state MDPs (see [30]). More precisely, we transform E into a finite-state
MDP M[E ] in the following way. The states M[E ] consist of those states of E
that do not appear in any MEC of E , and for each MEC M of E we further add
a fresh controllable state rM to M[E ]. The transitions of M[E ] are constructed
as follows. For each rM we add a self-loop whose reward is the limit value of the
states of the MEC M when M is taken as a stand-alone EMDP (see the previous
paragraph). Further, for every state s of E , let ŝ be either the state s of M[E ] or
the state rM of M[E ], depending on whether s belongs to some MEC M of E or
not, respectively. For every transition (s, t) of E where s, t do not belong to the
same MEC, we add a transition (ŝ, t̂) to M[E ]. The rewards for all transitions,
except for the self-loops on rM , can be chosen arbitrarily.

Now we solve the standard mean-payoff optimization problem for M[E ],
which can be achieved in polynomial time by constructing a suitable linear pro-
gram [30]. The program also computes a memoryless and deterministic strategy
σ which achieves the optimal mean-payoff MP(s) in every state s of M[E ]. Note
that MP(rM ) is not necessarily the same as the limit value of the states of M
computed by considering M as a “standalone EMDP”, because some other MEC
with a better mean payoff can be reachable from M . However, the strategy σ
eventually “stays” in some target rM almost surely, and the probability of exe-
cuting a path of length k before reaching a target rM decays exponentially in k.
Hence, for every δ > 0, one can compute a bound Lδ such that the probability
of reaching a target rM in at most Lδ steps is at least 1 − δ. Moreover, Lδ is
polynomial in ||E|| and 1/δ.

Now we show that MP(s) = Val(t) for every state t of E where t̂ = s.
Further, we show that for every ε ≥ 0, we can compute a sufficiently large
Nε ∈ N (still polynomial in ||E||, ME , and 1/ε) and a strategy 	 such that for
every initial configuration t(m), where m ≥ Nε, we have that 	 is safe in t(m)
and E

�
t [MP ] ≥ MP(s) − ε, where t̂ = s. The strategy 	 “mimics” the strategy σ

and eventually switches to some other strategy (temporarily or forever) in the
following way:

– Whenever a configuration with a “dangerously low” counter value is encoun-
tered, 	 switches to a safe strategy permanently.

– In a controllable state t of M which does not belong to any MEC of E , 	
selects a transition (t, u) such that (t, û) is the transition selected by σ. In
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particular, if σ selects a transition (t, rM ), then 	 selects a transition leading
from t to a state of M .

– In a controllable state t of a MEC M , 	 mimics σ in the following sense. If
σ selects the transition (rM , rM ), then 	 permanently switches to the ε/2-
optimal strategy for M constructed in the previous paragraph. If σ selects a
different transition, then there must be a transition (s, t) of E where s ∈ M
such that (rM , t̂) is the transition selected by σ. Then 	 temporarily switches
to a strategy which strives to reach the control state s. When s is reached, 	
restarts mimicking σ. Note that for every δ > 0, one can compute a bound
Mδ polynomial in ||E|| and 1/δ such that the probability of reaching s in at
most Mδ steps is at least 1 − δ.

We choose Nε sufficiently large (with the help of the Lδ and Mδ introduced
above) so that the probability of all runs initiated in t(m), where m ≥ Nε, that
reach a target MEC M with a counter value above the threshold computed for
M and ε/2 by the methods of the previous paragraph, is at least 1 − ε

2R , where
R is the difference between the maximal and the minimal transition reward in
E . Hence, 	 is ε-optimal in every t(m) where m ≥ Nε. For configuration with
smaller initial counter value, we compute an ε-optimal strategy as before.

Finally, let us note that Theorem2 (5) can be proven by reducing the fol-
lowing cost problem which is known to be PSPACE-hard [25]: Given an acyclic
MDP M = (S, (S�, S©), T ,Prob, r), i.e., an MDP whose graph does not con-
tain an oriented cycle, a non-negative cost function c (which assigns costs to
transitions), an initial state s0, a target state st, a probability threshold x, and
a bound B, decide whether there is a strategy which with probability at least
x visits st in such a way that the total cost accumulated along the path is at
most B. The reduction is straightforward and hence omitted.
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Abstract. We propose a conceptually simple technique for verifying
probabilistic models whose transition probabilities are parametric. The
key is to replace parametric transitions by nondeterministic choices of
extremal values. Analysing the resulting parameter-free model using off-
the-shelf means yields (refinable) lower and upper bounds on probabil-
ities of regions in the parameter space. The technique outperforms the
existing analysis of parametric Markov chains by several orders of mag-
nitude regarding both run-time and scalability. Its beauty is its applica-
bility to various probabilistic models. It in particular provides the first
sound and feasible method for performing parameter synthesis of Markov
decision processes.

1 Introduction

The key procedure in probabilistic model checking is computing reachability
probabilities: What is the probability to reach some target state? For mod-
els exhibiting nondeterminism, such as Markov decision processes (MDPs), the
probability to reach a state is subject to resolving the nondeterminism, and one
considers minimal and maximal reachability probabilities. Model checkers sup-
port these procedures, e. g., PRISM [1] and iscasMc [2]. Successful applications
to models of hundreds of millions of states have been reported, and extensions
to stochastic games exist [3].

This paper treats parameter synthesis in Markov models. Given a model
whose transition probabilities are (polynomials over) variables, and a reachability
specification—e.g., the likelihood to reach a bad state should be below 10−6—
the parameter synthesis problem aims at finding all parameter values for which
the parametric model satisfies the specification. In practise, this amounts to
partition the parameter space into safe and unsafe regions with a large (say,
>95 %) coverage. For a system in which components are subject to random
failures, parameter synthesis is thus able to obtain the maximal tolerable failure
probability of the components while ensuring the system’s specification.

Parametric probabilistic models have various applications as witnessed by
several recent works. Model repair [4] exploits parametric Markov chains (MCs)
to tune the parameters of the model. In quality-of-service analysis of software,
c© Springer International Publishing AG 2016
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parameters are used to model the unquantified estimation errors in log data [5].
Ceska et al. [6] consider the problem of synthesising rate parameters in stochastic
biochemical networks. Parametric probabilistic models are also used to rank
patches in the repair of software [7] and for computing perturbation bounds [8,
9]. The main problem though is that current parametric probabilistic model-
checking algorithms cannot cope with the complexity of these applications. Their
scalability is restricted to a couple of thousands of states and a few (preferably
independent) parameters, and models with nondeterminism are out of reach.
(The only existing algorithm [10] for parametric MDPs uses an unsound heuristic
in its implementation to improve scalability.)

We present an algorithm that overcomes all these limitations: It is scal-
able to millions of states, several (dependent) parameters, and—perhaps most
importantly—provides the first sound and feasible technique to do parameter
synthesis of parametric MDPs.

The key technique used so far is computing a rational function (in terms
of the parameters) expressing the reachability probability in a parametric MC.
Tools like PARAM [11], PRISM [1], and PROPhESY [12] exploit (variants of) the state
elimination approach by Daws [13] to obtain such a function which conceptually
allows for many types of analysis. While state elimination is feasible for mil-
lions of states [12], it does not scale well in the number of different parameters.
Moreover, the size of the obtained functions often limits the practicability as
analysing the (potentially large) rational function via SMT solving [12] is often
not feasible.

This paper takes a completely different approach: Parameter lifting. Consider
the parametric MC in Fig. 1(a) modelling two subsequent tosses of a biased coin,
where the probability for heads is x. Inspired by an observation made in [14] on
continuous time Markov chains, we first equip each state with a fresh parameter,
thus removing parameter dependencies; the outcome (referred to as relaxation)
is depicted in Fig. 1(b). Now, for each function over these state parameters, we
compute extremal values, i. e., maximal and minimal probabilities. The key idea
is to replace the (parametric) probabilistic choice at each state by a nondeter-
ministic choice between these extremal values; we call this substitution. This is
exemplified in Fig. 1(c), assuming heads has a likelihood in [0.3, 0.6]. The result-
ing (non-parametric) model can be verified using off-the-shelf, efficient algo-
rithms. Applying this procedure to a parametric MC (as in the example) yields
a parameter-free MDP. Parameter lifting thus boils down to verify an MDP and

s0 s1

s3

s2
x

1−x

1−x

x

1
1

(a) Parametric model

s0 s1

s3

s2
xs0

1−xs0

1−xs1

xs1

1
1

(b) Relaxation

s0 s1

s3

s20.3

0.6

0.7
0.4

0.7

0.4

0.3
0.6

1
1

(c) Substitution

Fig. 1. Two biased coin tosses and the specification “First heads then tails”.
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avoids computing rational functions and SMT solving. The beauty of this tech-
nique is that it can be applied to parametric MDPs without much further ado.
Parameter lifting of a parametric MDP yields a parameter-free two-player sto-
chastic game (SG). SGs and MDPs can be solved using techniques such as value
and policy iteration. Note that the theoretical complexity for solving MDPs is
lower than for SGs.

This paper presents the details of parameter lifting, and proves the correct-
ness for parametric Markov models whose parameters are given as multi-affine
polynomials. This covers a rich class of models, e. g., the diverse set of para-
metric benchmarks available at the PARAM webpage are of this form. Exper-
iments demonstrate the feasibility: The parameter lifting approach can treat
Markov models of millions of states with thousands of parametric transitions.
This applies to parametric MCs as well as MDPs. Parameter lifting achieves a
parameter space coverage of at least 95% rather quickly. This is out of reach for
competitive techniques such as SMT-based [12] and sampling-based [10] para-
meter synthesis.

2 Preliminaries

Let V be a finite set of parameters over the domain R ranged over by x, y, z. A
valuation for V is a function u : V → R. Let QV denote the set of multi-affine
multivariate polynomials f over V satisfying f =

∑
i≤m ai · ∏x∈Vi

x for suitable
m ∈ N, ai ∈ Q, and Vi ⊆ V (for i ≤ m). QV does not contain polynomials where
a variable has a degree greater than 1, e. g., x · y ∈ QV but x2 /∈ QV . We write
f = 0 if f can be reduced to 0, and f �= 0 otherwise. Applying the valuation u
to f ∈ QV results in a real number f [u] ∈ R, obtained from f by replacing each
occurrence of variable x in f by u(x).

2.1 Probabilistic Models

We consider different types of parametric (discrete) probabilistic models. They
can all be seen as transition systems (with a possible partition of the state space
into two sets) where the transitions are labeled with polynomials in QV .

Definition 1 (Parametric Probabilistic Models). A parametric stochastic
game (pSG) is a tuple M = (S, V , sI ,Act ,P) with a finite set S of states such
that S = S◦ � S�, a finite set V of parameters over R, an initial state sI ∈ S,
a finite set Act of actions, and a transition function P : S × Act × S → QV

satisfying: Act(s) �= ∅ where Act(s) = {α ∈ Act | ∃s′ ∈ S.P(s, α, s′) �= 0}.

– M is a parametric Markov decision process (pMDP) if S◦ = ∅ or S� = ∅.
– pMDP M is a parametric Markov chain (pMC) if |Act(s)| = 1 for all s ∈ S.

We will refer to pMCs by D, to pMDPs by M and to pSGs by G. pSGs are
two-player parametric stochastic games involving players ◦ and � with states
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Fig. 2. The considered types of parametric probabilistic models.

in S◦ and S�, respectively, whose transition probabilities are represented by
polynomials from QV . The players nondeterministically choose an action at each
state and the successors are intended to be determined probabilistically as defined
by the transition function. Act(s) is the set of enabled actions at state s. As
Act(s) is non-empty for all s ∈ S, there are no deadlock states. For state s and
action α, we set V α

s = {x ∈ V | x occurs in P(s, α, s′) for some s′ ∈ S}.
pMDPs and pMCs are one- and zero-player parametric stochastic games,

respectively. As pMCs have in fact just a single enabled action at each state, we
omit this action in the notation and just write P(s, s′) and Vs.

Example 1. Figure 2 depicts (a.) a pSG, (b.) a pMDP, and (c.) a pMC with
parameters {x, y}. The states of the players ◦ and � are depicted with circles
and rectangles, respectively. The initial state is indicated by an arrow; target
states have double lines. We draw a transition from state s to s′ and label it
with α and P(s, α, s′) whenever P(s, α, s′) �= 0. If |Act(s)| = 1, the action is
omitted.

Remark 1. In the literature [12,15], the images of transition functions (of pMCs)
are rational functions, i. e., fractions of polynomials. This is mainly motivated
by the usage of state elimination for computing functions expressing reachability
probabilities. As our approach does not rely on state elimination, the set of
considered functions can be simplified. The restriction to polynomials in QV is
realistic; all benchmarks from the PARAM webpage [16] are of this form. We will
exploit this restriction in our proof of Theorem1.

Definition 2 (Stochastic Game). A pSG G is a stochastic game (SG) if
P : S × Act × S → [0, 1] and

∑
s′∈S P(s, α, s′) = 1 for all s ∈ S and α ∈ Act(s).

Analogously, MCs and MDPs are defined as special cases of pMCs and pMDPs.
Thus, a model is parameter-free if all transition probabilities are constant.

Valuations and Rewards. Applying a valuation u to parametric model M,
denoted M[u], replaces each polynomial f in M by f [u]. We call M[u] the
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instantiation of M at u. The typical application of u is to replace the tran-
sition function f by the probability f [u]. A valuation u is well-defined for M if
the replacement yields probability distributions, i. e., if M[u] is an MC, an MDP,
or an SG, respectively.

Parametric probabilistic models are extended with rewards (or dually, costs)
by adding a reward function rew: S → QV which assigns rewards to states of
the model. Intuitively, the reward rew(s) is earned upon leaving the state s.

Schedulers. The nondeterministic choices of actions in pSGs and pMDPs can
be resolved using schedulers1. In our setting it suffices to consider memoryless
deterministic schedulers [17]. For more general definitions we refer to [18].

Definition 3 (Scheduler). A scheduler for pMDP M = (S, V , sI ,Act ,P) is
a function σ : S → Act with σ(s) ∈ Act(s) for all s ∈ S.

Let S(M) denote the set of all schedulers for M. Applying a scheduler to
a pMDP yields an induced parametric Markov chain, as all nondeterminism
is resolved, i. e., the transition probabilities are obtained w. r. t. the choice of
actions.

Definition 4 (Induced pMC). For pMDP M = (S, V , sI ,Act ,P) and sched-
uler σ ∈ S(M), the pMC induced by M and σ is Mσ = (S, V, sI ,Pσ) where

Pσ(s, s′) = P(s, σ(s), s′) for all s, s′ ∈ S .

Resolving nondeterminism in an SG requires to have individual schedulers for
each player. For S◦ and S� we need schedulers σ ∈ S◦(G) and ρ ∈ S�(G) of
the form σ : S◦ → Act and ρ : S� → Act . The induced pMC Gσ,ρ of a pSG G
with schedulers σ and ρ for both players is defined analogously to the one for
pMDPs.

Example 2. Reconsider the models G, M, and D as shown in Fig. 2. For schedulers
σ, ρ with σ(s0) = α and ρ(s2) = β, the induced pMCs satisfy Gσ,ρ = Mρ = D.

2.2 Properties of Interest

As specifications we consider reachability properties and expected reward proper-
ties. We first define these properties on MCs and then discuss the other models.

Properties on MCs. For MC D with state space S, let PrD
s (♦T ) denote the

probability to reach a set of target states T ⊆ S from state s ∈ S within D;
simply PrD(♦T ) refers to this specific probability for the initial state sI . We
use a standard probability measure on infinite paths through an MC as defined
in [18, Ch. 10]. For threshold λ ∈ [0, 1], the reachability property asserting that
a target state is to be reached with probability at most λ is denoted ϕreach =
P≤λ(♦T ). The property is satisfied by D, written D |= ϕreach , iff PrD(♦T ) ≤ λ.
(Comparisons like <, >, and ≥ are treated in a similar way.)

1 Also referred to as adversaries, strategies, or policies.
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The reward of a path through an MC D until T is the sum of the rewards
of the states visited along on the path before reaching T . The expected reward
of a finite path is given by its probability times its reward. Given PrD(♦T ) = 1,
the expected reward of reaching T ⊆ S, is the sum of the expected rewards of
all paths to reach T . An expected reward property is satisfied if the expected
reward of reaching T is bounded by a threshold κ ∈ R. Formal definitions can
be found in e.g., [18, ch. 10].

Properties on Nondeterministic Models. In order to define a probability mea-
sure for MDPs and SGs, the nondeterminism has to be resolved. A reachability
property P≤λ(♦T ) is satisfied for an MDP M iff it holds for all induced MCs:

M |= P≤λ(♦T ) ⇐⇒ (
max

σ∈S(M)
PrMσ

(♦T )
) ≤ λ.

Satisfaction of a property ϕ for an SG G depends on the objectives of both
players. We write G |=� ϕ iff players in � ⊆ {◦,�} can enforce that ϕ holds,
e. g.,

G |={◦} P≤λ(♦T ) ⇐⇒ (
min

σ∈S◦(G)
max

ρ∈S�(G)
PrGσ,ρ

(♦T )
) ≤ λ.

Computing the maximal (or minimal) probability to reach a set of target states
from the initial state can be done using standard techniques, such as linear
programming, value iteration or policy iteration [19].

The satisfaction relation for expected reward properties is defined analo-
gously. As usual, we write M |= ¬ϕ whenever M �|= ϕ.

3 Regional Model Checking of Markov Chains

In the following, we consider sets of valuations that map each parameter to a
value within a given interval. We present an approximative approach to check all
instantiations of a pMC with respect to a valuation in such a set. This consists
of three steps: Formalising regions and the considered problem, construction of
the sound over-approximation, and reduction to an MDP problem.

3.1 Regions

Definition 5 (Region). Given a set of parameters V = {x1, . . . xn} and ratio-
nal parameter bounds B(xi) = {b1, b2}. The parameter bounds induce a para-
meter interval I(xi) = [b1, b2] with b1 ≤ b2. The set of valuations {u | ∀xi ∈
V. u(xi) ∈ I(xi)} is called a region (for V ).

The regions we consider correspond to x∈V I(x), i. e., they are hyperrectangles.
We aim to identify sets of instantiated models by regions. That is, regions

represent instantiations M[u] of a parametric model M. As these instantiations
are only well-defined under some restrictions, we lift these restrictions to regions.
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Definition 6 (Well-Defined Region). Let M be a parametric model. A region
r for V is well-defined for M if for all u ∈ r it holds that u is well-defined for
M, and for all polynomials f in M either f = 0 or f [u] > 0.

The first condition says that M[u] is a probabilistic model (SG, MC, or MDP)
while the second one ensures that M[u] and M have the same topology.

Example 3. Let D be the pMC in Fig. 3(a), the region r = [0.1, 0.8] × [0.4, 0.7]
and the valuation u = (0.8, 0.6) ∈ r. Figure 3(b) depicts the instantiation D[u],
which is an MC as defined in Sect. 2.1 with the same topology as D. As this
holds for all possible instantiations D[u′] with u′ ∈ r, region r is well-defined.
The region r′ = [0, 1] × [0, 1] is not well-defined as, e. g., the valuation (0, 0) ∈ r′

results in an MC that has no transition from s1 to s2.

Our aim is to prove that a property ϕ holds for all instantiations of a parametric
model M which are represented by a region r, i. e., M, r |= ϕ defined as follows.

s0

s1 s2

s3 s4

x 1−x
y

1−y

y

1−y

1 1

(a) D

s0

s1 s2

s3 s4

0.8 0.2

0.6

0.4

0.6

0.4

1 1

(b) D[u]

s0

s1 s2

s3 s4

xs0 1−xs0

ys1

1−ys1

ys2

1−ys2

1 1

(c) rel(D)

Fig. 3. A pMC D, some instantiation D[u] and the relaxation rel(D).

Definition 7 (Satisfaction Relation for Regions). For a parametric model
M, a well-defined region r, and a property ϕ, the relation |= is defined as

M, r |= ϕ ⇐⇒ M[u] |= ϕ for all u ∈ r.

Notice that M, r �|= ϕ implies M[u] �|= ϕ for some u ∈ r. This differs from
M, r |= ¬ϕ which implies M[u] �|= ϕ for all u ∈ r. If M and ϕ are clear from the
context, we will call region r safe if M, r |= ϕ and unsafe if M, r |= ¬ϕ.

Let D = (S, V , sI ,P) be a pMC, r a region that is well-defined for D, and
ϕreach = P≤λ(♦T ) a reachability property. We want to infer that r is safe (or
unsafe). We do this by considering the maximal (or minimal) possible reacha-
bility probability over all valuations u from r. We give the equivalences for safe
regions:

D, r |= ϕreach ⇐⇒ (
max
u∈r

PrD[u](♦T )
) ≤ λ

D, r |= ¬ϕreach ⇐⇒ (
min
u∈r

PrD[u](♦T )
)

> λ
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Remark 2. As shown in [13], PrD[u](♦T ) can be expressed as a rational function
f = g1/g2 with polynomials g1, g2. As r is well-defined, g2(u) �= 0 for all u ∈ r.
Therefore, f is continuous on the closed set r. Hence, there is always a valuation
that induces the maximal (or minimal) reachability probability:

sup
u∈r

PrD[u](♦T ) = max
u∈r

PrD[u](♦T )

and inf
u∈r

PrD[u](♦T ) = min
u∈r

PrD[u](♦T ) .

Example 4. Reconsider the pMC D in Fig. 3(a) and region r = [0.1, 0.8] ×
[0.4, 0.7]. We look for a valuation u ∈ r that maximises PrD[u](♦{s3}), i. e.,
the probability to reach s3 from s0. Notice that s4 is the only state from which
we cannot reach s3, furthermore, s4 is only reachable via s2. Hence, it is best to
avoid s2. For the parameter x it follows that the value u(x) should be as high as
possible, i. e., u(x) = 0.8. Consider state s1: As we want to reach s3, the value
of y should be preferably low. On the other hand, from s2, y should be assigned
a high value as we want to avoid s4. Thus, it requires a thorough analysis to
find an optimal value for y, due to the trade-off for the reachability probabilities
from s1 and s2.

3.2 Relaxation

The idea of our approach, inspired by [14], is to drop these dependencies by
means of a relaxation of the problem in order to ease finding an optimal valua-
tion.

Definition 8 (Relaxation). The relaxation of pMC D = (S, V , sI ,P) is the
pMC rel(D) = (S, relD(V ), sI ,P ′) with relD(V ) = {xs

i | xi ∈ V, s ∈ S} and
P ′(s, s′) = P(s, s′)[x1, . . . , xn/xs

1, . . . , x
s
n].

Intuitively, the relaxation rel(D) arises from D by equipping each state with its
own parameters and thereby eliminating parameter dependencies. We extend a
valuation u for D to the relaxed valuation relD(u) for rel(D) by relD(u)(xs

i ) =
u(xi) for every s. We have that for all u, D[u] = D[relD(u)]. We lift the relaxation
to regions such that B(xs

i ) = B(xi) for all s, i. e., relD(r) = xs
i ∈relD(V ) B(xi). We

drop the subscript D, whenever it is clear from the context.

Example 5. Fig. 3(c) depicts the relaxation rel(D) of the pMC D from Fig. 3(a).
For r = [0.1, 0.8] × [0.4, 0.7] and u = (0.8, 0.6) ∈ r from Example 3, we obtain
rel(r) = [0.1, 0.8] × [0.4, 0.7] × [0.4, 0.7] and rel(u) = (0.8, 0.6, 0.6). The instanti-
ation rel(D)[rel(u)] corresponds to D[u] as depicted in Fig. 3(b). Notice that the
relaxed region rel(r) contains also valuations, e.g., (0.8, 0.5, 0.6) which give rise
to instantiations which are not realisable by valuations in r.

For a pMC D and a region r that is well-defined for D, notice that {D[u] | u ∈
r} ⊆ {rel(D)[u] | u ∈ rel(r)}. Due to the fact that rel(D) is an over-approximation
of D, the maximal reachability probability over all instantiations of D within r
is at most as high as the one for all instantiations of rel(D) within rel(r).
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Lemma 1. For pMC D and well-defined region r, we have

max
u∈r

(
PrD[u](♦T )

)
= max

u∈r

(
Prrel(D)[rel(u)](♦T )

) ≤ max
u∈rel(r)

(
Prrel(D)[u](♦T )

)
.

Thus, if the relaxation satisfies a reachability property, so does the original pMC.

Corollary 1. Given a pMC D and a well-defined region r it holds that

max
u∈rel(r)

(
Prrel(D)[u](♦T )

) ≤ λ implies D, r |= P≤λ(♦T ).

Note that the relaxation does not aggravate the problem for our setting. In fact,
although rel(D) has (usually) much more parameters than D, it is intuitively
easier to find a valuation u ∈ rel(r) that maximises the reachability probability:
For some xs

i ∈ rel(V ), we can always pick a value in I(xs
i ) that maximises

the probability to reach T from state s. There is no (negative) effect for the
reachability probability at the remaining states as xs

i only occurs at s.
Recall that the functions f occurring in rel(D) are of the form f =

∑
i≤m ai ·∏

x∈Vi
x (with ai ∈ Q and Vi ⊆ rel(V )). Finding a valuation that maximises the

reachability probability becomes especially easy for this setting: We only need
to consider valuations u that set the value of each parameter to either the lowest
or highest possible value, i. e., u(xs

i ) ∈ B(xs
i ) for all xs

i ∈ rel(V ). This important
result is stated as follows.

Theorem 1. Let D be a pMC, r be a well-defined region, and T ⊆ S be a set
of target states. There is a valuation u′ ∈ rel(r) satisfying u′(xs

i ) ∈ B(xs
i ) for all

xs
i ∈ rel(V ) such that Prrel(D)[u′](♦T ) = maxu∈rel(r) Prrel(D)[u](♦T ).

We prove this by showing that any valuation which assigns some variable to
something other than its bound can be modified such that the variable is assigned
to its bound, without decreasing the induced reachability probability. The full
proof including an illustrating example is given in [20].

3.3 Substituting Parameters with Nondeterminism

We have now seen that, in order to determine maxu∈rel(r) Prrel(D)[u](♦T ), we
have to make a discrete choice over valuations v : rel(V ) → R with v(xs

i ) ∈ B(xi).
This choice can be made locally at every state, which brings us to the key idea of
constructing a (non-parametric) MDP out of the pMC D and the region r, where
nondeterministic choices represent all valuations that need to be considered.

Definition 9 (Substitution-pMC). An MDP subr(D) = (S, sI ,Act sub,Psub)
is the (parameter-)substitution of a pMC D = (S, V , sI ,P) and a region r if
Act sub =

⊎
s∈S{v : Vs → R | v(xi) ∈ B(xi)} and

Psub(s, v, s′) =

{
P(s, s′)[v] if v ∈ Act(s),
0 otherwise.
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Fig. 4. Illustrating parameter-substitution.

Thus, choosing action v in s corresponds to assigning the extremal values B(xi)
to the parameters xs

i . The number of outgoing actions for s is therefore 2|Vs|.

Example 6. Consider pMC D – depicted in Fig. 4(a) – with r = [0.1, 0.8] ×
[0.4, 0.7] as before. The substitution of D on r is shown in Fig. 4(b). In D, each
outgoing transition of states s0, s1, s2 is replaced by a nondeterministic choice in
subr(D). That is, we either pick the upper or lower bound for the corresponding
variable. The solid (dashed) lines depict transitions that belong to the action for
the upper (lower) bound. For the states s3 and s4 there is no choice, as their
outgoing transitions in D are constant. Figure 4(c) depicts the MC subr(D)σ

which is induced by the scheduler σ on subD(r) that chooses the upper bounds
at s0 and s2, and the lower bound at s1. Notice that subr(D)σ coincides with
rel(D)[v] for a suitable valuation v, as depicted in Fig. 3(c).

First, observe that the nondeterministic choices introduced by the substitution
only depend on the values B(xi) of the parameters xi in r. Since the ranges of
the parameters xs

i in rel(r) agree with the range of xi in r, we have

subrel(r)(rel(D)) = subr(D) for all well-defined r. (1)

Second, note that the substitution encodes the local choices for a relaxed pMC.
That is, for an arbitrary pMC, there is a one-to-one correspondence between
schedulers σ ∈ S(subrel(r)(rel(D))) and valuations v ∈ rel(r) for rel(D) with
v(xs

i ) ∈ B(xi). Combining the observations with Theorem1, yields the following.

Corollary 2. For a pMC D, a well-defined region r and a set of target states
T of D:

max
u∈r

PrD[u](♦T ) ≤ max
σ∈S

Prsubrel(r)(rel(D))σ

(♦T ) = max
σ∈S

Prsubr(D)σ

(♦T )

min
u∈r

PrD[u](♦T ) ≥ min
σ∈S

Prsubrel(r)(rel(D))σ

(♦T ) = min
σ∈S

Prsubr(D)σ

(♦T )

As a direct consequence of this, we can state Theorem 2.
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Theorem 2. Let D be a pMC, r be a well-defined region. Then

subr(D) |= P≤λ(♦T ) implies D, r |= P≤λ(♦T ) and
subr(D) |= P>λ(♦T ) implies D, r |= ¬P≤λ(♦T ).

Hence, we can deduce whether D, r |= ϕ by applying standard techniques for
MDP model checking to subr(D). If the over-approximation is too coarse for
a conclusive answer, regions can be refined (cf. Sect. 5). Moreover, while the
relaxation is key for showing the correctness, Eq. (1) proves that this step does
not actually need to be performed.

Example 7. Reconsider Example 6. From subr(D) in Fig. 4(b), we can derive
maxσ∈S Prsubr(D)σ

(♦T ) = 47/60 and, by Theorem2, D, r |= P≤0.8(♦T ) follows.
Despite the large considered region, we were able to establish a non-trivial upper
bound on the reachability probability over all valuations in r.

Expected Reward Properties. The notions above can be applied to perform
regional model checking of pMCs and expected reward properties. Regions have
to be further restricted such that: PrD[u](♦T ) = 1 for all u ∈ r – to ensure that
the expected reward is defined – and, for transition-rewards, reward-parameters
and probability-parameters have to be disjoint. We can then generalise relaxation
and substitution to the reward models, and obtain analogous results.

4 Regional Checking of Models with Nondeterminism

In the last section we showed how to bound reachability probabilities of pMCs
from below and above. Introducing nondeterministic choices between these
bounds enabled to utilise standard MDP model checking for the parameter syn-
thesis. This approach can readily be generalised to systems originally exhibit-
ing nondeterminism. In particular, for pMDPs this adds choices over valuations
(inherent to parameters) to the choices over actions (inherent to MDPs). This
new nondeterminism leads to a game with two players: One for the nondeter-
minism of the MDP and one for the abstracted parameters, yielding a stochastic
game.

In the following, let M = (S, V , sI ,Act ,P) be a pMDP and r a well-defined
region for M. We want to analyse r for all scheduler-induced pMCs Mσ of M.

Example 8. Consider the pMDP M in Fig. 5(a), where state s has two enabled
actions α and β. The scheduler σ given by {s �→ α} applied to M yields a pMC,
which is subject to substitution, cf. Fig. 3(b).

The parameter substitution of a pMDP (cf. Fig. 5(a)) yields an SG—as in
Fig. 5(d). It represents, for all schedulers of the pMDP, the substitution of each
induced pMC. For the construction of the substitution, we first introduce inter-
mediate states to separate nondeterministic actions from probabilistic choices in
two steps:
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Fig. 5. Illustration of the substitution of a pMDP.

– Split each state s ∈ S into {s} � {〈s, α〉 | α ∈ Act(s)}.
– For s ∈ S and α ∈ Act(s), add a transition with probability one from s to

〈s, α〉 and move the probabilistic choice at s w. r. t. α to 〈s, α〉.
We obtain a pMDP as in Fig. 5(c) where state s has pure nondeterministic
choices leading to states of the form 〈s, α〉 with pure probabilistic choices. The
subsequent substitution on the probabilistic states yields the stochastic game,
where one player represents the nondeterminism of the original pMDP, while the
other player decides whether parameters should be set to their lower or upper
bound. Formally, the game G = subr(M) is defined as follows.

Definition 10 (Substitution-pMDP). Given a pMDPM = (S, V , sI ,Act ,P)
and a region r, an SG subr(M) = (S◦ � S�, sI ,Act sub,Psub) with S◦ = S and
S� = {〈s, α〉 | α ∈ Act(s)} is the (parameter-)substitution of M and r if Act sub =
Act � ( ⊎

〈s,α〉∈S�

Actα
s

)
with Actα

s = {v : V α
s → R | v(xi) ∈ B(xi)} and

Psub(t, β, t′) =

⎧
⎪⎨

⎪⎩

1 if t ∈ S◦ and t′ = 〈t, β〉 ∈ S�,

P(s, α, t′)[β] if t = 〈s, α〉 ∈ S�, β ∈ Actα
s , and t′ ∈ S◦,

0 otherwise.

We now relate the obtained stochastic game G = subr(M) under different
schedulers for player ◦ with the substitution in the scheduler-induced pMCs of
M. We observe that the schedulers σ ∈ S◦(G) for player ◦ coincide with the
schedulers in M. Consider Gσ with σ ∈ S◦(G) which arises from G by erasing
transitions not agreeing with σ, i. e., we set all PG(s, α, 〈s, α〉) with s ∈ S◦ and
α �= σ(s) to zero. Note that Gσ is an MDP as at each state of player ◦, only one
action is enabled and therefore only player � has nondeterministic choices.

Example 9. Continuing Example 8, applying scheduler σ to G yields Gσ, see
Fig. 5(e). The MDP Gσ matches the MDP subr(Mσ) apart from intermediate
states of the form 〈s, α〉: The state s in subr(Mσ) has the same outgoing tran-
sitions as the state 〈s, α〉 in Gσ and 〈s, α〉 is the unique successor of s in Gσ.

Note that Gσ and subr(Mσ) induce the same reachability probabilities. Formally:
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Corollary 3. For pMDP M, well-defined region r, target states T ⊆ S, and
schedulers σ ∈ S◦(subr(M)) and ρ ∈ S(subr(Mσ)), it holds that

Pr(subr(Mσ))ρ

(♦T ) = Prsubr(M)σ,ρ̂

(♦T )

with ρ̂ ∈ S�(subr(M)) satisfies ρ̂(〈s, σ(s)〉) = ρ(s).

Instead of performing the substitution on the pMC induced by M and σ, we can
perform the substitution on M directly and preserve the reachability probability.

Theorem 3. Let M be a pMDP, r be a well-defined region. Then

subr(M) |=∅ P≤λ(♦T ) implies M, r |= P≤λ(♦T ), and
subr(M) |={◦} P>λ(♦T ) implies M, r |= ¬P≤λ(♦T ).

Therefore, analogously to the pMC case (cf. Theorem 2), we can derive whether
subr(M) |= ϕ by analysing a stochastic game. The formal proof is in [20].

5 Parameter Synthesis

In this section we briefly discuss how the regional model checking is embed-
ded into a complete parameter space partitioning framework as, e. g., described
in [12]. The goal is to partition the parameter space into safe and unsafe regions
(cf. Sect. 3.1). From a practical point of view, yielding a 100 % coverage of the
parameter space is not realistic; instead a large coverage (say, 95 %) is aimed at.

We discuss the complete chain for a pMDP M and a property ϕ. In addition,
a well-defined region R is given which serves as parameter space. Recall that a
region r ⊆ R is safe or unsafe if M, r |= ϕ or M, r |= ¬ϕ, respectively. Note that
parameter space partitioning is also applicable if only parts of R are well-defined,
as well-definedness of a region is effectively decidable and such (sub-)regions can
simply be tagged as not defined and treated as being inconclusive.

As a preprocessing step, the input model is simplified by reducing its state
space. First, bisimulation minimisation for parametric probabilistic models [15]
is used. Then, state elimination [13] is applied to all states with V α

s = ∅ and
|Act(s)| = 1. We then construct the parameter-substitution of the model. As the
topology of the substitution is independent of the region, for checking multiple
regions we simply substitute the probabilities according to the region of interest.

Now, using a heuristic from the parameter space partitioning framework, we
determine a candidate region. A naive heuristic would be to start with R, and
then to split inconclusive regions along each dimension recursively – as in [10],
thereby reducing the over-approximation. More evolved heuristics apply some
instantiations of the model to construct candidate regions [12].

For a candidate region r ⊆ R, regional model checking (Sects. 3 and 4) deter-
mines it to be safe or unsafe. Moreover, the result for a region may be inconclu-
sive, which might occur if r is neither safe nor unsafe, but also if the approxi-
mation was too coarse. The procedure stops as soon as a sufficiently large area
of the parameter space R has been classified into safe and unsafe regions.
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6 Experimental Evaluation

We implemented and analysed the parameter lifting algorithm (PLA) as
described in Sects. 3 and 4. Moreover, we connected the implementation with
the parameter synthesis framework PROPhESY [12].
Setup. We implemented PLA in C++. Solving the resulting non-parametric
systems is done via value iteration (using sparse matrices) with a precision of
ε = 10−6. We evaluated the performance and compared it to parameter space
partitioning in PARAM and in PRISM, both based on [10] and using an unsound
heuristic in the implementation. The experiments were conducted on an HP
BL685C G7, 48 cores, 2.0 GHz each, and 192 GB of RAM. We restricted the
RAM to 30 GB and set a time-out of one hour for all experiments. Our PLA
implementation used a single core only. We consider the well-known pMC and
pMDP benchmarks from [16]. We additionally translated existing MDPs for a
semi-autonomous vehicle [21] and the zeroconf protocol [22] into pMDPs, cf. [20].
For each instance, we analysed the parameter space R = [10−5, 1−10−5]#pars

until 95 % is classified as safe or unsafe. Regions for which no decisive result was
found were split into equally large regions, thus mimicking the behaviour of [10].
We also compared PLA to the SMT-based synthesis for pMCs in [12]. However,
using naive heuristics for determining region candidates, the SMT solver often
spent too much time for checking certain regions. For the desired coverage of
95 %, this led to timeouts for all tested benchmarks.
Results. The results are summarised in Table 1, listing the benchmark set and
the particular instance. Further columns reflect whether a reachability or an
expected reward property was checked (P vs. E) and the number of parameters,
states and transitions. We used the properties as given in their sources, for details
see [20]. We ran PLA in two different settings: With strong bisimulation minimi-
sation (bisim) and without (direct). We list the number of considered regions,
i. e., those required to cover >95% of the parameter space, and the required run
time in seconds for the complete verification task, including model building and
preprocessing. For PRISM, we give the fastest run time producing a correct result
out of 30 different possible configurations, differing in the performed bisimulation
minimisation (none, strong, weak), how inconclusive regions are split (each or
longest edge), and the order of states (all except “random”). The PRISM imple-
mentation was superior to the PARAM implementation in all cases. The sound
variant of PRISM and PARAM would require SMT calls similar to [12], decreasing
their performance.

To evaluate the approximation quality, we additionally ran PLA for 625
equally large regions that were not refined in the case of indecisive results. We
depict detailed results for a selection in Table 2, where we denote model, instance,
property type, number of parameters, states and transitions as in Table 2. Col-
umn #par trans lists the number of transitions labeled with a non-constant
function. Running times are given in column t. Next, we show the percentage
of regions that our approach could conclusively identify as safe or unsafe. For
the remaining regions, we sampled the model at the corner points to analyse the
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Table 1. Runtimes of synthesis on different benchmark models.

PLA PRISM

Benchmark Instance ϕ #Pars #States #Trans #Regions Direct Bisim Best

pMC brp (256,5) P 2 19 720 26 627 37 6 14 TO

(4096,5) P 2 315 400 425 987 13 233 TO TO

(256,5) E 2 20 744 27 651 195 8 15 TO

(4096,5) E 2 331 784 442 371 195 502 417 TO

(16,5) E 4 1 304 1 731 1 251 220 2 764 1 597 TO

(32,5) E 4 2 600 3 459 1 031 893 TO 2 722 TO

(256,5) E 4 20 744 27 651 – TO TO TO

crowds (10,5) P 2 104 512 246 082 123 17 6 2038

(15,7) P 2 8 364 409 25 108 729 116 1 880 518 TO

(20,7) P 2 45 421 597 164 432 797 119 TO 2 935 TO

nand (10,5) P 2 35 112 52 647 469 22 30 TOa

(25,5) P 2 865 592 1 347 047 360 735 2 061 TO

pMDP brp (256,5) P 2 40 721 55 143 37 35 3 359 TO

(4096,5) P 2 647 441 876 903 13 3 424 TO TO

consensus (2,2) P 2 272 492 119 <1 <1 31a

(2,32) P 2 4 112 7 692 108 113 141 TOa

(4,2) P 4 22 656 75 232 6 125 1 866 2 022 TOa

(4,4) P 4 43 136 144 352 – TO TO TOa

sav (6,2,2) P 2 379 1 127 162 <1 <1 TOa

(100,10,10) P 2 1 307 395 6 474 535 37 1 612 TO TO

(6,2,2) P 4 379 1 127 621 175 944 917 TOa

(10,3,3) P 4 1 850 6 561 TO TO TOa

zeroconf (2) P 2 88 858 203 550 186 86 1 295 TO

(5) P 2 494 930 1 133 781 403 2 400 TO TO
aThe fastest PRISM configuration gave an incorrect answer

Table 2. Results for classification of a constant number of regions.

Instance ϕ #Pars #States #Trans #Par t Safe Unsafe Neither Unkn

trans

pMC Brp (256,5) E 2 20 744 27 651 13 814 51 14.9% 79.2% 5.8% 0.2%

(256,5) E 4 20 744 27 651 13 814 71 7.5% 51.0% 40.6% 0.8%

Crowds (10,5) P 2 104 512 246 082 51 480 44 54.4% 41.1% 4.2% 0.3%

Nand (10,5) P 2 35 112 52 647 25 370 21 21.4% 68.5% 6.9% 3.2%

pMDP brp (256,5) P 2 40 721 55 143 27 800 153 6.6% 90.4% 3.0% 0.0%

Consensus (4,2) P 4 22 656 75 232 29 376 357 2.6% 87.0% 10.4% 0.0%

Aav (6,2,2) P 4 379 1 127 552 2 44.0% 15.4% 35.4% 5.3%

Zeroconf (2) P 2 88 858 203 550 80 088 186 16.6% 77.3% 5.6% 0.5%

approximation error. Column neither gives the percentage of regions for which
the property is neither always satisfied, nor always violated (as obtained from
the sampling). In these cases, the inconclusive result is not caused by the approx-
imation error but by the region selection. Finally, the fraction of the remaining
regions for which it is still unknown if they are safe, unsafe or neither is given
in column unkn.
Observations. PLA outperforms existing approaches by several orders of mag-
nitude. We see two major reasons. First, the approach exploits the structure
of parametric models, in which transition probabilities are usually described by
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simple functions. This is a major benefit over state-elimination based approaches
where any structure is lost. Secondly, the approach benefits from the speed of the
numerical approaches used in non-parametric probabilistic verification. However,
it is well known that problems due to numerical instability are an issue here.
Furthermore, when checking a single region, the number of parameters has only
a minor influence on the runtime; more important is the number of states and
the graph-structure. However, the number of required regions grows exponen-
tially in the number of parameters. Therefore, investigating good heuristics for
the selection of candidate regions proves to be essential. Nevertheless, already
the naive version used here yields a superior performance.

Table 2 shows that the over-approximation of PLA is sufficiently tight to
immediately cover large parts of the parameter space. In particular, for all bench-
mark models with two parameters, we can categorise more than 89 % of the para-
meter space as safe/unsafe within less than four minutes. For four parameters, we
cannot cover as much space due to the poor choice of regions: A lot of regions
cannot be proven (un)safe, because they are in fact neither (completely) safe
nor unsafe and not because of the approximation. This is tightly linked with the
observed increase in runtime for models with four parameters in Table 1 since it
implies that regions have to be split considerably before a decision can be made.
The minimal number of regions depends only on the property and the threshold
used, as in [10] and in [12]. PLA might need additional regions (although empir-
ically, this is not significant), this corresponds to the practical case in [12] when
regions are split just due to a time-out of the SMT-solver.

7 Conclusion

This paper presented parameter lifting, a new approach for parameter synthesis
of Markov models. It relies on replacing parameters by nondeterminism, scales
well, and naturally extends to treating parametric MDPs.
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J.P., Ábrahám, E.: PROPhESY: a probabilistic parameter synthesis tool. In:
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Abstract. In this paper we investigate the applicability of standard
model checking approaches to verifying properties in probabilistic pro-
gramming. As the operational model for a standard probabilistic program
is a potentially infinite parametric Markov decision process, no direct
adaption of existing techniques is possible. Therefore, we propose an on–
the–fly approach where the operational model is successively created and
verified via a step–wise execution of the program. This approach enables
to take key features of many probabilistic programs into account: nonde-
terminism and conditioning. We discuss the restrictions and demonstrate
the scalability on several benchmarks.

1 Introduction

Probabilistic programs are imperative programs, written in languages like C,
Scala, Prolog, or ML, with two added constructs: (1) the ability to draw val-
ues at random from probability distributions, and (2) the ability to condition
values of variables in a program through observations. In the past years, such
programming languages became very popular due to their wide applicability for
several different research areas [1]: Probabilistic programming is at the heart
of machine learning for describing distribution functions; Bayesian inference
is pivotal in their analysis. They are central in security for describing crypto-
graphic constructions (such as randomized encryption) and security experiments.
In addition, probabilistic programs are an active research topic in quantitative
information flow. Moreover, quantum programs are inherently probabilistic due
to the random outcomes of quantum measurements. All in all, the simple and
intuitive syntax of probabilistic programs makes these different research areas
accessible to a broad audience.

However, although these programs typically consist of a few lines of code, they
are often hard to understand and analyze; bugs, for instance non–termination
of a program, can easily occur. It seems of utmost importance to be able to
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automatically prove properties like “Is the probability for termination of the
program at least 90%” or “Is the expected value of a certain program variable
at least 5 after successful termination?”. Approaches based on the simulation of
a program to show properties or infer probabilities have been made in the past
[2,3]. However, to the best of our knowledge there is no work which exploits well-
established model checking algorithms for probabilistic systems such as Markov
decision processes (MDP) or Markov chains (MCs), as already argued to be an
interesting avenue for the future in [1].

As the operational semantics for a probabilistic program can be expressed as a
(possible infinite) MDP [4], it seems worthwhile to investigate the opportunities
there. However, probabilistic model checkers like PRISM [5], iscasMc [6], or
MRMC [7] offer efficient methods only for finite models.

We make use of the simple fact that for a finite unrolling of a program
the corresponding operational MDP is also finite. Starting from a profound
understanding of the (intricate) probabilistic program semantics—including fea-
tures such as observations, unbounded (and hence possibly diverging) loops, and
nondeterminism—we show that with each unrolling of the program both con-
ditional reachability probabilities and conditional expected values of program
variables increase monotonically. This gives rise to a bounded model-checking
approach for verifying probabilistic programs. This enables for a user to write a
program and automatically verify it against a desired property without further
knowledge of the programs semantics.

We extend this methodology to the even more complicated case of para-
metric probabilistic programs, where probabilities are given by functions over
parameters. At each iteration of the bounded model checking procedure, para-
meter valuations violating certain properties are guaranteed to induce violation
at each further iteration.

We demonstrate the applicability of our approach using five well-known
benchmarks from the literature. Using efficient model building and verification
methods, our prototype is able to prove properties where either the state space
of the operational model is infinite or consists of millions of states.

Related Work. Besides the tools employing probabilistic model checking as listed
above, one should mention the approach in [8], where finite abstractions of the
operational semantics of a program were verified. However, this was defined for
programs without parametric probabilities or observe statements. In [9], verifi-
cation on partial operational semantics is theoretically discussed for termination
probabilities.

The paper is organized as follows: In Sect. 2, we introduce the probabilistic
models we use, the probabilistic programming language, and the structured oper-
ational semantics (SOS) rules to construct an operational (parametric) MDP.
Section 3 first introduces formal concepts needed for the finite unrollings of the
program, then shows how expectations and probabilities grow monotonically,
and finally explains how this is utilized for bounded model checking. In Sect. 4,
an extensive description of used benchmarks, properties and experiments is given
before the paper concludes with Sect. 5.
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2 Preliminaries

2.1 Distributions and Polynomials

A probability distribution over a finite or countably infinite set X is a function
μ : X → [0, 1] ⊆ R with

∑
x∈X μ(x) = 1. The set of all distributions on X is

denoted by Distr(X). Let V be a finite set of parameters over R. A valuation
for V is a function u : V → R. Let Q[V ] denote the set of multivariate polyno-
mials with rational coefficients and QV the set of rational functions (fractions
of polynomials) over V . For g ∈ Q[V ] or g ∈ QV , let g[u] denote the evaluation
of g at u. We write g = 0 if g can be reduced to 0, and g �= 0 otherwise.

2.2 Probabilistic Models

First, we introduce parametric probabilistic models which can be seen as tran-
sition systems where the transitions are labelled with polynomials in Q[V ].

Definition 1 (pMDP and pMC). A parametric Markov decision process
(pMDP) is a tuple M = (S, sI , Act , P) with a countable set S of states,
an initial state sI ∈ S, a finite set Act of actions, and a transition function
P : S × Act × S → Q[V ] satisfying for all s ∈ S : Act(s) �= ∅, where V is a finite
set of parameters over R and Act(s) = {α ∈ Act | ∃s′ ∈ S.P(s, α, s′) �= 0}. If
for all s ∈ S it holds that |Act(s)| = 1, M is called a parametric discrete-time
Markov chain (pMC), denoted by D.

At each state, an action is chosen nondeterministically, then the succes-
sor states are determined probabilistically as defined by the transition function.
Act(s) is the set of enabled actions at state s. As Act(s) is non-empty for all
s ∈ S, there are no deadlock states. For pMCs there is only one single action
per state and we write the transition probability function as P : S × S → Q[V ],
omitting that action. Rewards are defined using a reward function rew: S → R

which assigns rewards to states of the model. Intuitively, the reward rew(s) is
earned upon leaving the state s.

Schedulers. The nondeterministic choices of actions in pMDPs can be resolved
using schedulers1. In our setting it suffices to consider memoryless deterministic
schedulers [10]. For more general definitions we refer to [11].

Definition 2 (Scheduler). A scheduler for pMDP M = (S, sI , Act , P) is a
function S : S → Act with S(s) ∈ Act(s) for all s ∈ S.

Let SchedM denote the set of all schedulers for M. Applying a scheduler to
a pMDP yields an induced parametric Markov chain, as all nondeterminism is
resolved, i.e., the transition probabilities are obtained w.r.t. the choice of actions.

Definition 3 (Induced pMC). Given a pMDP M = (S, sI , Act , P), the
pMC induced by S ∈ SchedM is given by MS = (S, sI , Act , PS), where

PS(s, s′) = P(s, S(s), s′), for all s, s′ ∈ S.

1 Also referred to as adversaries, strategies, or policies.
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Valuations. Applying a valuation u to a pMDP M, denoted M[u], replaces each
polynomial g in M by g[u]. We call M[u] the instantiation of M at u. A valuation
u is well-defined for M if the replacement yields probability distributions at all
states; the resulting model M[u] is a Markov decision process (MDP) or, in
absence of nondeterminism, a Markov chain (MC).

Properties. For our purpose we consider conditional reachability properties and
conditional expected reward properties in MCs. For more detailed definitions we
refer to [11, Chap. 10]. Given an MC D with state space S and initial state sI ,
let PrD(¬♦U) denote the probability not to reach a set of undesired states U
from the initial state sI within D. Furthermore, let PrD(♦T | ¬♦U) denote the
conditional probability to reach a set of target states T ⊆ S from the initial
state sI within D, given that no state in the set U is reached. We use the
standard probability measure on infinite paths through an MC. For threshold
λ ∈ [0, 1] ⊆ R, the reachability property, asserting that a target state is to be
reached with conditional probability at most λ, is denoted ϕ = P≤λ(♦T | ¬♦U).
The property is satisfied by D, written D |= ϕ, iff PrD(♦T | ¬♦U) ≤ λ. This is
analogous for comparisons like <, >, and ≥.

The reward of a path through an MC D until T is the sum of the rewards
of the states visited along on the path before reaching T . The expected reward
of a finite path is given by its probability times its reward. Given PrD(♦T ) = 1,
the conditional expected reward of reaching T ⊆ S, given that no state in set
U ⊆ S is reached, denoted ERD(♦T | ¬♦U), is the expected reward of all paths
accumulated until hitting T while not visiting a state in U in between divided
by the probability of not reaching a state in U (i.e., divided by PrD(¬♦U)). An
expected reward property is given by ψ = E≤κ(♦T | ¬♦U) with threshold κ ∈
R≥0. The property is satisfied by D, written D |= ψ, iff ERD(♦T | ¬♦U) ≤ κ.
Again, this is analogous for comparisons like <, >, and ≥. For details about
conditional probabilities and expected rewards see [12].

Reachability probabilities and expected rewards for MDPs are defined on
induced MCs for specific schedulers. We take here the conservative view that a
property for an MDP has to hold for all possible schedulers.

Parameter Synthesis. For pMCs, one is interested in synthesizing well-defined
valuations that induce satisfaction or violation of the given specifications [13].
In detail, for a pMC D, a rational function g ∈ QV is computed which—
when instantiated by a well-defined valuation u for D—evaluates to the actual
reachability probability or expected reward for D, i.e., g[u] = PrD[u](♦T ) or
g[u] = ERD[u](♦T ). For pMDPs, schedulers inducing maximal or minimal prob-
ability or expected reward have to be considered [14].

2.3 Conditional Probabilistic Guarded Command Language

We first present a programming language which is an extension of Dijkstra’s
guarded command language [15] with a binary probabilistic choice operator,
yielding the probabilistic guarded command language (pGCL) [16]. In [17], pGCL
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was endowed with observe statements, giving rise to conditioning. The syntax of
this conditional probabilistic guarded command language (cpGCL) is given by

P ::=skip | abort | x := E | P;P | if G then P else P
| {P} [g] {P} | {P}� {P} | while (G) {P} | observe(G)

Here, x belongs to the set of program variables V; E is an arithmetical expression
over V; G is a Boolean expression over arithmetical expressions over V. The
probability is given by a polynomial g ∈ Q[V ]. Most of the cpGCL instructions
are self–explanatory; we elaborate only on the following: For cpGCL-programs P
and Q, {P} [g] {Q} is a probabilistic choice where P is executed with probability
g and Q with probability 1−g; analogously, {P}� {Q} is a nondeterministic
choice between P and Q; abort is syntactic sugar for the diverging program
while (true) {skip}. The statement observe(G) for the Boolean expression G
blocks all program executions violating G and induces a rescaling of probability
of the remaining execution traces so that they sum up to one. For a cpGCL-
program P , the set of program states is given by S = {σ|σ : V → Q}, i.e., the set
of all variable valuations. We assume all variables to be assigned zero prior to
execution or at the start of the program. This initial variable valuation σI ∈ S

with ∀x ∈ V. σI(x) = 0 is called the initial state of the program.

Example 1. Consider the following cpGCL-program with variables x and c:

1 while (c = 0) {

2 { x := x + 1 } [0.5] { c := 1 }

3 };

4 observe"x is odd"

While c is 0, the loop body is iterated: With probability 1/2 either x is incre-
mented by one or c is set to one. After leaving the loop, the event that the valu-
ation of x is odd is observed, which means that all program executions where x
is even are blocked. Properties of interest for this program would, e.g., concern
the termination probability, or the expected value of x after termination. �

2.4 Operational Semantics for Probabilistic Programs

We now introduce an operational semantics for cpGCL-programs which is given
by an MDP as in Definition 1. The structure of such an operational MDP is
schematically depicted below.

〈P, σI〉 ↓

〈�〉

〈sink 〉

diverge

↓
↓ ↓

↓ ↓
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Squiggly arrows indicate reaching certain states via possibly multiple paths and
states; the clouds indicate that there might be several states of the particular
kind. 〈P, σI〉 marks the initial state of the program P . In general the states of
the operational MDP are of the form 〈P ′, σ′〉 where P ′ is the program that is
left to be executed and σ′ is the current variable valuation.

All runs of the program (paths through the MDP) are either terminat-
ing and eventually end up in the 〈sink 〉 state, or are diverging (thus they
never reach 〈sink 〉). Diverging runs occur due to non–terminating computations.
A terminating run has either terminated successfully, i.e., it passes a ↓–state, or
it has terminated due to a violation of an observation, i.e., it passes the 〈�〉–
state. Sets of runs that eventually reach 〈�〉, or 〈sink 〉, or diverge are pairwise
disjoint.
The ↓–labelled states are the only ones with positive reward, which is due to
the fact that we want to capture probabilities of events (respectively expected
values of random variables) occurring at successful termination of the program.

The random variables of interest are E = {f |f : S → R≥0}. Such random
variables are referred to as post–expectations [16]. Formally, we have:

Definition 4 (Operational Semantics of Programs). The operational
semantics of a cpGCL program P with respect to a post–expectation f ∈ E is
the MDP Mf �P � = (S, 〈P, σI〉, Act , P) together with a reward function rew,
where

– S =
{〈Q, σ〉, 〈↓, σ〉∣∣Q is a cpGCL program, σ ∈ S

}∪{〈�〉, 〈sink 〉} is the count-
able set of states,

– 〈P, σI〉 ∈ S is the initial state,
– Act = {left , right , none} is the set of actions, and
– P is the smallest relation defined by the SOS rules given in Fig. 1.

The reward function is rew(s) = f(σ) if s = 〈↓, σ〉, and rew(s) = 0, otherwise.

A state of the form 〈↓, σ〉 indicates successful termination, i.e., no com-
mands are left to be executed. These terminal states and the 〈�〉–state go to the
〈sink 〉 state. skip without context terminates successfully. abort self–loops, i.e.,
diverges. x := E alters the variable valuation according to the assignment then
terminates successfully. For the concatenation, 〈↓;Q, σ〉 indicates successful ter-
mination of the first program, so the execution continues with 〈Q, σ〉. If for P ; Q
the execution of P leads to 〈�〉, P ; Q does so, too. Otherwise, for 〈P, σ〉−→μ,
μ is lifted such that Q is concatenated to the support of μ. For more details on
the operational semantics we refer to [4].

If for the conditional choice σ |= G holds, P is executed, otherwise Q. The
case for while is similar. For the probabilistic choice, a distribution ν is created
according to probability p. For {P}� {Q}, we call P the left choice and Q
the right choice for actions left , right ∈ Act . For the observe statement, if
σ |= G then observe acts like skip. Otherwise, the execution leads directly to
〈�〉 indicating a violation of the observe statement.
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(terminal) 〈↓, σ〉 −→ 〈sink〉 (skip) 〈skip, σ〉 −→ 〈↓, σ〉 (abort) 〈abort, σ〉 −→ 〈abort, σ〉

(undesired) 〈 〉 −→ 〈sink〉 (assign) 〈x := E, σ〉 −→ 〈↓, σ[x ← E σ ]〉

(observe1)
σ |= G

〈observeG, σ〉 −→ 〈↓, σ〉 (observe2)
σ �|= G

〈observeG, σ〉 −→ 〈 〉

(concatenate1) 〈↓;Q, σ〉 −→ 〈Q, σ〉 (concatenate2)
〈P, σ〉 −→ 〈 〉

〈P ;Q, σ〉 −→ 〈 〉

(concatenate3)
〈P, σ〉 −→ μ

〈P ;Q, σ〉 −→ ν
,where ∀P

′
. ν(〈P ′

;Q, σ
′〉) := μ(〈P ′

, σ
′〉)

(if1)
σ |= G

〈ite (G) {P} {Q}, σ〉 −→ 〈P, σ〉 (if2)
σ �|= G

〈ite (G) {P} {Q}, σ〉 −→ 〈Q, σ〉

(while1)
σ |= G

〈while (G) {P}, σ〉 −→ 〈P ; while (G) {P}, σ〉 (while2)
σ �|= G

〈while (G) {P}, σ〉 −→ 〈↓, σ〉

(prob) 〈{P} [p] {Q}, σ〉 −→ ν
,where ν(〈P, σ〉) := p, ν(〈Q, σ〉) := 1 − p

(nondet1)
〈{P} � {Q}, σ〉 left−−−→ 〈P, σ〉

(nondet2)
〈{P} � {Q}, σ〉 right−−−−→ 〈Q, σ〉

Fig. 1. SOS rules for constructing the operational MDP of a cpGCL program. We
use s −→ t to indicate P(s, none, t) = 1, s −→ μ for μ ∈ Distr(S) to indicate

∀t ∈ S : P(s, none, t) = μ(t), s
left−−→ t to indicate P(s, left , t) = 1, and s

right−−−→ t to
indicate P(s, right , t) = 1.

〈P, σI〉

〈P1; P, σI〉〈P3; P, σI〉 〈P4; P, σI〉

〈↓; P, σI [x/1]〉 〈↓; P, σI [c/1]〉

〈P, σI [x/1]〉 〈P, σI [c/1]〉

〈↓; P2, σI [c/1]〉

〈P2, σI [c/1]〉

〈P3; P, σI [x/1]〉 〈P4; P, σI [x/1]〉

〈↓; P, σI [x/2]〉 〈↓; P, σI [x/1, c/1]〉

〈P, σI [x/2]〉 〈P, σI [x/1, c/1]〉

〈↓; P2, σI [x/1, c/1]〉

〈P2, σI [x/1, c/1]〉

〈↓, σI [x/1, c/1]〉1

〈 〉

〈sink〉

...

1
2

1
2

1
2

1
2

Fig. 2. Partially unrolled operational semantics for program P
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Example 2. Reconsider Example 1, where we set for readability P1 = {x :=
x + 1} [0.5] {c := 1}, P2 = observe(“x is odd”), P3 = {x := x + 1}, and
P4 = {c := 1}. A part of the operational MDP Mf �P � for an arbitrary ini-
tial variable valuation σI and post–expectation x is depicted in Fig. 2.2 Note
that this MDP is an MC, as P contains no nondeterministic choices. The MDP
has been unrolled until the second loop iteration, i.e., at state 〈P, σI [x/2]〉, the
unrolling could be continued. The only terminating state is 〈↓, σI [x/1, c/1]〉. As
our post-expectation is the value of variable x, we assign this value to terminating
states, i.e., reward 1 at state 〈↓, σI [x/1, c/1]〉, where x has been assigned 1. At
state 〈P, σI [c/1]〉, the loop condition is violated as is the subsequent observation
because of x being assigned an even number. �

3 Bounded Model Checking for Probabilistic Programs

In this section we describe our approach to model checking probabilistic pro-
grams. The key idea is that satisfaction or violation of certain properties for a
program can be shown by means of a finite unrolling of the program. Therefore,
we introduce the notion of a partial operational semantics of a program, which
we exploit to apply standard model checking to prove or disprove properties.

First, we state the correspondence between the satisfaction of a property
for a cpGCL-program P and for its operational semantics, the MDP Mf �P �.
Intuitively, a program satisfies a property if and only if the property is satisfied
on the operational semantics of the program.

Definition 5 (Satisfaction of Properties). Given a cpGCL program P and
a (conditional) reachability or expected reward property ϕ. We define

P |= ϕ iff Mf �P � |= ϕ.

This correspondence on the level of a denotational semantics for cpGCL has been
discussed extensively in [17]. Note that there only schedulers which minimize
expected rewards were considered. Here, we also need maximal schedulers as we
are considering both upper and lower bounds on expected rewards and proba-
bilities. Note that satisfaction of properties is solely based on the operational
semantics and induced maximal or minimal probabilities or expected rewards.

We now introduce the notion of a partial operational MDP for a cpGCL–
program P , which is a finite approximation of the full operational MDP of P .
Intuitively, this amounts to the successive application of SOS rules given in Fig. 1,
while not all possible rules have been applied yet.

Definition 6 (Partial Operational Semantics). A partial operational sem-
antics for a cpGCL–program P is a sub-MDP Mf �P �′ = (S′, 〈P, σI〉, Act , P ′) of
the operational semantics for P (denoted Mf �P �′ ⊆ Mf �P �) with S′ ⊆ S. Let
Sexp = S′ \ {〈Q,σ〉 ∈ S′ ∣

∣ Q �= ↓, ∃ s ∈ S \ S′ ∃α ∈ Act : P(〈Q, σ〉, α, s
)

> 0
}

2 We have tacitly overloaded the variable name x to an expectation here for readability.
More formally, by the “expectation x” we actually mean the expectation λσ.σ(x).
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be the set of expandable states. Then the transition probability function P ′ is for
s, s′ ∈ S′ and α ∈ Act given by

P ′(s, α, s′) =

{
1, if s = s′ for s, s′ ∈ Sexp,

P(s, α, s′), otherwise.

Intuitively, the set of non–terminating expandable states describes the states
where there are still SOS rules applicable. Using this definition, the only tran-
sitions leaving expandable states are self-loops, enabling to have a well-defined
probability measure on partial operational semantics. We will use this for our
method, which is based on the fact that both (conditional) reachability prob-
abilities and expected rewards for certain properties will always monotonically
increase for further unrollings of a program and the respective partial operational
semantics. This is discussed in what follows.

3.1 Growing Expectations

As mentioned before, we are interested in the probability of termination or the
expected values of expectations (i.e. random variables ranging over program
states) after successful termination of the program. This is measured on the
operational MDP by the set of paths reaching 〈sink 〉 from the initial state con-
ditioned on not reaching 〈�〉 [17]. In detail, we have to compute the conditional
expected value of post–expectation f after successful termination of program
P , given that no observation was violated along the computation. For nonde-
terministic programs, we have to compute this value either under a minimizing
or maximizing scheduler (depending on the given property). We focus our pre-
sentation on expected rewards and minimizing schedulers, but all concepts are
analogous for the other cases. For Mf �P � we have

inf
S∈SchedMf �P�

ERMf �P �S(♦〈sink 〉 | ¬♦〈�〉).

Recall that Mf �P �S is the induced MC under scheduler S ∈ SchedMf �P � as
in Definition 3. Recall also that for ¬♦〈�〉 all paths not eventually reaching 〈�〉
either diverge (collecting reward 0) or pass by a ↓–state and reach 〈sink 〉. More
importantly, all paths that do eventually reach 〈�〉 also collect reward 0. Thus:

inf
S∈SchedMf �P�

ERMf �P �S(♦〈sink 〉 | ¬♦〈�〉)

= inf
S∈SchedMf �P�

ERMf �P �S(♦〈sink 〉 ∩ ¬♦〈�〉)
PrMf �P �S(¬♦�)

= inf
S∈SchedMf �P�

ERMf �P �S(♦〈sink 〉)
PrMf �P �S(¬♦�)

.
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Finally, observe that the probability of not reaching 〈�〉 is one minus the prob-
ability of reaching 〈�〉, which gives us:

= inf
S∈SchedMf �P�

ERMf �P �S(♦〈sink 〉)
1 − PrMf �P �S(♦�)

. †

Regarding the quotient minimization we assume “0
0 < 0” as we see 0

0—being
undefined—to be less favorable than 0. For programs without nondeterminism
this view agrees with a weakest–precondition–style semantics for probabilistic
programs with conditioning [17].

It was shown in [18] that all strict lower bounds for ERMf �P �S(♦〈sink 〉) are
in principle computably enumerable in a monotonically non–decreasing fashion.
One way to do so, is to allow for the program to be executed for an increasing
number of k steps, and collect the expected rewards of all execution traces that
have lead to termination within k computation steps. This corresponds natu-
rally to constructing a partial operational semantics Mf �P �′ ⊆ Mf �P � as in
Definition 6 and computing minimal expected rewards on Mf �P �′.

Analogously, it is of course also possible to monotonically enumerate all
strict lower bounds of PrMf �P �

S

(♦�), since—again—we need to just collect the
probability mass of all traces that have led to 〈�〉 within k computation steps.
Since probabilities are quantities bounded between 0 and 1, a lower bound for
PrMf �P �

S

(♦�) is an upper bound for 1 − PrMf �P �
S

(♦�).
Put together, a lower bound for ERMf �P �S(♦〈sink 〉) and a lower bound for

PrMf �P �
S

(♦�) yields a lower bound for (†). We are thus able to enumerate all
lower bounds of ERMf �P �S(♦〈sink 〉 | ¬♦〈�〉) by inspection of a finite sub–MDP
of Mf �P �. Formally, we have:

Theorem 1. For a cpGCL program P , post–expectation f , and a partial opera-
tional MDP Mf �P �′ ⊆ Mf �P � it holds that

inf
S∈SchedMf �P�′

ERMf �P �′S
(♦〈sink 〉 | ¬♦〈�〉)

≤ inf
S∈SchedMf �P�

ERMf �P �S(♦〈sink 〉 | ¬♦〈�〉).

3.2 Model Checking

Using Theorem 1, we transfer satisfaction or violation of certain properties
from a partial operational semantics Mf �P �′ ⊆ Mf �P � to the full semantics
of the program. For an upper bounded conditional expected reward property
ϕ = E≤κ(♦T | ¬♦U) where T,U ∈ S we exploit that

Mf �P �′ � |= ϕ =⇒ P � |= ϕ. (1)

That means, if we can prove the violation of ϕ on the MDP induced by a finite
unrolling of the program, it will hold for all further unrollings, too. This is
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because all rewards and probabilities are positive and thus further unrolling can
only increase the accumulated reward and/or probability mass.

Dually, for a lower bounded conditional expected reward property ψ =
E≥λ(♦T | ♦U) we use the following property:

Mf �P � ′ |= ψ =⇒ P |= ϕ. (2)

The preconditions of Implication (1) and Implication (2) can be checked by
probabilistic model checkers like PRISM [5]; this is analogous for conditional
reachability properties. Let us illustrate this by means of an example.

Example 3. As mentioned in Example 1, we are interested in the probability of
termination. As outlined in Sect. 2.4, this probability can be measured by

Pr(♦〈sink 〉 | ¬♦〈�〉) =
Pr(♦〈sink 〉 ∧ ¬♦〈�〉)

Pr(♦〈�〉) .

We want this probability to be at least 1/2, i.e., ϕ = P≥0.5(♦〈sink 〉 | ¬♦〈�〉).
Since for further unrollings of our partially unrolled MDP this probability never
decreases, the property can already be verified on the partial MDP Mf �P �′ by

PrMf �P �′
(♦〈sink 〉 | ¬♦〈�〉) =

1/4
1/2

=
1
2
,

where Mf �P �′ is the sub-MDP from Fig. 2. This finite sub-MDP Mf �P �′ is
therefore a witness of Mf �P � |= ϕ. �
Algorithmically, this technique relies on suitable heuristics regarding the size
of the considered partial MDPs. Basically, in each step k states are expanded
and the corresponding MDP is model checked, until either the property can be
shown to be satisfied or violated, or no more states are expandable. In addition,
heuristics based on shortest path searching algorithms can be employed to favor
expandable states that so far induce high probabilities.

Note that this method is a semi-algorithm when the model checking problems
stated in Implications (1) and (2) are considering strict bounds, i.e. < κ and > κ.
It is then guaranteed that the given bounds are finally exceeded.

Consider now the case where we want to show satisfaction of ϕ = E≤κ(♦T |
¬♦U), i.e., Mf �P �′ |= ϕ ⇒ P |= ϕ. As the conditional expected reward will
monotonically increase as long as the partial MDP is expandable, the implica-
tion is only true if there are no more expandable states, i.e., the model is fully
expanded. This is analogous for the violation of upper bounded properties. Note
that many practical examples actually induce finite operational MDPs which
enables to build the full model and perform model checking.

It remains to discuss how this approach can be utilized for parameter syn-
thesis as explained in Sect. 2.2. For a partial operational pMDP Mf �P �′ and
a property ϕ = E≤κ(♦T | ¬♦U) we use tools like PROPhESY [13] to deter-
mine for which parameter valuations ϕ is violated. For each valuation u with
Mf �P �′[u] � |= ϕ it holds that Mf �P �[u] � |= ϕ; each parameter valuation violat-
ing a property on a partial pMDP also violates it on the fully expanded MDP.
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4 Evaluation

Experimental Setup. We implemented and evaluated the bounded model check-
ing method in C++. For the model checking functionality, we use the stochastic
model checker Storm, developed at RWTH Aachen University, and PROPhESY
[19] for parameter synthesis.

We consider five different, well-known benchmark programs, three of which
are based on models from the PRISM benchmark suite [5] and others taken from
other literature (see [20] for some examples). We give the running times of our
prototype on several instances of these models. Since there is — to the best of
our knowledge — no other tool that can analyze cpGCL programs in a purely
automated fashion, we cannot meaningfully compare these figures to other tools.
As our technique is restricted to establishing that lower bounds on reachability
probabilities and the expectations of program variables, respectively, exceed a
threshold λ, we need to fix λ for each experiment. For all our experiments, we
chose λ to be 90 % of the actual value for the corresponding query and choose
to expand 106 states of the partial operational semantics of a program between
each model checking run.

We ran the experiments on an HP BL685C G7 machine with 48 cores clocked
with 2.0 GHz each and 192 GB of RAM while each experiment only runs in a
single thread with a time–out of one hour. We ran the following benchmarks3:

Crowds Protocol [21]. This protocol aims at anonymizing the sender of R mes-
sages by routing them probabilistically through a crowd of N hosts. Some of these
hosts, however, are corrupt and try to determine the real sender by observing the
host that most recently forwarded a message. For this model, we are interested
in (a) the probability that the real sender is observed more than R/10 times,
and (b) the expected number of times that the real sender is observed.

We also consider a variant (crowds-obs) of the model in which an observe
statement ensures that after all messages have been delivered, hosts different
from the real sender have been observed at least R/4 times. Unlike the model
from the PRISM website, our model abstracts from the concrete identity of hosts
different from the sender, since they are irrelevant for properties of interest.

Herman Protocol. In this protocol [22], N hosts form a token-passing ring and
try to steer the system into a stable state. We consider the probability that the
system eventually reaches such a state in two variants of this model where the
initial state is either chosen probabilistically or nondeterministically.

Robot. The robot case-study is loosely based on a similar model from the PRISM
benchmark suite. It models a robot that navigates through a bounded area of an
unbounded grid. Doing so, the robot can be blocked by a janitor that is moving
probabilistically across the whole grid. The property of interest is the probability
that the robot will eventually reach its final destination.
3 All input programs and log files of the experiments can be downloaded at

moves.rwth-aachen.de/wp-content/uploads/conference material/pgcl atva16.tar.gz.

https://moves.rwth-aachen.de/wp-content/uploads/conference_material/pgcl_atva16.tar.gz
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Predator. This model is due to Lotka and Volterra [23, p. 127]. A predator and a
prey population evolve with mutual dependency on each other’s numbers. Follow-
ing some basic biology principles, both populations undergo periodic fluctuations.
We are interested in (a) the probability of one of the species going extinct, and (b)
the expected size of the prey population after one species has gone extinct.

Coupon Collector. This is a famous example4 from textbooks on randomized
algorithms [24]. A collector’s goal is to collect all of N distinct coupons. In every
round, the collector draws three new coupons chosen uniformly at random out
of the N coupons. We consider (a) the probability that the collector possesses
all coupons after N rounds, and (b) the expected number of rounds the collector
needs until he has all the coupons as properties of interest. Furthermore, we
consider two slight variants: in the first one (coupon-obs), an observe statement
ensures that the three drawn coupons are all different and in the second one
(coupon-classic), the collector may only draw one coupon in each round.

Table 1 shows the results for the probability queries. For each model instance,
we give the number of explored states and transitions and whether or not the

Table 1. Benchmark results for probability queries.

Program Instance #states #trans Full? λ Result Actual Time

Crowds (100, 60) 877370 1104290 yes 0.29 0.33 0.33 109

(100, 80) 106 1258755 no 0.30 0.33 0.33 131

(100, 100) 2 · 106 2518395 no 0.30 0.33 0.33 354

Crowds-obs (100, 60) 878405 1105325 yes 0.23 0.26 0.26 126

(100, 80) 106 1258718 no 0.23 0.25 0.26 170

(100, 100) 3 · 106 3778192 no 0.23 0.26 0.26 890

Herman (17) 106 1136612 no 0.9 0.99 1 91

(21) 106 1222530 no 0.9 0.99 1 142

Herman-nd (13) 1005945 1112188 yes 0.9 1 1 551

(17) − − no 0.9 0 1 TO

Robot - 181595 234320 yes 0.9 1 1 24

Predator - 106 1234854 no 0.9 0.98 1 116

Coupon (5) 106 1589528 no 0.75 0.83 0.83 11

(7) 2 · 106 3635966 no 0.67 0.72 0.74 440

(10) − − no 0.57 0 0.63 TO

Coupon-obs (5) 106 1750932 no 0.85 0.99 0.99 11

(7) 106 1901206 no 0.88 0.91 0.98 15

(10) − − no 0.85 0 0.95 TO

Coupon-classic (5) 106 1356463 no 3.4e-3 3.8e-3 3.8e-3 9

(7) 106 1428286 no 5.5e-4 6.1e-4 6.1e-4 9

(10) − − no 3.3e-5 0 3.6e-5 TO

4 https://en.wikipedia.org/wiki/Coupon collector%27s problem.

https://en.wikipedia.org/wiki/Coupon_collector%27s_problem
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model was fully expanded. Note that the state number is a multiple of 106 in case
the model was not fully explored, because our prototype always expands 106 states
before it does the next model checking call. The next three columns show the prob-
ability bound (λ), the result that the tool could achieve as well as the actual answer
to the query on the full (potentially infinite) model. Due to space constraints, we
rounded these figures to two significant digits. We report on the time in seconds
that the prototype took to establish the result (TO = 3600 s).

We observe that for most examples it suffices to perform few unfolding steps
to achieve more than 90 % of the actual probability. For example, for the largest
crowds-obs program, 3 · 106 states are expanded, meaning that three unfolding
steps were performed. Answering queries on programs including an observe state-
ment can be costlier (crowds vs. crowds-obs), but does not need to be (coupon vs.
coupon-obs). In the latter case, the observe statement prunes some paths early
that were not promising to begin with, whereas in the former case, the observe
statement only happens at the very end, which intuitively makes it harder for
the search to find target states. We are able to obtain non-trivial lower bounds
for all but two case studies. For herman-nd, not all of the (nondeterministically
chosen) initial states were explored, because our exploration order currently does
not favour states that influence the obtained result the most. Similarly, for the
largest coupon collector examples, the time limit did not allow for finding one
target state. Again, an exploration heuristic that is more directed towards these
could potentially improve performance drastically.

Table 2 shows the results for computing the expected value of program vari-
ables at terminating states. For technical reasons, our prototype currently cannot

Table 2. Benchmark results for expectation queries.

Program Instance #states #trans Full? Result Actual Time

Crowds (100, 60) 877370 1104290 yes 5.61 5.61 125

(100, 80) 106 1258605 no 7.27 7.47 176

(100, 100) 2 · 106 2518270 no 9.22 9.34 383

Crowds-obs (100, 60) 878405 1105325 yes 5.18 5.18 134

(100, 80) 106 1258569 no 6.42 6.98 206

(100, 100) 2 · 106 2518220 no 8.39 8.79 462

Predator − 3 · 106 3716578 no 99.14 ? 369

Coupon (5) 106 1589528 no 4.13 4.13 15

(7) 3 · 106 5379492 no 5.86 6.38 46

(10) − − no 0 10.1 TO

Coupon-obs (5) 106 1750932 no 2.57 2.57 13

(7) 2 · 106 3752912 no 4.22 4.23 30

(10) − − no 0 6.96 TO

Coupon-classic (5) 106 1356463 no 11.41 11.42 15

(7) 106 1393360 no 18.15 18.15 21

(10) − − no 0 29.29 TO
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Fig. 3. The obtained values approach the actual value from below.

perform more than one unfolding step for this type of query. To achieve mean-
ingful results, we therefore vary the number of explored states until 90 % of the
actual result is achieved. Note that for the predator program, the actual value
for the query is not known to us, so we report on the value at which the result
only grows very slowly. The results are similar to the probability case in that
most often a low number of states suffices to show meaningful lower bounds.
Unfortunately — as before — we can only prove a trivial lower bound for the
largest coupon collector examples.

Figure 3 illustrates how the obtained lower bounds approach the actual
expected value with increasing number of explored states for two case stud-
ies. For example, in the left picture one can observe that exploring 60000 states
is enough to obtain a very precise lower bound on the expected number of rounds
the collector needs to gather all five coupons, as indicated by the dashed line.

Finally, we analyze a parametric version of the crowds model that uses the
parameters f and b to leave the probabilities (i) for a crowd member to be cor-
rupt (b) and (ii) of forwarding (instead of delivering) a message (f) unspecified.
In each iteration of our algorithm, we obtain a rational function describing a
lower bound on the actual probability of observing the real sender of the mes-
sage more than once for each parameter valuation. Figure 4 shows the regions of

(a) after 9 iterations (b) after 13 iterations

Fig. 4. Analyzing parametric models yields violating parameter instances.
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the parameter space in which the protocol was determined to be unsafe (after
iterations 9 and 13, respectively) in the sense that the probability to identify
the real sender exceeds 1

2 . Since the results obtained over different iterations are
monotonically increasing, we can conclude that all parameter valuations that
were proved to be unsafe in some iteration are in fact unsafe in the full model.
This in turn means that the blue area in Fig. 4 grows in each iteration.

5 Conclusion and Future Work

We presented a direct verification method for probabilistic programs employing
probabilistic model checking. We conjecture that the basic idea would smoothly
translate to reasoning about recursive probabilistic programs [25]. In the future
we are interested in how loop invariants [26] can be utilized to devise complete
model checking procedures preventing possibly infinite loop unrollings. This
is especially interesting for reasoning about covariances [27], where a mixture
of invariant–reasoning and successively constructing the operational MC would
yield sound over- and underapproximations of covariances. To extend the gain
for the user, we will combine this approach with methods for counterexamples
[28], which can be given in terms of the programming language [19,29]. More-
over, it seem promising to investigate how approaches to automatically repair a
probabilistic model towards satisfaction of properties [30,31] can be transferred
to programs.
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Abstract. We study several decision problems for counter systems with
guards defined by convex polyhedra and updates defined by affine trans-
formations. In general, the reachability problem is undecidable for such
systems. Decidability can be achieved by imposing two restrictions: (1)
the control structure of the counter system is flat, meaning that nested
loops are forbidden, and (2) the multiplicative monoid generated by the
affine update matrices present in the system is finite. We provide com-
plexity bounds for several decision problems of such systems, by proving
that reachability and model checking for Past Linear Temporal Logic
stands in the second level of the polynomial hierarchy ΣP

2 , while model
checking for First Order Logic is PSPACE-complete.

1 Introduction

Counter systems are finite state automata extended with integer variables, also
known as counter automata or counter machines. These are Turing-complete
models of computation, often used to describe the behavior of complex real-life
systems, such as embedded/control hardware and/or software systems. Because
many verification problems, of rather complex systems, can be reduced to deci-
sion problems for counter systems, it is important to understand the difficulties
faced by potential verification algorithms designed to work with the latter.

Due to their succinctness and expressive power, most decision problems, such
as reachability, termination and temporal logic model-checking, are undecidable
for counter systems, even when the operations on the counters are restricted to
increment, decrement and zero-test [24]. This early negative result motivated the
search for subclasses with decidable decision problems. Such classes include one-
counter systems [14], vector addition systems with states [22], reversal-bounded
counter machines [15] and flat counter systems [4,12].

Flat counter systems are defined by a natural syntactic restriction, which
requires that no state occurs in more than one simple cycle in the control flow
graph of the system. Decidability results on the verification of reachability prob-
lems for flat counter systems have been obtained by proving that, under certain
restrictions on the logic that defines the transition rules, the set of reachable
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configurations is semilinear and effectively definable in Presburger arithmetic
[4,6,12]. Even though flatness is an important restriction (few counter sys-
tems modeling real-life hardware and software artifacts are actually flat), this
class provides the grounds for a useful method that under-approximates the
set of behaviors of a non-flat counter system by larger and larger sets of paths
described by flat counter systems. This method is currently used by model check-
ing tools, such as Fast [2] and Flata [19], and has been applied to improve the
results of static analysis [13], as well as the convergence of counterexample-
driven abstraction refinement algorithms [17]. Moreover, several works define
classes of flattable counter systems, for which there exist flat unfoldings of the
system with identical reachability sets. Such is the case of timed automata [7]
and of 2-dimensional vector addition systems with states [3,21]. For these sys-
tems, the method of under-approximations by flat unfoldings is guaranteed to
terminate.

In general, the flatness restriction is shown to reduce the computational com-
plexity of several decision problems, such as reachability or temporal logic model
checking. For instance, in the case of Kripke structures, flatness reduces the com-
plexity of the model-checking of Linear Temporal Logic (LTL) from PSPACE
to NP [20]. When considering flat counter systems whose updates are described
by translations, the complexity of these problems drops from undecidable to
NP-complete [10], while model checking for First Order Logic (FO) is coined to
be PSPACE-complete [8]. For branching time temporal logics, flatness yields
decidable problems, but with less remarkable complexity bounds [9].

In this work, we focus on the model of affine counter systems, in which
each transition is labeled with (i) a guard defined by (a disjunction of) convex
polyhedra, i.e. linear systems of inequalities of the form C · x ≤ d , and (ii)
a deterministic update defined by an affine transformations f(x ) = A · x + b
where A,C ∈ Z

n×n are square matrices with integer entries, b,d ∈ Z
n are

vectors of integer constants and x = [x1, . . . , xn] is a vector of counters. For
such systems, the set of reachable configurations is semilinear (thus reachability
is decidable), provided that the multiplicative monoid generated by the matrices
used in update functions is finite. This condition is also known as the finite
monoid property [4,12]. Moreover, it has been shown that the model-checking
of such systems, for an extended version of the branching time logic CTL∗ is
decidable, also by reduction to the satisfiability of a Presburger formula, of size
exponential in the size of the counter system [11].

In this work, we show that for flat affine counter systems with the finite
monoid property, reachability and model checking for Past LTL are ΣP

2 , whereas
model checking for FO is PSPACE-complete. Our result generalizes the results
for flat counter systems with translations [8,10], since these systems are a strict
subclass of flat affine counter systems with the finite monoid property. For
instance, a transfer of values between different counters can be done in one
step with an affine counter system, whereas a translating counter system would
need a cycle to implement such operations. Our proof technique is based on an
analysis of the behavior of the sequence of matrix powers in a finite multiplicative
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monoid, and adapts several techniques for translating counter systems to this
more general case.

Due to lack of space, omitted proofs can be found in [18].

2 Counter Systems and Their Decision Problems

We denote by N and Z the sets of natural and integer numbers, respectively.
We write [�, u] for the integer interval {�, � + 1, . . . , u}, where � ≤ u, and abs(n)
for the absolute value of the integer n ∈ Z. The cardinality of a finite set S is
denoted by ‖S‖.

We denote by Z
n×m the set of matrices with n rows and m columns, where

A[i] is the i-th column and A[i][j] is the entry on the i-th row and j-th column
of A ∈ Z

n×m, for each i ∈ [1, n] and j ∈ [1,m]. If n = m, we call this number the
dimension of A, and we denote by In the identity matrix in Z

n×n. For A ∈ Z
n×m

and B ∈ Z
m×p, we denote by A · B ∈ Z

n×p the matrix product of A and B .
For a matrix A ∈ Z

n×n, we define A0 = In and Ai = Ai−1 · A, for all i > 0.
We write Z

n for Z
n×1 in the following. Each v ∈ Z

n is a column vector,
where v [i] is the entry on its i-th row. For a vector x of variables of length n
and a matrix A ∈ Z

m×n, the product A · x is the vector of terms (A · x )[i] =∑n
j=1 A[i][j]·x [j], for all i ∈ [1,m]. A row vector is denoted by v = [v1, . . . , vn] ∈

Z
1×n. For a row vector v , we denote its transpose by v�.

For a vector v ∈ Z
n, we consider the standard infinity ‖ v ‖∞= maxn

i=1

abs(v [i]) norm . Given A ∈ Z
m×n, consider the induced ‖ A ‖∞= maxm

i=1∑n
j=1 abs(A[i][j]), and the maximum ‖ A ‖max= maxm

i=1 maxn
j=1 abs(A[i][j])

norms. The size of a matrix is size(A) =
∑m

i=1

∑n
j=1 log2(A[i][j] + 1), with

integers encoded in binary.

2.1 Counter Systems

Let Xn = {x1, x2, . . . , xn} be a finite set of integer variables, called counters, x
be the vector such that x [i] = xi, for all i ∈ [1, n], and AP = {a,b, c, . . .} be
a countable set of Boolean atomic propositions. A guard is either true, denoted
by �, or a disjunction of systems of inequalities, denoted by

∨k
i=1 C i · x ≤ d i

where C i ∈ Z
m×n and d i ∈ Z

m for all i ∈ [1, k]. A guard is said to be without
disjunction if it is either true or it consists of a single system of inequalities.

An integer vector v ∈ Z
n satisfies the guard g, written v |= g, if either (i)

g := �, or (ii) g :=
∨k

i=1 C i ·x ≤ d i and v is a solution of a system C i ·x ≤ d i,
for some i ∈ [1, k]. The set of guards using Xn is denoted by CG(Xn). An affine
function f : Zn → Z

n is a pair (A, b) ∈ Z
n×n × Z

n. Given a vector v ∈ Z
n, the

result of the function f = (A, b) applied to v is f(v) = A · v + b. We denote by
Affn the set of affine functions over Zn. An affine function (A, b) where A = I n

is called a translation.

Definition 1 (Affine Counter System). For an integer n ≥ 0, an affine counter
system of dimension n (shortly a counter system) is a tuple S = 〈Q,Xn,Δ,Λ〉,
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where: (i) Q is a finite set of control states, (ii) Λ : Q → 2AP is a labeling
function, and (iii) Δ ⊆ Q×CG(Xn)×Affn ×Q is a finite set of transition rules
labeled by guards and affine functions (updates).

A counter system is said to be disjunction free if all its guards are with-
out disjunction. For a transition rule δ = 〈q, g, f, q′〉 ∈ Δ, we use the nota-
tions source(δ) = q, guard(δ) = g, update(δ) = f and target(δ) = q′. A
path π of S is a non-empty sequence of transition rules δ1 . . . δm such that
source(δi+1) = target(δi) for all i ∈ [1,m − 1]. The path π is a simple cycle
if δ1 . . . δm are pairwise distinct and source(δ1) = target(δm). In this case,
we denote source(π) = target(π) = source(δ1). A counter system S is flat if
for each control state q ∈ Q there exists at most one simple cycle π such
that source(π) = q. In such a system any path leaving a simple cycle cannot
revisit it.

Example 1. Figure 1 shows a flat counter system whose control states q0, q1, q2, q3
are labeled by the atomic propositions a, b, c, d, respectively. From the initial
state q0 with all counters equal to 0, this system begins with incrementing x1 a
certain number of times by a transition δ0 then, with δ1, it transfers the value
of the counter x1 to x3 and resets x1; the loop labeled by δ2 increments both x1

and x2 until they both reach the value of x3 and finally the loop labeled by δ4 is
used to decrement x2 and increment x1 until the value of x1 is twice the value
of x3. As a consequence, when the system reaches q3 the value of x1 is twice the
value of x3 and the value of x2 is equal to 0. Hence, any run reaching q3 visits
the state q1 exactly the same number of times as the state q2. �

q0
{a}

1 0 0
0 1 0
0 0 1

1
0
0

δ0

q1
{b}

x1≥1

0 0 0
0 0 0
1 0 0

0
0
0

δ1

x3≥1

1 0 0
0 1 0
0 0 1

1
1
0

δ2

q2
{c}

x1=x3

1 0 0
0 1 0
0 0 1

0
0
0

δ3

x2≥1

1 0 0
0 1 0
0 0 1

1
−1
0

δ4

q3
{d}

x1=2x3

1 0 0
0 1 0
0 0 1

0
0
0

δ5

1 0 0
0 1 0
0 0 1

0
0
0

δ6

Fig. 1. A flat affine counter system

The size of a counter system S is size(S) =
∑

δ∈Δ size(δ) +
∑

q∈Q ‖Λ(q)‖,

where size(δ) = 1 + size(guard(δ)) + size(update(δ)), for a guard g :=
∨k

i=1 C i ·
x ≤ d i we have size(g) = Σk

i=1size(C i)+size(d i), and for an update f = (A, b),
size(f) = size(A) + size(b).

A counter system of dimension n = 0 is called a Kripke structure. We denote
by KS and KSf the sets of Kripke structures and flat Kripke structures, respec-
tively. A counter system of dimension n ≥ 1 is translating if all updates labeling
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the transition rules are pairs (In, b). Let TS and TSf denote the sets of trans-
lating and flat translating counter systems of any dimension n ≥ 1.

For a counter system S of dimension n ≥ 1, we consider MS ⊆ Z
n×n to be

the smallest set of matrices, closed under product, which contains In and each
matrix A occurring in an update (A, b) of a transition rule in S. Clearly, MS

forms a monoid with the matrix product and identity In. We say that S has the
finite monoid property if the set MS is finite. Let ASfm be the set of flat counter
systems with the finite monoid property and ASdf

fm its restriction to disjunction
free systems. These latter classes are the main focus of this paper.

A configuration of the counter system S = 〈Q,Xn,Δ,Λ〉 is a pair (q, v) ∈
Q × Z

n, where q is the current control state and v [i] is the value of the counter
xi, for all i ∈ [1, n]. Given two configurations γ = (q, v) and γ′ = (q′, v ′)
and a transition rule δ, we write γ

δ−→ γ′ iff q = source(δ), q′ = target(δ),

v |= guard(δ) and v ′ = update(δ)(v). We use the notation γ −→ γ′ when there

exists a transition rule δ such that γ
δ−→ γ′. A run of S is then an infinite

sequence of the form ρ : γ0
δ0−→ γ1

δ1−→ γ2
δ2−→ . . .. We say that such a run starts

at configuration γ0, furthermore we denote by trans(ρ) = δ0δ1δ2 . . . the infinite
sequence of transition rules seen during ρ. Without loss of generality we consider
deadlock-free counter systems only, where for each configuration γ ∈ Q × Z

n,
there exists a configuration γ′ such that γ −→ γ′1.

Example 2. The sequence below is a run of the counter system from Fig. 1:
⎛

⎝q0,

⎡

⎣
0
0
0

⎤

⎦

⎞

⎠ δ0−→
⎛

⎝q0,

⎡

⎣
1
0
0

⎤

⎦

⎞

⎠ δ1−→
⎛

⎝q1,

⎡

⎣
0
0
1

⎤

⎦

⎞

⎠ δ2−→
⎛

⎝q1,

⎡

⎣
1
1
1

⎤

⎦

⎞

⎠ δ3−→
⎛

⎝q2,

⎡

⎣
1
1
1

⎤

⎦

⎞

⎠

δ4−→
⎛

⎝q2,

⎡

⎣
2
0
1

⎤

⎦

⎞

⎠ δ5−→
⎛

⎝q3,

⎡

⎣
2
0
1

⎤

⎦

⎞

⎠ δ6−→
⎛

⎝q3,

⎡

⎣
2
0
1

⎤

⎦

⎞

⎠ δ6−→
⎛

⎝q3,

⎡

⎣
2
0
1

⎤

⎦

⎞

⎠ δ6−→ · · · �

2.2 Decision Problems

The reachability problem for a class of counter systems C, denoted by Reach(C),
can then be stated as follows: given a counter system S in C, an initial configu-
ration γ0, and a control state qf , does S have a run starting in γ0 and containing
a configuration (qf , v), for some v ∈ Z

n? It is well known that Reach(TS) is
undecidable for non-flat counter systems, even for only 2 counters with zero test
guards, and increment/decrement updates [24].

In this work we also consider model checking problems for two specification
logics, namely Past Linear Temporal Logic (PLTL) and First Order Logic (FO).

1 We ensure deadlock-freedom by adding a sink state σ to S, with a self-loop σ
�−→ σ,

and a transition q
�−→ σ from each state q ∈ Q.
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The formulae of PLTL are defined by the grammar: φ ::= p | ¬φ | φ ∧ φ | Xφ |
φUφ | X−1φ | φSφ, where p ∈ AP. As usual, we consider the derived modal
operators Fφ := �Uφ and Gφ := ¬F¬φ. Given a run ρ : γ0

δ0−→ γ1
δ1−→ γ2

δ2−→ . . .

of a counter system S and a PLTL formula φ, the semantics of PLTL is defined
by an inductive forcing relation ρ, i |=PLTL φ, where for all i ≥ 0: ρ, i |=PLTL p ⇔
γi = (q, v) and p ∈ Λ(q); ρ, i |=PLTL Xφ ⇔ ρ, i + 1 |=PLTL φ; ρ, i |=PLTL φUψ ⇔
ρ, j |=PLTL ψ for some j ≥ i and ρ, k |=PLTL φ for all i ≤ k < j; ρ, i |=PLTL X−1φ ⇔
i > 0 and ρ, i − 1 |=PLTL φ; ρ, i |=PLTL φSψ ⇔ ρ, j |=PLTL ψ for some 0 ≤ j ≤
i and ρ, k |=PLTL φ for all j < k ≤ i. The semantics of the Boolean connectives ∧
and ¬ is the usual one. We write ρ |=PLTL φ for ρ, 0 |=PLTL φ. For instance, each
run of the counter system from Fig. 1 satisfies G((b ∧ Xb ∧ Fd) → F(c ∧ Xc)),
because each run visiting q3 sees the same number of b’s and c’s.

The formulae of FO are defined by the grammar: φ ::= p(z) | z < z′ | ¬φ |
φ ∧ φ | ∃z.φ, where p ∈ AP and z belongs to a countable set of logical variables
Var. The semantics is given by a forcing relation ρ |=FO φ between runs ρ of S and
closed formulae φ, with no free variables, which interprets the quantified variables
z ∈ Var as positive integers denoting positions in the run. With this convention,
the semantics of FO is standard. For instance, each run of the counter system
from Fig. 1 satisfies the FO property: ∀x∀x′.(x < x′ ∧ b(x) ∧ b(x′) ∧ ∃z.d(z)) →
∃y∃y′ . c(y) ∧ c(y′), which differs from the previous PLTL formula only in that x
and x′ (y and y′) are not necessarily consecutive moments in time. For both of
these logics, we consider the size of a formula as its number of subformulae.

The model-checking problem for counter systems in a class C with specifi-
cation language L (in this work either PLTL or FO), denoted by MCL(C), is
defined as follows: given a counter system S in C, an initial configuration γ0, and
a formula φ of L, does there exist a run ρ of S starting in γ0 such that ρ |=L φ.

Table 1. Known results

KS KSf TS TSf ASfm

Reach NLOGSPACE NLOGSPACE Undec. [24] NP-c. [10] 4EXPtime [12]

MCPLTL PSPACE-c. [25] NP-c. [10,20] Undec. NP-c. [10] 4EXPTIME [11]

MCFO NONELEM. [26] PSPACE-c. [8] Undec. PSPACE-c. [8] Decid. [11]

Table 1 gives an overview of the known complexity bounds for the previously
mentioned decision problems looking at different classes of counter systems.
For flat Kripke structures, it is proved in [10,20] that MCPLTL(KSf) is NP-
complete and in [8] that MCFO(KSf) is Pspace-complete, whereas MCPLTL(KS)
is Pspace-complete and MCFO(KS) is non-elementary. As explained in [8,10],
the complexity of these two last problems does not change if one considers flat
translating counter systems. For what concerns flat counter systems with the
finite monoid property, it has been shown that one can compute a Presburger
formula which characterizes the reachability set, which entails the decidability
of Reach(ASfm) [12]. Later on, in [11], the authors have shown that the model-
checking of an extension of the branching time logic CTL∗ is decidable. Hence we
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know that MCPLTL(ASfm) and MCFO(ASfm) are decidable, however no precise
complexity for these problems is known. We only can deduce from the proofs in
[5,11,12] that for Reach(ASfm) and MCPLTL(ASfm) there exists a reduction to
the satisfiability problem for Presburger arithmetic where the built formula is
exponentially bigger than the size of the model, this leads to an upper bound
in 4EXPTIME (the satisfiability problem for Presburger arithmetic can in fact
be solved in 3EXPTIME, see e.g. [16]).

In this work, we aim at improving the complexity for the problems related
to affine counter systems with the finite monoid property. Note that for the pre-
sented results, the counter systems were manipulating natural numbers instead
of integers, but considering the latter option does not change the stated results.

3 A Hardness Result

In this section we prove that the reachability problem for flat affine counter
systems with the finite monoid property is ΣP

2 -hard, by reduction from the
validity problem for the ∃∗∀∗ fragment of quantified boolean formulae (Σ2-QBF),
which is a well-known ΣP

2 -complete problem [1, Sect. 5.2]. Let us consider a
formula Φ := ∃y1 . . . ∃yp∀z1 . . . ∀zq . Ψ(y , z ), where y = {y1, . . . , yp} and z =
{z1, . . . , zq} are non-empty sets of boolean variables, and Ψ is a quantifier-free
boolean formula. We shall build, in polynomial time, a flat counter system SΦ,
with the finite monoid property, such that Φ is valid if and only if SΦ has a run
reaching qf which starts in (q0, v0) for a certain valuation v0 of its counters.

q0 q1

(IN ,e1)

(IN ,0)

q2

(IN ,e2)

(IN ,0)

q3

(IN ,e3)

(IN ,0)

· · · qp−1 qp

(IN ,ep)

(IN ,0)

q

g1
(M ,0)

g1
(M ,0)

qf

g2
(IN ,0)

Fig. 2. The counter system SΦ corresponding to the Σ2-QBF Φ

Let πn denote the n-th prime number, i.e. π1 = 2, π2 = 3, π3 = 5, etc.
Formally, SΦ = 〈Q,XN ,Δ,Λ〉, where Q = {q0, . . . , qp, q, qf}, N = p +

∑q
n=1 πn,

and Λ is the function associating to each state an empty set of propositions. We
recall that πn is a polynomial in the size of n, hence N is as well polynomial
in the size of n. The transition rules Δ are depicted in Fig. 2. Intuitively, each
existentially quantified boolean variable yi of Φ is modeled by the counter xi

in SΦ, each universally quantified variable zj of Φ is modeled by the counter
xp+

∑j
n=1 πn

, and the rest are working counters. All counters range over the set
{0, 1}, with the obvious meaning (0 stands for false and 1 for true).

The counter system SΦ works in two phases. The first phase, corresponding
to transitions q0 −→ . . . −→ qp, initializes the counters x1, . . . , xp to some values
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from the set {0, 1}, thus mimicking a choice of boolean values for the existentially
quantified variables y1, . . . , yp from Φ. Here IN ∈ Z

N×N is the identity matrix,
and e i ∈ {0, 1}N is the unit vector such that e i[j] = 0 if j �= i and e i[i] = 1.

The second phase checks that Φ is valid for each choice of z1, . . . , zq. This
is done by the cycle q −→ q, which explores all combinations of 0’s and 1’s for

the counters xp+
∑j

n=1 πn
, corresponding to zj , for all j ∈ [1, q]. To this end,

we use the permutation matrix M , which consists of Ip and q rotation blocks
M πj

∈ {0, 1}πj×πj (Fig. 3). The valuation v0 ensures that the initial value of
xp+

∑j
n=1 πn

is 1, for all j ∈ [1, q], the other counters being 0 initially (Fig. 3).

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ip

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
Mπ1

0 0

0 0
. . .

0 0 0

0 0 0

0 0 0
Mπq

0
0

p

p
π1

π1

πq

πq

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0

0 0 1
. . . 0

0 0
. . .

. . . 0

0 0 0 0 1

1 0 · · · 0 0

0
⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

.

.

.

0

0

1

.

.

.

0

.

.

.

0

1

⎞

⎟
⎟
⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

M Mπj
v0

Fig. 3. Matrix M and initial vector v0

Intuitively, after n iterations of the affine function (M ,0 ), labeling the cycle
q −→ q in SΦ, we have xp+

∑j
n=1 πn

= 1 iff n is a multiple of πj . This fact guarantees

that all combinations of 0’s and 1’s for z1, . . . , zq have been visited in Πq
j=1πj

iterations of the cycle. The guard g1, labeling the cycle, tests that, at each
iteration, the formula Ψ is satisfied, using a standard encoding of the formula Ψ .
Namely, each variable yi is encoded as the term xi ≥ 1 and each zj is encoded
as xp+

∑j
n=1 πn

≥ 1.
For instance, the formula y1 ∨ ¬z2 is encoded as x1 ≥ 1 ∨ ¬(xp+π1+π2 ≥ 1))

which is equivalent to x1 ≥ 1 ∨ xp+π1+π2 < 1. Finally, the guard g2 simply
checks that xπ1 = . . . = xπ1+...+πq

= 1, ensuring that the loop has been iterated
sufficiently many times. This allows us to deduce the following result.

Lemma 1. Reach(ASfm) is ΣP
2 -hard.

4 Bounding the Number of Cycle Iterations

In this section we prove a crucial property of counter systems from the ASdf
fm

class, namely that there exists a polynomial function Poly(x) such that, for each
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run ρ starting at γ0 of the considered counter system, there exists another run
ρ′ starting at γ0, using the same transition rules as ρ, in exactly the same order,
and which iterates each simple cycle at most 2Poly(size(S)+size(γ0)) times.

In the rest of this section, we fix a flat disjunction free affine counter system
S = 〈Q,Xn,Δ,Λ〉 with the finite monoid property. We recall here that the set of
runs of a flat counter system can be captured by a finite (though exponential)
number of path schemas [8]. Formally, a path schema is a non-empty finite
sequence P := u1 . . . uN , where ui is either a transition rule from Δ or a simple
cycle, such that (i) u1, . . . , uN are pairwise distinct, (ii) uN is a simple cycle,
called terminal, and (iii) target(ui) = source(ui+1), for all i ∈ [1, N − 1]. All
simple cycles on P , except for uN , are called nonterminal. We use then the
following notations: len(P ) for N , P [i] for ui with i ∈ [1, N ], and size(P ) is the
sum of the sizes of all transition rules occurring in P .

Intuitively a path schema P represents a set of infinite paths obtained by iter-
ating the non-terminal cycles a certain number of times. We can hence represent
such a path by an associated path schema and an iteration vector. Formally,
an iterated path schema is a pair 〈P,m〉, such that P is a path schema, and
m ∈ N

len(P )−1 is a vector, where for all i ∈ [1, len(P ) − 1], m [i] ≥ 1 and
m [i] > 1 implies that P [i] is a cycle. An iterated path schema defines a unique
infinite word over Δ, denoted by trans(P,m) = P [1]m[1]P [2]m[2] · · · P [len(P )−
1]m[len(P )−1]P [len(P )]ω. We recall the following result:

Lemma 2 [10]. Let S be a flat affine counter system. Then:

1. the length and the size of a path schema of S are polynomial in size(S);
2. for any run ρ of S, there exists an iterated path schema 〈P,m〉 such that

trans(ρ) = trans(P,m).

For a run ρ, we consider the set ips(ρ) = {〈P,m〉 | trans(ρ) = trans(P,m)}.
Observe that ips(ρ) �= ∅ for any run ρ of S, due to Lemma 2 (2). Moreover, as a
consequence of Lemma 2 (2), the number of path schemas is bounded by a simple
exponential in the size of S. Note that ips(ρ) is not necessarily a singleton: if a
run enters and exits a loop in different states then, in the path schema, the loop
may begin either from the entering state or from the exiting state.

We fix a run ρ of S starting at γ0, and 〈P,m〉 ∈ ips(ρ) an iterated path
schema corresponding to ρ. We consider a simple cycle c = δ0 . . . δk−1 of P , whose
transition rules are δi = 〈qi,C i · x ≤ d i, (Ai, bi), qi+1〉, for all i ∈ [0, k − 1], and
qk = q0. Let fc = (Ac, bc) be the update of the entire cycle c, where Ac =
Ak−1 · · · A1 ·A0, denoted

∏0
i=k−1 Ai, and bc =

∑k−1
i=0

∏i+1
j=k−1 Aj · bi. Since S

has the finite monoid property, the set Mc =
{
Ai

c | i ∈ N
}

is finite. Then there
exist two integer constants α, β ∈ N, such that 0 ≤ α+β ≤‖Mc‖ +1, and Aα

c =
Aα+β

c . Observe that, in this case, we have Mc =
{
A0

c , . . . ,A
α
c , . . . ,Aα+β−1

c

}
.

Our goal is to exhibit another run ρ′ of S and an iterated path schema
〈P,m ′〉 ∈ ips(ρ′), such that ‖m ′ ‖∞≤ 2Poly(size(S)+size(γ0)), for a polynomial
function Poly(x). Because c = δ0 . . . δk−1 is a simple cycle of P and 〈P,m〉 ∈
ips(ρ), there exists a (possibly infinite) contiguous subsequence of ρ, let us call



98 R. Iosif and A. Sangnier

it θ = (q0, v0)
τ0−→ (q1, v1)

τ1−→ . . . that iterates c, i.e. τi = δ(i mod k), for all i ≥ 0.
In the following, we call any subsequence of a run an execution.

The main intuition now is that θ can be decomposed into a prefix of
length (α + β)k and k infinite sequences of translations along some effectively
computable vectors w0, . . . ,wk−1. More precisely, all valuations v i of θ, for
i ≥ (α + β)k, that are situated at distance βk one from another, differ by
exactly the same vector. We refer to Fig. 4 for an illustration of this idea.

(q0,v0) (q1,v1)
δ0 . . .

δ1
(q0,vk)

δk−1
. . .

δ0
(qk−1,vαk−1)

δk−2

(q0,vαk)

δk−1

(q1,vαk+1)

δ 0

(q2,vαk+2)

δ 1

(qk−1,vαk+k−1)

(q0,vαk+k)

δ k
−
1

(q1,v(α+1)k+1)

δ 0

(qk−1,v(α+β)k−1)

δ k
−
2

(q0,v(α+β)k)

δ k
−
1

+w0

(q1,v(α+β)k+1)

δ 0

+w1

(q2,v(α+β)k+2)

δ 1

+w2

(qk−1,v(α+β)k+k−1)
+wk−1

(q0,v(α+β)k+k)

δ k
−
1

+w0

(q1,v(α+β+1)k+1)

δ 0

+w1

(qk−1,v(α+2β)k−1)

δ k
−
2

+wk−1

(q0,v(α+2β)k)

δ k
−1

+w0

(q1,v(α+2β)k+1)

δ 0

+w1

(q2,v(α+2β)k+2)

δ 1

+w2

(qk−1,v(α+2β)k+k−1)
+wk−1

(q0,v(α+2β)k+k)
δ k

−
1

+w0

(q1,v(α+2β+1)k+1)

δ 0
+w1

(qk−1,v(α+3β)k−1)

δ k
−
2

+wk−1

Fig. 4. Behavior of an execution which iterates α + 3β times the cycle c = δ0 . . . δk−1

Lemma 3. Given an execution (q0, v0)
δ0−→ . . .

δk−1−−−→ (qk, vk)
δ0−→ . . . of S that

iterates a simple cycle c = δ0 . . . δk−1, there exist w0, . . . ,wk−1 ∈ Z
n, such that

v(α+pβ+r)k+q = v(α+r)k+q + p ·wq, for all p ≥ 0, r ∈ [0, β − 1] and q ∈ [0, k − 1],
where fc = (Ac, bc) is the update of c and α, β ≥ 0 are such that Aα

c = Aα+β
c .

We distinguish now the case when c is a nonterminal cycle of P , iterated
finitely many times, from the case when c is terminal, thus iterated ad infinitum.
We consider first the case when c is a nonterminal cycle, taken a finite number
of times. Viewing the sequence of counter valuations, that occur during the
unfolding of a simple loop, as a set of translations by vectors w0, . . . ,wk−1,
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prefixed by an initial sequence, allows us to reduce the problem of checking the
validity of the guards along this sequence to checking the guards only in the
beginning and in the end of each translation by w q, for q ∈ [0, k − 1]. This is
possible because the counter systems is disjunction free and hence each guard
in the loop is defined by a convex vector set {v ∈ Z

n | C · v ≤ d}, for a matrix
C ∈ Z

m×n and a vector d ∈ Z
m, thus a sequence of vectors produced by a

translation cannot exit and then re-enter the same guard, later on. This crucial
observation, needed to prove the upper bound, is formalized below.

We consider the relaxed transition relation �⊆ (Q × Z
n) × Δ × (Q × Z

n),
defined as (q, v) δ� (q′, v ′) iff source(δ) = q, v ′ = update(δ)(v) and target(δ) =
q′. Hence, � allows to move from one configuration to another as in −→, but
without testing the guards. In the following, we fix a sequence of configurations
θ′ = (q0, v0)

τ0� (q1, v1)
τ1� . . . called a pseudo-execution. We assume, moreover,

that θ′ iterates the simple cycle c = δ0, . . . , δk−1 a finite number of times, i.e.
τi := δi mod k, for all i ≥ 0. To check whether θ′ is a real execution, it is enough
to check the guards in the first α + β + 1 and the last β iterations of the cycle,
as shown by the following lemma:

Lemma 4. For any m > (α+β+1)k, given a finite pseudo-execution (q0, v0)
τ0�

. . .
τm−1� (qm, vm) of S, that iterates a nonterminal simple cycle c = δ0 . . . δk−1,

(q0, v0)
τ0−→ . . .

τm−1−−−→ (qm, vm) is an execution of S iff vi |= guard(τi), for all

i ∈ [0, (α + β + 1)k − 1] ∪ [m − βk,m − 1].

The next step is to show that if a cycle is iterated � times with � = α + β +
pβ + r for some p > 0 and r ∈ [0, β − 1], starting with values v ∈ Z

n, then
[v [1], . . . , v [n], p]� is the solution of a system of inequations M c · [y ; z]� ≤ nc,
where [y ; z] = [y1, . . . , yn, z] is a vector of n + 1 variables. The bound on the
number of iterations follows from the theorem below, by proving that the sizes
of the entries of M c and nc (in binary) are bounded by a polynomial in size(S).

Theorem 1. Given A ∈ Z
m×n and b ∈ Z

m, for n ≥ 2, the system A · x ≤ b
has a solution in N

n iff it has a solution such that ‖x‖∞≤ m2n· ‖A‖n
max · ‖b‖∞.

We recall that c = δ0, . . . , δk−1, where guard(δi) := C i ·x ≤ d i, update(δi) :=
(Ai, bi), and that fc = (Ac, bc) is the affine function defining the update of the
entire cycle. For any j > 0, we define bj

c = Σj−1
i=0A

i
c · bc, hence f 


c = (A

c, b



c) is

the update corresponding to � iterations of the cycle for a fixed integer constant
� > 0. The following set of inequalities expresses the fact that all guards are
satisfied within the �-th iteration of the cycle starting at v ∈ Z

n:

C p · (
0∏

i=p−1

Ai · (A�−1
c · v + b�−1

c )+

p−1∑
i=0

Ap−1 · · ·Ai+1 · bi) ≤ dp, for all p = 0, . . . , k − 1

In the sequel, we define M 
 as the matrix obtained by vertically stacking the
matrices C j ·∏0

i=j−1 Ai ·A
−1
c for j = 0, . . . , k −1, with C 0 ·A
−1

c on top. Also,
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n
 is the column vector with rows n
[j] = d j − (
C j · ∏0

i=j−1 Ai · b
−1
c + C j ·

(
∑j−1

i=0 Aj−1 · · ·Ai+1 ·bi)
)
, for j = 0, . . . , k−1. For technical reasons that will be

made clear next, we do not need to consider the case when the loop is iterated
less than α + 2β + 1 times. We know, from Lemma 4, that checking whether a
given cycle c can be iterated � > α + 2β + 1 times from v , reduces to checking
the validity of the guards during the first α+β+1 and the last β iterations only.
This condition is encoded by the union of the linear inequality systems below:

[
M 1
. . .

M α+β+1

]

· v ≤
[

n1
. . .

nα+β+1

][
M 1
. . .
M β

]

· f 
−β
c (v) ≤

[
n1
. . .
nβ

]

Since we assumed that � > α+2β +1, it follows that �−β = α+pβ +r for some
p > 0 and r ∈ [0, β−1], thus f 
−β

c (v) = fα+r
c (v)+p·w0 = Aα+r

c ·v+bα+r
c +p·w0,

by Lemma 3. Then, for any finite execution starting with v , and consisting of
α + pβ + r iterations of c, we have that the column vector [v [1], . . . , v [n], p]� is
a solution of the linear system M c,r · [y ; z]� ≤ nc,r, where:

M c,r =

⎡

⎢
⎢
⎢
⎢
⎣

M 1 0
. . .

M α+β+1 0
M 1 · Aα+r

c M 1 · w0
. . .

M β · Aα+r
c M β · w0

⎤

⎥
⎥
⎥
⎥
⎦

nc,r =

⎡

⎢
⎢
⎢
⎢
⎣

n1
. . .

nα+β+1

n1 − M 1 · bα+r
c

. . .
nβ − M β · bα+r

c

⎤

⎥
⎥
⎥
⎥
⎦

We now consider the case when the simple cycle c = δ0 . . . δk−1 is terminal
and let w0, . . . ,wk−1 ∈ Z

n be the vectors from Lemma 3. We say that c is
infinitely iterable iff for all i ∈ [0, k−1], we have C i ·w i ≤ 0. Since w0, . . . ,wk−1

are effectively computable vectors2, this condition is effective. The next lemma
reduces the existence of an infinite iteration of the cycle to the existence of an
integer solution of a linear inequation system.

Lemma 5. Given an infinite pseudo-execution (q0, v0)
τ0� (q1, v1)

τ1� . . . of S,
that iterates a terminal simple cycle c = δ0 . . . δk−1, (q0, v0)

τ0−→ (q1, v1)
τ1−→ . . .

is an infinite execution of S iff c is infinitely iterable and vi |= guard(τi), for all
i ∈ [0, (α + β + 1)k − 1].

As a consequence, for an infinitely iterable cycle c, the existence of an execution
that iterates c infinitely often is captured by the linear system M c,ω · y ≤ nc,ω,
where M c,ω and nc,ω are obtained by stacking the matrices M 1, . . . ,M α+β+1

and vectors n1, . . . ,nα+β+1, respectively.
We have now all the ingredients needed to bound the number of cycle iter-

ations within the runs of a flat disjunction free affine counter system having
the finite monoid property. The argument used in the proof relies on the result
of Theorem 1, namely that the size of a minimal solution of a linear system
of inequalities is polynomially bounded in the maximum absolute value of its
2 They are defined in the proof of Lemma 3.
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coefficients, and the number of rows, and exponentially bounded in the num-
ber of columns. Since the number of rows depends on the maximum size of the
monoids of the update matrices in the counter system, we use the result from
[18, Lemma 13, Sect. B.1], namely that the size of a finite monoid of a square
matrix is simply exponential in the dimension of that matrix.

Theorem 2. Given a flat disjunction free affine counter system S =
〈Q,Xn,Δ,Λ〉, with the finite monoid property, for any run ρ of S, starting in
(q0, v0), and any iterated path schema 〈P,m〉 ∈ ips(ρ), there exists a run ρ′,
starting in (q0, v0), and an iterated path schema 〈P,m′〉 ∈ ips(ρ′), such that
‖m′‖∞≤ 2Poly(size(S)+size(v0)), for a polynomial function Poly(x).

5 The Complexities of Decision Problems for ASdf
fm

In this section, we will prove that the previous reasoning on iterated path
schemas allows us to deduce complexity bounds of the reachability problems and
of model-checking with PLTL and FO formulae for disjunction free flat counter
systems with the finite monoid property.

5.1 Reachability is ΣP
2

In this section we give the first upper bound, for the reachability problem and
show that Reach(ASdf

fm) is ΣP
2 . Even if this upper bound holds only for disjunc-

tion free counter system, we believe we could extend it to all the class ASfm by
adapting the method presented in [10] to eliminate the disjunctions. This would
allow us to match the lower bound from Sect. 3. However we did not wish to enter
into the heavy details of eliminating disjunctions in this work, in order to focus
more on the specific aspects of affine counter systems. Anyway the provided
result improves the 4EXPTIME upper bound from Table 1. The crux of the
proof is based on the result provided by Theorem2 and it follows the following
reasoning: we use a polynomial-time bounded nondeterministic Turing machine
that guesses an iterated path schema and then a NP oracle to check whether a
guard has been violated. This gives us an NPNP algorithm for Reach(ASdf

fm),
which then lies in ΣP

2 . Theorem 2 ensures us the soundness of the Algorithm
and the correctness is provided by the fact that if, in an iterated path schema,
no guard is violated then it corresponds necessarily to a run.

Let us now explain how our NP oracle works. The next lemma is based on
the fact that any power Ak of a finite monoid matrix A can be computed in time
polynomial in size(A) and log2 k, using matrix exponentiation by squaring. The
reason is that the value of an entry of any power of a finite monoid matrix A is
bounded by an exponential in size(A), thus the size of its binary representation
is polynomially bounded by size(A), and each step of the squaring algorithm
takes polynomial time [18, Lemma 14, Sect.Ḃ.1].

Lemma 6. Given an iterated path schema 〈P,m〉 of a counter system with the
finite monoid property S and an initial configuration γ0, checking whether there
is no run ρ starting at γ0 such that 〈P,m〉 ∈ ips(ρ) is in NP.
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The next theorem gives the main result of this section.

Theorem 3. Reach(ASdf
fm) is ΣP

2 .

5.2 PLTL Model Checking is ΣP
2

For a PLTL formula φ, its temporal depth td(φ) is defined as the maximal nesting
depth of temporal operators in φ, and the size of φ is its number of subformulae.
In [10, Theorem 4.1], the authors have proved a stuttering theorem for PLTL
stating that if an ω-word w = w1w

M
2 w3 over the alphabet 2AP with w2 �= ε

satisfies a PLTL formula φ (i.e. w, 0 |=PLTL φ) and if M ≥ 2td(φ) + 5 then all ω-
words w′ = w1w

M ′
2 w3 with M ′ ≥ 2td(φ)+ 5 are such that w′, 0 |=PLTL φ. In other

words, to verify if an ω-word with some repeated infix words satisfies a PLTL
formula it is enough to verify the property for the ω-words where each infix is
repeated at most 2td(φ)+5 times. This allows to deduce that the model-checking
of PLTL for flat translating counter systems is NP-complete. We rewrite now in
our terminology the main proposition which leads to this result.

In the sequel we consider a flat disjunction free counter system S =
〈Q,Xn,Δ,Λ〉 with the finite monoid property. For a finite sequence of tran-
sitions δ1 . . . dk, we denote by Λ(δ1 . . . δk) = Λ(source(δ1)) . . . Λ(source(δk))
the finite word labeling the sequence with sets of atomic propositions. We lift
this definition to iterated path schemas 〈P,m〉 as Λ(P,m) = Λ(P [1])m[1]

Λ(P [2])m[2] · · · Λ(P [len(P ) − 1])m[len(P )−1][0]Λ(P [len(P )])ω. Observe that, for
a run ρ of a counter system, if 〈P,m〉 ∈ ips(ρ) is an iterated path schema, we have
by definition of the semantics of PLTL that ρ |=PLTL φ iff Λ(P,m), 0 |=PLTL φ3 for all
PLTL formulae φ. Moreover, for each m ∈ N, we define the function ξm mapping
each vector v ∈ N

k to ξm(v) ∈ N
k, where, for all i ∈ [1, k]: ξm(v)[i] = v [i] if

v [i] < m and ξm(v)[i] = m otherwise. Let us now recall the main technical propo-
sitions established in [10], which are a consequence of the stuttering theorem for
PLTL and of the result on the complexity of model-checking ultimately periodic
path with PLTL given in [23].

Lemma 7. Let 〈P,m〉 be an iterated path schema and φ a PLTL formula, then:

1. [10, Proposition 5.1] Λ(P,m), 0 |=PLTL φ iff Λ(P, ξ2td(φ)+5(m)), 0 |=PLTL φ,
2. [23, Theorem 3.2] Given finite words u and v, checking uvω, 0 |=PLTL φ can be

done in time polynomial in the sizes of uv and φ.

We need furthermore a version of Theorem 2 above, which ensures that given
an iterated path schema and a PLTL formula φ, we do not change the number of
times a loop is iterated if this one is less than 2.td(φ) + 5. The proof of the next
result can in fact be deduced by adapting the proof of Theorem2 by unfolding
the loop which are iterated less than 2.td(φ) + 5 for a given formula φ. As a
consequence of Lemma 7, the new run ρ′, obtained in the next lemma, is such
that ρ |=PLTL φ iff ρ′ |=PLTL φ for the considered PLTL formula φ.

3 We take here the classical semantics of PLTL over infinite words.
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Lemma 8. For a run ρ of S starting in (q0, v0), an iterated path schema 〈P,m〉 ∈
ips(ρ) and a PLTL formula φ, there exists a run ρ′ starting in (q0, v0), and an it-
erated path schema 〈P,m′〉 ∈ ips(ρ′), such that ‖m′‖∞≤ 2Poly(size(S)+size(v0)+td(φ))

for a polynomial Poly(x) and ξ2td(φ)+5(m) = ξ2td(φ)+5(m’).

We can now explain why the model-checking of flat counter systems with
the finite monoid property with PLTL formulae is in ΣP

2 . Given a flat counter
system S with the finite monoid property, an initial configuration γ0, and a PLTL
formula φ, we guess an iterated path schema 〈P,m〉 of polynomial size in the
size of S, γ0 and φ and we check whether Λ(P, ξ2td(φ)+5(m)), 0 |=PLTL φ. This
check can be done in polynomial time in the size of P and φ thanks to Lemma 7.
Finally, we use the NP algorithm of Lemma 6 to verify that there exists a run ρ
starting at γ0, such that 〈P,m〉 ∈ ips(ρ). This gives us a ΣP

2 algorithm whose
correctness is ensured by Lemmas 2 and 8.

Theorem 4. MCPLTL(ASdf
fm) is ΣP

2 .

5.3 FO Model Checking is PSPACE-complete

For a FO formula φ, its quantifier height qh(φ) is the maximal nesting depth
of its quantifiers, and the size of φ is its number of subformulae. Similarly, as
for the PLTL case, in [8, Theorem 6], a stuttering theorem for FO is provided,
which says that that two ω-words w = w1w

M
2 w3 and w = w1w

M ′
2 w3 with w �= ε

are indistinguishable by a FO formula φ if M and M ′ are strictly bigger than
2qh(φ)+2. The main difference with PLTL is that this provides an exponential
bound in the maximum number of times an infix of an ω-word needs to be
repeated to satisfy a FO formula. In the sequel we consider a flat counter system
S = 〈Q,Xn,Δ,Λ〉 with the finite monoid property and we reuse the notations
introduced in the previous section. The results of [8] can be restated as follows.

Lemma 9. Given an iterated path schema 〈P,m〉 and a FO formula φ, then:

1. [8, Lemma 7] Λ(P,m) |=FO φ iff Λ(P, ξ2qh(φ)+2(m)) |=FO φ,
2. [8, Theorem 9] Checking Λ(P,m), 0 |=FO φ can be done in space polynomial in

the sizes of 〈P,m〉 and φ.

As for the PLTL case, this allows us to deduce a NPSPACE algorithm for the
model-checking problem of flat counter system with the finite monoid property
with FO formulae. Since the problem is already PSPACE-hard for flat translat-
ing counter systems [8, Theorem 9], we conclude by the following theorem.

Theorem 5. MCFO(ASdf
fm) is PSPACE-complete.
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5. Bozga, M., Iosif, R., Konecný, F.: Deciding conditional termination. Log. Methods
Comput. Sci. 10(3), 1–61 (2014)
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Abstract. We define a new subclass of nondeterministic finite automata
for prefix-closed languages called Flanked Finite Automata (FFA). Our
motivation is to provide an efficient way to compute the quotient and
inclusion of regular languages without the need to determinize the under-
lying automata. These operations are the building blocks of several veri-
fication algorithms that can be interpreted as language equation solving
problems. We provide a construction for computing a FFA accepting the
quotient and product of languages that is compositional and that does
not incur an exponential blow up in size. This makes flanked automata a
good candidate as a formalism for compositional design and verification
of systems.

1 Introduction

A very common problem in system design is to solve equations of the form
C ‖ X � G, where C is the specification of a given system and G is the overall
behavior (the goal) that we want to implement. The objective is to compute a
subsystem X that, when composed with C, produces a system which conforms to
the specification G. We are generally interested in the maximal solution. When
it exists, this solution is denoted G/C, also called the quotient of G by C.

Solving language equations is a problem that appears in many different
domains, with different choices for the composition operator (‖) and for the
conformance relation (�). For example, this problem has been studied by the
discrete-event systems community under the name controller synthesis [19]. In
other works, finding X is sometimes referred to as computing a protocol con-
verter or an adaptor [24]. In this context, the goal is to correct some mismatches
between a set of n interacting subsystems in order to satisfy a compatibility
property (deadlock freeness, for instance) specified by G. Likewise, the quotient
G/C can be seen as the implementation of a subsystem that needs to realize a
given specification G while reusing a trustworthy off-the-shelf component C [18].
Finally, computing the language quotient is a stepping stone to verify contract
satisfaction [6]. The links between all these problems has been clearly highlighted
in the literature [11,23].

Our interest in the quotient operator is motivated by our interest in contract-
based design. Contracts have recently been identified as a key element for the
c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 106–121, 2016.
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modular design of complex systems [7]. Fundamentally, a contract for a system
S can be viewed as a pair (A,G) of two specification requirements, where A is
an assumption on the environment where S executes and G is a guarantee on
the behavior of the system (given that the assumptions in A are met). Namely,
with our notations, the pair (A,G) is a contract for S if and only if A ‖ S � G.
In this case, when we fix the guarantee G, the best possible assumption is given
by the quotient G/S.

Contracts, and the use of the quotient operator, arises naturally in the con-
text of compositional verification. For example, when we consider the simplest
instance of the Assume-Guarantee law (see for example [12]):

A ‖ P1 � G P2 � A

P1 ‖ P2 � G

then a natural choice for the assumption A is to find a contract of the form (A,G)
for P1. Also, the quotient operator is central when computing the contract of
a compound system P1 ‖ P2. Indeed, if (A1, G1) and (A2, G2) are contracts for
the processes P1, P2, then a sensible contract for P1 ‖ P2 is given by the pair
(A1/G2 ∧ A2/G1, G1 ‖ G2). As a consequence, it is clear that any tool based on
the use of contract theory needs to compute quotients efficiently.

In this paper, we propose a new method to compute the quotient and com-
position of two or more specifications in a compositional way. We describe our
approach by choosing the simplest possible instantiation for the language equa-
tion problem. We consider that the semantics of a system is given by a regular
and prefix-closed set of traces. Likewise, we use language intersection for the
composition of systems (‖) and language inclusion for conformance (�). In this
simple context, the quotient of two prefix-closed regular languages G/C can be
defined as the biggest prefix-closed language included in G ∪ C, where C is the
complement of language C. While we concentrate on regular languages in this
paper, our approach can be extended to more general composition operators,
like synchronous product, and to more complex formalisms.

Contributions. Since we want to solve a problem on regular languages, the
simplest choice would be to select either deterministic (DFA) or nondeterministic
finite automata (NFA); but this is not satisfying. While the problems of checking
universality or language inclusion are known to be computationally easy for DFA,
they are PSPACE-complete for NFA. On the other hand, the size of a NFA can
be exponentially smaller than the size of an equivalent minimal DFA. This gap
in complexity between the two models can be problematic in practice. This is
the case when using finite state automata for system verification, where we need
to manipulate a very large number of states.

To solve this problem, we need an extension of finite automata that share
the same complexity properties as DFA while being, as much as possible, as
succinct as NFA. In this paper, we define a new class of finite state automata
called Flanked Finite Automata (FFA) that has good complexity and closure
properties. With our approach, it is possible to efficiently compute the quotient
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of two languages without relying on the use of deterministic automata or on
the determinization of automata. We also prove that FFA can be exponentially
more succinct than an equivalent DFA. We give some examples of the gain of
performance brought by this new approach with a simple use case (Sect. 6).

In Sect. 3, we show that the universality problem for FFA is in linear-time
while testing the language inclusion between two FFA A and B is in time
O(|A| · |B|). In Sect. 4, we define several operations on FFA. In particular we
describe how to compute a flanked automaton for the intersection, union and
quotient of two languages defined by FFA. The benefit of our encoding is that
the composition of two FFA, A and B, has always less than (|A| + 1) · (|B| + 1)
states. Moreover the resulting automaton is still flanked. Therefore it is possible
to compute the successive composition and quotient of different specifications
A1, . . . , An in time O(|A1| · . . . · |An|).

Finally, we prove that FFA are strictly more concise than DFA. Indeed, on
the one hand, every DFA can be easily extended into a FFA with the same
set of states and transitions. On the other hand, in Sect. 5, we give an exam-
ple of (a family of) regular languages that can be accepted by FFA which are
exponentially more succinct than their equivalent minimal DFA.

Our main motivation for introducing a new extension of NFA is to provide
an efficient way to compute the quotient of two regular languages. We believe
that our work provides the first algorithm for computing the quotient of two
regular languages without using determinization and without suffering from an
exponential blow up of the result. Our approach can be slightly modified to
support other kinds of composition operators, like for instance the synchronous
product of languages, instead of simply language intersection. It can also be easily
extended to take into account the addition of modalities [18]. We also believe
that the notion of “flanked relation” can be easily applied to other settings, like
for example tree automata. For instance, the prototype implementation of our
algorithms can also handle trace languages generated by “flanked” Petri nets.

2 Notations and Definitions

A finite automaton is a tuple A = (Q,Σ,E,Qin) where: Q is a finite set of states;
Σ is the alphabet of A (that is a finite set of symbols); E ⊆ Q × Σ × Q is the
transition relation; and Qin ⊆ Q is the set of initial states. In the remainder of
this text, we assume that every state is final, hence we do not need a distinguished
subset of accepting states. Without loss of generality, we also assume that every
state in Q is reachable in A from Qin following a sequence of transitions in E.

For every word u ∈ Σ∗ we denote A(u) the subset of states in Q that can be
reached when trying to accept the word u from an initial state in the automaton.
We can define the set A(u) by induction on the word u. We assume that ε is
the empty word and we use the notation u a for the word obtained from u by
concatenating the symbol a ∈ Σ. Then A(ε) = Qin and A(u a) = {q′ | ∃q ∈
A(u).(q, a, q′) ∈ E}. By extension, we say that a word u is accepted by A,
denoted u ∈ A, if the set A(u) is not empty.
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Definition 1. A Flanked Finite Automaton (FFA) is a pair (A, F ) where A =
(Q,Σ,E,Qin) is a finite automaton and F : Q × Σ is a “flanking relation” that
associates symbols of Σ to states of A. We also require the following relation
between A and F :

∀u ∈ Σ∗, a ∈ Σ.
(
(u ∈ A ∧ u a /∈ A) ⇔ ∃q ∈ A(u).(q, a) ∈ F

)
(F�)

We will often use the notation q
a→ q′ when (q, a, q′) ∈ E. Likewise, we use

the notation q
a
� when (q, a) ∈ F .

With our condition that every state of an automaton is final, the relation
q

a→ q′ states that every word u “reaching” q in A can be extended by the symbol
a, meaning that u a is also accepted by A. Conversely, the relation q

a
� states

that the word u a is not accepted. Therefore, in a FFA (A, F ), when q ∈ A(u)
and (q, a) ∈ F , then we know that the word u cannot be extended with a. In
other words, the flanking relation gives information on the “frontier” of a prefix-
closed language—the extreme limit over which words are no longer accepted by
the automaton—hence the use of the noun flank to describe this class.

In the rest of the paper, we simply say that the pair (A, F ) is flanked when
condition (F�) is met. We also say that the automaton A is flankable if there
exist a flanking relation F such that (A, F ) is flanked.

Testing if a Pair (A, F ) is Flanked. We can use the traditional Rabin-
Scott powerset construction to test whether F flanks the automaton A =
(Q,Σ,E,Qin). We build from A the “powerset automaton” ℘(A), a DFA with
alphabet Σ and with states in 2Q (also called classes) that are the sets of states
in Q reached after accepting a given word prefix; that is all the sets of the form
A(u). The initial state of ℘(A) is the class A(ε) = Qin. Finally, we have that
C

a→ C ′ in ℘(A) if and only if there is q ∈ C and q′ ∈ C ′ such that q
a→ q′.

Let F−1(a) be the set {q | q
a
�} of states that “forbids” the symbol a after a

word accepted by A. Then the pair (A, F ) is flanked if, for every possible symbol
a ∈ Σ and for every reachable class C ∈ ℘(A) we have: C ∩ F−1(a) = ∅ if and
only if there is no class C ′ such that C

a→ C ′.
This construction suggests that checking if a pair (A, F ) is flanked should be

a costly operation, that is, it should be as complex as exploring a deterministic
automaton equivalent to A. In Sect. 3 we prove that this problem is actually
PSPACE-complete.

Testing if a NFA is Flankable. It is easy to show that the class of FFA
includes the class of deterministic finite state automata; meaning that every DFA
is flankable. If an automaton A is deterministic, then it is enough to choose the
“flanking relation” F such that, for every state q in Q, we have q

a
� if and only

if there are no transitions of the form q
a→ q′ in A. DFA are a proper subset of

FFA; indeed we give examples of NFA that are flankable in Sect. 5.
On the other hand, if an automaton is not deterministic, then in some cases

it is not possible to define a suitable flanking relation F . For example, consider
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q3
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{q1, q2} {q3}

b
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b

Fig. 1. A non-flankable NFA (left) and its associated Rabin-Scott powerset construc-
tion (right).

the automaton from Fig. 1 and assume, by contradiction, that we can define a
flankable relation F for this automaton. The word b is accepted by A but the
word b b is not, so by definition of FFA (see eq. (F�)), there must be a state
q ∈ A(b) such that q

b
�. Hence, because q1 is the only state in A(b), we should

necessarily have q1
b

�. However, this contradicts the fact that the word a b is in
A, since q1 is also in A(a).

More generally, it is possible to define a necessary and sufficient condition
for the existence of a flanking relation; this leads to an algorithm for testing
if an automaton A is flankable. Let A−1(a) denote the set of states reachable
by words that can be extended by the symbol a (remember that we consider
prefix-closed languages): A−1(a) =

⋃{A(u) | u a ∈ A}.
It is possible to find a flanking relation F for the automaton A if and only

if, for every word u ∈ A such that u a /∈ A, the set A(u) \ A−1(a) is not empty.
Indeed, in this case, it is possible to choose F such that (q, a) ∈ F as soon as
there exists a word u with q ∈ A(u) \ A−1(a). Conversely, an automaton A is
not flankable if we can find a word u ∈ A such that u a /∈ A and A(u) ⊆ A−1(a).
For example, for the automaton in Fig. 1, we have A−1(b) = {q0, q1, q2} while
b b /∈ A and A(b) = {q1}. As in the previous section, this condition can be
checked directly using the powerset construction.

3 Complexity Results for Basic Problems

In this section we give some results on the complexity of basic operations over
FFA. Complete proofs can be found in an extended version of this paper [2].

Theorem 1. The universality problem for FFA is decidable in linear time.

Proof. It is enough to prove that a FFA (A, F ) is universal if and only if the
relation F is empty; meaning that for all states q ∈ Q it is not possible to find a
symbol a ∈ Σ such that q

a
�. As a consequence, to test whether A is universal, it

is enough to check whether there is a state q ∈ Q that is mapped to a non-empty
set of symbols in F . Note that, given a different encoding of F , this operation
could be performed in constant time. ��
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We can use this result to settle the complexity of testing if an automaton is
flankable.

Theorem 2. Given an automaton A = (Q,Σ,E,Qin) and a relation F ∈ Q×Σ,
the problem of testing if (A, F ) is a flanked automaton is PSPACE-complete
when there are at least two symbols in Σ.

Proof. We can define a simple nondeterministic algorithm for testing if (A, F ) is
flanked. We recall that the relation F−1(a) stands for the set {q | q

a
�} of states

that “forbid” the symbol a. As stated in Sect. 2, to test if (A, F ) is flanked, we
need, for every symbol a ∈ Σ, to explore the classes C in the powerset automaton
of A and test whether C

a→ C ′ in ℘(A) and whether C ∩ F−1(a) = ∅ or not.
These tests can be performed using |Q| bits since every class C and every set
F−1(a) is a subset of Q. Moreover there are at most 2|Q| classes in ℘(A). Hence,
using Savitch’s theorem, the problem is in PSPACE.

On the other way, we can reduce the problem of testing the universality of a
NFA A to the problem of testing if a pair (A, ∅) is flanked (where ∅ stands for
the “empty” flanking relation over Q × Σ). The universality problem is known
to be PSPACE-hard when the alphabet Σ is of size at least 2, even if all the
states of A are final [16]. Hence our problem is also PSPACE-hard. ��
To conclude this section, we prove that the complexity of checking language
inclusion between a NFA and a FFA is in polynomial time. We say that the
language of A1 is included in A2, simply denoted A1 ⊆ A2, if all the words
accepted by A1 are also accepted by A2.

Theorem 3. Given a NFA A1 and a FFA (A2, F2), we can test whether A1 ⊆
A2 in polynomial time.

Proof. Without loss of generality, we can assume that A1 = (Q1, Σ,E1, I1) and
A2 = (Q2, Σ,E2, I2) are two NFA over the same alphabet Σ. We define a variant
of the classical product construction between A1 and A2 that also takes into
account the “pseudo-transitions” q

a
� defined by the flanking relations.

We define the product of A1 and (A2, F2) as the NFA A = (Q,Σ,E, I) such
that I = I1 × I2 and Q = (Q1 × Q2) ∪ {⊥}. The extra state ⊥ will be used to
detect an “error condition”, that is a word that is accepted by A1 and not by
A2. The transition relation of A is such that:

– if q1
a→ q′

1 in A1 and q2
a→ q′

2 in A2 then (q1, q2)
a→ (q′

1, q
′
2) in A;

– if q1
a→ q′

1 in A1 and q2
a
� in A2 then (q1, q2)

a→ ⊥ in A

The result follows from the fact that A1 is included in A2 if and only if the
state ⊥ is not reachable in A. (Actually, we can prove that any word u such
that ⊥ ∈ A(u) is a word accepted by A1 and not by A2.) Since we cannot
generate more than |Q1| · |Q2| reachable states in A before finding the error ⊥,
this algorithm is solvable in polynomial time. ��
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4 Closure Properties of Flanked Automata

In this section, we study how to compute the composition of flanked automata.
We prove that the class of FFA is closed by language intersection and by the
“intersection adjunct”, also called quotient. On a negative side, we show that
the class is not closed by non-injective relabeling.

We consider the problem of computing a flanked automaton accepting the
intersection of two prefix-closed, regular languages. More precisely, given two
FFA (A1, F1) and (A2, F2), we want to compute a FFA (A, F ) that recognizes
the set of words accepted by both A1 and A2, denoted simply A1 ∩ A2.

Theorem 4. Given two FFA (A1, F1) and (A2, F2), we can compute a FFA
(A, F ) for the language A1 ∩ A2 in polynomial time. The NFA A has size less
than |A1| · |A2|.
Proof. We define a classical product construction between A1 and A2 and show
how to extend this composition on the flanking relations. We assume that Ai is
an automaton (Qi, Σ,Ei, Ii) for i ∈ {1, 2}.

The automaton A = (Q,Σ,E, I) is defined as the synchronous product of
A1 and A2, that is: Q = Q1 × Q2; I = I1 × I2; and the transition relation is
such that (q1, q2)

a→ (q′
1, q

′
2) in A if both q1

a→ q′
1 in A1 and q2

a→ q′
2 in A2. It is

a standard result that A accepts the language A1 ∩ A2.
The flanking relation F is defined as follows: for each accessible state

(q1, q2) ∈ Q, we have (q1, q2)
a
� if and only if q1

a
� in A1 or q2

a
� in A2. What

is left to prove is that (A, F ) is flanked, that is, we show that condition (F�) is
correct:

– assume u is accepted by A and u a is not; then there is a state q = (q1, q2) in
A such that q ∈ A(u) and (q, a) ∈ F . By definition of A, we have that u is
accepted by both A1 and A2, while the word u a is not accepted by at least
one of them. Assume that u a is not accepted by A1. Since F1 is a flanking
relation for A1, we have by equation (F�) that there is at least one state
q1 ∈ A1 such that (q1, a) ∈ F1; and therefore (q, a) ∈ F , as required.

– assume there is a reachable state q = (q1, q2) in A such that q ∈ A(u) and
(q, a) ∈ F ; then u is accepted by A. We show, by contradiction, that u a
cannot be accepted by A, that is u a /∈ A1 ∩ A2. Indeed, if so, then u a will
be accepted both by A1 and A2 and therefore we will have (q1, a) /∈ F1 and
(q2, a) /∈ F2, which contradicts the fact that (q, a) ∈ F . ��

Next we consider the adjunct of the intersection operation, denoted A1/A2. This
operation, also called quotient, is defined as the biggest prefix-closed language X
such that A2 ∩ X ⊆ A1. Informally, X is the solution to the following question:
what is the biggest set of words x such that x is either accepted by A1 or
not accepted by A2. Therefore the language A1/A2 is always defined (and not
empty, since it contains at least the empty word ε). Actually, the quotient can
be interpreted as the biggest prefix-closed language included in the set L1 ∪ L̄2,
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where L1 is the language accepted by A1 and L̄2 is the complement of the
language of A2.

The quotient operation can also be defined by the following two axioms:

(Ax1) A2 ∩ (A1/A2) ⊆ A1

(Ax2) ∀X.A2 ∩ X ⊆ A1 ⇒ X ⊆ A1/A2

The quotient operation is useful when trying to solve language equations
problems [22] and has applications in the domain of system verification and
synthesis. For instance, we can find a similar operation in the contract framework
of Benveniste et al. [6] or in the contract framework of Bauer et al. [4].

Our results on FFA can be used for the simplest instantiation of these frame-
works that considers a simple trace-based semantics where the behavior of sys-
tems is given as a regular set of words; composition is language intersection;
and implementation conformance is language inclusion. Our work was moti-
vated by the fact that there are no known efficient methods to compute the
quotient. Indeed, to the best of our knowledge, all the approaches rely on the
determinization of NFA, which is very expensive in practice [18,22].

Our definitions of quotient could be easily extended to replace language inter-
section by synchronous product and to take into account the addition of modal-
ities [18].

Theorem 5. Given two FFA (A1, F1) and (A2, F2), we can compute a FFA
(A, F ) for the quotient language A1/A2 in polynomial time. The NFA A has
size less than |A1| · |A2| + 1

Proof. Without loss of generality, we can assume that A1 = (Q1, Σ,E1, I1) and
A2 = (Q2, Σ,E2, I2) are two NFA over the same alphabet Σ. Like in the con-
struction for testing language inclusion, we define a variant of the classical prod-
uct construction between A1 and A2 that also takes into account the flanking
relations.

We define the product of (A1, F1) and (A2, F2) as the NFA A = (Q,Σ,E, I)
such that I = I1 × I2 and Q = (Q1 × Q2) ∪ {�}. The extra state � will be used
as a sink state from which every suffix can be accepted. The transition relation
of A is such that:

– if q1
a→ q′

1 in A1 and q2
a→ q′

2 in A2 then (q1, q2)
a→ (q′

1, q
′
2) in A;

– if q2
a
� in A2 then (q1, q2)

a→ � in A for all states q1 ∈ Q1

– � a→ � for every a ∈ Σ

Note that we do not have a transition rule for the case where q1
a
� in A1

and q2
a→ q′

2; this models the fact that a word “that can be extended” in A2 but
not in A1 cannot be in the quotient A1/A2. It is not difficult to show that A
accepts the language A1/A2. We give an example of the construction in Fig. 2.

Next we show that A is flankable and define a suitable flanking relation. Let
F be the relation in Q × Σ such that (q1, q2)

a
� if and only if q1

a
� in F1 and

q2
a→ q′

2 in A2. That is, the symbol a is forbidden exactly in the case that was
ruled out in the transition relation of A. What is left to prove is that (A, F ) is
flanked, that is, we show that condition (F�) is correct:
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– Assume u is accepted by A and u a is not. Since u a is not accepted, it must
be the case that q = �. Therefore there is a state q = (q1, q2) in A such
that q1 ∈ A1(u) and q2 ∈ A2(u). Also, since there is no transition with label
a from q, then necessarily q1

a
� in A1 and q2

a→ q′
2. This is exactly the case

where (q, a) ∈ F , as required.
– Assume there is a reachable state q in A such that q ∈ A(u) and (q, a) ∈ F .

Since (q, a) ∈ F , we have q = � and therefore q = (q1, q2) with q1 ∈ A1(u),
q1

a
� in F1, q2 ∈ A2(u) and q2

a→ in F2. Next, we show by contradiction that
u a cannot be accepted by A. Indeed, if it was the case, then we would have
either q1

a→ in F1 or both u a /∈ A1 and u a /∈ A2. ��
We give an example of the construction of the “quotient” FFA in Fig. 2. If we look
more closely at the construction used in Theorem 5 that defines an automaton for
the quotient of two FFA (A1, F1) and (A2, F2), we see that the flanking relation
F1 is used only to compute the flanking relation of the result. Therefore, as a
corollary, it is not difficult to prove that we can use the same construction to
build a quotient automaton for A1/A2 from an arbitrary NFA A1 and a FFA
(A2, F2). However the resulting automaton may not be flankable.

p0

p1

b

a

a b

(a) A1

q0

q1
a

a

b

b

(b) A2

p0, q0

p1, q1

p0, q1

�

b

b

a

b

a

a

a, b

(c) A1/A2

Fig. 2. Construction for the quotient of two FFA.

We can also prove that flankability is preserved by language union (see [2]):
given two FFA (A1, F1) and (A2, F2), we can compute a FFA (A, F ) that recog-
nizes the set of words accepted by A1 or by A2, denoted A1 ∪ A2. (Operations
corresponding to the Kleene star closure or to the adjunct of the union are not
interesting in our case.)

Even though the class of FFA enjoys interesting closure properties, there
are operations that, when applied to a FFA, may produce a result that is not
flankable. This is for example the case with “(non-injective) relabeling”, that
is the operation of applying a substitution over the symbols of an automaton.
The same can be observed if we consider an erasure operation, in which we
can replace all transitions with a given symbol by an ε-transition. Informally, it
appears that the property flankable can be lost when applying an operation that
increases the non-determinism of the transition relation.
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q0

q1 q2

q3

a
b c

b

Fig. 3. Example of a FFA not flankable after relabeling c to a.

We can prove this result by exhibiting a simple counterexample, see the
automaton in Fig. 3. This automaton with alphabet Σ = {a, b, c} is deterministic,
so we can easily define an associated flanking relation. For example we can
choose F = {(q1, a), (q1, b), (q1, c), (q2, a), (q2, c), (q3, a), (q3, b), (q3, c)}. However,
if we substitute the symbol c with a, we obtain the non-flankable automaton
described in Sect. 2 (see Fig. 1).

5 Succinctness of Flanked Automata

In this section we show that a flankable automaton can be exponentially more
succinct than its equivalent minimal DFA. This is done by defining a language
over an alphabet of size 2n that can be accepted by a linear size FFA but
that corresponds to a minimal DFA with an exponential number of states. This
example is due to Colcombet.

At first sight, this result may seem quite counterintuitive. Indeed, even if a
flanked automata is built from a NFA, the combination of the automaton and the
flanking relation contains enough information to “encode” both a language and
its complement. This explains the good complexity results on testing language
inclusion for example. Therefore we could expect worse results concerning the
relative size of a FFA and an equivalent DFA.

Theorem 6. For every integer n, we can find a FFA (An, F ) such that An has
2n+2 states and that the language of An cannot be accepted by a DFA with less
than 2n states.

Proof. We consider two alphabets with n symbols: Πn = {1, . . . , n} and Θn =
{�1, �2, . . . , �n}. We define the language Ln over the alphabet Πn ∪ Θn as the
smallest set of words such that:

– all words in Π∗
n are in Ln, that is all the words that do not contain a symbol

of the kind �i;
– a word of the form (u �i) is in Ln if and only if u is a word of Π∗

n that contains
at least one occurrence of the symbol i. That is Ln contains all the words of
the form Π∗

n · i · Π∗
n · �i for all i ∈ 1..n. We denote Li

n the regular language
consisting of the words of the form Π∗

n · i · Π∗
n · �i.
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pp1

p2

p3

q1

q2

q3

r

2, 3

1, 3

1, 2

1
2

3

2, 3

1, 3

1, 2

1

2

3

1, 2, 3

1, 2, 3

1, 2, 3

�1
�2

�3

Fig. 4. Flankable NFA for the language L3.

Clearly the language Ln is the union of n + 1 regular languages; L = Π∗
n ∪

L1
n ∪ · · · ∪ Ln

n. It is also easy to prove that Ln is prefix-closed, since the set of
prefixes of the words in Li

n is exactly Π∗
n for all i ∈ 1..n.

A DFA accepting the language Ln must have at least 2n different states.
Indeed it must be able to record the subset of symbols in Πn that have already
been seen before accepting �i as a final symbol; to accept a word of the form u �i

the DFA must know whether i has been seen in u for all possible i ∈ 1..n.
Next we define a flankable NFA An = (Qn,Πn ∪ Θn, En, {p}) with 2n + 2

states that can recognize the language Ln. We give an example of the construc-
tion in Fig. 4 for the case n = 3. The NFA An has a single initial state, p, and
a single sink state (a state without outgoing transitions), r. The set Qn also
contains two states, pi and qi, for every symbol i in Π.

The transition relation En is the smallest relation that contains the following
triplets for all i ∈ 1..n:

– the 3 transitions p
i→ qi; pi

i→ qi; and qi
i→ qi;

– for every index j = i, the 3 transitions p
j→ pi; pi

j→ pi; and qi
j→ qi;

– and the transition qi
�i→ r.

Intuitively, a transition from p to pi or qi will select non-deterministically
which final symbol �i is expected at the end of the word (which sub-language Li

n

we try to recognize). Once a symbol in Θ has been seen—in one of the transition
of the kind qi

�i→ r—the automaton is stuck on the state r. It is therefore easy to
prove that An accepts the union of the languages Li

n and their prefixes.
Finally, the NFA An is flankable. It is enough to choose, for the flanking

relation, the smallest relation on Q×Θn such that pi
�i
� and p

�i
� for all i ∈ 1..n;

and such that r
a
� for all the symbols a ∈ Πn ∪ Θn. Indeed, it is not possible to

accept the symbol �i from the initial state, p, or from a word that can reach pi;
that is, it is not possible to extend a word without any occurrence of the symbol
i with the symbol �i. Also, it is not possible to extend a word that can reach
the state r in An. It is easy to prove that this covers all the possible words not
accepted by An. ��
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6 A Simple Use Case for FFA

In this section, we study a simple example related to controller synthesis in
a component-based system. We use our approach to compute a controller, G,
for a system obtained from the parallel composition of n copies of the same
components: (S1 ‖ · · · ‖ Sn). The architecture of this system is given in Fig. 5.
We use this example to study the performance of our approach when compared
to traditional techniques.

Each component Sk can receive messages from two different channels: a public
channel i, shared by everyone, which represents the main input channel of the
whole system; and a private channel dk that can be used to disable the component
Sk. While the component is active, it can emit a message on its output channel,
rk, after receiving the two messages i1 and i2, in this order, over the channel
i. Once disabled, the component does not interact with its environment. The
overall behavior of the system is given by the automaton in Fig. 5-(c). We expect
the system to emit a message on channel o when it receives two messages on
channel i. Even though this behavior is very simple, the task of the controller G
is made difficult by the fact that it cannot listen on the channel i. The component
G can only observe the output of the components on the channels ri, for i ∈ 1..n,
and the disabling messages.

By definition, the semantics of the controller G is the biggest solution (for G)
of the language equation (S1 ‖ · · · ‖ Sn ‖ G) ⊆ A, hence: G = A/(S1 ‖ · · · ‖ Sn).

(a) architecture of the system

dk i1

i2

dk

rk

dk

(b) specification of
the component Sk

i1

i2

o

(c) global specifica-
tion A

Fig. 5. Architecture and specification of a simple voting network.
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We have used this example to compare the time necessary to compute G
with two approaches; first using the tool MoTraS [17], then using a prototype
implementation based on FFA. MoTraS is a tool for modal transition systems
that implements all the standard operations for specification theories, such as
language quotient. The results are given in the table below, where we give the
performance when varying the number of components in the system (the value
of the parameter n). These results were obtained on a desktop computer with
8 GB of RAM.

n 7 8 9 100 200 500 1000 2000
MoTraS

times (s) 8 s 27 s 190 s — — — — —
(memory) (750 MB) (1.5 GB) (2 GB) — — — — —

FFA
time (s) <0.01 s <0.01 s <0.01 s 0.05 s 0.2 s 1.5 s 5.8 s 30 s
(memory) (1.3 MB) (1.3 MB) (1.3 MB) (2.4 MB) (3.5 MB) (6.5 MB) (13 MB) (23 MB)

We observe that it is not possible to compute G for values of n greater than
10 using a classical approach. These results are similar to what we obtained
using our own prototype implementation based on DFA. On the opposite, when
we use flanked automata, we are able to compute the quotient for up to several
thousand components.

7 Related Work

We can identify two main categories of related work. First, there is a large body
of work addressing the problem of solving language equations by computing the
quotient of two specifications. Then, we consider works concerned with finding
classes of finite state automata with good complexity properties.

Work on equation solving and quotient. Villa et al. [22,23] consider language
equations for systems described using NFA. Actions labeling the transitions can
either be inputs, if they stem from the system environment, or outputs, when
they originate from the system. Composition may correspond to the synchronous
product with internalization of synchronized actions. In any case, the proposed
algorithms start with a determinization step, which is very expensive in practice.

In control theory [19], the plant is in most cases a DFA whose transitions can
be labeled by actions that are either declared as uncontrollable (the controller
cannot forbid them) or unobservable (the controller cannot see their occurrence).
Partial observation naturally led to consider nondeterministic plants [13].

A quotient operator has also been defined for modal specifications by one of
the authors [18]. In this setting, we can specify that it may or it must always
be the case that a trace can be extended with a certain action. The size of the
quotient is polynomial when modal specifications are deterministic, but there
is an exponential blow-up when this assumption is relaxed [5]. Quotients for
extensions of modal specifications to capture timed and quantitative languages
have also been recently considered [3,9,10].
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Work on Finite State Automata. Several works have tried to find classes of
finite automata that retain the same complexity as DFA on some operations
while still being more succinct than the minimal DFA. One such example is the
class of Unambiguous Finite Automata (UFA) [20,21]. Informally, an UFA is a
finite state automaton such that, if a word is accepted, then there is a unique
run which witnesses this fact, that is a unique sequence of states visited when
accepting the word. Like with DFA, the problems of universality and inclusion
for UFA is in polynomial-time. Unfortunately, UFA are difficult to complement.
(Actually, finding the exact complexity of complementation for UFA is still an
open problem [8].) Therefore they are not a good choice for computing quotients.

Another problem lies in the use of UFA for prefix-closed languages. In this
paper, we restrict our study to automata recognizing prefix-closed languages.
More precisely, we assume that all the states of the automaton are final (which
is equivalent). This restriction is very common when using NFA for the purpose
of system verification. For instance, Kripke structures used in model-checking
algorithms are often interpreted as finite state automata where all states are final.
It is easy to see that, with this restriction, an UFA is necessarily deterministic.

In the context of automata on infinite words, we can also mention the safety
automata of Isaak and Löding [14]. A safety (or looping) automaton can be
viewed as a Büchi automaton in which all states are accepting, except for pos-
sibly one rejecting sink state. For unambiguous safety automata, the problems
of inclusion, equivalence, and universality can be solved in polynomial time. We
show similar complexity results for our class of automata (on finite words). More-
over, a FFA can also be described, superficially, as a safety automaton without
the Büchi acceptance condition. Nonetheless, without the use of the flanking
relation, it is not clear how to define the quotient operation for safety automata,
especially if we want a compositional construction that does not involve deter-
minization.

It should be stressed that our problem is not made simpler by the choice
to restrict to prefix-closed languages. Indeed, all the classical complexity results
on NFA are still valid in this context. For instance, given a NFA A with all its
states final, checking the universality of A is PSPACE-hard [16]. Likewise for
the minimization problem. Indeed, there are examples of NFA with n states, all
final, such that the minimal equivalent DFA has 2n states. We provide such an
example in Sect. 5 of this paper. Intuitively, it is always possible to view a regular
language L, over the alphabet Σ, as the prefix closed-language containing words
of the form w �, where w is in L and � is some new (terminal) symbol not used
in Σ.

8 Conclusion

We define a new subclass of NFA for prefix-closed languages called flanked
automata. Intuitively, a FFA (A, F ) is a simple extension of NFA where we
add in the relation F extra information that can be used to check (non-
deterministically) whether a word is not accepted by A. Hence a FFA can be
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used both to test whether a word is in the language associated with A or in its
complement. As a consequence, we obtain good complexity results for several
interesting problems such as universality and language inclusion. This idea of
adding extra information to encode both a language and its complement seems
to be new. It is also quite different from existing approaches used to define sub-
classes of NFA with good complexity properties, like unambiguity for example.

Our work could be extended in several ways. First, we have implemented
all our proposed algorithms and constructions and have found that—for several
examples coming from the system verification domain—it was often easy to
define a flanking relation for a given NFA (even though we showed in Sect. 2
that it is not always possible). More experimental work is still needed, and in
particular the definition of a good set of benchmarks.

Next, we have used the powerset construction multiple times in our defin-
itions. Most particularly as a way to test if a FFA is flanked or if a NFA is
flankable. Other constructions used to check language inclusion or simulation
between NFA could be useful in this context like, for example, the antichain-
based method [1].

Finally, we still do not know how to compute a “succinct” flanked automaton
from a NFA that is not flankable. At the moment, our only solution is to com-
pute a minimal equivalent DFA (since DFA are always flankable). While it could
be possible to subsequently simplify the DFA—which is known to be computa-
tionally hard [15]—it would be interesting to have a more direct construction.

Acknowledgments. We thank Denis Kuperberg, Thomas Colcombet, and Jean-Eric
Pin for providing their expertise and insight and for suggesting the example that led
to the proof of Theorem 6.
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Abstract. We present Spot 2.0, a C++ library with Python bindings
and an assortment of command-line tools designed to manipulate LTL
and ω-automata in batch. New automata-manipulation tools were intro-
duced in Spot 2.0; they support arbitrary acceptance conditions, as
expressible in the Hanoi Omega Automaton format. Besides being useful
to researchers who have automata to process, its Python bindings can
also be used in interactive environments to teach ω-automata and model
checking.

1 Introduction

Spot is a C++ library of model-checking algorithms that was first presented in
2004 [15]. It contains algorithms to perform the usual tasks in the automata-
theoretic approach to LTL model checking [36]. It was purely a library until
Spot 1.0, when we started distributing command-line tools for LTL manipula-
tion [13] and translation of LTL to some generalizations of Büchi Automata.

Spot 2.0 is a very large rewrite of the core of the library, in C++11, with a
focus on supporting automata with arbitrary acceptance conditions as described
in the Hanoi Omega Automata format (HOA) [6]. Those acceptance conditions
are expressed as positive Boolean formulas over terms such as Inf(n) and Fin(n),
which indicate respectively that some set Sn of states or transitions should be vis-
ited infinitely or finitely often. Traditional acceptance conditions look as follows
in this formalism:

Büchi: Inf(0) generalized-Büchi: Inf(0) ∧ Inf(1) ∧ Inf(2) ∧ . . .
co-Büchi: Fin(0) generalized-co-Büchi: Fin(0) ∨ Fin(1) ∨ Fin(2) ∨ . . .
Rabin: (Fin(0) ∧ Inf(1)) ∨ (Fin(2) ∧ Inf(3)) ∨ . . .
Streett: (Fin(0) ∨ Inf(1)) ∧ (Fin(2) ∨ Inf(3)) ∧ . . .

Parity acceptance, generalized-Rabin [5,24], and any Boolean combination of
the above can be expressed as well. The use of HOA as default format makes
it easy to chain Spot’s command-line tools, and interact with other tools that
implement HOA, regardless of the actual acceptance condition used.
c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 122–129, 2016.
DOI: 10.1007/978-3-319-46520-3 8
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Additionally, Spot 2.0 ships with Python bindings usable in interactive envi-
ronments such as IPython/Jupyter [29], easing development, experimentation,
and teaching.

Spot is a free software and can be obtained from https://spot.lrde.epita.fr/.
The reader who wants to try Spot without installing it is invited to visit http://
spot-sandbox.lrde.epita.fr/ where a live installation of Jupyter and Spot allows
all examples (command lines or Python) of this paper to be replayed.

Fig. 1. Architecture of Spot. C++ libraries are in orange boxes, binaries in red, and
Python packages in blue. The outlined area is what Spot distributes. (Color figure
online)

Figure 1 shows that Spot is actually split in three libraries. libbddx is a cus-
tomized version de BuDDy [26] for representing Binary Decision Diagrams [10]
which we use to label transitions in automata, and to implement a few algo-
rithms [4,14]. libspot is the main library containing all data structures and
algorithms. libspot-ltsmin contains code to interface with state-spaces gener-
ated as shared libraries by LTSmin [20].

In the rest of this article, we highlight some of the features of Spot by pre-
senting the command-line tools and the Python bindings built on top of these
libraries. The reader should keep in mind that everything that we illustrate as
shell command or in Python can be performed directly in C++; in fact our
web site gives several examples of tasks implemented with each of these three
interfaces.

2 Command-Line Tools

Spot 2.0 installs the following eleven command-line tools, that are designed to
be combined as traditional Unix tools.

https://spot.lrde.epita.fr/
http://spot-sandbox.lrde.epita.fr/
http://spot-sandbox.lrde.epita.fr/
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[13]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

randltl generates random LTL/PSL formulas
genltl generates LTL formulas from scalable patterns
ltlfilt filter, converts, and transforms LTL/PSL formulas
ltl2tgba translates LTL/PSL formulas into generalized Büchi

automata [14], or deterministic parity automata (new in 2.0)
ltl2tgta translates LTL/PSL formulas into Testing automata [8]
ltlcross cross-compares LTL/PSL-to-automata translators to find

bugs (works with arbitrary acceptance conditions since Spot
2.0)

ltlgrind mutates LTL/PSL formulas to help reproduce bugs on
smaller ones

dstar2tgba converts ltl2dstar automata into Generalized Büchi
automata [1]

randaut generates random ω-automata
autfilt filters, converts, and transforms ω-automata
ltldo runs LTL/PSL formulas through other translators, providing

uniform input and output interfaces

The first six tools were introduced in Spot 1.0 [13], and have since received
several updates. For instance ltl2tgba now uses better simulation reductions
and degeneralization [4], and it now provides a way to output deterministic
automata using transition-based parity acceptance; ltlfilt has learned to
decide stutter-invariance of any LTL/PSL formula using an automaton-based
check that is independent on the actual logic used [27]; and ltlcross can now
perform precise equivalence checks of automata in addition to supporting arbi-
trary acceptance conditions—it has been used by the authors of ltl3dra [5],
ltl2dstar [21,22], and Rabinizer 3 [23] to test recent releases of their respec-
tive tools.

The dstar2tgba tool was introduced in Spot 1.2 while working on the mini-
mization of deterministic generalized Büchi automata using a SAT-solver [1]. It
implements algorithms that translate deterministic Rabin automata into Büchi
automata, preserving determinism if possible [25], as well as conversion from
Streett to generalized Büchi. These two different kinds of input correspond to
the possible outputs of ltl2dstar. In Spot 2.0, these specialized acceptance
conversions have been preserved, but they are supplemented with more general
transformations that input automata with arbitrary acceptance conditions, and
transform them into automata with “Fin-less” acceptance, or with (General-
ized) Büchi acceptance. These acceptance transformations are essential to a few
core algorithms that cannot cope with arbitrary acceptance: for instance cur-
rently Spot can only check the emptiness of automata with Fin-less acceptance
(all SCC-based emptiness-checks [11,12,31] are compatible with that), so more
complex acceptances are transformed when needed.

All these acceptance transformations, as well as other automata transfor-
mations are available through the autfilt tool. This command can input a
stream of automata in 4 different formats (HOA [6], LBTT’s format [33], never
claims [19], or ltl2dstar’s format [22]), and can output automata, maybe after
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filtering or transformation, in some other format (including GraphViz’s dot for-
mat [17] for display).

As an example of transformation and format conversion, consider:

% spin -f’[]<>a’ | autfilt --complement --dot=abr | dot -Tpng >aut.png

This command translates the LTL formula GFa into a Büchi automaton using
spin [19], the resulting never claim is then fed into autfilt for complemen-
tation, and the complemented automaton is output into GraphViz’s format for
graphical rendering with dot. The arguments a, b, and r passed to --dot cause
the acceptance condition to be displayed, and the acceptance marks to be shown
as colored bullets.

In the above example the input to autfilt happens to be a deterministic
Büchi automaton, so the complementation is as simple as changing the accep-
tance condition into co-Büchi. If a Büchi output is desired instead, the above
command should be changed to autfilt --complement --ba and will output a
non-deterministic Büchi automaton. This of course works with arbitrary accep-
tance conditions as input.

Complementation of non-deterministic automata is done via determinization.
Our determinization algorithm inputs transition-based Büchi automata (so we
may have some preprocessing to do if the input has a different acceptance),
and outputs automata with transition-based Parity acceptance. It mixes the
construction of Redziejowski [30] with some optimizations of ltl2dstar [21,22]
and a few of our own.

The ltldo command wraps third-party LTL translators and provides them
with inputs and outputs that are compatible with the Spot tool-suite. In par-
ticular it allows using “single-shot” translators in a pipeline. For instance spin
can only translate one formula at a time to produce a never claim. The com-
mand ltldo spin will process multiple formulas (in any syntax supported by
Spot [13]), translate them all using spin, and output all results in any supported
automaton format (HOA by default). For instance the following command uses
Spin to translate 10 random LTL formulas into Büchi automata in the HOA
format:

% randltl -n 10 a b | ltldo spin --name=%f

Option --name=%f requests input formulas to be used as the “name:” field in
the HOA format. This field could then be used to retrieve the original formula
after further processing: autfilt --stats=%M can be used to print the name of
each input automaton.

As a more complex example, the following pipeline finds 10 formulas for
which ltl3ba [3] produces a deterministic Büchi automaton, but ltl2ba [18]
does not.

% randltl -n -1 a b |

ltldo ltl3ba --name=%f | autfilt --is-deterministic --stats=%M |

ltldo ltl2ba --name=%f | autfilt -v --is-deterministic --stats=%M -n 10
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This creates an infinite (-n -1) stream of LTL formulas over atomic proposi-
tions a and b, translates them using ltl3ba, retains those that were translated
to deterministic automata, translate them with ltl2ba and retains the non-
deterministic ones (-v inverts matches, as with grep). With the final -n 10, the
pipeline is eventually killed once the last command has found 10 matches.

The autfilt tool provides access to other ω-automata algorithms such
as product, emptiness checks, language inclusion or equivalence, language-
preserving simplifications of automata, refinement of labels [9], strength-based
decompositions [32], SAT-based minimization of deterministic automata with
arbitrary input and output acceptance [2], or conversion from transition-based
acceptance to state-based acceptance. Most algorithms work with arbitrary
acceptance conditions, except a few (emptiness checks, determinization) that
currently have to reduce the acceptance conditions upfront.

3 The Python Interface

Similar tasks can be performed in a more “algorithm-friendly” environment using
the Python interface. Combined with the IPython/Jupyter notebook [29] (a web
application for interactive programming), this provides a nice environment for
experiments, where automata and formulas are automatically displayed. Figure 2
shows two examples that we used in a practical lecture on model checking with
students from EPITA.

The first example illustrates how LTL formulas can be parsed
(spot.formula()), and then translated (using translate()) into automata
with transition-based generalized Büchi acceptance. Using product, negation,
and emptiness check, a student can define a procedure to test the equivalence of
two LTL formulas and then use it to explore her understanding of LTL.

The second example illustrates the classical automata-theoretic approach to
explicit LTL model checking [36]. Spot can read the shared-libraries used to
represent state spaces in the LTSmin project [20]. Those can be compiled from
Promela models using SpinS [35], or from DiVinE models using LTSmin’s modi-
fied version of DiVinE 2 [7]. In this example the %%dve keyword is used to specify
a short DiVinE model called adding (this model comes from the BEEM data-
base [28]) which is immediately compiled and loaded as a shared library. Printing
the adding Python variable reveals that it is an object using the LTSmin inter-
face, and lists the variables that can be used to build atomic proposition on this
model. A Kripke structure can be instantiated from the model by providing a list
of atomic propositions that should be valuated on each state. Displaying large
Kripke structures is of course not very practical: by default Spot displays only the
50 first states (this can be changed using for instance the max states argument
in the first cell). With this interface, we can now easily write a model check()
procedure that inputs a model and a formula, instanciates a Kripke structure
from the model using all the atomic propositions that appear in the formula,
translates the negation of the formula into an automaton, and tests the empti-
ness of the product between the Kripke structure and this automaton. Note that

http://www.epita.fr/
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Fig. 2. Two examples of using the Python bindings of Spot in the Jupyter notebook.

otf product() performs an on-the-fly product: the state-space and the product
are constructed as needed by the emptiness check algorithm.

4 Model Checkers Built Using Spot

At the C++ level, the interface with LTSmin demonstrated above wraps the
LTSmin state-space as a subclass of Spot’s Kripke structure class. This class
basically just specifies the initial state and how to find the successors of a state,
therefore allowing on-the-fly exploration. Model checkers like ITS-Tools [34] or
Neco [16] have been implemented in the same way (both have been recently
updated to Spot 2.0).
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Parker, D., Strejček, J.: The Hanoi Omega-Automata format. In: Kroening, D.,
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23. Komárková, Z., Křet́ınský, J.: Rabinizer 3: safraless translation of LTL to small
deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 235–241. Springer, Heidelberg (2014)
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Abstract. The limiting factor for quantitative analysis of Markov deci-
sion processes (MDP) against specifications given in linear temporal logic
(LTL) is the size of the generated product. As recently shown, a spe-
cial subclass of limit-deterministic Büchi automata (LDBA) can replace
deterministic Rabin automata in quantitative probabilistic model check-
ing algorithms. We present an extension of PRISM for LTL model check-
ing of MDP using LDBA. While existing algorithms can be used only
with minimal changes, the new approach takes advantage of the spe-
cial structure and the smaller size of the obtained LDBA to speed up
the model checking. We demonstrate the speed up experimentally by a
comparison with other approaches.

1 Introduction

Linear temporal logic (LTL) [30] is a prominent specification language and has
been proven useful in industrial practice. The key to efficient LTL model checking
is the automata-theoretic approach [38]: first, a given LTL formula is translated
into an automaton; second, a product of the system and the automaton is con-
structed and analysed. Since real systems are huge, it is crucial to construct
small automata in order to avoid a large size increase of the product.

LTL is typically translated into non-deterministic Büchi automata (NBA)
[2,8,10,11,14,15,17,18,36]. However, for probabilistic models such as Markov
decision processes (MDP) non-deterministic automata are not applicable [3] and
the standard solution is to determinise them using Safra’s construction [22,29,
32,33,37]. This approach is implemented in the most widespread probabilis-
tic model checker PRISM [27]. However, the determinisation step is costly and
often increases the size of automata dramatically. Therefore, direct translations
of LTL to deterministic automata have been proposed [1,13,25,26], implemented
[5,16,24], and shown to be more efficient for probabilistic model checking [6]. Nev-
ertheless, despite more sophisticated acceptance conditions, such as generalized
Rabin [26], the imposed determinism inevitably increases the size of the automata.

This naturally raises the question whether fully deterministic automata are
necessary or whether restricted forms of determinism are sufficient. For instance,
in the setting of games where NBA are not applicable either, a weaker notion
of determinism called good-for-games automata is sufficient [20]. It has been
proven sufficient also for probabilistic model checking, but practically “did not
improve on the standard approach” [23]. Further, unambiguous automata can be
c© Springer International Publishing AG 2016
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used [9] for model checking Markov chains, but not for MDPs. Moreover, limit-
deterministic Büchi automata (LDBA) [7,38] can be used for probabilistic model
checking MDPs in the qualitative case (deciding whether a property holds with
probability 1). This idea has been further explored also in the quantitative setting
(computing the probability of satisfaction) and an algorithm constructing prod-
ucts with several (limit-)deterministic automata proposed [19]. Although LDBA
cannot in general be used for probabilistic model checking, a recent translation
[35] of LTL produces LDBA, which can be used in the standard algorithm based
on the construction of a single product. It also discusses the subclass of LDBA
that can be used for this task. Note that there is also an exponentially better
translation [21] (based on [25]) of a fragment of LTL called LTL\GU into LDBA
and that there is also an efficient complementation procedure for LDBA [4].

In this paper, we provide the first implementation of the probabilistic model
checking procedure proposed in [35] based on LDBA. Apart from smaller sizes of
LDBA, another advantage of the Büchi acceptance condition is a faster analysis
of maximal end components (MECs), compared to the standard repetitive re-
computation for each Rabin pair. We also present several crucial optimizations,
which make our implementation outperform other approaches on many formulas.
We illustrate this on experimental results. The tool as well as the explanation of
its name can be found on https://www7.in.tum.de/∼sickert/projects/mochiba/.

2 Overview of the Algorithm

In order to present our implementation and optimizations, we have to sketch
how an MDP M is checked against an LTL formula ϕ by the algorithm of [35].
First, ϕ is translated into an LDBA A(ϕ). Second, M is checked against A(ϕ)
using a straightforward extension of the standard algorithm.

LDBA Construction. An LDBA is a (possibly generalised) Büchi automaton
partitioned into an initial and an accepting part, where the initial part contains
no accepting transitions and the accepting part is deterministic. Moreover, the
construction of [35] produces LDBA with the initial part deterministic except
for ε-transitions into the accepting part.

q0 : a ∧ X(FGa ∨ FGb)

q1 : FGa ∨ FGb

pGa : Ga

pGb : Gb

a

tt

ε

ε

a

b

Fig. 1. LDBA A(ϕ) with the initial part on the
left and the accepting on the right.

We illustrate the translation
on ϕ = a ∧ X(FGa ∨ FGb).
Each state in the initial part
is labeled with a formula. The
words accepted from a state are
exactly those satisfying the for-
mula. Observe that FGa ∨ FGb
holds iff eventually we reach a
point where Ga holds or Gb
holds. We non-deterministically
guess this point and take the ε-
transition to the accepting part,
where we check the guess.

https://www7.in.tum.de/~sickert/projects/mochiba/


132 S. Sickert and J. Křet́ınský

For this formula spot (2.0) produces a deterministic Rabin automaton with
4 states, too, but adding two more disjuncts FGc and FGd increases the size to
26 states. In contrast, our LDBA requires only two extra states.

A : Label(A) = {a}

B : Label (B) = {b}

α
0.2

β

0.8

Fig. 2. An MDP M.

Product Construction and Analysis. We pro-
ceed according to the standard algorithm:

1. Construct the product P = M × A(ϕ).
2. Compute maximal end-components (MECs) of P.
3. Compute the maximum probability to reach win-

ning MECs. A MEC is winning if it satisfies the
acceptance condition of A(ϕ): here, if it contains
an accepting transition for each Büchi condition.

A, q1

B, q1

B, pGa

B, pGb

α
0.2

0.8

β

εpGa

εpGb β

Fig. 3. The product M × A(ϕ).

The standard product of an MDP
and a deterministic automaton defines the
transitions (in the usual notation) by
P (〈s, q〉, α, 〈s′, q′〉) = P (s, α, s′) if q′ =
δ(q,Label(s′)) and otherwise equals 0. We
extend the procedure to handle also non-
deterministic ε-transitions by additional
actions: let q1, . . . , qn be the successors of
q under ε, then for each i = 1, . . . , n
we add a new action called εqi and define
P (〈s, q〉, εqi , 〈s, qi〉) = 1 (note that s does not
move here).

Figure 3 illustrates the construction by a product of the system of Fig. 2 and
the automaton of Fig. 1. A crucial optimization used here is that it is sufficient
to take ε-transitions only from states in MECs of M × N (ϕ) (which are exactly
MECs of the product of M and the initial part of A(ϕ)). Hence no ε-transitions
have to be produced in the initial state here.

3 Implementation and Optimizations

MoChiBA [34] replaces the LTL model-checker and the MEC computation in
the explicit-state model-checker of PRISM, while other infrastructure (parsing,
model construction, probability computation) are inherited from PRISM. The
tool cannot be configured — all optimizations are enabled — and does not
need to be installed. It reads a model (given as an MDP, .nm) and a property
specification (.pctl) and prints the results to stdout:

./mochiba.sh model.nm properties.pctl

Apart from taking ε-transitions only from states in MECs of M × N (ϕ) as
mentioned above, we implement the following optimizations:
Transition-based acceptance leads to smaller automata, compared to
state-based acceptance. Consequently, it is used by many translators, for
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instance [1,11,24]. However, PRISM translates all automata to state-based, thus
increasing the size of the product. Our procedure avoids this and constructs and
analyses directly the transition-based product.
Generalised Büchi acceptance condition allows for more efficient analysis
than (generalised) Rabin, Streett, or parity conditions. Indeed, for the latter
conditions expensive re-computations of MECs are necessary to handle different
sets to be visited finitely often. In contrast, we compute MECs only once and
check whether each set to be visited infinitely often intersects the MEC.
A single trap state is present in the product. Should the product enter any
state from which the automaton component can never accept, the exploration
of this part stops and redirects the transition to the single trap state.
Primitive data structures such as arrays are used instead of the more flexible
Java collections, since they are more memory efficient, as boxing into objects is
not necessary.
Sparse bit sets have proven more memory efficient for our approach than plain
bit sets with a mapping table.
MEC decomposition is performed locally on disconnected accepting parts
(corresponding to different ε-transitions). Together with the use of sparse bit
sets, MECs are computed faster and using less memory.

4 Experimental Evaluation

We evaluate our novel approach in the setting of [6,19]: we consider the Pneuli-
Zuck randomised mutual exclusion protocol [31] of the PRISM benchmark suite
[28] and also the same previously considered formulas (see lines 1–10 of Table 1).
Additionally, lines 11–14 consider the deeply nested formulas of [35]. Finally,
complementary to the GF-, FG- and fairness-like properties, lines 15–16 include
simple reachability properties, which lie in the focus of the traditional methods.

The experiments were performed on a 2.5 GHz Intel Core i7 (I7-4870HQ) and
granted 12 GB RAM and 1 h computing time for model checking each property
(given the model already in the memory). We denote time-outs and mem-outs
by “-”. We compare the following tools

– MoChiBA (1.0) [34] is our implementation based on the LDBA translation of
[35] and the explicit model checker of PRISM.

– PRISM (4.3) [27] with the symbolic engine, which is the fastest here, and with
the following translators:

• Built-in LTL to deterministic Rabin automaton translation, re-imple-
menting ltl2dstar [22].

• Rabinizer (3.1) [24] using the Safra-less direct translation into gener-
alised Rabin automata, which are now supported by PRISM.

– IscasMC (unofficial, unversioned) implements the lazy approach of [19], using
SPOT 1.2.6 [12] to translate LTL to non-deterministic Büchi automaton. We
used the two fastest configurations as listed in [19]:

• Multi-breakpoint (BP) construction with the explicit engine.
• Rabin (R) construction with the explicit engine.
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Table 1. Runtime comparison on model checking these properties on the Pneuli-Zuck
randomised mutual exclusion protocol [31].

Time (rounded, in seconds)

Property n MoChiBA PRISM Rabinizer IscasMC-BP IscasMC-R

(1) Pmax=?[
GFp1=10∧GFp2=10

∧GFp3=10 ]
4 < 1 16 < 1 < 1 < 1

5 2 230 < 1 12 11

(2) Pmax=?[
GFp1=10∧GFp2=10

∧GFp3=10∧GFp4=10]
4 < 1 26 < 1 1 < 1

5 2 345 < 1 12 12

(3) Pmin=?[
GFp1=10∧GFp2=10

∧GFp3=10∧GFp4=10]
4 1 3552 33 1 22

5 11 - 572 18 641

(4) Pmax=?[
(GFp1=0∨FGp2 �=0)

∧(GFp2=0∨FGp3 �=0)]
4 1 684 18 2 4

5 15 - 293 19 50

(5) Pmax=?[
(GFp1=0∨FGp1 �=0)

∧(GFp2=0∨FGp2 �=0)]
4 < 1 < 1 23 1 4

5 1 < 1 403 17 59

(6) Pmax=?[
(GFp1=0∨FGp2 �=0)

∧(GFp2=0∨FGp3 �=0)
∧(GFp3=0∨FGp1 �=0)

]
4 < 1 78 9 3 10

5 10 1293 137 29 143

(7) Pmax=?[
(GFp1=0∨FGp1 �=0)

∧(GFp2=0∨FGp2 �=0)
∧(GFp3=0∨FGp3 �=0)

]
4 < 1 < 1 61 2 18

5 1 < 1 1077 27 277

(8) Pmin=?[
(GFp1 �=10∨GFp1=0∨FGp1=1)

∧GFp1 �=0∧GFp1=1 ]
4 < 1 8 8 1 1

5 1 145 190 16 21

(9) Pmax=?[
(Gp1 �=10∨Gp2 �=10∨Gp3 �=10)

∧(FGp1 �=1∨GFp2=1∨GFp3=1)
∧(FGp2 �=1)∨GFp1=1∨GFp3=1)

]
4 5 - 1195 8 871

5 99 - - 125 -

(10) Pmin=?[
FGp1 �=0∨FGp2 �=0

∨GFp3=0∨(FGp1 �=10
∧GFp2=10∧GFp3=10)

]
4 1 728 33 79 6

5 24 - 486 - 77

(11) Pmin=?[f0,0] = Pmin=?[
(GFp1=10)U

(p2=10) ]
4 < 1 17 40 2 2

5 11 257 715 23 54

(12) Pmax=?[f0,4] = Pmax=?[
(GFp1=10)U

(XXXXp2=10)]
4 < 1 3 < 1 1 15

5 5 20 2 20 2381

(13) Pmin=?[f1,0] = Pmin=?[
(GFp1=10)U

(G((GFp2=10)U
(p3=10)))

]
4 < 1 909 22 314 4

5 13 - 436 - 59

(14) Pmax=?[f1,4] = Pmax=?[
(GFp1=10)U

(G((GFp2=10)U
(XXXXp3=10)))

]
4 < 1 - 18 2 2

5 12 - 285 24 25

(15) Pmax=?[p1 = 0 U p2 = 10]
4 < 1 < 1 < 1 < 1 < 1

5 < 1 < 1 < 1 7 7

(16) Pmax=?[XXXXXXp1 = 0]
4 < 1 < 1 < 1 1 < 1

5 3 < 1 < 1 19 16

5 Conclusion

We have implemented a novel approach for probabilistic LTL model checking
using a subclass of non-deterministic Büchi automata. Since the experimental
results for the explicit state-space implementation are encouraging, we plan to
extend the approach to a symbolic one. Further, a parellelisation of the prod-
uct construction and MECs analysis, as well as dedicated constructions for the
Release-operator or various LTL fragments could lead to further speed ups.
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semi-deterministic Büchi automata. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 770–787. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 49
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23. Klein, J., Müller, D., Baier, C., Klüppelholz, S.: Are good-for-games automata
good for probabilistic model checking? In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-
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36. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000). doi:10.1007/10722167 21

37. Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for games, omega-automata, and
logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883–889.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 62

38. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: LICS, pp. 332–344 (1986)

https://www7.in.tum.de/~sickert/projects/mochiba/
http://dx.doi.org/10.1007/978-3-319-41540-6_17
http://dx.doi.org/10.1007/10722167_21
http://dx.doi.org/10.1007/978-3-642-39799-8_62


Parallelism, Concurrency



Synchronous Products of Rewrite Systems
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Abstract. We present a concept of module composition for rewrite sys-
tems that we call synchronous product, and also a corresponding con-
cept for doubly labeled transition systems (as proposed by De Nicola
and Vaandrager) used as semantics for the former. In both cases, syn-
chronization happens on states and on transitions, providing in this way
more flexibility and more natural specifications. We describe our imple-
mentation in Maude, a rewriting logic-based language and system. A
series of examples shows their use for modular specification and hints at
other possible uses, including modular verification.

1 Introduction

In this paper we propose a composition of rewrite systems [19] by means of
synchronous products with the aim of using it for modular specification of sys-
tems. We also define a synchronous product for doubly labeled transition systems
(L2TS) as defined in [7]. We use the latter to semantically ground the former.

Our concept of synchronous product is akin to the one from automata theory,
whence it borrows its name, but also to the composition of processes in CCS
[22], to request-wait-block threads in behavioral programming [13], and to other
formalisms for module composition. Most of these formalisms rely on action
identifiers for synchronization, that is, actions with the same name in both com-
ponent systems execute simultaneously. Some, like [16], synchronize states: the
ones simultaneously visited by the component systems must agree on the atomic
propositions they satisfy: if s1 |= p and s2 |= ¬p for some proposition p, then
〈s1, s2〉 is not even a state of the composed system.

As explained in several papers [8,14,18,21], state-only based or action-only
based settings are often not enough for a natural specification of systems and
temporal properties. In some cases, we are interested in the propositions of the
states; in other cases, it is the action that took the system to that state that
matters. In many cases, the combined use of propositions on states and on tran-
sitions results in more natural formulas. For instance, the formula

�♦ enabled-a → �♦ taking-a

Partially supported by MINECO Spanish projects StrongSoft (TIN2012–39391–
C04–04) and TRACES (TIN2015–67522–C3–3–R), Comunidad de Madrid program
N-GREENS Software (S2013/ICE-2731), and UCM-Santander grant GR3/14.

c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 141–156, 2016.
DOI: 10.1007/978-3-319-46520-3 10
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(from [21]) expresses fairness for action a: if action a is infinitely often enabled,
then it is infinitely often taken. Here, enabled-a is a property of states (that they
allow the execution of a on them), but taking-a is a property of the transition
taking place. In the same spirit, this paper suggests that composition of mod-
ules is better approached by synchronizing both states and actions. The papers
[18,21] show how it is always possible to cook a system so that all relevant infor-
mation about transitions is included in states. Thus, strictly speaking, action
synchronization is not needed, but is most convenient.

L2TSs are a kind of amalgamation of LTSs (labeled transition systems) and
Kripke structures: they label states with sets of propositions (as Krikpe struc-
tures do), and transitions with action identifiers (as LTSs do). They are state-
and action-based, and are appropriate for our discussion.

The theoretical contribution of this paper is the definition of the synchronous
product for both L2TSs and rewrite systems. States synchronize based on their
atomic propositions, and transitions based on their action identifiers or rule
labels. We show how rewrite systems (and their synchronous product) can be
given semantics on L2TSs (and their own synchronous product).

As a more practical contribution, the aim of our definitions is to allow the
modular specification of rewrite systems. This is shown in the examples. We
foresee that this would make modular verification possible. Also, as a composed
system only has the behaviors that are possible in both component systems,
it can be used as a means to control a system with another one tailored for
that purpose. We see this as a possible implementation of strategies for rewrite
systems—and one suited to modular verification. These two possibilities are work
in progress and are just hinted at in the examples.

The rest of this paper is divided into six sections. Section 2 recalls L2TSs and
defines their synchronous product. Section 3 focuses on the synchronous product
for rewrite systems and on their semantics. Section 4 shows some examples of
modular specification. Section 5 discusses some issues having to do with the
prototype implementation of the synchronous product that we have developed
in Maude. Section 6 proposes directions for future work and mentions, at the
same time, related literature. Section 7 summarizes the conclusions of the paper.

There is an extended version of this paper available at our website: http://
maude.sip.ucm.es/syncprod. The Maude code for our implementation and the
examples can also be found there.

2 Synchronous Products of L2TSs

We start at the semantic level, presenting the particular kind of transition sys-
tems convenient to our discussion, and showing how they can be composed by
the operation we call synchronous product.

2.1 L2TS: Doubly Labeled Transition Systems

Doubly labeled transition systems were introduced by De Nicola and Vaandrager
in [7] with the aim of comparing properties of Kripke structures and of labeled

http://maude.sip.ucm.es/syncprod
http://maude.sip.ucm.es/syncprod
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transition systems (LTSs). Indeed, L2TSs join in a single object the character-
istics of these different structures. That is, their states are labeled by sets of
atomic propositions (the ones that hold true in the state) and their transitions
are labeled by action identifiers. The original definition from [7] includes invisible
actions, but we will not need them.

Formally, an L2TS is defined as a tuple (S,Λ,→,AP, L), where S is a set of
states, Λ is an alphabet of action identifiers, → ⊆ S×Λ×S is a transition relation
(denoted as s

λ−→ s′), AP is a set of atomic propositions, and L : S → 2AP is
a labeling function, that assigns to each state the atomic propositions that hold
true on it.

2.2 Synchronous Products

The synchronous product of two systems is a way to make them evolve in par-
allel, making sure that they agree at each step and in every moment. Given
two L2TSs Li = (Si, Λi,→i,APi, Li), we define next their synchronous product
L1 ‖L2 = (S,Λ,→,AP, L). The synchronization is specified by relating prop-
erties and actions common to both structures, that is, existing with the same
name in both. For a state s1 ∈ S1 to be visited by L1 at the same time as
s2 ∈ S2 is visited by L2 it is necessary that, for each common atomic propo-
sition p ∈ AP1 ∩AP2, we have that p holds for s1 iff it holds for s2; more
formally: L1(s1) ∩ AP2 = L2(s2) ∩ AP1. We denote this by s1 ≈ s2 and say that
s1 and s2 are compatible or that the pair 〈s1, s2〉 is compatible. For a transition
s1

λ1−→1 s′
1 to occur in L1 simultaneously with s2

λ2−→2 s′
2 in L2 it is necessary

that λ1 = λ2 (in addition to s1 ≈ s2 and s′
1 ≈ s′

2). However, actions existing
only in one of the systems can execute by themselves. This is the definition of
L1 ‖L2 = (S,Λ,→,AP, L):

– S := S1 × S2;
– Λ := Λ1 ∪ Λ2;
– regarding transitions (assuming s1 ≈ s2):

• 〈s1, s2〉 λ−→ 〈s′
1, s

′
2〉 iff s1

λ−→ s′
1 and s2

λ−→ s′
2 and s′

1 ≈ s′
2,

• 〈s1, s2〉 λ−→ 〈s′
1, s2〉 iff s1

λ−→ s′
1 and λ �∈ Λ2 and s′

1 ≈ s2,
• 〈s1, s2〉 λ−→ 〈s1, s′

2〉 iff s2
λ−→ s′

2 and λ �∈ Λ1 and s1 ≈ s′
2;

– AP := AP1 ∪AP2;
– L(〈s1, s2〉) := L1(s1) ∪ L2(s2).

Some notes on the definition and its consequences are in order:

– We let the space state S include non-compatible pairs. However, only tran-
sitions going into compatible states are allowed, so that all states reachable
from a compatible initial state are compatible.

– The resulting composed system includes all the propositions and action iden-
tifiers from both component systems (we take their unions), but for synchro-
nization only the ones that are common are taken into account (their inter-
sections).
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– Renaming of propositions and actions in a structure can be done with no harm
to get equal names in both structures as needed for synchronization.

– When the two systems being composed have no common propositions and
no common actions (AP1 ∩AP2 = ∅ and Λ1 ∩ Λ2 = ∅), they progress with
no consideration to each other: any state can pair with any other, and each
action is executed by itself.

– A system controls the actions the other one can perform. Consider the situa-
tion where the composed system is in state 〈s1, s2〉 (with s1 ≈ s2) and L1 can
execute action λ from s1 (s1

λ−→ s′
1). There are three possibilities to consider

in L2:
• if λ �∈ Λ2, the action can be run in L1 by itself: 〈s1, s2〉 λ−→ 〈s′

1, s2〉
(provided s′

1 ≈ s2);
• if λ ∈ Λ2, but it cannot be executed from s2, then λ cannot be executed

in the composed system at the moment;
• if λ ∈ Λ2 and can be executed from s2 in L2 (s2

λ−→ s′
2), then λ can

only be executed simultaneously in both systems: 〈s1, s2〉 λ−→ 〈s′
1, s

′
2〉

(provided s′
1 ≈ s′

2).

3 Synchronous Products of Rewrite Systems

Our aim is to implement and practically use synchronous products for modular
specification. Thus, we now reflect the abstract definitions above in the more
concrete realm of rewrite systems.

3.1 Rewrite Systems

Rewriting logic takes on the concept of term rewriting and tailors it to the spec-
ification of concurrent and non-deterministic systems. It was introduced as such
by Meseguer in [19]. Maude [5] is a language (and system) for specification and
programming based on this idea. A specification in rewriting logic contains equa-
tions and rewrite rules. Equations work much like in functional programming;
rules describe the way in which a system state evolves into a different one.

Maude’s flavor of rewriting logic is based on order-sorted equational logic—
membership equational logic indeed [20], but we are not using such a feature
in this paper. Thus, a rewrite system has the form R = (Σ,E ∪ Ax,R), where:
Σ is a signature containing declarations for sorts, subsorts, and operators; E
is a set of equations; Ax is a set of equational axioms for operators, such as
commutativity and associativity; and R is a set of labeled rewrite rules of the
form [�] s → s′.

In Sect. 3.2 below, we show a way to compose and synchronize rewrite sys-
tems. Synchronization on states happens on coincidence on their common propo-
sitions. For that to be meaningful, we need a way to handle propositions, which
are not, in principle, an ingredient of rewrite systems. Thus, we require of each
rewrite system R = (Σ,E ∪ Ax,R) the following:
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– the sort in Σ that represents the states of the system is called State;
– Σ includes a sort Prop, representing atomic propositions, composed by a finite

amount of constants (this requirement is needed in Sect. 3.2 to define the
synchronous product);

– R includes the definition of a theory of the Booleans declaring, in particular,
the sort Bool, and the constants true and false;

– Σ includes an infix relation symbol |= : State×Prop → Bool, and E includes
equations that completely define |=, that is, each expression s |= p is reduced
to true or false by E ∪ Ax.

These conventions are a standard way to introduce propositions in rewrite
systems. It is the setting needed to use Maude’s LTL model checker [10], for
instance. However, we are using propositions only for synchronization. Even if
model checking were performed on any of these systems, the propositions used
for that need not be the same ones used for synchronization.

We have one additional technical requirement: the system has to be topmost.
A topmost rewrite system is one in which all rewrites happen on the whole state
term—not on its subterms. (Formally, this is guaranteed by requiring that all
rules involve terms of sort State, and that the sort State is not an argument
of any constructor, so that no term of sort State can be subterm of another
term of the same sort). The aim of this requirement is that rules preserve their
meaning after composition. For instance, the non-topmost rule a → a′ would
rewrite the term f(a) to f(a′), because a is a subterm of f(a); but the composed
rule 〈a, t〉 → 〈a′, t′〉 would not rewrite the composed term 〈f(a), s〉, whatever s
and t could be, because 〈a, t〉 is not a subterm of 〈f(a), s〉. Many rewrite systems
are topmost or can be easily transformed into an equivalent one that is formally
similar and topmost [11].

3.2 Synchronous Products

Given two rewrite systems as above, Ri = (Σi, Ei ∪ Axi, Ri), for i = 1, 2, their
synchronous product, denoted R1 ‖R2, is a new rewrite system R = (Σ,E ∪
Ax,R) as specified below.

A technical detail is needed about names and namespaces. The conditions
in Sect. 3.1 require that each system includes some sorts and operators: State,
|=, and so on. This does not mean that sorts with the same name in different
systems are the same sort. Indeed, we consider that each system has implicit
its own namespace. Names for sorts, constants, and the other elements must
be understood within the namespace of their respective systems. When needed,
we qualify a name with a prefix showing the system it belongs to or where it
originated: R.State. We omit the prefix whenever there is no danger of confusion.
Sometimes we say that something is true “in R” to avoid cluttering the text with
prefixes for each element that would need it.

We refer as naked names to the ones without the qualifying prefixes. These
are needed for synchronization, as it is done on coincidence of naked names, and
those names remain as such in the product system, with different qualification.



146 Ó. Mart́ın et al.

For instance, the value of R1.p has to be the same as the one of R2.p and both
give rise to R.p.

With this convention about namespaces, signatures Σ1 and Σ2 are naturally
disjoint, as are the sets of equations, axioms, and rule labels. Equations, in par-
ticular, are included verbatim from each system into the synchronous product,
according to the definition below; any equational deduction valid in one of the
systems is still valid in the product. Rules, instead, are not included verbatim
from the component systems, but synchronized as formalized below.

As also mentioned in Sect. 2.2, we assume that renaming has previously taken
place as needed, so that synchronization happens on the set of rule labels and
the set of atomic propositions whose naked names are common to both systems.

This is the rather long definition of the synchronous product:

– Σ := Σ1  Σ2  Σ′, where Σ′ contains:
• declarations for sorts R.State and R.Prop;
• declarations for R.Bool, R.true, and R.false;
• a declaration for the operator R.|= : R.State × R.Prop → R.Bool;
• a new constructor symbol 〈 , 〉 : R1.State × R2.State → R.State;
• a set of declarations for operators to make R.Prop the union of R1.Prop

and R2.Prop, that is:

{R.p : R.Prop | R1.p : R1.Prop ∈ Σ1 or R2.p : R2.Prop ∈ Σ2 or both};

• a declaration for the predicate: R.≈ : R1.State × R2.State → R.Bool.
– E := E1  E2  E′, where E′ contains:

• equations for a theory of the Booleans;
• equations to reduce s1 ≈ s2 to true in R iff (s1 |= p = true in R1 ⇐⇒

s2 |= p = true in R2, for every proposition whose naked name p exists in
both systems), and to R.false otherwise;

• for each p such that R1.p : R1.Prop ∈ Σ1, the equation:

〈x1, x2〉 R.|= R.p = x1 R1.|= R1.p,

• for each p not in the previous item but such that R2.p : R2.Prop ∈ Σ2,
the equation:

〈x1, x2〉 R.|= R.p = x2 R2.|= R2.p.

In these equations x1 and x2 are variables of sorts R1.State and R2.State,
respectively. Because of the conditions on the rules below, only compatible
pairs 〈x1, x2〉 are reachable. And only for such pairs we will need to use some
of the last two equations above. Thus, for a proposition p whose naked name
exists in both systems, we have arbitrarily but harmlessly chosen to use the
value from the first system.

– Ax := Ax1  Ax2.
– R is composed of the following set of rules:

• for each rule label � that exists in both systems, say [�] si → s′
i ∈ Ri, we

have in R the conditional rule [�] 〈s1, s2〉 → 〈s′
1, s

′
2〉 if s′

1 ≈ s′
2;
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• for each rule label � that exists in R1 but not in R2, say [�] s1 → s′
1 ∈ R1,

we have in R the conditional rule [�] 〈s1, x2〉 → 〈s′
1, x2〉 if s′

1 ≈ x2 (with
x2 a variable of sort R2.State);

• correspondingly for rule labels in R2 but not in R1.
In these three kinds of rules, the condition guarantees that only compatible
states are reached.

Several items above include universal quantification on atomic propositions.
This could be problematic, and it is the reason why we require the sorts Prop to
consist only of a finite amount of constants.

3.3 Semantics

Given a rewrite system as above, R = (Σ,E ∪ Ax,R), its semantics is an L2TS
L = (S,Λ,→,AP, L), based on the usual term-algebra semantics (see [19], for
instance) in this way:

– S := TΣ/E∪Ax,State, the set of terms of sort State modulo equations;
– Λ is the set of rule labels in R;
– → corresponds to the transition relation generated by rewriting with the rules

from R [19], that is, s
λ−→ s′ iff there is a rule in R with label λ that allows

rewriting s to s′ in one step within R;
– AP := TΣ/E∪Ax,Prop, the set of terms of sort Prop modulo equations;
– L(s) := {p ∈ AP | s |= p = true modulo E ∪ Ax}.

Let “sem” denote the semantics operator, which assigns to each rewrite sys-
tem an L2TS as just explained. All previous definitions have been chosen so that
the following result holds.

Theorem. For any rewrite systems R1 and R2, we have that sem(R1 ‖R2) is
isomorphic to sem(R1) ‖ sem(R2). The isomorphism is in the sense that there
exist bijections between their sets of states, between their sets of actions, and
between their sets of atomic propositions that preserve the transition relation
and the labeling.

4 Examples

We present examples of synchronous products of rewrite systems. Many of them
show systems made up to control others. They are coded in Maude [5], the
rewriting based language and system we have used to develop our implementa-
tion of the synchronous product. They should be easily understood by anyone
acquainted with rewriting logic or algebraic programming. All the examples are
downloadable from our website: http://maude.sip.ucm.es/syncprod. Many of the
examples build on previous ones. The first one involves no synchronization, but
it uses modular specification, and serves as basis for subsequent ones.

http://maude.sip.ucm.es/syncprod
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4.1 Modular Specification: Two Railways

Consider this sketchy implementation of a railway in Maude:
mod RAILWAY1 is

including BOOL .
including SATISFACTION . --- declares State, Prop, and |=.
ops waiting crossing to-station in-station from-station : -> State .
rl [t1wc] : waiting => crossing .
rl [t1ct] : crossing => to-station .
rl [t1ti] : to-station => in-station .
rl [t1if] : in-station => from-station .
rl [t1fw] : from-station => waiting .

endm

Modules BOOL and SATISFACTION are conveniently predefined in Maude. We can
picture the system as a closed loop railway with a station and a crossing with
another railway. Indeed, we model this other railway in the same way and call
it RAILWAY2. The rule names in this new system have a 2 instead of a 1 (our
framework does not allow for parametric modules).

The whole system is given by RAIL := RAILWAY1 ‖ RAILWAY2, with rules like:
rl [t1wc] : < waiting, T2 > => < crossing, T2 > .

with T2 a variable of sort RAILWAY2.State. No synchronization is possible, because
all rule labels are different and there are no propositions, but the modular spec-
ification is simpler and more natural than a monolithic one would be.

With this specification, both trains are allowed, but not mandated, to wait
before the crossing. They need to be controlled to avoid crashes.

4.2 Synchronizing Actions: Safety Control

We want to control the whole system so as to ensure that trains do not cross
simultaneously. Consider this controller system:

mod SAFETY is
including BOOL .
including SATISFACTION . --- declares State, Prop, and |=.
ops none-crossing one-crossing : -> State .
rl [t1wc] : none-crossing => one-crossing .
rl [t2wc] : none-crossing => one-crossing .
rl [t1ct] : one-crossing => none-crossing .
rl [t2ct] : one-crossing => none-crossing .

endm

Note that the rule labels used are some of the ones appearing in RAILWAY1 and
RAILWAY2. The rules ensure that from state one-crossing only transitions out of
the crossing are allowed. The system RAIL ‖ SAFETY behaves as desired. The rules
of this composed system have, for example, this shape:

rl [t1wc] : < < waiting, T2 >, none-crossing > =>
< < crossing, T2 >, one-crossing > .

This is certainly equivalent to
crl [t1wc] : < waiting, T2 > => < crossing, T2 > if T2 =/= crossing .
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But, to obtain this latter one, we would need to modify RAIL—not extending,
but overwriting it. The advantage of modularity, in this case, is that it allows
an external, non-intrusive control.

This example showed synchronization on actions; the next focuses on states.

4.3 Synchronizing States: Alternative Safety Control

In more complex implementations of the RAIL system, controlling all the ways in
which trains can get into the crossing can be involved. For instance, both trains
could be allowed to move into the crossing at the same time, so that controlling
individual isolated movements as above would not be enough. In such cases, it
can be easier to base the control on the states.

We extend the system RAIL with the following lines, declaring and defining
the atomic proposition safe to hold when at least one train is out of the crossing:

mod RAIL-EXT is
including RAILWAY1 || RAILWAY2 .
op safe : -> Prop .
eq < crossing, crossing > |= safe = false .
eq < T1, T2 > |= safe = true [owise] .

endm

The new controller system we propose, SAFETY2, has a single state, named o,
that satisfies the proposition safe, and no rules:

mod SAFETY2 is
including BOOL .
including SATISFACTION .
op o : -> State .
op safe : -> Prop .
eq o |= safe = true .

endm

Consider RAIL-EXT ‖ SAFETY2. A typical rule in this composed system is
crl [t1wc] : < < waiting, T2 >, X > => < < crossing, T2 >, X >

if compatible(< crossing, T2 >, X) .

It is not too different from the previous t1wc, except for the compatibility con-
dition. As o is always safe, also < crossing, T2 > must be safe for the rule to
be applied. So, SAFETY2 restricts RAIL-EXT to visit only safe states, as desired.

Note again the advantage of a modular specification: once RAIL-EXT is given,
we can easily choose the control that fits better, either SAFETY or SAFETY2 or some
other given module with the same purpose.

4.4 Repeated Composition: Controlling Performance

Now that safety is guaranteed, experts have decided that for a better perfor-
mance of the public transport network, it is worth letting two trains pass through
way 1 for each one passing through way 2. This can be achieved by a synchronous
product of RAIL ‖ SAFETY with this new system:
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mod PERFORMANCE is
including BOOL .
including SATISFACTION .
ops 0cross 1cross 2cross : -> State .
rl [t1wc] : 0cross => 1cross .
rl [t1wc] : 1cross => 2cross .
rl [t2wc] : 2cross => 0cross .

endm

This accumulated control is possible because synchronized rules in RAIL ‖ SAFETY

keep their names and are still visible from the outside.
Note that the product SAFETY ‖ PERFORMANCE is meaningful by itself: it is a sys-

tem that, when composed with any uncontrolled implementation of the railway
crossing (using the same rule labels), guarantees both safety and performance.

4.5 Instrumentation: Counting Crossings

Instrumentation is the technique of adding to the specification of a system some
code in order to get information about the system’s execution: number of steps,
timing, sequence of actions, etc. To some extent, it can be done by using syn-
chronous products.

This time we want to keep track of the number of crossings for each train.
For RAILWAY1 we propose this very simple system:

mod COUNT1 is
including BOOL .
including SATISFACTION .
including NAT .
subsort Nat < State .
var N : Nat .
rl [t1wc] : N => N + 1 .

endm

A state of RAILWAY1 ‖ COUNT1 is a pair whose second component is the counter. The
initial state must be < in-station, 0 > (if in-station was the initial state for
RAILWAY1). The same can be done to RAILWAY2. Then, the instrumented systems
can be controlled in any of the ways described above.

4.6 Separation of Concerns: Dekker’s Algorithm

Consider this new module:
mod DEKKER is

including BOOL .
including SATISFACTION .
sorts Waiting Turn .
ops 0w 1w 2w : -> Waiting .
ops t1 t2 : -> Turn .
op (_,_) : Waiting Turn -> State .
var T : Turn .
rl [t1wc] : (1w,T) => (0w,t2) . rl [t2wc] : (1w,T) => (0w,t1) .
rl [t1wc] : (2w,t1) => (1w,t2) . rl [t2wc] : (2w,t2) => (1w,t1) .
rl [t1fw] : (0w,T) => (1w,T) . rl [t2fw] : (0w,T) => (1w,T) .
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rl [t1fw] : (1w,T) => (2w,T) . rl [t2fw] : (1w,T) => (2w,T) .
endm

This module can be used to ensure absence of starvation in the controlled system,
that is, that no process waits indefinitely. The Waiting component of the state
stores how many processes are waiting to enter the critical section: both, one,
or none. The Turn component stores whose turn is next, in case both processes
are waiting (if only one process is waiting, it can just go on).

Usual presentations of Dekker’s algorithm also include mutual exclusion con-
trol. Our module DEKKER does not control when processes exit the critical section
so it cannot ensure mutual exclusion by itself. In our case, the combined control
is achieved by the product SAFETY ‖ DEKKER. Separation of different concerns in
different modules is made possible by the synchronous product construction.

4.7 State and Rule Synchronization: Two Trains in a Linear
Railway

As an example that sometimes synchronization is convenient on states and on
transitions in the same system, consider this one, taken from [6], told again in
terms of train traffic. There is a single linear railway divided into tracks, and
there are two trains going along it from track to track, always in the same
direction—to the right, say. Each train can move at any time from one track
to the next, but they can never be at the same time on the same track. Thus,
whenever the trains are in adjacent tracks, only the rightmost one can move.
This is the specification for the train on the left:

mod LTRAIN is
including BOOL .
including SATISFACTION .
including NAT .
subsort Nat < State .
var Track : Nat .
rl [lmove] : Track => Track + 1 .

endm

The one on the right is specified in module RTRAIN which is the same as above
except that the rule is called rmove. The controller we need has to detect
when the trains are in adjacent tracks, and this is a property on the states of
LTRAIN ‖ RTRAIN. To make the control possible, we extend this composed system
with the declaration of the proposition adjacent:

mod TRAINS-EXT is
including LTRAIN || RTRAIN .
op adjacent : -> Prop .
vars T T’ : Nat .
eq < T, T + 1 > |= adjacent = true .
eq < T, T’ > |= adjacent = false [owise] .

endm

The controller is this:
mod CONTROL is

including BOOL .
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including SATISFACTION .
ops adj nonadj : -> State .
var S : State .
rl [lmove] : nonadj => nonadj .
rl [lmove] : nonadj => adj .
rl [rmove] : S => nonadj .
op adjacent : -> Prop .
eq adj |= adjacent = true .
eq nonadj |= adjacent = false .

endm

Only the movement of the train on the left can take the system to a configuration
with adjacency. When it does, the controller remembers it in its state, and the
next movement can only be made by the train on the right. Note that both kinds
of synchronization, on states and on transitions, are present in this example, and
that using only one of them would result in a more involved specification.

5 Notes on the Implementation

Our prototype implementation of the synchronous product in Maude can be
downloaded from our website: http://maude.sip.ucm.es/syncprod. The extended
version of this paper contains a brief appendix with instructions. The implemen-
tation largely follows the explanations in Sect. 3.2. Some details, however, could
be appreciated by those familiar with Maude or rewriting logic.

Choice of Tools. We want a program that takes as arguments two Maude
modules and produces a new one containing their synchronous product. Our
program has to handle rules, equations, labels and so on. Even complete modules
have to be treated as objects by the program we seek. It turns out that Maude
itself is a very convenient tool for this second-order programming task.

Rewriting logic is reflective, and that implies in particular that constructs
of the language can be represented and handled as terms [5]. Maude provides a
set of metalevel functions for this purpose. The function getRls, to name just
an example, takes as argument a module and returns its set of rules. Modules,
rules, and the rest of Maude’s syntactic constructs must be meta-represented
for these metalevel functions to be able to handle them. That is, they cease to
be Maude code and become terms of sorts Module, Rule, and so on. Maude also
provides functions to perform such meta-representation. We have chosen this
as the natural way to the implementation. We have coded a Maude function
syncprod that receives two terms of sort Module and produces one representing
their synchronous product.

But that function can only be invoked at the metalevel, feeding it with two
terms of sort Module, not with two Maude modules. A decent implementation
must allow a simpler use. For those acquainted with Maude, the tool of choice
for such a task is Full Maude. Full Maude [5,9] is a re-implementation of the
Maude interpreter using Maude itself. It is adaptable and extensible, and allows
the definition of new module expressions, as we need. We have extended Full

http://maude.sip.ucm.es/syncprod
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Maude to include an operator || on modules to represent the synchronous prod-
uct. A module containing including MODULE1 || MODULE2 can refer to any of the
constructs of the synchronous product, like pairs of states, propositions inherited
from the operand systems, and so on.

Name Clashes. We discussed in Sect. 3.1 that names State, Prop, Bool, and so
on are required to appear in each operand system, and in the resulting system
as well. In the theoretical description we assumed each occurrence of them to be
qualified by its namespace. In practice, there are three cases to be considered:

– Sorts such as Bool and Nat, and their operators, are most probably going to
be defined and used in the same way in every system. Keeping several copies
of them would not harm, but is pointless.

– The sort State for the resulting system is defined as pairs of operand States.
Thus, all three State sorts need to be present in the resulting system, with
different names. The same applies to the operator |=, whose definition uses
the corresponding operators from each system.

– The sort Prop is somewhat special in that we identify elements with the same
name in the three systems. Having just one sort Prop makes things easier.

This is what our implementation does: First, for each operand module, it
renames its sort State to ModName.State, if ModName is the name of the module;
also, it renames the satisfaction symbol from |= to ModName.|=. Once this is done
for both operand modules, their union is computed, thus leaving only one sort
Prop, and also one sort Bool, and so on. A fresh sort State and a fresh operator |=

are then declared. The just mentioned union affects declarations and equations,
but not rules, that are individually computed in their composed forms.

6 Related and Future Work

Some of the proposals of this paper set the ground on which interesting work is
already being done. Let’s be more concrete.

Egalitarian Synchronization. In [18] we presented a class of transition sys-
tems called egalitarian structures. They are egalitarian in the sense that they
treat states and transition as equals. In particular, they allow using atomic
propositions on transitions. That paper also showed how rewrite systems are
egalitarian in nature, because transitions are represented by proof terms in the
same way as states are represented by terms of the appropriate sort.

As pointed in the introduction and also in [18], the expression of temporal
properties by formulas benefits from an egalitarian view. Composition of systems
should benefit in the same way. An egalitarian synchronous product would allow
transitions to synchronize not just on labels, but on their common propositions
(depending, in particular, on variable instantiations).
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Strategies. The examples have shown how it is possible to control a system
with another one made up for that purpose. It is fair to call strategic this kind
of control. Indeed, we see the synchronous product as a means to implement
strategies for rewrite systems. As also shown in [18], strategies can also benefit
from an egalitarian treatment. We expect to be able to develop automatic trans-
lations from some strategy languages to equivalent Maude modules, although
the precise power of such a technique is still to be seen.

From its origin in games, the concept of strategy, under different names and
in different flavors, has become pervasive, particularly in relation to rewriting
(see the recent and excellent survey [15]). Maude [5] includes flexible strate-
gies for the evaluation of terms (like lazy, innermost and so on), and external
implementations have been proposed in [17] and in [25]. ELAN [2], Tom [1], and
Stratego [26] include strategies built-in. They also appear in graph rewriting sys-
tems (see references in [15] and also [23], where they are called just programs).
The same concept is used in theorem provers: it allows the user to guide the
system towards the theorem, or to represent the whole proof once found.

Modularity for Specification and Verification. Modular systems are easier
to write, read, and verify. For the writing phase, the separation of concerns
among modules has great simplifying power: one module implements the base
system, another ensures mutual exclusion, another deals just with starvation.

Model checking [3] performed in a modular way can be more efficient, given
that the size of the state space of the composed system is of the order of the
product of the individual sizes. An attractive possibility is that of providing the
specifier with a library of pre-manufactured and pre-verified modules ready to
be used (through synchronous product) for specific tasks. For ensuring mutual
exclusion, for instance, one could readily choose among SAFETY or SAFETY2 or
some other. Care is needed, however, as it is not always the case that a composed
system preserves the properties of the components.

Much work already exists on modular model checking and verification, but
not many tools allow for it and, to the best of our knowledge, no implemen-
tation on rewriting logic has been developed. The papers [4,16], among many
others, show techniques for drawing conclusions compositionally. Adapting such
techniques to our framework is pending work.

Composition of modules can generate new deadlocks in cases where the com-
ponents do not agree on a common next step. The system SAFETY2 from Sect. 4.3
is a very simple example: as it constrains the base system to visit only safe

states, absence of new deadlocks is only guaranteed assuming that in the base
system, RAIL-EXT, a safe state is always reachable in one step. This is the same
assume-guarantee paradigm proposed in [16] for modular model checking.

We are particularly interested in model checking strategically controlled sys-
tems. Once the concept of control through synchronous products is in place,
existing tools can be used, ideally in a modular way (particularly, for us, Maude’s
LTL model checker [10]). The nearest works on this we are aware of are GP 2,
that includes Hoare-style verification in the context of graph rewriting [24], and
the BPmc prototype tool for model checking behavioral programs in Java [12].
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Behavioral Programming. Based on the idea that a system can be decom-
posed into several synchronized threads, each of them implementing a behavior
of the system, behavioral programming [13] bears many similarities with our
proposal. Formally, it uses the request-wait-block paradigm. According to it, at
each synchronization point, each thread declares three sets of events: the ones it
requests (it needs one of them to go on), the ones it does not request, but wants
to be informed when they happen, and the ones it blocks. An external scheduler
chooses an event requested by some thread and blocked by none, and so the sys-
tem goes on to the next synchronization point. Although there is not a perfect fit
between their formalization and ours, the resulting settings are very similar, and
the examples in [12,13] are easily translatable to synchronized Maude modules.

7 Conclusions

The concept of synchronous product can be extended from automata theory to
the specification of systems, where it represents composition of modules. It can
be equivalently defined on abstract transition systems (namely, L2TSs) and on
rewrite systems. For more flexible and natural specifications, it is possible and
convenient to synchronize at the same time on states and on transitions. We have
used atomic propositions to synchronize states, but just rule labels (or action
names) for transitions. We intend to generalize this in the near future.

The examples (to be run in our implementation in Maude) show how the
synchronous product makes modular specifications easier in rewriting logic. We
expect that it will also make possible the implementation of some kind of strate-
gies and the modular verification of systems, even after they have been controlled
by strategies. All this is work in progress.
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Abstract. Web-based workflow management systems, like EasyChair,
HealthVault, Ebay, or Amazon, often deal with confidential informa-
tion such as the identity of reviewers, health data, or credit card num-
bers. Because the number of participants in the workflow is in principle
unbounded, it is difficult to describe the information flow policy of such
systems in specification languages that are limited to a fixed number of
agents. We introduce a first-order version of HyperLTL, which allows
us to express information flow requirements in workflows with arbitrar-
ily many agents. We present a bounded model checking technique that
reduces the violation of the information flow policy to the satisfiability
of a first-order formula. We furthermore identify conditions under which
the resulting satisfiability problem is guaranteed to be decidable.

1 Introduction

Web-based workflow management systems allow diverse groups of users to col-
laborate efficiently on complex tasks. For example, conference management sys-
tems like EasyChair let authors, reviewers, and program committees collaborate
on the organization of a scientific conference; health management systems like
HealthVault let family members, doctors, and other health care providers col-
laborate on the management of a patient’s care; shopping sites like Amazon
or Ebay let merchants, customers, as well as various other agents responsible
for payment, customer service, and shipping, collaborate on the purchase and
delivery of products.

Since the information maintained in such systems is often confidential, the
workflows must carefully manage who has access to what information in a par-
ticular stage of the workflow. For example, in a conference management system,
PC members must declare conflicts of interest, and they should only see reviews
of papers where no conflict exists. Authors eventually get access to reviews of
their papers, but only when the process has reached the official notification stage,
and without identifying information about the reviewers.

It is difficult to characterize the legitimate information flow in such systems
with standard notions of secrecy. Classic information flow policies are often too
strong. For example, noninterference [12] requires that the PC member cannot
c© Springer International Publishing AG 2016
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observe any difference when classified input, such as the reviews of papers where
the PC member has a conflict of interest, is removed. This strong requirement
is typically violated, because another PC member might, for example, nondeter-
ministically post a message in a discussion about a paper where they both have
no conflict. Weaker information flow policies, on the other hand, often turn out
too weak. Nondeducibility [19], for example, only requires that an agent cannot
deduce, i.e., conclusively determine, the classified information. The problem is
that a piece of information is considered nondeducible already if, in the entire
space of potential behaviors, there exists some other explanation. In reality, how-
ever, not all agents exhibit the full set of potentially possible behaviors, and an
actual agent might be able to deduce far more than expected (cf. [15]).

Temporal logics for the specification of information flow [10] are an impor-
tant step forward, because they make it possible to customize the secrecy prop-
erties. HyperLTL [7] is the linear-time representative of this class of logics. As
an extension of linear-time temporal logic (LTL), HyperLTL can describe the
precise circumstances under which a particular information flow policy must
hold. While standard linear or branching-time logics, like LTL or CTL∗, can
only reason about the observations at a single computation trace at a time, and
can thus, by themselves, not specify information flow, HyperLTL formulas use
trace quantifiers and trace variables to simultaneously refer to multiple traces.
For example, HyperLTL can directly express information flow properties like
“for any pair of traces π, π′, if the low-security observer sees the same inputs
on π and π′, then the low-security observer must also see the same outputs on
π and π′”. The key limitation of HyperLTL for the specification of workflows is
that it is a propositional logic. It is, hence, impossible to specify the information
flow in workflows unless the number of agents is fixed a-priori. In this paper, we
overcome this limitation.

We introduce a framework for the specification and verification of secrecy
in workflows with arbitrarily many agents. Our framework consists of a work-
flow description language, a specification language, and a verification method.
Our workflow description language gives a precise description of the behavior
of workflow management systems with an arbitrary number of agents. Figure 1
shows a simple example workflow of a conference management system. The work-
flow manipulates several relations over the unbounded domain of agents, that
each characterize a particular relationship between the agents: for example, a
pair (x, p) in Conf indicates that PC member x has declared a conflict with
paper p, a triple (x, y, p) in Comm indicates that PC member x has received
from PC member y a message about paper p. As a specification language for the
information flow policies in such workflows, we introduce a first-order version
of HyperLTL. We extend HyperLTL with first-order quantifiers, allowing the
formulas to refer to an arbitrary number of agents. We show that the new logic
can be used to specify precise assumptions on the behavior of the agents, such
as causality : while a nondeterministic agent can take any action, the actions
of a causal agent can only reveal information the agent has actually observed.
Restricting the behaviors of the agents to the causal behavior allows us to
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(1) forall x, p. may true → Conf += (x, p)
% PC members declare conflicts of interest

(2) forall x, p. may ¬Conf(x, p) → A += (x, p)
% PC chair makes paper assignments taking into account the conflicts

(3) forall x, p, r. A(x, p) ∧ Oracle(p, r) → Read += (x, p, r)
% PC members without conflicts read reviews

(4) forall y, x, p. may A(x, p) ∧ A(y, p) → Comm += (x, y, p)
% PC discussion among members assigned to the same paper

Fig. 1. Example workflow from a conference management system.

quantify universally over the actions of the agents, as in classic notions of secrecy
like noninterference, and, at the same time, eliminate the false positives of these
notions. Finally, we introduce a verification method, which translates the ver-
ification problem of workflows with arbitrarily many agents and specifications
in first-order HyperLTL to the satisfiability problem of first-order logic. While
first-order logic is in general undecidable, we identify conditions under which
the satisfiability problem for the particular formulas in the verification of the
workflows is guaranteed to be decidable.

2 Workflows with Arbitrarily Many Agents

Symbolic Transition Systems. As the formal setting for the specification
and verification of our workflows, we chose symbolic transition systems, where
the states are defined as the valuations of a set of first-order predicates P. The
initial states and the transitions between states are described symbolically using
an assertion logic over P. For the purpose of describing workflows, we use first-
order predicate logic (PL) with equality as the assertion language.

A symbolic transition system S = (P, Θ,Δ) consists of a set of predicates P,
an initial condition Θ, and a transition relation Δ. The initial condition Θ is
given as a formula of the assertion language over the predicates P. The transition
relation Δ(P1, . . . , Pk;P ′

1, . . . , P
′
k) is given as a formula over the predicates P =

{P1, . . . , Pk}, which indicate the interpretation of the predicates in the present
state, and the set of primed predicates P ′ = {P ′

1, . . . , P
′
k}, which indicate the

interpretation of the predicates in the next state.
Let U be some arbitrary universe. In the case of the workflows, U is the set

of agents participating in the workflow. Let Pn denote the set of predicates with
arity n. A state s :

⋃
n≥0 Pn × Un → B is then an evaluation of the predicates

over U . A trace is an infinite sequence of states s0, s1, . . . such that (1) s0 satisfies
Θ (initiation), and (2) for each i ≥ 0, the transition relation Δ is satisfied by the
consecutive states si and si+1, where the predicates in P are evaluated according
to si and the predicates in P ′ are evaluated according to si+1. We denote the
set of all traces of a transition system S as Traces(S).

The Workflow Language. We define a language to specify workflows. A work-
flow is structured into multiple blocks. Each block specifies the behaviour of a
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group of agents. A block is made of several statements which add (or remove)
specific tuples from a given relation depending on a guard clause.

p ::= block; p | ε // workflow program
block ::= forall x0, . . . , xk.{stmts}

| forall x0, . . . , xk. may {stmts} // block
stmts ::= θ → R += (t1, . . . , tn); stmts

| θ → R −= (t1, . . . , tn); stmts
| ε // updates

t ::= xj | c // terms

Here, terms t1, . . . , tn are either agent variables x0, . . . , xk or constant values c, R
denotes a predicate symbol, and θ is a guard clause that needs to be met before
performing the update. If the guard is not met, no update occurs. Guards can
be arbitrary formulas from first-order predicate logic (PL). The set of predicate
symbols contains a special symbol Oracle denoting the environment input. In
order to specify deterministic/nondeterministic behaviour, we use two different
kinds of statements. In a normal block, all agents execute the block, i.e., the
listed sequence of guarded updates. In a may block, only a subset of tuples of
agents may decide to execute the block. Note that guarded remove to a predicate
R of the form θ → R −= (t0, . . . , tn) can be simulated by a guarded addition to
a fresh predicate R′. For that, we define: R(t0, . . . , tn)∧¬θ → R′ +=(t0, . . . , tn)
and subsequently, replace uses of R with uses of R′.
Semantics. In the following, we give a semantics for workflow w = b1 . . . bT as a
transition system. The set of variables then consists of the universe U of agents
participating in the workflow, together with a finite set of relations or predicates
over U . In order to control the transitions between system states, we require one
predicate Choicei for the i-th may statement to control the subset of tuples of
agents choosing to execute the statement. Furthermore, let Count0, . . . ,CountT
denote a sequence of boolean flags indicating the current program point. Iteration
of the workflow from 0 to T is expressed by the formula ΦCount given by:

CountT → (Count′T ∧
∧

l′ �=T

¬Count′l′) ∧
T−1∧
l=0

Countl → (Count′l+1 ∧
∧

l′ �=l+1

¬Count′l′)

Initially, all predicates are false, except for the designated relation Oracle that
provides input data to the workflow and the relations Choicei that provide the
agent behaviour. Moreover, all flags Countl, but Count0 are false. An execu-
tion of the workflow program then is completely determined by the initial value
of Oracle together with the choices of the agents as provided by the relations
Choicei. W.l.o.g., we assume that within a statement, every relation R is updated
at most once. For every k-ary relation R and program point l, we construct a for-
mula ΦR,l(y1, . . . , yk) using free variables y1, . . . , yk, so that R(y1, . . . , yk) holds
after execution of block bl iff ΦR,l(y1, . . . , yk) holds before the execution of bl.
The transition relation is defined by the conjunction of ΦCount together with the
conjunction over all formulas

∧T−1
l=0 Countl → ∀y1, . . . , yk. R′(y1, . . . , yk) ↔ ΦR,l(y1, . . . , yk) ∧

∀y1, . . . , yk.CountT → R′(y1, . . . , yk) ↔ R(y1, . . . , yk)
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where R′ denotes the value of R after the transition. Thus, we assume that after
the last step, the workflow stutters, i.e., the last state is repeated indefinitely.
For defining the formulas ΦR,l(y1, . . . , yk), consider a block bl of the form:

forall x0, . . . , xm {
θ1 → R1 += (t11, . . . , t1k1);
. . .
θr → Rr += (tr1, . . . , trkr

);
}

Then for j = 1, . . . , r, ΦRj ,l(y1, . . . , yk) is ΦRj ,l(y1, . . . , yk) ∨ ∃x0, . . . , xm. θ̄j ∧
(y1 = tj1) ∧ . . . ∧ (ykj

= tjkj
), where θ̄j is obtained from θj by replacing every

literal Ri(s1, . . . , ski
) with the corresponding formula ΦRi,l(s1, . . . , ski

). For all
other predicates R, ΦR,l(y1, . . . , yk) ≡ ΦR,l(y1, . . . , yk). If bl is the n-th may
block and of the form:

forall x0, . . . , xm may {
θ1 → R1 += (t11, . . . , t1k1);
. . .
θr → Rr += (tr1, . . . , trkr

);
}

we proceed analogously, but add the choice relation Choicen(x0, . . . , xm) as an
additional condition to the θj . Thus for j = 1, . . . , r, ΦRj ,l(y1, . . . , yk) is given
by:

ΦRj ,l(y1, . . . , yk) ∨ ∃x1, . . . , xk. θ̄j ∧ Choicen(x0, . . . , xm) ∧
(y1 = tj1) ∧ . . . ∧ (ykj

= tjkj
)

where θ̄j is obtained from θj by replacing every literal Ri(s1, . . . , ski
) with the

corresponding formula ΦRi,l(s1, . . . , ski
). For all other predicates R, ΦR,l(y1,

. . . , yk) ≡ ΦR,l(y1, . . . , yk).
We remark that, by successive substitution of the formulas ΦR,l, we obtain

for every prefix of the workflow of length l and for every predicate R, a formula
Φ̄R,l which expresses the value of R in terms of the predicates at program start
and the predicates Choicei only.

Example 1. Consider a variation of the conference management workflow given
in the introduction, where a set of all PC members that do not have a conflict
with any paper is collected.

(s1) forall x, p may true → Conf += (x, p)
(s2) forall x, p ¬Conf(x, p) → S += (x)

Then for (s1), Φ̄Conf,1(x, p) ≡ Φ̄Conf,2(x, p) is given by ∃x1, p1. Choice1(x1, p1) ∧
(x1 = x) ∧ (p1 = p), which is equivalent to Choice1(x, p). Accordingly for (s2),
Φ̄S,2 is given by: ∃x2, p2. ¬Φ̄Conf,1(x2, p2) ∧ (x2 = x) which can be simplified to
∃p2. ¬Φ̄Conf,1(x, p2). Altogether, we obtain:

Φ̄Conf,2(x, p) ≡ Choice1(x, p)
Φ̄S,2(x) ≡ ∃p2. ¬Choice1(x, p2)
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Example 2. Consider the workflow (WF1), shown in Fig. 1 in the introduction.
Within this workflow, every statement updates exactly one predicate, and each
predicate Conf, A, Read and Comm is updated only once. Accordingly, we can
drop the extra index t and write Φ̄Conf, Φ̄A, Φ̄Read, Φ̄Comm for the corresponding
predicates after their respective updates. We have:

Φ̄Conf(y1, y2) ≡ Choice1(y1, y2)
Φ̄A(y1, y2) ≡ ¬Choice1(y1, y2) ∧ Choice2(y1, y2)
Φ̄Read(y1, y2, y3) ≡ ¬Choice1(y1, y2) ∧ Choice2(y1, y2) ∧ Oracle(y2, y3)
Φ̄Comm(y1, y2, y3) ≡ ¬Choice1(y1, y3) ∧ Choice2(y1, y3) ∧

¬Choice1(y2, y3) ∧ Choice2(y2, y3) ∧ Choice3(y2, y1, y3)


�

3 Specifying Secrecy with First-Order HyperLTL

HyperLTL [7] is a recent extension of linear-time temporal logic (LTL) with
trace variables and trace quantifiers. HyperLTL can express noninterference and
other information flow policies by relating multiple traces, which are each iden-
tified by a separate trace variable. Since HyperLTL was introduced as a proposi-
tional logic, it cannot express properties about systems with an arbitrary number
of agents. We now present first-order HyperLTL, which extends propositional
HyperLTL with first-order quantifiers. In the following, we will refer to first-order
HyperLTL simply as HyperLTL.

HyperLTL Syntax. Let P be a set of predicates, V be a set of first-order
variables, and Π be a set of trace variables. We call the set PΠ = {Pπ | P ∈
P, π ∈ Π} the set of indexed predicates. Our logic builds on the assertion lan-
guage used in the description of the symbolic transition systems. In the case of
the workflows, this is first-order predicate logic (PL) with equality. The atomic
formulas of HyperLTL are formulas of the assertion language over the indexed
predicates PΠ and the variables V. HyperLTL formulas are then generated by
the following grammar (with initial symbol ψ):

ψ ::= ∃π. ψ | ∃π. ϕ | ¬ψ
ϕ ::= Ψ | ¬ϕ | ϕ ∧ ϕ | ∃x. ϕ | ϕ | ϕ U ϕ,

where Ψ is an atomic formula, π ∈ Π is a trace variable, and x ∈ V is a first-order
variable. HyperLTL formulas thus start with a prefix of trace quantifiers consist-
ing of at least one quantifier and then continue with a subformula that contains
only first-order quantifiers, no trace quantifiers. Universal trace quantification
is defined as ∀π.ϕ ≡ ¬∃π.¬ϕ. U and are the usual Until and Next modali-
ties from LTL. We also consider the usual derived Boolean operators and the
derived temporal operators Eventually ϕ ≡ true U ϕ, Globally ϕ ≡ ¬ ¬ϕ,
and Weak Until ϕ W ψ ≡ ϕ U ψ ∨ ϕ.

HyperLTL Semantics. The semantics of a HyperLTL formula ψ is given with
respect to a set of traces T , an evaluation α : V → U of the first-order variables,
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and an evaluation β : Π → T of the trace variables. Let σ(n) denote the n-th
element in a trace σ, and let σ[n,∞] = σ(n)σ(n + 1) . . . denote the n-th suffix
of σ. We lift the suffix operation from traces to trace assignments and define
β[n,∞](σ) := β(σ)[n,∞]. The update of an evaluation of the first-order or trace
variables is defined as follows: γ[x �→ a](x) = a and γ[x �→ a](y) = γ(x) for
x �= y. The satisfaction of a HyperLTL formula ψ, denoted by α, β |=T ψ, is
then defined as follows:

α, β |=T ∃π. ψ iff ∃t ∈ T . α, β[π �→ t] |=T ψ,
α, β |=T ¬ψ iff α, β �|=T ψ,
α, β |=T Ψ iff α, δ |= Ψ,
α, β |=T ϕ1 ∧ ϕ2 iff α, β |=T ϕ1 and α, β |=T ϕ2,
α, β |=T ∃x. ϕ iff ∃a ∈ U. α[x �→ a], β |=T ϕ,
α, β |=T ϕ iff α, β[1,∞] |=T ϕ,
α, β |=T ϕ1 U ϕ2 iff ∃i ≥ 0 : α, β[i,∞] |=T ϕ2 and

∀0 ≤ j < i : α, β[j,∞] |=T ϕ1,

where ψ,ϕ1, and ϕ2 are HyperLTL formulas, Ψ is an atomic formula, and
α, δ |= Ψ denotes the satisfaction of the formula Ψ of the assertion logic in the
valuation α of the first-order variables and the interpretation δ of the indexed
predicates. The interpretation δ(Pπ) of an indexed predicate Pπ is defined as
the interpretation δ(Pπ) = β(π)(0)(P ) of P provided by the first state of the
trace assigned to π. A formula without free first-order and trace variables is
called closed. A closed formula ψ is satisfied by a transition system S, denoted
by S |= ψ, iff α, β |=T ψ for the empty assignments α and β and the set
T = Traces(S) of traces of the transition system. HyperLTL formulas in which
all trace quantifiers are universal are called universal formulas. In the remainder
of the paper, we will only consider universal formulas. This fragment contains
many information flow properties of practical interest.

Noninterference. Secrecy properties like noninterference are based on a clas-
sification of the inputs and outputs of a system into either low, meaning not
confidential, or high, meaning highly confidential. A system has the noninterfer-
ence property [12] if in any pair of traces where the low inputs are the same,
the low outputs are the same as well, regardless of the high inputs. When we
are interested in the noninterference property of a single agent, it is possible
to model the low and high inputs and the low and high outputs of the system
(as seen by the agent) using separate predicates, for example, as Il, Ih, Ol, Oh,
respectively. Noninterference can then be expressed as the HyperLTL formula

∀π.∀π′. (Il,π ↔ Il,π′) → (Ol,π ↔ Ol,π′),

which states that all traces π and π′ that have the same low input Il at all times,
must also have the same low output Ol at all times.

In a workflow, the inputs or outputs of different agents may be collected in the
same predicate. In the conference management example from the introduction,
the low outputs observed by a PC member x consist of the pairs (x, p, r) for
some paper p in the Read relation and, additionally, of the tuples (x, y, p) for
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some PC member y and a paper p in the Comm relation. The low input provided
by agent x is given by the tuples of the Choice predicates that begin with x.
Additionally, the system has high input in the form of the Oracle predicate.

Generalizing from the example, we assume there is one or more predicates of
the form Ol(x,y), modeling low output observed by the agents from the system,
and one or more predicates of the form Il(x,y) modeling low inputs provided by
the agents to the system. An output is observable by agent x whenever x occurs
in the first position of the tuple. Likewise, an input is controllable by agent x
whenever x occurs in the first position of the tuple. The remaining components
of the tuple are denoted by the vector y = y1, y2, . . .. Noninterference is then
expressed as the HyperLTL formula

∀π, π′.∀x. (∀y . Il,π(x,y) ↔ Il,π′(x,y)) → (∀y . Ol,π(x,y) ↔ Ol,π′(x,y))

which states that, for all agents x, if the low input provided by agent x on traces
π and π′ is the same, then the low output read by x on π and π′ must be the
same as well.

Declassification. Declassification [18] becomes necessary when the function-
ality of the system makes it unavoidable that some information is leaked. In
the conference management example, a PC member x is supposed to read the
reviews of the papers assigned to x. This is legitimate as long as x has not
declared a conflict of interest with those papers. We assume that, in addition
to the input and output predicates, there is a declassification condition D(x,y),
which indicates that agent x is allowed to learn about the high input Ih(x,y).
Noninterference with Declassification is then expressed as the HyperLTL formula

∀π, π′.∀x. (∀y . Il,π(x,y) ↔ Il,π′(x,y) ∧ (D(x,y) → (Ih,π(x,y) ↔ Ih,π′(x,y))))
→ (∀y . (Ol,π(x,y) ↔ Ol,π′(x,y))),

which expresses that on all pairs of traces where the low inputs are the same
and, additionally, the high inputs are the same whenever the declassification
condition is true, the low outputs must be the same.

Example 3. In the conference management example, we specify the information
flow policy that an agent should not receive information regarding papers where
a conflict of interest has been declared as a noninterference property:

∀π, π′.∀x. (∀y .
∧3

i=1(Choicei,π(x,y) ↔ Choicei,π′(x,y)) ∧
(∀p, r. (¬Confπ(x, p) ∧ ¬Confπ′(x, p)) → (Oracleπ(p, r) ↔ Oracleπ′(p, r)))) →

(∀p, r. (Readπ(x, p, r) ↔ Readπ′(x, p, r)) ∧ (∀y, p. Commπ(x, y, p) ↔ Commπ′(x, y, p)))

�

Causality Assumptions on Agents. In the workflow from Fig. 1, it is easy to
see that no PC member can directly read the reviews of papers where a conflict
of interest has been declared: the PC member can only read a review if the PC
member was assigned to the paper, which, in turn, can only happen if no conflict
of interest was declared. It is much more difficult to rule out an indirect flow
of information via a message sent by another PC member. So far, neither the
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description of the workflow, nor the HyperLTL specification would prevent other
PC members to add such messages to Comm. To rule out messages that would
leak information about papers where a PC member has a conflict, we must make
assumptions about the possible behaviors of the other agents.

Stubborn Agents. A radical restriction on the behavior of the other agents is
to require that they always, stubbornly, produce the same input, independently
of their own observations. We assume that the input is represented by one or
more predicates of the form I(x,y), where an input is controllable by agent x
whenever x occurs in the first position of the tuple. The requirement for traces
π, π′ that all agents are stubborn can be specified by the HyperLTL formula:

∀x. (∀y . Iπ(x,y) ↔ Iπ′(x,y)).

Causal Agents. A more natural restriction on the behavior of the other agents is
to require that they act causally, i.e., they only provide different inputs if they,
themselves, have previously observed different outputs. The causality of agents
w.r.t. traces π, π′ can be described by the HyperLTL formula:

∀x. (∀y . Iπ(x,y) ↔ Iπ′(x,y)) W (∃y . Oπ(x,y) �↔ Oπ′(x,y))

which states that, for all agents x the inputs provided on two traces are the same
until a difference in the outputs observed by x occurs.

Example 4. In the conference management example, stubbornness for traces
π, π′ can be specified as the HyperLTL formula ∀x. (∀y. Choice1,π(x, y) ↔
Choice1,π′(x, y) ∧ . . .). The requirement of causality for π, π′ is specified as the
HyperLTL formula

∀x. (∀y. Choice1,π(x, y) ↔ Choice1,π′(x, y) ∧ . . .) W
((∃p, r. Readπ(x, p, r) �↔ Readπ′(x, p, r)) ∨ (∃y, p. Commπ(x, y, p) �↔ Commπ′(x, y, p))).


�
Combining the agent assumptions with the specification of noninterference

(and possibly declassification), we obtain a formula of the form

∀π1, . . . , πn. ϕcausal → ϕ

where ϕcausal describes the agent assumption on all pairs of paths in π1, . . . , πn.

4 Verifying Secrecy

We now present a bounded model checking method for symbolic transition sys-
tems and HyperLTL specifications. The approach reduces the violation of a
HyperLTL formula on the prefix of a trace of a given symbolic transition sys-
tem to the satisfiability of a formula of the assertion language. For workflows, it
suffices to consider prefixes of bounded length, because the workflow terminates
(and then stutters forever) after a fixed number of steps. Since the assertion
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language in the description of the workflows is first-order predicate logic, satis-
fiability of the resulting formula is not necessarily decidable. We return to this
issue in Sect. 5, where we identify conditions under which decidability is guar-
anteed.

Bounded Satisfaction. Bounded model checking is based on a restricted notion
of HyperLTL satisfaction where only trace prefixes of length n, for some fixed
bound n, are considered. Let T be a set of traces, α : V → U an evaluation of
the first-order variables, and β : Π → T an evaluation of the trace variables.
The n-bounded satisfaction of a HyperLTL formula ψ, denoted by α, β |=n

T ψ, is
then defined as follows:

α, β |=n
T ∃π. ψ iff ∃t ∈ T . α, β[π �→ t] |=n

T ψ,
α, β |=n

T ¬ψ iff α, β �|=n
T ψ,

α, β |=n
T Ψ iff α, δ |= Ψ,

α, β |=n
T ϕ1 ∧ ϕ2 iff α, β |=n

T ϕ1 and α, β |=n
T ϕ2,

α, β |=n
T ∃x. ϕ iff ∃a ∈ U. α[x �→ a], β |=n

T ϕ,
α, β |=n

T ϕ iff α, β[1,∞] |=n−1
T ϕ, for n > 0,

α, β |=0
T ϕ iff α, β |=T ϕ,

α, β |=n
T ϕ1 U ϕ2 iff ∃i ≥ 0 : α, β[i,∞] |=n−i

T ϕ2 and
∀0 ≤ j < i : α, β[j,∞] |=n−j

T ϕ1, for n > 0,
α, β |=0

T ϕ1 U ϕ2 iff α, β[i,∞] |=0
T ϕ2,

where ψ,ϕ, ϕ1, and ϕ2 are HyperLTL formulas, Ψ is an atomic formula, and
δ(Pπ) = β(π)(0)(P ). A closed formula ψ is n-bounded satisfied by a transition
system S, denoted by S |=n ψ, iff α, β |=n

T ψ for the empty assignments α and
β and the set T = Traces(S) of traces of the transition system.

For workflows, satisfaction and bounded satisfaction coincide.

Theorem 1. Let S be the transition system representing a workflow with n
blocks. For all HyperLTL formulas ψ, it holds that S |= ψ iff S |=n ψ.

Bounded Model Checking. We now translate a transition system S and a
given universal HyperLTL formula for a given bound n into a formula ΨS,¬ψ

of the assertion language such that ΨS,¬ψ is satisfiable iff S �|=n ψ. Since ψ is
universal, its negation is of the form ∃π1, . . . , πk. ϕ, where ϕ does not contain any
more trace quantifiers. Let the set of predicates P be given as P = {P1, . . . , Pm}.
In Ψn

S,¬ψ, we use for every predicate Pi several copies Pi,π,l, one per trace variable
π ∈ {π1, . . . , πk} and position l, 0 ≤ l ≤ n. The formula Ψn

S,¬ψ = [[S]]n ∧ [[ϕ]]n0 is
a conjunction of two formulas of the assertion language, the unfolding [[S]]n of
the transition system S and the unfolding [[ϕ]]n0 of the HyperLTL formula ϕ.

For a symbolic transition system S and a bound n ≥ 0, the unfolding [[S]]n

is defined as follows:

[[S]]n =
∧

π∈{π1,...,πk}
Θ(P1,π,0, . . . Pm,π,0)∧

n−1∧
l=0

Δ(P1,π,l, . . . , Pk,π,l; P1,π,l+1, . . . , Pm,π,l+1)
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For a HyperLTL formula ϕ without trace quantifiers and a bound n ≥ 0, the
unfolding [[ϕ]]nl is defined as follows:

[[¬ϕ]]nl = ¬[[ϕ]]nl ,
[[Ψ ]]nl = Ψl,
[[ϕ1 ∧ ϕ2]]nl = [[ϕ1]]nl ∧ [[ϕ2]]nl ,
[[∃x. ϕ]]nl = ∃x. [[ϕ]]nl ,
[[ ϕ]]nl = [[ϕ]]n−1

l+1 for n > 0,
[[ ϕ]]0l = [[ϕ]]0l ,
[[ϕ1 U ϕ2]]nl = [[ϕ2]]nl ∨ ([[ϕ1]]nl ∧ [[ϕ1 U ϕ2]]n−1

l+1 ) for n > 0,
[[ϕ1 U ϕ2]]0l = [[ϕ2]]0l

where ϕ,ϕ1, and ϕ2 are HyperLTL formulas, Ψ is a formula of the assertion
language over indexed predicates Pi,π and Ψl is the same formula with all occur-
rences of an indexed predicate Pi,π replaced by the predicate Pi,π,l.

Theorem 2. For a symbolic transition system S, a universal HyperLTL formu-
las ψ, and a bound n ≥ 0, it holds that S |=n ψ iff Ψn

S,¬ψ is unsatisfiable.

Combining Theorems 1 and 2, we obtain the corollary that bounded model
checking is a complete verification technique for workflows.

Corollary 1. Let S be the transition system representing a workflow with T
blocks. For all HyperLTL formulas ψ, it holds that S |= ψ iff ΨT

S,¬ψ is unsatisfi-
able. 
�

5 Decidability

We now identify cases where the satisfiability of the predicate logic formulas
constructed by the verification method of the previous section are decidable. For
background on PL and decidable subclasses, we refer to the textbook [6].

Theorem 3. Consider a workflow consisting of T blocks where all agents are
stubborn, and every predicate R encountered by the workflow after l blocks, is
characterized by a quantifier-free formula Φ̄R,l.

Let ∀π1, . . . , πr.ϕstubborn → ϕ denotes a HyperLTL formula where Ψ ′ ≡ [[¬ϕ]]T0
is a Bernays-Schönfinkel formula, i.e., the prenex form of Ψ ′ has a quantifier
sequence of the form ∃∗∀∗. Then it is decidable whether ∀π1, . . . , πr. ϕstubborn → ϕ
holds.

Proof. For every predicate R, let Φ̄R,πj ,l denote the formula which characterizes
Rπj ,l, i.e., the value of R after l blocks along the execution of πj . The formula
Φ̄R,πj ,l is obtained from Φ̄R,l by replacing the occurrences of Choicei,Oracle
with Choicei,πj

and Oracleπj
, respectively. Let Ψ̄ ′ denote the formula obtained

from Ψ ′ by first replacing every occurrence of a literal Rπj ,l(s1, . . . , sk) with
Φ̄R,πj ,l(s1, . . . , sk). As all agents are stubborn, the predicates Choicei,πj

are
equivalent for j = 1, . . . , r. Accordingly, we may replace all Choicei,πj

(s1, . . . , sk)
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with Choicei,π1(s1, . . . , sk). The resulting formula is still a Bernays-Schönfinkel
formula. It is unsatisfiable iff ∀π1, . . . , πr. ϕstubborn → ϕ is universally true. Sat-
isfiability of Ψ̄ ′, however, is decidable — which thus implies the the theorem.


�
Theorem 3 can be extended also to more general classes of workflows, given

that the predicates Rπj ,l occur only positively or only negatively in Ψ ′. Non-
interference, however, amounts to stating that (under certain conditions) no dis-
tinction is observable between some Rπj ,l and Rπj′ ,l. Logically, indistinguishabil-
ity is expressed by equivalence, which thus results in both positive and negative
occurrences of the predicates in question.

Theorem 4. Consider a workflow consisting of T blocks where all agents are
causal, and every predicate R encountered by the workflow after l blocks, is char-
acterized by a quantifierfree formula Φ̄R,l. Assume that ∀π1, . . . , πr. ϕcausal → ϕ
is a temporal formula where the prenex form of Ψ ′ ≡ [[¬ϕ]]T0 is purely existential.
Then it is decidable whether ∀π1, . . . , πr. ϕcausal → ϕ holds.

Proof. The argument for causal agents is somewhat more complicated and
accordingly leads to decidability only for a smaller fragment of HyperLTL
formulas. Removal of the temporal operators and skolemization of the for-
mula ϕcausal describing causality yields a conjunction of clauses in one of
the forms (∗): S(x, f1(x), . . . , fr(x)) ∨ Choicei,πj1

(x, z) ∨ ¬Choicei,πj
(x, z), or

S(x, f1(x), . . . , fr(x)) ∨ ¬Choicei,πj2
(x, z) ∨ Choicei,πj

(x, z) for j1, j2 < j, where
the disjunction S refers to predicates which depend on Choicei′, for i′ < i only.
To perform ordered resolution, we order predicates so that Choicei,πj

receives
a higher priority than Choicei′,πj′ if i′ < i or, if i = i′, j′ < j. All predicates
in S have lower priorities than the Choice predicates. Accordingly, the highest
priority literal in each clause of ϕcausal contains all free variables of the clause.

Let us first consider the case r = 2. Then resolution of two clauses with a
positive and negative occurrence of the same highest-priority literal will result
in a tautology and therefore is useless. As in the proof of Theorem3, let Ψ̄ ′

denote the formula obtained from Ψ ′ by replacing each occurrence of a predicate
Rπj ,l(s1, . . . , sk) with the formulas Φ̄R,πj ,l(s1, . . . , sk) (j = 1, 2). According to
our assumption on Ψ ′, the clauses obtained from Ψ̄ ′ are all ground. Resolution
of such a clause with a clause of ϕcausal for some Choicei,π2 will again return
a ground formula. By substituting the semantic formulas Φ̄R,πj ,l we obtain a
set of new ground clauses, this time, however, with occurrences of predicates
Choicei′,πj′ , i

′ < i, only. As a consequence, for every i, there is a bounded number
of new clauses derivable by means of clauses from ϕcausal with highest priority
predicate Choicei,π2 . Altogether, we therefore obtain only a bounded number of
ground clauses which are derivable by means of ordered resolution. Hence, it is
decidable whether a contradiction is derivable or not. This concludes the proof.

The argument for r > 2 is similar, only that resolution of any two such
clauses originating from ϕcausal with j1 �= j2 upon the literal Choicei,πj

(x, z)) will
again result in a clause of the given form. In particular, no further literals are
introduced. Therefore, saturation of ϕcausal by ordered resolution will eventually
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terminate. Then the argument for termination proceeds analogously to the case
r = 2 where ϕcausal is replaced with the saturation of ϕcausal. 
�

Theorem 4 can be extended to formulas ϕ where Ψ̄ ′ obtained from [[¬ϕ]]T0 is
a Bernays-Schönfinkel formula at least in restricted cases. Consider the clauses
of the form (∗) as obtained from ϕcausal after skolemization. In case that the
disjunction S is empty, we call the corresponding clause simple, otherwise com-
plex. Now assume that complex clauses from the saturation of ϕcausal are always
resolved with clauses (originating from the skolemization of Ψ̄ ′) upon a ground
literal. Then the same argument as in the proof of Theorem4 applies to show
that saturation by resolution will eventually terminate.

6 Completing the Conference Management Example

We now complete the verification of our running example, that no PC mem-
ber learns about the reviews of a paper for which he has declared a conflict. As
already discussed in Sect. 3, it is easy to see that no PC member can directly read
the reviews of papers where a conflict of interest has been declared. To prove
the noninterference property in Example 3, it remains to show that the com-
munication received from the other agents is the same on two traces π and π′

whenever the Oracle for the papers with a conflict are the same on π and π′. For
both stubborn and causal agents, the predicates Confπ(x, p) and Aπ(y, p) coin-
cide with their counterparts in π′. Furthermore, for stubborn agents, the Choice
predicates do not depend on the execution paths. As the predicates Commπ

and Commπ′ only depend on Choice predicates, the equivalence in the conclu-
sion is trivially true. Hence, the property holds under the assumption that the
agents are stubborn. The situation is different for causal agents. The causality
assumption ϕcausal (given in Sect. 3) states that the other PC members only send
different communications if there was a different observation on the two traces.
Since causality already implies that Choice1 and Choice2 are equal on all paths,
this can be omitted from the antecendent of the requirement. The negation of
the remaining property is then given by the following formula:

∃π, π′. ϕcausal ∧ ∀x. (∀y, p. Choice3(x, y, p) ↔ Choice3(x, y, p)∧
(∀p, r. (¬Confπ(x, p) ∧ ¬Confπ′(x, p)) → Oracleπ(p, r) ↔ Oracleπ′(p, r))) ∧

(∃y, p. Commπ(x, y, p) �↔ Commπ′(x, y, p))

Due to the causality assumption, when we unroll W and replace Read with its
semantics formula Φ̄Read, we obtain that Choice1 and Choice2 are always equal
and Choice3 could differ on π and π′ if there is a difference in the oracle.

ϕ̄causal =
∧2

i=1 ∀x, p. Choicei,π(x, p) ↔ Choicei,π′(x, p)∧
∀x, y, p, r. (Oracleπ(p, r) ↔ Oracleπ′(p, r)) →
(Choice3,π(x, y, p) ↔ Choice3,π′(x, y, p))

Since in our example, the relation Comm is only assigned once, the operator is
unrolled to a large disjunction that is false everywhere before the last step, since
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Comm is empty on both paths. By unrolling ¬Ψ and subsequently simplifying
the formula with the causal equalities for Choice1 and Choice2, we obtain:

¬Ψ̄ = ∃π, π′.ϕ̄causal ∧ ∃x.(∀p, r. Choice1,π(x, p) ∨ Oracleπ(p, r) ↔ Oracleπ′(p, r))
∧ ∃y, p′. Choice3,π(y, x, p′) �↔ Choice3,π′(y, x, p′)

Note that all literals Choice3,π(y, x, p′),Choice3,π′(y, x, p′) contain existentially
quantified variables only. Therefore, the assumptions of (the extension of) The-
orem 4 are met. For the given formula, no contradiction can be derived. Instead,
a model can be constructed as follows:

U = {x, y, p1, p2, r},
Oracleπ = {(p1, r)} Oracleπ′ = ∅
Choice1,π = {(x, p1)} Choice1,π′ = {(x, p1)},
Choice2,π = {(x, p2), (y, p1), (y, p2)} Choice2,π′ = {(x, p2), (y, p1), (y, p2)},
Choice3,π = {(y, x, p1)} Choice3,π′ = ∅

Suppose the PC member x who has a conflict with paper p is assigned to a
paper q where he does not have a conflict, and another PC member y, who does
not have a conflict with either paper, is assigned to both p and q. Then y can
communicate with x and therefore leak the review on paper p to x. To repair
the problem, we let the PC chair remove the assignment of PC member y to
paper q in such situations. Let (WF2) be (WF1) with the new line (2a) added
in-between lines (2) and (3):

(2a) forall x, y, p, q. Conf(x, p) ∧ ¬Conf(y, p) ∧ A(x, q) ∧ A(y, q) → A −= (y, q)
% PC chair removes assignments that might cause leaks

For the resulting workflow (WF2), we obtain a new formula Φ̄A′ , which
in turn affects the formulas Φ̄Read and Φ̄Comm for Read and Comm:

Φ̄A′(y, q) = ¬Choice1(y, q) ∧ Choice2(y, q)∧
∀x, p. (Choice1(x, q) ∨ ¬Choice2(x, q) ∨ ¬Choice1(x, p) ∨ Choice1(y, p))

The resulting formula after substitution of the semantics formulas and sim-
plification is similar to ¬Ψ̄ , but adds two conjunctions with the ∀-clause of Φ̄A′

instantiated for (x, p′) and (y, p′) on both sides of the inequivalence. The result-
ing formula is a Bernays-Schönfinkel formula where again the decision procedure
of Theorem 4 can be applied. That procedure now derives a contradiction. Intu-
itively, the reason is that on both paths, x has declared a conflict with p1. Since
y is assigned to p1, x and y cannot be assigned jointly to the same paper. Thus,
both sides of the inequivalence collapse to false — implying that for (WF2)
requirement (2) is satisfied and thus (WF2) is indeed noninterferent. 
�

7 Related Work

There is a vast body of work on information flow policies and associated verifica-
tion techniques. We mention Goguen and Meseguer’s seminal work on noninter-
ference [12], Zdancewic and Myer’s observational determinism [20], Sutherland’s
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nondeducability [19], and Halpern and O’Neill’s secrecy maintenance [13] as rep-
resentative examples. See Kanav et al. [15] for a recent overview with a detailed
discussion of the most relevant notions for the verification of workflows. Our
approach is based on the temporal logic HyperLTL [7]. HyperLTL has been
applied in the verification of hardware systems, such as an Ethernet controller
with 20000 latches [11]. Other logical approaches to information flow control
include SecLTL [8], the polyadic modal μ-calculus [2] and the epistemic tempo-
ral logics [9]. While standard linear-time temporal logic has been extended with
first-order quantifiers [16], our first-order extension of HyperLTL is the first tem-
poral logic for the specification of information flow in systems with arbitrarily
many agents. In terms of practical verification efforts, there has been a lot of
recent interest in proving secrecy in web-based workflow management systems.
For example, for the ConfiChair conference management system it was proven
that the system provider cannot learn the contents of papers [3]. For CoCon,
another conference management system, it was proven that various groups of
users, such as authors, reviewers, and PC members cannot deduce certain con-
tent, such as reviews, unless certain declassification triggers, such as being a
PC member without a conflict of interest, are met [15]. For the verification of
an eHealth system, Bhardwaj and Prasad [5] assume that all agents are known
at analysis time. Based on this information, the authors construct a dedicated
security lattice and then apply techniques from universal information flow [1,14].
Our verification method is based on a reduction to the satisfiability problem of
first-order predicate logic. First-order logic has many applications in verification.
Most related, perhaps, is recent work on the verification of software defined net-
works [4,17]. There, a network controller is translated into a first order formula
and either a theorem prover or an SMT-solver is used to determine properties
of the topology so that the controller satisfies a given invariant.

8 Conclusion

We have presented a formalization of fine-grained security properties for work-
flow systems with an unbounded number of agents. HyperLTL is the first app-
roach to specify hyperproperties for systems without a fixed set of agents. For the
verification of HyperLTL formulas, we have provided a bounded model checking
algorithm that translates the problem of verifying such a property for a given
workflow to the satisfiability of first-order predicate logic. We have also pro-
vided a non-trivial fragment of properties and workflows so that the correspond-
ing decision problem is decidable. As an example we considered noninterference
for a simple workflow of a conference management system. Unexpectedly, our
method exhibited a subtle form of indirect information flow. We also indicated
how that deficiency can be cured. All corresponding proving took place within
our benevolent fragments. Various problems remain for future work. Further
decidable fragments are of major concern. Also, our work should be extended to
more complex and thus more expressive forms of workflows.
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Abstract. Lazy sequentialization has emerged as one of the most
promising approaches for concurrent program analysis but the only effi-
cient implementation given so far works just for bounded programs.
This restricts the approach to bug-finding purposes. In this paper, we
describe and evaluate a new lazy sequentialization translation that does
not unwind loops and thus allows to analyze unbounded computations,
even with an unbounded number of context switches. In connection with
an appropriate sequential backend verification tool it can thus also be
used for the safety verification of concurrent programs, rather than just
for bug-finding. The main technical novelty of our translation is the sim-
ulation of the thread resumption in a way that does not use gotos and
thus does not require that each statement is executed at most once. We
have implemented this translation in the UL-CSeq tool for C99 programs
that use the pthreads API. We evaluate UL-CSeq on several benchmarks,
using different sequential verification backends on the sequentialized pro-
gram, and show that it is more effective than previous approaches in
proving the correctness of the safe benchmarks, and still remains com-
petitive with state-of-the-art approaches for finding bugs in the unsafe
benchmarks.

1 Introduction

Concurrent programming is becoming more important as concurrent computer
architectures such as multi-core processors are becoming more common. How-
ever, the automated verification of concurrent programs remains a difficult prob-
lem. The main cause of the difficulties is the large number of possible ways in
which the different elements of a concurrent program can interact with each
other, e.g., the number of different thread schedules. This in turn makes it diffi-
cult and time-consuming to build effective concurrent program verification tools,
either from scratch or by extending existing sequential program verification tools.
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An alternative approach is to translate the concurrent program into a non-
deterministic sequential program that simulates the original program, and then
to reuse an existing sequential program verification tool as a black-box backend
to verify this simulation program. This approach is also known as sequential-
ization [15,19,23]. It has been used successfully both for bug-finding purposes
[3,12,25] and for the verification of reachability properties [7,16,17]. Its main
advantage is that it separates the concurrency aspects from the rest of the veri-
fication tool design and implementation. This has several benefits. First, it sim-
plifies the concurrency handling, which can be reduced to one (usually simple)
source-to-source translation. Second, it makes it thus also easier to experiment
with different concurrency handling techniques; for example, we have already
implemented a number of different translations such as [5,12,25] within our CSeq
framework [11]. Third, it makes it easier to integrate different sequential back-
ends. Finally, it reduces the overall development effort, because the sequential
program aspects and tools can be reused.

The most widely used sequentialization (implemented in Corral [18], Smack
[24], and LR-CSeq [5]) by Lal and Reps [19] uses additional copies of the shared
variables for the simulation and guesses their values (eager sequentialization).
This makes the schema unsuitable to be extended for proof finding: it can han-
dle only a bounded number of context switches, and the unconstrained variable
guesses lead to over-approximations that are too coarse and make proofs infea-
sible in practice. Lazy sequentializations [15], on the other hand, do not over-
approximate the data, and thus maintain the concurrent program’s invariants
and simulate only feasible computations. They are therefore in principle more
amenable to be extended for correctness proofs although efficient implementa-
tions exist only for bounded programs [16,17].

Here, we develop and implement a lazy sequentialization that can handle
programs with unbounded loops and an unbounded number of context switches,
and is therefore suitable for program verification (both for correctness and bug-
finding). The main technical novelty of our translation is the simulation of
the thread resumption in a way that does not require that each statement is
executed at most once and does (unlike Lazy-CSeq [11–13]) not rely on gotos
to reposition the execution. Instead, we maintain a single scalar variable that
determines whether the simulation needs to skip over a statement or needs to
execute it. Our first contribution in this paper is the description of the cor-
responding source-to-source translation in Sect. 3. As a second contribution,
we have implemented this sequentialization in the UL-CSeq tool (within our
CSeq framework) for C99 programs that use the pthreads API (see Sect. 4). We
have evaluated, as a third contribution, UL-CSeq on a large set of benchmarks
from the literature and the concurrency category of the software verification
competition SV-COMP, using different sequential verification backends on the
sequentialized program. We empirically demonstrate, also in Sect. 4, that our
approach is surprisingly efficient in proving the correctness of the safe bench-
marks and improves on existing techniques that are specifically developed for
concurrent programs. Furthermore, we show that our solution is competitive with
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state-of-the-art approaches for finding bugs in the unsafe benchmarks. We
present related work in Sect. 5 and conclude in Sect. 6.

2 Multi-threaded Programs

In this paper, we use a simple multi-threaded imperative language to illustrate
our approach. It includes dynamic thread creation and join, and mutex locking
and unlocking operations for thread synchronization. However, our approach can
easily be extended to full-fledged programming languages, and our implementa-
tion can handle full C99.

P ::= (dec;)∗ (typ p( dec, ∗) {(dec;)∗stm})∗

dec ::= typ z

typ ::= bool | int | mutex | void
stm ::= seq | con | { stm; ∗}

seq ::= assume(b) | assert(b) | x=e | p( e, ∗) | return e
| if(b) stm [else stm ] | while(b) do stm | l : seq | goto l

con ::= x=y | y=x | t=create p( e, ∗) | join t
| init m | lock m | unlock m | destroy m | l : con

Fig. 1. Syntax of multi-threaded programs.

Syntax. The syntax of multi-threaded programs is defined by the grammar shown
in Fig. 1. x denotes a local variable, y a shared variable, m a mutex, t a thread
variable and p a procedure name. All variables involved in a sequential statement
are local. We assume expressions e to be local variables, constants, that can be
combined using mathematical operators. Boolean expressions b can be true or
false, or Boolean variables, which can be combined using standard Boolean
operations.

A multi-threaded program P consists of a list of global variable declarations
(i.e., shared variables), followed by a list of procedures. Each procedure has a
list of zero or more typed parameters, and its body has a declaration of local
variables followed by a statement. A statement stm is either a sequential, or a
concurrent statement, or a sequence of statements enclosed in braces.

A sequential statement seq can be an assume- or assert-statement, an assign-
ment, a call to a procedure that takes multiple parameters (with an implicit
call-by-reference parameter passing semantics), a return-statement, a condi-
tional statement, a while-loop, a labelled sequential statement, or a jump to a
label. Local variables are considered uninitialised right after their declaration,
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which means that they can take any value from their respective domains. There-
fore, until not explicitly set by an appropriate assignment statement, they can
non-deterministically assume any value allowed by their type. We also use the
symbol * to denote the expression that non-deterministically evaluates to any
possible value; for example, with x = * we mean that x is assigned any possible
value of its type domain.

A concurrent statement con can be a concurrent assignment, a call to a
thread routine, such as a thread creation, a join, or a mutex operation (i.e., init,
lock, unlock, and destroy), or a labelled concurrent statement. A concurrent
assignment assigns a shared (resp. local) variable to a local (resp. shared) one.
Unlike local variables, global variables are always assumed to be initialised to a
default value. A thread creation statement t = create p(e1, . . . , en) spawns a
new thread from procedure p with expressions e1, . . . , en as arguments. A thread
join statement, join t, pauses the current thread until the thread identified by
t terminates its execution. Lock and unlock statements respectively acquire and
release a mutex. If the mutex is already acquired, the lock operation is blocking
for the thread, i.e., the thread is suspended until the mutex is released and can
then be acquired.

We assume that a valid program P satisfies the usual well-formedness and
type-correctness conditions. We also assume that P does not contain direct or
indirect recursive function calls but contains a procedure main, which is the
starting procedure of the only thread that exists in the beginning. We call this
the main thread. We further assume that there are no calls to main in P and no
other thread can be created that uses main as starting procedure. Finally, our
programs are not parameterized, in the sense that we allow only for a bounded
number of thread creations.

Semantics. We assume a C-like semantics for each thread execution and a stan-
dard semantics by interleaving for the concurrent executions. At any given time
of a computation, only one thread is executing (active). In the beginning only
the main thread is active and no other thread exists; new threads can be spawned
by a thread creation statement and are added to the pool of enabled threads. At
a context switch the currently active thread is suspended and becomes enabled,
and one of the enabled threads is resumed and becomes the new active thread.
When a thread is resumed its execution continues either from the point where
it was suspended or, if it becomes active for the first time, from the beginning.

All threads share the same address space: they can write to or read from
global (shared) variables of the program to communicate with each other. We
assume the sequential consistency memory model: when a shared variable is
updated its new valuation is immediately visible to all the other threads [20].
We further assume that each statement is atomic. This is not a severe restriction,
as it is always possible to decompose a statement into a sequence of statements,
each involving at most one shared variable.
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mutex m1,m2; int c;

void P(int b) {
int l=b;
lock m1;
if(c>0) c=c+1
else {

c=0;
while(l>0) do {

c=c+1;
l=l-1;

}
}
unlock m1;

}

void C() {
L:lock m2;

if(c<1) {
unlock m2;
goto L;

}
c=c-1;
assert(c>=0);
unlock m2;

}

void main() {
c=0;
init m1;
init m2;
int p0,p1,c0,c1;
p0=create P(5);
p1=create P(1);
c0=create C();
c1=create C();

}

Fig. 2. Producer-consumer multi-threaded program containing a reachable assertion
failure. In the main thread, functions P and C are both used twice to spawn a thread.

Example. The program shown in Fig. 2 models a producer-consumer system,
with two shared variables, two mutexes m1 and m2, an integer c that stores the
number of items that have been produced but not yet consumed.

The main function initializes the mutex and spawns two threads executing
P (producer) and two threads executing C (consumer). Each producer acquires
m1, increments c if it is positive or copies over the initial value “one-by-one”,
and terminates by releasing m1. Each consumer first acquires m2, then checks
whether all the elements have been consumed; if so, it releases m2 and restarts
from the beginning (goto-statement); otherwise, it decrements c, checks the
assertion c ≥ 0, releases m2 and terminates.

At any point of the computation, mutex m1 ensures that at most one pro-
ducer is operating and mutex m2 ensures that only one consumer is attempting
to decrement c. Therefore the assertion cannot be violated (safe instance of the
Producer-Consumer program). However, by removing the consumers’ synchro-
nization on mutex m2, the assertion could be violated since the behavior of the
two consumer threads now can be freely interleaved: with c = 1, both consumers
can decrement c and one of them will write the value −1 back to c, and thus
violate the assertion (unsafe instance of the Producer-Consumer program). ��

3 Unlimited Lazy Sequentialization

In this section we present a code-to-code translation from a multi-threaded pro-
gram P to a sequential program P seq that simulates all executions of P .

We assume that P consists of n+1 functions f0, . . . , fn, where f0 is the main
function, and that there are no function calls and each create statement (1) is
executed at most once in any execution and (2) is associated with a distinct start
function fi. Consequently, the number of threads is bounded, and threads and
functions can be identified. For ease of presentation, we also assume that thread
functions have no arguments. We adopt the convention that each statement in P
is annotated with a (unique) numerical label: the first statement of each function
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is labelled by 0, while its following statements are labelled with consecutive
numbers increasing in the text order. This ordering on the numerical labels is
used by our translation for controlling the simulation of the starting program
in the resulting sequential program. These restrictions are used only to simplify
the presentation.

P seq simulates P in a round-robin fashion. Each computation of P is split into
rounds. Each round is an execution of zero or more statements from each thread
in the order f0, . . . , fn. Note that this suffices to capture any possible execution
since we allow for unboundedly many rounds and we can arbitrarily skip the
execution of a thread in any round (i.e., execute zero statements). The main of
P seq is a driver formed by an infinite while-loop that simulates one round of
P in each iteration, by repeatedly calling the thread simulation function fseq

i of
each thread fi.

Each simulation function fseq
i can non-deterministically exit at any statement

to simulate a context switch. Thus, for each thread fi, P seq maintains in a global
variable pci the numerical label at which the context switch was simulated in
the previous round and where the computation must thus resume from in the
next round. The local variables of fi are made persistent in fseq

i (i.e., changed
to static) such that we do not need to recompute them on resuming suspended
executions. Each fseq

i is essentially fi with few lines of injected control code for
each statement that guard its execution, and the thread routines (i.e., create,
join, init, lock, unlock, destroy) are replaced with calls to corresponding
simulation functions. The execution of each call to a function fseq

i goes through
the following modes:

RESUME: the control is stepping through the lines of code without executing any
actual statements of fi until the label stored in pci is reached; this mode is
entered every time the function fseq

i is called.
EXECUTE: the execution of fi has been resumed (i.e., the label stored in pci has

been reached) and the actual statements of fi are now executing.
SUSPEND: the execution has been blocked and the control returns to the main

function; hence, no actual statements of fi are executed in this mode. It
is entered non-deterministically from the EXECUTE mode; on entering it, the
numerical label of the current fi statement (the one to be executed next) is
stored in pci.

Code-to-Code Translation

We now describe our translation in a top-down fashion and convey an informal
correctness argument as we go along. The entire translation is formally described
by the recursive code-to-code translation function [[·]] defined by the rewrite rules
given in Fig. 3. Rule 1 gives the outer structure of P seq: it adds the declarations
of the global auxiliary variables, replaces each thread function fi with the corre-
sponding simulation function fseq

i , adds the code stubs for the thread routines,
and then the main function. The remaining rules give the transformation for all
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1.

(dec;)∗

(
void fi ()
{(dec;)∗stm}

)i=0,...,n

def
=

bool created0=1,created1,. . .,createdn;
int s, pc0,. . .,pcn;
(dec;)∗ ( void f seq

i (){(static dec;)∗ stm i})i=0,...,n
seq create(int t, int arg){...}
seq join(int t){...}
seq init(int m){...} seq destroy(int m){...}
seq lock(int m){...} seq unlock(int m){...}
main(){...}

2. stm i

def
= CONTR(l) l : seq i | CONTR(l) l : EXEC( con i) | { stm i;

∗}

3. seq i

def
=

EXEC(assume(b)) | EXEC(assert(b)) | EXEC(x=e) |
EXEC(return e)| if(b) stm [else stm] i |
while(b) do stm i | EXEC(goto l)

4. con i
def
=

x=y | y=x | t := create fj() i | join t i

| initm i | lockm i | unlockm i | destroym i

5.
if(b) { . . . l1 :stm1}
[ else { . . . l2 :stm2} ]

i

def
=

if((s==RESUME && pci <= l1)||(s==EXECUTE && b))
{. . . l1 : stm} i

else if((s==RESUME && pci <= l2) || (s==EXECUTE))
{. . . l2 : stm} i;

6. while(b)do { . . . l1 :stm}
i

def
=

while( (s == RESUME && pci <= l1)
|| (s == EXECUTE && b)) do

{. . . l1 : stm} i;

7. t := create fj() i
def
= { t := j; seq create(e, j) }

8. join t i
def
= seq join(t)

9. initm i
def
= seq init(m)

10. lockm i
def
= seq lock(m)

11. unlock m i
def
= seq unlock(m)

12. destroy m i
def
= seq destroy(m)

CONTR(l)
def
=

if(s == RESUME && pci == l) s = EXECUTE;
if(s == EXECUTE && *) { pci = l; s=SUSPEND;}

EXEC(x)
def
= if(s == EXECUTE ) {x; };

Fig. 3. Rewriting rules for the lazy sequentialization.

statement types in our grammar; we will return to this in the description of the
translation of each thread function fi into the corresponding simulation function
fseq
i .

We start by describing the global auxiliary variables used in the translation.
Then, we give the details of function main of P seq, and illustrate the translation
from fi into fseq

i . Finally, we discuss how the thread routines are simulated.

Auxiliary Variables. Let N denote the maximal number of threads in the program
other than the main thread. We statically assign a distinct identifier to each
thread of P from the interval [0, N]; the identifier assigned to main is 0. During the
simulation of P , P seq maintains the following auxiliary variables, for i ∈ [0, N]:
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– bool createdi tracks whether the thread with identifier i has ever been cre-
ated. Initially, only created0 is set to true since fseq

0 simulates the main
function of P .

– int pci stores the numerical label of the last context switch point for thread
i. All the variables pci are initialized to 0 that is the numerical label of the
first statement of all thread functions.

– int s tracks the simulation mode as described above. It can only assume the
values RESUME, EXECUTE, or SUSPEND.

Main Driver. The new main of P seq (see Fig. 4) consists of an infinite loop that
calls at each iteration the thread functions of the active threads.

int main(void){
while(true)do {

s = RESUME; /* set mode to RESUME before thread simulation */
f0(); /* main thread simulation */

s = RESUME;
if (created1) f1(); /* simulation of thread with id 1 */
. . .
s = RESUME;
if (createdn) fn(); /* simulation of thread with id n */

}
}

Fig. 4. The main function of P seq.

Thread Simulation Functions. Each function fi representing a thread in P is
translated into the thread simulation function fseq

i in P seq as follows. First, the
local variables of fi are declared as static in fseq

i to make them persistent
between consecutive invocations of fseq

i . Then, [[·]]i is applied recursively to the
statements in the body of fseq

i (see Rule 1 of Fig. 3).
For each statement we inject a few lines of code that implement the control

of the simulation, i.e., make decisions on mode transitions in the simulation
and, depending on the current mode, execute or skip the guarded statement.
Specifically, every original statement is preceded by the code of the macro CONTR
defined in Fig. 3 that takes as input the label l of the statement (see Rule 2). The
injected code allows to set the mode to EXECUTE if the simulation is in RESUME
mode and the old context switch point is reached. After that, if the simulation is
in EXECUTE mode, it can non-deterministically transit into SUSPEND, and if so the
label l is stored into pci. Note that, to skip the execution of a thread in a round,
we need first to switch from RESUME to EXECUTE and then to SUSPEND before the
simulation of the original statement. Furthermore, except for if- and while-
statements, all the other statements are guarded by an if-statement injected by
the macro EXEC that prevents their simulation unless the mode of the simulation
is EXECUTE.

We need to (partially) simulate the if- and while-statements even if we
are in RESUME mode, in order to position the execution back to the resumption
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point stored in pci. We achieve this by modifying their respective control flow
guards. For the if-statement (see Rule 3), we check whether pci is in either of
the then- or else-branch (note that if pci was less then the label of the current if-
statement, we must already be in the EXECUTE mode and so we need to compare
only against l1 and l2 which are respectively the labels of the last statements
in the then- and else branches). If so, we go into the corresponding branch,
independent of the current valuation of the condition b; we do this because we
are only repositioning, and our resumption point reflects the previous valuation
of the condition that held when the context switch occurred. Of course, if we are
in EXECUTE mode, we need to check the condition. We follow a similar approach
for while-statements. Note that here we only need one iteration over the loop’s
body to find the resumption point, so we do not need to check the condition in
the RESUME mode. Finally, each call to a thread routine is also translated into a
call to the corresponding simulation function (Rules 7–12).

Figure 5 shows the thread simulation function resulting from sequentializing
the thread P shown in Fig. 2.

void P (int b){ static int l;
if (s == RESUME && pc == 0) s = EXECUTE;
if (s == EXECUTE && *) {pc = 0; s = SUSPEND;}
if (s == EXECUTE) { l = b; }
if (s == RESUME && pc == 1) s = EXECUTE;
if (s == EXECUTE && *) {pc = 1; s = SUSPEND;}
if (s == EXECUTE) { seq lock(m1); }
if (s == RESUME && pc == 2) s = EXECUTE;
if (s == EXECUTE && *) {pc = 2; s = SUSPEND;}
if ((s == RESUME && pc <= 3) || (s == EXECUTE && (c > 0))){

if (s == RESUME && pc == 3) s = EXECUTE;
if (s == EXECUTE && *) {pc = 3; s = SUSPEND;}
if (s == EXECUTE && LOCKED(m1)) { c = c + 1; }}

else if ((s == RESUME && pc <= 6) || (s == EXECUTE)) {
if (s == RESUME && pc == 4) s = EXECUTE;
if (s == EXECUTE && *) {pc = 4; s = SUSPEND;}
if (s == EXECUTE && LOCKED(m1)) { c = 0; }
if (s == RESUME && pc == 5) s = EXECUTE;
if (s == EXECUTE && *) {pc = 5; s = SUSPEND;}
while ((s == RESUME && pc <= 6) || ((s == EXECUTE) && (l > 0))) do {

if (s == RESUME && pc == 6) s = EXECUTE;
if (s == EXECUTE && *) {pc = 6; s = SUSPEND;}
if (s == EXECUTE && LOCKED(m1)) { c = c + 1; }
if (s == EXECUTE && LOCKED(m1)){ l = l - 1; }}}

if (s == RESUME && pc == 7) s = EXECUTE;
if (s == EXECUTE && *) {pc = 7; s = SUSPEND;}
if (s == EXECUTE && LOCKED(m1)) { seq unlock(m1); }
if (s == EXECUTE || (s == RESUME && pc == 8)){ pc = 8; s = SUSPEND; }

}

Fig. 5. Translation of thread P from Fig. 2.

Simulation of the Thread Routines. For each thread routine we provide a verifi-
cation stub, i.e., a simple standard C function that replaces the original imple-
mentation for verification purposes. The verification stubs are identical to those
used by Lazy-CSeq. Below, we informally describe how they work; full details
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are given in [12]. In seq create we simply set the thread’s created flag. Note
that we do not need to store the thread start function, as the main driver calls all
thread simulation functions explicitly and seq create uses an additional integer
argument that serves as thread identifier that is statically determined in the call.

According to the semantics of the join-statement, a thread executing join
t should be blocked until thread t is terminated (i.e., the corresponding pc vari-
able is set to LAST LABEL that is a statically defined constant larger than any
other label in P ). We choose to not implement in P seq any notion of blocking or
unblocking a thread; instead seq join uses an assume-statement with the con-
dition pc t == LAST LABEL to prune away any simulation that corresponds to a
blocking join. We can then see that this pruning does not alter the thread reach-
ability properties of the original program. Assume that the joining thread t ter-
minates after the execution of join t. The invoking thread should be unblocked
then but the simulation has already been pruned. However, this execution can
be captured by another simulation in which a context switch is simulated right
before the execution of this join-statement, and the invoking thread is scheduled
to run only after t has terminated, hence avoiding the pruning as above.

For mutexes we need to know whether they are free or already destroyed, or
which thread holds them otherwise. For this, in the corresponding functions, we
use two constants FREE and DESTROY. On initializing or destroying a mutex we
assign it the appropriate constant. In seq lock, we assert that the mutex is not
destroyed and then check whether it is free before assigning it the index of the
thread that has invoked the function. As in the case of the join-statement we
block the simulation if the lock is held by another thread. In seq unlock, we
first assert that the lock is held by the invoking thread and then set it to FREE.
We also support re-entrant mutexes.

Correctness. The correctness of our construction is quite straightforward.
For the completeness, assume any non-empty execution ρ of P that creates

at most N threads. Let ρ = ρ0 . . . ρk be split into maximal execution contexts
(i.e., each ρi is non-empty and has statements only from one thread and ρi and
ρi+1 are from different threads). Clearly, ρ0 is a context of the main thread of
P that is the only one existing in the beginning. P seq starts the execution from
the driver main and then calls fseq

0 (i.e., the simulation function of the main
thread of P ). At the first injected control code, since s evaluates to RESUME and
pc0 evaluates to 0 (since s is always set to RESUME in the driver before calling
a simulation function and all the pci’s are initialized to 0), and since we do
not context switch yet, s is updated to EXECUTE and the original statement of
P is executed (see Fig. 3). The simulation of the remaining statements in ρ0 is
done similarly. On context-switching from ρ0 to ρ1, at the second if-statement
of the macro CONTR injected to control the first statement in ρ1, since we are
in the EXECUTE mode, we can select to context-switch and thus pc0 is updated
with the label of this statement (that is the next to execute when the thread
will be resumed) and change the simulation mode to SUSPEND. From this point
to the end of fseq

0 the control code will skip the execution of all the remaining
statements of f0, and thus the control returns to the main function of P seq after
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the call to fseq
0 . Now, assume that ρ1 is a context of a thread fj , j �= 0. Clearly,

the thread must have been created in ρ0, thus createdj must hold true. Thus
in the main driver we skip all calls to fi for i < j, either because createdi is
false (i.e., the thread has not been created yet) or because we context-switch out
immediately when calling fseq

i . Then, we call fseq
j and repeat the same argument

as for ρ0. To complete this part we need just to handle the case when we execute
a context ρj of thread fi that is not its first context. In this case, since the
simulation mode is set to RESUME in the main driver, the control code forces to
skip all the statement of P until we reach the label stored in pci. Since all the
local variables are declared static and there are no function calls besides the
call to the thread routine stubs, the local state of fi is exactly as it was when
the thread was pre-empted last time. Therefore, we can simulate ρj as observed
above and we are done.

The soundness argument is a direct consequence of the fact that P seq exe-
cutes statements of P and the injected control code just positions the control
for the simulation of context-switching. Thus, from each execution ρ of P seq we
can extract an execution of P by simply projecting out the auxiliary variables
and the control code statements.

Therefore, we get that P seq violates an assertion if and only if P does and
the following theorem holds:

Theorem 1. A concurrent program P violates an assertion in at least one of
its executions with at most N thread creations if and only if P seq violates the
same assertion.

4 Implementation and Experiments

4.1 Implementation

We have implemented in UL-CSeq v0.21 the schema discussed in Sect. 3 as a
code-to-code transformation for sequentially-consistent concurrent C programs
with POSIX threads (pthreads). This implementation is slightly optimized com-
pared to the version that participated (using the CPAchecker backend) in SV-
COMP16 [22].

UL-CSeq is implemented as a chain of modules within the CSeq framework [5,
6]. The sequentialized program is obtained from the original program through
transformations, which (i) insert boilerplate code for simulating the pthreads
API; (ii) unwind any loops that create threads; (iii) create multiple copies of
the thread start functions, and inline all other function calls; (iv) implement the
translation rules, as shown in Fig. 3; and (v) insert code for the main driver, and
finalize the translation by adding backend-specific instrumentation.

1 http://users.ecs.soton.ac.uk/gp4/cseq/files/ul-cseq-0.2 64bit.tar.gz.

http://users.ecs.soton.ac.uk/gp4/cseq/files/ul-cseq-0.2_64bit.tar.gz


Lazy Sequentialization for the Safety Verification 185

4.2 Experiments

We experimentally evaluated the capabilities and performance of our UL-CSeq
implementation (as sketched above) for both verification and bug-finding pur-
poses. We mainly used the benchmark set from the Concurrency category of the
TACAS Software Verification Competition (SV-COMP16) [2]. These are wide-
spread benchmarks, and many state-of-the-art analysis tools have been trained
on them. They offer a good coverage of the core features of the C program-
ming language as well as of the basic concurrency mechanisms. In addition, we
also used two smaller benchmark collections from the literature [7,27]. For all
benchmarks we unwound thread-creating loops twice. Since we executed the ver-
ification and the bug-finding experiments on different machines and benchmark
subsets, we report on them separately.

Verification. Here, we used UL-CSeq in combination with four different sequen-
tial backends (SeaHorn, Ultimate Automizer, CPAchecker, and VVT), and com-
pared it with four different verification tools with built-in concurrency handling
(Impara, Satabs, Threader, and VVT). These were chosen to cover a range of
different sequential and concurrent verification techniques. Please note that we
cannot compare to the top tools of the SV-COMP because all three medal win-
ners are based on bounded model checking and do not produce proofs but simply
claim benchmarks to be safe if they do not find a bug with their chosen settings.

Experimental Setup. For the verification experiments, we used the 221 safe
benchmarks from the SV-COMP collection as well as the 13 safe benchmarks
from [7,27]. The total size of the benchmarks was approximately 37 K lines
of code. We ran the experiments on a large compute cluster of Xeon E5-2670
2.6 GHz processors with 16 GB of memory each, running a Linux operating sys-
tem with 64-bit kernel 2.6.32. We set a 15 GB memory limit and a 900 s timeout
for the analysis of each benchmark. We used SeaHorn [9] (v0.1.0),2 an LLVM-
based [21] framework for verification of safety properties of programs using Horn
Clause solvers; Ultimate Automizer [10] (SV-COMP16),3 an automata-based
software model checker that is implemented in the Ultimate software analysis
framework; CPAchecker (v1.4 with predicate abstraction),4 a tool for config-
urable software verification that supports a wide range of techniques, includ-
ing predicate abstraction, and shape and value analysis; Impara (v0.2),5 a tool
that implements an algorithm that combines a symbolic form of partial-order
reduction and lazy abstraction with interpolants for concurrent programs; Satabs

2 https://github.com/seahorn/seahorn/releases/download/v0.1.0/SeaHorn-0.1.0-Linu
xx8664.tar.gz.

3 http://ultimate.informatik.uni-freiburg.de/downloads/svcomp2016/UltimateAutom
izer.zip.

4 http://cpachecker.sosy-lab.org/CPAchecker-1.4-unix.tar.bz2.
5 http://www.cprover.org/concurrent-impact/impara-linux64-0.2.tgz.

https://github.com/seahorn/seahorn/releases/download/v0.1.0/SeaHorn-0.1.0-Linuxx8664.tar.gz
https://github.com/seahorn/seahorn/releases/download/v0.1.0/SeaHorn-0.1.0-Linuxx8664.tar.gz
http://ultimate.informatik.uni-freiburg.de/downloads/svcomp2016/UltimateAutomizer.zip
http://ultimate.informatik.uni-freiburg.de/downloads/svcomp2016/UltimateAutomizer.zip
http://cpachecker.sosy-lab.org/CPAchecker-1.4-unix.tar.bz2
http://www.cprover.org/concurrent-impact/impara-linux64-0.2.tgz
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Table 1. Performance comparison of different verification tools on safe benchmarks:
UL-CSeq with different sequential backends (top); other tools with built-in concur-
rency handling (bottom). Each row corresponds to a sub-category of the SV-COMP16
benchmarks, or to one of the benchmark sets from the literature; we report the number
of files and the total number of lines of code. pass denotes the number of correctly veri-
fied safe benchmarks (i.e., proofs found), fail the number of benchmarks where the tool
found a spurious error or crashed (including running out of memory), t.o. the number
of benchmarks on which the tool exceeded the given time limit, and time is the average
proof time (i.e., excluding failed attempts).

UL-CSeq +

SeaHorn Automizer CPAchecker VVT

Sub-category Files l.o.c. pass fail t.o. time pass fail t.o. time pass fail t.o. time pass fail t.o. time

pthread 15 1285 3 2 10 67.3 3 2 10 390.8 2 3 10 204.9 5 3 7 247.3

pthread-atomic 9 1136 6 1 2 167.9 3 1 5 456.7 5 0 4 352.6 5 0 4 171.8

pthread-ext 45 3679 27 0 18 199.1 12 2 31 226.5 15 0 30 214.6 16 5 24 179.7

pthread-lit 8 427 3 0 5 23.3 1 0 7 544.9 3 0 5 164.1 3 2 3 79.8

pthread-wmm 144 29426 144 0 0 32.5 60 0 84 421.6 26 0 118 271.3 141 0 3 275.3

[27] 7 542 5 0 2 51.1 3 1 3 238.6 4 0 3 244.7 4 1 2 133.1

[7] 6 290 6 0 0 5.7 5 0 1 181.8 5 0 1 44.9 6 0 0 17.2

Totals 234 36785 194 3 37 59.9 87 6 141 376.2 60 3 171 235.7 180 11 43 248.2

Impara Satabs Threader VVT

Sub-category Files l.o.c. pass fail t.o. time pass fail t.o. time pass fail t.o. time pass fail t.o. time

pthread 15 1285 5 2 8 12.2 3 8 4 308.7 6 8 1 128.4 5 1 9 7.3

pthread-atomic 9 1136 5 0 4 61.8 4 3 2 1.3 7 0 2 24.4 7 1 1 143.7

pthread-ext 45 3679 30 0 15 8.7 15 13 17 34.6 36 1 8 104.8 38 1 6 66.2

pthread-lit 8 427 2 0 6 0.4 2 5 1 8.1 0 7 1 N/A 5 1 2 7.3

pthread-wmm 144 29426 24 0 120 9.0 100 22 22 312.2 0 144 0 N/A 130 0 14 222.2

[27] 7 542 6 0 1 0.5 4 1 2 1.0 5 1 1 27.5 4 3 0 154.7

[7] 6 290 5 1 0 2.7 6 0 0 0.8 3 3 0 58.2 3 3 0 8.8

Totals 234 36785 77 3 154 11.2 134 52 48 244.0 57 164 13 88.2 192 10 30 172.6

(v3.2),6 a verification tool based on predicate abstraction; and Threader (SV-
COMP14), a tool that uses compositional reasoning with regards to the thread
structure of concurrent programs based on abstraction refinement. VVT (SV-
COMP16), a tool that can both verify programs using IC3 and predicate abstrac-
tion also can find bugs using bounded model checking. We ran each tool with
its default configuration.

Results. Table 1 summarizes the results. It demonstrates that our approach is
(with suitable backends) surprisingly effective: using SeaHorn, we can prove 194
out of the 234 benchmarks, and just edge out victory over VVT, the best-
performing tool with built-in concurrency handling. However, note that UL-
CSeq’s performance varies widely with the applied backend, and using Automizer
or CPAchecker produces noticeably worse results. Proof times are difficult to
compare in aggregate, but overall UL-CSeq’s proof times are within the range
of the other tools, indicating that the sequentialization does not introduce too
much complexity. This is further corroborated by the fact that the combination
of UL-CSeq and VVT (which finds 180 proofs) is only slightly weaker than VVT
relying on its built-in concurrency handling (which finds 192 proofs).
6 http://www.cprover.org/satabs/download/satabs-3-2-linux-32.tgz.

http://www.cprover.org/satabs/download/satabs-3-2-linux-32.tgz
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Table 2. Performance comparison of different tools on the unsafe instances of the
SV-COMP16 Concurrency category. Each row corresponds to a sub-category of the
SV-COMP16 benchmarks; we report the number of files and the total number of lines
of code. pass now denotes the number of correctly identified unsafe benchmarks (i.e.,
counterexamples found) and t.o. the number of benchmarks on which the tool exceeded
the given time limit, and time the average time to find a bug. None of the tools reported
any spurious counterexample.

Sub-category Files l.o.c UL-CSeq+CBMC Lazy-CSeq+CBMC CBMC CIVL Smack

pass t.o time pass t.o time pass t.o time pass t.o time pass t.o time

pthread 17 4085 14 3 12.2 17 0 19.4 16 1 63.1 17 0 14.9 8 9 84.2

pthread-atomic 2 204 2 0 1.4 2 0 1.0 2 0 0.4 2 0 3.4 2 0 15.0

pthread-ext 8 780 8 0 1.0 8 0 0.3 7 1 12.0 8 0 0.3 8 0 47.2

pthread-lit 3 148 3 0 1.4 3 0 1.3 2 1 0.2 3 0 2.7 1 2 11.1

pthread-wmm 754 237700 754 0 1.1 754 0 1.2 754 0 0.5 754 0 6.1 753 1 78.1

Total 784 242917 781 3 1.4 784 0 1.6 781 3 2.9 784 0 6.2 772 12 77.6

Bug-Finding. Here, we used UL-CSeq in combination with CBMC as sequen-
tial backend, and compared it with four different bug-finding tools, Lazy-CSeq,
CBMC, CIVL, and Smack. All four are (ultimately) based on bounded model
checking, and have performed very well in the recent SV-COMP verification
competitions: both Lazy-CSeq and CIVL scored full marks. Note that the ver-
ifiers we used in the experiments described in the previous section performed
noticeably worse.

Experimental Setup. For the bug-finding experiments, we used the 784 unsafe
benchmarks from the SV-COMP collection. The total size of the benchmarks
was approximately 240 K lines of code. We ran the experiments on an otherwise
idle machine with an Intel i7-3770 CPU 3.4 GHz and 16 GB of memory, running
a Linux operating system with 64-bit kernel 4.4.0. We also set a 15 GB memory
limit and a 900 s timeout for the analysis of each benchmark.

We used CBMC [4] (v5.4)7 both as sequential backend (for UL-CSeq and
Lazy-CSeq) and stand-alone bug-finding tool. It is a mature SAT-based bounded
software model checker that uses a partial-order approach [1] to handle concur-
rent programs. We further used Lazy-CSeq [12] (v1.0),8 a lazy sequentialization
for bounded programs; CIVL [28] (v1.5),9 a framework that uses a combination
of explicit model checking and symbolic execution for verification; and SMACK
[24] (v1.5.2),10 a bounded software model checker that verifies programs up to
a given bound on loop iterations and recursion depth. For all tools we used as
loop unwinding and round bounds the (same) minimum values necessary to find
all bugs in the given sub-category.

Results. Table 2 summarizes the results. We can see that our proof -oriented
sequentialization does not actually impact negatively on our tool’s bug-finding
7 http://www.cprover.org/cbmc/download/cbmc-5-4-linux-64.tgz.
8 http://users.ecs.soton.ac.uk/gp4/cseq/files/lazy-cseq-1.0.tar.gz.
9 http://vsl.cis.udel.edu/lib/sw/civl/1.5/svcomp16/CIVL-1.5 2739 svcomp16.tgz.

10 http://soarlab.org/smack/smack-1.5.2-64.tgz.

http://www.cprover.org/cbmc/download/cbmc-5-4-linux-64.tgz
http://users.ecs.soton.ac.uk/gp4/cseq/files/lazy-cseq-1.0.tar.gz
http://vsl.cis.udel.edu/lib/sw/civl/1.5/svcomp16/CIVL-1.5_2739_svcomp16.tgz
http://soarlab.org/smack/smack-1.5.2-64.tgz
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performance. UL-CSeq solves 781 of the 784 benchmarks, only three fewer
than Lazy-CSeq (whose sequentialization specifically exploits the structure of
bounded programs) or CIVL, and more than Smack. Analysis times are com-
parable across all tools, with the exception of the noticeably slower Smack.
These results indicate that unwinding and lazy sequentialization can effectively
be applied in either order.

The UL-CSeq source code, static Linux binaries and benchmarks are available
at http://users.ecs.soton.ac.uk/gp4/cseq/atva16.zip.

5 Related Work

There is a wide range of approaches to verify concurrent programs. However,
here we focus on more closely related sequentialization approaches. The idea
of sequentialization was originally proposed by Qadeer and Wu [23]. The first
scheme for an arbitrary but bounded number of context switches was given in
[19]. Since then, several algorithms and implementations have been developed
(see [3,5,14,15,18]).

Lazy sequentialization schemes have played an important role in the develop-
ment of efficient tools. Their main feature is that they do not guess the original
program’s data but just its schedules and so induce less non-determinism and
often simpler verification conditions. They also only explore reachable states of
the original program, thus preserving the local invariants. This last property
makes them suitable for static analysis [19]. The first such sequentialization was
given in [15] for bounded context switching and extended to unboundedly many
threads in [16,17]. These schemes avoid the cross-product of the local states
(since only one thread is tracked at any time of a computation) but require their
recomputation at each context-switch. This is a major drawback when such
a sequentialization is used in combination with bounded model-checking (see
[8]). The scheme Lazy-CSeq [12] avoids such recomputations by flattening the
programs and making the locals persistent, and achieves efficiency by handling
context-switches with a very lightweight and decentralized control code.

All sequentializations mentioned above yield under-approximations of the
multi-threaded programs and thus (except for [16] that gives a sufficient con-
dition to test completeness of the reached state space) are designed mainly for
bug-finding. The new lazy sequentialization that we have designed in this paper
is similar in spirit to Lazy-CSeq in that it injects lightweight control code to repo-
sition the program counter on simulating a thread resumption but the injected
control code itself is completely different. The main limitation of Lazy-CSeq’s
approach is that it assumes that each thread program counter uniquely iden-
tify its local state (which can be guaranteed for loop-free bounded programs),
whereas our approach can handle a wider class of programs. First, we do not
unwind loops and thus we allow for an exact simulation of unbounded loops.
Second, we do not bound the number of context-switches in any explored com-
putation. Our experiments show that the new control code is almost as effective
as the goto-based control code used in Lazy-CSeq when using UL-CSeq with a

http://users.ecs.soton.ac.uk/gp4/cseq/atva16.zip
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bounded model checking backend, and performs very well when used to prove
correctness of programs.

The only sequentialization that can be used to prove correctness of mul-
tithreaded programs is [7], but its approach is quite different from ours. It is
closely related to the rely-guarantee style proofs and is aimed to avoid the cross-
product of the thread-local states. Only the valuation of some local variables of
the other threads (forming the abstraction for the assume-guarantee relation)
is retained when simulating a thread. For this, frequent recomputations of the
thread local states are required (in particular, whenever a context switch needs
to be simulated in the construction of the rely-guarantee relations) which intro-
duces control non-determinism and recursive function calls even if the original
program does not contain any recursive calls. Moreover, the resulting sequen-
tialization yields an overapproximation of the original program and thus cannot
be used for bug-finding.

6 Conclusions and Future Work

We have presented a new sequentialization of concurrent programs that does not
need to bound the number of context-switches or to unwind the loops. We only
bound the number of threads and do not allow unbounded function call recursion.
Noticeably, the resulting sequential program preserves all local invariants of the
original program. In combination with suitable sequential verification tools it
can thus be used both to find bugs (i.e., prove assertion violations) and prove
concurrent programs safe.

We have implemented this sequentialization in the tool UL-CSeq within our
framework CSeq and provided support for several backends. We have conducted
a large set of experiments which have shown that UL-CSeq performs almost as
efficiently as the best performing tools for bug-finding, and is very competitive for
proving correctness. To the best of our knowledge this is the first approach that
works well both as bug finder and to prove correctness for concurrent programs.

UL-CSeq is a first prototype implementation and has wide margins for
improvements with fine tuning and optimizations. As future work, we plan to
extend the range of programs that UL-CSeq can handle. We will modify the
translation to lift some of the restrictions (e.g., the bounded number of thread
creations), and will support new language features (e.g., other thread synchro-
nization and communication primitives). We will also integrate further backends.
Finally, we are working to extend our approach to support weak memory models
implemented in modern architectures [26].
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Botanická 68a, 602 00 Brno, Czech Republic

{xbenes3,brim,xdemko,xpastva,xsafran1}@fi.muni.cz

Abstract. We propose a novel scalable parallel algorithm for synthe-
sis of interdependent parameters from CTL specifications for non-linear
dynamical systems. The method employs a symbolic representation of
sets of parameter valuations in terms of the first-order theory of the
reals. To demonstrate its practicability, we apply the method to a class
of piecewise multi-affine dynamical systems representing dynamics of bio-
logical systems with complex non-linear behaviour.

1 Introduction

Complex dynamical phenomena arising in real-world systems such as biological,
biophysical processes, or networks involving economic and social interactions are
typically formalised by means of dynamical systems employing the framework of
non-linear ordinary differential equations that are highly parameterised. In most
cases, the model complexity and the number of unknown parameters do not
allow to analyse the systems analytically. Computer-aided analysis of complex
dynamical systems and their models is a necessary precursor for design of reliable
cyber-physical and cyber-biological systems such as synthetic design and control
of living cells [21,32] or safe medical treatment [1].

Phenomena occurring in the time domain of systems dynamics can be
encoded in temporal logics (TL). TL have the advantage of rigorous and abstract
representation of sequences (or even branching structures) of desired observable
events in systems dynamics including quantitative bounds on time and variable
values [8,10,31] and can be also combined with frequency-domain analysis [19].

In this paper, we target the problem of global parameter synthesis (extended
with static constraints over parameter space). To solve the problem means to
identify parameter valuations that satisfy a given set of TL properties univer-
sally (regardless of specific initial conditions) provided that the specified static
constraints are also satisfied. Static constraints include a priori known restric-
tions, dependencies and correlations of individual parameter valuations (e.g.,
restrictions on production/degradation parameters ratio [36]).
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In general, computationally efficient (scalable) global parameter synthesis
under large uncertainty of a number of unknown parameters and unrestricted
initial conditions with respect to satisfaction of a given TL specification remains
a challenge. Existing techniques do not sufficiently target non-quantitative
branching-time properties that can efficiently cope with decision events and
multi-stability arising in complex real-world systems (e.g., existence and char-
acteristics of unstable states in chemical or electric power systems [14,28], or
reachability of multiple stable states in a biological switch [24,37]). The situa-
tion is even worse if the parameters are interdependent.

We introduce a novel approach to global parameter synthesis based on dis-
tributed CTL model checking. In particular, parameter synthesis for a given
CTL specification and the given parameter space is solved by the coloured model
checking technique [3,11] extended with symbolic encoding of parameter valua-
tions and constraints. The main principle of our new technique relies on symbolic
representation of parameters. The parameter encoding relies on the first-order
theory of reals for which the satisfiability can be algorithmically solved [6]. In
particular, we employ Satisfiability Modulo Theories (SMT) as a subprocedure
wrapped inside the enumerative distributed CTL model checking algorithm. This
allows for every state to synthesise a first-order formula that encodes the para-
meter valuations for which the CTL specification is guaranteed to be satisfied in
that state. A significant advantage of employing enumerative CTL model check-
ing for parameter synthesis is its capability of computing integrated information
in a single parallel run. In particular, the parameter valuations are synthesised
for every state and every subformula of the given CTL property. This allows to
compute the parameter synthesis for a set of CTL formulae at once.

The distributed algorithm is based on assumption-based CTL model check-
ing we have introduced in [13]. Its extension to parameter synthesis for interval-
representation of parameter sets has been considered in [11]. The main drawback
of that approach has been the restriction to synthesis of algebraically indepen-
dent parameters. By using SMT, we significantly generalise the method to para-
meterisations including interdependent parameters. The new algorithm retains
good scaling with increasing number of computing nodes. Since the number
of calls to the SMT solver is proportional to the size of the state space, dis-
tribution of the state space and related computing tasks realise efficiently the
divide&conquer paradigm while minimising the number of SMT calls and par-
allelising their computation on independent computing nodes.

The typical application domains for our method are highly parameterised
systems appearing in systems biology (e.g., dynamics of gene regulatory networks
represented by Boolean networks or non-linear continuous systems [3]) or control
and verification of hybrid systems [18].

Summary of Our Contribution. The main result of this paper is a new
parallel algorithm for parameter synthesis from CTL specifications for dynamical
systems with interdependent parameters. Our method is unique in combining
enumerative model checking with SMT solvers for parameter synthesis. It is
distinctive in the following aspects:
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1. universality – the method works on a large family of finite-state discrete
dynamical systems or finite-state qualitative abstractions of continuous sys-
tems in which parameterisations can be encoded in a first-order logic over
reals,

2. user feedback – the resulting parameter sets are sampled from the SMT repre-
sentation and further post-processed by third-party tools such as Symba [29],

3. high-performance – the method is supplied with a parallel distributed-
memory algorithm that allows good scalability in a distributed environment.

In order to evaluate our approach, we apply the method to piecewise multi-
affine dynamical systems where the systems dynamics is a linear function of the
parameters. In the case study we use a model of a gene regulatory network.

Related Work. Monitoring-based synthesis techniques have been developed for
continuous-time and discrete-time dynamical systems [4,10,17,34,35] and linear-
time TL. These techniques rely on numerical solvers which are well-developed
for systems with fixed parameters or small parameter spaces (perturbations).
An advantage of these techniques is that they consider the function defining the
systems dynamics as a black box provided that there is basically no limitation
on the form of parameterisation of the system. The main drawback is the need
to sample the parameter space and initial states while losing robust guarantees
for the results. This drawback can be overcome by replacing numerical solvers
with Satisfiability Modulo Theories (SMT) solvers that can cope with non-linear
functions and real domains up to required precision [23]. However, these tech-
niques are limited to reachability analysis [30] and their extension to work with
general TL specifications is a non-trivial task yet to be explored. The method
in [16] targets reachability analysis and combines guided random exploration of
the state space together with sensitivity analysis.

Existing techniques for global parameter synthesis from TL specification are
either based on model checking performed directly on a qualitative finite quotient
of systems dynamics [3,7,8,11] or on techniques from hybrid systems [9]. Typical
limitation of these methods is determined by restrictions on the form of allowed
parameterisations. By employing SMT, we obtain support for all parameterisa-
tions and constraints that can be encoded in a first-order logic over reals. This is
a significant improvement over our previous work [11] that has been limited to
algebraically independent parameters only. In [8,26] parameter sets are encoded
symbolically in terms of polytopes allowing linear dependencies only. In [25], the
authors employ symbolic bounded model checking with SMT to parameter syn-
thesis of discrete synchronous models of weighted genetic regulatory networks.
To the best of our knowledge, none of these methods have been parallelised.

In [20], the authors provide a parameter synthesis algorithm for polynomial
dynamical systems based on the Bernstein polynomial representation. The app-
roach targets discrete time dynamical systems.
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2 Definitions and Problem Statement

The general setting of the parameter synthesis problem is given by the notion
of a parameterised Kripke structure [3]. This notion encapsulates a family of
Kripke structures with the same state space but with different transitions. The
existence of transitions is governed by parameter valuations.

Definition 1. Let AP be a set of atomic propositions. A parameterised Kripke
structure (PKS) over AP is a tuple K = (P, S, I,→, L) where P is a finite set of
parameter valuations, S is a finite set of states, I ⊆ S is the set of initial states,
L : S → 2AP is a labelling of the states and → ⊆ S×P ×S is a transition relation
labelled with the parameter valuations. We write s

p→ t instead of (s, p, t) ∈ →.
We assume that the PKS is total, i.e. for all s, p there exists at least one t such
that s

p→ t.

Fixing a concrete parameter valuation p ∈ P reduces the parameterised
Kripke structure K to a standard Kripke structure Kp = (S, I,

p→, L). We use the
notation P(s, t) = {p ∈ P | s

p→ t} to denote the set of all parameter valuations
that enable the transition from s to t. A parameterised Kripke structure can be
seen as a Kripke structure with labelled transitions, where the transition labels
are the sets P(s, t).

In the following, we assume that parameter valuations of the PKS are repre-
sented symbolically. We thus assume that we are given a (first-order) theory that
is interpreted over the parameter valuations; every P(s, t) is then described via
a formula Φs,t such that P(s, t) = {p ∈ P | p |= Φs,t}. The symbolic representa-
tion of a PKS can be thus seen as a Kripke structure with labelled transitions,
where the transition labels are the formulae Φs,t.

To express properties of interest, we employ the standard branching time
logic CTL. The formulae of CTL are defined by the following abstract syntax:

ϕ ::= q | ¬ϕ | ϕ1 ∧ ϕ2 | AXϕ | EXϕ | A(ϕ1 Uϕ2) | E(ϕ1 Uϕ2)

where q ranges over the atomic propositions from the set AP. We use the stan-
dard abbreviations such as EFϕ ≡ E(ttUϕ) and AGϕ ≡ ¬EF¬ϕ.

Note that there are two sets of formulae we use here: the CTL formulae that
consider the states of the PKS and the formulae that are used to symbolically
describe the parameter sets in the PKS. To easily distinguish between these two
kinds of formulae, we shall adopt the convention to denote CTL formulae by
lower-case Greek letters ϕ, ψ, etc., and the parameter formulae by upper-case
Greek letters Φ, Ψ , etc.

The Problem Formulation. Let K = (P, S, I,→, L) be a parameterised
Kripke structure over AP with symbolic description as explained above and
let ΦI be an initial parameter constraint, described using the same theory as the
one used in the symbolic description. Let further ϕ be a CTL formula over AP.
The parametric synthesis problem is, given K, ΦI , and ϕ, to find the function
F that assigns to every state of the Kripke structure the set of parameters that
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ensure the satisfaction of the CTL formula. Formally, the function is described
as follows:

F(s) = {p ∈ P | p |= ΦI , s |=Kp
ϕ}. (1)

We extend the basic parametric synthesis problem with the possibility of
an optimisation criterion, given as an objective function f : P → R that assigns
a real value to every parameter valuation. The parametric optimisation problem
is, given K, ΦI , ϕ, and f , to find the maximal value of f over the set F(s) for
every state s, i.e. to find the function m satisfying m(s) = max{f(p) | p ∈ F(s)}.
We are also interested in the parameter valuations that realise this maximum.

3 Parallel Algorithm

We are now going to describe the distributed-memory semi-symbolic parameter
synthesis algorithm that solves the parameter synthesis problem described above,
i.e. finding the function F . The parametric optimisation problem is then solved
using the result of this algorithm as an input to further tools that provide SMT
optimisation, such as Symba [29]. We assume that the symbolic description of
the parameters is given in a decidable first-order theory.

We adapt the assumption-based distributed CTL model checking algo-
rithm [11,13] as the basis for our work. In this approach, the algorithm is run on
a cluster of n computational nodes (workstations). Each workstation owns a part
of the original PKS as defined by a partition function. This part is extended with
the so called border states. Intuitively, border states are states that in fact belong
to another computational node and represent the missing parts of the state space.
They serve as a proxy between two parts.

More precisely, we define a PKS fragment Ki to be a substructure of the PKS
K satisfying the property that every state in Ki has either no successor in Ki or
it has exactly the same successors as in K. The states without any successors in
Ki are called the border states of Ki. A partition of the PKS K is a finite set
of PKS fragments K1, . . . ,Kn such that every state of K is present in exactly
one Ki as a non-border state; it may be present in several other Kj as a border
state. In fact, every border state is stored several times: as original one on the
node that owns it and as duplicates on nodes that own its predecessors.

To define the semantics of CTL formulae over fragments we need to adapt
the standard semantic definition. To that end, we define the notion of the truth
under assumptions associated with border states. We start by recalling the notion
of an assumption function of [11], itself an extension of the original assumption
functions of [13]. However, as we want to deal with the parameters in a symbolic
way, we then adapt the notions to our semi-symbolic setting.

For a CTL formula ψ, let cl(ψ) denote the set of all subformulae of ψ and let
tcl(ψ) denote the set of all temporal subformulae of ψ. An assumption function
for a parameterised Kripke structure K and a CTL formula ψ is defined as
a partial function of type A : P × S × cl(ψ) → Bool. The values A(p, s, ϕ) are
called assumptions. We use the notation A(p, s, ϕ) = ⊥ to say that the value
of A(p, s, ϕ) is undefined. By A⊥ we denote the assumption function which is
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undefined for all inputs. Intuitively, A(p, s, ϕ) = tt if we can assume that ϕ
holds in the state s under parameter valuation p, A(p, s, ϕ) = ff if we can
assume that ϕ does not hold in the state s under parameter valuation p, and
A(p, s, ϕ) = ⊥ if we cannot assume anything.

Instead of working with the explicit assumption functions as described in [11],
we want to deal with the parameters symbolically. We thus replace the assump-
tion functions with symbolic assumption functions defined as follows. A symbolic
assumption Ã is a function that assigns to each pair (s, ϕ) a pair of formulae
(Φt, Φf ) such that for all p ∈ P: p |= Φt iff A(p, s, ϕ) = tt and p |= Φf iff
A(p, s, ϕ) = ff. Each such function thus divides the set of all parameter valu-
ations into three sets: those parameters that ensure the satisfaction of ϕ (Φt),
those that ensure that ϕ is not satisfied (Φf ), and finally those parameter valu-
ations under which the satisfaction of ϕ is undefined (¬Φt ∧ ¬Φf ).

To simplify some of the notation in the algorithms below, we sometimes
deal with the two parts (true and false) of the symbolic assumption function
separately and use the notation (Ãt(s, ϕ), Ãf (s, ϕ)) = Ã(s, ϕ).

The main operation of the distributed algorithm is the iterative computation
of the symbolic assumption functions starting from the simplest subformulae of
ψ (the atomic propositions) and moving towards ψ. The algorithm takes into
account the symbolic assumptions of border states, initially set to ⊥. The sym-
bolic assumptions for non-temporal subformulae are easily computed as follows:

Ã(s, p) = (tt, ff) if p ∈ L(s), (ff, tt) otherwise

Ã(s, ϕ1 ∧ ϕ2) = (Ãt(s, ϕ1) ∧ Ãt(s, ϕ2), Ãf (s, ϕ1) ∨ Ãf (s, ϕ2))

Ã(s,¬ϕ) = (Ãf (s, ϕ), Ãt(s, ϕ))

The symbolic assumptions for temporal subformulae are computed via Algo-
rithms 1, 2, and 3 . Each of these algorithms assumes that all possible assump-
tions for all subformulae have been already computed (given the current assump-
tions on border states).

Algorithm 1 computes the assumptions for temporal subformulae of the form
EXϕ (existential next). Initially, the assumption function is set to “false for
all parameter valuations”. Then, the algorithm iteratively collects assumptions
about ϕ and propagates the information into predecessor states. This propaga-
tion extends the set of parameters for which the assumption is true and reduces
the set of parameters for which the assumption is false. This ensures that if
a state under given parameter valuation has at least one successor that satisfies
ϕ (under the same parameter valuation), this valuation is going to be included in
the true assumption formula for that state. Moreover, if all successors of a state
under given parameter valuation refute ϕ, that valuation is going to be included
in the false assumption formula for that state. Finally, if a state under given
parameter valuation has no successors that satisfy ϕ and at least one successor
whose satisfaction of ϕ is undefined in the current assumption, this parame-
ter valuation is not going to be included in either the true or false assumption
function.
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Algorithm 2 computes the assumptions for temporal subformulae of the form
E(ϕ1 Uϕ2) (existential until). Initially, the assumption function for all non-
border states is set to the assumption for ϕ2. The propagation of assumptions
works similarly to the previous case, with the two differences that (a) assump-
tions are only changed for states that satisfy ϕ1 and (b) once a state’s assump-
tions change, the state is returned to the queue for processing. This ensures that
the assumptions propagate as much as possible. To determine whether a state’s
assumptions have changed, we employ the SMT-solver. The convergence of this
procedure is guaranteed due to the monotonicity of the computation. As there is
only a finite number of states and a finite number of parameter formulae in the
system, the symbolic assumptions Ãt(s′, ψ) and Ãf (s′, ψ), which are build out of
these parameter formulae using conjunctions and disjunctions, shall eventually
reach a fixed point.

The last Algorithm 3, which computes the assumptions for temporal subfor-
mulae of the form A(ϕ1 Uϕ2) (universal until), is slightly more complex. Con-
trary to the EXϕ and E(ϕ1 Uϕ2) cases, which required at least one successor
of a state to be valid in order to add assumptions to the true part, the computa-
tion of A(ϕ1 Uϕ2) needs all successor states (under given parameter valuation)
to be valid. In order to ensure this, we need an auxiliary formula T (s, s′) for
each pair of states s, s′. One can see this auxiliary formula as a “copy” of the
transitions in the PKS. During the propagation phase, the encountered transi-
tions are removed from T and only as a parameter valuation leaves T (s′, s) for
all s, it may be added to the true assumption function. Note that the formula
Φ̂s′ ∧ ∧

s′→s ¬T (s′, s) may be interpreted as a set difference between the set of
all outgoing transitions of s′ and the set of those outgoing transitions of s′ that
remain in T .

We are now ready to describe the main algorithm for distributed-memory
parameter synthesis. In order to compute the assumption function in the distrib-
uted environment, we iteratively compute assumption functions that are defined
on fragments of the system K. The algorithm starts by partitioning the given
state space of K among the nodes using a partition function. There are many
different partition functions that can be used; one function that is often used is
random partitioning.

The main idea of the entire distributed computation, summarised in Algo-
rithm5, is the following. Each fragment Ki is managed by a separate process
(node) Pi. These processes are running in parallel (simultaneously on each node).
Each process Pi initialises the assumption function Ai to the undefined assump-
tion function A⊥. After initialisation, it computes the new assumption function
from the initial assumption function using the algorithms described above.

Once the algorithm has finished computing the symbolic assumptions, the
node exchanges information about border states with other nodes. It sends to
each other node the information it has about that node’s border states and
receives similar information from other nodes. After this exchange is completed,
the computation is restarted. These steps are repeated until the whole network
reaches a fixpoint, i.e. until no new information is computed by any node.
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Algorithm 1. Compute symbolic assumptions for EXϕ

Require: PKS fragment K, CTL formula ψ = EXϕ, initial assumptions Ãin

Ensure: new symbolic assumptions Ã
Ã := Ãin

set Ã(s, ψ) := (ff, tt) for all non-border states s

init := {(s, Φt, Φf ) | Ãin(s, ϕ) = (Φt, Φf )}
for (s, Φt, Φf ) in init do

for (s′, Φs′,s) in pred(s) do

Ãt(s′, ψ) := Ãt(s′, ψ) ∨ (Φt ∧ Φs′,s)

Ãf (s′, ψ) := Ãf (s′, ψ) ∧ (Φf ∨ ¬Φs′,s))

Algorithm 2. Compute symbolic assumptions for E(ϕ1 Uϕ2)

Require: PKS fragment K, CTL formula ψ = E(ϕ1 Uϕ2), initial assumptions Ãin

Ensure: new symbolic assumptions Ã
Ã := Ãin

set Ã(s, ψ) := Ãin(s, ϕ2) for all non-border states s
queue := S (all states)
while queue not empty do

select and remove s from queue
for (s′, Φs′,s) in pred(s) do

Ãt(s′, ψ) := Ãt(s′, ψ) ∨
(
Ãt(s′, ϕ1) ∧ Ãt(s, ψ) ∧ Φs′,s

)

Ãf (s′, ψ) := Ãf (s′ψ) ∧
(
Ãf (s′, ϕ1) ∨ Ãf (s, ψ) ∨ ¬Φs′,s

)

if Ã(s′, ψ) was changed and s′ �∈ queue then
add s′ to queue

Algorithm 3. Compute symbolic assumptions for A(ϕ1 Uϕ2)

Require: PKS fragment K, CTL formula ψ = A(ϕ1 Uϕ2), initial assumptions Ãin

Ensure: new symbolic assumptions Ã
Ã := Ãin

for all non-border states s do
Φ̂s :=

∨
s→s′ Φs,s′

set Ãt(s, ψ) := Ãt(s, ϕ2)

set Ãf (s, ψ) := (Ãf (s, ϕ1) ∨ ¬Φ̂s) ∧ ¬Ãt(s, ϕ2)
T (s, s′) := Φs,s′ for all s → s′

queue := S (all states)
while queue not empty do

select and remove s from queue
for (s′, Φs′,s) in pred(s) do

T (s′, s) := T (s′, s) ∧ ¬Ãt(s, ψ)

Ãt(s′, ψ) := Ãt(s′, ψ) ∨
(
Ãt(s′, ϕ1) ∧ Φ̂s′ ∧∧s′→s ¬T (s′, s)

)

Ãf (s′, ψ) := Ãf (s′, ψ) ∨
(
Ãf (s, ψ) ∧ ¬Ãt(s′, ψ) ∧ Φs′,s

)

if Ã(s′, ψ) was changed and s′ �∈ queue then
add s′ to queue
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Algorithm 4. Solve cycles
Require: PKS fragment K, CTL formula ψ, initial assumptions Ãin

Ensure: new symbolic assumptions Ã
Ms := tt for all non-border states s
for ϕ ∈ tcl(ψ) {sorted from smallest} do

for s ∈ S do
U := Ms ∧ ¬Ãt(s, ϕ) ∧ ¬Ãf (s, ϕ)

Ãf (s, ϕ) := Ãf (s, ϕ) ∨ U
Ms := Ms ∧ ¬U

Algorithm 5. Main Idea of the Distributed Algorithm
Require: parameterised KS K, CTL formula ψ, function f
Ensure: F

Partition K into K1, . . . , Kn

for all Ki where i ∈ {1, . . . , n} do in parallel
Take the initial assumption function
repeat

repeat
Compute the new assumptions using the node algorithms (Alg. 1, 2, 3)
Exchange relevant information with other nodes

until all processes reach fixpoint
Modify the assumption function to deal with cycles (Alg. 4)

until everything is computed

Once the fixpoint is reached, there is additional computation to be made, as
there still may be undefined assumptions left. This may happen in the case of the
two until operators EU, AU; for more details see [13]. The minimal undefined
assumptions are found and set to ff, as described in Algorithm 4, and the compu-
tation is again restarted. These steps are repeated until a fixpoint is reached and
no new assumptions are set in Algorithm 4.

It remains to explain the way of dealing with the initial parameter con-
straint ΦI . The initial parameter constraint is orthogonal to the whole computa-
tion and we could, in principle, intersect the symbolic true assumptions with ΦI

after the distributed algorithm is finished. However, to prune the search space
and speed up the computation somewhat, we intersect the symbolic assumption
functions with ΦI whenever we pass them to the SMT solver (i.e. whenever we
need to know whether a symbolic assumption has changed).

Although the node algorithms have been (for clarity) formulated as recom-
puting everything in each iteration, this is of course unnecessary and we only
recompute the part of assumption functions that have been computed as unde-
fined (⊥) in the previous iteration. Formally, we restrict the computation of
Ã(s, ψ) to ¬Ãt

in(s, ψ) ∧ ¬Ãf
in(s, ψ).
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4 Application to Piecewise Multi-affine ODE Models

Let P ⊆ R
m
≥0 denote the continuous parameter space of dimension m. A parame-

terised piecewise multi-affine ODE model (PMA) is given by a system of ODEs
of the form ẋ = f(x, μ) where x = (x1, . . . , xn) ∈ R

n
≥0 is a vector of variables,

μ = (μ1, . . . , μm) ∈ P is a vector of parameters, and f = (f1, . . . , fn) is a vector
of functions that satisfy the criterion that every fi is piecewise multi-affine in x
and affine in μ.

To approximate the PMA model with its finite quotient represented in terms
of a discrete state-transition system, we employ the rectangular abstraction
defined in [8] and further adapted in [3,12,26] (see [15] for overview).

We assume there is given a set of thresholds {θi
1, . . . , θ

i
ni

} for each variable
xi satisfying θi

1 < θi
2 < · · · < θi

ni
. Each fi is assumed to be multi-affine on

each n-dimensional interval [θ1j1 , θ
1
j1+1] × · · · × [θn

jn
, θn

jn+1]. We call these inter-
vals rectangles. Each rectangle is uniquely identified via an n-tuple of indices:
R(j1, . . . , jn) = [θ1j1 , θ

1
j1+1] × · · · × [θn

jn
, θn

jn+1], where the range of each ji is
{1, . . . , ni − 1}. We also define VR(j1, . . . , jn) to be the set of all vertices of
R(j1, . . . , jn).

In order to establish a finite rectangular abstraction of the PMA model, spe-
cial care has to be given to boundary rectangles. A boundary rectangle is any
rectangle R(j1, ..., jn) where for some i either ji = 1 or ji = ni − 1. Any dimen-
sion i satisfying that condition is called a boundary dimension of R(j1, ..., jn).
We restrict ourselves to models where the dynamics is bounded in the range
specified by lower and upper thresholds – trajectories cannot exit that range
(note that this could occur only in boundary rectangles). Formally, all trajec-
tories determined by the PMA model are required to keep xi ∈ [θi

1, θ
i
ni

]. We
restrict ourselves to parameter spaces where this requirement is satisfied for all
parameter valuations. More precisely, for every boundary rectangle R(j1, ..., jn)
we assume that for all μ ∈ P, i ∈ {1, ..., n}, x ∈ R(j1, ..., jn) it holds that
(ji = 1 ∧ xi = θi

1) ⇒ fi(x, μ) > 0 and (ji = ni − 1 ∧ xi = θi
ni

) ⇒ fi(x, μ) < 0.
In [15] it has been shown that rectangular abstraction is conservative with

respect to almost all trajectories of the original (continuous) PMA model. In
particular, almost every continuous trajectory in the PMA model is covered by
a corresponding sequence of rectangles in its rectangular abstraction. However,
there may exist a sequence of rectangles for which there is no corresponding
continuous trajectory in the original PMA model.

The rectangular abstraction is encoded as a PKS K = (P, S, I,→, L) with
S = {(j1, . . . , jn) | ∀i : 1 ≤ ji ≤ ni} where each α ∈ S represents the rectangle
R(α). Let now α = (j1, . . . , jn) ∈ S, 1 ≤ i ≤ n and d ∈ {−1,+1}. We define
αi,d = (j1, . . . , ji+d, . . . , jn) (if ji+d is in the valid range). Thus αi,d describe all
the neighbouring rectangles of α. We further define vi,+1(α) = VR(α)∩{(..., ji +
1, ...)} and vi,−1(α) = VR(α)∩{(..., ji, ...)}. To define the transition relation →,
every pair of states α, αi,d ∈ S, 1 ≤ i ≤ n, d ∈ {−1, 1}, is associated with a
formula Φα,αi,d symbolically encoding the set of parameter valuations μ ∈ P for
which the transition α → αi,d is valid:
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Φα,αi,d :=
∨

v∈vi,d(α)

d · fi(v, μ) > 0 (2)

Additionally, the rectangular abstraction approximates the potential exis-
tence of a fixed point in any rectangle α ∈ S. This is achieved by means of
introducing a self-transition α → α [8]. In particular, a self-transition is valid in
a state α ∈ S for all parameter valuations μ ∈ P satisfying 0 ∈ hull{f(v, μ) | v ∈
VR(α)} (the zero vector included in the convex hull of the rectangle vertices).
This is symbolically encoded by the formula Φα,α defined in the following way:

Φα,α := ∃c1, . . . , ck :

(
k∧

i=1

ci ≥ 0

)

∧
(

k∑

i=1

ci = 1

)

∧
(

k∑

i=1

ci · f(vi, μ) = 0

)

(3)

where k = |VR(α)| is the number of vertices of the rectangle α.
To express properties of rectangular abstraction dynamics, the atomic propo-

sitions are set to represent concentration inequalities, AP = {xi �θi
j | 1 ≤ i ≤ n,

1 ≤ j ≤ ni},� ∈ {≤,≥}}. States of the PKS are labelled with the adequate
constraints of AP . To partition the state space into PKS fragments, we utilise
the regular structure of the state space as described in [27]. Note that the PKS
constructed by the rectangular abstraction is always total.

5 Experimental Evaluation

We have implemented the distributed algorithm from Sect. 3 in a prototype tool
written in Java using the MPJ Express implementation of MPI [2] and the Z3
SMT solver via its Java API [33]. In this section we report on experiments
demonstrating scalability and practicability of our approach on case studies of
two well-known biological systems.

In order to minimise computational overhead caused by calling Z3 on first-
order SMT formulae with quantifiers constructed during the computation, we
employ a simplification of abstraction of piecewise multi-affine systems that has
been introduced in [3]. In particular, the non-trivial formula (3) representing the
convex hull of vectors in rectangle vertices gives a minimal overapproximation of
self-transitions by excluding a zero vector from linear combination of rectangle
vertices vectors. This formula is replaced with a quantifier-free formula giving
a coarser overapproximation:

Φα,α := ¬∨
1≤i≤n

(
(Φαi,−1,α ∧ Φα,αi,+1 ∧ ¬Φα,αi,−1 ∧ ¬Φαi,+1,α)

∨ (¬Φαi,−1,α ∧ ¬Φα,αi,+1 ∧ Φα,αi,−1 ∧ Φαi,+1,α)
)

In particular, we exclude self-transitions only in rectangles where there exists
a dimension i in which the flow is guaranteed to be one-directional. More specif-
ically, there is either the pair of transitions αi,−1 → α → αi,+1 or the pair
of transitions αi,+1 → α → αi,−1 provided that the respective two transitions
are the only transitions allowed in ith dimension through the rectangle α. This
situation implies that the zero vector is not included in the convex hull of the
rectangle vertices (its ith component must be non-zero). The condition is only
necessary thus this simplification increases occurrence of spurious self-loops.
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5.1 Case Study I: Repressilator

To demonstrate the scalability of the algorithm, we consider a PMA model of
the repressilator [12]. It is an approximation of the original model of a genetic
regulatory network representing a set of genes mutually inhibited in a closed
circle [22].

On this model, we evaluate the scalability of the algorithm from Sect. 3 on
a homogeneous cluster with 16 nodes each equipped with 16 GB of RAM and
a quad-core Intel Xeon 2 GHz processor. The analysis is provided according to the
number of states in combination with one independent and two interdependent
parameters, respectively. The considered property is AGϕ where ϕ is an atomic
proposition specifying a particular subset of states.
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Fig. 1. Scalability achieved for two models approximating the repressilator system:
a rough model of the size 90 · 103 states and a refined model of the size 160 · 103 states.
Variants 1P represent analyses with a single uncertain parameter whereas variants 2P
reflect results achieved for two uncertain mutually dependent parameters. (Color figure
online)

5.2 Case Study II: Regulation of G1/S Cell Cycle Transition

To demonstrate the applicability, we employ our approach on a non-linear ODE
model [37] describing a two-gene regulatory network of interactions between
the tumour suppressor protein pRB and the central transcription factor E2F1
(Fig. 2 (left)). For suitable parameter valuations, two distinct stable attractors
may exist (the so-called bistability). In [37], the authors have provided numerical
bifurcation analysis of E2F1 stable concentration depending on the degradation
parameter of pRB (φpRB). Note that traditional methods for bifurcation analysis
hardly scale to more than a single parameter.

We demonstrate that our algorithm can overcome some of the drawbacks of
numerical methods. In particular, we focus on synthesis of values of two interde-
pendent model parameters with respect to satisfaction of the bistability property.
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E2F1pRB

d[pRB]
dt = k1

[E2F1]
Km1+[E2F1]

J11
J11+[pRB] − φpRB [pRB]

d[E2F1]
dt = kp + k2

a2+[E2F1]2

K2
m2+[E2F1]2

J12
J12+[pRB] − φE2F1[E2F1]

a = 0.04, k1 = 1, k2 = 1.6, kp = 0.05, φpRB = 0.005
φE2F1 = 0.1, J11 = 0.5, J12 = 5, Km1 = 0.5, Km2 = 4

Fig. 2. G1/S transition regulatory network (left) and its ODE model with default
values according to [37] (right).

We deal with the degradation parameter φpRB and the production parameter
of pRB (k1). Additionally, we perform post-processing of achieved results by
employing additional constraints on the parameter space (i.e., imposing a lower
and upper bound on the production/degradation parameter ratio).

The original non-linear model (Fig. 2 (right)) is first converted into a PMA
model by employing the approach introduced in [26]. This involves replacement
of each non-linear function by an optimal sum of piecewise affine segments (40
segments for pRB and 20 for E2F1). Finally, the rectangular abstraction [8] is
employed to obtain the PKS for model checking analysis.

The model has been analysed with respect to the properties ϕ1 = (AG low),
ϕ2 = (AG high) and ϕ3 = (EFAG low ∧ EFAG high) where low = (E2F1 >
0.5 ∧ E2F1 < 2.5) (representing safe cell behaviour) and high = (E2F1 >
4 ∧ E2F1 < 7.5) (representing excessive cell division). Both properties ϕ1 (resp.
ϕ2) describe the presence and stability of low (resp. high) state and are guaran-
teed by the rectangular abstraction due to its conservativeness. More specifically,
synthesised parameter valuations underapproximate the exact parameter valu-
ation set. Note that ϕ1 and ϕ2 are subformulae of ϕ3, hence all three formulae
have been verified in a single run due to the principle of Algorithm5.

The property ϕ3 expresses the possibility of reaching both stable states from
a given (initial) state. Such a state thus represents a decision point in the system
dynamics. Due to the mixing of existential and universal quantifiers, the property
is not preserved by the rectangular abstraction and can thus only be used for
estimation (detailed numerical investigation needs to be employed further in the
significantly restricted area of the parameter space).

The output of parameter synthesis follows Eq. (1), in particular, we obtain
a table of all states satisfying a particular property provided that every state is
accompanied with a synthesised constraint on the parameters. Technically, the
constraints are given in the SMT-LIB format 2.5 [5]. Consequently, in order to
compare and visualise satisfactory parameter valuations in a human-readable
form the obtained results have to be further post-processed. The valid area of
the parameter space can be visualised by solving the obtained constraints in
sampled points. In Fig. 3 (up left), the parameter space with areas constrained
by each of the three formulae is depicted (reachability of bistability is shown in
green; low and high stable states are shown in blue and red, respectively).

Additionally, we can employ a static constraint ΦI := α < k1
ΦpRB

<

β to restrict the resulting parameter space to a desired range of the
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φpRB k1

[E2F1]

k1

φpRB

ϕ1 = AG low

[E2F1] ∈ [0.60189, 0.83853]

α = 81.387

β = 496.527

k1

φpRB

ϕ2 = AG high

[E2F1] ∈ [4.27494, 5.07745]

α = 38.355

β = 77.123

k1

φpRB

ϕ3 = (EFAG low ∧ EFAG high)

[E2F1] ∈ [2.69048, 3.39526]

α = 70.991

β = 85.159

Fig. 3. Parameter space of G1/S gene regulatory network. Each area meets the respec-
tive property: ϕ1 (blue), ϕ2 (red) and ϕ3 (green). (Upper left) Valid parameter spaces
sampled for arbitrary initial concentration of E2F1 (from 0 to 15 AU). (Other figures)
Areas displaying valid ranges of the production/degradation ratio for respective for-
mulae, computed by optimisation. Every figure displays the result for a distinct initial
state of E2F1. Values of α and β were computed by optimisation. They represent the
minimal (α) and maximal (β) ratio k1

ΦpRB
satisfying the particular property.

production/degradation parameters ratio. Moreover, we can use an SMT-based
optimisation tool to solve a parametric optimisation problem to find a maximal
bound α and a minimal bound β satisfying ΦI . In our case we employ the tool
Symba [29] to compute an over- (resp. under-) approximation of α (resp. β). The
achieved ranges of parameters ratio that guarantee the respective formulae are
shown in Fig. 3.
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6 Conclusion

We have presented a novel parallel algorithm for parameter synthesis on systems
with CTL specifications. The method uses a symbolic representation of parame-
ters and employs the satisfiability modulo theories (SMT) approach to deal with
first-order formulae that represent sets of parameters. The general description
of the algorithm allows it to be used with various families of systems with para-
meters. In particular, to evaluate the applicability of our algorithm, we have
presented a biologically motivated case study.

While evaluating our algorithm we have found the bottleneck to be the large
number of calls to the SMT solver. To alleviate this problem somewhat, our
implementation uses some optimisation techniques such as query caching and
formula simplification. The main simplification relies on the observation that
many transition constraints are actually strict subsets of other transition con-
straints in the model. We plan to explore more of these techniques to reduce
both the number and the complexity of the SMT solver calls. We also plan to
employ various other SMT solvers, e.g. dReal [23], and compare the efficiency.
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13. Brim, L., Yorav, K., Ž́ıdková, J.: Assumption-based distribution of CTL model
checking. STTT 7(1), 61–73 (2005)

14. Chiang, H.D., Wang, T.: On the number and types of unstable equilibria in non-
linear dynamical systems with uniformly-bounded stability regions. IEEE Trans.
Autom. Control 61(2), 485–490 (2016)

15. Collins, P., Habets, L.C., van Schuppen, J.H., Černá, I., Fabriková, J., Šafránek, D.:
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Abstract. We consider First-Order Linear Temporal Logic (FO-LTL)
over linear time. Inspired by the success of formal approaches based upon
finite-model finders, such as Alloy, we focus on finding models with finite
first-order domains for FO-LTL formulas, while retaining an infinite time
domain. More precisely, we investigate the complexity of the following
problem: given a formula ϕ and an integer n, is there a model of ϕ with
domain of cardinality at most n? We show that depending on the logic
considered (FO or FO-LTL) and on the precise encoding of the problem,
the problem is either NP-complete, NEXPTIME-complete, PSPACE-
complete or EXPSPACE-complete. In a second part, we exhibit cases
where the Finite Model Property can be lifted from fragments of FO to
their FO-LTL extension.

Keywords: FO · LTL · Finite model property · Bounded satisfiability ·
Fragments

1 Introduction

1.1 Context

First-Order Logic (FO) has proven to be useful in numerous applications in
computer science such as formal specification, databases, ontology languages,
etc. It is particularly well-suited to reason about objects of a domain, their
relations and the properties they satisfy. However, since “full” FO is undecidable,
the formal verification of properties implies a relaxation of the problem e.g.
considering less expressive fragments. Thus, one can restrict the specification
language (e.g. Prolog) or impose some form of interaction for verification (e.g.
theorem provers, proof assistants).

Another form of trade-off is to keep the whole logic and full automation but
to rely on a sound but incomplete decision procedure. For instance, the Alloy
Analyzer1 for the Alloy [10] language (based upon relational first-order logic)

Research partly funded by ANR/DGA project Cx (ref. ANR-13-ASTR-0006) and
by fondation STAE project BRIefcaSE.

1 Available at http://alloy.mit.edu/alloy.

c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 211–226, 2016.
DOI: 10.1007/978-3-319-46520-3 14

http://alloy.mit.edu/alloy


212 D. Kuperberg et al.

implements a bounded-satisfiability decision procedure. That is, the tool relies
on a finite-model finder : it first bounds the number of objects in the domain
and then runs a classical propositional SAT procedure [19]. Thanks to the per-
formance of modern SAT engines, this approach has shown to be very efficient
in practice to find counterexamples quickly when assessing specifications. This
is one of the reasons for the success of Alloy, in the formal methods commu-
nity [3,17,21].

However, in most software and systems specifications, one needs to represent
the evolution of modeled entities along time. In Alloy, the common way to do so
is to model time by adding a specific set of time instants [10], by giving axioms
describing its structure (as traces for instance) and by adding an extra time
parameter to every dynamic predicate. This is tedious and cumbersome, if not
error-prone.

This shortcoming has long been identified and several propositions [7,16,20]
have been made to extend Alloy with facilities for fancier modeling of behav-
ior. Still, in all these approaches, the verification remains bounded (because
the set of instants is, for instance). [6] makes a step further by implementing a
bounded model-checking approach in Alloy allowing time loops. However, up to
our knowledge, no Alloy extension leverages a temporal logic, such as LTL for
instance, that enjoys a complete decision procedure. The idea of adding tem-
poral logic to FO has been implemented in the tool TLA+ [12], where the FO
signature is that of ZFC, instead of the arbitrary signatures allowed in Alloy.
These remarks led us to study the combination of FO and LTL, in particular to
draw questions about the relation between the satisfiability of a FO-LTL formula
and the fact that the first-order part of the model is finite. In the literature, the
logic FO-LTL has drawn a lot of interest, for decidability questions as well as in
database theory [2]. For instance [8,9] study decidable fragments, while [11,15]
give incompleteness results.

1.2 Contributions

The first question we address here is that of the complexity of satisfiability for
FO and FO-LTL when the FO part of the model is bounded (we call this prob-
lem BSAT(N) for a given bound N). We are interested in the cost in terms of
algorithmic complexity of adding an LTL component to the FO specification lan-
guage. In Sect. 3, we consider BSAT for FO and FO-LTL depending on whether
the quantifier rank (i.e. the maximum number of nested quantifiers) of formulas
is bounded and whether the bound on the domain is given in unary or binary
encoding.

– For pure FO, BSAT(N) is NP-complete if the rank is bounded and if N is
given in unary; NEXPTIME-complete otherwise. This case can admittedly
be considered folklore but it seems it has not been published formally, so we
detail it in the paper for the sake of completeness. We also provide detailed
results, showing that formulas of rank 2 with unary predicates are sufficient
for NEXPTIME-completeness.
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– For FO-LTL, which has been less studied from the point of view of BSAT, we
show that this division goes the same except that BSAT is PSPACE-complete
in the first case and EXPSPACE-complete otherwise (recall that satisfiability
for LTL alone is PSPACE-complete [14,18]). Again, rank 2 formulas with
unary predicates are sufficient.

Secondly, since we are only interested in finite models of FO-LTL formulas,
it is natural to study which fragments of FO-LTL enjoy the finite model prop-
erty (FMP). Recall that a formula has the FMP if the existence of a model
implies the existence of a finite one. Many fragments of FO have been shown to
enjoy the FMP in the past decades [1,4].

– In Sect. 4.1, we show that any fragment of FO enjoying the FMP (as well as a
mild assumption often met in practice) can be “lifted” as a fragment of FO-
LTL using also X and F and still enjoying the FMP (provided the removal of
the temporal operators leads back to the original FO fragment).

– We finally show in Sect. 4.2 that with temporal operators U or G, the FMP
is lost, even with strong constraints on the way temporal operators interact
with first-order quantifiers.

All these results provide a theoretical insight on the combination of LTL with
bounded FO which may be useful in the context of decision procedures based
upon SAT or SMT, or in formal methods such as extensions of Alloy or TLA+.
Another possible application may be in the analysis of software product lines [5]
where various, related transition systems (which may be described using FO)
represent a product family.

Due to space constraints, the detailed proofs for some results can be found in
an extended version of this article available from the authors’ homepages.

2 The Logic FO-LTL

In this section, we define precisely the logic FO-LTL and provide some elements
on its expressiveness.

2.1 Syntax

Definition 1 (FO-LTL Syntax). We define the syntax of FO-LTL in the stan-
dard way from the following elements (function symbols will also be considered
in Sect. 4):

– a tuple of predicates P = (P1, . . . , Pk) (each of which is of any arity) which
define relations, between elements of the system, that can vary in time,

– equality = is considered as a particular binary predicate which is static, i.e.,
its value does not depend on time,

– an infinite countable set Var of variables,
– a finite set Const of constants, representing elements of the system,
– the Boolean connectives ¬,∨,
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– the existential quantifier ∃x for each variable x ∈ Var,
– the temporal operators X (next) and U (until).

We also add the usual syntactic sugar: �,⊥,∧,∀,⇒,G,F,R, where
Fϕ = �Uϕ, Gϕ = ¬(F (¬ϕ)), ψ R ϕ = ¬(¬ϕU¬ψ).

Example 1. Let us consider P = {OK , fail}, where OK is a nullary predicate,
i.e., an atomic proposition, and fail is an unary predicate. We can define the
following formula: G(∃x.fail(x) ⇒ FG¬OK). Intuitively, it expresses that a
local bug endangers the whole system and no recovery is possible: if one element
of the system fails at some point, then later the system must enter a state where
it is not OK and remain in this state forever.

2.2 Semantics

Variables and constants (and more generally terms if we consider functions) are
interpreted over a domain D. We consider that the domain and the interpreta-
tion of variables and constants do not vary in time. Only the interpretation of
predicates can change. The time domain considered throughout the paper is N.

Definition 2 (FO-LTL Structure). An interpretation structure of FO-LTL
is a tuple M = (D,σConst , ρ) where:

– D is the domain,
– σConst : Const → D is a valuation for constants,
– ρ = (P i

1, . . . , P
i
k)i∈N

gives the semantics of each predicate in P at each instant
i ∈ N. If Pj is a l-ary predicate, then P i

j ⊆ Dl for each instant i ∈ N.

We now define the satisfaction of a formula in a structure, in which case the
latter is called a model of the former.

Definition 3 (Satisfaction Relation). Given a structure M, we inductively
define the satisfaction relation M, σ, i |= ϕ, where σ maps free variables of ϕ to
elements in D, and i ∈ N is the current point in time.

For ease of reading, x and y stand for both variables and constants in this
definition. Moreover, we use σ to denote the interpretation of both variables and
constants: σ(x) = σ(x) if x ∈ Var and σ(x) = σConst(x) if x ∈ Const.

– M, σ, i |= x = y if σ(x) = σ(y)
– M, σ, i |= Pj(x1, . . . , xn) if (σ(x1), . . . , σ(xn)) ∈ P i

j

– M, σ, i |= ¬ϕifM, σ, i �|= ϕ
– M, σ, i |= ϕ ∨ ψ if M, σ, i |= ϕ or M, σ, i |= ψ
– M, σ, i |= ∃x.ϕ if there exists a ∈ D such that M, σ[x → a], i |= ϕ
– M, σ, i |= Xϕ if M, σ, i + 1 |= ϕ
– M, σ, i |= ϕUψ if there exists j � i such that M, σ, j |= ψ, and for all p such

that i � p < j, we have M, σ, p |= ϕ
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A formula ϕ without free variables is satisfiable if and only if there exists a
structure M such that M, ∅, 0 |= ϕ, and in this case we just note M |= ϕ. (The
semantics with function symbols is defined in a similar straightforward way.)

Notice that FO-LTL can be viewed as a fragment of a first-order logic called
2FO, where quantifiers can range either over D or over time. It was shown in
[11] that FO-LTL is strictly less expressive than 2FO, as opposed to the classical
result that LTL and FO have the same expressive power over discrete time.
Detailed definitions and examples regarding 2FO are provided in the extended
version of this article.

3 Complexity of Bounded Satisfiability

We are interested in a problem occurring in practice, where a formula ϕ of FO
or FO-LTL is given together with a bound N , and we want to check the exis-
tence of a model of ϕ with domain of size at most N . This problem is decidable,
but its complexity is an interesting question that, as far as we know, has been
overlooked (though the FO case can be considered unpublished folklore). We
call this problem BSAT and we investigate its complexity for several variants.
As explained earlier, this question is of practical interest given the success of for-
mal methods based upon finite model-finding and considering possible temporal
extensions of these.

To analyze the complexity of this problem in different settings, we first recall
the usual notion of (quantifier) rank [13].

Definition 4 (Quantifier Rank). The (quantifier) rank of a FO-LTL formula
is defined by structural recursion as follows:

– rk(x = y) = rk(P (x1, . . . , xk)) = 0
– rk(¬ϕ) = rk(Xϕ) = rk(ϕ)
– rk(ϕ ∨ ψ) = rk(ϕUψ) = max(rk(ϕ), rk(ψ))
– rk(∃x, ϕ) = 1 + rk(ϕ).

We are interested in settings where the rank of formulas is bounded, or on the
contrary any formula is allowed as input. Restricting rank to a certain bound is a
natural assumption in practice, and allows a finer analysis of the parameterized
complexity of the BSAT problem. As is standard practice, we write FO[k] (resp.
FO-LTL[k]) for all FO (resp. FO-LTL) formulae of quantifier rank up to k.

This rank is not to be confused with the alternation depth, which increases
only with alternations between ∀ and ∃ quantifiers (or in our case between ∃
and ¬). We chose here to use quantifier rank to reflect the limited number of
variables specified in real-life examples by users, for instance using tools such as
Alloy. Notice that bounding the quantifier rank does not trivialize the problem,
because we allow arbitrary signatures (again, similarly to the Alloy syntax). We
recall that most complexity results on logical formalisms in the literature are
relative to fixed signatures.
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The following theorem classifies the complexity of BSAT according to three
parameters: FO alone versus FO-LTL, N given in unary or binary, and rk(ϕ)
bounded or unbounded. Some of these results regarding FO may be part of
folklore, but we reproduce them here for completeness.

Theorem 1. We consider BSAT for three parameters: logic, encoding, bound
on rk(ϕ) (ranked). The corresponding complexities are given in the following
table (N is the bound on the model size, k the bound on rk(ϕ)):

N unary N binary

FO[k] NP -complete NEXPTIME-complete

FO NEXPTIME-complete (even N = 2) NEXPTIME-complete

FO-LTL[k] PSPACE-complete EXPSPACE-complete

FO-LTL EXPSPACE-complete (even N = 2) EXPSPACE-complete

Proofs are given in the remaining of this very Sect. 3.

3.1 First-Order Logic

Lemma 1. The BSAT(N) problem for FO[k] with N in unary is NP-complete.

Proof.

Membership in NP. We show membership in NP by polynomially reducing the
problem to SAT. The reduction is informally described here, see the extended
version of this article for the formal construction.

The input formula ϕ is turned into a quantifier-free formula ϕ′ where quanti-
fiers have been expanded: ∀x (resp. ∃x) is replaced by

∧
x∈[1,N ] (resp.

∨
x∈[1,N ]).

Constants are turned into integers in the same way, using an initial disjunction
on their possible values.

We then turn ϕ′ into a SAT instance ϕ′′ by replacing every occurrence of
predicate R(�a), where �a is an integer vector, by a Boolean variable xR,�a.

This reduction is polynomial because of the unary encoding of N and the
bound on rk(ϕ), and preserves satisfiability.

NP-hardness. We now show that BSAT for unary FO[k] is NP-hard.
We perform a reduction from SAT: given a SAT instance with variables

x1, . . . xn, we build an instance of BSAT where x1, . . . xn are predicates of arity
0. We can then ask for the existence of a structure of size 0 (or 1), and this will
answer the SAT problem. Since we do not need any quantifier to reduce to SAT,
we obtain NP-hardness even if the bound on the rank is 0. ��
Lemma 2. The BSAT(N) problem for FO[k] with N in binary is NEXPTIME-
complete if k � 2, even restricted to unary predicates. It is NP-complete for
k = 1.



On Finite Domains in First-Order Linear Temporal Logic 217

Proof. The proof is only sketched here, the detailed version can be found in
the extended version of this article. The idea is to reduce directly from a non-
deterministic Turing Machine running in exponential time.

Given such a machine M together with an input word u, we want to build
a formula ϕ of FO[2] describing the run of M over u, such that ϕ has a model
of size at most N if and only if M accepts u in at most N steps. Variables in ϕ
will be used to describe positions of the tape of M as well as time instants in the
computation of M . For this, we use unary predicates to encode the bits of the
cell position p(x) and time instant t(x) described by an element x of the domain.
We additionally use predicates a(x) for a in the alphabet of the machine, and
q(x) for q in the state space of the machine to specify the content of the cell p(x)
at time t(x). To avoid using formulas of rank 3, we also introduce a predicate
a′(x) to say that cell p(x) is labelled a at time t(x)+1. We can express that this
encoding is sound, and specify the existence of an accepting run of the machine
using a formula ϕ of rank 2. Since N can be specified in binary, and since |ϕ| is
polynomial in the size of M , we can show that ϕ has a model of size N if and
only if M has an accepting run of size exponential (2nk

) in its input of size n.
The fact that the problem is in NEXPTIME is proven similarly as in

Lemma 1, and is shown for a more general version of the problem in Lemma 4.
On the contrary, if k = 1, we show that any satisfiable formula ϕ of rank 1

has a model of size at most |ϕ|, therefore it is in NP to verify the existence of
such a model. NP-hardness follows from Lemma 1. ��
Lemma 3. The BSAT(N) problem for unranked FO with N in unary is NEXP-
TIME-hard, even for N = 2.

Proof. We show that this case is also NEXPTIME-hard.
As before, let M be a non-deterministic Turing machine running in exponen-

tial time 2nk

.
This time, we will use predicates of unbounded arity, and encode positions

in the tape using binary code. We will actually need only two elements in the
structure, named 0 and 1.

To state that a position of binary encoding �x is labelled by a letter a (resp.
a state q), we will use a predicate a(�x) (resp. q(�x)) of arity nk, where each
coordinate of �x is given as a distinct argument.

To mimic the previous proof, we need to be able to compare 2 positions, using
a predicate �x < �y of arity 2nk. Once this order is axiomatized, the reduction can
be done as in the previous case.

Therefore, we will only give the relevant new material here, i.e. the axioms
for � of arity 2nk being a total order. These axioms must all be of polynomial
length in n, in order to keep the overall reduction polynomial.

We use ∀�x as a shorthand for ∀x1,∀x2, . . . ,∀xnk . In this way, it suffices to
rewrite the axioms of total order using vectors instead of elements. This keeps
the size of axioms polynomial, making it grow only by a factor nk. Note that
this does not guarantee that � describes the lexicographic order on vectors, in
particular the first position could be any vector, but this is not a problem.
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Replacing all variables by vectors in the previous proof yields the required
reduction. ��
The membership in NEXPTIME will be shown in the proof of Lemma 4.

Lemma 4. The BSAT(N) problem for unranked FO with N in binary is in
NEXPTIME.

Proof. This result implies NEXPTIME-completeness for 3 variants of the First-
Order BSAT problem.

Let ϕ,�e be the input of the problem, where �e is a binary encoding of N , so
N = O(2|�e|). Let n = |ϕ| + |�e| be the size of the input, and r = rk(ϕ). The
algorithm from the proof of Lemma 1 can be adapted as follows:

– Guess a structure and write it on the tape: a predicate of arity k takes up to
Nk cells, so the operation uses time (and space) O(2nk).

– Unfold quantifiers of the formula and check predicates. This operation takes
time O(|ϕ|Nr) = O(2nr).

Overall, the time complexity is in O(2n(k+r)) = O(2n2
), since both k and r

are bounded by n.
This ends the proof that the most “difficult” FO case of BSAT still has

NEXPTIME complexity. Hardness (even for N = 2) follows from Lemma 2. ��

3.2 An Algorithm for the BSAT Problem for FO-LTL

We now turn to the BSAT problem for FO-LTL, and describe a generic algorithm
that we will use for various settings of the problem.

Lemma 5. The BSAT(N) problem for FO-LTL is in PSPACE if the rank is
bounded and N is given in unary, and in EXPSPACE all three other cases.

The algorithm consists in trying all sizes up to N , and for each of them
expand the formula ϕ into a LTL formula, then use a PSPACE algorithm for
LTL satisfiability.

Definition 5 (Expansion of an FO-LTL Formula). Let us consider a finite
domain D, a finite set of constants Const, a valuation σConst : Const → D,
a closed FO-LTL formula ϕ with constants in Const and predicate symbols
P1, . . . , Pk, of arities α1, . . . , αk respectively. We define the expansion exp(ϕ)
of ϕ given the domain D as an LTL formula, using alphabet A = {Ai(�a) | 1 �
i � k,�a ∈ Dαi} by induction on ϕ. We assume that ϕ can use elements of D as
constants, and σConst is extended to these new constants in the natural way.

exp(a = b) = � if σConst(a) = σConst(b) and ⊥ otherwise
exp(Pi(a1, . . . , ak)) = Ai(σConst(a1), . . . , σConst(ak))
exp(¬ϕ) = ¬ exp(ϕ) exp(ϕ ∨ ψ) = exp(ϕ) ∨ exp(ψ)
exp(Xϕ) = X exp(ϕ) exp(ϕUψ) = exp(ϕ)U exp(ψ)
exp(∃x, ϕ) =

∨
a∈D exp(ϕ[x ← a])
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It is easy to show by induction that for any ϕ and D, we have

| exp(ϕ)| = Θ(|ϕ| · |D|rk(ϕ)).

We can now adapt the algorithm from Lemma 1 to this new setting. In
the case where the rank is bounded, we rewrite the formula to bound arity of
predicates if the rank is bounded, and guess a structure of size D of size at most
N together with σConst , using space polynomial in |D| (so exponential in the
input N is in binary). We then expand ϕ into exp(ϕ), of size O(|ϕ| · N rk(ϕ)).

It remains to decide whether the LTL formula exp(ϕ) is satisfiable, which
can be done using space polynomial in | exp(ϕ)| [18]. Therefore this algorithm
uses space O(|ϕ| · N rk(ϕ)). It is in PSPACE if the rank is bounded and N is in
unary, and EXPSPACE in the other three cases.

3.3 Completeness Results for FO-LTL BSAT

We now show that this algorithm is optimal, by showing that BSAT for FO-LTL
is either PSPACE-hard or EXPSPACE-hard depending on the setting.

Lemma 6. The BSAT(N) problem for ranked and unranked FO-LTL with N in
binary is EXPSPACE-complete, even for N = 2. In the ranked case, the bound
must be at least 2. The BSAT(N) problem for FO-LTL[k] with N in unary is
PSPACE-complete.

Proof. The main idea of the proof is to directly encode the run of a Turing
machine using exponential space (polynomial space in the ranked case with N
in unary), similarly as in the proof of Lemma 2. The main difference is that we
now have additional LTL operators, that allow us to encode computation steps
without any bound on the number of time instants. Therefore, the first-order
domain D will only be used to encode positions of the tape via unary predicates
specifying the bits of the position, and that is why we can now encode runs of
machines using exponentially more time than space. The detailed reduction can
be found in the extended version of this article. ��
Finally, the last case is treated in the following lemma.

Lemma 7. The BSAT(N) problem for unranked FO-LTL with N in unary is
EXPSPACE-complete.

Proof. We will show that this case is also EXPSPACE-hard, although we can
no longer use an element of the structure for each cell of the Turing machine.

We can reuse ideas from Lemma 3, and encode positions using vectors of bits
with predicates of unbounded arities. This time, only positions will be encoded
this way, as time can be taken care of by LTL. Thus we can start from a machine
where only space is exponentially bounded, and time can be doubly exponential.

The construction is then similar to the one from Lemma 3, and yields a
reduction showing that this variant of BSAT is also EXPSPACE-complete, even
for structures with only 2 elements. ��
Other examples of EXPSPACE-complete problems related to deciding small
fragments of FO-LTL can be found in [8].
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4 Finite Model Property

Since we are only interested in finite models of FO-LTL formulas, it is natural
to study which fragments of FO-LTL enjoy the finite model property (FMP).
We say that a formula has the FMP if the existence of a model implies the
existence of a finite model (i.e., with finite first-order domain but still infinite
time structure). We also say that a fragment Frag of some logic has the FMP
if all the formulas from Frag have the FMP. Many such fragments of FO were
exhibited in the past decades.
Function Symbols. In this Section we will enrich the syntax of FO-LTL with
function symbols. Each function has an arbitrary arity like a predicate, but yields
a term, which will be interpreted as an element of the domain, as variables and
constants. In this case, the parameters of the predicates (including equality) can
be arbitrary terms, built by composing variables and constants with functions.
For instance, if x and y are variables, a is a constant, f and g are functions, then
f(x, g(x), a) = g(y) is a formula.

Example 2 [1,4]. The following fragments of FO, named following the notation
of [4], have the FMP:

– [∃∗∀∗, all ]= (Ramsey 1930) the class of all sentences with quantifier prefix ∃∗∀∗

over arbitrary relational vocabulary with equality.
– [∃∗∀∃∗, all ]= (Ackermann 1928) the class of all sentences with quantifier prefix

∃∗∀∃∗ over arbitrary relational vocabulary with equality.
– [∃∗∀2∃∗, all ] (Gödel 1932, Kalmár 1933, Schütte 1934) the class of all sen-

tences with quantifier prefix ∃∗∀2∃∗ over arbitrary relational vocabulary with-
out equality.

– [∃∗, all , all ]= (Gurevich 1976) the class of all sentences with quantifier prefix
∃∗ over arbitrary vocabulary with equality.

– [∃∗∀, all , (1)]= (Grädel 1996) the class of all sentences with quantifier prefix
∃∗∀ over vocabulary that contains one unary function and arbitrary predicate
symbols with equality.

– [all , (ω), (ω)] (Gurevich 1969, Löb 1967) the class of all sentences with arbi-
trary quantifier prefix over vocabulary that contains an arbitrary number of
unary predicates and unary functions without equality

– FO2 (Mortimer 1975) the class of all sentences of relational vocabulary that
contains two variables and equality.

4.1 Lifting FMP from FO to FO-LTL

In this section, we first present general results that allow to lift the finite model
property from FO fragments to their temporal extension with operators X and F.
Then, we focus on two particular fragments: the well known Ramsey fragment,
for which the extension can be generalized to full LTL, and a fragment that
does not fulfill the hypotheses of our general result, but for which the temporal
extension with operators X and F still has the FMP.
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Remark 1. In the following, we will only consider formulas in negation normal
form (NNF), i.e. where negations have been pushed to the leaves. This means
negations can only be applied to predicates. Notice that the syntactic sugar
mentioned in Sect. 2.1, in particular the operator R (dual of U) now becomes
necessary to retain full expressiveness.

Definition 6. If Frag is a fragment of FO, and OP ⊆ {X,F,G,U,R} is a
set of temporal operators, we define the fragment Frag + OP of FO-LTL as the
formulas with temporal operators from OP, where the formula(s) obtained by
removing unary temporal operators and replacing binary ones by ∨ or ∧ (indif-
ferently), is in Frag.

A General Extension Result for Fragments with the FMP

Definition 7 ((Plus-)Replacement of a Formula). If ϕ,ψ are FO-formulas,
we say that ψ is a replacement of ϕ if ψ can be obtained from ϕ by replacing
predicates and functions, i.e., by allowing different occurrences of the same pred-
icate (resp. function) of ϕ to become distinct predicates (resp. functions) of same
arity in ψ, but distinct predicates (resp. functions) in ϕ are always mapped to
distinct predicates (resp. functions) in ψ.

Additionally, we define the notion of plus-replacement where the new predi-
cates and functions can have increased arity.

For instance ∀x.∃y.P (x) ∨ Q(y) is a replacement of ∀x.∃y.P (x) ∨ P (y). Like-
wise, the formula ∀x.∃y.P (x)∨Q(y, x) is a plus-replacement of ∀x.∃y.P (x)∨P (y).

Definition 8 (Stability Under (Plus-)Replacement). We say that a frag-
ment Frag of FO with FMP is stable under replacement (resp. plus-replacement)
if for all ϕ ∈ Frag and for all replacement (resp. plus-replacement) ψ of ϕ, we
have that ψ has the FMP.

In practice, many fragments with FMP considered in the literature are stable
under (plus-)replacement. This is for example the case for most of the fragments
from Example 2 (see Corollary 1).

Theorem 2 (Frag + X). Let Frag be a fragment of FO with the FMP, stable
under replacement. Then the fragment Frag + X of FO-LTL has the FMP.

The proof of this theorem is presented in the extended version of this article.
The following theorem, along the same lines, allows more temporal operators but
has the stronger assumption of plus-replacement.

Theorem 3 (Frag + {X,F}). Let Frag be a fragment of FO with FMP, stable
under plus-replacement. Then Frag + {X,F} also has the FMP.

Proof. Let ϕ be a satisfiable formula of Frag + {X,F}. Let V be the set of
variables used in ϕ and {Fj , j ∈ J} be the set of F-operators in ϕ, for some
finite labeling set J = {1, 2, . . . , |J |} such that if Fj is under the scope of Fi

then i < j.
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For �x a list of variables from V , j ∈ J ∪ {0}, k ∈ N, and θ a subformula of
ϕ, we define �θ�j

�x inductively as follows:

�P (�y)�j,k
�x = Pj,k(�y, �x) variables can appear in both �y and �x

�f(�y)�j,k
�x = fj,k(�y, �x) variables can appear in both �y and �x

�∃z.θ(�y)�j,k
�x = ∃z�θ(�y)�j,k

�x �∀z.θ(�y)�j,k
�x = ∀z�θ(�y)�j,k

�x,z

�θ(�y) ∧ θ′(�y′)�j,k
�x = �θ(�y)�j,k

�x ∧ �θ′(�y′)�j,k
�x

�θ(�y) ∨ θ′(�y′)�j,k
�x = �θ(�y)�j,k

�x ∨ �θ′(�y′)�j,k
�x

�X θ(�y)�j,k
�x = �θ(�y)�j,k+1

�x �Fj′ θ(�y)�j,k
�x = �θ(�y)�j′,0

�x

To sum up, we index predicates and functions by the label j of the innermost
occurrence of F that has it in its scope, as well as the number k of nested X since
this occurrence. We also add all universally quantified variables as arguments.
We additionally remove F and X operators in the process.

Let ψ = �ϕ�
0,0
∅ . We show that ψ is satisfiable. Let M = (D, ρ) be a model of

ϕ. This means that for each subformula Fj θ(�y) of ϕ under universally quantified
variables �x, there is a function tj : D|�x| → N such that θ(�y) is true at time
tj(�x). We build a model of ψ by setting the value of Pj,k(�y, �x) to P (�y) at time
tj(�x) + k, where �x is the list of new arguments of Pj (and same with functions).
It is straightforward to verify that this is indeed a model of ψ.

Let ϕ′ be ϕ where the F’s and X’s have been removed, by definition we
have ϕ′ ∈ Frag . Since ψ is a plus-replacement of ϕ′ and Frag is stable under
plus-replacement, we have ψ has the FMP. Since ψ is satisfiable, there exists
a finite model Mf of ψ. Finally, we build from Mf a finite model of ϕ. For
this, we have to choose new values for the tj(�x), so that no conflicts occur: if
(j, k, �x) �= (j′, k′, �x′), then tj(�x)+k �= tj(�x′)+k′. Let K be the maximal number
of nested X (not interleaved with F), and (�xi)0�i�R be an ordering of all possible
vectors �x. We choose tj(�x) = (K +1)×(Rj + i), in order to satisfy the injectivity
condition: for all j, j′ ∈ [0, |J |], k, k′ ∈ [0,K], and �x, �x′ ∈ {�xi|0 � i � R}, we
have tj(�x) + k = tj′(�x′) + k′ if and only if (j, k, �x) = (j′, k′, �x′). Notice moreover
that we respect the condition that if Fj ϕj is a subformula of Fi ϕi, then j > i
and thus for any value of �x, �y, we have tj(�x) > ti(�y).

Finally, we build a finite model of ϕ by setting the value of P (�y) (resp. f(�y))
at time i to Pj,k(�y, �x) (resp. fj,k(�y, �x)) if i = tj(�x) + k for some j, k, �x, and
choosing any values for other time instants.

So ϕ has a finite model and therefore Frag + {X,F} has the FMP. ��
Remark 2. It is enough to consider plus-replacement where new arguments are
only quantified universally, which is a weaker condition.

Corollary 1. The following FO-LTL fragments, extending FO fragments men-
tioned in Example 2, have the FMP:

[∃∗∀∗, all ]= + {X,F} [∃∗∀∃∗, all ]= + {X,F}
[∃∗∀2∃∗, all ] + {X,F} [∃∗, all , all ]= + {X,F}
FO2 + {X,F}
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Specific Extensions for Two Fragments. In this section, we focus on two
fragments of FO: a fragment for which our general result (Theorem 3) does not
apply and a fragment for which our general result can be extended to full LTL.

The FMP of the following fragment, even if it is not stable under plus-
replacement, can be lifted to its temporal extension with X and F.

Theorem 4. [all, (ω), (ω)] + {X,F} has the FMP.

Proof. We show that any formula of this fragment has the FMP. We proceed
by induction on the number of nested F. The induction hypothesis is actually
stronger than the FMP: we show by induction that for such a formula ϕ, if there
is a model then there is a model M with finite domain D and a finite set of time
instants T such that M only “looks at T”, i.e. changing the values of predicates
and functions outside of T does not change the truth value of ϕ.

We start with the base case where there is no F. By Theorem 2 (and its
proof), and since [all, (ω), (ω)] is stable under replacement (even though it is
not stable under plus-replacement), if ϕ has a model it has a finite one where
only the values on a finite set of instants matter.

We now turn to the induction step, and consider a formula ϕ with n + 1
nested F. By considering the outermost occurrences of F, the formula ϕ can
be written ϕ′(Fϕ1,Fϕ2, . . . ,Fϕk), where ϕ′ contains no F but may contain
quantifiers, and for every i ∈ [1, k], ϕi has at most n nested F and may contain
free variables.

We assume that ϕ has a model M , and without loss of generality we note j
the index in [1, k] such that Fϕi is true in M (for at least one valuation of its free
variables) if and only if i � j. This means in particular that for all i � j, ϕi has a
model. By the induction hypothesis, for all i � j, ϕi can be set to true in a model
Mi with a finite domain Di and that only looks at a finite set of instants Ti.

Moreover, ϕ′′ = ϕ′(�, . . . ,�,⊥, . . . ,⊥) (with j times �) is satisfiable, and
by the base case has a model M ′ with a finite domain D′ that only looks at a
finite set of instants T ′ (that will be used as the first instants of the model).

We now build a model Mf for ϕ with a finite domain D, that we define as a
set of cardinality max(|D′|, |D1|, |D2|, . . . , |Dj |).

We define a sequence of time instants (ti)1�i�j such that at time ti the
formula ϕi is true for a particular valuation of its free variables, and at ti +
|Ti|, it is true for another valuation of its free variables that are universally
quantified, and so on, until we have considered all the possible values in D for
these universally quantified variables. So we define the ti inductively as follows:
t1 = |T ′| and ti = ti−1 + |Ti−1|× |D|r, where r is the number of nested universal
quantifiers in ϕ′.

We now describe the predicates and function values in Mf . At times t ∈
[0, t1 − 1], we mimic the model M ′. This gives the value of predicates and func-
tions for |D′| elements of D. All the remaining elements can be set to behave
as any element of D′, for instance the first one. Since equality cannot be tested,
and predicates and functions are monadic, the truth value of ϕ′′ is preserved.
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For all i ∈ [1, j], we use Mi to fix the valuation of predicates and functions at
times [ti, ti+|Ti|−1]. Then, from ti+|Ti|, we consider another possible assignment
of universally quantified variables and define the valuation of predicates and
functions accordingly. This way, we obtain a model of ϕi starting at time ti, and
therefore a model of Fϕi starting at time 0.

Since ϕ′ is monotonous in its arguments (no F can be under a negation), and
we preserved the value � for all Fϕi with i � j, the truth value of ϕ on Mf is
that of ϕ′, which is true thanks to the valuations on [0, t0].

We have therefore built a model Mf of ϕ with finite domain, and only looking
at a finite number of time instants. ��
The result of Ramsey that the ∃∗∀∗ fragment has the FMP is generalized in the
following theorem. See the extended version of this article for a proof, omitted
here due to space constraints.

Theorem 5. We consider here FO-LTL without function symbols. Let ϕ =
∃x1 . . . ∃xn.ψ(x1, . . . , xn), where ψ is a FO-LTL formula without any ∃ quan-
tifiers. Then if ϕ is satisfiable, it has a model with domain of size at most n+ c,
where c is the number of constants in the vocabulary.

4.2 Axioms of Infinity Using LTL

We now give examples showing that adding LTL to fragments of FO with the
FMP allows to write axioms of infinity, therefore losing the FMP. This holds
even when strong restrictions are enforced on the way LTL operators interact
with first-order quantifiers.

Extending the Ramsey Fragment. First, let us remark that the constraint
from Theorem 5 that existential quantifiers are not under the scope of tem-
poral operators is necessary, as showed by the following formula which is only
satisfiable by infinite models, using a unary predicate P :

G(∃x.P (x) ∧ XG¬P (x)).

Indeed, it is straightforward to show that a different xn is needed to satisfy the
formula at each different time instant n ∈ N, as the condition on the predicate
P guarantees that the same x can never be used twice.

Separating Quantifiers and LTL. We now give examples where a fragment
of FO loses the FMP when extended with LTL, even without nesting quantifiers
under temporal operators.

The following FO-LTL formula is an axiom of infinity with a ∀∃ quantifier
prefix, and where no first-order quantifiers are under the scope of LTL operators.
It uses one constant c and one unary predicate P :

∀x∃y.P (c) ∧ G(P (x) ⇒ X(P (y) ∧ G¬P (x))).
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This sentence only has infinite models, as the predicate P must be true on a
different element at each instant of time. However, as recalled in Example 2, in
FO without LTL, if only one quantifier ∀ is used the FMP is guaranteed (or
alternatively, formulas with two variables also have the FMP).

This example can actually be replaced using U instead of G, showing that
it suffices to be able to refer to an “unbounded” (as opposed to “infinite”)
number of time instants to force models to be infinite, as showed by the following
example:

∀x∃y.P (c) ∧ ((P (x) ∧ P (y))U(¬P (x) ∧ P (y))).

This time, we used values of the predicate P in the past instead of the future to
guarantee that the same x cannot be used twice.

5 Conclusion

Motivated by the possible extension of formal methods based upon finite model
finding (such as Alloy or various decision procedures based upon SAT or SMT
techniques) with temporal reasoning, we have investigated FO-LTL with finite
FO domains in two ways: (1) we studied the complexity of the satisfiability for
FO-LTL (and FO alone) when the FO part of the model is bounded; (2) we
studied cases where we can lift the FMP of FO fragments to their temporal
extensions.

Several question are still open. On the complexity side, it remains to settle
the case of FO-LTL[1] with N in binary. Related to the FMP, even if we showed
in Sect. 4.1 that for a particular FO fragment that is not stable under plus-
replacement, the FMP can still be lifted to its temporal extension with operators
X and F, it is not clear whether this assumption can be dropped in Theorem 3.
Another open question is whether we can find a reasonable condition under which
we can extend an FO fragment with temporal operators G or U without losing
the FMP. Indeed, these operators bring an expressiveness that is very useful in
practice but we showed in Sect. 4.2 that they behave badly with respect to the
FMP.
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Abstract. We study stochastic two-player turn-based games in which
the objective of one player is to ensure several infinite-horizon total
reward objectives, while the other player attempts to spoil at least one of
the objectives. The games have previously been shown not to be deter-
mined, and an approximation algorithm for computing a Pareto curve
has been given. The major drawback of the existing algorithm is that it
needs to compute Pareto curves for finite horizon objectives (for increas-
ing length of the horizon), and the size of these Pareto curves can grow
unboundedly, even when the infinite-horizon Pareto curve is small.

By adapting existing results, we first give an algorithm that computes
the Pareto curve for determined games. Then, as the main result of the
paper, we show that for the natural class of stopping games and when
there are two reward objectives, the problem of deciding whether a player
can ensure satisfaction of the objectives with given thresholds is decid-
able. The result relies on an intricate and novel proof which shows that
the Pareto curves contain only finitely many points.

As a consequence, we get that the two-objective discounted-reward
problem for unrestricted class of stochastic games is decidable.

1 Introduction

Formal verification is an area of computer science which deals with establishing
properties of systems by mathematical means. Many of the systems that need to
be modelled and verified contain controllable decisions, which can be influenced
by a user, and behaviour which is out of the user’s control. The latter can be
further split into events whose presence can be quantified, such as failure rate of
components, and events which are considered to be completely adversarial, such
as acts of an attacker who wants to break into the system.

Stochastic turn-based games are used as a modelling formalism for such sys-
tems [6]. Formally, a stochastic game comprises three kinds of states, owned by
one of three players: Player 1, Player 2, and the stochastic player. In each state,
one or more transitions to successor states are available. At the beginning of a
play, a token is placed on a distinguished initial state, and the player who con-
trols it picks a transition and the token is moved to the corresponding successor
state. This is repeated ad infinitum and a path, comprising an infinite sequence
of states, is obtained. Player 1 and Player 2 have a free choice of transitions, and
c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 227–243, 2016.
DOI: 10.1007/978-3-319-46520-3 15
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the recipe for picking them is called a strategy. The stochastic player is bound
to pick each transition with a fixed probability that is associated with it.

The properties of systems are commonly expressed using rewards, where
numbers corresponding to gains or losses are assigned to states of the system.
The numbers along the infinite paths are then summed, giving the total reward
of an infinite path, intuitively expressing the energy consumed or the profit
made along a system’s execution. Alternatively, the numbers can be summed
with a discounting δ < 1, giving discounted reward. It formalises the fact that
immediate gains matter more than future gains, and it is particularly important
in economics where money received early can be invested and yield interest.

Traditionally, the aim of one player is to make sure the expected (discounted)
total reward exceeds a given bound, while the other player tries to ensure the
opposite. We study the multi-objective problem in which each state is given a
tuple of numbers, for example corresponding to both the profit made on visiting
the state, and the energy spent. Subsequently, we give a bound on both profit
and energy, and Player 1 attempts to ensure that the expected total profit and
expected total energy exceed (or do not exceed) the given bound, while Player 2
tries to spoil this by making sure that at least one of the goals is not met.

The problem has been studied in [9], where it has been shown that Pareto
optimal strategies might not exist, and the game might not be determined (for
some bounds neither of the players have ε-optimal strategies). A value iteration
algorithm has been given for approximating the Pareto curve of the game, i.e. the
bounds Player 1 can ensure. The algorithm successively computes, for increasing
n, the sets of bounds Player 1 can ensure if the length of the game is restricted to
n steps. The approach has two major drawbacks. Firstly, the algorithm cannot
decide, for given bounds, if Player 1 can achieve them. Secondly, it does not scale
well since the representation of the sets can grow with increasing n, even if the
ultimate Pareto curve is small.

The above limitations show that it is necessary to design alternative solution
approaches. One of the promising directions is to characterise the shape of the
set of achievable bounds, for computing it efficiently. The value iteration of [9]
allows us to show that the sets are convex, but no further observations can be
made, in particular it is not clear whether the sets are convex polyhedra, or
if they can have infinitely many extremal points. The main result of our paper
shows that for two-objective case and stopping games, the sets are indeed convex
polyhedra, which directly leads to a decision algorithm. We believe that our
proof technique is of interest on its own. It proceeds by assuming that there is
an accumulation point on the Pareto curve, and then establishes that there must
be an accumulation point in one of the successor states such that the slope of the
Pareto curves in the accumulation points are equal. This allows us to obtain a
cycle in the graph of the game in which we can “follow” the accumulation points
and eventually revisit some of them infinitely many times. By further analysing
slopes of points on the Pareto curves that are close to the accumulation point,
we show that there are two points on the curve that are sufficiently far from
each other yet have the same slope, which contradicts the assumption that they
are near an accumulation point.
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Our results also yield novel important contributions for non-stochastic games.
Although there have recently been several works on non-stochastic games with
multiple objectives, they a priori restrict to deterministic strategies, by which
the associated problems become fundamentally different. It is easy to show that
enabling randomisation of strategies extends the bounds Player 1 can achieve,
and indeed, even in other areas of game-theory randomised strategies have been
studied for decades: the fundamental theorem of game theory is that every finite
game admits a randomised Nash equilibrium [15].

Related Work. Single-objective problems are well studied for stochastic games.
For reachability objectives the games are determined and the problem of exis-
tence of an optimal strategy achieving a given value is in NP∩co-NP [10]; same
holds for total reward objectives. In the multi-objective setting, [9] gives a value
iteration algorithm for the multi-objective total reward problem. Although value
iteration converges to the correct result, it does so only in infinite number of
steps. It is further shown in [9] that when Player 1 is restricted to only use
deterministic strategies, the problem becomes undecidable; the proof relies fun-
damentally on the strategies being deterministic and it is not clear how it can be
extended to randomised strategies. The works of [1,2] extend the equations of [9]
to expected energy objectives, and mainly concern a variant of multi-objective
mean-payoff reward, where the objective is a “satisfaction objective” requiring
that there is a set of runs of a given probability on which all mean payoff rewards
exceed a given bound. [1] only studies existence of finite-memory strategies and
the probability bound 1, and [2] in addition studies expectation objectives for
multichain games, which is a very restricted class of games in which the expecta-
tion and probability-1 satisfaction objectives coincide. Very recently, [5] showed
that quantitative satisfaction objective problem is coNP-complete.

In non-stochastic games, multi-objective optimisation has been studied for
multiple mean-payoff objectives and energy games [18]. A comprehensive analysis
of the complexity of synthesis of optimal strategies has been given in [7], and
it has been shown that a variant of the problem is undecidable [17]. The work
of [4] studies the complexity of problems related to exact computation of Pareto
curves for multiple mean-payoff objectives. In [13], interval objectives are studied
for total, mean-payoff and discounted reward payoff functions. The problems for
interval objectives are a special kind of multi-objective problems that require the
payoff to be within a given interval, as opposed to the standard single-objective
setting where the goal is to exceed a given bound. As mentioned earlier, all
the above works for non-stochastic games a priori restrict the players to use
deterministic strategies, and hence the problems exhibit completely different
properties than the problem we study.

Our Contribution. We give the following novel decidability results. Firstly,
we show that the problem for determined stochastic games is decidable. Then,
as the main result of the paper, we show that for non-determined games which
also satisfy the stopping assumption and for two objectives, the set of achievable
bounds forms a convex polyhedron. This immediately leads to an algorithm for
computing Pareto curves, and we obtain the following novel results as corollaries.
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– Two-objective discounted-reward problem for stochastic games is decidable.
– Two-objective total-reward problem for stochastic stopping games is decid-

able.

Although we phrase our results in terms of stochastic games, to our best knowl-
edge, the above results also yield novel decidability results for multi-objective
non-stochastic games when randomisation of strategies is allowed.

Outline of the Paper. In Sect. 3, we show a simple algorithm that works for
determined games and show how to decide whether a stopping game is deter-
mined. In Sect. 4, we give decidability results for two-objective stopping games.

2 Preliminaries on Stochastic Games

We begin this section by introducing the notation used throughout the paper.
Given a vector v ∈ R

n, we use v i to refer to its i-th component, where 1 ≤ i ≤
n. The comparison operator ≤ on vectors is defined to be the componentwise
ordering: u ≤ v ⇔ ∀i ∈ [1, n]. u i ≤ v i. We write u < v when u ≤ v and
u �= v . Given two vectors u , v ∈ R

n, the dot product of u and v is defined by
u · v =

∑n
i=1 u i · v i.

The sum of two sets of vectors U, V ⊆ R
n is defined by U + V = {u +

v |u ∈ U, v ∈ V }. Given a set V ∈ R
n, we define the downward closure of V as

dwc(V ) def= {u | ∃v ∈ V .u ≤ v}, and we use conv(V ) for the convex closure of
V , i.e. the set of all v for which there are v1, . . . v n ∈ V and w1 . . . wn ∈ [0, 1]
such that

∑n
i=1 wi = 1 and v =

∑n
i=1 wi ·v i. An extremal point of a set X ⊆ R

n

is a vector v ∈ X that is not a convex combination of other points in X, i.e.
v �∈ conv(X \ {v}).

A function f : R → R is concave whenever for all x, y ∈ R and t ∈ [0, 1] we
have f(t · x + (1 − t) · y) ≥ t · f(x) + (1 − t) · f(y). Given x ∈ R, the left slope of
f in x is defined by lslope(f, x) def= limx′→x−

f(x)−f(x′)
x−x′ . Similarly the right slope

is defined by limx′→x+
f(x)−f(x′)

x−x′ . Note that if f is concave then both limits are

well-defined, because by concavity f(x)−f(x′)
x−x′ is monotonic in x′; nevertheless,

the left and right slope might still not be equal.
A point p ∈ R

2 is an accumulation point of f if f(p1) = p2 and for all ε > 0,
there exists x �= p1 such that (x, f(x)) is an extremal point of f and |p1−x| < ε.
Moreover, p is a left (right) accumulation point if in the above we in addition
have x < p1 (resp. x > p1). We sometimes slightly abuse notation by saying
that x is an extremal point when (x, f(x)) is an extremal point, and similarly
for accumulation points.

A discrete probability distribution (or just distribution) over a (countable) set
S is a function μ : S → [0, 1] such that

∑
s∈S μ(s) = 1. We write D(S) for the set

of all distributions over S, and use supp(μ) = {s ∈ S | μ(s) > 0} for the support
set of μ ∈ D(S).

We now define turn-based stochastic two-player games together with the
concepts of strategies and paths of the game. We then present the objectives
that are studied in this paper and the associated decision problems.
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Stochastic Games. A stochastic (two-player) game is defined to be a tuple
G = 〈S, (S�, S♦, S©),Δ〉 where S is a finite set of states partitioned into sets
S�, S♦, and S©; Δ : S × S → [0, 1] is a probabilistic transition function such
that Δ(s, t) ∈ {0, 1} if s ∈ S� ∪ S♦ and

∑
t∈S Δ(s, t) = 1 if s ∈ S©.

S� and S♦ represent the sets of states controlled by Player 1 and Player 2,
respectively, while S© is the set of stochastic states. For a state s ∈ S, the set

of successor states is denoted by Δ(s) def= {t ∈ S | Δ(s, t)>0}. We assume that
Δ(s) �= ∅ for all s ∈ S. A state from which no other states except for itself
are reachable is called terminal, and the set of terminal states is denoted by
Term

def= {s ∈ S | Δ(s)={s}}.

Paths. An infinite path λ of a stochastic game G is a sequence (si)i∈N of states
such that si+1 ∈ Δ(si) for all i ≥ 0. A finite path is a prefix of such a sequence.
For a finite or infinite path λ we write len(λ) for the number of states in the
path. For i < len(λ) we write λi to refer to the i-th state si−1 of λ = s0s1 . . .
and λ≤i for the prefix of λ of length i + 1. For a finite path λ we write last(λ)
for the last state of the path. For a game G we write ΩG+ for the set of all finite
paths, and ΩG for the set of all infinite paths, and ΩG, s for the set of infinite
paths starting in state s. We denote the set of paths that reach a state in T ⊆ S

by ♦T
def= {λ ∈ ΩG | ∃i . λi ∈ T}.

Strategies. We write ΩG� and ΩG♦ for the finite paths that end with a state
of S� and S♦, respectively. A strategy of Player 1 is a function π : ΩG�→D(S)
such that s ∈ supp(π(λ)) only if Δ(last(λ), s) = 1. We say that π is memoryless
if last(λ)=last(λ′) implies π(λ)=π(λ′), and deterministic if π(λ) is Dirac for
all λ ∈ ΩG+, i.e. π(λ)(s) = 1 for some s ∈ S. A strategy σ for Player 2 is
defined similarly replacing ΩG� with ΩG♦. We denote by Π and Σ the sets of
all strategies for Player 1 and Player 2, respectively.

Probability Measures. A stochastic game G, together with a strategy pair
(π, σ) ∈ Π × Σ and an initial state s, induces an infinite Markov chain on the
game (see e.g. [8]). We denote the probability measure of this Markov chain
by P

π,σ
G,s . The expected value of a measurable function g : Sω→R±∞ is defined

as E
π,σ
G,s [g] def=

∫
ΩG,s

g dPπ,σ
G,s . We say that a game G is a stopping game if, for

every strategy pair (π, σ), a terminal state is reached with probability 1, i.e.
P

π,σ
G,s (♦Term) = 1 for all s.

Total Reward. A reward function � : S → Q assigns a reward to each state of
the game. We assume the rewards are 0 in all terminal states. The total reward of
a path λ is �(λ) def=

∑
j≥0 �(λj). Given a game G, an initial state s, a vector of n

rewards � and a vector of n bounds z ∈ R
n, we say that a pair of strategies (π, σ)

yields an objective totrew(�, z ) if E
π,σ
G,s [�i] ≥ z i for all 1 ≤ i ≤ n. A strategy

π ∈ Π achieves totrew(�, z ) if for all σ we have that (π, σ) yields totrew(�, z );
the vector z is then called achievable, and we use As for the set of all achievable
vectors. A strategy σ ∈ Σ spoils totrew(�, z ) if for no π ∈ Π, the tuple (π, σ)
yields totrew(�, z ). Note that lower bounds (objectives E

π,σ
G,s [�i] ≤ z i) can be

modelled by upper bounds after multiplying all rewards and bounds by −1.
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A (lower) Pareto curve in s is the set of all maximal z such that for all ε > 0
there is π ∈ Π that achieves the objective totrew(�, z − ε). We use fs for the
Pareto curve, and for the two-objective case we treat it as a function, writing
fs(x) = y when (x, y) ∈ fs. We say that a game is determined if for all states,
every bound can be spoiled or lies in the downward closure of the Pareto curve.1

Note that the downward closure of the Pareto curve equals the closure of As.

Discounted Reward. Discounted games play an important role in game theory.
In these games, the rewards have a discount factor δ ∈ (0, 1) meaning that the
reward received after j steps is multiplied by δj , and so a discounted reward of a
path λ is then �(λ, δ) =

∑
j≥0 �(λj)·δj . We define the notions of achieving, spoil-

ing and Pareto curves for discounted reward disrew(�, δ, z ) in the same way as
for total reward. Since the problems for discounted reward can easily be encoded
using the total reward framework (by adding before each state a stochastic state
from which with probability (1− δ) we transition to a terminal state), from now
on we will concentrate on total reward, unless specified otherwise.

The Problems. In this paper we study the following decision problems.

Definition 1 (Total-reward problem). Given a stochastic game G, an initial
state s0, and vectors of n reward functions � and thresholds z, is totrew(�, z)
achievable from s0?

Definition 2 (Discounted-reward problem). Given a stochastic game G, an ini-
tial state s0, vectors of n reward functions � and thresholds z, and a discount
factor δ ∈ (0, 1), is disrew(�, δ, z) achievable from s0?

In the particular case when n above is 2, we speak about two-objective problems.

Simplifying Assumption. In order to keep the presentation of the proofs
simple, we will assume that each non-terminal state has exactly two successors
and that only the states controlled by Player 2 have weights different from 0. Note
that any stochastic game can be transformed into an equivalent game with this
property in polynomial time, so we do not lose generality by this assumption.

Example 3 (Floor Heating Problem). As an example illustrating the definitions,
as well as possible applications of our results, we consider a simplified version
of the smart-house case study presented in [14] with a difference that we model
both user comfort and energy consumption. Player 1, representing a controller,
decides which rooms are heated, while the Player 2 represents the configuration
of the house, for instance which door and windows are open, which cannot be
influenced by the controller. The temperature in another room changes based on
additional probabilistic factors. We illustrate this example in Fig. 1 and a simple
model as a stochastic game is given in Fig. 2 (left). We have to control the floor
heating of two rooms in a house, by opening at most one of the valves V1 and
V2 at a time.
1 The reader might notice that in some works, games are said to be determined when

each vector can be either achieved by by one player, or spoiled by the other. This is
not the case of our definition, where the notion of determinacy is weaker and only
requires ability to spoil or achieve up to arbitrarily small ε.
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Fig. 1. A house with control-lable
floor heating in two rooms.

The state of each room is either cold
or hot, for instance in state H,C, the first
room is warm while the second one is cold,
and the third room has unknown tempera-
ture. Weights on the first dimension represent
the energy consumption of the system while
the second represent the comfort inside the
house. Player 2 controls whether the door D
between the second room and a third one is
open or not. The temperature T in the other

room of the house is controlled by stochastic transitions. For instance in the
initial state (C,C), the controller can choose either to switch on the heating in
room 1 or room 2. Then the second player chooses whether the door is opened
or not and stochastic states determine the contribution of the other rooms: for
instance from (H,C) if the second player chooses that the door is opened then
depending on whether the temperature of the other room is low or high, room 2
can either stay cold or get heated through the door, and the next state in that
case is (H,H) which is the terminal state. The objective is to optimise energy
consumption and comfort until both rooms are warm. The Pareto curve for a
few states of the game is depicted in Fig. 2 (right).

C,C

(−1, 0)

H,C

C,H C,H

H,HH,H

H,C

(0,−1)

(0,−1)

D closed

D closed

T low

T high

T low

T high (−1, 0)

energy

comfort

−2

−1

H,H

−1

−2

H,C

H,C

H,H

C,C

Fig. 2. A stochastic two-player game modelling the floor heating problem. Vectors
under states denote a reward function when it is not (0, 0). All probabilistic transitions
have probability 1

2
. Pareto curves of a few states of the game are depicted on the right.

2.1 Equations for Lower Value

We recall the results of [1,9] showing that for stopping games the sets of achiev-
able points As are the unique solution to the sets of equations defined as follows:

Xs =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dwc({(0, . . . , 0)}) if s ∈ Term

dwc(conv(
⋃

t∈Δ(s) Xt)) if s ∈ S�
�(s) + dwc(

⋂
t∈Δ(s) Xt) if s ∈ S♦

dwc(
∑

t∈Δ(s) Δ(s, t) · Xt) if s ∈ S©
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The equations can be used to design a value-iteration algorithm that itera-
tively computes sets Xi

s for increasing i: As a base step we have X0
s = dwc(0 )

(where 0 = (0, . . . , 0)); we then substitute Xi
s for Xs on the right-hand side

of the equations, and obtain Xi+1
s as Xs on the left-hand side. The sets Xi

s so
obtained converge to the least fixpoint of the equations above [1,9]. As we will
show later, the sets Xi

s might be getting increasingly complex even though the
actual solution Xs only comprises two extremal points.

3 Determined Games

In this section we present a simple algorithm which works under the assumption
that the game is determined. For stopping games, we then give a procedure to
decide whether a game is determined.

Theorem 3. There is an algorithm working in exponential time, which given a
determined stochastic two-player game, computes its Pareto-curve.

For the proof of the theorem we will make use of the following:

Theorem 4 [9, Theorem. 7]. Suppose Player 2 has a strategy σ such that for all
π of Player 1 there is at least one 1 ≤ i ≤ n with E

π,σ
G,s (�i) < zi. Then Player 2

has a memoryless deterministic strategy with the same properties.

From the above theorem we obtain the following lemma.

Lemma 5. The following two statements are equivalent for determined games:

– A given point z lies in the downward closure of the Pareto curve for s.
– For all memoryless deterministic strategies σ of Player 2, there is a strategy π

of Player 1 such that (π, σ) yield totrew(�, z).

Thus, to compute the Pareto curve for a determined game G, it is sufficient to
consider all memoryless deterministic strategies σ1, σ2, . . . , σm of Player 2 and
use [11] to compute the Pareto curves fσi

s for the games Gσi induced by G and
σi (i.e. Gσi is obtained from G by turning all s ∈ S♦ to stochastic vertices and
stipulating Δ(s, t) = σi(s) for all successors t of s; in turn, Gσi is a Markov
decision process), and obtain the Pareto curve for G as the pointwise minimum
Vs := min1≤i≤m fσi

s .
To decide if a stopping game is determined, it is sufficient to take the

downward closures of solutions Vs and check if they satisfy the equations from
Sect. 2.1. Since in stopping games the solution of the equations is unique, if the
sets are a solution they are also the Pareto curves and the game is determined. If
any of the equations are not satisfied, then Vs are not the Pareto curves and the
game is not determined. Note that for non-stopping games the above approach
does not work: even if the sets do not change by applying one step of value
iteration, it is still possible that the solution is not the least fixpoint, and so we
cannot infer any conclusion.
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4 Games with Two Objectives

We start this section by showing that the existing value iteration algorithm
presented in Sect. 2.1 might iteratively compute sets Xi

s with increasing number
of extremal points, although the actual resulting set Xs (and the associated
Pareto curve fs) is very simple. Consider the game from Fig. 3 (left). Applying
the value-iteration algorithm given by the equations from Sect. 2.1 for n steps
gives a Pareto curve in s0 with n − 1 extremal points. Each extremal point
corresponds to a strategy πi that in s0 chooses to go to s2 when the number
of visits of s0 is less than i, and after that chooses to go to s1. The upper
bounds of the sets Xn

s for n = 5 and n = 10 are drawn in Fig. 3 (centre and
right, respectively) using solid line, and their extremal points are marked with
dots. The Pareto curve fs is drawn with dashed blue line, and it consists of two
extremal points, (0, 1) and (1, 0).

We now proceed with the main result of this section, the decidability of the
two-objective strategy synthesis problem for stopping games. The result can be
obtained from the following theorem.

s0

s1

s2

s3

s4

s5
1
2
9
10

1
2

1
10

(1, 0)

(0, 1)

x

fs0(x)

1

1

x

fs0(x)

1

1

Fig. 3. An example showing that value iteration might produce Pareto curves with
unboundedly many extremal points.

Theorem 6. If G is a stopping stochastic two-player game with two objectives,
and s a state of G then the Pareto curve fs has only finitely many extremal
points.

The above theorem can be used to design the following algorithm. For a
fixed number k, we create a formula ϕk over (R,+, ·,≤) which is true if and
only if for each s ∈ S there are points ps,1, . . . ,ps,k such that the sets Vs

def=
dwc(conv({ps,1, . . .ps,k})) satisfy the equations from Sect. 2.1. Using [16] we can
then successively check validity of ϕk for increasing k, and Theorem 6 guarantees
that we will eventually get a formula which is valid, and it immediately gives us
the Pareto curve. We get the following result as a corollary.

Corollary 7. Two-objective total reward problem is decidable in the case of
stopping stochastic games, and two-objective discounted-reward problem is decid-
able in the case of stochastic games.

Outline of the Proof of Theorem 6. The proof of Theorem 6 proceeds by
assuming that there are infinitely many extremal points on the Pareto curve,
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and then deriving a contradiction. Firstly, because the game is stopping, an
upper bound on the expected total reward that can be obtained with respect
to a single total reward objective is M :=

∑∞
i=0(1 − p

|S|
min)i · �

|S|
max where

pmin = min{Δ(s, s′) | Δ(s, s′) > 0} is the smallest transition probability, and
�max = maxi∈{1,2} maxs∈S �i(s) is the maximal reward assigned to a state. Thus,
the Pareto curve is contained in a compact set, and this implies that there is an
accumulation point on it. In Sect. 4.1, we show that we can follow one accumu-
lation point p from one state to one of its successors, while preserving the same
left slope. Moreover, in the neighbourhood of the accumulation point the rate at
which the right slope decreases is quite similar to the decrease in the successors,
in a way that is made precise in Lemmas 9, 10, and 11. This is with the exception
of some stochastic states for which the decrease strictly slows down when going
to the successors: we will exploit this fact to get a contradiction. We construct
a transition system Ts0,p , which keeps all the paths obtained by following the
accumulation point p from s0. We show that if G is a stopping game, then we
can obtain a path in Ts0,p which visits stochastic states for which the decrease
of the right slope strictly slows down. This relies on results for inverse betting
games, which are presented in Sect. 4.2. Since this decrease can be repeated
and there are only finitely many reachable states in Ts0,p , we show in Sect. 4.3
that the decrease of the right slope must be zero somewhere, meaning that the
curve is constant in the neighbourhood of an accumulation point, which is a
contradiction.

We will rely on the properties of the equations from Sect. 2.1 and the left
and right slopes of the Pareto curve. Note that we introduced the notion of slope
only for two-dimensional sets, and so our proofs only work for two dimensions.
Generalisations of the concept of slopes exist for higher dimensions, but simple
generalisation of our lemmas would not be valid, as we will show later. Hence,
in the remainder of this section, we focus on the two-objective case. For the sim-
plicity of presentation, we will present all claims and proofs for left accumulation
points. The case of right accumulation points is analogous.

4.1 Mapping Accumulation Points to Successor States

We start by enumerating some basic but useful properties of the Pareto curve
and its slopes. First notice that it is a continuous concave function and we can
prove the following:

Lemma 8. Let f be a continuous concave function defined on [a, b].

1. If a<x<x′≤b are two reals for which lslope(f) is defined, then lslope(f, x) ≥
rslope(f, x) ≥ lslope(f, x′).

2. If (x, x′) contains an extremal point of f then lslope(fs, x) �= lslope(fs, x
′).

3. If x∈(a, b], then limx′→x− lslope(f, x′) = limx′→x− rslope(f, x′) = lslope(f, x).

To prove Theorem 6, we will use the equations from Sect. 2.1 to describe how
accumulation points on a Pareto curve for s “map” to accumulation points on
successors.
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p

p

r

q
p

s0
s1
s2

Fig. 4. An example of Pareto curve in a state s0 with two successors s1 and s2, for the
case of s0 ∈ S� (left), s0 ∈ S♦ (centre), and s0 ∈ S© with uniform probabilities on
transitions (right). In each case, the curve has infinitely many accumulation points.

Lemma 9. Let s0 be a Player 1 state with two successors s1 and s2, and let p
be a left accumulation point of fs0 . Then there is η(s0,p) > 0 such that for all
ε ∈ (0, η(s0,p)), there is s′ ∈ {s1, s2} such that: 1. p is a left accumulation
point in fs′ ; 2. lslope(fs0 ,p1) = lslope(fs′ ,p1); 3. fs0(p1 − ε) ≥ fs′(p1 − ε) and
rslope(fs0 ,p1 − ε) ≥ rslope(fs′ ,p1 − ε).

Proof (Sketch). The point 1. follows from the fact that every extremal point in
the Pareto curve for s0 must be an extremal point in one of the successors. This is
illustrated in Fig. 4 (left): p which is an extremal point for s0 is also an extremal
point for s1. The point 2. follows because from a sequence of extremal points
(pi)i≥0 on the Pareto curve of s0 that converge to p, we can select a subsequence
that gives extremal points on s′ that converge to the left accumulation point p
on s′. Finally, to prove 3. we use the fact that the right slope of fs0 is always
between those of fs1 and of fs2 . ��
Lemma 10. Let s0 be a Player 2 state with two successors s1 and s2, and let
p be a left accumulation point of fs0 . There is η(s0,p) > 0 such that for all
ε ∈ (0, η(s0, p) ), there is s′ ∈ {s1, s2}, such that: 1. p − �(s0) is a left
accumulation point in fs′ ; 2. lslope(s0,p1) = lslope(s′,p1 −�1(s0)); 3. fs0(p1 −
ε) = fs′(p1 − ε − �1(s0)) and rslope(fs0 ,p1 − ε) = rslope(fs′ ,p1 − ε − �1(s0)).

Proof (Sketch). A crucial observation here is that fs0(p
i
1) is either �2(s0) +

fs1(p
i
1−�1(s0)) or �2(s0)+fs2(p

i
1−�1(s0)). This is illustrated in Fig. 4 (center):

fs0(p1) = �2(s0)+fs1(p1−�1(s0)) (there �(s0) = (0, 0)). Hence when we take a
sequence (pi

1)i∈N, for some � ∈ {1, 2} the value fs0(p
i
1) equals �2(s0) + fs�

(pi
1 −

�1(s0)) infinitely many times. From this we get a converging sequence of points
in s�, and obtain that the left slopes are equal in s0 and s�. By further arguing
that in any left neighbourhood of pi

1 −�1(s0) we can find infinitely many points
with different left slopes, we obtain that there are also infinitely many extremal
points in the neighbourhood and hence pi

1 −�1(s0) is a left accumulation point.
As for the last item, the important observation here is that if at some point

p ′, fs1 is strictly below fs2 then the right slope of fs0 corresponds to that of fs1 ,
and if fs1 equals fs2 then the right slope of fs0 corresponds to the minimum of
the right slopes of fs1 and fs2 (it is also interesting to note that the left slope
corresponds to the maximum of the two). ��
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Lemma 11. Let s0 be a stochastic state with two successors s1 and s2, and
p a left accumulation point of fs0 . There are points q and r on fs1 and fs2

respectively such that p = Δ(s0, s1) · q + Δ(s0, s2) · r. Moreover:

1. there is (s′, t) ∈ {(s1, q), (s2, r)} such that t is a left accumulation point of
fs′ and lslope(fs0 ,p1) = lslope(fs′ , t1);

2. there is η(s0,p) > 0 such that for all ε ∈ (0, η(s0,p) ):
– there are ε1≥0, ε2 ≥ 0 such that rslope(fs0 ,p1 − ε) ≥ rslope(fs1 , q1 − ε1),

rslope(fs0 ,p1 − ε)≥rslope(fs2 , r1 − ε2), and ε = Δ(s0, s1)·ε1 + Δ(s0, s2)·ε2;
– if r is not a left accum. point in fs2 , or lslope(fs0 ,p1)�=lslope(fs2 , r1), then

fs0(p1 − ε) = Δ(s0, s1) · fs1

(
p1−ε−Δ(s0,s2)·r1

Δ(s0,s1)

)
+ Δ(s0, s2) · r2;

– if q is not a left accum. point in fs1 , or lslope(fs0 ,p1)�=lslope(fs1 , q1), then
fs0(p1 − ε) = Δ(s0, s1) · q2 + Δ(s0, s2) · fs1

(
p1−ε−Δ(s0,s1)·q1

Δ(s0,s2)

)
.

Proof (Sketch). We use the fact that for every extremal point p ′ there are unique
extremal points q ′ and r ′ on fs1 and fs2 , respectively, such that p ′ = Δ(s0, s1) ·
q ′ + Δ(s0, s2) · r ′.

To prove item 1, we show that for all extremal points p ′, lslope(s0,p ′) =
min(lslope(s1, q ′), lslope(s2, r ′)), which can be surprising at first glance since one
could have expected a weighted sum of the left slopes. This fact is illustrated
in Fig. 4 (right): lslope(s0,p ′) = lslope(s1, q ′) ≤ lslope(s2, r ′). The inequality
lslope(s0,p) ≤ lslope(s1, q) (and similarly lslope(s0,p) ≤ lslope(s2, r)), follows
from concavity of fs0 : because for all ε > 0 the inequality fs0(p1 − ε) ≥
Δ(s0, s1) · fs1(q1 − ε

Δ(s0,s1)
) + Δ(s0, s2) · fs2(r1) holds true, from which we

obtain limε→0+
fs0 (p1)−fs0 (p1−ε)

ε ≤ limε→0+
fs1 (q1)−fs1 (q1−ε)

ε . Showing that the
left slope is at least the minimum of the successors’ slopes is significantly more
demanding and technical, and we give the proof in the long version of this
paper [3].

Proving the second point, is based on the observation that a point on the
Pareto curve fs0 is a combination of points of fs1 and fs2 that share a common
tangent: in other words they maximize the dot product with a specific vector on
their respective curves. From this observation it is possible to link the right slopes
of these curves. The last two points hold because with the assumption, extremal
points that converge to p from the left can be obtained as a combination from
a fixed r and points on fs2 . ��
Now we will prove that there are no left accumulation points on the Pareto curve.
To do that, we will try to follow one in the game: if there is a left accumulation
point in one state then at least one of its successors also has one, as the above
lemmas show. By using the fact that the left slopes of left accumulation points
are preserved we show that the number of reachable combinations (s,p), where
s ∈ S and p is a left accumulation point, is finite. We then look at points slightly
to the left of the accumulation points, their distance to the accumulation point
and right slopes are also mostly preserved except in stochastic states, where if
only one successor has a left accumulation point, the decrease of the right slope
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accelerates (by Lemmas 11.2). By using the fact that in stopping games we can
ensure visiting such stochastic states, we will show that for some states the right
slope is constant on the left neighbourhood of the left accumulation point, which
is a contradiction.

Assume we are given a state s0 and a left accumulation point p0 of fs0 . We
construct a transition system Ts0,p0 where the initial state is (s0,p0), and the
successors of a given configuration (s,p) are the states (s′,p ′) such that s′ is a
successor of s, and p ′ is a left accumulation point of s with the same left slope
on fs′ as p on fs. Lemmas 9, 10, and 11, ensure that all the reachable states
have at least one successor.

Lemma 12. For all reachable states (s,p) and (s′,p′) in the transition system
Ts0,p0 , if s = s′, then p = p′.

Proof. Assume s = s′. By construction of Ts0,p0 , the left slope in s of p and p ′

is the same: lslope(s,p1) = lslope(s0,p0
1) = lslope(s2,p ′

1). Assume towards a
contradiction that p < p ′; the proof would work the same for p ′ < p. Since p ′ is
a left accumulation point, there is an extremal point in (p1,p

′
1). Lemma 8.2 tells

us that lslope(s1,p1) �= lslope(s2,p ′
1) which is a contradiction. Hence p = p ′. ��

As a corollary of this lemma, the number of states that are reachable in Ts0,p0

is finite and bounded by |S|.

4.2 Inverse Betting Game

To show a contradiction, we will follow a path with left accumulation points.
We want this path to visit stochastic states which have only one successor in
Ts0,p0 . For that, we will prove a property of an intermediary game that we call
an inverse betting game.

An inverse betting game is a two player game, given by 〈V∃, V∀, E, (v0, c0), w〉
where V∃ and V∀ are the set of vertices controlled by Eve and Adam, respectively,
〈V∃ ∪ V∀, E〉 is a graph whose each vertex has two successors, (v0, c0) ∈ V × R

is the initial configuration, and w : E → R is a weight function such that for all
v ∈ V :

∑
v′|(v,v′)∈E w(v, v′) = 1.

A configuration of the game is a pair (v, c) ∈ V × R where v is a vertex
and c a credit. The game starts in configuration (v0, c0) and is played by two
players Eve and Adam. At each step, from a configuration (v, c) controlled by
Eve, Adam suggests a valuation d : E → R for the outgoing edges of v such
that

∑
v′|(v,v′)∈E w(v, v′) · d(v, v′) = c. Eve then chooses a successor v′ such

that (v, v′) ∈ E and the game continues from configuration (v′, d(v, v′)). From
a configuration (v, c) controlled by Adam, Adam chooses a successor v′ of v and
keeps the same credit, hence the game continues from (v′, c).

Intuitively, Adam has some credit, and at each step he has to distribute it by
betting over the possible successors. Then Eve chooses the successor and Adam
gets a credit equal to its bet divided by the probability of this transition. The
game is inverse because Eve is trying to maximize the credit of Adam.
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Theorem 13. Let 〈V∃, V∀, E, (v0, c0), w〉 be an inverse betting game. Let T ⊆
V∃ ∪ V∀ be a target set and B ∈ R a bound. If from every vertex v ∈ V , Eve
has a strategy to ensure visiting T then she has one to ensure visiting it with
a credit c ≥ 1 or to exceed the bound, that is, she can force a configuration in
(T × [c0,+∞)) ∪ (V × [B,+∞)).

Our next step is transforming the transition system Ts0,p0 into such a game.
Consider the inverse betting game B on the structure given by Ts0,p0 where
V∃ = S© are the states controlled by Eve, V∀ = S� ∪S♦ are controlled by Adam,
w((s,p), (s′,p ′)) = Δ(s, s′) is a weight on edges and the initial configuration is
((s0,p0), ε0). Let Us0,p0 the set of terminal states and of stochastic states that
have only one successor in Ts0,p0 . We show that in the inverse betting game
obtained from a stopping game G, Eve can ensure visiting Us0,p0 .

Lemma 14. If G is stopping, there is a strategy for Eve in B such that from
every vertex v ∈ V , all outcomes visit Us0,p0 .

Proof. Assume towards a contradiction that this is not the case, then by mem-
oryless determinacy of turn-based reachability games (see e.g. [12]) there is a
vertex v and a memoryless deterministic strategy σAdam of Adam, such that no
outcomes of σAdam from v visit Us0,p0 . Let π and σ be the strategies of Player 1
and Player 2 respectively corresponding to σAdam. Formally, if h ∈ Ω�

G then
π(h) = σAdam(h) and if h ∈ Ω♦

G then σ(h) = σAdam(h).
We prove that all outcomes λ in G of π, σ from v are outcomes of σAdam in

B. This is by induction on the prefixes λ≤i of the outcomes. It is clear when
λ≤i ends with states that are controlled by Player 1 and Player 2 by the way we
defined π and σ, that λ≤i+1 is also compatible with σAdam in B. For a finite path
λ≤i ending with a stochastic state s in G, two successors are possible. With the
induction hypothesis that λ≤i is compatible with σAdam, and by the assumption
on σAdam, s does not belong to Us0,p0 . Therefore, both successors of s are also
in Ts0,p0 , and λ≤i+1 is compatible with σAdam in B. This shows that outcomes
in G of (π, σ) are also outcomes of σAdam in B. Therefore, π and σ ensure that
from v, we visit no state of Us0,p0 and thus no terminal state. This contradicts
that the game is stopping. ��
Putting Theorem 13 and Lemma 14 together we can conclude the following:

Corollary 15. If G is stopping then in B, for any bound B, Eve has a strategy
to ensure visiting Us0,p0 with a credit c ≥ 1 or making c exceed B.

4.3 Contradicting Sequence

We define θ(s0,p0) = min{η(s,p) | (s,p) reachable in Ts0,p0}, and consider a
sequence of points that are θ(s0,p0) close to p0 and with a right slope that is
decreasing at least as fast as that of their predecessors.

Lemma 16. For stopping games, given s0 ∈ S, p0 ∈ R
2, and ε0 > 0, such that

ε0 < θ(s0,p0), there is a finite sequence π(s0,p0, ε0) = (si,p
i, εi)i≤j such that:
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– (si,p
i)i≤j is a path in Ts0,p0 ;

– for all i ≤ j, rslope(fsi
,pi

1 − εi) ≥ rslope(fsi+1 ,p
i+1
1 − εi+1).

– either εj ≥ θ(s0,p0) or sj ∈ Us0,p0 and εj ≥ ε0.

The idea of the proof is that in B, thanks to Lemmas 9, 10, and 11, Adam
can always choose a successor such that rslope(fsi

,pi
1−εi) ≥ rslope(fsi+1 ,p

i+1
1 −

εi+1). Then thanks to Corollary 15, there is a strategy for Eve to reach
(Us0,p0 × [c0,+∞))∪ (V × [B,+∞)). By combining the two strategies, we obtain
an outcome that satisfies the desired properties.

We use the path obtained from this lemma to show that no matter how small
ε0 we choose, εi can grow to reach θ(s0,p0).

Lemma 17. For all states s with a left accumulation point p and for all 0 < ε <
θ(s,p), there is some (s′,p′) reachable in Ts,p such that rslope(fs′ ,p′

1−θ(s,p)) ≤
rslope(fs,p1 − ε).

Thanks to this lemma, we can now prove Theorem 6. Assume towards a
contradiction that there is a left accumulation point p in the state s. Let
m = min{lslope(fs′ ,p ′

1−θ(s,p)) | (s′,p ′) reachable in Ts,p} and (s′,p ′) the con-
figuration of Ts,p for which this minimum is reached (it is reached because the
number of reachable configurations is finite: this is a corollary of Lemma 12).
Because of Lemma 17, rslope(fs,p1 − ε) is greater than m. By Lemma 8.3,
when ε goes towards 0, rslope(fs,p1 − ε) converges to lslope(fs,p1). This means
that lslope(fs,p1) ≥ m. Moreover, by construction of Ts,p , we also have that
lslope(fs′ ,p ′

1)=lslope(fs,p1), so lslope(fs′ ,p ′
1) ≥ m. Because the slopes are

decreasing (Lemma 8.2), m = rslope(fs′ ,p ′
1 − θ(s,p)) ≥ lslope(fs′ ,p ′

1) ≥ m.
Hence, the left and right slopes of fs′ are constant on [p ′

1 − θ(s,p),p ′
1], and

Lemma 8.8 implies that there are no extremal point in (p ′
1 − θ(s,p),p ′

1). This
contradicts the fact that p ′ is a left accumulation point: there should be an
extremal point in any neighbourhood on the left of p ′. Hence, fs contains no
accumulation point.

Remark 18. One might attempt to extend the proof of Theorem 6 to three or
more objectives, but this does not seem to be easily doable. Although it is
possible to use directional derivative (or pick a subgradient) instead of using left
and right slope in such setting, an analogue of Lemma 8.2 cannot be proved
because in multiple dimensions, two accumulation points can share the same
directional derivative, for a fixed direction. It is also not easily possible to avoid
this problem by following several directional derivatives instead of just one. This
is because the slope in one direction may be inherited from one successor while
the slope in another direction comes from another successor. We give more details
and example of convex sets that would contradict generalisations of Lemma 8.2
and Lemma 10 in the long version of this paper [3].

5 Conclusions

We have studied stochastic games under multiple objectives, and have provided
decidability results for determined games and for stopping games with two objec-
tives. Our results provide an important milestone towards obtaining decidability
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for the general case, which is a major task which will require further novel
insights into the problem. Another research direction concerns establishing an
upper bound on the number of extremal points of a Pareto curve; such result
would allow us to give upper complexity bounds for the problem.
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Abstract. This paper presents a complete decision procedure for the
entire quantifier-free fragment of Separation Logic (SL) interpreted over
heaplets with data elements ranging over a parametric multi-sorted (pos-
sibly infinite) domain. The algorithm uses a combination of theories and
is used as a specialized solver inside a DPLL(T ) architecture. A prototype
was implemented within the CVC4 SMT solver. Preliminary evaluation
suggests the possibility of using this procedure as a building block of a
more elaborate theorem prover for SL with inductive predicates, or as
back-end of a bounded model checker for programs with low-level pointer
and data manipulations.

1 Introduction

Separation Logic (SL) [21] is a logical framework for describing dynamically
allocated mutable data structures generated by programs that use pointers and
low-level memory allocation primitives. The logics in this framework are used
by a number of academic (Space Invader [4]), and industrial (Infer [7]) tools
for program verification. The main reason for choosing to work within the SL
framework is its ability to provide compositional proofs of programs, based on
the principle of local reasoning: analyzing different parts of the program (e.g.
functions, threads), that work on disjoint parts of the heap, and combining the
analysis results a posteriori.

The main ingredients of SL are: (i) the separating conjunction φ ∗ ψ, which
asserts that φ and ψ hold for separate portions of the memory (heap), and (ii)
the magic wand ϕ −−∗ ψ, which asserts that any extension of the heap by a
disjoint heap that satisfies ϕ must satisfy ψ. Consider, for instance, a memory
configuration (heap), in which two cells are allocated, and pointed to by the
program variables x and y, respectively, where the x cell has an outgoing selector
field to the y cell, and vice versa. The heap can be split into two disjoint parts,
each containing exactly one cell, and described by an atomic proposition x �→ y
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and y �→ x, respectively. Then the entire heap is described by the formula x �→
y ∗ y �→ x, which reads “x points to y and, separately, y points to x”.

The expressive power of SL comes with the inherent difficulty of automatically
reasoning about the satisfiability of its formulae, as required by push-button pro-
gram analysis tools. Indeed, SL becomes undecidable in the presence of first-order
quantification, even when the fragment uses only points-to predicates, without
the separating conjunction or the magic wand [9]. Moreover, the quantifier-free
fragment with no data constraints, using only points-to predicates x �→ (y, z),
where x, y and z are interpreted as memory addresses, is PSPACE-complete, due
to the implicit quantification over memory partitions, induced by the semantics
of the separation logic connectives [9].

This paper presents a decision procedure for quantifier-free SL which is
entirely parameterized by a base theory T of heap locations and data, i.e. the
sorts of memory addresses and their contents can be chosen from a large variety
of available theories handled by Satisfiability Modulo Theories (SMT) solvers,
such as linear integer (real) arithmetic, strings, sets, uninterpreted functions,
etc. Given a base theory T , we call SL(T ) the set of separation logic formulae
built on top of T , by considering points-to predicates and the separation logic
connectives.

Contributions. First, we show that the satisfiability problem for the quantifier-
free fragment of SL(T ) is PSPACE-complete, provided that the satisfiability of
the quantifier-free fragment of the base theory T is in PSPACE. Our method
is based on a semantics-preserving translation of SL(T ) into second-order T for-
mulae with quantifiers over a domain of sets and uninterpreted functions, whose
cardinality is polynomially bound by the size of the input formula. For the frag-
ment of T formulae produced by the translation from SL(T ), we developed a lazy
quantifier instantiation method, based on counterexample-driven refinement. We
show that the quantifier instantiation algorithm is sound, complete and termi-
nates on the fragment under consideration. We present our algorithm for the
satisfiability of quantifier-free SL(T ) logics as a component of a DPLL(T ) archi-
tecture, which is widely used by modern SMT solvers. We have implemented the
technique as a subsolver of the CVC4 SMT solver [2] and carried out experiments
that handle non-trivial examples quite effectively. Applications of our procedure
include:

1. Integration within theorem provers for SL with inductive predicates. Most
inductive provers for SL use a high-level proof search strategy relying on a
separate decision procedure for entailments in the non-inductive fragment,
used to simplify the proof obligations, by discharging the non-inductive parts
of both left- and right-hand sides, and attain an inductive hypothesis [6].
Due to the hard problem of proving entailments in the non-inductive frag-
ment of SL, these predicates use very simple non-inductive formulae (a list
of points-to propositions connected with separating conjunction), for which
entailments are proved by syntactic substitutions and matching. Our work
aims at extending the language of inductive SL solvers, by outsourcing entail-
ments in a generic non-inductive fragment to a specialized procedure. To this
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end, we conducted experiments on several entailments corresponding to finite
unfoldings of inductive predicates used in practice (Sect. 6).

2. Use as back-end of a bounded model checker for programs with pointer and
data manipulations, based on a complete weakest precondition calculus that
involves the magic wand connective [15]. To corroborate this hypothesis, we
tested our procedure on verification conditions automatically generated by
applying the weakest precondition calculus described in [15] to several pro-
gram fragments (Sect. 6).

Related Work. The study of the algorithmic properties of Separation Logic [21]
has produced an extensive body of literature over time. We need to distinguish
between SL with inductive predicates and restrictive non-inductive fragments,
and SL without inductive predicates, which is the focus of this paper.

Regarding SL with fixed inductive predicates, Perez and Rybalchenko [16]
define a theorem proving framework relying on a combination of SL inference
rules dealing with singly-linked lists only, and a superposition calculus dealing
with equalities and aliasing between variables. Concerning SL with generic user-
provided inductive predicates, the theorem prover Cyclist [6] builds entailment
proofs using a sequent calculus. More recently, the tool Slide [14] reduces the
entailment between inductive predicates to an inclusion between tree automata.
The great majority of these inductive provers focus on applying induction strate-
gies efficiently, and consider a very simple fragment of non-inductive SL formulae,
typically conjunctions of equalities and disequalities between location variables
and separated points-to predicates, without negations or the magic wand. On
a more general note, the tool Spen [10] considers also arithmetic constraints
between the data elements in the memory cells, but fixes the shape of the user-
defined predicates.

The idea of applying SMT techniques to decide satisfiability of SL formulae
is not new. In their work, Piskac, Wies and Zufferey translate from SL with
singly-linked list segments [17] and trees [18], respectively, into first-order logics
(Grass and Grit) that are decidable in NP. The fragment handled in this
paper is incomparable to the logics Grass [17] and Grit [18]. On one hand,
we do not consider predicates defining recursive data structures, such as singly-
linked lists. On the other hand, we deal with the entire quantifier-free fragment
of SL, including arbitrary nesting of the magic wand, separating conjunction and
classical boolean connectives. As a result, the decision problem we consider is
PSPACE-complete, due to the possibility of arbitrary nesting of the boolean
and SL connectives. To the best of our knowledge, our implementation is also
the first to enable theory combination involving SL, in a fine-grained fashion,
directly within the DPLL(T ) loop.

The first theoretical results on decidability and complexity of SL without
inductive predicates were given by Calcagno, Yang and O’Hearn [9]. They show
that the quantifier-free fragment of SL without data constraints is PSPACE-
complete by an argument that enumerates a finite (yet large) set of heap mod-
els. Their argument shows also the difficulty of the problem, however it cannot
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be directly turned into an effective decision procedure, because of the ineffec-
tiveness of model enumeration. Building up on this small model property for
the quantifier-free fragment of SL, a translation to first-order logic over unin-
terpreted sorts with empty signature is described in [8]. This translation is very
similar to our translation to multi-sorted second-order logic, the main differ-
ence being using bounded tuples instead of sets of bounded cardinality. It also
provides a decision procedure, though no implementation is available for com-
parison. A more elaborate tableau-based decision procedure is described by Méry
and Galmiche [11]. This procedure generates verification conditions on-demand,
but here no data constraints are considered, either.

Our procedure relies on a decision procedure for quantifier-free parametric
theory of sets and on-demand techniques for quantifier instantiation. Decision
procedures for the theory of sets in SMT are given in [1,23]. Techniques for
model-driven quantifier instantiation were introduced in the context of SMT
in [13], and have been developed recently in [5,19].

2 Preliminaries

We consider formulae in multi-sorted first-order logic, over a signature Σ con-
sisting of a countable set of sort symbols and a set of function symbols. We
assume that signatures always include a boolean sort Bool with constants � and
⊥ denoting true and false respectively, and that each sort σ is implicitly equipped
with an equality predicate ≈ over σ×σ. Moreover, we may assume without loss
of generality that equality is the only predicate belonging to Σ, since we can
model other predicate symbols as function symbols with return sort Bool1.

We consider a set Var of first-order variables, with associated sorts, and
denote by ϕ(x) the fact that the free variables of the formula ϕ belong to
x ⊆ Var. Given a signature Σ, well-sorted terms, atoms, literals, and formu-
lae are defined as usual, and referred to respectively as Σ-terms. We denote by
φ[ϕ] the fact that ϕ is a subformula (subterm) of φ and by φ[ψ/ϕ] the result of
replacing ϕ with ψ in φ. We write ∀x.ϕ to denote universal quantification over
variable x, where x occurs as a free variable in ϕ. If x = 〈x1, . . . , xn〉 is a tuple
of variables, we write ∀xϕ as an abbreviation of ∀x1 · · · ∀xn ϕ. We say that a
Σ-term is ground if it contains no free variables. We assume that Σ contains an
if-then-else operator ite(b, t, u), of sort Bool × σ × σ → σ, for each sort σ, that
evaluates to t if b is true, and to u, otherwise.

A Σ-interpretation I maps: (i) each set sort symbol σ ∈ Σ to a non-empty set
σI , the domain of σ in I, (ii) each function symbol f ∈ Σ of sort σ1×. . .×σn → σ
to a total function fI of sort σI

1 × . . .× σI
n → σI if n > 0, and to an element of

σI if n = 0, and (iii) each variable x ∈ x to an element of σI
x , where σx is the

sort symbol associated with x. We denote by tI the interpretation of a term t
induced by the mapping I. The satisfiability relation between Σ-interpretations

1 For brevity, we may write p(t) as shorthand for p(t) ≈ �, where p is a function into
Bool.
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and Σ-formulae, written I |= ϕ, is defined inductively, as usual. We say that I
is a model of ϕ if I |= ϕ.

A first-order theory is a pair T = (Σ, I) where Σ is a signature and I is
a non-empty set of Σ-interpretations, the models of T . For a formula ϕ, we
denote by [[ϕ]]T = {I ∈ I | I |= ϕ} its set of T -models. A Σ-formula ϕ is T -
satisfiable if [[ϕ]]T = ∅, and T -unsatisfiable otherwise. A Σ-formula ϕ is T -valid
if [[ϕ]]T = I, i.e. if ¬ϕ is T -unsatisfiable. A formula ϕ T -entails a Σ-formula ψ,
written ϕ |=T ψ, if every model of T that satisfies ϕ also satisfies ψ. The formulae
ϕ and ψ are T -equivalent if ϕ |=T ψ and ψ |=T ϕ, and equisatisfiable (in T ) if
ψ is T -satisfiable if and only if ϕ is T -satisfiable. Furthermore, formulas ϕ and
ψ are equivalent (up to k) if they are satisfied by the same set of models (when
restricted to the interpretation of variables k). The T -satisfiability problem asks,
given a Σ-formula ϕ, whether [[ϕ]]T = ∅, i.e. whether ϕ has a T -model.

2.1 Separation Logic

In the remainder of the paper we fix a theory T = (Σ, I), such that the T -
satisfiability for the language of quantifier-free boolean combinations of equalities
and disequalties between Σ-terms is decidable. We fix two sorts Loc and Data
from Σ, with no restriction other than the fact that Loc is always interpreted as
a countably infinite set. We refer to Separation Logic for T , written SL (T ), as
the set of formulae generated by the syntax:

φ := t ≈ u | t �→ u | emp | φ1 ∗ φ2 | φ1 −−∗ φ2 | φ1 ∧ φ2 | ¬φ1

where t and u are well-sorted Σ-terms and that for any atomic proposition t �→ u,
t is of sort Loc and u is of sort Data. Also, we consider that Σ has a constant
nil of sort Loc, with the meaning that t �→ u never holds when t ≈ nil. In the
following, we write φ ∨ ψ for ¬(¬φ ∧ ¬ψ) and φ ⇒ ψ for ¬φ ∨ ψ.

Given an interpretation I, a heap is a finite partial mapping h : LocI ⇀fin

DataI . For a heap h, we denote by dom(h) its domain. For two heaps h1 and
h2, we write h1#h2 for dom(h1) ∩ dom(h2) = ∅ and h = h1 � h2 for h1#h2 and
h = h1 ∪ h2. For an interpretation I, a heap h : LocI ⇀fin DataI and a SL(T )
formula φ, we define the satisfaction relation I, h |=SL φ inductively, as follows:

I, h |=SL emp ⇐⇒ h = ∅
I, h |=SL t �→ u ⇐⇒ h = {(tI , uI)} and tI ≈ nilI

I, h |=SL φ1 ∗ φ2 ⇐⇒ ∃h1, h2 . h = h1 � h2 and I, hi |=SL φi, for all i = 1, 2
I, h |=SL φ1 −−∗ φ2 ⇐⇒ ∀h′ if h′#h and I, h′ |=SL φ1 then I, h′ � h |=SL φ2

The satisfaction relation for the equality atoms t ≈ u and the Boolean connec-
tives ∧, ¬ are the classical ones from first-order logic. In particular t ≈ t is always
true, denoted by �, for any given heap. The (SL, T )-satisfiability problem asks,
given an SL formula ϕ, if there is a T -model I such that (I, h) |=SL ϕ for some
heap h.

In this paper we tackle the (SL, T )-satisfiability problem, under the assump-
tion that the quantifier-free data theory T = (Σ, I) has a decidable satisfiability



A Decision Procedure for Separation Logic in SMT 249

problem for constraints involving Σ-terms. It has been proved [9] that the sat-
isfiability problem is PSPACE-complete for the fragment of separation logic in
which Data is interpreted as the set of pairs of sort Loc. We generalize this result
to any theory whose satisfiability problem, for the quantifier-free fragment, is in
PSPACE. This is, in general, the case of most SMT theories, which are typically
in NP, such as the linear arithmetic of integers and reals, possibly with sets and
uninterpreted functions, etc.

3 Reducing SL (T ) to Multisorted Second-Order Logic

It is well-known [21] that separation logic cannot be formalized as a classical
(unsorted) first-order theory, for instance, due to the behavior of the ∗ connec-
tive, that does not comply with the standard rules of contraction φ ⇒ φ ∗φ and
weakening φ ∗ ϕ ⇒ φ2. The basic reason is that φ ∗ ϕ requires that φ and ϕ
hold on disjoint heaps. Analogously, φ −−∗ ϕ holds on a heap whose extensions,
by disjoint heaps satisfying φ, must satisfy ϕ. In the following, we leverage from
the expressivity of multi-sorted first-order theories and translate SL(T ) formu-
lae into quantified formulae in the language of T , assuming that T subsumes a
theory of sets and uninterpreted functions.

The integration of separation logic within the DPLL(T) framework [12]
requires the input logic to be presented as a multi-sorted logic. To this end,
we assume, without loss of generality, the existence of a fixed theory T = (Σ, I)
that subsumes a theory of sets Set(σ) [1], for any sort σ of set elements, whose
functions are the union ∪, intersection ∩ of sort Set(σ)× Set(σ) → Set(σ), sin-
gleton {.} of sort σ → Set(σ) and emptyset ∅ of sort Set(σ). We write � ⊆ �′ as
a shorthand for � ∪ �′ ≈ �′ and t ∈ � for {t} ⊆ �, for any terms � and �′ of sort
Set(σ) and t of sort σ. The interpretation of the functions in the set theory is
the classical (boolean) one.

Also, we assume that Σ contains infinitely many function symbols
pt, pt′, . . . ∈ Σ of sort Loc → Data, where Loc and Data are two fixed sorts
of T , such that for any interpretation I ∈ I, LocI is an infinite countable set.

The main idea is to express the atoms and connectives of separation logic
in multi-sorted second-order logic by means of a transformation, called labeling,
which introduces (i) constraints over variables of sort Set(Loc) and (ii) terms
over uninterpreted points-to functions of sort Loc → Data. We describe the
labeling transformation using judgements of the form φ 	 [�, pt], where φ is a
SL(T ) formula, � = 〈�1, . . . , �n〉 is a tuple of variables of sort Set(Loc) and pt =
〈pt1, . . . , ptn〉 is a tuple of uninterpreted function symbols occurring under the
scopes of universal quantifiers. To ease the notation, we write � and pt instead of
the singleton tuples 〈�〉 and 〈pt〉. In the following, we also write

⋃
� for �1∪. . .∪�n,

�′ ∩ � for 〈�′ ∩ �1, . . . , �
′ ∩ �n〉, �′ · � for 〈�′, �1, . . . , �n〉 and ite(t ∈ �, pt(t) = u) for

ite(t ∈ �1, pt1(t) = u, ite(t ∈ �2, pt2(t) = u, . . . , ite(t ∈ �n, ptn(t) = u,�) . . .)).
Intuitively, a labeled formula φ 	 [�, pt] says that it is possible to build, from

any of its satisfying interpretations I, a heap h such that I, h |=SL φ, where
2 Take for instance φ as x �→ 1 and ϕ as y �→ 2.
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dom(h) = �I
1 ∪ . . .∪ �I

n and h = ptI1↓�I
1
∪ . . .∪ ptIn↓�I

n

3. More precisely, a variable
�i defines a slice of the domain of the heap, whereas the restriction of pti to (the
interpretation of) �i describes the heap relation on that slice. Observe that each
interpretation of � and pt, such that �I

i ∩ �I
j = ∅, for all i = j, defines a unique

heap.
First, we translate an input SL(T ) formula φ into a labeled second-order

formula, with quantifiers over sets and uninterpreted functions, defined by the
rewriting rules in Fig. 1. A labeling step φ[ϕ] =⇒ φ[ψ/ϕ] applies if ϕ and ψ
match the antecedent and consequent of one of the rules in Fig. 1, respectively.
It is not hard to show that this rewriting system is confluent, and we denote by
φ⇓ the normal form of φ with respect to the application of labeling steps.

Fig. 1. Labeling rules

Example 1. Consider the SL(T ) formula (x �→ a −−∗ y �→ b)∧ emp. The reduction
to second-order logic is given below:

((x �→ a −−∗ y �→ b) ∧ emp) 	 [�, pt] =⇒∗

� ≈ ∅ ∧ ∀�′∀pt′ . �′ ∩ � ≈ ∅ ∧ �′ ≈ {x} ∧ ite(x ∈ �′, pt′(x) ≈ a,�) ∧ x ≈ nil⇒
�′ ∪ � ≈ {y} ∧ ite(y ∈ �′, pt′(y) ≈ b, ite(y ∈ �, pt(y) ≈ b,�)) ∧ y ≈ nil

�

The following lemma reduces the (SL, T )-satisfiability problem to the satisfia-
bility of a quantified fragment of the multi-sorted second-order theory T , that
contains sets and uninterpreted functions. For an interpretation I, a variable
x and a value s ∈ σI

x , we denote by I[x ← s] the extension of I which
maps x into s and behaves like I for all other symbols. We extend this nota-
tion to tuples x = 〈x1, . . . , xn〉 and s = 〈s1, . . . , sn〉 and write I[x ← s] for
I[x1 ← s1] . . . [xn ← sn]. For a tuple of heaps h = 〈h1, . . . , hn〉 we write dom(h)
for 〈dom(h1), . . . ,dom(hn)〉.
Lemma 1. Given a SL(T ) formula ϕ and tuples � = 〈�1, . . . , �n〉 and pt =
〈pt1, . . . , ptn〉 for n > 0, for any interpretation I of T and any heap h: I, h |=SL

ϕ if and only if
3 We denote by F↓D the restriction of the function F to the domain D ⊆ dom(F ).
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1. for all heaps h = 〈h1, . . . , hn〉 such that h = h1 � . . . � hn,
2. for all heaps h

′
= 〈h′

1, . . . , h
′
n〉 such that h1 ⊆ h′

1, . . . , hn ⊆ h′
n,

we have I[� ← dom(h)][pt← h
′
] |=T ϕ 	 [�, pt]⇓ .

Although, in principle, satisfiability is undecidable in the presence of quanti-
fiers and uninterpreted functions, the result of the next section strengthens this
reduction, by adapting the labeling rules for ∗ and −−∗ (Fig. 1) to use bounded
quantification over finite (set) domains.

4 A Reduction of SL (T ) to Quantifiers Over Bounded
Sets

In the previous section, we have reduced any instance of the (SL, T )-satisfiability
problem to an instance of the T -satisfiability problem in the second-order multi-
sorted theory T which subsumes the theory Set(Loc) and contains several quan-
tified uninterpreted function symbols of sort Loc �→ Data. A crucial point in
the translation is that the only quantifiers occurring in T are of the forms ∀�
and ∀pt, where � is a variable of sort Set(Loc) and pt is a function symbol of
sort Loc �→ Data. Leveraging from a small model property for SL over the data
domain Data = Loc × Loc [9], we show that it is sufficient to consider only the
case when the quantified variables range over a bounded domain of sets. In prin-
ciple, this allows us to eliminate the universal quantifiers by replacing them with
finite conjunctions and obtain a decidability result based on the fact that the
quantifier-free theory T with sets and uninterpreted functions is decidable. Since
the cost of a-priori quantifier elimination is, in general, prohibitive, in the next
section we develop an efficient lazy quantifier instantiation procedure, based on
counterexample-driven refinement.

For reasons of self-containment, we quote the following lemma [24] and stress
the fact that its proof is oblivious of the assumption Data = Loc × Loc on the
range of heaps. Given a formula φ in the language SL(T ), we first define the
following measure:

|φ ∗ ψ| = |φ| + |ψ| |φ −−∗ ψ| = |ψ| |φ ∧ ψ| = max(|φ|, |ψ|) |¬φ| = |φ|
|t �→ u| = 1 |emp| = 1 |φ| = 0 if φ is a Σ -formula

Intuitively, |φ| gives the maximum number of invisible locations in the domain
of a heap h, that are not in the range of I and which can be distinguished by
φ. For instance, if I, h |=SL ¬emp ∗ ¬emp and the domain of h contains more
than two locations, then it is possible to restrict dom(h) to |¬emp ∗ ¬emp| = 2
locations only, to satisfy this formula.

Let Pt(φ) be the set of terms (of sort Loc ∪ Data) that occur on the left-
or right-hand side of a points-to atomic proposition in φ. Formally, we have
Pt(t �→ u) = {t, u}, Pt(φ ∗ ψ) = Pt(φ −−∗ ψ) = Pt(φ) ∪ Pt(ψ), Pt(¬φ) = Pt(φ)
and Pt(emp) = Pt(φ) = ∅, for a Σ-formula φ. The small model property is given
by the next lemma:
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Lemma 2 [24, Proposition 96]. Given a formula φ ∈ SL(T ), for any interpreta-
tion I of T , let L ⊆ LocI \ Pt(φ)I be a set of locations, such that ||L|| = |φ| and
v ∈ DataI \ Pt(φ)I . Then, for any heap h, we have I, h |=SL φ iff I, h′ |=SL φ,
for any heap h′ such that:

– dom(h′) ⊆ L ∪ Pt(φ)I ,
– for all � ∈ dom(h′), h′(�) ∈ Pt(φ)I ∪ {v}

Based on the fact that the proof of Lemma 2 [24] does not involve reasoning
about data values, other than equality checking, we refine our reduction from the
previous section, by bounding the quantifiers to finite sets of constants of known
size. To this end, we assume the existence of a total order on the (countable) set
of constants in Σ of sort Loc, disjoint from any Σ-terms that occur in a given
formula φ, and define Bnd(φ,C) = {cm+1, . . . , cm+|φ|}, where m = max{i | ci ∈
C}, and m = 0 if C = ∅. Clearly, we have Pt(φ) ∩ Bnd(φ,C) = ∅ and also
C ∩ Bnd(φ,C) = ∅, for any C and any φ.

We now consider labeling judgements of the form ϕ 	 [�, pt, C], where C is
a finite set of constants of sort Loc, and modify all the rules in Fig. 1, besides
the ones with premises (φ ∗ ψ) 	 [�, pt] and (φ −−∗ ψ) 	 [�, pt], by replacing any
judgement ϕ 	 [�, pt] with ϕ 	 [�, pt, C]. The two rules in Fig. 2 are the bounded-
quantifier equivalents of the (φ ∗ ψ) 	 [�, pt] and (φ −−∗ ψ) 	 [�, pt] rules in Fig. 1.
As usual, we denote by (ϕ 	 [�, pt, C])⇓ the formula obtained by exhaustively
applying the new labeling rules to ϕ 	 [�, pt, C].

Observe that the result of the labeling process is a formula in which all
quantifiers are of the form ∀�1 . . . ∀�n∀pt1 . . . ∀ptn.

∧n
i=1 �i ⊆ Li ∧

∧n
i=1 pti ⊆

Li ×Di ⇒ ψ(�, pt), where Li’s and Di’s are finite sets of terms, none of which
involves quantified variables, and ψ is a formula in the theory T with sets and
uninterpreted functions. Moreover, the labeling rule for φ −−∗ ψ 	 [�, pt, C] uses a
fresh constant d that does not occur in φ or ψ.

Example 2 We revisit below the labeling of the formula (x �→ a −−∗ y �→ b)∧emp:

((x �→ a −−∗ y �→ b) ∧ emp) 	 [�, pt, C] =⇒∗

� ≈ ∅ ∧ ∀�′ ⊆ {x, y, a, b, c} ∀pt′ ⊆ {x, y, a, b, c} × {x, y, a, b, d}).
�′ ∩ � ≈ ∅ ∧ �′ ≈ {x} ∧ ite(x ∈ �′, pt′(x) ≈ a,�) ∧ x ≈ nil⇒

�′ ∪ � ≈ {y} ∧ ite(y ∈ �′, pt′(y) ≈ b, ite(y ∈ �, pt(y) ≈ b,�)) ∧ y ≈ nil.

where Pt((x �→ a −−∗ y �→ b)∧emp) = {x, y, a, b}. Observe that the constant c was
introduced by the bounded quantifier labeling of the term x �→ a −−∗ y �→ b. �

The next lemma states the soundness of the translation of SL(T ) formulae in a
fragment of T that contains only bounded quantifiers, by means of the rules in
Fig. 2.

Lemma 3 Given a formula ϕ in the language SL(T ), for any interpretation I
of T , let L ⊆ LocI \ Pt(ϕ)I be a set of locations such that ||L|| = |ϕ| and v ∈
DataI \Pt(ϕ)I be a data value. Then there exists a heap h such that I, h |=SL ϕ

iff there exist heaps h
′
= 〈h′

1, . . . , h
′
n〉 and h

′′
= 〈h′′

1 , . . . , h′′
n〉 such that:
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Fig. 2. Bounded quantifier labeling rules

1. for all 1 ≤ i < j ≤ n, we have h′
i#h′

j,
2. for all 1 ≤ i ≤ n, we have h′

i ⊆ h′′
i and

3. I[�← dom(h
′
)][pt← h

′′
][C ← L][d ← v] |=T ϕ 	 [�, pt, C]⇓ .

5 A Counterexample-Guided Approach for Solving
SL (T ) Inputs

This section presents a novel decision procedure for the (SL, T )-satisfiability of
the set of quantifier-free SL (T ) formulae ϕ. To this end, we present an efficient
decision procedure for the T -satisfiability of (ϕ	[�, pt, C])⇓, obtained as the result
of the transformation described in Sect. 4. The main challenge in doing so is
treating the universal quantification occurring in (ϕ 	 [�, pt, C])⇓. As mentioned,
the key to decidability is that all quantified formulae in (ϕ 	 [�, pt, C])⇓ are
equivalent to formulas of the form ∀x.(

∧
x ⊆ s) ⇒ ϕ, where each term in

the tuple s is a finite set (or product of sets) of ground Σ-terms. For brevity,
we write ∀x ⊆ s.ϕ to denote a quantified formula of this form. While such
formulae are clearly equivalent to a finite conjunction of instances, the cost
of constructing these instances is in practice prohibitively expensive. Following
recent approaches for handling universal quantification [5,13,19,20], we use a
counterexample-guided approach for choosing instances of quantified formulae
that are relevant to the satisfiability of our input. The approach is based on
an iterative procedure maintaining an evolving set of quantifier-free Σ-formulae
Γ , which is initially a set of formulae obtained from ϕ by a purification step,
described next.

We associate with each closed quantified formula a boolean variable A, called
the guard of ∀x.ϕ, and a (unique) set of Skolem symbols k of the same sort as x.
We write (A,k) � ∀x.ϕ to denote that A and k are associated with ∀x.ϕ. For a
set of formulae Γ , we write Q(Γ ) to denote the set of quantified formulae whose
guard occurs within a formula in Γ . We write �ψ� for the result of replacing in
ψ all closed quantified formulae (not occurring beneath other quantifiers in ψ)
with their corresponding guards. Conversely, we write �Γ � to denote the result
of replacing all guards in Γ by the quantified formulae they are associated with.
Then �ψ�∗ denotes the smallest set of Σ-formulae:
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�ψ� ∈ �ψ�∗
(¬A ⇒ �¬ϕ[k/x]�) ∈ �ψ�∗ if ∀x.ϕ ∈ Q(�ψ�∗) where (A,k) � ∀x.ϕ.

In other words, �ψ�∗ contains clauses that witness the negation of each univer-
sally quantified formula occurring in ψ. It is easy to see that if ψ is a Σ-formula
possibly containing quantifiers, then �ψ�∗ is a set of quantifier-free Σ-formulae,
and if all quantified formulas in ψ are of the form ∀x ⊆ s.ϕ mentioned above,
then all quantified formulas in Q(�ψ�∗) are also of this form.

Example 3 If ψ is the formula ∀x.(P (x) ⇒ ¬∀y.R(x, y)), then �ψ�∗ is the set:

{A1,¬A1 ⇒ ¬(P (k1) ⇒ A2),¬A2 ⇒ ¬R(k1, k2)}

where (A1, k1) � ∀x.(P (x) ⇒ ¬∀y.R(x, y)) and (A2, k2) � ∀y.R(k1, y). �

Fig. 3. Procedure solveSL(T) for deciding (SL, T )-satisfiability of SL (T ) formula ϕ.

Our algorithm solveSL(T) for determining the (SL, T )-satisfiability of input ϕ is
given in Fig. 3. It first constructs the set C based on the value of |ϕ|, which
it computes by traversing the structure of ϕ. It then invokes the subprocedure
solveT on the set �(ϕ 	 [�, pt, C])⇓�∗ where � and pt are fresh free symbols.

At a high level, the recursive procedure solveT takes as input a (quantifier-
free) set of T -formulae Γ , where Γ is T -unsatisfiable if and only if (ϕ	 [�, pt, C])⇓
is. On each invocation, solveT will either (i) terminate with “unsat”, in which case
ϕ is T -unsatisfiable, (ii) terminate with “sat”, in which case ϕ is T -satisfiable, or
(iii) add the set corresponding to the purification of the instance �A ⇒ ψ[t/x]�∗
to Γ and repeats.
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In more detail, in Step 1 of the procedure, we determine the T -satisfiability
of Γ using a combination of a satisfiability solver and a decision procedure for
T 4. If Γ is T -unsatisfiable, since Γ is T -entailed by �Γ �, we may terminate
with “unsat”. Otherwise, there is a T -model I for Γ and T . In Step 2 of the
procedure, for each A that is interpreted to be true by I, we check whether Γ ∪
{A} T -entails �ψ[k/x]� for fresh free constants k, which can be accomplished by
determining whether Γ∪{A,¬�ψ[k/x]�} is T -unsatisfiable. If this check succeeds
for a quantified formula ∀x.ψ, the algorithm has established that ∀x.ψ is entailed
by Γ . If this check succeeds for all such quantified formulae, then Γ is equivalent
to �Γ �, and we may terminate with “sat”. Otherwise, let Q+

I (Γ ) be the subset
of Q(Γ ) for which this check did not succeed. We call this the set of active
quantified formulae for (I, Γ ). We consider an active quantified formula that is
minimal with respect to the relation ≺Γ,I over Q(Γ ), where:

ϕ ≺Γ,I ψ if and only if ϕ ∈ Q(�ψ�∗) ∩Q+
I (Γ )

By this ordering, our approach considers innermost active quantified formulae
first. Let ∀x.ψ be minimal with respect to ≺Γ,I , where (A,k) � ∀x.ψ. Since Γ,A
does not T -entail �ψ[k/x]�, there must exist a model J for Γ ∪ {�¬ψ[k/x]�}
where AJ = �. In Step 3 of the procedure, we choose a tuple of terms t =
(t1, . . . , tn) based on the model J , and add to Γ the set of formulae obtained
by purifying A ⇒ ψ[t/x], where A is the guard of ∀x ⊆ s.ψ. Assume that
s = (s1, . . . , sn) and recall that each si is a finite union of ground Σ-terms. We
choose each t such that ti is a subset of si for each i = 1, . . . n, and tJ = kJ .
These two criteria are the key to the termination of the algorithm: the former
ensures that only a finite number of possible instances can ever be added to Γ ,
and the latter ensures that we never add the same instance more than once.

Theorem 1 For all SL (T ) formulae ϕ, solveSL(T)(ϕ):

1. Answers “unsat”only if ϕ is (SL, T )-unsatisfiable.
2. Answers “sat” only if ϕ is (SL, T )-satisfiable.
3. Terminates.

By Theorem 1, solveSL(T) is a decision procedure for the (SL, T )-satisfiability
of the language of quantifier-free SL (T ) formulae. The following corollary gives
a tight complexity bound for the (SL, T )-satisfiability problem.

Corollary 1 The (SL, T )-satisfiability problem is PSPACE-complete for any
theory T whose satisfiability (for the quantifier-free fragment) is in PSPACE.

4 Non-constant Skolem symbols k introduced by the procedure may be treated as
uninterpreted functions. Constraints of the form k ⊆ S1 × S2 are translated to∧

c∈S1
k(c) ∈ S2. Furthermore, the domain of k may be restricted to the set {cI |

c ∈ S1} in models I found in Steps 1 and 2 of the procedure. This restriction comes
with no loss of generality since, by construction of (ϕ � [�, pt, C])⇓, k is applied only
to terms occurring in S1.
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In addition to being sound and complete, in practice, the approach solveSL(T)
terminates in much less time that its theoretical worst-case complexity, given
by the above corollary. This fact is corroborated by our evaluation of our proto-
type implementation of the algorithm, described in Sect. 6, and in the following
example.

Example 4 Consider the SL(T ) formula ϕ ≡ emp ∧ (y �→ 0 −−∗ y �→ 1) ∧ y ≈ nil.
When running solveSL(T)(ϕ), we first compute the set C = {c}, and introduce
fresh symbols � and pt of sorts Set(Loc) and Loc → Data respectively. The
formula (ϕ 	 [�, pt, C])⇓ is � ≈ ∅ ∧ ∀�4∀pt′.ψ ∧ y ≈ nil, where after simplification
ψ is:

ψ4 ≡ (�4 ⊆ {y, 0, 1, c} ∧ pt′ ⊆ {y, 0, 1, c} × {y, 0, 1, d}) ⇒
(�4 ∩ � ≈ ∅ ∧ �4 ≈ {y} ∧ pt′(y) ≈ 0 ∧ y ≈ nil) ⇒
(�4 ∪ � ≈ {y} ∧ ite(y ∈ �4, pt

′(y) ≈ 1, pt(y) ≈ 1) ∧ y ≈ nil)

Let (A4, (k1, k2)) � ∀�4∀pt′.ψ4. We call the subprocedure solveT on Γ0, where:

Γ0 ≡ �(ϕ 	 [�, pt, C])⇓�∗ ≡ {� ≈ ∅ ∧A4 ∧ y ≈ nil,¬A4 ⇒ ¬ψ4[k1, k2/�4, pt
′]}.

The set Γ0 is T -satisfiable with a model I0 where AI0
4 = �. Step 2 of the

procedure determines a model J for Γ0 ∪ {A4,¬ψ4[k1, k2/�4, pt
′]}.

Let t1 be {y}, where we know tJ1 = kJ
1 since J must satisfy k1 ≈

{y} as a consequence of ¬ψ4[k1, k2/�4, pt
′]. Let t2 be a well-sorted subset of

{y, 0, 1, c} × {y, 0, 1, d} such that tJ2 = kJ
2 . Such a subset exists since J satis-

fies k2 ⊆ {y, 0, 1, c} × {y, 0, 1, d}. Notice that t2(y)J = 0J since J must satisfy
k2(y) ≈ 0. Step 3 of the procedure recursively invokes solveT on Γ1, where:

Γ1 ≡ Γ0 ∪ �A4 ⇒ ψ4[t1, t2/�4, pt
′]�∗

≡ Γ0 ∪ {A4 ⇒ y �≈ nil ⇒ ({y} ≈ {y} ∧ ite(y ∈ {y}, 0 ≈ 1, pt(y) ≈ 1) ∧ y �≈ nil)}
≡ Γ0 ∪ {A4 ⇒ y �≈ nil ⇒ ⊥}

The set Γ1 is T -unsatisfiable, since the added constraint contradicts A4 ∧ y ≈
nil. �

5.1 Integration in DPLL(T )

We have implemented the algorithm described in this section within the SMT
solver CVC4 [2]. Our implementation accepts an extended syntax of SMT-LIB
version 2 format [3] for specifying SL (T ) formulae. In contrast to the presen-
tation so far, our implementation does not explicitly introduce quantifiers, and
instead treats SL atoms natively using an integrated subsolver that expands the
semantics of these atoms in lazy fashion.

In more detail, given a SL (T ) input ϕ, our implementation lazily computes
the expansion of (ϕ 	 [�, pt, C])⇓ based on the translation rules in Figs. 1 and 2
and the counterexample-guided instantiation procedure in Fig. 3. This is accom-
plished by a module, which we refer to as the SL solver, that behaves analogously
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to a DPLL(T )-style theory solver, that is, a dedicated solver specialized for the
T -satisfiability of a conjunction of T -constraints.

The DPLL(T ) solving architecture [12] used by most modern SMT solvers,
given as input a set of quantifier-free T -formulae Γ , incrementally constructs of
set of literals over the atoms of Γ until either it finds a set M that entail Γ at the
propositional level, or determines that such a set cannot be found. In the former
case, we refer to M as a satisfying assignment for Γ . If T is a combination of
theories T1∪ . . .∪Tn, then M is partitioned into M1∪ . . .∪Mn where the atoms
of Mi are either Ti-constraints or (dis)equalities shared over multiple theories.
We use a theory solver (for Ti) to determine the Ti-satisfiability of the set Mi,
interpreted as a conjunction. Given Mi, the solver will either add additional
formulae to Γ , or otherwise report that Mi is Ti-satisfiable.

For SL (T ) inputs, we extend our input syntax with a set of functions:

�→: Loc× Data→ Bool ∗n : Booln → Bool emp : Bool
−−∗: Bool× Bool→ Bool lbl : Bool× Set(Loc) → Bool

which we call spatial functions5. We refer to lbl as the labeling predicate, which
can be understood as a placeholder for the 	 transformation in Figs. 1 and 2. We
refer to p(t) as an unlabeled spatial atom if p is one of {emp, �→, ∗n,−−∗} and t is
a vector of terms not containing lbl. If a is an unlabeled spatial atom, We refer
to lbl(a, �) as a labeled spatial atom, and extend these terminologies to literals.
We assume that all occurrences of spatial functions in our input ϕ occur only in
unlabeled spatial atoms. Moreover, during execution, our implementation trans-
forms all spatial atoms into a normal form, by applying associativity to flatten
nested applications of ∗, and distributing Σ-formulae over spatial connectives,
e.g. ((x �→ y ∧ t ≈ u) ∗ z �→ w) ⇐⇒ t ≈ u ∧ (x �→ y ∗ z �→ w).

When constructing satisfying assignments for ϕ, we relegate the set of all
spatial literals Mk to the SL solver. For all unlabeled spatial literals (¬)a, we
add to Γ the formula (a ⇔ lbl(a, �0)), where �0 is a distinguished free constant
of sort Set(Loc). Henceforth, it suffices for the SL solver to only consider the
labeled spatial literals in Mk. To do so, firstly, it adds to Γ formulae based on
the following criteria, which model one step of the reduction from Fig. 1:

lbl(emp, �) ⇔ � ≈ ∅ if (¬)lbl(emp, �) ∈Mk

lbl(t �→ u, �) ⇔ � ≈ {t} ∧ pt(t) ≈ u ∧ t ≈ nil if (¬)lbl(t �→ u, �) ∈Mk

lbl((ϕ1 ∗ . . . ∗ ϕn), �) ⇒ (ϕ1[�1] ∧ . . . ∧ ϕn[�n]) if lbl((ϕ1 ∗ . . . ∗ ϕn), �) ∈ Mk

¬lbl((ϕ1 −−∗ ϕ2), �) ⇒ (ϕ1[�1] ∧ ¬ϕ2[�2]) if ¬lbl((ϕ1 −−∗ ϕ2), �) ∈ Mk

where each �i is a fresh free constant, and ϕi[�i] denotes the result of replacing
each top-level spatial atom a in ϕi with lbl(a, �i). These formulae are added
eagerly when such literals are added to Mk. To handle negated ∗-atoms and
positive −−∗-atoms, the SL solver adds to Γ formulae based on the criteria:

¬lbl((ϕ1 ∗ . . . ∗ ϕn), �) ⇒ (¬ϕ1[t1] ∨ . . . ∨ ¬ϕn[tn]) if ¬lbl((ϕ1 ∗ . . . ∗ ϕn), �) ∈ Mk

lbl((ϕ1 −−∗ ϕ2), �) ⇒ (¬ϕ1[t1, f1] ∨ ϕ2[t2, f2]) if lbl((ϕ1 −−∗ ϕ2), �) ∈ Mk

5 These functions are over the Bool sort. We refer to these functions as taking formulae
as input, where formulae may be cast to terms of sort Bool through use of an if-
then-else construct.
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where each ti and fi is chosen based on the same criterion as described in Fig. 3.
For wand, we write ϕi[ti, fi] to denote ϕ′

i[ti], where ϕ′
i is the result of replacing

all atoms of the form t �→ u where t ∈ t1 in ϕi by fi(t) ≈ u.
CVC4 uses a scheme for incrementally checking the T -entailments required

by solveT, as well as constructing models J satisfying the negated form of the
literals in literals in Mk before choosing such terms [20]. The formula of the
above form are added to Γ lazily, that is, after all other solvers (for theories Ti)
have determined their corresponding sets of literals Mi are Ti-satisfiable.

Partial Support for Quantifiers. In many practical cases it is useful to check
the validity of entailments between existentially quantified SL(T ) formulae such
as ∃x . φ(x) and ∃y . ψ(y). Typically, this problem translates into a satisfiability
query for an SL(T ) formula ∃x∀y . φ(x)∧¬ψ(y), with one quantifier alternation.
A partial solution to this problem is to first check the satisfiability of φ. If φ is
not satisfiable, the entailment holds trivially, so let us assume that φ has a
model. Second, we check satisfiability of φ ∧ ψ. Again, if this is unsatisfiable,
then the entailment cannot hold, because there exists a model of φ which is
not a model of ψ. Else, if φ ∧ ψ has a model, we add an equality x = y for
each pair of variables (x, y) ∈ x × y that are mapped to the same term in this
model, the result being a conjunction E(x,y) of equalities. Finally, we check
the satisfiability of the formula φ ∧ ¬ψ ∧ E. If this formula is unsatisfiable, the
entailment is valid, otherwise, the test is inconclusive. In Sect. 6, we applied this
method manually, to test entailments between existentially quantified variables
— general procedure for quantifier instantiation for SL(T ) is envisaged in the
near future.

6 Evaluation

We tested our implementation of the (SL, T )-satisfiability procedure in CVC4
(version 1.5 prerelease)6 on two kinds of benchmarks: (i) finite unfoldings of
inductive predicates with data constraints, mostly inspired by existing bench-
marks, such as SL-COMP’14 [22], and (ii) verification conditions automatically
generated by applying the weakest precondition calculus of [15] to the program
loops in Fig. 4 several times. All experiments were run on a 2.80 GHz Intel(R)
Core(TM) i7 CPU machine with with 8 MB of cache7. For a majority of bench-
marks, the runtime of CVC4 is quite low, with the exception of the n = 4, 8 cases
of the entailments between treen

1 and treen
2 formulae, which resulted in a timeout

after 300 s. For benchmarks where CVC4 times out, the performance bottleneck
resides in its ground decision procedure for finite sets, indicating efficient support
for this theory is important for our approach to separation logic.

The first set of experiments is reported in Table 1. We have considered induc-
tive predicates commonly used as verification benchmarks [22]. Here we check the

6 Available at http://cvc4.cs.nyu.edu/web/.
7 The CVC4 binary and examples used in these experiments are available at http://

cvc4.cs.nyu.edu/papers/ATVA2016-seplog/.

http://cvc4.cs.nyu.edu/web/
http://cvc4.cs.nyu.edu/papers/ATVA2016-seplog/
http://cvc4.cs.nyu.edu/papers/ATVA2016-seplog/
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Fig. 4. Program loops

validity of the entailment between lhs and rhs, where both predicates are unfolded
n = 1, 2, 3, 4, 8 times. The second set of experiments, reported in Table 1, con-
siders the verification conditions of the forms ϕ ⇒ wp(l, φ) and ϕ ⇒ wpn(l, φ),
where wp(l, φ) denotes the weakest precondition of the SL formula φ with respect
to the sequence of statements l, and wpn(l, φ) = wp(l, . . .wp(l,wp(l, φ)) . . .)

Table 1. Experimental results

lhs rhs n = 1 n = 2 n = 3 n = 4 n = 8

Unfoldings of inductive predicates

lseg1(x,y,a)�emp∧x=y∨∃z∃b . lseg2(x,y,a)�emp∧x=y∨∃z∃b . unsat unsat unsat unsat unsat

x�→(a,z)∗lseg1(z,y,b)∧b=a+10 x�→(a,z)∗lseg2(z,y,b)∧a≤b <0.01 s <0.01 s <0.01 s 0.01 s 0.01 s

tree1(x,a)�emp∧x=nil∨∃y∃z∃b∃c . tree2(x,a)�emp∧x=nil∨∃y∃z∃b∃c . unsat unsat unsat timeout timeout

x�→(a,y,z)∗tree1(y,b)∗tree1(z,c)∧ x�→(a,y,z)∗tree2(y,b)∗tree2(z,c)∧ <0.01 s 0.06 s 1.89 s >300 s >300 s

b=a−10∧c=a+10 b≤a∧a≤c

pos1(x,a)�x�→a∨∃y∃b . neg1(x,a)�¬x�→a∨∃y∃b . unsat unsat unsat unsat unsat

x�→a∗pos1(y,b) x�→a∗neg1(y,b) 0.02 s 0.04 s 0.11 s 0.25 s 3.01 s

pos1(x,a)�x�→a∨∃y∃b . neg2(x,a)�x�→a∨∃y∃b . unsat unsat unsat unsat unsat

x�→a∗pos1(y,b) ¬x�→a∗neg2(y,b) 0.01 s 0.05 s 0.11 s 0.23 s 2.10 s

pos1(x,a)�x�→a∨∃y∃b . neg3(x,a)�x�→a∨∃y∃b . unsat unsat unsat unsat unsat

x�→a∗pos1(y,b) x�→a∗¬neg3(y,b) 0.02 s 0.07 s 0.24 s 0.46 s 4.05 s

pos1(x,a)�x�→a∨∃y∃b . neg4(x,a)�x�→a∨∃y∃b . unsat sat unsat sat sat

x�→a∗pos1(y,b) ¬x�→a∗¬neg4(y,b) 0.05 s 0.24 s 0.33 s 2.77 s 24.72 s

pos2(x,a)�x�→a∨∃y . neg5(x,a)�¬x�→a∨∃y . unsat unsat unsat unsat unsat

x�→a∗pos2(a,y) x�→a∗neg5(a,y) 0.02 s 0.05 s 0.14 s 0.32 s 3.69 s

pos2(x,a)�x�→a∨∃y . neg6(x,a)�x�→a∨∃y . sat unsat unsat unsat unsat

x�→a∗pos2(a,y) ¬x�→a∗neg6(a,y) 0.02 s 0.04 s 0.13 s 0.27 s 2.22 s

Verification conditions

lsn(w) wp(disp,lsn−1(w)) <0.01 s 0.02 s 0.05 s 0.12 s 1.97 s

lsn(w) wpn(disp,emp∧w=nil) <0.01 s 0.02 s 0.12 s 0.41 s 22.97 s

zlsn(w) wp(zdisp,zlsn−1(w)) 0.01 s 0.02 s 0.05 s 0.11 s 1.34 s

zlsn(w) wpn(zdisp,emp∧w=nil) 0.01 s 0.02 s 0.11 s 0.43 s 24.13 s

lsn(u)∗ls0(v) wp(rev,lsn−1(u)∗ls1(v)) 0.06 s 0.08 s 0.14 s 0.30 s 2.83 s

lsn(u)∗ls0(v) wpn(rev,u=nil∧lsn(v)) 0.06 s 0.12 s 0.56 s 1.75 s 27.82 s

zlsn(u)∗zls0(v) wp(zrev,zlsn−1(u)∗zls1(v)) 0.22 s 0.04 s 0.12 s 0.25 s 2.16 s

zlsn(u)∗zls0(v) wpn(zrev,u=nil∧zlsn(v)) 0.04 s 0.10 s 0.41 s 1.27 s 20.26 s
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denotes the iterative application of the weakest precondition n times in a row.
We consider the loops depicted in Fig. 4, where, for each loop l we consider the
variant zl as well, which tests that the data values contained within the memory
cells are 0, by the assertions on line 2. The postconditions are specified by finite
unfoldings of the inductive predicates ls and zls (Fig. 4).

7 Conclusions

We have presented a decision procedure for quantifier-free SL (T ) formulas
that relies on a efficient, counterexample-guided approach for establishing the
T -satisfiability of formulas having quantification over bounded sets. We have
described an implementation of the approach as an integrated subsolver in the
DPLL(T )-based SMT solver CVC4, showing the potential of the procedure as a
backend for tools reasoning about low-level pointer and data manipulations.
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Abstract. General purpose computation on graphics processing units
(GPGPU) is a recent trend in areas which heavily depend on linear
algebra, in particular solving large systems of linear equations. Many
games, both qualitative (e.g. parity games) and quantitative (e.g. mean-
payoff games) can be seen as systems of linear equations, too, albeit
on more general algebraic structures. Building up on our GPU-based
implementation of several solvers for parity games [8], we present in this
paper a solver for mean-payoff games. Our implementation uses OpenCL
which allows us to execute it without any changes on both the CPU and
on the GPU allowing for direct comparison.

We evaluate our implementation on several benchmarks (obtained via
reduction from parity games and optimization of controllers for hybrid
systems [10]) where we obtain a speedup of up to 10 on the GPU in cases
of MPGs with 20 · 106 nodes and 60 · 106 edges.

1 Introduction

In a mean-payoff game (MPG) [5] two players, Pmax und Pmin, move a pebble
through a directed graph (V,E), called the arena, where every node v ∈ V is
assigned an owner o(v) ∈ {Pmax,Pmin} and every edge (u, v) ∈ E is assigned a
(w.l.o.g.) integer weight w(u, v) ∈ Z. It is assumed that every node has at least
one successor, therefore the players usually play forever, yielding an infinite path
(vi)i∈N

in (V,E) where it is assumed that the owner of vi has chosen to move to
vi+1. Pmax has the goal to maximize the average of the weight accumulated in
the limit, i.e. lim infT→∞ 1

1+T

∑T
i=0 w(vi, vi+1), and Pmin has the opposite goal.

It is well-known that for every MPGs there exist memoryless strategies σmax,
σmin : V � v �→ w ∈ vE and a valuation ν : V → Q s.t. when Pmax uses σmax

to determine where to move the pebble to — no matter how Pmin chooses to
move — the resulting average reward will be at least ν(v) for v the node the peb-
ble has been placed initially, and symmetrically for Pmin using σmin. Determining
ν and optimal strategies for both players is known to be in NP∩coNP [13]. Com-
puting optimal strategies and the optimal valuation ν can be reduced e.g. via
binary search to the p-mean partition problem [3]: given p ∈ Q, partition the set
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schaft (DFG) through the project “Game-based Synthesis for Industrial Automa-
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V into the subsets V≤p = {v ∈ V | ν(v) ≤ p} and V>p = V \ V≤p (resp. V≥p and
V<p).

Our interest in MPGs comes from optimizing permissive controllers which
have been synthesized for hybrid systems [10]: the controller is obtained by
discretizing the hybrid system into a game, thus its size directly grows with the
resolution at which the system is discretized leading to controllers with several
million states and transitions. The controller is only synthesized w.r.t. qualitative
objectives like reachability or safety, but the controller is non-deterministic in the
sense that it still might be allowed to choose from several actions. Essentially,
the goal is to refine the controller such that it also minimizes the number of
times at which it switches from one action to another action. One simple way
to obtain such kind of a posteriori optimization is by formulating this problem
as an MPG played essentially on the controller itself.1 To this end, we require a
solver that can handle also MPGs with several millions of states.

Motivated by the existing success in using graphic processing units (GPU)
for formal verification [1,8] we present here our GPU-based implementation of
a solver for MPGs. The main motivation for using GPUs is that in many cases
they offer a higher computational power while consuming less energy at the same
time than most CPUs. Because of this, GPUs have become a central component
of super computers. Modern GPUs excel in particular in problems which can
be solved by a large number of very homogeneously behaving threads e.g. like
solving systems of linear equations. MPGs can be seen as a linear optimization
problem, albeit w.r.t. the tropical semiring. The optimization problem associ-
ated with mean-payoff games can be solved using an approach called strategy
iteration [3]: while strategy iteration is not known to yield a polynomial-time
algorithm for solving MPGs, similar to the simplex method, worst-case behavior
is observed very seldom. As no polynomial time algorithms for MPGs are known
so far, strategy iteration is a reasonable approach for solving MPGs.

We benchmark our implementation on several problems coming from appli-
cations like the sketched optimization of a controller and from model checking
and equivalence problems obtained via the reduction of parity games to MPGs.
In order to assess the speedup that the GPU offers compared to standard CPUs,
our implementation uses OpenCL, thus the same code can be run both on the
CPU and the GPU. Our current implementation already achieves a speedup of
approx. 8 to 10 on the GPU. We are currently optimizing the code further, and
expect even higher speedups (see the section on future work for more details).

Closely related to MPGs are parity games which can be directly reduced to
the 0-mean partition problem. The standard reduction works by encoding the
node coloring explicitly as edge weights. Alternatively, the mapping of colors
to edge weights can only be implicitly represented (similar to the path profiles
of [12]) which requires only a slight change to our implementation but already
leads to a significant speed-up for parity games.

1 While mean-payoff parity games allow to directly combine qualitative and quanti-
tative objects [4], our approach does not require any changes to synthesis of the
controller, neither to synthesis itself nor to numerical aspects of the synthesis.
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The current implementation, benchmarks and detailed results are available
at www.model.in.tum.de/tools/gpumpg.

2 GPU-Specific Implementation

OpenCL is a framework for heterogeneous platforms consisting of several CPUs
and GPUs. It is maintained by the Khronos Group. An OpenCL device consists
of one or more compute units (CU) which themselves consist of one or more
processing units (PU). A kernel is a program which is to be executed in parallel:
kernel instances are grouped into work-groups which are further subdivided into
work-items. A work-group consists of instances of the same kernel, and the whole
work-group is executed by a single CU. A work-item of a work-group executes
one kernel instance using one or more PUs of the CU running its work-group.
At any given point of time, all active work-items of a work-group execute the
same instruction (or a NOP) which considerably influences the way algorithms
have to be implemented on the GPU.

Due to the page limit, we can only give a very brief sketch of our imple-
mentation leaving aside all details on how to efficiently use the GPU: The edge
relation of the arena is stored similar to the Yale format used for sparse matrices.
The main problem consists of computing the least or greatest solution of min-
max systems which are directly derived from the graph structure underlying the
arena. To solve these systems, we implemented a variant of the Bellman-Ford
algorithm directly for GPUs: roughly spoken, with every node v of the arena a
work-item is associated which checks the successors of v for changes, and, if a
change is found, accordingly updates the value for v.

The Bellman-Ford algorithm lies at the heart of the strategy iteration used
for solving the p-mean partition problem. Given an initial memoryless strategy
for Pmax, the Bellman-Ford algorithm is used to compute an optimal counter
strategy for Pmin; this counter strategy is used in turn to improve Pmax’s strategy
by checking all nodes controlled by Pmax if there are any successors which promise
a higher limit-average than the successor currently proposed by the strategy —
again this can be done in parallel by one work-item per node. As soon as Pmax’s
strategy cannot be improved anymore, we are guaranteed to have found an
optimal strategy, and this solved the p-mean partition problem.

The p-mean partition problem is then used to recursively partition the MPG
into smaller MPGs similar to a binary search: Initially, we solve the 0-mean
partition problems yielding V≤0 and V≥0. The set of nodes V=0 = V≤0 ∩ V≥0 is
obtained, and then the MPG is partitioned accordingly into smaller MPGs con-
sisting of the nodes V>0 resp. V<0. Recursively and in parallel p-mean partition
problems on these smaller MPGs are solved where for each of the smaller MPGs
the new value for p is chosen by traversing the Stern-Brocot tree (see e.g. [7]) in
combination with exponential search. This ensures that each value in the range
of ν is reached within a logarithmic number of steps w.r.t. the size of the MPG.
In this way, we compute ν and optimal strategies for Pmax and Pmin.

One requirement for the strategy iteration algorithm is that there are no
nonpositive cycles controlled by Pmin. To eliminate those cycles, we introduce

www.model.in.tum.de/tools/gpumpg
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additional implicit nodes on either all forward or all backward edges between
nodes controlled by the same player. As an alternative, we also offer to directly
remove nonpositive cycles before solving each p-mean partition problem.

3 Evaluation

All experiments were performed on a machine equipped with an Intel Core i7-
6700K Processor at 4.0 GHz with 32 GB of RAM and an AMD Radeon R9 390
with 8 GB of RAM, running Windows 10 64 bit. We only present the time spent
to solve the games while the time spent on disk I/O and set-up is excluded.
Our benchmarks come from two sources: (1) optimization of synthesized con-
trollers for hybrid system, (2) parity games related to model checking problems
and equivalence testing of processes. The time limit was 12 h for the controller
benchmark suite and 30 min for the parity games benchmark suite.

In case of the optimization of the hybrid controller, the controller is trans-
formed into an MPG where switching from one action to another leads to a
transition with zero payoff, while using the same action subsequently yields a
transition with positive payoff. To this end, the states of the MPG are essentially
the states of the controller extended by the action last used by the controller. The
size of the synthesized controller depends on the resolution η used for discretiz-
ing the hybrid system. The results are summarized in Table 1. Note that larger
games may have a simpler structure and smaller values, leading to a smaller
solving time, e.g. when increasing η−1 from 1000 to 2000 or from 5000 to 6000.

We used the standard reduction of parity games to the 0-mean partition
problem of MPGs to reformulate the model checking and equivalence problems
coming from the benchmark suite2 of [9] as MPGs. We selected only games with
at least 500 000 nodes to give a useful comparison between GPU and CPU, as
we could solve all smaller games in less than half a second. The game sizes
range up to 40 million nodes and 167 million transitions. We also ran the tool
PGSolver [6] on this suite with the solver recursive, which proved to be its
most efficient solver. Table 2 and Fig. 1 give the obtained results.

We can solve all of the benchmarks, taking at most 2 h for the largest con-
troller and 70 s for a single instance of the parity games. On the GPU, we achieve
a speedup over the CPU ranging from 2 to 11, and on average about 5. PGSolver
can only solve about half of the instances, as it runs out of memory in a lot of
cases. We outperform PGSolver significantly on all but two benchmarks, where
we are only half as fast. Even on the CPU we outperform PGSolver on all
but eight benchmarks. This is even though PGSolver itself solves the original,
smaller parity game and further uses several heuristics to recognize and solve
trivial instances without actually using the selected solver.

For comparison, we also solved the parity games by implicitly mapping the
colors to edge weights as color profiles. Solving the parity games directly this
way gives a further speedup of 4 on average. Still, this shows our approach also
works well directly on mean-payoff games, which are potentially harder to solve.
2 Available at https://github.com/jkeiren/paritygame-generator.

https://github.com/jkeiren/paritygame-generator
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Table 1. Timings in seconds for the con-
troller synthesis benchmark suite, including
speedup. The optimal value ν is the same
for all nodes.

Table 2. Games in the parity
games benchmark suites (#) and
instances successfully solved on
the GPU, on the CPU and by
PGSolver (PG).

Fig. 1. Timings for the parity games benchmark suite, comparing GPU vs. CPU and
our solver on the GPU vs. PGSolver. Negative results are set to 30 min.

In the experiments, the cycle elimination with implicit auxiliary nodes proved
to be much more efficient than removing cycles directly, which often lead to
timeouts on graphs with nonpositive cycles. Therefore we only used the implicit
nodes, which caused minimal overhead even on graphs without cycles.

4 Conclusion and Future Work

Currently, the code is not optimized for the GPU, particularly the memory access
pattern depends directly on the graph structure of the MPG. Still, the bench-
marks indicate that GPUs offer a significant speedup of ten and more compared
to CPUs. Also, we currently require an explicit representation of the system.
However, as shown by the Divine model checker [2], explicit representation of
the state space can be very successful in practice. To overcome possible memory
limitations, a future goal is to incorporate the use of multiple GPUs in a single
host system and the use of distributed system of PCs with multiple GPUs. This
is also motivated by the fact that in recent years the price of GPUs dropped
significantly faster than that of CPUs resp. the computational power available
at a given price point increased much faster for GPUs. We thus believe that
GPU-enabled solvers are relevant for model checking and synthesis in practice.
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Further, we want to extend the solver by using symmetric strategy itera-
tion [11], and we want to improve memory access by taking the graph structure
of the MPG into account when arranging the nodes in memory.

Acknowledgments. We thank Majid Zamani and Matthias Rungger for kindly pro-
viding the example for the hybrid controller for our experimental evaluation.
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Abstract. We present an analysis technique for temporal specifications
of reactive systems that identifies, on the level of individual system out-
puts over time, which parts of the implementation are determined by the
specification, and which parts are still open. This information is repre-
sented in the form of a labeled transition system, which we call skeleton.
Each state of the skeleton is labeled with a three-valued assignment to
the output variables: each output can be true, false, or open, where true
or false means that the value must be true or false, respectively, and open
means that either value is still possible. We present algorithms for the
verification of skeletons and for the learning-based synthesis of skeletons
from specifications in linear-time temporal logic (LTL). The algorithm
returns a skeleton that satisfies the given LTL specification in time poly-
nomial in the size of the minimal skeleton. Our new analysis technique
can be used to recognize and repair specifications that underspecify crit-
ical situations. The technique thus complements existing methods for
the recognition and repair of overspecifications via the identification of
unrealizable cores.

1 Introduction

The great advantage of synthesis is that it constructs an implementation auto-
matically from a specification – no programming required. The great disadvan-
tage of synthesis is that the synthesized implementation is only as good as its
specification, and writing good specifications is extremely difficult.

Roughly speaking, there are two fundamental errors that can happen when
writing a specification. The first type of error is to overspecify the system such
that actually no implementation exists anymore. This type of error can be found
by a synthesis algorithm (it fails!), and synthesis tools commonly assist in the
repair of such errors by identifying an unrealizable core of the specification (cf.
[1,11,12]). The second type of error is to underspecify the system such that not
all implementations that satisfy the specification actually perform as intended.
This type of error is much harder to detect. The synthesis succeeds, and even if we
convince ourselves that the synthesis tool has actually chosen an implementation
that performs as intended, there is no guarantee that this will again be the
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case when a new implementation is synthesized from the same or an extended
specification.

The underlying problem is that synthesis algorithms have the freedom to
resolve any underspecified behavior in the specification, and we have no way of
knowing which parts of the behavior were fixed by the specification, and which
parts were chosen by the synthesis algorithm.

In this paper, we introduce a new artifact that can be produced by synthesis
algorithms and which provides exactly this information. We call this artifact
the skeleton of the specification. We envision that synthesis algorithms would
produce the skeleton along with the actual implementation, so that the user of
the algorithm understands where the implementation is underspecified, and can,
if so desired, strengthen the specification in critical areas.

A skeleton is a labeled transition system defined over three-valued sets of
atomic propositions, where in each state of the skeleton an atomic proposition is
either true, false, or open. For a given specification, the truth value of a propo-
sition in some state of the skeleton is open if it can be replaced by true as well
as by false without violating the specification. Consider for example the LTL
formula p for some atomic proposition p. Any transition system that satisfies
the formula has truth value true for p in the second position of every path of the
transition system. On the other hand, whether p is true or false in the initial
state is not determined, either truth value would work. In this case, the skeleton
would not fix a particular truth value, but rather leave the value of p in the
initial state open. In a sense, the skeleton implements only those parts of the
transition system that are determined by the specification.

Skeletons are useful to understand the meaning of partially written spec-
ifications. Consider, for example, an arbiter over two clients that share some
resource. Each client can make a request to the source (via the inputs r1 and
r2) and the arbiter can, accordingly, decide to give out grants via the outputs g1
and g2. A specification for the arbiter might begin with the property of mutual
exclusion, i.e., the LTL formula (ḡ1 ∨ ḡ2) stating that only one of the clients
should have access to the resource at a time. Figure 1 shows an implementation
of this specification as a transition system and a skeleton. The transition sys-
tem has a single state, and no grants are given at any time (see Fig. 1(a)). The
skeleton shown in Fig. 1(b) reveals that all outputs are open, as indicated by the
question mark. If we extend the specification with the property ḡ1 ∧ ḡ2, then the
previous transition system does not need to change, because it already satsifies
the extended specification. The skeleton, on the other hand, now indicates that
the output in the initial state is determined. The output in subsequent states is
still open (see Fig. 1(c)). Extending the specification further with the property

(r1 → g1) results in a skeleton where the responses to requests from the first
client are determined, and outputs in situations where there is no request from
the first client are still open (see Fig. 1(e)). An implementation for this specifica-
tion could be the transition system that never gives a grant to the second client
(see Fig. 1(d)).
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Fig. 1. Transition systems and skeletons for an arbiter specification. The symbol *
denotes all possible input labels.

We study the model checking and synthesis problems for skeletons. For a
given LTL formula ϕ and a skeleton S we say that S is a model of the LTL
formula ϕ, if each trace in S satisfies following condition: If the truth value for
some proposition p in some position of the trace is open, then ϕ must both have
a model where p is true at this position, and a model where p is false at this
position. Furthermore, if the trace has truth value true or false for p at some
position, then all models of ϕ map p to the truth value true or false, respectively,
at this position.

We show that given an LTL formula ϕ we can build a nondeterministic
automaton that accepts a sequence over the three-valued semantics if it sat-
isfies the satisfaction relation described above. The automaton is of doubly-
exponential size in the length of the formula ϕ. With this automaton, the model
checking problem can be solved in Expspace.

To solve the synthesis problem, we could determinize the automaton and
check whether there is a skeleton for the formula, along the lines of standard
synthesis [16], but this construction would be very expensive. Instead, we intro-
duce a synthesis algorithm for skeletons based on learning. We show that for
each LTL formula, a skeleton that models the formula defines a safety language
that can be learned using the learning algorithm L∗. The algorithm can learn
a skeleton for an LTL formula in time polynomial in the size of the minimal
skeleton for the specification. The membership and equivalence queries of the
L∗ algorithm are answered by the model checking algorithm introduced in this
paper.

Related Work. There is a rich body of work on the synthesis of reactive sys-
tems from logical specifications [4,7,10,13,14]. Supplemented by many works
that investigated the optimization of specification for synthesis and the identi-
fication of unrealizable specification [1,11,12]. Multi-valued extensions of log-
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ics have been rather popular in the verification of systems, where a simple
truth value is not enough to determine the quality of implementations. Chechik
et. al. provide a theoretical basis for multi-valued model checking [6], where
the satisfaction relation M |= ϕ for a model M and a specification ϕ can
be multi-valued. Bruns and Godefroid experiment on multi-valued logics and
show that many algorithms for multi-valued logics can be reduced to ones for
two-valued logics [5]. Easterbrook and Chechik introduce a framework where
multiple inconsistent models are merged according to an underlying specifica-
tion given in a multi-valued logic, where the different values in the specification
represent the different levels of uncertainty, priority and agreement between the
merged models [9]. In comparison to all these works, we are interested in multi-
valued extensions of the models themselves and in the synthesis of such models,
in order to determine the amount of information that resides in a specification.

The term skeleton has been also used by Emerson and Clarke which shall
not be confused with the skeletons presented here. They presented a method for
the synthesis of synchronization skeletons that abstract from details irrelevant to
synchronization of concurrent systems [8]. In our skeletons, we stick to the struc-
ture of transition systems and leave place holders for the underspecified details,
which may then be supplemented with further steps to a complete transition
system.

2 Preliminaries

Alternating Automata. We define an alternating Büchi automaton as a tuple
A = (Σ,Q, q0, δ, F ), where Σ denotes a finite alphabet, Q denotes a finite set of
states, q0 ∈ Q denotes a designated initial state, δ : Q × Σ → B

+(Q) denotes a
transition function, that maps a state and an input letter to a positive boolean
combination of states, and finally the set F ⊆ Q of accepting states.

We define infinite words over Σ as sequence σ : N → Σ. A Σ-tree is a pair
(T , r) over a set of directions D, where T is a prefix-closed subset of D∗ and
r : T → Σ is a labeling function. The empty sequence ε is called the root. The
children of a node n ∈ T are nodes C(n) = {n · d ∈ T | d ∈ D}.

A run of an automaton A = (Σ,Q, q0, δ, F ) on a sequence σ : N → Σ is a
Q-tree (T , r) with r(ε) = q0 and for all nodes n ∈ T , if r(n) = q then the set
{r(n′) | n′ ∈ C(n)} satisfies δ(q, σ(|n|)).

A run (T , r) is accepting if for every infinite branch n0, n1, . . . the sequence
r(n0)r(n1) . . . satisfies the Büchi condition, which requires that some state from
F occures infinitely often in the sequence r(n0)r(n1) . . .. The set of accepted
words by the automaton A is the language of the automaton and is denoted by
L(A). An automaton is empty iff its language is the empty set.

A nondeterministic automaton is a special alternating automaton, where the
image of δ consists only of such formulas that, when rewritten in disjunctive
normal form, contain exactly one element of Q in every disjunct.

An alternating automaton is called universal if, for all states q and input
letters α, δ(q, α) is a conjunction. A universal and nondeterministic automaton
is called deterministic.
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A Büchi automaton is called a safety automaton if Q = F . Safety automata
are denoted by a tuple (Σ,Q, q0, δ). For safety automata, every run graph is
accepting.

Safety Languages: A finite word w = {1, . . . , i} → Σ over some finite alphabet Σ
is called a bad-prefix for a language L ⊆ Σω, if every infinite word σ ∈ (N → Σ)
with prefix w is not in the language L. A language L ⊆ (N → Σ) is called a safety
language, if every σ �∈ L has a bad-prefix. We denote the set of bad-prefixes for
a language L by BP(L). For every safety language L we can define a finite word
automaton B = (QB, QB,0, FB, δB) that accepts the language BP(L). We call B
the bad-prefix automaton of L.

Linear-Time Temporal Logic: We use Linear-time Temporal Logic (LTL) [15],
with the usual temporal operators Next , Until U and the derived operators
Eventually and Globally . LTL formulas are defined over a set of atomic
propositions AP = I ∪ O, which is partitioned into a set I of input propositions
and a set O of output propositions. We denote the satisfaction of an LTL formula
ϕ by an infinite sequence σ : N → 2AP of valuations of the atomic propositions
by σ |= ϕ. For an LTL formula ϕ we define the language L(ϕ) by the set
{σ ∈ (N → 2AP) | σ |= ϕ}.

Implementations: We represent implementations as labeled transition systems.
For a given finite set Υ of directions and a finite set Σ of labels, a Σ-labeled Υ -
transition system is a tuple T = (T, t0, τ, o), consisting of a finite set of states T ,
an initial state t0 ∈ T , a transition function τ : T × Υ → T , and a labeling
function o : T → Σ. A path in T is a sequence π : N → T × Υ of states and
directions that follows the transition function, i.e., for all i ∈ N if π(i) = (ti, ei)
and π(i + 1) = (ti+1, ei+1), then ti+1 = τ(ti, ei). We call a path initial if it
starts with the initial state: π(0) = (t0, e) for some e ∈ Υ . We denote the set of
initial paths of T by Path(T ). For a path π ∈ Path(T ), we denote the sequence
σπ : i 	→ o(π(i)), where o(t, e) = (o(t) ∪ e) by the trace of π. We call the set of
traces of the paths of a transition system T the language of the T , denoted by
L(T ).

For a set of atomic propositions AP = O ∪ I, we say that a 2O-labeled 2I -
transition system T satisfies an LTL formula ϕ, if and only if L(T ) ⊆ L(ϕ), i.e.,
every trace of T satisfies ϕ. In this case we call T a model of ϕ.

Multi-valued Sets: A multi-valued set over an alphabet Σ and set of values Γ is a
function v ∈ (Σ → Γ ). The simplest type of multi-valued sets is the two-valued
set which define the notion of sets as we know, where Σ is a set of symbols and
Γ = {⊥,�}, i.e., for a two-valued set v over Σ and Γ , a symbol a ∈ Σ is in v if
v(a) = �, and not otherwise. The set of all multi-valued sets over an alphabet
Σ and a set of values Γ is denoted by ΓΣ , e.g., in the usual set notion this is
the set {⊥,�}Σ or as we know it 2Σ for an alphabet Σ.

For a multi-valued set v ∈ ΓΣ and for p ∈ Σ and h ∈ Γ we define the
multi-valued set v′ = v[p 	→ h], where v′(p) = h and for all p′ ∈ Σ \ {p}, we
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have v′(p′) = v(p′). For a multi-valued set v ∈ ΓΣ and for a set Σ′ ⊆ Σ the set
vΣ′ ∈ ΓΣ′

is the multi-valued set obtained by projection from Σ to Σ′.

3 Skeletons

An open set over an alphabet Σ is a three-valued set v : {�,⊥, ?}Σ , where
each element a ∈ Σ is either in v denoted by v(a) = �, not in v denoted by
v(a) = ⊥, or it is open whether it is in the set or not, i.e., it could be one of
both, denoted by v(a) =?. In the remainder of the paper, we denote the set
{�,⊥, ?}Σ by 3Σ . For two open sets v, v′ ∈ 3Σ we define the partial order �
such that v � v′ if and only if for all symbols a ∈ Σ, v(a)  v′(a) with respect
to the lattice = {(⊥,⊥), (�,�), (⊥, ?), (�, ?), (?, ?)}.

We call a sequence σ an open sequence if it is a sequence over open sets, i.e.,
σ ∈ (N → 3Σ). For two open sequences σ and σ′ we define the partial order �
such that σ � σ′ if for all i ∈ N, σ(i) � σ′(i). For a sequence σ ∈ (N → 3Σ)
and Σ′ ⊆ Σ the sequence σΣ′ ∈ (N → 3Σ′

) is the sequence where for all i,
σΣ′(i) = σ(i)Σ′ .

We define the satisfaction relation of LTL over open sequences as follows.
Given an LTL formula ϕ over a set of atomic propositions AP = O ∪ I, an open
sequence σ satisfies ϕ, denoted by σ |= ϕ, if for each sequence σ′ ∈ L(ϕ) that
is input equivalent to σ, i.e., σI = σ′

I , we have σ′ � σ. For a fixed sequence of
inputs ς ∈ (N → 2I), there is a unique open sequence σ with σI = ς that satisfies
ϕ and that is minimial with respect to the partial order �, i.e., for all sequences
σ′ ∈ (N → 3AP) with σ′ |= ϕ and σ′

I = ς, we have σ � σ′. We call such sequence
a minimal satisfying sequence. For an LTL formula ϕ, we denote the set of all
minimal satisfying sequences by min(ϕ).

Building on the definitions of open sequences and transition systems we intro-
duce the notion of skeletons of reactive systems, which are transition systems
labeled with open sets from 3O.

Definition 1 (Skeleton). For a set AP = O ∪ I of atomic propositions, a
skeleton over AP is a 3O-labeled-2I-transition system.

The language of a skeleton S is the set of open sequences given by the set of
its traces. Figure 2 shows four skeletons defined over the sets I = {r1, r2} and
O = {g1, g2}. Figures 2(a) and (b) both define the language {σ : N → 3AP |
∀i.σ(i)(g1) = σ(i)(g2) =?}, i.e., for all input sequences the values of the output
propositions g1 and g2 are open in all positions. The language of the skeleton in
Fig. 2(c) is the set {σ : N → 3AP | σ(0)(g1) = σ(0)(g2) = ⊥,∀i > 0. σ(i)(g1) =
� ∧ σ(i)(g2) =?} where the values of g1 are fixed in all positions and for g2 only
in the first position of the sequence.1

We say that a skeleton S is a model of an LTL formula ϕ denoted by S |=
ϕ, if L(S) = min(ϕ). Intuitively, for an LTL formula ϕ, a skeleton gives an
incomplete transition system where values of atomic propositions that are not

1 Note that skeletons have no open values for input propositions.
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Fig. 2. Skeletons over the sets I = {r1, r2} and O = {g1, g2}

deterministically fixed by ϕ, are left open, i.e., they are mapped to the value ?
in the open set of a state. Consider the formula ϕ = g1 ∧ g2 ∧ (r1 → g1).
We notice that all transition systems that satisfy ϕ must have the label g1g2 in
the initial state. For the rest of the transition system, the formula forces only to
label a state with g1 in case the direction(input) leading to this state contains
the proposition r1, and leaves it open on how to label the states reached by other
directions, or whether to label a state with g2 if it is reached by an input where
r1 is true (Fig. 2(d)).

Building on the satisfaction relation between LTL and skeleton we investigate
in the next sections the problems of model checking and synthesis of skeletons.

4 Model Checking Skeletons

We present an automata-based model checking algorithm for skeletons. Given an
LTL formula ϕ we show that we can construct a nondeterministic Büchi automa-
ton that recognizes the complement language min(ϕ). Using the usual product
construction, in this case, the product of the automaton and the skeleton, one
can check whether the resulting automaton contains a path that simulates an
accepting path in the nondeterministic automaton. If this is the case, then the
language of the skeleton contains a sequence in min(ϕ) and, thus, the skeleton is
not a model for the formula ϕ. Using the construction of the product automaton
we also show that checking whether a skeleton is a model of an LTL formula can
be done in space exponential in the length of the formula.

Lemma 1. Given an LTL formula ϕ we can build a nondeterministic Büchi
automaton N = (3AP, Q, q0, F, δ) such that L(N ) = min(ϕ). The number of
states of N is doubly-exponential in the length of ϕ.

Construction. The language min(ϕ) contains all sequences σ : N → 3AP that
are not minimal satisfying open sequences for ϕ. These can be distinguished
by two types of open sequences. The first type involves sequences σ where in
some position i the truth value of a proposition p ∈ AP is open (mapped to ?),
although, in all sequences σ′ ∈ L(ϕ) with σI = σ′

I the proposition p has the
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one same truth value (one of � or ⊥ in all sequences) at position i. The second
type are sequences σ, where in some position i a proposition p has truth value
⊥(resp. �), although, there exists another sequence σ′ ∈ L(ϕ) with σ′

I = σI

and σ′(i)(p) = �(resp. ⊥). The latter case also subsumes the case of sequences
σ ∈ (N → 2AP) with σ �∈ L(ϕ).

We construct a Büchi automaton N = (3AP, Q, q0, F, δ) that accepts an
open sequence σ if and only if σ �∈ min(ϕ). The automaton is composed of
two nondeterministic Büchi automata N1 = (3AP, Q1, q0,1, F1, δ1) and N2 =
(3AP, Q2, q0,2, F2, δ2), one for each of the sequence types mentioned above. We
define the automaton as N = N1 ∨ N2, where Q = {q0} ∪ Q1 ∪ Q2, F = F1 ∪ F2

and δ = {(q0, a, δ1(q0,1, a) ∨ δ2(q0,2, a)) | a ∈ 3AP} ∪ δ1 ∪ δ2.
Automaton N1 accepts a sequence σ ∈ (N → 3AP) if σ has a position i where

an atomic proposition p ∈ AP is incorrectly marked as open. The automaton N1

can be constructed as follows:
Let U1 = (2AP, QU

1 , qU
0,1, F

U
1 , δU

1 ) be a universal Büchi automaton for the for-
mula ¬ϕ. We extend the automaton U1 to another universal Büchi automaton
U∗
1 over an extended alphabet {�,⊥, ?, ∗�, ∗⊥}AP. We make use of the values

∗� and ∗⊥ to encode in the input sequence whether a mapping to ? is wrong,
and whether it is wrong when replacing ? by � or by ⊥. We define U∗

1 = ({�,
⊥, ?, ∗�, ∗⊥}AP, Q∗

1, q
∗
0,1, F

∗
1 , δ∗

1) over two copies of the automaton U1(denoted by
the numbers 1 and 2) where Q∗

1 = QU
1 × {1, 2}, q∗

0,1 = (qU
0,1, 1), F ∗

1 = FU
1 × {1, 2}.

The transition function δ∗
1 is given by the union of the following sets:

– {((q, h), v, δU
1 (q, v){q′∈QU

1 /(q′,h)}) | h ∈ {1, 2},∀p ∈ O.v(p) ∈ {�,⊥}}
where in both copies of the automaton U1, transitions over symbols v with
no open values remain in the same copy and follow the structure of the tran-
sition relation δU

1 of U1. The operation {q′ ∈ QU
1 /(q′, h)} substitutes every

appearance of a state q′ in δU
1 (q, v) by a state (q′, h) from Q∗

1.
– {((q, h), v, (δU

1 (q, v[p 	→ �]) ∧ δU
1 (q, v[p 	→ ⊥])){q′∈QU

1 /(q′,h)}) |
h ∈ {1, 2}, p ∈ O, v(p) =?}
universal transitions for symbols where a proposition p has an open truth
value imitating transitions for both truth values � and ⊥ for p.

– {((q, 1), v, δU
1 (q, v[p 	→ �]){q′∈QU

1 /(q′,2)}) | p ∈ O, v(p) = ∗�}
when we guess at some position i that an open truth value for a proposition
p is wrong, and it is wrong when replacing it by � we follow the transition �
to the second copy of U1 in which ?, ∗⊥ and ∗� are treated equivalently. This
helps to check, whether replacing ? by � results in accpeting run in U1, which
means that at position i the truth value � violates the property ϕ, and thus
it cannot be open at the that point.

– {((q, 1), v, δU
1 (q, v[p 	→ ⊥]){q′∈QU

1 /(q′,2)}) | p ∈ O, v(p) = ∗⊥}
which introduce transitions that involve the dual case of ∗�.

– {((q, 2), v, (δU
1 (q, v[p 	→ �]) ∧ δ∗

1(q, v[p 	→ ⊥])){q′∈QU
1 /(q′,2)}) |

p ∈ O, v(p) ∈ {∗⊥, ∗�}}
these transitions make sure that when moving to copy 2 of U1, values ∗� and
∗⊥ are treated equally to ?, because after guessing that a ? is wrong it must
be wrong for all continuations.
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In order to obtain the desired automaton N1 over the alphabet 3AP we
first transform the automaton U∗

1 to a nondeterministic automaton N ∗
1 with

L(U∗
1 ) = L(N ∗

1 ) using a subset construction. This is necessary in order to merge
all transitions ∗⊥ at one level into one state. The same holds also for transitions
∗�. In this way, we can check whether at some position in a sequence a value
? is wrong by checking all possible branches of the automaton U∗

1 at that level.
The automaton N ∗

1 can be transformed now to the desired automaton N1 by
projecting every transition label with values in {∗�, ∗⊥} to a label v′ ∈ 3AP such
that for every p ∈ O, if v(p) = ∗� or v(p) = ∗⊥ then v′(p) =?.

The size of the automaton U1 is exponential in the length of ϕ using the
transformation of LTL formulas into alternating Büchi automata [17], and then
using a subset construction. The transformation to U∗

1 from U1, and to N1 from
N ∗

1 are both polynomial, and exponential from U∗
1 to N ∗

1 . Thus, the size of N1

is doubly-exponential in the length of ϕ.
In a similar way, we can construct the automaton N2. Automaton N2 accepts

a sequence σ ∈ (N → 3AP) if a proposition p ∈ AP is incorrectly mapped to
� or ⊥. Starting with the alternating Büchi automaton for the formula ϕ, we
extend the alphabet with symbols ∗� and ∗⊥ and build an automaton U∗

2 =
({�,⊥, ?, ∗�, ∗⊥}AP, Q∗

2, q
∗
0,2, F

∗
2 , δ∗

2). Whenever we read a symbol v where some
p ∈ O is mapped to ∗�(∗⊥), the automaton follows the transition for v(p) =
⊥(�). After turning U∗

2 to a nondeterministic automaton and projecting, a label
v is replaced by a label v′ such that for every p ∈ O, if v(p) = ∗� or v(p) =
∗⊥ then v′(p) = � or v′(p) = ⊥, respectively. The automaton N2 is doubly-
exponential in the length of ϕ.

Proof. Let σ ∈ (N → 3AP). We distinguish three cases:

– σ ∈ min(ϕ) and for some i and some p ∈ O, the mapping σ(i)(p) =? is wrong.
We assume, w.l.o.g., that for all σ′ ∈ L(ϕ) with σI = σ′

I , that σ′(i)(p) = �,
and that i is the first position for which σ(i)(p) =? is wrong. A run of the
automaton N1 over σ is a sequence r ∈ (N → 2Q∗

1 ). Let r = X0X1... be the run
of the automaton N on σ, where X0 = {q∗

0,1}, and up to the position i the run
follows for each mapping to ? the transitions in N1 that were transitions for
mappings to ? in the automaton N ∗

1 before the projection, i.e., all sets Xj with
j ≤ i contain only states (q, 1) from Q∗

1, where q ∈ QU
1 . In the position i, where

the mapping to ? is incorrect, the run follows the transition with ? in state Xi

of N1 that can be mapped to a transition ∗⊥ in the automaton N ∗
1 which moves

to a set Xi+1 with only states (q, 2) from Q∗
1, i.e., the transition that checks

whether replacing ? at i with ⊥ always leads to rejecting states for possible
instantiations of upcoming ?. As U∗

1 is built from copies of the automaton
U1 for the formula ¬ϕ, following the transition for ∗⊥ means replacing at
position i the value ? with ⊥, which can only lead to rejecting runs, because
the automaton U1 accepts no sequence where p is mapped to value ⊥ at
position i.

– σ ∈ min(ϕ) and for some i and some p ∈ O, σ(i)(p) is incorrectly mapped to
� or to ⊥. With the same argumentation of the last case over the structure
of the automaton N2 the claim can be proven.
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– σ ∈ min(ϕ). In this case, for each position i, for each proposition p ∈ O such
that σ(i)(p) =?, and for each instantiation of ? for p in position i, there are
instantiations for all other ? values in σ and for all propositions such that the
resulting sequence σ′ ∈ (N → 2AP) is in L(ϕ). Let r = X0X1... be a run of
N1 on σ. If r follows all transitions for a mapping to ? that correspond to a
transition for the value ? in N ∗

1 , then all sets Xj for j ≥ 0 have states (q, 1)
of U∗

1 where q ∈ QU
1 and the run is not accepting, because the run simulates a

universal run tree in U∗
1 with at least one non-accepting branch, because there

is an instantiation for σ that is a model of ϕ. If at any point, the run r takes
a transition for some mapping to ? that corresponds to a transition ∗⊥ or ∗�
in the automaton N ∗

1 , then the run cannot be accepting, otherwise there is
a mapping to ? for some proposition p ∈ O in some position in σ for which
all other ? in σ cannot be instantiated appropriately in order to get a model
in σ.
In a similar way we can also prove that N2 has no accepting run for σ.

��
To check whether a skeleton S is a model for a given LTL formula ϕ we compute
the product P = S × N where N is nondeterministic Büchi automaton with
L(N ) = min(ϕ) constructed in Lemma 1. If P contains a path that simulates an
accepting path in N , then S has a path that violates the property ϕ, i.e., there
is a sequence in the language L(S) that is not in min(ϕ).

Instead of constructing the product automaton P one can also guess a run
in P and check whether it is accepting2. Based on this idea, the complexity of
model checking skeleton is given by the following theorem.

Theorem 1. Checking whether a skeleton S is a model for an LTL formula ϕ
is in Expspace.

5 Synthesis of Skeletons

For a set of atomic propositions AP = I ∪ O, to check whether there is 2O-
labeled 2I -transition system T that satisfies a given LTL formula ϕ, one would
construct a deterministic ω-automaton D (for example a parity automaton) with
L(D) = L(ϕ), interpret the automaton as a tree automaton over trees with labels
from 3O and directions from 2I and check its emptiness. In case, the language
of the automaton is not empty the procedure returns a transition system T
that models the formula ϕ. In the same fashion, we can construct a determin-
istic ω-automaton for the language min(ϕ) (for example by determinizing the
automaton from Lemma 1) and check whether there is a skeleton that is a model
for ϕ by performing an emptiness check over tree automaton interpretation of
the deterministic automaton.

2 This follows the idea of the Pspace model checking algorithm for LTL over transition
systems [3].
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The deterministic automaton is very expensive to construct (triple exponen-
tial in the formula ϕ). Instead, we show that we can avoid this construction of
the large deterministic automaton using learning. In comparison to transition
systems, given an LTL formula, we show that it has a unique minimal skeleton
that models the formula. The language of the skeleton is a safety language, and
thus, can be characterized by a bad-prefix automaton, which is a finite word
automaton. We use the learning algorithm L∗ to learn the deterministic bad-
prefix automaton [2], which can be easily transformed to a skeleton that models
the formula. The learning algorithm learns the skeleton in time polynomial in
the size of the minimal skeleton.

5.1 Learning Skeletons

In the following we present an algorithm for learning skeletons of LTL for-
mulas. Our algorithm is based on the L∗ algorithm for learning deterministic
finite automata introduced by Dana Angluin [2]. The setting of the L∗ algo-
rithm involves two key actors, the learner and the teacher. The learner tries to
learn a language known to the teacher by learning a minimal deterministic finite
word automaton for the language. The interaction between the learner and the
teacher is driven by two types of queries: membership queries, where the learner
asks whether a particular word is in the language, and equivalence queries, to
check whether a learned deterministic finite automaton indeed defines the lan-
guage to be learned. Here, the teacher responds either with a “yes” or with a
counterexample, which is a word in the symmetric difference of the language of
the learned automaton and the actual language. A teacher is called minimally
adequate, if she can answer membership and equivalence queries.

Theorem 2 [2]. Given a minimally adequate Teacher for an unknown regular
language L, we can construct a minimal finite word automaton that accepts L,
in time polynomial in the number of states of the automaton and the length of
the largest counterexample returned by the teacher.

For an LTL formula ϕ we show that the language of a skeleton that satisfies
ϕ is a safety language. This can be characterized by a language over finite words,
namely the language of bad-prefixes. The L∗ algorithm can learn a finite automa-
ton for the language of bad-prefixes, which in turn can then be transformed to
a skeleton for the property ϕ.

Lemma 2. For an LTL formula ϕ, the language min(ϕ) is a safety language.

Proof. We show that every σ ∈ min(ϕ) has a bad-prefix. We distinguish two
cases for σ:

– There is a point i in σ and a proposition p such that σ(i)(p) = �(or ⊥) and
there is a sequence σ′ ∈ L(ϕ) with σI = σ′

I and σ′(i)(p) = ⊥(or�). Thus,
any finite sequence v0 . . . vi ∈ (3AP)∗ with (v0 . . . vi)I = (σ(0) . . . σ(i))I and
vi(p) �=? is a bad-prefix for min(ϕ).
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– There is a point i in σ and a proposition p such that σ(i)(p) =? and for all
σ′ ∈ L(ϕ) with σI = σ′

I we have σ′(i)(p) is solely � or solely ⊥. In this case,
every finite sequence v0 . . . vi ∈ (3AP)∗ with (v0 . . . vi)I = (σ(0) . . . σ(i))I and
vi(p) =? is a bad-prefix for min(ϕ). ��
From the last lemma we deduce, that a skeleton S for an LTL formula ϕ can

be seen as a safety automaton that accepts the language of minimal satisfying
open sequences for ϕ. In particular, there is a bad-prefix automaton B that
accepts the language of bad-prefixes of the language min(ϕ).

We use the L∗ algorithm to learn a deterministic bad-prefix automaton for
the language min(ϕ). Figure 3 shows a high level flow graph of the learning
algorithm3. The learner poses a series of membership questions before making
a conjecture about the bad-prefix automaton. With a membership query the
learner asks whether a finite word w ∈ (3AP)∗ is a bad-prefix for min(ϕ). If w
is a bad-prefix then the teacher returns yes, and no otherwise. The equivalence
queries allow the learner to check whether a skeleton S is correct, i.e., L(S) =
min(ϕ). The teacher either confirms the automaton or returns a counterexample
to the learner. The latter is either a bad-prefix that is not rejected by B or
word w ∈ (3AP)∗ that is not a bad-prefix for min(ϕ) yet is in the language
of B. The black box shown in Fig. 3 between the bad-prefix automaton and a
skeleton, is a check whether the safety language characterized by the bad-prefix
automaton can be represented by a skeleton. We will refer to this check as the
output consistency check and will explain it later in more detail.

The skeleton returned by the learning procedure is minimal and it is unique.

ϕ

L∗

w
?∈ BP (min(ϕ)) L(S)

?
= min(ϕ)

Minimal Skeleton Learner

w

y
es/

n
o

S
B

n
o
,ce

S

Fig. 3. A modified L∗ for learning minimal skeletons of LTL formulas

Lemma 3. For each LTL formula ϕ there is a unique (up to isomorphism)
minimal skeleton S such that S |= ϕ.

3 For more details on the L∗ algorithm we refer the reader to [2].
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Proof. Let S = (S, s0, τ, o) and S ′ = (S′, s′
0, τ

′, o′) be two minimal skeletons for
ϕ, i.e., |S| = |S′| = c and there is no skeleton S ′′ = (S′′, s′′

0 , τ ′′, o′′) for ϕ with
|S′′| < c. We show that S and S ′ define the same skeleton up to isomorphism.
Let β = {(s, s′) ∈ S × S′ | ∀σI ∈ (2I)∗. τ∗(s0, σI) = s ↔ τ ′∗(s′

0, σI) = s′}.
The relation β is bijective because τ∗ and τ ′∗ are both functional and complete.
Thus, there is a one-to-one mapping between the states of S and those of S ′,
and for each (s1, i, s2) ∈ τ we have (β(s1), i, β(s2)) ∈ τ ′. For each (s, s′) ∈ β
it is also the case that o(s) = o′(s′), otherwise, there is an input sequence that
distinguishes a trace in S from the corresponding one in S ′, which contradicts
the assumption that L(S) = L(S ′). This implies that S is isomorphic to S ′. ��

In the next sections we show how membership and equivalence queries can
be solved algorithmically.

5.2 Membership Queries

In this section we show that using the ideas of the automaton presented in
Lemma 1 we can check whether a word is a bad-prefix in space exponential in
the length of ϕ.

Theorem 3. Given an LTL formula ϕ and a finite word w ∈ (3AP)∗, checking
whether w is a bad-prefix for min(ϕ) is in Expspace.

Proof. A finite word w ∈ (3AP)∗ is a bad-prefix for min(ϕ) if w = w0 . . . wn has a
prefix and there is a sequence of input values ς and no sequence σ : N → 3AP with
σI = ς can extend w to a sequence in w ·σ ∈ min(ϕ). Let U = (Σ,Q, q0, δ, F ) be
a universal Büchi automaton such that L(U) = L(¬ϕ). The idea is to iteratively
construct a run of the automaton U and check if the run is accepting (remember
that a run of U is Q-tree). Given the input word w, we first guess which position
i of w contains a wrong mapping and compute the set of states of the run
tree over w0 . . . wi reached at this position. Then, we compute the set of states
reached via choosing the transition for which the guessed position i is wrong.
Form here on, we guess the next input and branch universally for all valuations
of the output propositions, and compute the next set of reached states. This
is repeated 2|Q| times (At latest at position 2|Q| we reach a set of states, that
was seen before and enter a loop in the run). If during the procedure a valid
accepting configuration of the universal automaton was guessed, then we have
found a sequence of inputs ς for which no σ with σI = ς extends the prefix of
w0 . . . wi to a sequence in min(ϕ). Thus, w is a bad-prefix for min(ϕ). In each
step we only need to remember the currently reached set of states of U , and
whether we have seen an accepting configuration of U . Furthermore, the number
of iteration can be encoded in binary and is polynomial in the size of U , which
in turn is exponential in the length of ϕ. ��

5.3 Equivalence Queries

We move now to equivalence queries. To check whether a skeleton is a model
for a formula ϕ we apply the model checking algorithm presented in Sect. 4.
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The learning algorithm first constructs a bad-prefix automaton for the language
min(ϕ). We show that this automaton can be turned into a safety automaton for
min(ϕ) on which we can simulate a skeleton for ϕ. In case we cannot simulate the
skeleton on top of the safety automaton, then there is no skeleton that models
the formula ϕ.

Lemma 4. Given a deterministic bad-prefix automaton B for a safety property
ϕ, we can construct a deterministic safety automaton S for ϕ in time linear in
the size of B.

Construction. Let B = (Σ,Q, q0, F, δ) be a bad-prefix automaton for some
property ϕ and we assume it is complete. We construct a safety automaton
S = (Σ,Q′, q′

0, δ
′) for ϕ by first removing all states in F and then by iteratively

removing all resulting sink states in the automaton.

Remark 1. Note that if B is minimal, so is S.

Before we move on to the construction we consider following fact about skele-
tons and the language min(ϕ) for some formula ϕ. Let AP = O ∪ I be the set of
atomic propositions. Let S = (S, s0, τ, o) be a skeleton that models the formula
ϕ. Let π1 = (s0, i1)(s1, i1) . . . and π2 = (s0, i1)(s1, i2) . . . be paths in S where
s0, s1 ∈ S and i1, i2 ∈ I. Then, both sequences σπ1 = (o(s0) ∪ i1)(o(s1) ∪ i1) . . .
and σπ2 = (o(s0) ∪ i1)(o(s1) ∪ i2) . . . , must be in the set min(ϕ), otherwise S
is not a model of ϕ. This means, if the language min(ϕ) contains sequences
(o1 ∪ i1)(o2 ∪ i1) . . . and (o1 ∪ i1)(o′

2 ∪ i2) . . . with o2 �= o′
2 then there is no

skeleton that models ϕ, because min(ϕ) = L(S) and both traces cannot be trace
of the skeleton at the same time.

Definition 2 (Output Consistent). For a set of atomic propositions AP =
O ∪ I, a safety automaton A = (3AP, Q, q0, δ) is output consistent, if for each
state q ∈ Q there is a unique mapping v ∈ {⊥,�, ?}O and for all transitions
(q, v′, q′) ∈ δ, v′(p) = v(p) for all propositions p ∈ O.

Lemma 5. Given an LTL formula ϕ, if there is an output consistent safety
automaton A for the language min(ϕ), we can transform A to a skeleton S that
models ϕ. The size of S is equal to the size of A.

Construction. Let ϕ be an LTL formula and let A = (3AP, Q, q0, δ) be an out-
put consistent safety automaton for the language min(ϕ) constructed from a
deterministic bad-prefix automaton as in Lemma 4. Let Q = {q0, q1 . . . qn}.
We can construct a skeleton S = (S, s0, τ, o), where S = {s0, . . . , sn} and
o(si) = X ∩ O for (qi,X, q′) ∈ δ for some q′ ∈ Q, and (si, Y, sj) ∈ τ for Y ⊆ I
when (qi, o(si) ∪ Y, qj) ∈ δ. The skeleton S models ϕ, because it simulates the
language of A.

Lemma 6. Given a formula ϕ, if an output consistent safety automaton A with
L(A) = min(ϕ) is minimal then the skeleton S extracted form A is also minimal.
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Proof. This follows from the fact that we can use the reverse of the construction
presented in Lemma 5 to construct the safety automaton from the skeleton.
Assume S was not minimal, then there is a skeleton S ′ with less number of
states. This one, however, can be transformed backwards to a output consistent
automaton of same size, which contradicts the assumption. ��

Once we obtain a candidate skeleton, we check whether the skeleton is a
model of the formula using the model checking algorithm presented in Sect. 4.
If the skeleton is not a model, the algorithm returns a counterexample, which
is a lasso-shaped trace in the candidate skeleton. As this trace must contain a
bad-prefix, we can iteratively check all prefixes of the trace using membership
queries until we reach the (shortest) bad-prefix.

Using the results presented in Theorem 1 (Equivalence query checking is
in Expspace), Theorem 2 (L∗ learns a minimal bad-prefix automaton in poly-
nomial time in the size of the minimal automaton), Theorem 3 (Membership
checking is in Expspace), Lemma 2 (The language min(ϕ) can be characterized
by a finite automaton), Lemma 3 (The minimal skeleton is unique), Lemma 5
(The safety automaton is a skeleton), and Lemma 6, we can conclude now with
following theorem.

Theorem 4. Given an LTL formula ϕ, we can construct a skeleton S that mod-
els ϕ in time polynomial in the size of the minimal skeleton of ϕ.

6 Conclusion

We have presented an analysis technique for temporal specifications of reactive
systems that identifies, on the level of individual system outputs over time, which
parts of the implementation are determined by the specification, and which parts
are still open. Based on the algorithms developed in this paper, a synthesis
tool can represent this information in the form of a skeleton for the reactive
system. Skeletons are more informative than conventional transition systems in
identifying critical situations that are still underspecified.

Our automaton-based model checking algorithm for skeletons also serves as
the teaching oracle in the learning-based synthesis algorithm. The learning algo-
rithm L∗ can be used to synthesize minimal skeletons because skeletons define
safety languages, which can be characterized by a unique minimal bad-prefix
automaton. Once the automaton is learned, it can directly be transformed into
a skeleton for the specification. The skeleton is minimal and can be constructed
in time polynomial in the number of states of the skeleton.

In the development of a reactive system, skeletons can be seen as an inter-
mediate step between the specification of the system and its implementation. In
future work, we plan to investigate this aspect further, by exploring an incremen-
tal development process, where the refinement of the specification is guided by
the identification of underspecified situations through the skeletons synthesized
from the intermediate specifications.



286 B. Finkbeiner and H. Torfah

References

1. Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of GR(1) tem-
poral logic specifications. In: Formal Methods in Computer-Aided Design, FMCAD
2013, pp. 26–33. IEEE (2013)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). MIT Press, Cambridge (2008)

4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

5. Bruns, G., Godefroid, P.: Model checking with multi-valued logics. In: Dı́az, J.,
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Abstract. Modal Transition System (MTS) is a well studied formal-
ism for partial model specification. It allows a modeller to distinguish
between required, prohibited and possible transitions. Disjunctive MTS
(DMTS) is an extension of MTS that has been getting attention in
recent years. A key concept for (D)MTS is refinement, supporting a
development process where abstract specifications are gradually refined
into more concrete ones. Refinement comes in different flavours: strong,
observational (where τ -labelled transitions are taken into account), and
alphabet (allowing the comparison of models defined on different alpha-
bets). Another important operation on (D)MTS is that of merge: given
two models M and N , their merge is a model P which refines both M
and N , and which is the least refined one.

In this paper, we fill several missing parts in the theory of DMTS
refinement and merge. First and foremost, we define observational refine-
ment for DMTS. While an elementary concept, such a definition is miss-
ing from the literature to the best of our knowledge. We prove that our
definition is sound and that it complies with all relevant definitions from
the literature. Based on the new observational refinement for DMTS, we
examine the question of DMTS merge, which was defined so far for strong
refinement only. We show that observational merge can be achieved as a
natural extension of the existing algorithm for strong merge of DMTS.
For alphabet merge however, the situation is different. we prove that
DMTSs do not have a merge under alphabet refinement.

1 Introduction

Labelled Transition Systems (LTSs) [15] are a formalism for modelling and rea-
soning about system behaviour. Modal Transition Systems (MTSs) [17] are an
extension of LTSs that distinguishes between required, prohibited and possible
transitions, allowing a model to be only partially specified. MTSs come equipped
with the notion of refinement, supporting a development process where abstract
model specifications can be gradually refined into more concrete ones, until a
fully defined model – an LTS – is obtained. An MTS thus serves as a specification
for a set of LTSs – its implementations.

c© Springer International Publishing AG 2016
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Refinement of MTSs was investigated along two different dimensions. The
first examines modal vs. thorough refinements [1,2,16]. Given MTSs M and N ,
we say that N modally refines M if there exists a relation R between the states of
M and N such that required transitions in M are simulated by N , and possible
transitions from N are simulated by M . In contrast, N thoroughly refines M if its
set of implementations (denoted by �N�) is a subset of �M�. Modal refinement is
sound but not complete with respect to implementations. That is, if N modally
refines M then �N� ⊆ �M�, but the opposite does not always hold [16]. Thorough
refinement however, is much more complex to determine (EXPTIME-complete
for thorough refinement vs. PTIME-complete for modal refinement [6]), making
modal refinement more attractive for practical applications.

The second dimension of MTS refinement is that of refinement flavour.
Three different flavours have been defined for refinement of MTSs: strong [17],
where required transitions in the original model must exist in the refined model;
observational [11,14], where unobservable (τ -labelled) transitions are taken into
account; and alphabet refinement [12], where MTSs defined on different sets of
labels can be compared. In an alphabet refinement, labels in one MTS that
are not known to the other MTS are being hidden, by replacing them with τ
transitions. An observational refinement is then used for the comparison.

The first part of this paper deals with the refinement definition of an exten-
sion of MTSs, known as Disjunctive MTSs (DMTSs) [18]. In a DMTS, a dis-
junction of required transitions can be defined, increasing the expressiveness of
model specifications. DMTSs have been attracting growing attention in recent
years. Their conjunction as well as model checking were considered in [4], and
structural refinement was defined for them in [7]. Different variants of DMTSs
have been defined and analyzed [8,9,19], and DMTSs are treated as first-class
citizens in the family of transition systems [1,5,16].

Yet, to the best of our knowledge, modal observational refinement of DMTSs
was never fully defined. While strong refinement was already given in [18], where
DMTSs were first introduced, we found only two places in the literature where
observational refinement of DMTSs was considered. In [19] the authors proposed
a modal observational refinement definition for a subset of DMTS called dMTS,
where all transitions of a single disjunct must have the same label. τ -labels
were allowed on “possible” transitions only. In [3], we proposed an observational
implementation definition. Using that definition, a model L was said to be a
refinement of a DMTS M only if L was an LTS (making it a thorough refinement
definition). τ -transitions were allowed to exist only in L and not in M . Modal
observational refinement for full DMTSs is thus still missing from the literature.

Such a definition is the first contribution of our paper. We provide the defin-
ition, which is subtle and non-trivial, and prove that it agrees with the relevant
definitions from the literature. Specifically, we prove that it agrees with [3] when
implementations are concerned; with strong refinement of DMTS [18] when the
compared models have no τ -transitions; and with observational refinement of
MTSs [14] when models compared are MTSs. Most importantly, we prove that
our definition is sound with respect to implementations.
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The second part of the paper deals with the operation of conjunction, or
merge of modal transition systems. Given two models, it is often desirable
to compute a new model that captures all of their common implementations.
Such an operation supports independent development of different aspects of an
intended behaviour, followed by the composition of them into a single model
that accurately captures all aspects. The merge of two (D)MTSs M and N is a
(D)MTS that is a common refinement of both, and is the least refined one. Thus
it is sometimes called the least common refinement or the LCR.

Merge has been investigated in the literature for MTSs as well as for DMTSs,
for strong, observational and alphabet refinements [3,4,10,12,13,19,20]. It was
shown that MTSs are not closed for merge under strong refinement [10,13] (which
implies that they are not closed under observational and alphabet merges as well,
since observational merge must agree with strong merge when no τ -transitions
are involved). For DMTSs, a strong merge algorithm was given in [4]. Obser-
vational merge however, was only considered for the restricted subset of dMTS
where τ -labels are allowed on possible transitions only [19].

Our second contribution is thus an observational merge algorithm for DMTS.
Using our new observational refinement definition, we show that the strong merge
algorithm of [4] can be naturally extended to support observational merge as well.

Our third contribution deals with minimal common refinements (MCRs) [20]
under alphabet refinement. An MCR of two models M and N is a common refine-
ment P of them such that no other common refinement is less refined than it.
Other common refinements may exist though, that are incomparable with P . For
cases where a least common refinement (LCR) does not exist, it was suggested
that the merge of two models could be represented by a (possibly infinite) set of
MCRs. Algorithms for finding MCRs in special cases were proposed in [10,12,20],
for strong as well as for alphabet merge. It was assumed that, unlike LCR, an
MCR of two models always existed (given that the models are consistent, i.e.,
they have at least one implementation in common). We prove this assumption
to be wrong: we give an example of two DMTSs that, although consistent, do
not have an MCR under alphabet refinement.

Table 1 summarizes the known results for refinement and merge of MTSs and
DMTSs. We use ‘(?)’ to indicate the parts that were missing before this paper,
and mark our results in blue.

Table 1. Known results for MTS and DMTS. Our contributions are indicated by (?).
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The rest of the paper is organized as follows. In Sect. 2 we give preliminary
definitions. We present observational refinement of DMTSs in Sect. 3, and then
answer positively the question of merge for DMTSs under observational refine-
ment (Sect. 4). Section 5 answers negatively the question of the existence of an
MCR under alphabet refinement. We conclude the paper in Sect. 6. Proofs of
most theorems are omitted due to lack of space.

2 Preliminaries

2.1 LTSs and MTSs

All models considered in this paper are finite-state, where the set of states, the
set of labels and the set of transitions are all finite.

We start with the concept of Labelled Transition Systems (LTSs) [15] which
are commonly used for modeling concurrent systems.

Definition 1 (LTS [15]). A Labeled Transition System (LTS) is a structure
(S,L, δ, s0), where S is a set of states, L is a set of labels, δ ⊆ (S × L × S) is
the transition relation, and s0 ∈ S is the initial state.

Modal Transition Systems (MTSs) [17] are used to specify sets of LTSs. An MTS
distinguishes between two types of transitions – possible and required. Transitions
that do not appear at all are considered to be prohibited.

Definition 2 (MTS [17]). A Modal Transition System (MTS) M is a structure
(S,L, δp, δr, s0), where S is a set of states, L is a set of labels, s0 ∈ S is the initial
state, δp ⊆ (S × L × S) is the possible transition relation, δr ⊆ (S × L × S) is
the required transition relation. In addition, it is required that δr ⊆ δp.

Note that in an MTS, every ‘required’ transition is also ‘possible’. When the
required and possible transitions coincide, the MTS is actually an LTS.

We use the notation m
�−→p m′ to denote a possible transition (m, �,m′) ∈

δp, and m
�−→r m′ to denote a required transition (m, �,m′) ∈ δr. In figures, we

use m
�?−→ m′ for a possible transition and m

�−→ m′ for a required transition.
If the model is an LTS, all transitions are simply i

�−→ i′.
Strong refinement for MTSs has been defined by Larsen and Thomsen [17].

Definition 3 (Strong Modal Refinement of MTS [17]). Let M = (SM , L, δp
M ,

δr
M ,m0) and N = (SN , L, δp

N , δr
N , n0) be MTSs. We say that N is a strong

refinement of M (denoted M �sN) if there exists a strong refinement relation
Rs ⊆ SM × SN , such that (m0, n0) ∈ Rs and if (m,n) ∈ Rs then

1. for every transition (n �−→p n′) in N , there exists a transition (m �−→p m′)
in M such that (m′, n′) ∈ Rs; and

2. for every transition (m �−→r m′) in M , there exists (n �−→r n′) in N such
that (m′, n′) ∈ Rs.
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Since every LTS is also an MTS, we can compare MTSs and LTSs using
modal refinement. Let M be an MTS and I be an LTS. We say that I is an
implementation of M if M �sI. The set of all implementations of a model
M is denoted by �M�. An MTS N is said to thoroughly refine a model M if
�N� ⊆ �M�. As mentioned above, modal refinement is sound with respect to
implementations: M �sN implies �N� ⊆ �M�, but it is not complete [16].

Adding Unobservable Actions. MTSs have also been considered in a situa-
tion where some of the actions are internal (labeled τ), and are unobservable to
the outside viewer. When τ -transitions are present, we use a relaxed, observa-
tional, version of refinement, allowing a finite sequence of τ -transitions to exist
between observable ones. Huttel and Larsen [14] were the first to suggest an
observational refinement for MTSs. Fischbein et al. [10,11] demonstrated some
unintuitive phenomena allowed by the definition of [14], and proposed a different,
more intuitive observational refinement, which we adopt here.

We use Lτ to denote the set of labels L ∪ {τ}. We use m
�̂−→r m′ (or

m
�̂−→p m′) to mean that either � �= τ and m

�−→r m′ (m �−→p m′) holds, or
� = τ and m = m′. If � = τ , no transition (and therefore no label) exists at all.
Note that �̂ can never be τ .

Definition 4 (Observational Modal Refinement of MTSs [10]). Let M =
(SM , Lτ , δp

M , δr
M ,m0) and N = (SN , Lτ , δp

N , δr
N , n0) be MTSs. We say that N

is an observational refinement of M , denoted M �o N , if there exists a relation
Ro ⊆ SM × SN such that (m0, n0) ∈ Ro, and whenever (m,n) ∈ Ro, we have:

1. for every (n �−→p n′) in N , there exists a sequence of transitions in M :

m0
τ−→p m1

τ−→p · · · τ−→p mj
�̂−→p m′, such that m = m0, (mk, n) ∈ Ro for

0 ≤ k ≤ j, and (m′, n′) ∈ Ro; and
2. for every (m �−→r m′) in M , there exist a sequence of transitions in N :

n0
τ−→r n1

τ−→r · · · τ−→r nj
�̂−→r n′, such that n = n0, (m,nk) ∈ Ro for

0 ≤ k ≤ j, and (m′, n′) ∈ Ro.

Note that by Definition 4, a refining τ -sequence can be of length 0. If � = τ ,
then no refining transition is required to exist at all. Like in the strong refinement
case, if I is an LTS and M �o N , we say that I is an observational implementa-
tion of M . The set of observational implementations of M is denoted by �M�o.
N is a thorough observational refinement of M iff �N�o ⊆ �M�o.

2.2 DMTSs

Disjunctive Modal Transition Systems (DMTSs) [18] extend MTS by allowing
required transitions to be disjunctive.

Definition 5 (DMTS [18]). A Disjunctive Modal Transition System (DMTS)
M is a structure (S,L, δp,Δr, s0), where S is a set of states, L is a set of labels,
δp ⊆ (S × L × S) is the possible transition relation, Δr ⊆ (S × 2L×S) is the
disjunctive required transition relation, and s0 ∈ S is the initial state.
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We denote a disjunctive required transition in Δr by 〈s, V 〉, where V is a
set of pairs V = {(l1, s1), . . . , (ln, sn)} with l1, . . . , ln ∈ L and s1, . . . , sn ∈ S.
A disjunct (li, si) ∈ V is sometimes called a leg, and the entire disjunctive
transition – a DT. In figures, a disjunction between transitions is shown using a

bullet. For example, �•↗a↘b is a DT with two legs, on a and b. For example, Fig. 1
shows a DMTS A. It has two DTs emanating from state 0: one with two legs,
on labels c and τ , and the other with 3 legs, on labels b, τ and c.

We follow [4] to require also that (1) if 〈s, V 〉 ∈ Δr then V is not empty, and
(2) for all 〈s, V 〉 ∈ Δr and (�, s′) ∈ V , we have that (s, �, s′) ∈ δp. That is, every
leg in every DT is possible in the model.

A DMTS N strongly refines a DMTS M , if, roughly speaking, every possible
transition in N is also possible in M (like in the MTS case), and if for every DT
in M , there exists a DT in N with at least one leg from the original DT.

Definition 6 (Strong Modal Refinement of DMTS [18]). Let M = (SM , L, δp
M ,

Δr
M ,m0) and N = (SN , L, δp

N , Δr
N , n0) be DMTSs. We say that N is a strong

refinement of M , denoted M �S N , if there exists a strong refinement relation
RS ⊆ SM × SN , such that (m0, n0) ∈ RS, and if (m,n) ∈ RS then

1. for every possible transition (n �−→p n′) in N , there exists a transition

(m �−→p m′) in M such that (m′, n′) ∈ RS; and
2. for every DT 〈m,V 〉 ∈ Δr

M , there exists a DT 〈n,U〉 ∈ Δr
N , such that for

every leg (�, n′) ∈ U there exists a leg (�,m′) ∈ V with (m′, n′) ∈ RS.

Like in the MTS case, we now consider models with τ -transitions. A DT
〈m,V 〉 can thus include legs (τ,m′) ∈ V . To the best of our knowledge, modal
observational refinement for DMTSs has not been defined and we do so in Sect. 3.

[3] defined observational implementation for DMTSs, thereby handling the
case where the refining model is an LTS:

Definition 7 (Observational Implementation of DMTSs [3]). Let M = (SM ,
Lτ , δp

M ,Δr
M ,m0) be a DMTS and I = (SI , Lτ , δI , i

0) be an LTS. We say that
I is an observational implementation of M if there exists an observational
implementation relation ROI ⊆ SM × SI , such that (m0, i0) ∈ ROI , and for
all (m, i) ∈ ROI the following hold:

1. for every transition i
�−→ i′ in I, there exists a sequence of possible transitions

in M , m0
τ−→p m1

τ−→p . . .
τ−→p mj

�̂−→p m′, such that m = m0, (mk, i) ∈
ROI for 0 ≤ k ≤ j, and (m′, i′) ∈ ROI ; and

2. for every DT 〈m,V 〉 ∈ Δr
M , there exists a sequence of transitions in I, i0

τ−→
i1

τ−→ . . .
τ−→ ij

�̂−→ i′, such that i = i0, (m, ik) ∈ ROI for 0 ≤ k ≤ j, and
there exists a leg (�,m′) ∈ V such that (m′, i′) ∈ ROI .

Both strong and observational refinements compare models that are defined
on the same set of labels (alphabet). Yet it is often useful to consider models that
share only a subset of their alphabets [20]. We do that via alphabet refinement:
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we first hide labels of N that are unknown to M , by replacing them with τ ’s,
and then use observational refinement to compare them.

Definition 8 (Hiding). Let M = (SM , αM, δp,Δr,m0) be a DMTS and X
be a set of labels. M with the labels of X hidden, denoted M�X, is a DMTS
(SM , (αM\X)∪{τ}, δp

1 , Δr
1, m0), where Δr

1 is derived from Δr by replacing every
leg (�,m′) ∈ V in a DT 〈m,V 〉 ∈ Δr, with a leg (τ,m′) if and only if � ∈ X.
The set δp

1 is derived from δp in the same way, replacing possible transitions
m

�−→p m′ by m
τ−→p m′ if and only if � ∈ X. For a set of labels Y , we use

M@Y to denote M�(αM \ Y ).

Definition 9 (Alphabet Refinement [20]). A (D)MTS N = (SN , LN , δp
N ,

Δr
N , n0) is an alphabet refinement of a DMTS M = (SM , LM , δp

M , Δr
M ,m0),

denoted M �A N , if LM ⊆ LN and N@LM is an observational refinement
of M .

2.3 Merge

A merge of two models M and N is a common refinement of M and N that is the
least refined. The merge of two models is therefore also called their least common
refinement (LCR). For thorough refinement, the merge is a model P such that
�P � = �M�∩�N�. For modal refinement, we look for P such that M � P and
N � P , and for every other common refinement Q, we have that P � Q (where �
can be a strong, observational or alphabet refinement relation). In practice, there
are many cases where an LCR does not exist. To relax the requirement of an
LCR, the concept of a minimal common refinement (MCR) [20] was introduced.
P is an MCR of M and N if there does not exist a common refinement that is
less refined than P . There could, however, exist common refinements that are
incomparable to P .

MTSs are not closed for merge (no LCR and no MCR) for strong refinement
[10,13]. This implies that they are not closed for observational and alphabet
refinements as well, since if an observational merge algorithm were to exist for
MTSs, it would also have to apply to the case with no τ -transitions. Note that
the other direction does not hold: if a merge over a strong refinement exists,
it does not imply the existence of its counterpart for observational or alphabet
refinement.

DMTSs were shown to be closed for strong merge [4]. Note that the existence
of an LCR implies the existence of an MCR, but the other direction does not
hold. It was shown that DMTSs are not closed for alphabet merge (no LCR
exists) [3].

3 Observational Refinement of DMTS

In this section, we define modal observational refinement for DMTSs, a notion
that we found missing from the literature. In Sect. 3.1, we define observational
refinement for DMTS, and in Sect. 3.2, we provide “sanity checks” showing that
our observational refinement is a reasonable extension of existing definitions.



294 S. Ben-David et al.

3.1 Observational Refinement Definition

In the MTS world, the difference between strong and observational refinements is
that a finite path of τ -transitions is allowed to occur before a transition labelled
� (see Definition 4). In the DMTS world, for strong refinement, a disjunctive
transition replaces MTS’s required transition. For the observational case for
DMTSs, we introduce a new construction which we call a disjunctive cone.

We start with defining a must path.

Definition 10 (Must Path). Let M = (S,Lτ , δp,Δr, s) be a DMTS, and let
x0, x

′ ∈ S be states. A must path of length i from x0 to x′ in M is a sequence

of ‘legs’ x0
l1−→ x1

l2−→ · · · li−1−→ xi−1
li−→ x′ such that there exist V0, V1, ..., Vi−1 ∈

2Lτ ×S with 〈x0, V0〉 ∈ Δr, (l1, x1) ∈ V0, 〈x1, V1〉 ∈ Δr, (l2, x2) ∈ V1, · · · ,
〈xi−1, Vi−1〉 ∈ Δr and (li, x′) ∈ Vi−1.

A must path π = x0
l1−→ x1

l2−→ · · · li−1−→ xi−1
li−→ x′ is maximal in M if

either x′ = xi for some xi on π (that is, π has a loop), or if from x′ there is no
outgoing required transition in M .

Definition 11 (Disjunctive Cone). Let M = (S,Lτ , δp,Δr, s0) be a DMTS, and
x ∈ S be a state. A disjunctive cone with a root x in M is a DMTS Cx =
(Sc, Lτ , δp

c ,Δr
c , x) such that Sc ⊆ S, δp

c ⊆ δp, Δr
c ⊆ Δr, and for every s ∈ Sc

(1) there exists a must path from x to s, and (2) there exists at most one DT
〈s, V 〉 ∈ Δr

c.

A disjunctive cone C ⊆ M is a connected sub-model of M , where each state has
a single (or none) outgoing DT. Note that each DT in M is either entirely in C
or not at all (that is, all legs of the DT should be taken). A disjunctive cone is
a natural extension of a path in MTS to the disjunctive setting of DMTS.

Since every DT may have τ -legs, a disjunctive cone may have must paths
that consist of only τ -transitions. For a given disjunctive cone Cx with a root x,
we denote the set of all maximal must paths in Cx that start at x and include
only τ -transitions by TCx

.

Example 1 (Disjunctive Cone). Consider a DMTS B in Fig. 1. State 6 of B has
two outgoing DTs: 〈6, {(c, 7)}〉 and 〈6, {(b, 8), (τ, 9)}〉. The sub-DMTSs C1

6 ⊂ B
and C2

6 ⊂ B are two of B’s disjunctive cones with root 6, each containing a single
DT from 6.

Let 〈m,V 〉 be a DT in a DMTS M . When dealing with modal refinement,
we have to compare it to a DT 〈n,U〉 in a refining model N . As in the case
of MTS, we use (�̂, n′) ∈ U to mean that either � �= τ , or � = τ and n′ = n.
Here as well, �̂ itself can never be τ . Note, however, that if (�̂, n′) ∈ U is the
single leg in U and if � = τ , then the leg (�̂, n′) does not actually exist, which
makes U empty. This contradicts our requirement that a DT should never be
empty. We thus use the notation DT* for a DT 〈n,U〉 where U is potentially
empty. Note that if a DT* 〈n, ∅〉 observationally refines a DT 〈m,V 〉 via some
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observational refinement RO, it means that there exists a leg (τ,m′) in V such
that (m′, n) ∈ RO.

We now introduce the main definition of the paper.

Definition 12 (Observational Refinement of DMTS). Let M = (SM , Lτ , δp
M ,

Δr
M ,m0) and N = (SN , Lτ , δp

N , Δr
N , n0) be DMTSs. We say that N observa-

tionally refines M (M �O N) if there exists an observational refinement relation
RO ⊆ SM ×SN , such that (m0, n0) ∈ RO, and if (m,n) ∈ RO then the following
hold:

1. for every transition (n �−→p n′) in N , there exists a possible path in M :

m0
τ−→p m1

τ−→p m2
τ−→p · · · τ−→p mj

�̂−→p m′ such that m0 = m and
(mi, n) ∈ RO for 0 ≤ i ≤ j and (m′, n′) ∈ RO; and

2. for every DT 〈m,V 〉 ∈ Δr
M , there exists a disjunctive cone Cn ⊆ N with root

n and set of τ -paths TCn
, such that all paths in TCn

are finite, and for every
π = n0

τ−→r n1
τ−→r n2

τ−→r · · · τ−→r nj in TCn
, for every ni on π where

0 ≤ i ≤ j,
(a) (m,ni) ∈ RO, and
(b) there exists a DT* 〈ni, Ui〉 ∈ Δr

c, such that for every leg (�̂, n′
i) ∈ Ui there

is a leg (�,m′) ∈ V with (m′, n′
i) ∈ RO.

The refining disjunctive cone in N for a DT 〈m,V 〉 consists of DTs that may
have both τ -labelled and �-labelled legs, with � �= τ . All the �-labelled legs must
have a corresponding leg in V . τ -legs do not correspond to legs in V . Thus, if a
DT includes only τ -labelled legs, then it satisfies Condition 2(b) of Definition 12
vacuously, although the DT is not empty. This is because Condition 2(b) talks
only about legs that are not labelled with τ . Note also that the DT 〈ni, Ui〉 must
include the leg (τ, ni+1) (for i < j), since ni has at most one outgoing DT in
Cn. Paths with τ -transitions are finite, guaranteeing that a DT with no τ -legs
is reached eventually on every τ -path.

Example 2 (Observational Refinement). The DMTS B in Fig. 1 is an obser-
vational refinement of the DMTS A from the same figure, with the observational
refinement relation RO = {(0, 6), (5, 7), (2, 8), (0, 9), (3, 10), (0, 11), (3, 12)}. The
disjunctive cone C1

6 refines the DT 〈0, V 〉 ∈ A, where V = {(b, 2), (τ, 1), (c, 3)}.
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45
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c b
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b
τ

c

6 7
c

C2
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Fig. 1. Example DMTSs. DMTS B is an observational refinement of DMTS A. Sub-
DMTSs C1

6 ⊂ B and C2
6 ⊂ B are examples of disjunctive cones.
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The set of τ -paths of C1
6 consists of the transition 6 τ−→ 9. Both (0, 6) and (0, 9)

belong to RO as required by Condition 2.(a) of Definition 12. Condition 2.(b) of
Definition 12 also holds: from state 6 there exists a DT with leg (b, 8) refining V ,
and from state 9 the leg (c, 10) refines V as well.

3.2 Compatibility with Existing Definitions

We verify the validity of Definition 12 by proving a few theorems that ensure
its compatibility with the relevant definitions from Sect. 2. The proofs of all
theorems are given in the Appendix.

Theorem 1 ensures our definition agrees with observational implementation
refinement for DMTSs.

Theorem 1 (Compatibility with Observational Implementations). Let M be a
DMTS and I be an LTS. I is an observational implementation of M (Defini-
tion 7) if and only if it is an observational refinement of M (Definition 12).

For DMTSs with no τ -transitions, Theorem 2 indicates that our definition
agrees with strong refinement of DMTSs (Definition 6).

Theorem 2 (Compatibility with Strong Refinement). Let M and N be two
τ -free DMTSs. Then M �S N if and only if M �O N .

Next, since DMTSs extend MTSs, we need to make sure that observational
refinement for DMTSs agrees with the one for MTSs.

Theorem 3 (Compatibility with the MTS Refinement). Let M and N be MTSs.
Then M �o N (Definition 4) if and only if M �O N (Definition 12).

Finally, Theorem4 is the main result of this section, stating that our defini-
tion is in fact sound, that is, if N refines M according to Definition 12, then the
set of implementations of N is included in the set of implementations of M .

Theorem 4 (Soundness). If M �O N then �N� ⊆ �M�.

Note that an observational refinement relation for DMTS cannot be complete
with respect to implementations. This is because the definition must be com-
patible with strong refinement and with MTS refinement, and thus the simple
examples showing non-completeness for MTSs [16] hold in this case as well.

4 DMTS Merge Under Observational Semantics

In this section, we examine the question of DMTS merge in light of the new
modal observational refinement semantics. DMTSs were shown to be closed for
merge under strong refinement semantics [4]. We show that DMTSs are closed
under observational merge as well.
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In order for two DMTSs to be merged, the models must be consistent, that
is, they must have at least one common observational implementation. The algo-
rithm for merging two DMTSs is based on a consistency relation between the
states of the models to be merged. States m and n are in a consistency relation if
for each DT 〈m,V 〉, at least one leg in V has a corresponding possible transition
from n (possibly after a finite sequence of possible τ -transitions) and vice versa:

Definition 13 (Observational DMTSs Consistency Relation (based on [4])). An
observational consistency relation between DMTSs M = (SM , Lτ , δp

M ,Δr
M ,m0)

and N = (SN , Lτ , δp
N ,Δr

N , n0) is a relation C ⊆ SM × SN s.t. (m0, n0) ∈ C and
∀(m,n) ∈ C, the following holds:

1. ∀〈m,V 〉 ∈ Δr
M , ∃(l,m′) ∈ V and a sequence of possible transitions n0

τ−→p

n1
τ−→p · · · τ−→p nj

�̂−→p n′ in N such that (m,ni) ∈ C for 0 ≤ i ≤ j, and
(m′, n′) ∈ C; and

2. ∀〈n,U〉 ∈ Δr
N , ∃(�, n′) ∈ U and m0

τ−→p m1
τ−→p · · · τ−→p mj

�̂−→p m′ in M
such that (mi, n) ∈ C for 0 ≤ i ≤ j and (m′, n′) ∈ C.
Based on a consistency relation C between M and N , we can now merge

them into a single DMTS that represents models that are common to both.
The composition is done by constructing, for each DT 〈m,V 〉 in M (or N), a
corresponding DT 〈p,W 〉 in the merged model P , where a leg (�, p′) exists in W

whenever (i) (�,m′) exists in V , (ii) a sequence of transitions n0
τ−→p n1

τ−→p

· · · τ−→p nj
�̂−→p n′ is possible in N , such that (m,ni) ∈ C for 0 ≤ i ≤ j, and

(iii) (m′, n′) ∈ C.

Definition 14 (Merge (based on [4])). Let M and N be DMTSs with the same
vocabulary L, and let C be a consistency relation between them. The + operator
between M and N is defined as [M + N ]C = (C, Lτ , δp

M+N ,Δr
M+N , (m0, n0)).

δp
M+N and Δr

M+N are defined to be the smallest relations that satisfy the follow-
ing rules:

(RP ) 〈m,V 〉
〈(m,n),W 〉 , whereW = {(l, (m′, n′)) | (l,m′) ∈ ∧
n

τ−→p n1
τ−→p · · · τ−→p nj

�̂−→p n′ inN,∧(m,nj) ∈ C ∧ (m′, n′) ∈ C}
(PR) 〈n,U〉

〈(m,n),W 〉 , whereW = {(l, (m′, n′)) | (l, n′) ∈ U ∧
m

τ−→p m1
τ−→p · · · τ−→p mk

�̂−→p m′ inM,∧(mj , n) ∈ C ∧ (m′, n′) ∈ C}
(PP1) m

�−→pm′, n
τ−→pn1

τ−→p··· τ−→pnj
�̂−→pn′∧(mj ,n)∈C∧(m′,n′)∈C

(m,n)
�−→p(m′,n′)

(PP2) n
�−→pn′, m

τ−→pm1
τ−→p··· τ−→pmk

�̂−→pm′∧(m,nj)∈C∧(m′,n′)∈C
(m,n)

�−→p(m′,n′)

The difference between the above definition and the one in [4] is in the treat-
ment of the τ -transitions (just like the difference between the strong and the
observational refinement). When constructing a DT 〈(m,n),W 〉 ∈ [M + N ]C
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Fig. 2. H is an observational merge of F and G. The nodes of H are labelled with pairs
of the consistency relation between F and G.

that corresponds to a DT 〈m,V 〉 ∈ M (rule RP), we skip τ -transitions in N
that lead to an appropriate transition corresponding to a leg in V . The skipped
τ -transitions are instead considered by rule PR when a DT in [M + N ]C is
introduced for N .

Example 3. Consider DMTSs F and G from Fig. 2. The two models are consis-
tent, with the maximal consistency relation C = {(0, 5), (3, 5), (4, 6), (0, 7), (1, 8),
(2, 8)}. DMTS H is their merge. It includes two DTs, one corresponding to the
single DT of F (constructed by the RP rule), and the other – corresponding to
the DT of G (constructed by the PR rule).

When C is the largest consistency relation between M and N , the composition
[M + N ]C becomes the merge of M and N . We state that formally below.

Theorem 5 (Correctness of Observational DMTS Merge). Let M and N be
DMTSs with the same vocabulary. If C is the largest consistency relation between
the states of M and N , then [M + N ]C is the LCR of M and N .

5 No MCR Under Alphabet Refinement

We now look at the merge of two models that are defined over different alphabets.
In such a case, we deal with the alphabet merge, that is, we use the alphabet
refinement (Definition 9) to determine if a model P is a common refinement of
models M and N . In [3], we showed that DMTSs are not closed for merge under
thorough alphabet refinement. Since modal refinement is sound with respect
to implementations, this implies non-closure of merge w.r.t. modal alphabet
refinement as well. Thus the question of the existence of an LCR is answered
negatively. What about an MCR? Recall that the existence of an LCR implies
the existence of an MCR, but the opposite direction does not hold. Can the
merge of two DMTSs be represented as a set of minimal common refinements
P1, P2, · · · such that no other common refinement is strictly less refined than
them? In this section, we answer the MCR question negatively as well.

What makes alphabet merge different from strong and observational ones is
the fact that different types of refinements are mixed together. Let M and N be
DMTSs over the alphabets LM and LN , respectively, with no τ -transitions. A
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common refinement P of M and N is defined over the alphabet LM ∪ LN . We
then use hiding and observational refinement to compare P to M and N . Let Q
be another common refinement of M and N . Note that P and Q are now defined
over the same alphabet, and if no τ -transitions exist, we use strong refinement
to compare them. Thus, transitions in P that were considered unobservable
when a relation was defined between P and M , are treated as observable in a
refinement relation between P and Q. While the number of τ -transitions for the
observational refinement does not matter, as long as the sequence is finite, this
number does matter for strong refinement. This difference makes it impossible
to find a minimal common alphabet refinement, as we show in this section.

In Sect. 5.1, we introduce two lemmas proven in the Appendix. We use them
to prove the main theorem in Sect. 5.2.

5.1 Facts About Strong Refinement

We examine a strong refinement relation between two DMTSs, and show that a
sequence of possible transitions is preserved under such a relation, and so does
a sequence of required transitions.

Definition 15 (Maybe Path). Let M = (SM , Lτ , δp,Δr, sm) be a DMTS and

y, y′ ∈ SM be states. A sequence of possible transitions y
l1−→p y1

l2−→p ...
li−1−→p

yi−1
li−→p y′ in M is called a maybe path of length i from y to y′.

Lemma 1. Let M = (SM , Lτ , δp,Δr, sm) and N = (SN , Lτ , δp,Δr, sn) be
DMTSs such that M �S N , with a strong refinement relation RS. Let (m,n) ∈
RS. Let y1 ∈ SN be a state in N . If there exists a maybe path from n to y1 of
length i in N , then there must exist a state x1 ∈ SM and a maybe path of length
i from m to x1 such that (x1, y1) ∈ RS.

Let Cx be a disjunctive cone. States with no outgoing DTs in Cx are called
front states. We denote the set of front states of Cx by FCx

. The depth of a
disjunctive cone is the length of the longest maximal must path in Cx (see
Definition 10). Note that if Cx is of depth i < ∞, then all maximal must paths
in Cx are finite, and each of them ends in a front state of Cx.

Example 4. Consider the disjunctive cone C1
6 in Fig. 1 (Sect. 3.1). Its depth is

2, and its set of front states is FC1
6

= {8, 10}.
Lemma 2. Let M = (SM , L, δp,Δr, sm) and N = (SN , L, δp,Δr, sn) be DMTSs
such that M �S N with the strong refinement relation RS. Let (m,n) ∈ RS. Let
Cm be a disjunctive cone from m of depth i < ∞, and let FCm

be the set of front
states in Cm. Then there exists a must path π from n to a state y ∈ SN and
there exists a state x ∈ FCm

, such that (x, y) ∈ RS and |π| ≤ i.
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Fig. 3. Two DMTSs D and E that do not have an MCR. M is an example of an alphabet
common refinement of D and E, and C3 ⊂ M is a disjunctive cone.

5.2 No MCR

We now prove the main result of the section, stated in the theorem below.

Theorem 6. Consistent DMTSs do not always have a minimal common alpha-
bet refinement.

In order to prove this theorem we introduce two very simple DMTSs, D and
E, shown in Fig. 3. They are consistent with each other and have many common
alphabet refinements, yet they do not have an MCR, as we prove below.

Let us first study the nature of a common alphabet refinement M of D and E.
Since D �A M, all states in M correspond, in the observational alphabet relation,
to either D0 or D1. We call them 0-states and 1-states, respectively. 0-states in
M are those that appear before a transition labeled b on a path from the initial
state. 1-states in M appear after a transition labeled b. 0-states and 1-states
cannot be related via the observation alphabet relation since from a 0-state we
eventually reach a b-labelled transition, while from a 1-state such a transition
cannot be reached. We thus have the following observation.

Observation 1. Let M and N be common refinements of D and E such that
M �S N with the refinement relation RS. For every (x, y) ∈ RS, either both x
and y are 0-states, or they are both 1-states.

From every 0-state x, a 1-state is guaranteed to be reached. Otherwise, x
cannot correspond to D0 since there is a required transition on b from D0. An
observational refinement allows a finite number of τ -transitions to exist, after
which a required transition on b must be present. Thus, from every 0-state x,
there must exist a DT such that all of its legs lead, without loops, to a 1-state.

Observation 2. Let M be a common refinement of D and E. From every 0-state
in M there must exist a DT such that none of its legs form a loop on c-labelled
transitions.

Otherwise, there is a refinement of x that does not reach a 1-state. More
formally, we have the following claim.

Claim 1. From every 0-state x in M, there exists a disjunctive cone Cx with
finite maximal must paths such that all of its front states are 1-states.
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Proof. Assume by way of contradiction that there exists a 0-state x such that
for all disjunctive cones starting from x, at least one front state is a 0-state.
Let us examine a maximal such disjunctive cone Cx, in the sense that no DT
can be added from any front state s (either because a DT does not exist from
s or because adding any DT will form a directed loop). Then s contradicts
Observation 2. ��
Example 5. DMTS M in Fig. 3 is a common alphabet refinement of D and E.
Its 0-states are 3,5,8 and its 1-states are 4,6,7,9. DMTS C3 is a disjunctive cone
for which all of its front states are 1-states. By Claim 1, such a disjunctive cone
must exist in every common alphabet refinement of D and E.

Based on the above observations and Claim 1, we can now prove Theorem 6.
The idea of the proof is to construct, for any given common refinement M of D
and E, a common refinement M′ that is strictly less refined than M (M′ �S M
and M ��S M′). This would show that no common refinement can be minimal.

Proof of Theorem 6. Let M = (SM , L, δp,Δr, sm) be a common alphabet
refinement of D and E. We construct a less refined common alphabet refinement
M′. We first examine disjunctive cones C in M, from 0-states, with front states
that are 1-states. By Claim 1, such a disjunctive cone exists from every 0-state.
Let DC be the set of all such disjunctive cones in M:

DC = {Cx | x is a 0-state, Cx is a disjunctive cone where FCx
has only 1-states}

Consider the depth |Cx| of disjunctive cones in DC. Let k1 = max{|Cx| | Cx ∈
DC}. Let k = 2k1. We now construct M′ = (S′

M , L, δ′p,Δ′r, s′
m) as follows:

• we define s′
m = sm;

• we add k states: S′
M = SM ∪ {y1, · · · , yk};

• we add k possible transitions to δp: δ′p = δp ∪ {s′
m

c−→p y1
c−→p y2

c−→p

· · · c−→p yk};
• and we add k required transitions to Δr: Δ′r = Δr ∪ {yk

c−→r yk−1
c−→r

· · · c−→r y1
c−→r s′

m}.

Clearly, M′ is a common alphabet refinement of D and E: all new states are 0-
states. Also, M refines M′ by removing the transition sm

c−→p y1. Thus, M′ �S M.
It remains to be shown that M ��S M′. Assume by way of contradiction

that M �S M′. Thus, there exists a refinement relation RS between M and M′

such that (sm, s′
m) ∈ RS . In M′, there is a maybe path from s′

m to yk (by
construction). By Lemma 1, there exists a maybe path in M from sm to a state
x, and (x, yk) ∈ RS . Since yk is a 0-state, and x is related to yk, we have by
Observation 1 that x is also a 0-state. By Claim 1, there exists a disjunctive cone
Cx in M from x, such that all its front states are 1-states. Let i be the depth
of Cx. We know that i ≤ k1 (by the definition of k1). Since (x, yk) ∈ RS , by
Lemma 2, there exists a must path π from yk to a 1-state in M′ with |π| ≤ i.
However, by our construction, the shortest must path in M′ from yk to a 1-
state is of length k + 1 (k transitions to get back from yk to s′

m and at least
another b-labelled transition to get to a 1-state). Recall that k = 2k1. We get
that |π| ≤ i ≤ k1 but also |π| > 2k1 – a contradiction. ��
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6 Conclusion

In this paper, we revisited DMTSs and added a few pieces to the puzzle of their
analysis. We defined DMTS modal observational refinement, a definition that
was missing in the literature. We then used this definition to show that DMTSs
are closed under observational merge, but that for the alphabet merge, even a
minimal common refinement cannot be found.

In [3], we introduced a new formalism, rDMTS, and characterized the class
of rDMTSs that are closed for alphabet merge. Since no modal observational
refinement existed at that time, we defined merge using thorough refinement.
We plan to extend the theory of rDMTSs to support modal alphabet refinement
as well. This will provide the first practical solution for merging of models defined
over different alphabets, since the complexity of modal refinement is much lower
than that of thorough (PTIME-complete vs. EXPTIME-complete [6]).
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Abstract. Kobayashi and Igarashi proposed model checking of μHORS
(recursively-typed higher-order recursion schemes), by which a wide
range of programs such as object-oriented programs and multi-threaded
programs can be precisely modeled and verified. In this work, we present
a procedure for μHORS model checking that improves the procedure
based on automata-based abstraction refinement proposed by Kobayashi
and Li. The new procedure optimizes each step of the abstract-check-
refine paradigm of the previous procedure. Specially, it combines the
strengths of automata-based and type-based abstraction refinement as
equivalence-based abstraction refinement. We have implemented the
new procedure, and confirmed that it always outperformed the original
automata-based procedure on runtime efficiency, and successfully verified
all benchmarks which were previously impossible.

1 Introduction

The model checking of higher-order recursion schemes (HORS) can be considered
as a generalization of finite-state and pushdown model checking, and has been
recently applied to automated verification of higher-order programs [6,10,13]. A
HORS [5,12] is a simply-typed higher-order grammar that generates a possibly
infinite tree called a value tree. The model checking problem for HORS is to
check whether the value tree generated by HORS satisfies a given tree property.
The problem is decidable [12] and a few efficient algorithms had been developed
for it [3,14], despite its extremely high worst-case complexity. Since HORS can
be considered as a simply-typed higher-order functional program with recursion
and tree constructors, the verification of functional programs (after predicate
abstraction if necessary) can be naturally reduced to HORS model checking.

Although HORS can serve as a precise model for simply-typed higher-order
functional programs, it could not be used for describing more expressive pro-
grams, such as functional programs with recursive types, object-oriented pro-
grams, and multi-threaded programs. To improve the expressiveness of HORS,
Kobayashi and Igarashi introduced μHORS, an extension of HORS with recur-
sive types, and studied a model checking problem for it [7]. Using μHORS,
object-oriented programs and multi-threaded programs can be precisely mod-
eled. They showed that μHORS model checking is undecidable, and developed
a sound procedure for it based on the inference of recursive intersection types
c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 304–320, 2016.
DOI: 10.1007/978-3-319-46520-3 20
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that certify the safety of the grammar. The procedure is also relatively complete
with respect to recursive intersection types: the grammar is eventually proved
to be safe, if it is typable under some recursive intersection type system.

Kobayashi and Li later proposed an automata-based abstraction refinement
procedure for μHORS model checking [8]. Following the abstract-check-refine
paradigm, their procedure abstracts the configuration graph (that is the prod-
uct reduction) of the grammar and the property automaton [6] as a finite graph,
called abstract configuration graph (ACG), such that each term is abstracted
as a state of a given finite tree automaton during the reduction, and the tree
automaton is gradually refined for abstraction by counterexamples. Their pro-
cedure is sound and relatively complete with respect to a regular set of term
trees: the grammar is eventually proved to be safe if there exists a regular set of
term trees that is a safety inductive invariants for the grammar. Although their
procedure is more efficient than the one proposed by Kobayashi and Igarashi, it
is still not scalable enough as exhibited by their experiments.

To boost the scalability of μHORS model checking, we present a procedure
that improves each step in the abstract-check-refine paradigm of the previous
automata-based procedure as follows:

(1) It combines the strengths of automata-based and type-based abstraction
refinement as equivalence-based abstraction refinement: terms are identified
to be equivalent during the reduction if and only if they are abstracted as
the same state of the tree automaton and inhabit the same (non-recursive)
intersection type; and such an equivalence relation is gradually refined by
counterexamples.

(2) The ACG construction is optimized so that the abstraction is more precise
(i.e., the resulting ACG is in smaller size) than that of the original procedure,
and therefore, our procedure is expected to scale better as confirmed by
experiments.

(3) An ACG is constructed by expanding different kinds of nodes in a specific
order and by classifying the edges as two kinds of abstract and concrete
reduction, respectively, so that the feasibility checking step (as to whether
a counterexample is spurious or not) can be replaced by a simple and light-
weight traversal of the error trace.

We have implemented the new procedure, and our empirical study showed
that, it always outperformed the original procedure on runtime efficiency, and
successfully verified all benchmarks from [8] which were previously impossible.

On the technical side, our new procedure also preserves the properties of
the automata-based procedure, i.e., it is sound and relatively complete with
respect to safety invariants in terms of a regular tree language. Note that, we
are concerned with μHORS model checking in this work, but our techniques are
applicable to the type-based abstraction refinement procedure for simply-typed
HORS model checking [14].

The rest of the paper is organized as follows: Sect. 2 reviews μHORS model
checking. Section 3 describes an improved procedure for μHORS model check-
ing and its properties. Section 4 reports the implementation and experimental
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results. Section 5 discusses related work and Sect. 6 concludes the paper. The
proofs of the theorems can be found in a full version of the paper [11].

2 Preliminaries

Let N+ be the set of positive integers, and let E be a (finite) set. A tree D is a
prefix-closed subset of N∗

+ such that πj ∈ D implies {π, π1, . . . , π(j − 1)} ⊆ D,
and an E-labeled tree is a map from a tree to E. We write dom(f) for the domain
of a map f . A ranked alphabet Σ is a map from a finite set of symbols to non-
negative integers, such that Σ(a) denotes the arity of each symbol a ∈ dom(Σ).
A Σ-labeled ranked tree T is a Σ-labeled tree satisfying that T (π) = a implies
{i | πi ∈ dom(T )} = {1, . . . , Σ(a)} for any π ∈ dom(T ). Here, an element
a ∈ dom(Σ) is used as a tree constructor.

The set of recursive types, ranged over by κ, is defined by:

κ (recursive types)::=α | κ1 → · · · → κm → o | μα.κ

where m ≥ 0, α is a type variable, and μα.κ is an equi-recursive type with
α bound by μ within the scope κ [2]. Here, → binds tighter than the binding
operator μ. Intuitively, the type o represents (term) trees, and μα.κ represents a
solution (that is a finite or infinite regular tree) to the type equation α = κ, and
therefore μα.κ = [μα.κ/α]κ, e.g., μα.α → o and (μα.α → o) → o are identical.
The type κ1 → · · · → κm → o describes a function value that takes as arguments
of type κ1, . . . , κm and returns a tree. As usual, we call a type κ closed if all the
type variables in κ are bound. We only consider closed types in the sequel.

Given a set of variables V, a set of function symbols F that is disjoint with V,
and a ranked alphabet Σ, the set of applicative terms (or shortly terms), ranged
over by t, is defined by: t (terms)::=x | a | t1t2, where x ranges over V ∪ F , and
a ranges over dom(Σ). A ground term is a term that contains no variables in V.

A type environment K for recursive types is a map from V ∪ F ∪ dom(Σ)
to recursive types. The type judgement relation K � t : κ is the least relation
closed under the following rules:

K, x : κ � x : κ
K � a : o → · · · → o︸ ︷︷ ︸

Σ(a)

→ o K � t0 : κ1 → κ2 K � t1 : κ1

K � t0t1 : κ2

Definition 1. A μHORS G is a tuple (N , Σ,R, S), where

– N is a map from a set of non-terminal symbols to their recursive types.
– Σ is a ranked alphabet, and dom(Σ) is called a set of terminal symbols.
– R is a set of rewriting rules in the form F x1 · · · xm → t where F is a non-

terminal symbol and N (F ) = κ1 → · · · → κm → o, and t is an applicative
term such that N , x1 :κ1, . . . , xm :κm � t : o. There exists exactly one rewriting
rule for each non-terminal symbol F in dom(N ).

– S ∈ dom(N ) is called start symbol with N (S) = o.
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A μHORS [7] is a HORS [12] extended with recursive types, and can be con-
sidered a higher-order, call-by name, and recursively-typed functional program
that generates a (possibly infinite) term tree.

Given a μHORS G, the rewrite relation −→G on terms is defined by:

F x̃ → t ∈ R
F s̃ −→G [s̃/x̃]t

ti −→G t′i i ∈ [1..Σ(a)]
a t1 · · · ti · · · tΣ(a) −→G a t1 · · · t′i · · · tΣ(a)

where x̃ and s̃ denote sequences of variables and terms, respectively.
Let ⊥ 	∈ dom(Σ) be a fresh symbol. Let Σ⊥ be the ranked alphabet that

extends Σ with ⊥ such that Σ⊥(⊥) = 0. For a ground term t of type o, we
define the Σ⊥-labeled ranked tree t⊥ inductively as follows:

(a t1 · · · tΣ(a))
⊥ = a (t1⊥) · · · (tΣ(a)

⊥) (F s̃ )⊥ = ⊥

We define a partial order 
 on Σ⊥-labeled ranked trees such that C[⊥] 
 C[t]
for any tree t and tree context C. Let

⊔
be the least upper-bound of trees with

respect to 
. The value tree Tree(G) of G is a Σ⊥-labeled tree
⊔{t⊥ | S −→∗

G t}.

Example 1. Let G1 = (Σ,N ,R, S) where Σ = {a �→ 3, b �→ 1, c �→ 0},
N = {S �→ o, F �→ μα.(α → (o → o) → (o → o) → o), B �→ (o → o) → o → o},
R = {S → F F b b, B hx → b(hx)

F f k g → a (kc) (g(gc)) (f f (Bk) (Bg))}
a

b

c

b2

c

a

b2

c

b4

c

...

S is reduced as follows:

S → F F b b → a (b c) (b2 c) (F F (B b) (B b)) → · · ·

Tree(G1) is shown to the right.

Definition 2. A trivial tree automaton (TTA) A is a tuple (Σ,Q, δ,Q0),
where Σ is a ranked alphabet, Q is a set of states, δ ⊆ Q × dom(Σ) × Q∗ sat-
isfying that m = Σ(a) if (q, a, q1 · · · qm) ∈ δ, and Q0 ⊆ Q. Given a Σ-labeled
ranked tree T . A run tree of A over T is a Q-labeled ranked tree R such that (i)
dom(R) = dom(T ), (ii) R(ε) ∈ Q0, and (iii) (R(π), T (π), R(π1) · · · R(πΣ(a)) ∈
δ for any π ∈ dom(R). A accepts T if there is a run tree of A over T . We denote
by L(A) the set of trees accepted by A, and by L(A, q) the set of trees accepted
by the automaton (Σ,Q, δ, {q}). A is top-down deterministic if (i) |Q0| = 1
and (ii) (q, a, q1 · · · qm), (q, a, q′

1 · · · q′
m) ∈ δ implies qi = q′

i for each i ∈ [1..m];
and is moreover total if there exists (q, a, q1 · · · qΣ(a)) ∈ δ for any q ∈ Q
and a ∈ dom(Σ). We often write δ(q, a) = q1 · · · qm for (q, a, q1 · · · qm) ∈ δ
when A is top-down deterministic. Dually, A is bottom-up deterministic if
(q, a, q1 · · · qm), (q′, a, q1 · · · qm) ∈ δ implies q = q′, and is total if there exists
(q, a, q1 · · · qΣ(a)) ∈ δ for any q1, . . . , qΣ(a) ∈ Q and a ∈ dom(Σ).



308 X. Li and N. Kobayashi

Trivial automata are originally considered by Aehlig [1] as non-deterministic
Büchi tree automata where all the states are accepting. Note that, for finite trees,
a topdown (resp bottom-up) deterministic TTA is just an ordinary topdown
(resp bottom-up) deterministic finite tree automaton [4]. In this paper, we only
consider topdown deterministic TTA.

We fix a μHORS G = (N , Σ,R, S) and a topdown deterministic TTA A =
(Σ,Q, δ, q0) for the rest of paper. Let A⊥ denote the automaton (Σ⊥, Q, δ ∪
{(q,⊥, ε) | q ∈ Q}, δ, q0). A μHORS model checking problem is to decide whether
Tree(G) ∈ L(A⊥). The μHORS model checking problem is undecidable [7], and
we are concerned with sound and incomplete procedures for it.

Example 2. Let A1 be (Σ, {q0, q1, q2, q3}, δ, {q3}) where Σ is as given in Exam-
ple 1, and δ is given as follows:

{(q3, a, q2q0q3), (q0, b, q1), (q1, b, q0), (q2, b, q2), (q2, c, ε), (q0, c, ε)}.

A1 accepts the trees every path from the root to a leaf are labeled with an even
number of b’s by taking the second branch of a. In particular, A1 accepts the
Tree(G1) in Example 1.

At the heart of practical procedures for higher-order model checking (e.g.,
[6,8,14]) is an algorithm for expanding a configuration graph of G and A, starting
with the root (S, q0). A node in the graph is a pair (t, q) where t is a term and
q ∈ Q is a state of A, and the edges obey the relation −→G,A defined by the
following rules:

– (F t1 · · · tm, q) −→G,A ([t1/x1, . . . , tm/xm]s, q) if F x1 · · · xm → s ∈ R.
– (a t1 · · · tm, q) −→G,A (ti, qi) if (q, a, q1 · · · qm) ∈ δ for i ∈ [1..m].
– (a t1 · · · tm, q) −→G,A fail if δ(q, a) is undefined in A.

Let −→∗
G,A be the transitive and reflexive closure of −→G,A.

Fact 3 (S, q0) −→∗
G,A fail if and only if Tree(G) 	∈ L(A⊥).

We consider the counterexample-guided abstraction refinement paradigm
for model checking, and explore the following two finite means of guiding the
abstraction refinement procedure: term automata and intersection types.

Term Automata [8]. A term automaton B = (ΣB, QB, δB, qB,0) is a bottom-
up deterministic and total finite tree automaton that accepts a regular set of
well-typed ground term trees (with respect to the types of G on terminal and
non-terminal symbols, and the type judgement relation K � t : κ defined above).

We define an equivalence relation ∼B on terms over ΣB by, for any t and t′,
t ∼B t′ if and only if ∀q ∈ QB. t ∈ L(B, q) ⇔ t′ ∈ L(B, q). That is, t and t′ are
equivalent if and only if they are accepted and rejected by the same states of B.
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Intersection Types. The higher-order model checking problem can be
characterized as an intersection type inference problem [6,7,9]. Here, we limit
our focus to non-recursive intersection types for rejection of the grammar by the
complement of A, and refer it shortly as intersection types or rejection types.
The set of intersection types for A is given as follows:

τ (strict types)::=q | σ → τ σ (intersection types)::=
∧{τ1, . . . , τk}

where q ∈ Q and k ≥ 0. We write � for the empty intersection
∧ ∅. Note that,

non-recursive intersection types are finitely many because the set of base types,
i.e., the states of A, is finite.

A type environment Γ is a set of type bindings in the form h : τ , where
h ∈ dom(N ) ∪ dom(Σ) ∪ V. Note that, a type environment may have multiple
type bindings for h. The type judgement Γ �A t : τ is defined below following
[3]. Note that, since we are concerned with a top-down deterministic TTA as the
property automaton, the rejection types used in our setting has a specific form.

Γ, x : τ �A x : τ

δ(q, a) = (q1 · · · qm) ∀i.i ∈ [1..m]
Γ �A a : � → . . . → �︸ ︷︷ ︸

i−1

→ qi → � → . . . → �︸ ︷︷ ︸
m−i

→ q

δ(q, a) is undefined
Γ �A a : � → . . . → �︸ ︷︷ ︸

Σ(a)

→ q

Γ �A t1 :
∧{τ1, . . . , τn} → τ

Γ �A t2 : τi (∀i. i ∈ [1..n])
Γ �A t1t2 : τ

For any term t, we define T[Γ ](t) =
∧{τ | Γ �A t : τ}.

We define an equivalence relation on terms by, for any terms t and t′, t ∼Γ t′

if and only if ∀τ.Γ �A t : τ ⇔ Γ �A t′ : τ . That is, t and t′ are equivalent if they
inhabit the same intersection types in Γ .

Example 3. Consider A1 in Example 2. We have T[Γ ](a) =
∧{τ1, τ2, τ3}. where

τ1 = q1 → � → � → q3, τ2 = � → q0 → � → q3, and τ3 = � → � → q3 → q3.
T[Γ ](b) =

∧{q1 → q0, q0 → q1, q2 → q2}. T[Γ ](c) =
∧{q1, q3}.

Definition 4. An inductive invariant I for G is a set I of ground terms satisfy-
ing that, (i) S ∈ I; (ii) if t ∈ I and t −→G t′, then t′ ∈ I. An inductive invariant
I is regular if it is accepted by a finite tree automaton. A safety invariant for
G (with respect to A) is a regular inductive invariant I such that t ∈ I implies
t⊥ ∈ L(A⊥), i.e., I contains no invalid term trees [8].

Fact 5 If there exists a safety invariant for G wrt A, then Tree(G) ∈ L(A⊥).

A procedure for μHORS model checking is sound in the sense that, the gram-
mar is safe if the procedure reports so, and relatively complete if the procedure
eventually terminates and reports that the grammar is safe if there exists a safety
invariant for G with respect to A. The procedure may not terminate.
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Fig. 1. Overview of the model checking procedure MC∼(G, A) for μHORS

3 The Model Checking Procedure

We give an overview of the new procedure MC∼(G,A) in Fig. 1 which depicts
the high-level abstract-check-refine diagram explored in the procedure. The pro-
cedure takes as inputs a μHORS G, a TTA A, and an equivalence relation ∼ of
a finite index on terms (i.e., ∼ induces a finite number of equivalence classes)
which is used for directing the abstraction and refinement. Here, we combine the
automata-based abstraction refinement [8] with the type-based approach [14],
by taking ∼=∼B ∩ ∼Γ .

Initially, ∼0 =∼B0 ∩ ∼Γ0 provided with an initial term automata B0
1 and

Γ0 = ∅. Starting with ∼=∼0, the procedure works as follows: The abstraction
step constructs a finite abstract configuration graph (ACG) as an abstraction
of the configuration graph for G and A, with various strategies (Sect. 3.1) and
with the following twist that unifies [8,14]: any two nodes (t, q) and (t′, q′) are
identified as equivalent and collapsed if and only if t ∼ t′ and q = q′. Since ∼ has
a finite index, there can be finitely many distinguished nodes in an ACG. If a
closed ACG is constructed without containing any fail node, we conclude that
the grammar is safe. Otherwise, a counterexample CE is raised during the ACG
construction, and checked as to whether it is spurious or not (i.e., whether CE
corresponds to a concrete reduction sequence that leads to fail). Thanks to the
strategies applied to the ACG construction, this step is done by a simple and
lightweight traversal of CE , called simplified feasibility checking (Sect. 3.2). If
CE is a real error, we conclude that the grammar is unsafe. Otherwise, we refine
the abstraction ∼ by refining ∼B [8] and ∼Γ (Sect. 3.3), independently, so that
the same CE would not occur in the future iterations. The loop is iterated until
the grammar is proved or disproved. The procedure may not terminate since the
model checking problem is undecidable in general.

1 Note that, the choice of B0 would not affect relative completeness but practical
efficiency of the procedure. An interested reader may wish to consult [8] for some
approaches to constructing B0.
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3.1 Constructing Abstract Configuration Graph with Strategies

Overview of the Original ACG Construction. At the heart of model check-
ing procedures in [8,14] is an algorithm for constructing an ACG. Below we
review the automata-based algorithm (i.e., take ∼=∼B). Let L be a set of
labels. A node in an ACG is either fail or a pair (t, q) of a state q in A and
an abstract applicative term t given by: t::=a | F | x� | t1t2, where a ∈ dom(Σ),
F ∈ dom(N ), and x� is an abstract variable annotated with a label � ∈ L.
Besides the graph, a map ρ is constructed from abstract variables to terms they
are bound with. A map lα from edges to reduction labels is also maintained.

Starting with the root (S, q0), the algorithm non-deterministically and fairly
takes a node N in the graph and expands it as follows (Here, by fairness, we mean
any node to be expanded would be eventually chosen, so that if the grammar
is unsafe, an error trace would be eventually detected. It can be achieved for
instance using an FIFO queue):

– Call ExpandN (N) for N = (F s1 · · · sm, q): given F x1 · · · xm → t ∈ R,
for each i ∈ [1..m], an abstract variable x�i

i is generated for representing
the real argument si, where �i ∈ L is fresh, and ρ(x�i

i ) = si. A node N ′ =
([x�1

1 /x1, . . . , x
�m
m /xm]t, q) is generated and lα(N,N ′) = F .

– Call ExpandΣ(N) for N = (a s1 · · · sm, q): if there exists (q, a, q1, · · · , qm) in
δ, a node N ′ = (si, qi) is generated for each i ∈ [1..m] and lα(N,N ′) = (a, i);
Otherwise, a fail node is generated.

– For each x�′ ∈ dom(ρ), call ExpandV(N, (l, l′)) for N = (x� s1 · · · sm, q): a
node N ′ = (t s1 · · · sm, q) is generated by replacing x� with the term t = ρ(x�′

)
and lα(N,N ′) = ε. Besides, the edge (N,N ′) is labelled by (�, �′).

For each abstract variable x� such that ρ(x�) = s for some s, we define a
term ρ+(x�) = [ρ+(x�1

1 )/x�1
1 , . . . , ρ+(x�n

n )/x�n
n ]s, where x�1

1 , . . . , x�n
n are variables

occurring in s. Note that, a fresh label � is always used in the construction. So
the above equation cannot be circular and ρ+(x�) is well defined. We extend
the definition to any term t by ρ+(t) = [ρ+(x�1

1 )/x�1
1 , . . . , ρ+(x�n

n )/x�n
n ]t, where

x�1
1 , . . . , x�n

n are variables in t.
Any two nodes N = (C[x�1

1 , . . . , x�n
n ], q) and N ′ = (C[x�′

1
1 , . . . , x

�′
n

n ], q) are
equivalent, denoted by N ≡ N ′, if and only if ρ+(x�i

i ) ∼ ρ+(x�′
i

i ) for each i ∈
[1..n]. During the expansion, all ≡-equivalent nodes are merged in the graph, by
which an abstraction is applied to the reduction. The effect of the abstraction is
reflected when expanding the variable-headed nodes. We call an ACG closed if
no more nodes or edges can be added above. A closed ACG always exists and is
finite, given that ∼ has a finite index.

Constructing an ACG with Strategies. Based on the original ACG con-
struction above, Algorithm 1 constructs an ACG with various strategies for giv-
ing directions to the graph expansion:

(1) A set E of expandable label pairs is constructed (line 35, 37), and it maintains
the label pairs that can be used for expanding variable-headed nodes (line
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Algorithm 1. Constructing an ACG with Strategies

1 proc Update(N, N ′, tag)
2 begin
3 if not tag then
4 −→C,0 := −→C,0 ∪ {(N, N ′)};
5 add N ′ to ws0
6 else
7 −→C,1 := −→C,1 ∪ {(N, N ′)};
8 add N ′ to ws1
9 end

10 proc NewExpand(Enew)
11 begin
12 foreach (�, �′) ∈ Enew do

13 foreach N = (x� s̃, q) ∈ C do
14 N ′ := Expand

V
(N, (l, l′)));

15 Update(N, N ′, 1)

16 end

17 proc TakeNode(ws0,ws1)
18 begin
19 if ws0 �= ∅ then
20 take N ′ from ws0
21 else
22 if ws1 �= ∅ then
23 take N ′ from ws1
24 else raise an exception

25 return N ′

26 end

27 −→C,0 := ∅; −→C,1 := ∅;
28 ws0 := ∅; ws1 := ∅; E := ∅;
29 add (S, q0) to ws0;
30 while ws0 �= ∅ and ws1 �= ∅ do
31 N := TakeNode(ws0,ws1);
32 InferType(C, N);
33 if N ≡ N ′ for some N ′ �= N ∈ C then
34 merge N with N ′;
35 Enew := EqLabels(N ′, N) \ E ;
36 NewExpand(Enew);
37 E := E ∪ Enew;

38 else
39 if t = F s̃ then
40 N ′ := ExpandN (N);
41 Update(N, N ′, 0)

42 if t = a s̃ then
43 Succs := ExpandΣ(N);
44 foreach N ′ ∈ Succs do
45 Update(N, N ′, 0);
46 if N ′ = fail then
47 return a counterexample

48 if t = x� s̃ then

49 foreach (�, �′) ∈ E† do
50 N ′ := ExpandV(N, (l, l′)));
51 if � = �′ then Update(N, N ′, 0)
52 else Update(N, N ′, 1)

53 return the grammar is safe;

12, 49), where E† denotes the disjoint union of E and {(�, �) | � ∈ L}. Those
labels pairs in E result from merging the node N = (C[x�1

1 , . . . , x�n
n ], q) with

N ′ = (C[x�′
1
1 , . . . , x

�′
n

n ], q) (line 34–35), defined by

EqLabels(N ′, N) = {(�′
i, �i) | ∀i ∈ [1..n]. �i 	= �′

i}
When new expandable pairs are found, those related variable-headed nodes
are expanded with more successors (line 10–15).

(2) A specific order of expanding the graph is enforced using two worksets ws0
and ws1 for managing the nodes to be expanded. When taking a node from
worksets (line 17–26), it always first takes a node from ws0 if it is non-empty,
and it takes a node from ws1, otherwise. We classify edges −→C of the graph
into two disjoint sets such that −→C=−→C,1 ∪ −→C,0 (line 1–9).

For nodes expanded from variable-headed nodes such that the head vari-
able x� is replaced with the term ρ(x�′

) with � 	= �′, they are added to ws1,
and the resulting edges belong to −→C,1 (line 15, 52). For other nodes, they
are added to ws0 and the resulting edges belong to −→C,0 (line 41, 45, 51).
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Fig. 2. A snapshot of an abstract configuration graph C

Enforcing expandable label pairs in E reduces redundant reduction sequences
in an ACG that do not have any corresponding concrete reduction sequences.
Thus, the abstraction becomes more precise. The advantage of (2) will be seen
in Sect. 3.2 for simplifying the feasibility checking step.

Example 4. Recall G1 in Example 1 and A1 in Example 2. Assume Bb 	∼ b,
BBb ∼ Bb, and Bbc 	∼ c (e.g., ∼=∼Γ0). Figure 2 shows a snapshot of part of
an ACG for G1 and A1 without optimization, where for simplicity, we omit
generating abstract variables for representing arguments of function calls to
B hx → b(hx)2. The binding relations are given as follows:

ρ(f1) = F ρ(g2) = ρ(k3) = b ρ(g4) = B g2

ρ(k5) = B k3 ρ(g6) = B g4 ρ(k7) = B k5

The node (Ff1(Bk5)(Bg4), q3) has a child (a(k7c)(g6(g6c))(f1f1(Bk7)(Bg6)),
q3), which is merged with the node (a(k5c)(g4(g4c))(f1f1(Bk5)(Bg4)), q3). If
the graph is constructed by Algorithm1, we have E = {(5, 7), (4, 6)} by merging
the two nodes above, so that the entire subgraph circled by the dashed lines is
not generated. Indeed, none of them has a corresponding concrete reduction.

2 It does not change the graph structure by doing so, because the arguments of B
occurring in the reduction could never be merged according to the assumption on ∼.
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3.2 Simplified Feasibility Checking

Given a counterexample CE , feasibility checking checks whether CE is spurious
or not, i.e., whether there is a concrete reduction sequence that leads to fail
by taking the same reduction labels along CE . When a cyclic CE is considered,
it examines those (finite) abstract reduction sequences by unfolding CE up to
a certain depth. Thanks to the order-guided ACG construction in Algorithm1,
we can conclude the following theorem, and the feasibility checking is replaced
by a simple traversal of CE as to whether there exists an edge in −→C,1.

Theorem 1. Let CE be the first counterexample raised by Algorithm1. Then,
(i) if there does not exist any edge on CE that belongs to −→C,1, then CE is a
real error and the grammar is unsafe; and (ii) CE is spurious otherwise.

The claim (ii) in Theorem 1 does not hold in general if CE is raised by a non-
deterministic algorithm for constructing an ACG. The key is that, the usage of
ws0 and ws1 in Algorithm 1 ensures that, for the edge N −→C,1 N ′ in CE nearest
to fail, the complete subgraph rooted with N only having edges in −→C,0 has
been constructed. Since it does not contain fail, CE must be spurious.

Example 5. Recall the ACG shown in Fig. 2, excluding the part enclosed by the
dashed line. There is a counterexample CE leading to fail. Since CE contains
an edge ((g4(g4c), q0) −→C,1 ((B g4(g4c), q0) labelled with (4, 6), we know it is
spurious by Theorem 1.

3.3 Abstraction Refinement of ∼ = ∼B ∩ ∼Γ

Figure 3 gives a sub-procedure InferType(C, N) that infers rejection types from a
counterexample CE , when type-based abstraction refinement is combined with
automata-based procedure as called at line 32 in Algorithm 1. The procedure
takes as inputs an open ACG C and the current node N ∈ C to be expanded
in the graph. Similar to the notion defined in [14], we say (t, q) is Γ -rejected if

Fig. 3. InferType(C, N): a sub-procedure for rejection type inference where C is an
open ACG, and N = (t, q) is a node in C to be expanded.
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Γ �A t : q. If N is Γ -rejected, the procedure takes a counterexample CE from
C (line 2). If CE does not contain any edge in −→C,1, then (S, q0) −→∗

C,0 fail
and it is a real error (line 3–4). Otherwise, a rejecting trail is taken from CE
(line 6) from which a type environment Γ ′ is computed (line 7). By separately
refining ∼B as in [8] (line 8), ∼ is refined and another round of model checking
is triggered (line 9).

Our choice of rejecting trail is similar to the rejecting region defined in [14]
(that is a subgraph of an ACG in which each node reaches to a Γ -rejected leaf),
except that we are concerned with an open graph whereas a closed ACG is
required by [14] for their abstraction and refinement.

Definition 6. A trail is an alternating sequence of vertices and edges of a graph
that starts and ends with vertices. Given CE = e0 . . . en where N0 = (S, q0),
Nn+1 = N and ei = (Ni, Ni+1) ∈−→C for each i ∈ [0..n]. A rejecting trail
σ = NkekNk+1ek+1 . . . Nn+1 (k ∈ [0..n+1]) for CE is the longest trail, satisfying,

(a) {ek, . . . , en}∩ −→C,1= ∅; and
(b) For any j ∈ [k..n], (Nj , N

′) 	∈−→C,1 for any N ′ if Nj = (x� s̃, q).

The first condition says that σ only contains edges in −→C,0, and the second
condition requires that, for any variable-headed node Nj in σ, Nj does not have
any open successor to be reduced in the graph since C is an open graph. Note
that, σ is unique for a given CE and could be just the Γ -rejected node N .

Given the rejecting trail σ = NkekNk+1ek+1 . . . Nn+1, rejection types are
inferred from σ similar to [9,14]. Starting with the Γ -rejected node Nn, types are
extracted backwards along the trail as follows: for each node Ni = (hs1 . . . sm, q)
in σ where i ∈ [0..n − k] and h ∈ Σ ∪ dom(N ) ∪ V, if h ∈ dom(N ) ∪ V (i.e., if h
is headed by a non-terminal or a variable), we have

Γ (j)(h) = Γ (j+1)(h) ∧ τj with τj =
∧

T[Γ (j+1)](s1) → . . . →
∧

T[Γ (j+1)](sm) → q

and otherwise, Γ (j)(h) = Γ (j+1)(h) when h is a terminal symbol, where j = n−i
and Γ (n+1) = Γ . For any variable or non-terminal h that do not appear in head
positions of nodes in σ, their types keep unchanged, i.e., Γ (j)(h) = Γ (j+1)(h).

Theorem 2. Given Γ is computed by the procedure in Fig. 3. For any node
N = (t, q) in the ACG, N is Γ -rejected implies that (ρ+(t), q) −→∗

G,A fail.

By Theorem 2, we can safely raise a counterexample once a Γ -rejected node
N is found, with no need for expanding it.

Example 6. Recall the previous error path CE in Fig. 2. Let Γ = ∅. The reject-
ing node is (c , q1), and the rejecting trail σ is the sequence from the node
(Bg4(g4c), q0) to the node (c , q1). By type inference, we have Γ ′: {g2 : q1 →
q0, g

4 : q1 → q1, B : (q1 → q0) → q1 → q1, B : (q1 → q1) → q1 → q0} which
ensures that B b 	∼Γ B B b, so that the grammar can be proved safe in the next
iteration of model checking.
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3.4 Properties of the Procedure

Given a closed ACG C constructed by Algorithm 1, and let C be the configuration
graph (CG) for G and A. We show that there exists a weak simulation relation
between C and C.

Let C = (NodeC ,−→C), where NodeC is a finite set of nodes and −→C=−→C,0

∪ −→C,1 is a set of edges. Let GNodeC ⊆ NodeC be the set of nodes where for
any (t, q) in GNodeC , t is headed by a terminal or a non-terminal symbol, and let
VNodeC = NodeC \ GNodeC be the set of variable-headed nodes. Let →τ=−→C
∩(VNodeC ×NodeC), and the reflexive and transitive closure of →τ is denoted by
→∗

τ . Let →α=−→C ∩(GNodeC×NodeC). Let =⇒C⊆→α→∗
τ ∩(GNodeC×GNodeC).

Recall that lα(N,N ′) = ε for any (N,N ′) ∈→τ . We extend lα to =⇒C by, for any
(N,N ′) ∈=⇒C where N →α N ′′ →∗

τ N ′, lα(N,N ′) = lα(N,N ′′).
Let C = (NodeC,→γ) for G and A, where NodeC is the (possibly infinite) set

of nodes, and →γ⊆ NodeC × NodeC is the set of edges, respectively. Let lγ be a
map from edges in C to reduction labels as usual. We also write M

a−→γ M ′ if
M −→γ M ′ and a = lγ(M,M ′).

Definition 7. For any abstract term t, we define h(t) as the least set of ground
terms satisfying: (a) h(x�) ⊇ h(x�′

) if (�, �′) ∈ E; (b) h(x�) ⊇ h(ρ(x�)); (c)
h(t1t2) ⊇ {t′1t′2 | t′1 ∈ h(t1), t′2 ∈ h(t2)}; and (d) h(a) ⊇ {a} for any a ∈
dom(Σ) ∪ dom(N ). A binary relation �⊆ NodeC × GNodeC is defined by, for
any node M = (s, q) in NodeC and any node N = (t, q′) in GNodeC,

M � N if and only if s ∈ h(t) and q = q′.

Definition 8. A relation R ⊆ NodeC ×NodeC is a weak simulation if for every
(M,N) ∈ R, (i) M � N , and (ii) for any node M ′ and for any a such that
M

a−→γ M ′, there exists a node N ′ such that N =⇒C N ′, (M ′, N ′) ∈ R, and
lα(N,N ′) = lγ(M,M ′). Let M0 and N0 be the unique entry nodes of a CG and
an ACG, respectively. We say that the ACG weakly simulates the CG if there
exists a weak simulation R such that (M0, N0) ∈ R.

Theorem 3 (Soundness). � is a weak simulation.

It immediately follows Theorem 3 that, if a closed ACG does not contain any
fail nodes, then the grammar is safe.

Theorem 4 (Relative Completeness). MC∼(G,A) terminates and verifies
that the grammar is safe, if there exists a safety invariant for G wrt A.

4 Experiments

We have implemented a prototype of the optimized procedure based on the
model checker MuHorSar [8], and the tool is written in OCaml. We use Z3
4.3.3 (http://z3.codeplex.com/) as the backend constraint solver for automata-
based abstraction refinement. We have evaluated the tools on examples from two

http://z3.codeplex.com/
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categories of applications, including verification problems of FJ (Featherweight
Java) programs and that of multi-threaded boolean programs with recursion.
We are concerned with checking safety properties of the target programs. For
multi-threaded programs, we studied properties of mutual exclusion (e.g., the
Peterson’s algorithm), deadlock-freedom (e.g., for various solutions to the dining
philosopher problem), and checking of assertion violation (e.g., for simplified
variants of Bluetooth drivers). Most of examples are taken from [7,8] with a
few examples newly-added as negative instances. Due to space, we only show
those examples that couldn’t be verified efficiently by the original procedure.
An interested reader may wish to consult [7,8] for details of those examples and
safety properties that have been checked against them. All experiments were
conducted on a machine having a Mac OS X v.10.9.2, 1.7 GHz Intel Core i7
processor and 8 GB RAM.

The preliminary experimental results for comparing the verification time
taken by MuHorSar with and without optimizations are summarized in Table 1
for verifying FJ programs and in Table 2 for verifying multi-threaded programs,
respectively. The column “scheme” shows the names of the examples. The
columns “#G” and “#A” show the number of rules of the schemes and the size
of the property automaton for each example, respectively. The column “R” gives
the answer whether the property is satisfied (Y) or violated (N). The column
“MuHorSar” gives the runtime taken by the original procedure. The column
“MuHorSar+” gives the runtime with optimizing the abstraction refinement in
MuHorSar, like enforcing E , etc. The column “MuHorSar+

∼” shows the run-
time by further combining the procedure with type-based abstraction refinement.
The runtime is given in seconds, or “—” for timeout which is set to be 3 min.
The number enclosed by parentheses shows the number of required abstraction
refinement iterations, and we omit to show it in the table when it is zero, i.e.,
no abstraction refinement is needed.

As shown in both tables, the new procedure effectively improves the runtime
of the original procedure. In particular, it successfully verified all of the bench-

Table 1. Results for verifying FJ programs

Scheme #G #A R MuHorSar MuHorSar+ MuHorSar+
∼

L-filter 122 1 Y 1.391 (6) 0.867 0.919

L-risers 122 1 Y 1.402 (6) 0.877 0.916

Stack-br 39 1 Y 0.309 (13) 0.071 (1) 0.060 (1)

3 0.391 (13) 0.063 (1) 0.066 (1)

5 0.408 (13) 0.065 (1) 0.063 (1)

Queue-br 61 1 Y 0.253 (2) 0.194 0.203

3 0.251 (2) 0.213 0.206

5 0.261 (2) 0.196 0.200

Nat 35 1 Y 17.723 (147) 0.110 0.122
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Table 2. Results for verifying multi-threaded boolean programs with recursion

Scheme #G #A R MuHorSar MuHorSar+ MuHorSar+
∼

Locks-e 103 5 N 0.168 (1) 0.155 0.139

Dining-e 135 5 N 2.948 (28) 0.541 0.406

Dining-sp-e 193 5 N 11.685 (97) 0.884 0.833

Bluetooth 129 1 N 2.484 (26) 2.722 (14) 0.947 (5)

Bluetooth-v1 158 1 N — 68.819 (141) 3.658 (9)

Bluetooth-v2 166 1 N — 13.820 (54) 1.869 (9)

Plotter-e 90 4 N 0.278 (3) 0.221 0.181

Dining-tan-e 303 5 N — 5.923 (7) 5.824 (5)

Peterson-e 74 2 N 0.589 (4) 0.257 0.270

Locks 95 5 Y 0.742 0.222 0.238

Plotter 88 4 Y 0.204 0.226 0.314

Peterson 74 2 Y 3.548 (2) 0.477 0.662

Peterson-d 80 9 Y — 1.514 2.138

Dekker 94 2 Y — 0.447 0.657

Pc-monitor 71 5 Y 0.331 0.222 0.354

Pc-sp 111 5 Y 2.238 0.219 0.370

Dining-tan 303 5 Y — 18.229 23.007

marks that were previously impossible. We found that enforcing expandable label
pairs by E is very effective in scaling-up the model checking procedure, expected
by reducing a large portion of redundant reduction sequences in an ACG.

5 Related Work

This work is an optimization and improvement of the automata-based procedure
for μHORS model checking proposed by Kobayashi and Li [8]. Their abstraction-
refinement approach explores a finite tree automaton for abstracting and identi-
fying term trees (as states of the automaton) for constructing the abstract con-
figuration graph, and often outperforms the first procedure for μHORS model
checking proposed in [7]. Their idea is inspired by the type-directed abstraction
refinement approach in [14], but is different in achieving (relative) completeness.
In fact, the type-based approach applied to simply-typed HORS model checking
in [14] would not ensure the same relative completeness as that is achieved by
the automata-based procedure in [8], if applied to μHORS model checking.

This work makes an attempt to further improve the line of work. We combine
automata-based and type-based abstraction refinement as an equivalence-based
abstraction refinement, to take strengths of both approaches. We also proposed
various optimizations to improve each step of the abstract-check-refine para-
digm. Our improvements target on μHORS model checking but the ideas are
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applicable to improve the state-of-the-art model checker Preface for simply-
typed HORS as well [14]. Preface is the model checker for HORS that first
reported to scale to recursion schemes of several thousand rules. We expect that
our approaches, such as enforcing expandable label pairs to reduce the size of an
ACG, distinguishing abstract and concrete reductions in an ACG and working
with an open configuration graph, etc., would be useful for further improving its
scalability.

6 Conclusion

We have proposed systematic approaches to improve the runtime efficiency of
the automata-based abstraction refinement procedure for μHORS model check-
ing. First, our approach combines the existing work on automata-based and
type-based abstraction refinement techniques for higher-order model checking
[7,8,14]. Next, we propose techniques for improving each step of the abstract-
check-refine paradigm explored by the procedure. The new model checking proce-
dure preserves the soundness and relative completeness properties of the original
automata-based procedure [8]. We have implemented the new procedure, and
confirmed by empirical study on examples of μHORS that, it always outper-
forms the original μHORS model checker MuHorSar, and successfully verified
all benchmarks that were previously impossible. We are concerned with μHORS
model checking but our approaches are applicable to the state-of-the-art model
checker Preface for simply-typed HORS [14], and we expect our approaches
would be useful for improving its scalability as well.
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Tison, S., Tommasi, M.: Tree automata techniques and applications (2007). http://
www.grappa.univ-lille3.fr/tata. Accessed 12 Oct 2007
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Abstract. Demand response is a promising approach to deal with the
emerging power generation fluctuations introduced by the increasing
amount of renewable energy sources fed into the grid. Consumers need
to be able to adapt their energy consumption with respect to the given
demand pattern and at the same time ensure that their adaptation (i.e.,
response) does not interfere with their various operational objectives.
Finding, evaluating and verifying adaptation strategies which aim to be
optimal w.r.t. multiple criteria is a challenging task and is currently
mainly addressed by hand, heuristics or guided simulation. In this paper
we carry out a case study of a demand response system with an energy
adaptive data center on the consumer side for which we propose a for-
mal model and perform a quantitative system analysis using probabilis-
tic model checking. Our first contribution is a fine-grained formal model
and the identification of significant properties and quantitative measures
(e.g., expected energy consumption, average workload or total penalties
for violating adaptation contracts) that are relevant for the data center
as an adaptive consumer. The formal model can serve as a starting point
for the application of different formal analysis methods. The second con-
tribution is an evaluation of our approach using the prominent model
checker PRISM. We report on the experimental results computing vari-
ous functional properties and quantitative measures that yield important
insights into the viability of given adaptation strategies and how to find
close-to-optimal strategies.

1 Introduction

In modern society, a permanent and reliable availability of electrical power has
become an indispensable good for many aspects of life. However, the continuously
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increasing demand for electrical energy comes at a price: guaranteeing stability
under almost any load condition requires a constant adaptation of power gen-
eration to keep production and volatile demand in equilibrium. However, power
plants capable of quickly adapting their power output to balance the grid are usu-
ally driven by fossil fuels and therefore carbon-intensive. From an environmental
perspective, this is highly undesirable and an increased feed-in of renewable
energy is encouraged. Energy sources like wind or solar are exhibiting volatile
availability patterns and can therefore not provide the same balancing capabili-
ties as fossil fuel based power plants. A promising approach to cope with these
shortcomings is demand response (DR) exerting control over power demand on
the consumer side. DR is widely recognized as a promising approach to reduce
the costs for mitigating operational instability of power grids when incorpo-
rating renewable energy sources, but standardization is still underway [5]. Many
recent works focus on the design of DR-programs that define the communication
protocol between power producers and power consumers. Current DR-programs
can be classified into three categories: price-based, incentive-/event-based and
demand reduction bids (see, e.g., [29]).

For participants in a DR-system to be a valuable asset to a distribution sys-
tem operator, the adaptation to a DR-request needs to be enacted reliably. At
the same time, the respective participant needs to ensure the power adapta-
tion does not interfere with operational objectives. The quantitative impact of
a DR-interaction on power demand and operational performance on the con-
sumer side needs to be foreseeable and is well suited for analysis via formal
methods, as it may impact critical processes on both power grid and consumer
side. Data centers are particularly well-suited for participation in DR as they
consume large amounts of energy and provide many opportunities in dynami-
cally adapting to external demands by applying advanced resource and workload
management strategies. Data center DR-systems have been considered from sev-
eral perspectives, e.g., pricing [22,31], implementation [10], communication [6],
and contract design [7]. Working prototypes of DR-systems for data centers were
implemented in EU FP7 projects ALL4Green [6] and DC4Cities [20,25], where
the latter focuses on the possibility of continuously adapting to a given power
plan.

Despite wide recognition of the potential of DR, data centers are currently
hardly participating in DR, mainly due to the fact that the design of efficient
adaptation strategies is a non-trivial task. The goal of this paper is to show
that formal methods can contribute to this task, e.g., by providing guarantees
on cost/utility requirements in worst-case scenarios and by evaluating exist-
ing resource management strategies to gain insights for the design of efficient
scheduling strategies.

Contribution. In this paper we provide a detailed formal model for DR-systems
with data centers on the consumer side. The model is compositional and uses
Markov decision processes (MDPs) equipped with reward functions to capture
various quantitative measures. The choices in the MDP stand for the possible
workload scheduling. The base model consists of components for the data center,
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a request generator, the service load, and a component for green energy forecast.
For the sake of simplicity we assume a simple incentive-based DR-program and
present possible extensions that allow for addressing alternative and more com-
plex DR-scenarios by refining the components of the base model. For the analysis
we use probabilistic model checking (PMC) to compute minimal and maximal
probabilities and expectations that provide guarantees in worst-case scenarios
as well as insights for the design of efficient scheduling strategies maximizing
or minimizing various performance and costs objectives. The class of considered
measures subsumes conventional cost-/utility indices important for DR-systems
(e.g., Power Usage Efficiency (PUE) [28], and Energy-Response Time Product
(ERP) [15]). We illustrate the feasibility of the modeling and analysis approach
in experimental studies on the base model and report here on the scalability and
insights gained in the process. The experiments were carried out using extensions
of the prominent probabilistic model checker PRISM [21].

Related Work. We are not aware of any work describing a quantitative analy-
sis of DR-systems using PMC. Currently, load adjustment in data centers under
DR-programs is usually not formally modeled or analyzed. Planning and verifi-
cation in power grids is often performed via special simulators (e.g., PowerWorld
Simulator [18]). However, these are mostly used for strategic decisions on power
grid development in the long term or to find solutions to the question which
electrical loads to shed in an emergency (see, e.g., [9,16,23]). The latter problem
is closely related to demand response, however loads are assigned priorities and
decisions on power generation side are made only in case of emergencies. Other
existing work focuses on coordination between different energy sources (e.g., [30])
with the goal to optimize a performance index such as PUE or ERP. Solutions
are found by solving equality constrained optimization problems or mixed integer
linear programs and then evaluated using simulation of large real-world workload
traces and current energy prices (e.g., [11,30,31]). Other formal approaches in
the context of DR address, e.g., the stability of a given Markov model [8] or pro-
vide uncertainty models in which Markov chains are combined with additional
random transition matrices [24]. Model checking and in particular PMC has
been applied to related problems, e.g., for energy-aware task scheduling [17] and
dynamic power management [26], but also for controller synthesis (e.g., [13]).

2 Scenario

Especially in future smart grid scenarios, in which high amounts of renewable
power generation are to be expected, both events of energy surplus and scarcity
have to be considered as the controllability of many renewable sources is very
limited. Therefore, demand response requests (DR-requests) are considered as
a mechanism to trigger increasing or decreasing power demands. In this work,
we visit a demand response scenario, in which an energy management authority
is creating DR-requests for power adaptation in order to influence the power
demand on consumer side. In the following, we will assume a demand response
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request to contain (1) the start and the end of the adaptation time-interval and
(2) a target power demand range during this time period.

A DR-request may arrive at the consumer side at any point in time (typi-
cally probabilities are non-uniformly distributed). Failing to adhere to the power
bounds during the demand response interval will cause a penalty. Figure 1 shows
the high level interaction diagram in the assumed DR-system.

Fig. 1. High level DR-system overview.

Consumer Side. On the consumer side, we assume that parts of the load can
be shifted for a certain time. For simplicity we assume that processing work-
load causes a proportional increase in the power demand. In general, one needs
to be aware of the correlation between workload and the corresponding power
demand, which is in turn directly influenced by the (re)scheduling of workload.
To reliably reach the power demand requested in the DR-request workload has
to be rescheduled in such a way as to reach target power demand, while at the
same time ensuring, e.g., that all work is scheduled until a given deadline. Here,
we assume that all workload has to be processed until the end of a day. Failing
to schedule workload until the deadline will result in a (load-specific) penalty.
Apart from work which can be rescheduled (batch load), we assume that certain
work (service load) has to be immediately processed. The fraction of workload to
be processed immediately is assumed to be varying in time, however always less
than the total load capacity. This type of workload can neither be rescheduled
nor canceled. Figure 2 shows an example of the rescheduling process.

Fig. 2. Example adaptation of a flexible load.

Additionally, we assume that - in line with our future smart grid setting -
the consumer side is equipped with local renewable energy generation capabili-
ties (e.g., small wind turbine or solar panels). The power generated at different
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points in time can be forecasted by utilizing weather data and/or information
on historical generation. However, due to possible fluctuation (e.g., solar radia-
tion on cloudy days), forecasting errors are common and will cause deviations
of actual generation from the forecast values.

Objectives. Generally, objectives may fall into one of the following categories.
One can either optimize cost or utility measures (1) on the consumer side, (2) on
the energy management authority side, or (3) on both sides given certain addi-
tional constraints. In this paper we focus on the consumer side, but the methods
are also applicable for optimization on the energy management authority side
and mixtures thereof.

Data Centers. A specific use case of demand response are data centers. Partic-
ipation of data centers within demand response systems is highly attractive, as
they have automation frameworks already in place, making automated process-
ing of demand response requests possible. Additionally, data centers consume
large amounts of electrical energy and therefore are well suited to create a sig-
nificant impact when adapting their power demand. We assume data centers to
process two basic types of load: interactive and batch. Interactive load is charac-
terized by service level agreements which require strict bounds on response time
for users to have a high quality of experience. Therefore interactive load cannot
be rescheduled and has to be processed immediately. Typical examples include
web servers, stock traders and virtualized desktop environments. In contrast,
batch load may be processed at any time while completing before its deadline.
Batch jobs may therefore be arranged in a way as to adapt data center power
demand according to demand response requests.

3 Theoretical Foundations

Throughout the paper, we assume the reader is familiar with Markovian mod-
els. A brief summary of the relevant concepts for Markov decision processes is
provided below. For more details, we refer to, e.g., [27].

Markov Decision Processes. An MDP is a tuple M = (S,Act, P,AP, L),
with a finite set of states S, a finite set of actions Act, transition probabilities
P : S × Act × S → [0, 1], a finite set of atomic propositions AP and a label-
ing function L : S → 2AP. We require that the values P (s, α, s′) are rational
and

∑
s′∈S P (s, α, s′) ∈ {0, 1} for all states s ∈ S and actions α ∈ Act. The

triples (s, α, s′) with P (s, α, s′) > 0 are called transitions. Action α is said to be
enabled in state s if P (s, α, s′) > 0 for some state s′. Act(s) denotes the set of
actions that are enabled in s ∈ S. To avoid terminal behaviors, we require that
Act(s) �= ∅ for all states s. Paths in an MDP M can be seen as sample runs.
Formally, they are finite or infinite sequences where states and actions alternate,
i.e., π = s0 α0 s1 α1 . . . ∈ (S × Act)∗S ∪ (S × Act)ω with αi ∈ Act(si) and
P (si, αi, si+1) > 0 for all i. In the following, we assume that an initial state s
is given. For a path property φ, we write Prσ

M(φ) for the probability of φ in M
under scheduler σ. Additionally, we write Prmin

M (φ) and Prmax
M (φ) for the minimal
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and maximal probabilities for φ among all schedulers σ. In case the action set Act
is a singleton it can be omitted, since the behavior is then completely deterministic
and the MDP degenerates to a Markov chain (MC).

Reward Functions. A reward function rew : S × Act → N, annotates
state-action pairs with a natural number. Each reward function can be lifted
to assign to each finite path its accumulated value rew(s0α0s1α1 . . . snαn) =
∑n−1

i=0 rew(si, αi). For a set of states G and a scheduler σ such that Prσ
M(♦ G) = 1

we can then introduce the expected reward until reaching G. To define the
expected reward, we let P r

G be the set of paths π = s0α0s1 . . . such that there
exists an n ∈ N with sn ∈ G, si �∈ G for all i < n and rew(s0 . . . sn) = r.
Then Exσ

M[rew](♦ G) =
∑∞

r=0 r · Prσ
M(P r

G). As before we define the extremal
expectations Exmin

M and Exmax
M for minimizing and maximizing schedulers.

4 Formal Model

In this section we present an MDP-based compositional model for demand
response formalized for the use case of a data center. As described in Sect. 2 the
scenario consists of the data center on the consumer side and an energy author-
ity sending DR-requests. The data center needs to schedule batch work and
interactive work, it reacts to DR-requests and can have additional green energy
sources available. In our model those influences are formalized using stochastic
distributions and the nondeterministic choices within the data center constitute
an MDP model that yields the basis for further formal analysis. Based on this
setting, the goal is to find appropriate adaptation strategies (i.e., resolving the
nondeterminism in the MDP) that optimize for various cost/utility objectives,
as introduced later in this section.

In our model we fix the number of batch work jobs J0 ∈ N that the data
center can schedule over one day, as well as a number T ∈ N of discrete time
steps into which the day is divided, which can be seen as the resolution of the
time domain. At every time point the data center can decide which batch work
should be scheduled next. The maximal number of simultaneous jobs is fixed as
capacity ∈ N. The data center’s scheduling decision is influenced by the amount
of interactive work (service load), the available energy and the received DR-
requests from the energy authority, which can arrive at any time. In the base
model it is assumed that requests can not be refused. Furthermore, all jobs
and services are already in the shape of an independent least schedulable unit
(LSU), i.e., work packages which cannot be interrupted, have no dependencies
and require one energy unit over its lifetime.

The model is equipped with simple reward functions to capture the amount
of green energy that was produced, the amount of brown energy that had to
be bought, the number of time steps, and penalties for violating DR-requests.
For the latter, rather simple functions are used, but in general one could use
arbitrary complex functions to capture penalties.
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4.1 Component Model

The base model consists of the following four components, each represented
as individual Markov chains or MDPs: stochastic service load and DR-request
generators Mserv and Mreq, a green-energy forecast Mfc and the data center
itself Mdc. From those components one large MDP is then composed for the
composite model, i.e., M = Mserv ⊗ Mfc ⊗ Mreq ⊗ Mdc.

The compositional modeling approach allows to easily generate variants, e.g.,
with less, more or other participants and hence it facilitates the maintainability
of the model. In Sect. 4.2 we will discuss some possible refinements and extensions
of our base model. We now consider the details of the four base components.

Mserv - Service Load Generator. The service load of a data center is assumed
to be stochastically distributed. For any point in time t ∈ { 0, 1, . . . , T } a
random variable service(t) ∈ { 0, 1, . . . , capacity } is given, signifying the number
of interactive jobs to be executed at time t. From this, a Markov chain Mserv

can be derived, with states of the form (t, c) for c = service(t). The probability
of a transition (t, c) → (t + 1, c′) in Mserv is the probability of service(t + 1)(c′).

Mfc - Green-Energy Forecast. To reflect the probabilistic green-energy pro-
duction, another random variable produce(t) ∈ { 0, 1, . . . , prodmax } is introduced
for each point in time t ∈ { 0, 1, . . . , T }. Intuitively, this variable represents the
possible energy production values at time t, which may depend on the weather,
season or time of day. Similar to the service load, a Markov chain Mfc with states
(t, e) for e = produce(t) can be derived. The probability for (t, e) → (t + 1, e′) is
the probability of produce(t + 1)(e′).

Mreq - Request Generator. We are given statistical information on the arrival
of DR-requests and their format. A DR-request arriving at some time point
t with rate r ∈ [0, 1] is represented by a triple (I, l, u) with a discrete time
interval I ⊆ [t, T ] and lower and upper resource bounds l, u ∈ N such that
0 ≤ l ≤ u ≤ capacity. Intuitively, a DR-request (I, l, u) signifies that at each
time point t ∈ I the resource requirements should be between l and u. Hence,
the number of jobs executed at time t should be in that interval. A single DR-
request Ri = ([t1, t2], l, u) can be modeled as a degenerated Markov chain (i.e.,
all probabilities are 1) Ai as follows:

l, u 0, capacity

t2 − t1 times

The request generator then has an initial state with outgoing transitions to each
DR-request Ri with probability ri and a self-loop with probability 1 − ∑n

i=0 ri.

Mdc - Data Center. The data center keeps track of the current time step
value t ∈ { 0, 1, . . . , T } and the number J of jobs that are still to be processed.
Initially at time point t = 0, J = J0 and J will decrease until either J = 0
or the day is over, i.e., t = T . At each point in time, the data center can
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choose to schedule a number j ≤ min{ J, capacity } of jobs. These choices are
modeled nondeterministically. Whether or not the action of choosing j jobs at
time point t will be enabled depends on the produced service load service(t).
Hence, the enabled actions in the composite model M will be the following. Let
s = (t, c, e, l, u, J) be a state of M. Then, the action of choosing j ∈ N jobs
should be enabled in M iff c+ j ≤ min{ J, capacity }, i.e., iff the interactive load
plus the number of scheduled jobs is not larger than the capacity and enough
jobs are still available.

Penalties and Other Reward Functions. For modeling the costs of violating
a DR-request at time t we introduce a reward function penalty. The penalty to
be paid in state s = (t, c, e, l, u, J) of M when scheduling j ∈ N jobs is defined as

penalty(s, j) = lpenalty(s, j) + upenalty(s, j)

i.e., the sum of a penalty for violating the lower or upper bound given as two
separate reward functions defined as follows:

lpenalty(s, j) = max{ c + j − l, 0 } upenalty(s, j) = max{ u − c − j, 0 }
for state is s = (t, c, e, l, u, J) in M. In general, the penalty function (and other
cost/utility functions) can be nearly any complex arithmetic expression over
variables in the model. In particular, the reward functions do not affect the
state space of M and hence do not contribute to the complexity of the model.

Besides the reward function for penalties we introduce reward functions that
can then be used inside formulas for various objectives as detailed in Sect. 4.3.
Specifically, we use #steps, #jobs and #requests for the number of time steps,
finished jobs and accepted DR requests. The latter is only relevant in the model
variants where the data center can refuse incoming DR-requests. Furthermore,
green signifies the produced green energy and brown the bought grid energy.

4.2 Model Variants

In the following we introduce several variants which allow modifying the scenario
to be considered by replacing components of the compositional model. More
variants can be found in the extended version [4].

Heterogenous Jobs and Dependencies. Instead of assuming that every job
can be decomposed into uniform LSUs, we can introduce a more general case.
There, each job j ∈ J ⊆ N×N carries a length and a energy-per-time-unit value.
The data center component is then more complicated. Intuitively, each state in
Mdc now carries two pieces of information: a set W of jobs currently worked
on and a set O of jobs which are still pending. The energy consumed in a state
is the sum of the energy-per-time-unit values of the jobs in its working set W .
Outgoing transitions of a state s in Mdc are then labeled by a subset A ⊆ O of
open jobs and lead to a state s′, in which A becomes the set of jobs currently
worked on and O \ A becomes the new set of open jobs. To allow dependencies
among jobs, they are partially ordered in a set (J,≤) where j1 ≤ j2 if j1 has to be
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completed before j2 can be scheduled. This variant introduces a combinatorial
blowup in the data center component and hence the composed model.

Hard Limits. It is possible to represent hard limits on the DR-requests, i.e.,
for a request (I, l, u) to disallow using less energy than l or more energy than
u while the request is active. This can be modeled by modifying the enabled
actions of M as follows. In a state s = (t, c, l, u, J), the action j is enabled iff
c + j ≤ min{ J, capacity } as before and additionally l ≤ c + j ≤ u must hold.

Accepting and Refusing DR-Requests. Instead of forcing DR-request, we
may equip the data center with additional non-deterministic choices for accepting
or refusing DR-requests. Adaptation strategies for the data center may then
refuse a DR-request by not scheduling the corresponding action. In this setting
additional reward functions are of interest, e.g., a reward function for tracking
the bounties for accepted DR-requests.

Adding an Adaptation Strategy. Another important variant allows for ana-
lyzing specific adaptation strategies. This way, a consumer can formally eval-
uate currently implemented strategies with respect to various objectives. This
amounts to adding a (possibly randomized) scheduler that resolves the non-
deterministic choices in Mdc, resulting in a Markov chain M′. One can then
compare the results for M′ with theoretically optimal strategies in M w.r.t. a
given objective.

Multiple Data Centers and Different DR-Protocols. It is possible to intro-
duce copies and variants of Mdc to model multiple data centers. DR-protocols
which do not require interaction between the energy authority and the data cen-
ter like incentive-based and price-based ones can be modeled by modifying the
enabled actions or by introducing further reward functions.

4.3 Objectives

In this section we introduce different kinds of evaluation criteria that are impor-
tant in the given setting, in particular for optimizing various cost and perfor-
mance measures. We illustrate their relevance for demand response with example
objectives formulated for the data center scenario. For the formulas, we use the
usual temporal operators ♦ (eventually) and � (always).

The first class of objectives is concerned with the confidence in our model.
Model checking of such purely functional properties can be applied in addition
to, e.g., simulation of the model. Typically, one is concerned with whether the
minimal or maximal probability of certain temporal events is either zero or
one, or with probabilities and expected values for costs/utility being within
reasonable bounds. We present here a few examples that can be computed using
standard PMC-methods. E.g., to search for unintended deadlocks, one can check
whether the minimal probability of reaching the end of the day (eod) is one, as
then no scheduler can avoid reaching the end of the day.

Prmin
M (♦ eod) = 1 (1)
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The above formula can be enriched, e.g., with a step bound, to ensure that the
end of the day will be reached within the desired number of steps.

Prmin
M (♦#steps=T eod) = 1 (2)

It is also of interest to compute the probability to finish all jobs using an optimal
scheduler and to check whether the result is within reasonable boundaries.

Prmax
M (♦ (J = 0)) (3)

Furthermore, the maximal probability for surviving the day without using brown
energy (and to complete all jobs) is significant, although in general very low.

Prmax
M (� green only) (4)

Prmax
M (� green only ∧ ♦ (J = 0)) (5)

The atomic proposition green only signifies that no brown energy was used.
The second important class of objectives concerns the optimization of a sin-

gle quantitative measure addressing either cost or utility, both either from the
consumer perspective or the energy authority perspective. Within this class of
properties we cannot address trade-offs. As utility measures one could, for exam-
ple, compute the probability for finishing at least n ∈ N jobs by the end of the
day, or the expected numbers of jobs that could be finished by the end of the
day assuming optimal schedulers.

Prmax
M (♦#jobs≥n eod) (6)

Exmax
M [#jobs](♦ eod) (7)

On the cost side there is, e.g., the probability of surviving the day when the
amount of brown energy used is bounded by n ∈ N, or the minimal and maximal
expected penalty when a DR-request was not fulfilled either until the end of the
day or until all jobs are done.

Prmax
M (♦brown≤n eod) (8)

Exmax
M [penalty] (♦ eod) (9)

Exmin
M [penalty] (♦ eod) (10)

Exmax
M [penalty] (♦ (J = 0)) (11)

Exmin
M [penalty] (♦ (J = 0)) (12)

Another important cost measure is the minimal and maximal expected time
(number of steps) until all jobs are done or the end of the day has been reached.

Exmin
M [#steps] (♦((J = 0) ∨ eod)) (13)

Exmax
M [#steps] (♦((J = 0) ∨ eod)) (14)
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Considering utility and cost measures, one is typically interested in their trade-
off, ideally (although impossible) for maximizing the utility and minimizing the
cost at the same time. In the following we will consider quantiles and conditional
probabilities as important instances of this class and illustrate their relevance in
the demand response setting again with a few examples.

Quantile queries ask for the maximal or minimal value of a variable such that
the probability threshold for a property is still within a defined range. They
can be computed by the techniques in [1]. Interesting quantiles are, e.g., the
maximum number of jobs that can be finished within one day with probability
at least p ∈ (0, 1) or the maximum number of DR-requests that can be accepted
such that the probability of finishing all jobs by the end of the day is sufficiently
high. An analogous quantile can be formulated considering the minimal penalty
rather than the maximum number of DR-requests.

max{ j ∈ N : Prmax
M (♦#jobs≥j eod) ≥ p } (15)

max{ r ∈ N : Prmax
M (♦#requests<r (J = 0)) > p } (16)

min{ y ∈ N : Prmax
M (♦penalty≤y (J = 0)) > p } (17)

An alternative way of combining multiple simple measures are conditional prob-
abilities in which one measure serves as condition and another serves as the
objective of interest. They can be solved using the techniques in [2].

Prmax
M (� green only | ♦ (J = 0)) (18)

Prmax
M (♦ (J = 0) | � green only) (19)

This formula queries the maximum probability for consuming green energy only
given the condition that all jobs will be finished eventually. In Formula (19) the
roles of the objective of interest and the condition are swapped. The following
are formulas conditional versions of Formulas (8) and (6).

Prmax
M (♦brown≤n eod | � (J > 0)) Prmax

M (♦#jobs≥n eod | � green only)

Additional Objectives. While the above values can be computed with stan-
dard PMC-techniques, the following objectives require special PMC-algorithms.

A simple objective is to finish all queued jobs with minimal expected accu-
mulated penalty. Formally, one wants to find a scheduler σ for M such that
Prσ

M(♦ (J = 0)) = 1 and the expected accumulated penalty is minimal among all
schedulers τ with Prτ

M(♦ (J = 0)) = 1. This task can be solved by the techniques
in [14]. Another example objective for which no PMC-methods are available so
far is to find the minimal q and a scheduler σ such that Prσ

M(♦ (J = 0)) = 1 and
the penalty is at most q in each step, i.e., Prσ

M (�(penalty ≤ q) ∧ ♦ (J = 0)). To
solve this, we first assign the minimal value q0(s) to each state such that there
is a path originating in s which has at most q0(s) penalty in each step and
reaches (J = 0), i.e., s |= ∃(penalty ≤ q0(s) U (J = 0)), which can be calculated
by a modified version of Dijkstra’s algorithm in polynomial time. The series
(qi(s))i∈N with qi+1 = minα∈Act(s){ penalty(s, α)+maxs′,P (s,α,s′)>0 qi(s′) } then
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converges to a value q(s) which is the minimal value q in question. Note that in
an acyclic MDP as given here, there is actually no iteration necessary and the
value q can be calculated directly via back-propagation from the terminal states,
i.e., the states with (J = 0).

Further objectives based on the accumulation techniques in [3] can be found
in [4]. Among others, the common index Power Usage Efficiency (PUE) can be
expressed by them.

5 Experiments

We used the tool ProFeat [12] for specifying a parameterized version of the base
model as described in Sect. 4. ProFeat is then used for creating the relevant
instances for fixed parameter sets. Throughout this section we will report on
three instances as shown in Table 1a.

Table 1. Considered instances of models, formulas and requests.

(a) Model and formula instances

time T jobs J0 n in Form.(6) n in Form.(8)
M24 24 60 40 6

M48 48 120 80 12

M96 96 240 160 24

(b) Requests

shape probability
R0 no request 0.7
R1 ([t, t + 2], 0, 2) 0.12
R2 ([t, t + 2], 2, 4) 0.18

With its parameters, M24 can be thought of as having a time resolution of
one hour steps over one day. Similarly, M96 has a time resolution of 15 min.
The capacity and the maximal production of green energy are fixed to 4 for all
instances. We considered here two possible DR-requests with time-independent
distribution as shown in Table 1b. The probability distributions for the service
load are modeled in a time-independent fashion and are given by binomial dis-
tributions with a trail success probability of 0.4. The probability distributions
for the load are time-dependent and pre-generated with random values. Table 2
shows the number of reachable states in the MDP for the three instances.

The model instances generated by ProFeat are in the input format of the
prominent probabilistic model checker PRISM [21]. We used PRISM’s symbolic
engine, which uses multi-terminal binary decision diagrams (MTBDDs) for rep-
resenting MDPs. As the size of MTBDDs crucially depends on the order in which
variables occur in the MTBDD, we applied the reordering techniques described
in [19] to end up with more compact model representations. This step was very
effective, as the number of MTBDD nodes and hence the memory consumption
could be reduced by up to 95%. This is reflected in Table 2 where the number
of MTBDD nodes before and after reordering and the time for reordering is
depicted. For the analysis we used the development version of PRISM 4.3 with
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additional implementations of the algorithms for computing conditional proba-
bilities and quantiles. For the entire result section we used ε = 10−4 (absolute
values) for the convergence check of the numerical methods. Our experiments
were run on a machine with an Intel Xeon E5-2680 CPU with 16 physical cores
clocked at 2.7 GHz. The symbolic engine never exceeded the 1 GB memory limit.
The models together with the tools are available with the extended version [4]
under https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/ATVA16/.

5.1 Results

Table 2 shows the sizes of the generated models and the time for composing the
model. It can be seen that our model scales well with increasing time resolution.
A general overview of the model checking results is given in Table 3. It shows the
result for each numbered non-quantile query in Sect. 4.3 and the time it took to
process it. Again, we can see that the model checking times scale well with the
time resolution of the model. Even for 96 time steps the model checking times
are acceptable. Formulas 1–5 show that the basic confidence in our model is
high. There are no deadlock states as can be seen in Formulas 1 and 2, i.e., the
time always progresses to its final value. The probability to globally use green
energy only is very low (Formula 4) and even lower when we are trying to finish
all jobs (Formula 5), which is to be expected in this scenario. Similarly, the
maximal probability for finishing all jobs in time (Formula 3) is smaller than 1
but positive which is expected under the given parameters. The value decreases
with increasing model size due to the fixed capacity of 4 in each model instance
even though the proportion between time and jobs stays the same.

Table 2. Model sizes and build times.

Reachable states Transitions BDD nodes Reordered Reorder time Build time

M24 931401 18947025 327320 31609 3.472 s 0.23 s

M48 3841426 81269400 551716 39203 6.863 s 0.27 s

M96 15546726 338279825 1014437 59686 15.000 s 0.95 s

The results for the Formulas 6–14 describe optimal values for single measures
in the system. The probability for finishing two thirds of the total job pool (see
Table 1a) is very high as can be seen in Formula 6. Accordingly, the expected
number of finished jobs at the end of the day as seen in Formula 7 is close to
the maximum. Formula 8 gives the probability to survive using at most 1/4
brown energy units on average per time step, which is almost impossible in
the given setting. The expected total penalty until the end of the day is given
in the Formulas 9 (maximal) and 10 (minimal). While the minimal penalty
is low but non-zero, the maximal penalty is almost 1/2 units on average per
two time step. The minimal penalty can be achieved by never scheduling any
jobs. The expected total penalties until finishing all jobs is however infinite (see

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/ATVA16/
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Table 3. PMC-results (see Sect. 5.1).

Formula 24 steps/60 jobs 48 steps/120 jobs 96 steps/240 jobs

Result Time Result Time Result Time

(1) true 0.1 s true 0.0 s true 0.1 s

(2) true 0.4 s true 0.2 s true 0.7 s

(3) 0.543 31.5 s 0.392 104.2 s 0.244 748.4 s

(4) 1 ∗ 10−4 1.7 s 7 ∗ 10−5 2.4 s 5 ∗ 10−5 6.8 s

(5) 0 3.8 s 0 0.9 s 0 2.3 s

(6) 0.999 25.9 s 0.999 128.9 s 0.999 1062.8 s

(7) 56.66 52.5 s 114.252 68.2 s 229.610 569.8 s

(8) 0.059 5.4 s 0.012 25.0 s 6.10−4 244.5 s

(9) 12.737 26.0 s 25.617 27.7 s 51.380 239.3 s

(10) 0.897 1.3 s 1.805 31.8 s 3.620 275.5 s

(11) ∞ 0.0 s ∞ 0.0 s ∞ 0.0 s

(12) ∞ 0.6 s ∞ 1.3 s ∞ 9.3 s

(13) 23.376 3.5 s 47.431 19.9 s 95.559 421.8 s

(14) 23.999 0.4 s 48.000 0.7 s 95.999 4.1 s

(18) 1.0 51.7 s 1.0 111.0 s 1.0 317.5 s

(19) 1.0 81.9 s 1.0 121.6 s 1.0 292.9 s

Formulas 11 and 12) since it is not guaranteed that all jobs will be finished (see
Formula 3). Formulas 13 and 14 give the expected number of time steps until
all jobs are finished or time runs out. The reason for these numbers being so
close to the maximal number of time steps is that the job pool size is very close
to the expected number of jobs to be finished (see Formula 7). Figure 3 shows
quantile values for a variant of M24 with 120 initial jobs. Figure 3b shows the
maximal probabilities for finishing a certain number of jobs until the end of
the day. As expected, the probability is decreasing with higher job requirements
and drops around the expected number of jobs calculated in Formula 7. The
maximal probabilites for finishing all jobs with a given penalty bound is shown
in Fig. 3a. Probabilities of at least 0.6 cannot be reached, independent of the
penalty bound. This is immediately obvious from the results of Formula 3. The
calculated quantile values are also useful for protocol design, since they give
optimal parameters for jobs and penalties while retaining guarantees on the
system reliability. A detailed overview of the quantile values for Formulas 15
and 17 can be found in [4]. The conditional probabilities for Formulas 18 and
19 are always 1. Intuitively, a maximizing scheduler for Formula 18 can try to
work as many jobs as possible with green energy and can choose not to schedule
any jobs anymore as soon as brown energy needs to be used. On the other hand,
a scheduler for Formula 19 can start using brown energy as soon as the jobs
cannot be finished anymore.
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Fig. 3. Probability values for φy and φj .

6 Conclusion

The purpose of the paper was to show the general feasibility of probabilistic
model checking techniques for the analysis of demand-response systems. We
provided a compositional model with components for the service load, the green-
energy forecast, a request generator and an abstract model for the data center.
Each components can easily be adapted and refined. We identified a series of
important functional properties and performance measures that can serve as
evaluation criteria for different strategies for scheduling jobs and provide useful
insights for the design and refinement of the energy-aware workload management
in data centers. The report on the experimental studies carried out with the
model checker PRISM shows that several performance measures relevant to real
systems are computable in reasonable time frames, up to a time resolution of
15 min. At the same time, this scenario can be seen as a stress test for the
calculation of quantile values, in which the reordering techniques of [19] were
crucial. Future work will include the consideration of variants of the model as
discussed in Sect. 4 for different DR protocols with distributions that are derived
from a real-world data center.
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4. Baier, C., Klüppelholz, S., de Meer, H., Niedermeier, F., Wunderlich, S.: Greener
bits: formal analysis of demand response. Technical report, TU Dresden (2016).
http://www.tcs.inf.tu-dresden.de/ALGI/PUB/ATVA16/

5. Balijepalli, V., Pradhan, V., Khaparde, S., Shereef, R.: Review of demand response
under smart grid paradigm. In: 2011 IEEE PES on Innovative Smart Grid
Technologies-India (ISGT India), pp. 236–243. IEEE (2011)

http://www.tcs.inf.tu-dresden.de/ALGI/PUB/ATVA16/


338 C. Baier et al.

6. Basmadjian, R., Lovasz, G., Beck, M., de Meer, H., Hesselbach-Serra, X., Botero,
J., Klingert, S., Ortega, M.P., Lopez, J., Stam, A., van Krevelen, R., Girolamo,
M.D.: A generic architecture for demand response: the ALL4Green approach. In:
Proceedings of the 3rd International Conference on Cloud and Green Computing
(CGC), pp. 464–471. IEEE (2013)

7. Basmadjian, R., Mueller, L., de Meer, H.: Data centres’ power profile selecting
policies for demand response: insights of green supply demand agreement. Ad Hoc
Netw. 25, 581–594 (2015)

8. Boudec, J.L., Tomozei, D.-C.: Stability of a stochastic model for demand-response.
Stoch. Syst. 3(1), 11–37 (2013)

9. Chan, S., Schweppe, F.: A generation reallocation and load shedding algorithm.
IEEE Trans. Power Appar. Syst. 1(PAS–98), 26–34 (1979)

10. Chen, H., Coskun, A.K., Caramanis, M.C.: Real-time power control of data centers
for providing regulation service. In: Proceedings of the 52nd IEEE Conference on
Decision and Control, pp. 4314–4321 (2013)

11. Chen, N., Ren, X., Ren, S., Wierman, A.: Greening multi-tenant data center
demand response. SIGMETRICS Perform. Eval. Rev. 43(2), 36–38 (2015)
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Abstract. Checking liveness properties with partial-order reductions
requires a cycle proviso to ensure that an action cannot be postponed for-
ever. The proviso forces each cycle to contain at least one fully expanded
state. We present new heuristics to select which state to expand, hop-
ing to reduce the size of the resulting graph. The choice of the state to
expand is done when encountering a “dangerous edge”. Almost all exist-
ing provisos expand the source of this edge, while this paper also explores
the expansion of the destination and the use of SCC-based information.

1 Introduction

The automata-theoretic approach to explicit LTL model checking explores a
Labeled Transition System (LTS). Among the various techniques that have been
suggested to tackle the well known state explosion problem, partial-order reduc-
tions (POR) reduce the size of the LTS by exploiting the interleaving semantics
of concurrent systems. Under interleaved execution semantics, n independent
actions (or events) lead to n! possible interleavings. Numerous executions may
only correspond to the permutation of independent actions: POR considers only
some representative executions, ignoring all other ones [3,9,12].

The selection of the representative executions is performed on-the-fly while
exploring the LTS: for each state, the exploration algorithm only considers a
nonempty reduced subset of all enabled actions, such that all omitted actions
are independent from those in the reduced set. The execution of omitted actions
is then postponed to a future state. However if the same actions are consis-
tently ignored along a cycle, they may never be executed. To avoid this ignoring
problem, an extra condition called proviso is required. When checking liveness
properties, the proviso forces every cycle of the LTS to contain at least one
expanded state where all actions are considered.

This paper proposes several heuristics that can be combined to build new
original provisos. Since POR reductions aim to reduce the number of states
and transitions, we evaluate each proviso using these two criteria. This analysis
reveals new provisos that outperform the state of the art [1,9]. After the pre-
liminaries of Sect. 2, we deconstruct a state-of-the-art proviso [1] in Sect. 3. In
c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 340–356, 2016.
DOI: 10.1007/978-3-319-46520-3 22
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Sect. 4, we explore a new way to choose the state to be expanded among the
cycle. Finally Sect. 5 presents improvements based on SCC information.

2 Preliminaries

A Labeled Transition System (LTS) is a tuple L = 〈S, s0, Act, δ〉 where S is a
finite set of states, s0 ∈ S is a designated initial state, Act is a set of actions and
δ ⊆ S × Act × S is a (deterministic) transition relation where each transition is
labeled by an action. If (s, α, d) ∈ δ, we note s → d and say that d is a successor
of s. We denote by post(s) the set of all successors of s.

A path between two states s, s′ ∈ S is a finite and non-empty sequence of
adjacent transitions ρ = (s1, α1, s2)(s2, α2, s3) . . . (sn, αn, sn+1) ∈ δ+ with s1 = s
and sn+1 = s′. When s = s′ the path is a cycle.

A non-empty set C ⊆ S is a Strongly Connected Component (SCC) iff any
two different states s, s′ ∈ C are connected by a path, and C is maximal w.r.t.
inclusion. If C is not maximal we call it a partial SCC.

For the purpose of partial-order reductions, an LTS is equipped with a func-
tion reduced : S → 2S that returns a subset of successors reachable via a
reduced set of actions. For any state s ∈ S, we have reduced(s) ⊆ post(s)
and reduced(s) = ∅ =⇒ post(s) = ∅. The reduced function must satisfy other
conditions depending on whether we use ample set, stubborn set or persistent
set [3, for a survey see]. The algorithms we present do not depend on the actual
technique used.

In this paper, we consider a DFS-based exploration of the LTS using a given
reduced function. We survey different provisos that modify the exploration to
ensure that at least one state of each cycle is expanded. We will first present sim-
ple provisos that capture cycles by detecting back-edges of the DFS (i.e., an edge
reaching a state on the DFS stack), and always expanding one of its extremities.
Then more complex provisos can be presented: to avoid some expansion around
each back-edge, they also have to detect any edge that reachs a state that has been
explored but is no longer on the stack, as this edge may be part of a cycle.

3 Provisos Inspired from Existing Work

This section presents two well known provisos solving the ignoring problem for
liveness properties: the proviso introduced by Peled [9] and implemented in
Spin [2], and the one of Evangelista and Pajault [1]. The latter proviso aug-
ments the former with several mechanisms to reduce the number of expansions.
To show how each mechanism is implemented and its effect on the number of
expansions, we introduce each mechanism incrementally as a new proviso.

Source Expansion. Algorithm 1, that we call Source, corresponds to the
proviso of Peled [9]. The global variable v stores the set of visited states. Each
state on v has a Boolean flag to distinguish states that are on the DFS stack
(in) from those that left it (out).
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Algorithm 1. The Source pro-

viso, adapted from Peled [9].

1 Procedure Source(s ∈ S)

2 todo ← reduced(s)
3 v.add(s)

4 v.setColor(s, in)

5 e ← |todo| �= |post(s)|
6 while (¬todo.empty()) do

7 s′ ← todo.pick()
8 if (¬v.contains(s′)) then
9 Source(s′)

10 else if (e ∧ v.color(s′) = in)
then

11 todo.add(post(s)\ reduced(s))
12 e ← false
13 v.setColor(s,out)

Algorithm 2. Conditional source

expansion.

1 Procedure CondSource(s ∈ S)
2 todo ← reduced(s)
3 v.add(s)
4 v.setColor(s, (|todo| �= |post(s)| ?

5 in : out))
6 while (¬todo.empty()) do

7 s′ ← todo.pick()

8 if (¬v.contains(s′)) then

9 CondSource(s′)
10 else if (v.color(s) = in∧
11 v.color(s′) = in) then
12 todo.add(post(s) \ reduced(s))

13 v.setColor(s,out)

14 v.setColor(s,out)

This proviso expands any state s (the source) that has a successor s′ (the
destination) on the stack. This amounts to augmenting todo (line 11) with all
the successors in post(s) that were skipped by reduced(s). The Boolean e pre-
vents states from being expanded multiple times. Overall, this proviso can be
implemented with two extra bits per state (one for e, and one for in/out).

This proviso relies on the fact that each cycle contains a back-edge, and
therefore expanding the source of each back-edge will satisfy the constraint of
having at least one expanded state per cycle.

Conditional Source Expansion. Some expansions performed by Source
could be avoided: the expansion of the source s of a back-edge need only to be
performed when its destination s′ is not already expanded.

Algorithm 2 shows that this conditional expansion can be achieved by simply
changing the semantic of in and out. The in status now means that a state is
on the DFS stack and is not expanded. When a state s is discovered, its color
is set to out instead of in (line 5) whenever reduced(s) did not produce a set
smaller than post(s). Doing so allows getting rid of the e variable.

s s′1

2
3

Fig. 1. If edges 1, 2, 3,
are explored in that order,
CondSource will expand
both states. Prioritizing
back-edges(i.e., 3, 1, 2)
only expands s.

Prioritizing Already Known Successors. In
Source and CondSource, the decision to expand a
state s occurs only when a back-edge has been discov-
ered. However this discovery may occur after having
visited several other successors of s, and the recur-
sive calls on these successors are unaware that s will
eventually be expanded. This may cause superfluous
expansions as shown in Fig. 1.

Algorithm 3 shows how this could be fixed.
Among the successors of s, the known states are
processed first, making sure that s is expanded (if it has to) before processing
its other successors. CondSourceKnown forces that ordering by using a set
postponed to delay the visit of unknown successors; another implementation
would be to reorder todo to keep known states first. This latter implementation
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does not require additional memory (the set postponed) but it doubles the
number of tests of the form v.contains(s′).
Algorithm 3. Prioritizing known successors

1 Procedure CondSourceKnown(s ∈ S)
2 todo ← reduced(s)

3 v.add(s)
4 v.setColor(s, (|todo| �= |post(s)| ? in : out))
5 postponed ← ∅
6 while (¬todo.empty()) do

7 s′ ← todo.pick()
8 if (¬v.contains(s′)) then

9 postponed .add(s′)
10 else if (v.color(s) = in ∧ v.color(s′) = in) then
11 todo.add(post(s) \ reduced(s))

12 v.setColor(s,out)
13 while (¬postponed .empty()) do
14 s′ ← postponed .pick()

15 if (¬v.contains(s′)) then
16 CondSourceKnown(s′)
17 v.setColor(s,out)

Algorithm 4. Detecting expanded states on the DFS using weights

1 Procedure WeightedSource(s ∈ S)

2 todo ← reduced(s)

3 v.add(s)

4 v.setColor(s,orange)
5 v.setWeight(s, w)
6 if (|todo| = |post(s)|) then

7 todo ← Expand(s, todo)

8 while (¬todo.empty()) do

9 s′ ← todo.pick()
10 if (¬v.contains(s′)) then
11 WeightedSource(s′)
12 if (v.color(s) = orange ∧ v.color(s′) = red) then
13 v.setColor(s, purple)

14 else if (v.color(s) ∈ {orange, purple}) then
15 if (v.color(s′) = red) then

16 todo ← Expand(s, todo)

17 else if (v.color(s′) ∈ {orange, purple}) then
18 if (v.weight(s′) = w) then
19 todo ← Expand(s, todo)

20 else
21 v.setColor(s, purple)
22 switch (v.color(s)) do

23 case green : w ← w − 1

24 case orange : v.setColor(s,green)
25 case purple : v.setColor(s,red)

26 Function Expand (s ∈ S, succ ⊆ S)

27 succ.add(post(s) \ reduced(s))

28 v.setColor(s,green) /* scan stack here in WeightedSourceScan */

29 w ← w + 1
30 return succ
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Detecting Expanded States on the DFS. When a back-edge s → s′ is
detected, the DFS stack contains the states forming a path between s′ and
s. Some of these states could already be fully expanded. A generalization of
the optimization implemented in CondSource would therefore be to expand s
only if there is no expanded state between s′ and s. A consequence is that we
might have back-edges in which neither the source nor the destination have been
expanded. If we decide not to expand s, there might exist another path between
s′ and s (but not on the current DFS) that will later form a cycle without
expanded state [1, cf. Fig. 6]. Therefore a different way of ensuring that each
cycle contains an expanded state is required. [1] fixed this problem by marking
such states as dangerous so that they can trigger an expansion when encountered
on another cycle without expanded state.

Detecting the presence of expanded states along the cycle is done by assign-
ing each state s of the DFS a weight that represents the number of expanded
states seen since the initial state (s excluded). WeightedSource (Algorithm 4)
maintains this count in the global variable w.

The dangerousness of each state is indicated with four colors:

– green means that any cycle through this state already contains an expanded
state, so reaching this state does not require any more extension. A state can
be marked as green if it is expanded or if all its successors are green.

– orange and purple states are unexpanded states on the DFS stack (their
successors have not all been visited). The purple states are those for which
a non-green successor has been seen.

– red states are considered dangerous and should trigger an expansion when
reached. A purple state becomes red once its successors have been all visited.

In Algorithm 4, two situations trigger an expansion. A source s is expanded
when processing an edge s → s′ where s′ is marked red (line 16), or when s → s′

is a back-edge and there is no expanded state between s′ and s (line 18).
While Algorithm 4 stores the weights in v it is only needed for the states on

the DFS. The states on the stack need two bits to store one of the four colors,
but states outside the DFS require only one bit as they are either red or green.

Combining Prioritization and Detection of Expanded States on DFS.
The proviso C2Lc presented by [1] (renamed WeightedSourceKnown, see
Algorithm 5) corresponds to the combination of the last two ideas. The main
difference is that the second loop (line 21) working on successors ignored by the
first loop also performs an expansion (line 28) whenever it discovers a red suc-
cessor. This was not the case in Algorithm 3 because in CondSourceKnown
the only dangerous successors are those on the DFS stack.

Early Propagation of Green in the DFS Stack. Evangelista and Pajault
[1] also introduce a variant of WeightedSourceKnown in which the green
color of a state can be propagated to its predecessors in the DFS stack before
the actual backtrack. This propagation could prevent other states from being
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colored in red [1, cf. Fig. 8]. As soon as a state is expanded (i.e., in the Expand
function), the DFS stack is scanned backward and all orange states that are
ready to be popped (i.e., they do not have any pending successors left to be
processed) can be marked as green. This backward scan stops on the first state
that is either green or purple, or that has some unprocessed successors. This
idea can be applied to all Weighted algorithms.

Algorithm 5. Combining WeightedSource and CondSourceKnown [1]

1 Procedure WeightedSourceKnown(s ∈ S)
2 todo ← reduced(s) v.add(s) v.setColor(s,orange) v.setWeight(s, w) if

(|todo| = |post(s)|) then
3 todo ← Expand(s, todo) /* defined in Algorithm [4] */

4 postponed ← ∅ while (¬todo.empty()) do
5 s′ ← todo.pick() if (¬v.contains(s′)) then
6 postponed .add(s′)
7 else if (v.color(s) ∈ {orange, purple}) then
8 if (v.color(s′) = red) then
9 todo ← Expand(s, todo)

10 else if (v.color(s′) ∈ {orange, purple}) then
11 if (v.weight(s′) = w) then
12 todo ← Expand(s, todo)
13 else
14 v.setColor(s, purple)
15 while (¬postponed .empty()) do
16 s′ ← postponed .pick() if (¬v.contains(s′)) then
17 WeightedSourceKnown(s′) if

(v.color(s) = orange ∧ v.color(s′) = red) then
18 v.setColor(s, purple)

19 else if (v.color(s) ∈ {orange, purple} ∧ v.color(s′) = red) then
20 postponed ← Expand(s, postponed)
21 switch (v.color(s)) do
22 case green : w ← w − 1
23 case orange : v.setColor(s,green)
24 case purple : v.setColor(s,red)

eBecause it has to scan the stack, this algorithm may not be presented
as a recursive procedure like we did so far. However if WeightedSource or
WeightedSourceKnown were implemented as non-recursive procedures, the
place to perform the stack scanning would be in function Expand, as defined on
page 4. The modification also requires keeping track of whether a state is green
because it has been expanded, or because it has been marked during such a stack
scanning: an additional bit is needed for this.

We call these two variants WeightedSourceScan and Weighted-
SourceKnown. The latter one corresponds to the proviso C2Lc� presented by
Evangelista and Pajault [1].
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Evaluation. We evaluate the above 7 provisos (as well as more provisos we
shall introduce in the next sections) on state-spaces generated from 38 models
from the BEEM benchmark [7]. We selected models1 such that every category
of Pelánek’s classification [8] is represented.

We compiled each model using a version of DiVinE 2.4 patched by the
LTSminteam2. This tool produces a shared library that allows on-the-fly explo-
ration of the state-space, as well as all the information required to implement
a reduced function. This library is then loaded by Spot3, in which we imple-
mented all the provisos described here. Our reduced(s) method implements the
stubborn-set method from Valmari [12] as described by Pater [5, p. 21] in a
deterministic way: for any state s, reduced(s) always returns the same set.

Because provisos can be sensitive to the exploration order (Fig. 1 is one such
example), we ran each model 100 times with different transition orders. Table 1
sums these runs for all models, and shows:

– the size of the full (non-reduced) state-space (Full),
– the size of the reduced state-space using each of the above proviso,
– the size of the reduced state-space, applying just reduced without any proviso

(None). Even if this graph that cannot be used for verification in practice (it
ignores too many runs), None was used as a lower bound by Evangelista and
Pajault [1].

Table 1. Comparison of the provisos of Sect. 3. Columns present the number of states
and transitions (by million) summed over all runs, their ratio compared to the non-
reduced graphs, and the number of states investigated per milliseconds. Provisos with
a reference correspond to state-of-the-art algorithms.

1 The full benchmark can be found at: https://www.lrde.epita.fr/∼renault/benchs/
ATVA-2016/results.html.

2 http://fmt.cs.utwente.nl/tools/ltsmin/#divine.
3 https://spot.lrde.epita.fr.

https://www.lrde.epita.fr/~renault/benchs/ATVA-2016/results.html
https://www.lrde.epita.fr/~renault/benchs/ATVA-2016/results.html
http://fmt.cs.utwente.nl/tools/ltsmin/#divine
https://spot.lrde.epita.fr
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In addition to showing the contribution of each individual idea presented in
the above section, Table 1 confirms state-of-the-art results [1]. However, since
these values are sums, they are biased towards the largest models. Section 5 will
present the most relevant provisos after normalizing the results model by model,
in order to be less sensitive to their size.

We observe that WeightedSourceKnownScan outperforms (18% fewer
states) Source as measured by Evangelista and Pajault [1]. We note that
Source processes more states per millisecond, because it maintains less infor-
mation than WeightedSourceKnown.

Surprisingly, CondSource, despite its simplicity, is more efficient than
WeightedSourceKnown. This might be due to red states introduced in
WeightedSourceKnown, as they can generate additional expansions.
WeightedSourceKnown can only be competitive with other provisos when
combined with the scan of the DFS stack as integrated in WeightedSource-
Known. The additional implementation complexity required to update the
weights and to scan the stack only provides a very small benefit in term of size;
however it can be seen in the last column that the runtime overhead is negligible:
all provisos process the same number of states per millisecond.

4 New Provisos Based on Destination Expansion

The Source proviso relies on the fact that each cycle contains a back-edge,
so expanding the source of this edge guarantees that each cycle will have an
expanded state. This guarantee would hold even if the destination of each
back-edge was expanded instead. This idea, already proposed by Nalumasu and
Gopalakrishnan [4] in a narrower context, brought promising results. This section
investigates this idea more systematically yielding many new proviso variants.

Destination Expansion. The simplest variant, called Dest (Algorithm 6) is
a modification of Source that expands the destination of back-edges instead of
the source. This requires a new Boolean per state to mark (line 10) whether a
state on the stack should be expanded (line 12) during backtrack.

As previously, it is possible to perform a conditional expansion (not marking
the destination if the source is already expanded) and to prioritize the visit of
some successors. Contrary to Source, where it is preferable to consider known
states first, it is better to visit unknown successors (or self-loops) first with Dest,
since those successors might ultimately mark the current state for expansion,
therefore avoiding the need to expand the destinations of this state’s back-edges.

In Dest, the recursive visit of unknown successors could mark the current
state for later expansion: in this case, successors that are on the DFS stack have
been marked uselessly. The next algorithm avoids these pointless expansions.

Algorithm 7, called CondDestUnknown implements the prioritization of
successors (lines 8–13) as well as the conditional expansion (line 12). The main
loop investigates new successors first (through recursive calls), handles self-loops,
and postpones the processing of dangerous states. Then, either the current state
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is marked and must be expanded, or all the dangerous direct successors of the
current state are marked to be expanded later (when backtracking these states,
after returning from the recursive calls, line 14).

Mixing Destination Expansion and Dangerousness. Previous provisos
can still perform useless expansions. When an edge s → d returning to the DFS
is detected, the destination d is marked to be expanded. However during the
backtrack of the DFS stack, we might encounter another marked state q that is
expanded because it belongs to another cycle. Thus d and q are both expanded,
but since q belongs to the two cycles, the expansion of d was superfluous.

Algorithm 6. Expanding

destination instead of source

1 Procedure Dest(s ∈ S)
2 todo ← reduced(s)

3 v.add(s)

4 v.setMark(s, false)

5 while (¬todo.empty()) do
6 s′ ← todo.pick()
7 if (¬v.contains(s′)) then

8 Dest(s′)
9 else

10 v.setMark(s′,true)

11 if (v.mark(s)) then
12 todo ←
13 post(s) \ reduced(s)

14 while (¬todo.empty())
do

15 s′ ← todo.pick()
16 if (¬v.contains(s′))

then

17 Dest(s′)

Algorithm 7. Prioritizing unknown suc-

cessors with conditional expansion of

destination

1 Procedure CondDestUnknown(s ∈ S)

2 todo ← reduced(s)
3 v.add(s)
4 v.setMark(s, |todo| = |post(s)|)
5 postponed ← ∅
6 while (¬todo.empty()) do
7 s′ ← todo.pick()

8 if (¬v.contains(s′)) then

9 CondDestUnknown(s′)
10 else if (s = s′) then

11 v.setMark(s,true)

12 else if (¬v.mark(s) ∧ ¬v.mark(s′)) then

13 postponed .add(s′)
14 if (v.mark(s)) then
15 todo ← post(s) \ reduced(s)
16 while (¬todo.empty()) do

17 s′ ← todo.pick()

18 if (¬v.contains(s′)) then
19 CondDestUnknown(s′)
20 else

21 while (¬postponed .empty()) do
22 s′ ← postponed .pick()

23 v.setMark(s′,true)
24 v.setMark(s,true)

ColoredDest (Algorithm 8) proposes a solution to this problem. It reuses
the color mechanism introduced in WeightedSource (all Weighted algo-
rithms use colors), but without the weights. Here, useless expansions are also
tracked by propagating green (line17); the difference is that only the purple
states that are marked will be expanded (lines19–25), not the orange ones.

As done previously, we can prioritize unknown states, resulting in a new vari-
ant: ColoredDestUnknown. This avoids useless markings (line14). However,
mixing this variant with the stack scanning technique is not interesting. Indeed,
propagating the green color as early as possible is pointless since the expansion
is done when backtracking (i.e., as late as possible): the color will be naturally
propagated anyway when it has to be used.
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Algorithm 8. Mixing destination expansion and dangerousness.

1 Procedure ColoredDest(s ∈ S)
2 todo ← reduced(s)

3 v.add(s)
4 v.setColor(s, (|todo| �= |post(s)| ? orange : green))
5 v.setMark(s, false)

6 while (¬todo.empty()) do

7 s′ ← todo.pick()
8 if (¬v.contains(s′)) then
9 ColoredDest(s′) if (v.color(s) = orange) ∧ (v.color(s′) = red) then

10 v.setColor(s, purple)

11 else if (v.color(s) ∈ {orange, purple}) ∧ (v.color(s′) �= green) then
12 v.setColor(s, purple)
13 v.setMark(s′,true)
14 switch (v.color(s)) do

15 case orange :

16 v.setColor(s,green)
17 case purple :
18 if (v.mark(s)) then

19 v.setColor(s,green)
20 todo ← post(s) \ reduced(s)
21 while (¬todo.empty()) do
22 s′ ← todo.pick()
23 if (¬v.contains(s′)) then

24 ColoredDest(s′)
25 else
26 v.setColor(s,red)

Of course, weights can also be used in addition to colors. In WeightedDest
(Algorithm 9), we use a slightly different implementation of weights than in
WeightedSource: instead of storing the number of expanded states seen above
any state of the DFS stack, we store the depth of each state, and maintain a
stack of the depths of all expanded states on the DFS stack. This alternate
representation of weights is not necessary in WeightedDest, but will be useful
for the next extension we present.

In WeightedDest, when a back-edge s → s′ discovers a dangerous state
s′ on the DFS stack (lines19–21), the algorithm can use the additional stack e
to decide whether s′ actually needs to be marked for expansion: if the depth
of s′ is less than the depth of the last expanded state, then a state has been
expanded between s′ and s, and the marking can be avoided. However, and as in
WeightedSource, when an edge s → s′ reaches a red state s′, the source has
to be expanded immediately (lines23–25) since there is no way to know whether
this edge could be part of a cycle without expanded state.

The reason we introduced the depth-based representation of weights is for
another heuristic we call DeepestDest. If a state s has several back-edges s →
s1, s → s2, . . . , s → sn to different states s1, s2, . . . , sn on the DFS stack, then
all these back-edges close cycles that all pass through the deepest of these states,
which is the only one needing to be marked for (possible) expansion. Note that
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in this situation (one source, with n back-edges), Source would immediately
expand one state (the source), ColoredDest and WeightedDest would mark
n states for (possible) expansion, while DeepestDest would mark only one.

DeepestDest, which we do not present to save space, can be implemented
by modifying Algorithm 9 as follows: instead of marking a destination for

Algorithm 9. Adapting weights to the expansion of destination states.

1 Procedure WeightedDest(s ∈ S)

2 todo ← reduced(s)

3 v.add(s)

4 v.setColor(s,orange)
5 v.setMark(s, false)
6 d ← d+ 1

7 v.setDepth(s, d)

8 if (|todo| = |post(s)|) then
9 v.setColor(s,green)

10 e.push(d)
11 while (¬todo.empty()) do
12 s′ ← todo.pick()
13 if (¬v.contains(s′)) then

14 WeightedDest(s′)
15 if (v.color(s) = orange) ∧ (v.color(s′) = red) then
16 v.setColor(s, purple)

17 else if (v.color(s) ∈ {orange, purple}) ∧ (v.color(s′) �= green) then

18 v.setColor(s, purple)
19 if (v.color(s′) ∈ {orange, purple}) then

20 if (e.empty() ∨ v.depth(s′) > e.top()) then

21 v.setMark(s′, true)
22 else if (v.color(s′) = red) then

23 v.setColor(s,green)

24 e.push(d)
25 todo ← todo ∪ (post(s) \ reduced(s))

26 switch (v.color(s)) do
27 case green :

28 e.pop()

29 case orange :
30 v.setColor(s,green)

31 case purple :

32 if (v.mark(s)) then
33 v.setColor(s,green)

34 e.push(d)
35 todo ← post(s) \ reduced(s)

36 while (¬todo.empty()) do

37 s′ ← todo.pick()
38 if (¬v.contains(s′)) then

39 WeightedDest(s′)
40 e.pop()

41 else

42 v.setColor(s,red)
43 d ← d − 1
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expansion at line 21, simply collect the deepest destination, and mark that single
destination in the same block as line 42.

Evaluation. Table 2 presents the performance of the provisos presented
in this section. Some provisos measured here, such as CondDest,
WeightedDestUnknown, and DeepestDestUnknown have not been
explicitly presented, but the techniques they combine should be obvious from
their name. All WeightedDest and DeepestDest variants could also be com-
bined with the Scan technique however these combinations did not achieve
interesting performances.

Table 2. Comparison of the provisos of Sect. 4. For reference, we highlight the per-
formance of WeightedSourceKnown, the best proviso of Sect. 3.

As for the Source family of provisos, using a conditional expansion brings
the most benefits. The Unknown variants generally show a very small effect
(slightly positive or slightly negative) on a proviso, so this does not seem to be an
interesting heuristic. The Weighted and Deepest variants are disappointing.
We believe this is due to mixing destination expansions (for back-edges) and
source expansions (for red states). However, next section will show that, when
combined with others techniques, they bring promising results.

The better provisos of this table are therefore CondDest and
ColoredDest (with or without Unknown) with very close results. Note that
both provisos are easy to implement, and have a small memory footprint:
CondDest requires one additional bit per state, while ColoredDest needs
three bits. This is smaller than what WeightedSourceKnown requires.

5 Improving Provisos with SCCs

To test the emptiness of the product between a state-space and a specification,
an explicit model checker can use two kinds of emptiness checks: those based on
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Nested Depth First Search (NDFS) [11], and those based on enumerating the
Strongly Connected Components (SCC) [10].

All provisos presented so far apply to both NDFS or SCC-based setups. In
this section, we present two ideas that are only relevant to model checkers using
SCC-based emptiness checks, since they exploit the available information about
(partial) SCCs.

In all SCC-based emptiness checks, states may be partitioned in three sets:
live states, dead states, and unknown states. Unknown states are states that
have not yet been discovered. Dead states are states that belong to SCCs that
have been entirely visited. The remaining states are live, and their SCCs might
be only partially known.

Using Dead SCCs. The first idea is rather trivial. In the Colored or
Weighted provisos presented so far, red states are always considered dan-
gerous. When we discover an edge s → s′ to a red state s′, we either expand
the source s (all Weighted provisos), or propagate the red color to s (for
ColoredDest). But these actions are superfluous when the state s′ is known
to belong to a dead SCC: in that case s and s′ are in different SCCs so they
cannot appear on the same cycle, and the edge may be simply ignored.

Using Live SCCs Through Highlinks. In Weighted provisos, we can derive
additional insights about cycles in live SCCs. When we discover an edge s → s′

to a red state s′ that is also live, then s′ necessarily belongs to the same SCC as
s. This means that s → s′ closes at least one cycle, even if s′ is not on the DFS
stack: therefore one state on the cycles including s′ and s has to be marked for
expansion, and only states from the DFS can be marked as such. The default
solution used by Weighted provisos would be to expand the source s, but we
have also seen previously that expanding states that are that are higher (i.e.,
less deep) in the DFS stack improves results.

q1

q2

q3

q4

s

s′

Fig. 2. White states and edges with
white arrows denote the DFS stack.
Black states have been fully visited.
The cloud represents the only (par-
tial, non trivial) SCC that has been
discovered so far. Dashed-edge has
not yet been visited.

In order to expand higher states, we
equip each live state x with a pointer called
highlink(x) that gives a DFS state (prefer-
ably the highest) that is common to all known
cycles passing through x. Figure 2 shows
a snapshot of an algorithm computing the
SCC, where a partial SCC is highlighted. In
this configuration, highlink(s′) = q3. When
an edge s → s′ reaches a state s′ that is
live and red, we therefore have to ensure
that some state between highlink(s′) and s
is expanded: since these two states are on
the stack, and s is deeper than highlink(s′),
we prefer to expand the latter. Furthermore,
using the same weight implementation as
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Algorithm 9, we can easily check whether there exists an expanded state between
highlink(s′) and s to avoid additional work.

In the example of Fig. 2, once s, q4, and q3 are popped from the DFS stack
highlink(s′) should be updated to value of highlink(q3) which is q2. In our
implementation, these updates are performed lazily in a way that is similar to
the path-compression technique used in the union-find data structure [6]: when
we query the highlink of a state and find that it points to a state q that is not
on the DFS stack, we update it to highlink(q).

Because it would require introducing an SCC-based algorithm, and because
we consider that the fine details of how to update highlink(x) efficiently in this
context is not necessary to reach our conclusion, we have decided to not present
this algorithm formally. Our implementation is however publicly available (see
footnote 1).

Evaluation. Table 3 presents the performances of the provisos presented in
this section. We prefix by Dead and Highlink the provisos of previous sections
when combined with the two SCC-based heuristics. Note that dead states are
also ignored in Highlink variants.

We observe that the Dead variants only improve the original non-Dead
variants by 3 %. On the contrary, the Highlink variants bring an impor-
tant benefit. For instance the addition of Highlink to DeadWeightedDest
reduces the number of states by 25 % and the number transitions by 30 %. The
improvements are similar when using Highlink on top of the state-of-the-art
WeightedSourceKnown variants. These results confirm that the case where
an edge leading to a (non-dead) red state is well handled by this Highlink.

Table 3. Comparison of the provisos of Sect. 5. For reference, we recall the perfor-
mances of DeepestDest, WeightedDest that are the support of heuristics presented
in this section, and those of ColoredDest, the best proviso so far.
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Note that while DeepestDest combinations did not achieve interesting per-
formances so far, it outperforms all provisos presented in this paper when com-
bined with Highlink and Scan techniques.

Among the 46 provisos we implemented and benched (see footnote 1), we
selected the 16 most relevant: all the Source-based strategies (to see the contri-
bution of each optimization), the bests Dest-based ones (i.e., without weights),
and finally the best of each SCC-based strategy.

Figure 3 shows box plots of standard score computed for selected provisos
and all models. The standardization is performed as follows. For each model M ,
we take the set of 1600 runs generated (100 runs per proviso), and compute a
mean number of states μM and a standard deviation σM . The standard score
of a run r is states(r)−μM

σM
. Therefore a score of 2 signifies that the run is two

standard deviations away from the mean (of selected provisos) for the given
model. Figure 3 shows the distribution of these scores as box plots. Each line
shows a box that spans between the first and third quartiles, and is split by the
median. The whiskers show the ranges of values below the first and above the
third quartile that are not further away from the quartiles than 1.5 times the
interquartile range. Other values are shown as outliers using circles.

Fig. 3. Distributions of standard scores for a selection of provisos.

The ranking of provisos in Fig. 3 differs from previous tables that were biased
toward large models. However, if we omit some permutations between provisos
that have close median standard score, the order stays globally the same.

If we look at provisos that do not exploit SCCs, the best provisos appear to
be all the CondDest variants, but they are very close to the state-of-the-art
WeightedSourceKnownScan [1]. Introducing SCC-based provisos clearly
brings another level of improvements, where, on the contrary to previous provi-
sos, expanding the source or the destination does not make a serious difference.

6 Conclusion

Starting from an overview of state-of-the-art provisos for checking liveness prop-
erties, we have proposed new provisos based on the expansion of the destination
instead of the source. These new provisos have been successfully combined with
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existing heuristics (Scan, (Un)Known, Weighted) and new ones (Colored,
Deepest, Dead, and Highlink).

For source expansion, our results confirm and extend those of Evange-
lista and Pajault [1] who have shown that WeightedSourceKnown and
WeightedSourceKnown were better than Source. However when decon-
structing these provisos to evaluate each optimization independently, we dis-
covered that most of the gain can be obtained by implementing a very simple
proviso, CondSource, that does not require maintaining weights or scanning
the stack.

Expanding the destination of edges, even in very simple implementations
like CondDest, appears to be competitive with state-of-the-art provisos using
source-based expansions. When using an NDFS-based emptiness check, we rec-
ommend to use CondDest since it remains very simple to implement, requires
small memory footprint and achieves good results.

We have also shown how to exploit SCC-based information to limit the
number of expansions: the use of Highlink brings a solid improvement to all
provisos. When using an SCC-based emptiness check, our preference goes to
HighlinkWeightedSourceKnown that does not require scanning the stack.

From this extensive analysis, we also observe: (1) the Weighted-variants
ruins the benefits of Dest-based provisos without Highlinks, while they
increase performances of Source-based ones, (2) the (Un)Known variants only
bring a modest improvements while they double the number of visited transi-
tions, (3) the Scan heuristic is not of interest when combined with Highlinks
but is efficient otherwise. A scatter plot (see footnote 1) comparing the best of
Source-based provisos with the best of Dest-based ones, shows that they are
complementary.

Most of the heuristics presented in this paper are derived from state-of-the-
art provisos which have been proven correct [1,9]. Since reproducing the proof
schemes for all the 46 provisos we presented in this paper would be laborious,
and considering they were implemented, we opted for an extensive test campaign
checking that, for randomly generated LTS, all provisos produce reduced graphs
containing at least one expanded state per cycle.

Finally, note that Source is for instance implemented in Spin. However, the
reduced function implemented in Spin is different than ours: it returns either a
single transition, or all transitions. With such a reduced function, some of the
variants we presented make no sense (Known, Unknown, Deepest), and the
results might be completely different. We leave the evaluation of the effect of
different reduced functions on the provisos as a future work.
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7. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
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8. Pelánek, R.: Properties of state spaces and their applications. STTT 10, 443–454
(2008)

9. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

10. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Three SCC-based empti-
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Abstract. Model checking using GPUs has seen increased popularity
over the last years. Because GPUs have a limited amount of memory, only
small to medium-sized systems can be verified. For on-the-fly explicit-
state model checking, we improve memory efficiency by applying partial-
order reduction. We propose novel parallel algorithms for three practical
approaches to partial-order reduction. Correctness of the algorithms is
proved using a new, weaker version of the cycle proviso. Benchmarks
show that our implementation achieves a reduction similar to or bet-
ter than the state-of-the-art techniques for CPUs, while the amount of
runtime overhead is acceptable.

1 Introduction

The practical applicability of model checking [1,10] has often been limited by
state-space explosion. Successful solutions to this problem have either depended
on efficient algorithms for state space reduction, or on leveraging new hardware
improvements. To capitalize on new highly parallel processor technology, multi-
core [14] and GPU model checking [7] have been introduced. In recent years,
this approach has gained popularity and multiple mainstream model checkers
already have multi-threaded implementations [3,9,11,14,16]. In general, design-
ing multi-threaded algorithms for modern parallel architectures brings forward
new challenges typical for concurrent programming. For model checking, devel-
oping concurrent versions of existing state space algorithms is an important
task.

The massive number of threads that run in parallel makes GPUs attrac-
tive for the computationally intensive task of state space exploration. Their
parallel power can speed-up model checking by up to two orders of magni-
tude [2,12,26,28]. Although the amount of memory available on GPUs has
increased significantly over the last years, it is still a limiting factor.

In this work we aim to improve the memory efficiency of GPU-based model
checking. Therefore, we focus on reconciling partial-order reduction (POR) tech-
niques [13,21,23] with a GPU-based model checking algorithm [27]. POR exploits
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the fact that the state space may contain several paths that are similar, in the
sense that their differences are not relevant for the property under consideration.
By pruning certain transitions, the size of the state space can be reduced. Hence,
POR has the potential to increase the practical applicability of GPUs in model
checking.

Contributions. We extend GPUexplore [27], one of the first tools that runs
a complete model checking algorithm on the GPU, with POR. We propose GPU
algorithms for three practical approaches to POR, based on ample [15], cam-
ple [6] and stubborn sets [23]. We improve the cample-set approach by comput-
ing clusters on-the-fly. Although our algorithms contain little synchronization, we
prove that they satisfy the action ignoring proviso by introducing a new version
of the so called cycle proviso, which is weaker than previous versions [8,21], pos-
sibly leading to better reductions. Our implementation is evaluated by running
benchmarks with models from several other tools. We compare the performance
of each of the approaches with LTSmin [16], which implements state-of-the-art
algorithms for explicit-state multi-core POR.

The rest of the paper is organized as follows: Sect. 2 gives an overview of
related work and Sect. 3 introduces the theoretic background of partial-order
reduction and the GPU architecture. The design of our algorithms is described in
Sect. 4 and a formal correctness proof is given in Sect. 5. Finally, Sect. 6 presents
the results obtained from executing our implementation on several models and
Sect. 7 provides a conclusion and suggestions for future work.

2 Related Work

Partial-Order Reduction. Bošnački et al. have defined cycle provisos for
general state expanding algorithms [8] (GSEA, a generalization of depth-first
search (DFS) and breadth-first search (BFS)). Although the proposed algorithms
are not multi-core, the theory is relevant for our design, since our GPU model
checker uses a BFS-like exploration algorithm.

POR has been implemented in several multi-core tools: Holzmann and
Bošnački [14] implemented a multi-core version of SPIN that supports POR.
They use a slightly adapted cycle proviso that uses information on the local
DFS stack.

Barnat et al. [4] have defined a parallel cycle proviso that is based on a topo-
logical sorting of the state space. A state space cannot be topologically sorted
if it contains cycles. This information is used to determine which states need to
be fully expanded. Their implementation provides competitive reductions. How-
ever, it is not clear from the paper whether it is slower or faster than a standard
DFS-based implementation.

Laarman and Wijs [19] designed a multi-core version of POR that yields
better reductions than SPIN’s implementation, but has higher runtimes. The
scalability of the algorithm is good up to at least 64 cores.
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GPU Model Checking. General purpose GPU (GPGPU) techniques have
already been applied in model checking by several people, all with a different
approach: Edelkamp and Sulewski [12] perform successor generation on the GPU
and apply delayed duplicate detection to store the generated states in main
memory. Their implementation performs better than DIVINE, it is faster and
consumes less memory per state. The performance is worse than multi-core SPIN,
however.

Barnat et al. [2] perform state-space generation on the CPU, but offload the
detection of cycles to the GPU. The GPU then applies the Maximal Accepting
Predecessors (MAP) or One Way Catch Them Young (OWCTY) algorithm to
find these cycles. This results in a speed-up over both multi-core Divine and
multi-core LTSmin.

GPUexplore by Wijs and Bošnački [26,27] performs state-space explo-
ration completely on the GPU. The tool can check for absence of deadlocks and
can also check safety properties. The performance of GPUexplore is similar
to LTSmin running on about 10 threads.

Bartocci et al. [5] have extended SPIN with a CUDA implementation. Their
implementation has a significant overhead for smaller models, but performs rea-
sonably well for medium-sized state spaces.

Wu et al. [28] also implemented a complete model checker in CUDA. They
adopted several techniques from GPUexplore, and added dynamic parallelism
and global variables. The speed up gained from dynamic parallelism proved to
be minimal. A comparison with a sequential CPU implementation shows a good
speed-up, but it is not clear from the paper how the performance compares with
other parallel tools.

GPUs have also been applied in probabilistic model checking: Bošnački et
al. [7,25] speed up value-iteration for probabilistic properties by solving linear
equation systems on the GPU. Češka et al. [9] implemented parameter synthesis
for parametrized continuous time Markov chains.

3 Background

Before we introduce the theory of POR, we first establish the basic definitions
of labelled transitions systems and concurrent processes.

Definition 1. A labelled transition system (LTS) is a tuple T = (S,A, τ, ŝ),
where:

– S is a finite set of states.
– A is a finite set of actions.
– τ : S × A × S is the relation that defines transitions between states. Each

transition is labelled with an action α ∈ A.
– ŝ ∈ S is the initial state.

Let enabled(s) = {α|(s, α, t) ∈ τ} be the set of actions that is enabled in
state s and succ(s, α) = {t|(s, α, t) ∈ τ} the set of successors reachable through
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some action α. Additionally, we lift these definitions to take a set of states or
actions as argument. The second argument of succ is omitted when all actions
are considered: succ(s) = succ(s,A). If (s, α, t) ∈ τ , then we write s

α−→ t. We
call a sequence of actions and states s0

α1−→ s1
α2−→ . . .

αn−−→ sn an execution. We
call the sequence of states visited in an execution a path: π = s0 . . . sn. If there
exists a path s0 . . . sn, then we say that sn is reachable from s0.

To specify concurrent systems consisting of a finite number of finite-state
processes, we define a network of LTSs [20]. In this context we also refer to the
participating LTSs as concurrent processes.

Definition 2. A network of LTSs is a tuple N = (Π,V ), where:

– Π is a list of n processes Π[1], . . . , Π[n] that are modelled as LTSs.
– V is a set of synchronization rules (t, a), where a is an action and t ∈ {0, 1}n

is a synchronization vector that denotes which processes synchronize on a.

For every network, we can define an LTS that represents its state space.

Definition 3. Let N = (Π,V ) be a network of processes. TN = (S,A, τ, ŝ) is
the LTS induced by this network, where:

– S = S[1] × · · · × S[n] is the cross-product of all the state spaces.
– A = A[1] ∪ · · · ∪ A[n] is the union of all actions sets.
– τ = {(〈s1, . . . , sn〉, a, 〈t1, . . . , tn〉) | ∃(t, a) ∈ V : ∀i ∈ {1..n} : t(i) = 1 ⇒

(si, a, ti) ∈ τ [i] ∧ t(i) = 0 ⇒ si = ti} is the transition relation that follows
from each of the processes and the synchronization rules.

– ŝ = 〈ŝ[0], . . . , ŝ[n]〉 is the combination of the initial states of the processes.

We distinguish two types of actions: (1) local actions that do not synchronize
with other processes, i.e. all rules for those actions have exactly one element set
to 1, and (2) synchronizing actions that do synchronize with other processes.
In the rest of this paper we assume that local actions are never blocked, i.e.
if there is a local action α ∈ A[i] then there is a rule (t, α) ∈ V such that
element i of t is 1 and the other elements are 0. Note that although processes
can only synchronize on actions with the same name, this does not limit the
expressiveness. Any network can be transformed into a network that follows our
definition by proper action renaming.

During state-space exploration, we exhaustively generate all reachable states
in TN , starting from the initial state. When all successors of s have been identi-
fied, we say that s has been explored, and once a state s has been generated, we
say that it is visited.

3.1 Partial-Order Reduction

We first introduce the general concept of a reduction function and a reduced
state space.
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Definition 4. A reduced LTS can be defined according to some reduction func-
tion r : S → 2A. The reduction of T w.r.t. r is denoted by Tr = (Sr, A, τr, ŝ),
such that:

– (s, α, t) ∈ τr if and only if (s, α, t) ∈ τ and α ∈ r(s).
– Sr is the set of states reachable from ŝ under τr.

POR is a form of state-space reduction for which the reduction function
is usually computed while exploring the original state space (on-the-fly). That
way, we avoid having to construct the entire state space and we are less likely
to encounter memory limitations. However, a drawback is that we never obtain
an overview of the state space and the reduction function might be larger than
necessary.

The main idea behind POR is that not all interleavings of actions of parallel
processes are relevant to the property under consideration. It suffices to check
only one representative execution from each equivalence class of executions. To
reason about this, we define when actions are independent.

Definition 5. Two actions α, β are independent in state s if and only if α, β ∈
enabled(s) implies:

– α ∈ enabled(succ(s, β))
– β ∈ enabled(succ(s, α))
– succ(succ(s, α), β) = succ(succ(s, β), α)

Actions are globally independent if they are independent in every state s ∈ S.

Based on the theory of independent actions, the following restrictions on the
reduction function have been developed [10]:

C0a r(s) ⊆ enabled(s).
C0b r(s) = ∅ ⇔ enabled(s) = ∅.
C1 For all s ∈ S and executions s

α1−→ s1
α2−→ . . .

αn−1−−−→ sn−1
αn−−→ sn such that

α1, . . . , αn /∈ r(s), αn is independent in sn−1 with all actions in r(s).

C0b makes sure that the reduction does not introduce new deadlocks. C1
implies that all α ∈ r(s) are independent of enabled(s) \ r(s). Informally, this
means that only the execution of independent actions can be postponed to a
later state. A set of actions that satisfies these criteria is called a persistent
set. It is hard to compute the smallest persistent set, therefore several practical
approaches have been proposed, which will be introduced in Sect. 4.

If r is a persistent set, then all deadlocks in an LTS T are preserved in
Tr. Therefore, persistent sets can be used to speed up checking for deadlocks.
However, safety properties are generally not preserved due to the action-ignoring
problem. This occurs whenever some action in the original system is ignored
indefinitely, i.e. it is never selected for the reduction function. Since we are
dealing with finite state spaces and condition C0b is satisfied, this can only
occur on a cycle. To prevent action-ignoring, another condition, called the action-
ignoring proviso, is applied to the reduction function.
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C2ai For every state s ∈ Sr and every action α ∈ enabled(s), there exists an
execution s

α1−→ s1
α2−→ . . .

αn−−→ sn in the reduced state space, such that
α ∈ r(sn).

Applying this proviso directly by means of Valmari’s SCC approach [22] intro-
duces quite some runtime overhead. For this reason, several stronger versions of
the action-ignoring proviso have been defined, generally called cycle provisos.
Since GPUexplore does not follow a strict BFS order, we will use the closed-
set proviso [8] (Closed is the set of states that have been visited and for which
exploration has at least started):

C2c There is at least one action α ∈ r(s) and state t such that s
α−→ t and

t /∈ Closed . Otherwise, r(s) = enabled(s).

3.2 GPU Architecture

CUDA1 is a programming interface developed by NVIDIA to enable general
purpose programming on a GPU. It provides a unified view of the GPU (‘device’),
simplifying the process of developing for multiple devices. Code to be run on the
device (‘kernel’) can be programmed using a subset of C++.

On the hardware level, a GPU is divided up into several streaming multi-
processors (SM) that contain hundreds of cores. On the side of the programmer,
threads are grouped into blocks. The GPU schedules thread blocks on the SMs.
One SM can run multiple blocks at the same time, but one block cannot execute
on more than one SM. Internally, blocks are executed as one or more warps.
A warp is a group of 32 threads that move in lock-step through the program
instructions.

Another important aspect of the GPU architecture is the memory hierarchy.
Firstly, each block is allocated shared memory that is shared between its threads.
The shared memory is placed on-chip, therefore it has a low latency. Secondly,
there is the global memory that can be accessed by all the threads. It has a high
bandwidth, but also a high latency. The amount of global memory is typically
multiple gigabytes. There are three caches in between: the L1, L2 and the texture
cache. Data in the global memory that is marked as read-only (a ‘texture’) may
be placed in the texture cache. The global memory can be accessed by the CPU
(‘host’), thus it also serves as an interface between the host and the device.
Figure 1 gives a schematic overview of the architecture.

The bandwidth between the SMs and the global memory is used optimally
when a continuous block of 32 integers is fetched by a warp. In that case, the
memory transaction is performed in parallel. This is called coalesced access.

1 https://developer.nvidia.com/cuda-zone.

https://developer.nvidia.com/cuda-zone
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Fig. 1. Schematic overview of the GPU hardware architecture

4 Design and Implementation

4.1 Existing Design

GPUexplore [27] is an explicit-state model checker that can check for dead-
locks and safety properties. GPUexplore executes all the computations on the
GPU and does not rely on any processing by the CPU.

The global memory of the GPU is occupied by a large hash table that uses
open addressing with rehashing. The hash table stores all the visited states,
distinguishing the states that still need to be explored (Open set) from those that
do not require this (Closed). It supports a findOrPut operation that inserts states
if they are not already present. The implementation of findOrPut is thread-safe
and lockless. It uses the compareAndSwap (CAS) operation to perform atomic
inserts.

The threads are organized as follows: each thread is primarily part of a block.
As detailed in Sect. 3.2, the hardware enforces that threads are grouped in warps
of size 32. We also created logical groups, called vector groups. The number of
threads in a vector group is equal to the number of processes in the network
(cf. Sect. 3). When computing successors, threads cooperate within their vector
group. Each thread has a vector group thread id (vgtid) and is responsible for
generating the successors of process Π[vgtid]. Successors following from syn-
chronizing actions are generated in cooperation. Threads with vgtid 0 are group
leaders. When accessing global memory, threads cooperate within their warp
and read continuous blocks of 32 integers for coalesced access. Note that the
algorithms presented here specify the behaviour of one thread, but are run on
multiple threads and on multiple blocks. Most of the synchronization is hidden
in the functions that access shared or global memory.

A high-level view on the algorithm of GPUexplore is presented in Algo-
rithm1. This kernel is executed repetitively until all reachable states have been
explored. Several iterations may be performed during each launch of the kernel
(NumIterations is fixed by the user). Each iteration starts with work gath-
ering : blocks search for unexplored states in global memory and copy those
states to the work tile in shared memory (line 4). Once the work tile is full,
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Algorithm 1. GPUexplore exploration framework
Data: global table[ ]
Data: shared workTile[ ], cache[ ]

1 vgid ← tid / numProc; /* index of the vector group */

2 vgtid ← tidmodnumProc; /* id of the thread in the group */

3 foreach i ∈ 0 . . .NumIterations do
4 workT ile ← gatherWork();
5 syncthreads();
6 s ← workT ile[vgid];
7 foreach t ∈ succvgtid(s) do
8 storeInCache(t);

9 syncthreads();
10 foreach t ∈ cache do
11 if isNew(t) then
12 findOrPutWarp(t);
13 markOld(t);

the syncthreads function from the CUDA API synchronizes all threads in the
block and guarantees that writes to the work tile are visible to other threads (line
5). Then, each vector group takes a state from the work tile (line 6) and gener-
ates its successors (line 7). To prevent non-coalesced accesses to global memory,
these states are first placed in a cache in shared memory (line 8). When all the
vector groups in a block are done with successor generation, each warp scans
the cache for new states and copies them to global memory (line 12). The states
are then marked old in the cache (line 13), so they are still available for local
duplicate detection later on. For details on successor computation and the hash
table, we refer to [27].

In the following sections, we will show how the generation of successors on
lines 7 and 8 can be adjusted to apply POR.

4.2 Ample-Set Approach

The ample-set approach is based on the idea of safe actions [15]: an action is
safe if it is independent of all actions of all other processes. While exploring a
state s, if there is a process Π[i] that has only safe actions enabled in s, then
r(s) = enabled i(s) is a valid ample set, where enabled i(s) is the set of actions
of process Π[i] enabled in s. Otherwise, r(s) = enabled(s). In our context of an
LTS network, only local actions are safe, so reduction can only be applied if we
find a process with only local actions enabled.

An outline of the GPU ample-set algorithm can be found in Algorithm2.
First, the successors of processes that have only local actions enabled are gen-
erated. These states are stored in the cache (line 4) by some thread i, and their
location in the cache is stored in a buffer that has been allocated in shared mem-
ory for each thread (line 5). Then, line 8 finds the location of the states in global
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Algorithm 2. Successor generation under the ample-set approach
Data: global table[ ]
Data: shared cache[ ], buf[ ][ ], reduceProc[ ]

1 bufCount ← 0, reduceProc[vgid] ← numProcs;
2 if processHasOnlyLocalTrans(s, vgtid) then
3 foreach t ∈ succvgtid(s) do
4 location ← storeInCache(t);
5 buf [tid][bufCount ] ← location;
6 bufCount ← bufCount + 1;

7 foreach i ∈ [0..bufCount − 1] do
8 j ←findGlobal(cache[buf [tid ][i ]]);
9 if j = NotFound∨ isNew(table[j ]) then

10 atomicMinimum(&reduceProc[vgid], vgtid);

11 syncthreads();
12 if reduceProc[vgid] < numProcs ∧ reduceProc[vgid] �= vgtid then
13 foreach i ∈ [0..bufCount − 1] do
14 markOld(cache[buf [tid ][i ]]);

15 syncthreads();
16 if reduceProc[vgid] = vgtid then
17 foreach i ∈ [0..bufCount − 1] do
18 markNew(cache[buf [tid ][i ]]);

19 if reduceProc[vgid] ≥ numProcs then
20 /* generate the remaining successors */

memory. This step is performed by threads cooperating in warps to ensure coa-
lesced memory accesses. If the state is not explored yet (line 9), then the cycle
proviso has been satisfied and thread i reports it can apply reduction through
the reduceProc shared variable (line 10). In case the process of some thread has
been elected for reduction (reduceProc[vgid] < numProcs), the other threads
apply the reduction by marking successors in their buffer as old in the cache, so
they will not be copied to global memory later. Finally, threads corresponding
to elected processes get a chance to mark their states as new if they have been
marked as old by a thread from another vector group (line 18). In case no thread
can apply reduction, the algorithm continues as normal (line 19).

4.3 Clustered Ample-Set Approach

In our definition of a network of LTSs, local actions represent internal process
behaviour. Since most practical models frequently perform communication, they
have only few local actions and consist mainly of synchronizing actions. The
ample-set approach relies on local actions to achieve reduction, so it often fails
to reduce the state space. To solve this issue, we implemented cluster-based
POR [6]. Contrary to the ample-set approach, all actions of a particular set
of processes (the cluster) are selected. The notion of safe actions is still key.
However, the definition is now based on clusters. An action is safe with respect
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to a cluster C ⊆ {1, . . . , n} (n is the number of processes in the network), if it is
part of a process of that cluster and it is independent of all actions of processes
outside the cluster. Now, for any cluster C that has only actions enabled that
are safe with respect to C, r(s) =

⋃
i∈C enabled i(s) is a valid cluster-based ample

(cample) set. Note that the cluster containing all processes always yields a valid
cample set.

Whereas Basten and Bošnački [6] determine a tree-shaped cluster hierarchy
a priori and by hand, our implementation computes the cluster on-the-fly. This
should lead to better reductions, since the fixed hierarchy only works for par-
allel processes that are structured as a tree. Dynamic clustering works for any
structure, for example ring or star structured LTS networks. In [6], it is argued
that computing the cluster on-the-fly is an expensive operation, so it should
be avoided. Our approach is, when we are exploring a state s, to compute the
smallest cluster C, such that ∀i ∈ C : C[i] ⊆ C, where C[i] is the set of processes
that process i synchronizes with in the state s. This can be done by running
a simple fixed-point algorithm, with complexity O(n), once for every C[i] and
finding the smallest from those fixed points. This gives a total complexity of
O(n2). However, in our implementation, n parallel threads each compute a fixed
point for some C[i]. Therefore, we are able to compute the smallest cluster in
linear time with respect to the amount of processes. Dynamic clusters do not
influence the correctness of the algorithm, the reasoning of [6] still applies.

The algorithm for computing cample-sets suffers from the fact that it is
not possible to determine a good upper bound on the maximum amount of
successors that can follow from a single state. Therefore, it is not possible to
statically allocate a buffer, as was done for Algorithm2. Dynamic allocation in
shared memory is not supported by CUDA. The only alternative is to alternate
between successor generation and checking whether the last state is marked
as new in global memory. During this process, each thread tracks whether the
generated successors satisfy the cycle proviso and with which other processes
it synchronizes, based on the synchronization rules. The next step is to share
this information via shared memory. Then, each thread computes a fixed-point
as detailed above. The group leader selects the smallest of those fixed-points as
cluster. All actions of processes in that closure will form the cample set. Finally,
states are marked as old or new depending on whether they follow from an action
in the cample set.

4.4 Stubborn-Set Approach

The stubborn-set approach was originally introduced by Valmari [23] and can
yield better reductions than the ample-set approach. This technique is more
complicated and can lead to overhead, since it reasons about all actions, even
those that are disabled. The algorithm starts by selecting one enabled action
and builds a stubborn set by iteratively adding actions as follows: for enabled
actions α, all actions that are dependent on α are added. For disabled actions
β, all actions that can enable β are added. When a closure has been reached, all
enabled actions in the stubborn set together form a persistent set.
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Our implementation uses bitvectors to store the stubborn set in shared mem-
ory. One bitvector can be used to represent a subset of the synchronization rules
and the local actions. In case we apply the cycle proviso, we need four such
bitvectors: to store the stubborn set, the set of enabled actions, the set of actions
that satisfy the cycle proviso and a work set to track which actions still need to
be processed. This design may have an impact on the practical applicability of
the algorithm, since the amount of shared memory required is relatively high.
However, this is the only approach that results in an acceptable computational
overhead.

To reduce the size of the computed stubborn set, we use the necessary dis-
abling sets and the heuristic function from Laarman et al. [17]. Contrary to
their implementation, we do not compute a stubborn set for all possible choices
of initial action. Our implementation deterministically picks an action, giving
preference to local actions. Effectively, we sacrifice some reduction potential in
order to minimize the overhead of computing a stubborn set.

In GPUexplore, it is not possible to determine in constant time whether
a certain action is enabled. Therefore, we chose to generate the set of enabled
actions before computing the stubborn set. This also allows us to check which
actions satisfy the cycle proviso. With this information saved in shared memory,
a stubborn set can be computed efficiently. In case the set of actions satisfying
the cycle proviso is empty, the set of all actions is returned. Otherwise, the
group leader selects one initial action that satisfies the cycle proviso for the
work set. Then, all threads in the group execute the closure algorithm in parallel.
After computation of the stubborn set has finished, all successors following from
actions in the set are generated and stored in the cache.

5 Proof of Correctness

The correctness of applying Bošnački et al.’s [8] closed-set proviso C2c in a
multi-threaded environment is not immediately clear. The original correctness
proof is based on the fact that for every execution, states are removed from
Open (the set of unexplored states) in a certain sequence. In a multi-threaded
algorithm, however, two states may be removed from Open at the same time. To
prove that the algorithms introduced in the previous section satisfy the action
ignoring proviso, we introduce a new version of the cycle proviso:

Lemma 1 (Closed-Set Cycle Proviso). If a reduction algorithm satisfies condi-
tions C0a, C0b and C1 and selects for every cycle s0

α0−→ s1
α1−→ . . .

αn−1−−−→ sn
αn−−→

s0 in the reduced state space with β ∈ enabled(s0) and β �= αi for all 0 ≤ i ≤ n,
(i) at least one transition labelled with β or (ii) at least one transition that, dur-
ing the generation of the reduced state space, led to a state outside the cycle that
has not been explored yet (i.e. ∃ i∃(si, γ, t) ∈ τ : γ ∈ r(si) ∧ t /∈ Closed); then
condition C2ai is satisfied.

Proof. Suppose that action β ∈ enabled(s0) is always ignored, i.e. condition C2ai

is not satisfied. This means there is no execution s0
α0−→ s1

α1−→ . . .
αn−1−−−→ sn

β−→ t
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where αi ∈ r(si) for all 0 ≤ i < n. Because we are dealing with finite state
spaces, every execution that infinitely ignores β has to end in a cycle. These
executions have a ‘lasso’ shape, they consist of an initial phase and a cycle. Let
s0

α0−→ s1
α1−→ . . .

αi−1−−−→ si
αi−→ . . .

αn−1−−−→ sn
αn−−→ si be the execution with the

longest initial phase, i.e. with the highest value i (see Fig. 2). Since condition
C1 is satisfied, β is independent of any αk and thus enabled on any sk with
0 ≤ k ≤ n. It is assumed that for at least one of the states si . . . sn an action
exiting the cycle is selected. Let sj be such a state. Since β is ignored, β /∈ r(sj).
According to the assumption, one of the successors found through r(sj) has
not been in Closed. Let this state be t. Any finite path starting with s0 . . . sjt
cannot end in a deadlock without taking action β at some point (condition
C0b). Any infinite path starting with s0 . . . sjt has a longer initial phase (after
all j +1 > i) than the execution we assumed had the longest initial phase. Thus,
our assumption is contradicted. ��

s0 si sj t

β β β β

Fig. 2. ‘Lasso’ shaped path from the proof of Lemma 1

Before we prove that our algorithms satisfy the action ignoring proviso, it
is important to note three things. Firstly, that the work gathering function on
line 4 of Algorithm 1 moves the gathered states from Open to Closed. Secondly,
the ample/stubborn set generated by our algorithms satisfies conditions C0a,
C0b and C1, also when executed by multiple vector groups (the proof for this is
omitted from this paper). And lastly, in this theorem the ample-set approach is
used as an example, but the reasoning applies to all three algorithms.

Theorem 1. Algorithm2 produces a persistent set that satisfies our action-
ignoring proviso, even when executed on multiple blocks.

Proof. Let s0
α0−→ s1

α1−→ . . .
αn−2−−−→ sn−1

αn−1−−−→ s0 be a cycle in the reduced state
space. In case α0 is dependent on all other enabled actions in s0, there is no
action to be ignored and C2ai is satisfied.

In case there is an action in s0 that is independent of α0, this action is prone
to being ignored. Let us call this action β. Because condition C1 is satisfied, β
is also enabled in the other states of the cycle: β ∈ enabled(si) for all 0 ≤ i < n.

We now consider the order in which states on the cycle can be explored
by multiple blocks. Let si be one of the states of this cycle that is gathered
from Open first (line 4, Algorithm1). There are two possibilities regarding the
processing of state si−1:
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– si−1 is gathered from Open at exactly the same time as si. When the processing
for si−1 arrives at line 9 of Algorithm 2, si will be in Closed.

– si−1 is gathered later than si. Again, si will be in Closed.

Since si is in Closed in both cases, at least one other action will be selected
for r(si−1). If all successors of si−1 are in Closed, then β has to be selected.
Otherwise, at least one transition to a state that is not in Closed will be selected.
Now we can apply the closed-set cycle proviso (Lemma 1). ��

6 Experiments

We want to determine the potential of applying POR in GPU model checking
and how it compares to POR on a multi-core platform. Additionally, we want
to determine which POR approach is best suited to GPUs. We will focus on
measuring the reduction and overhead of each implementation.

We implemented the proposed algorithms in GPUexplore2. Since GPUex-
plore only accepts EXP models as input, we added an EXP language front-end
to LTSmin [16] to make a comparison with a state-of-the-art multi-core model
checker possible. We remark that it is out of the scope of this paper to make
an absolute speed comparison between a CPU and a GPU, since it is hard to
compare completely different hardware and tools. Moreover, speed comparisons
have already been done before [5,27,28].

GPUexplore was benchmarked on an NVIDIA Titan X, which has 24 SMs
and 12 GB of global memory. We allocated 5 GB for the hash table. Our code
was run on 3120 blocks of 512 threads and performed 10 iterations per kernel
launch (cf. Sect. 4.1), since these numbers give the best performance [27].

LTSmin was benchmarked on a machine with 24 GB of memory and two
Intel Xeon E5520 processors, giving a total of 16 threads. We used BFS as search
order. The stubborn sets were generated by the closure algorithm described by
Laarman et al. [17].

The models that were used as benchmarks have different origins. Cache,
sieve, odp, transit and asyn3 are all EXP models from the examples included
in the CADP toolkit3. 1394, acs and wafer stepper are originally mCRL24

models and have been translated to EXP. The leader election, lamport, lann,
peterson and szymanski models come from the BEEM database and have been
translated from DVE to EXP. The models with a .1-suffix are enlarged versions
of the original models [27]. The details of the models can be found in Table 1.
‘stub. set size’ indicates the maximum size of the stubborn set, which is equal
to the amount of synchronization rules plus the total amount of local actions.

For the first set of experiments, we disabled the cycle proviso, which is not
needed when checking for deadlocks. For each model and for each POR approach,
we executed the exploration algorithm ten times. The average size of the reduced

2 Sources are available at https://github.com/ThomasNeele/GPUexplore.
3 http://cadp.inria.fr.
4 http://mcrl2.org.

https://github.com/ThomasNeele/GPUexplore
http://cadp.inria.fr
http://mcrl2.org
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Table 1. Overview of the models used in the benchmarks

model #states #transitions stub. set size

cache 616 4,631 222
leader election1 4,261 12,653 4,712
acs 4,764 14,760 134
sieve 23,627 84,707 941
odp 91,394 641,226 464
1394 198,692 355,338 301
acs.1 200,317 895,004 139
transit 3,763,192 39,925,524 73
wafer stepper.1 3,772,753 19,028,708 880

model #states #transitions stub. set size

odp.1 7,699,456 31,091,554 556
1394.1 10,138,812 96,553,318 300
asyn3 15,688,570 86,458,183 1,315
lamport8 62,669,317 304,202,665 305
szymanski5 79,518,740 922,428,824 481
peterson7 142,471,098 626,952,200 2,880
lann6 144,151,629 648,779,852 48
lann7 160,025,986 944,322,648 48
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Fig. 3. State space and runtime of POR (no cycle proviso) relative to full exploration.

state space relative to the full state space is plotted in the first chart of Fig. 3
(the full state space has a size of 100 % for each model). The error margins are
not depicted because they are very small (less than one percent point).

The first thing to note is that the state spaces of the leader election1 and
peterson7 models cannot be computed under the stubborn-set approach. The
reason is that the amount of synchronization rules is very high, so the amount
of shared memory required to compute a stubborn set exceeds the amount of
shared memory available.

On average, the stubborn-set approach offers the best reduction, followed by
the cample-set approach. Only for the wafer stepper.1 model, the stubborn-
set approach offers a significantly worse reduction. As expected, the cample-set
approach always offers roughly similar or better reduction than the ample-set
approach, since it is a generalization of the ample-set approach. Overall, the
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reduction achieved by GPUexplore and LTSmin is comparable. Note that
for GPUexplore, any reduction directly translates into memory saving. For
LTSmin, this may not be the case, since its database applies tree compres-
sion [18].

Additionally, we measured the time it took to generate the full and the
reduced state space. To get a good overview of the overhead resulting from POR,
the relative performance is plotted in the second chart of Fig. 3. For each plat-
form, the runtime of full state-space exploration is set to 100 % and is indicated
by a red line. Again, the error margins are very small, so we do not depict them.
These results show that the ample-set approach induces no significant overhead.
For models where good reduction is achieved, it can speed-up the exploration
process by up to 3.6 times for the acs.1 model. On the other hand, both the cam-
ple and stubborn-set approach suffer from significant overhead. When no or little
reduction is possible, this slows down the exploration process by 2.6 times and
4.8 times respectively for the asyn3 model. This model has the largest amount
of synchronization rules after the leader election1 and peterson7 models.

For the smaller models, the speed-up that can be gained by the parallel power
of thousands of threads is limited. If a frontier (search layer) of states is smaller
than the amount of states that can be processed in parallel, then not all threads
are occupied and the efficiency drops. This problem can only get worse under
POR. For the largest models, the overhead for LTSmin is two times lower than
for GPUexplore’s stubborn-set approach. This shows that our implementation
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Fig. 4. State space and runtime of POR with cycle proviso relative to full exploration.



372 T. Neele et al.

not only has overhead from generating all successors twice, but also from the
stubborn-set computation.

In the second set of experiments, we used POR with cycle proviso. Figure 4
shows the size of the state space and the runtime. As expected, less reduction is
achieved. The checking of the cycle proviso induces only a little extra overhead
(not more than 5 %) for the ample-set and the cample-set approach. The extra
overhead for the stubborn-set approach can be significant, however: up to 36 %
for the lamport8 model (comparing the amount of states visited per second).
Here, the reduction achieved by LTSmin is significantly worse. This is due to the
fact that LTSmin checks the cycle proviso after generating the smallest stubborn
set. If that set does not satisfy the proviso, then the set of all actions is returned.
Our approach, where the set consisting of only the initial action already satisfies
the cycle proviso, often finds a smaller stubborn set. Therefore, GPUexplore
achieves a higher amount of reduction when applying the cycle proviso.

Table 2 shows the average size of the reduced state space for each implemen-
tation. Since GPUexplore’s stubborn-set implementation cannot compute Tr

for leader election1 and peterson7, those models have been excluded.

Table 2. Average relative size of reduced state spaces

Average size Tr (%) ample cample stubborn ltsmin

No proviso 58.97 43.08 42.30 41.80

Cycle proviso 73.74 56.49 55.26 73.45

7 Conclusion

We have shown that partial-order reduction for many-core platforms has sim-
ilar or better reduction potential than for multi-core platforms. Although the
implementation suffers from overhead due to the limitations on shared mem-
ory, it increases the memory efficiency and practical applicability of GPU model
checking. When the cycle proviso is applied, our approach performs better than
LTSmin.

The cample-set approach performs best with respect to our goal of saving
memory with limited runtime overhead. With our improvement of dynamic clus-
ters, it often achieves the same reduction as the stubborn-set approach. Addi-
tionally, it can also be applied to models with a large amount of local actions
and synchronization rules.

Further research into the memory limitations of GPU model checking is nec-
essary. A possible approach is to implement a multi-GPU version of GPUex-
plore. Another direction for future work is to support POR for linear-time
properties, as recently, GPUexplore was extended to check such properties
on-the-fly [24].
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7. Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: Parallel probabilistic model
checking on general purpose graphics processors. STTT 13(1), 21–35 (2010)
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Abstract. Software verification of concurrent programs is hampered by
an exponentially growing state space due to non-deterministic process
scheduling. Partial order reduction (POR)-based verification has proven
to be a powerful technique to handle large state spaces.

In this paper, we propose a novel dynamic POR algorithm, called
Eager POR (epor), that requires considerably less overhead during state
space exploration than existing algorithms. epor is based on a for-
mal characterization of program fragments for which exploration can be
scheduled in advance and dependency checks can be avoided. We show
the correctness of this characterization and evaluate the performance
of epor in comparison to existing state-of-the-art dynamic POR algo-
rithms. Our evaluation shows substantial improvement in the runtime
performance by up to 91%.

Keywords: Model checking · Partial order reduction · Concurrent
programs

1 Introduction

Automated verification of concurrent programs is known to be a hard prob-
lem [13]. The non-determinism of scheduling results in an exponential number of
possible interleavings that need to be systematically explored by a program ver-
ifier. By constraining the considered class of properties, for instance to deadlock
and local state reachability, POR techniques [10] attempt to tackle this problem
by reducing the number of interleavings to be explored. A dependency relation
between transitions gives raise to equivalence classes of executions, referred to as
Mazurkiewicz traces [8], such that it is sufficient for a program verifier to explore
only one representative per Mazurkiewicz trace.

The effectiveness of POR approaches relies on the precision of the depen-
dency relation. In the original POR approaches, dependencies are calculated
statically leading to an inaccurate over-approximation. Dynamic partial order
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reduction approaches [1,3,6] tighten the precision of the dependency relation by
considering only dependencies occurring at runtime, leading to a less redundant
exploration.

While exploring the state space of a program, dynamic POR algorithms
identify pairs of dependent transitions which additionally need to be explored
in reversed order so that all Mazurkiewicz traces are covered. Such pairs of
transitions constitute a reversible race [1]. In order to detect all reversible races
of a system, a dynamic POR algorithm checks for each transition whether it
constitutes a race with any previous transition in the current path. During each
such race check, the algorithm needs (often multiple times) to check whether
two transitions are dependent. Therefore, dependency checks constitute a large
part of any dynamic POR algorithm’s runtime overhead.

In this paper, we propose Eager POR (epor), an optimization of dynamic
POR algorithms such as sdpor [1] that significantly reduces the number of
dependency checks. epor eagerly creates schedules to bundle dependency checks
for sequences of transitions instead of checking dependencies in every visited
state. These sequences, called sections, correspond to program fragments of one
or more statements of each process. By checking races in a section only once,
many additional race checks and dependency checks can be avoided. A new
constraint system-based representation of Mazurkiewicz traces ensures that all
reversible races inside a section are explored in both orderings. As a result, epor
requires significantly fewer dependency checks compared to other DPOR algo-
rithms where dependencies are checked after the execution of every transition.

Contributions. Our contributions are threefold. (1) We introduce a general
optimization of POR algorithms that explores program fragments, called sec-
tions. We formally model section-based exploration by a constraint system rep-
resentation of Mazurkiewicz traces and proof its correctness. (2) We present a
dynamic POR algorithm called epor that enables efficient verification of con-
current programs against local state properties and deadlocks. epor shows how
to extend existing POR algorithms with section-based exploration. Finally, (3)
we implement and evaluate epor using well established benchmarks written in
a simplified C-like programming language.

2 Motivating Example

As a motivating example, consider the Readers-Writers benchmark in Fig. 1
(also used in [1,3]). Process 1 writes to the shared variable x (t1), Processes
2 and 3 read from x (t2 and t3). The dynamic dependencies for all states are

Fig. 1. Readers-writers benchmark with one writer and two readers.
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D = {(t1, t2), (t2, t1), (t1, t3), (t3, t1)}; the operations t2 and t3 are commutative
(do not constitute a race), while both t1, t2 and t1, t3 are non-commutative,
(constitute a race).

Our approach is based on the observation that the set of all Mazurkiewicz
traces of program fragments as in the Readers-writers example can be calculated
without exploring any program states and checking for races between operations
only once. The program of Fig. 1 has 4 (Mazurkiewicz) traces and the dynamic
POR algorithm sdpor [1] explores one execution per trace. Each execution con-
sists of 3 events, hence sdpor performs 3 race checks per execution (each time
an operation is appended to the current partial execution, a check is performed
whether the current operation constitutes a race with any previous operation of
the current partial execution). Each race check consists of several dependency
checks (in order to decide whether e1 and e2 constitute a race, pairwise depen-
dencies need to be determined for all events that occur between e1 and e2). In
total, sdpor performs 12 race checks and 25 dependency checks.

By exploiting the fact that all executions consist of the same operations and
contain the same races, it is possible to reduce the number of race checks to 3 and
the number of dependency checks to 8: after exploring an arbitrary execution of
the program, we know that each execution consists of t1, t2, and t3 and contains
the races (t1, t2), (t1, t3) (either in this or in reversed order), which can be deter-
mined using 3 race checks. We construct four partial orders {(t1, t2), (t1, t3)},
{(t2, t1), (t1, t3)}, {(t1, t2), (t3, t1)}, and {(t2, t1), (t3, t1)}, which correspond to
the four traces of the program. By computing a linear extension of each par-
tial order, we obtain an execution of each trace. In Sect. 3.2, we explain how to
generalize this idea to systems with dynamic dependencies.

3 Constraint System-Based POR

3.1 System Model

This section introduces basic notions about the system model and notations used
throughout the rest of this paper.

We write u = a1 . . . an for the sequence consisting of the elements a1, . . . , an

and define range(u) := {1, . . . , n}. The empty sequence is denoted by ε. Con-
catenation of a sequence u and a sequence v or an element t is written as u · v
or u · t, respectively. For i ∈ range(u), we define u[i] := ai, l[. . . i] := a1 . . . ai,
and l[i . . . ] := ai . . . an. We model concurrent programs as transition systems
TS = (PID , S, s0, T ), where PID is a finite set of process identifiers, S is a finite
set of states, s0 ∈ S is the initial state of the system, and T is a finite set of
transitions such that

– each transition t ∈ T is mapped to a unique process identifier pidt ∈ PID
– for all t ∈ T , t : S ⇀ S (transitions are partial functions from S to S), where

we write t ∈ enabled(s) if t is defined at s
– for all s1, . . . , sn+1 ∈ S and any finite sequence t1 . . . tn ∈ T such that ti(si) =

si+1, s1 �= sn+1 (the state graph is acyclic)
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– transitions do not disable other transitions:

∀t, t′ ∈ T.∀s, s′ ∈ S. s
t−→ s′ ∧ t′ ∈ enabled(s) ∧ t′ /∈ enabled(s′) ⇒ t = t′

– transitions do enable only transitions from the same process: ∀t, t′ ∈ T.∀s, s′ ∈
S. s

t−→ s′ ∧ t′ /∈ enabled(s) ∧ t′ ∈ enabled(s′) ⇒ pidt = pidt′

– at most one transition per process is enabled at a given state: ∀s ∈ S.∀t, t′ ∈
T. pidt = pidt′ ∧ t, t′ ∈ enabled(s) ⇒ t = t′

To require that transitions do not disable other transitions simplifies the presen-
tation but is not a general limitation as distinguishing between the termination
and temporary blocking of a process would obviate the need for this restriction.
A similar restriction is used in [1]. Acyclicity restricts our method to terminating
programs in favor of a stateless exploration.

For the rest of this paper, we assume that there is an arbitrary transition
system TS = (PID , S, s0, T ) which models a concurrent program under analysis.
Where not otherwise mentioned, we refer to this transition system.

Paths in the state graph of TS correspond to (partial) executions of the pro-
gram modeled by TS . We represent such paths as transition sequences t1 . . . tn for
some t1, . . . , tn ∈ T . We write s1

t1...tn−−−−→ sn+1 if there exist states s2, . . . , sn+1 ∈ S

such that si
ti−→ si+1 for all 1 ≤ i ≤ n, i.e., t1 . . . tn corresponds to a path in

the state graph of TS . Furthermore, if s1
u−→ s2 for some states s1, s2 and a

transition sequence u, we write u(s1) to denote the state s2 and call u a feasible
sequence at s1, written u ∈ feasible(s1).

A particular occurrence of a transition in a transition sequence is called an
event. In a transition sequence u = t1 . . . tn feasible at s0, we represent an event
ti by its index i in u.

We distinguish between data dependencies and dependencies caused by the
program control flow of a process. The latter is modeled by a program order for
TS , which is a partial order PO ⊆ T × T such that ∀(t1, t2) ∈ PO . pidt1 =
pidt2 (PO only relates transitions of the same process) and ∀t, t′ ∈ T.∀s, s′ ∈
S. s

t−→ s′ ∧ t′ /∈ enabled(s) ∧ t′ ∈ enabled(s′) ⇒ (t, t′) ∈ PO (transitions enable
only transitions which are successors w.r.t. the program order) and ∀(t, t′) ∈
PO .∃s, s′ ∈ S. s

t−→ s′ ∧ t′ /∈ enabled(s) ∧ t′ ∈ enabled(s′) (two transitions are in
relation w.r.t. the program order only if the first transitions enables the second
transition). We write t1<PO t2 for (t1, t2) ∈ PO .

Dynamic data dependencies are modeled by a relation D ⊆ T × T × S such
that ∀t1, t2 ∈ T.∀s ∈ S. (t1, t2, s) �∈ D ⇒ (t1 ∈ enabled(s) ∧ t2 ∈ enabled(s) ⇒
∃s′. s t1t2−−→ s′ ∧ s

t2t1−−→ s′). Furthermore, ∀t1, t2 ∈ T.∀s ∈ S. (t1, t2, s) ∈ D ⇒
(t1, t2) /∈ PO (transitions in program order are not data dependent).

The combination of program order and data dependency gives rise to partial
orders that characterize the Mazurkiewicz traces of TS . For transition sequences
v = t1 . . . tn and v′ feasible at some state s = u(s0), we represent the ordering
induced by dynamic data dependencies as the sequence dep(u, v), defined as the
sequence that consists of the elements of {(i, j) : (ti, tj , t1 . . . ti−1(s)) ∈ D∧i < j}
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ordered with respect to (i, j) < (i′, j′) if i < i′, or i = i′ and j < j′. We define
Mazurkiewicz equivalence as v � v′ if dep(u, v) = dep(u, v′).

For a given transition t and a state s, we write dependencies(t, s) := {t′ :
(t, t′, s) ∈ D} for the set of transitions that are dependent with t.

As we use sdpor as a basis to present epor, we adapt the corresponding
definition of reversible races [1]. Two data dependent transitions ti, tj in some
transition sequence u = t1 . . . tn feasible at s0 constitute a reversible race, written
i �u j, if there exists an equivalent sequence in which ti and tj are adjacent
and dependent; formally, we define i �u j ⇔ (i, j) ∈ dep(ε, u) ∧ ∀i < k <
j. (i, k) �∈ dep(ε, u) ∨ (k, j) �∈ dep(ε, u) ∧ tj ∈ enabled(t1 . . . ti−1tk1 . . . tkm

(s0)),
where tk1 . . . tkm

is the sequence ti+1 . . . tj−1 with all transitions removed that
are neither data dependent nor in program order with tj .

3.2 Exploring Programs in Sections

Requirements for Sections. As described in our motivating example (Sect. 2),
epor requires only 3 instead of 12 race detections and only 8 instead of 25
dependency checks when exploring the Readers-Writers program. This reduction
is possible because two conditions are met: every maximal transition sequence
feasible at the initial state of Readers-Writers contains the same transitions and
dependencies do not depend on states (it is possible to precisely calculate all
dependencies statically).

In order to generalize our approach to arbitrary programs, we identify pro-
gram fragments called sections where a generalization of these two conditions
hold: (A) every execution of the section contains the same set of events and
(B) dependencies inside the section do not change during any execution of the
section (it is possible to precisely calculate all dependencies of the section with
the information given at the first state of the section). Once all traces for a
section are explored, epor performs the same race checks as sdpor in order to
find races between events before and inside the current section.

Throughout this section, we use the program of Fig. 2 as an example to
explain conditions (A) and (B). Here, three processes work on the shared vari-
ables x, y, and z, where x is an array of length two. The statements labeled t00,
t01, and t10 constitute a section. Including t11 in the same section would violate
condition (A) and including t20 would violate condition (B), as detailed below.

In order to meet condition (A), we have to ensure that no transition is enabled
in one trace of a section while it is disabled in another trace of the section.
For this, we define branching transitions as transitions which enable different
program order successors depending on the state it is executed in:

Fig. 2. A program with branchings.
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branching(t) :⇔ ∃s, s′ ∈ S. t ∈ enabled(s) ∧ t ∈ enabled(s′) ∧
(enabled(t(s)) \ enabled(s)) �= (enabled(t(s′)) \ enabled(s′)).

For the example of Fig. 2, the statement t11 cannot be part of the same
section as t10 because t10 is a branching transition and t11 is a program order
successor of t10.

As long as sections do not contain any branching transition together with one
of its program order successors, condition (A) is satisfied. To see this, assume that
there exists a transition sequence u in a section such that u becomes unfeasible
when transformed to u′ by swapping only transitions that are not in program
order relation. Let t1 be the first transition in u that is not enabled at the
corresponding state in u′. Since transitions cannot disable other transitions by
definition, there exists some transition t2 that occurs before t1 in u and enables
t1 in u but does not enable t1 in u′. We have t2<PO t1, hence t2 occurs before
t1 in u′ as well. Transition t2 is enabled in both u and u′ because t1 is the first
transition not enabled in u′. Since t2 enables different transitions depending on
the state it is executed in, it is a branching transition, contradiction.

A section satisfies condition (B) if all of its traces contain the same set of
dependencies or, equivalently, if the dependencies inside the section can be deter-
mined at the first state of the section. This condition holds if swapping two
dependent transitions inside a section does not influence whether following tran-
sitions are dependent. We characterize such a pair of dependent transitions that
influences following dependencies as hiding dependency so that the absence of
hiding dependencies implies (B):

t1
∗−→s t2 :⇔ ∃s1, s

′
1, s2, s

′
2 ∈ S. s

t1−→ s1
t2−→ s′

1 ∧ s
t2−→ s2

t1−→ s′
2

∧dependencies(t2, s′
1) �= dependencies(t2, s′

2).

In the example of Fig. 2, the statement t20 cannot be in the same section as
statement t00 because they constitute a hiding dependency: the order in which
t00 and t20 are executed influences the fact whether t01 and t10 are dependent
and constitute a race.

A section which contains no hiding dependency trivially satisfies condi-
tion (B). Although dependencies inside of sections have to be independent of
states inside the section, dynamic information about dependencies that is known
at the beginning of a section can be accounted for. Therefore, epor makes use
of all dynamic dependency information just as sdpor.

Implementing Section Construction. In order to implement an algorithm
that relies on sections, it is desirable to determine where the next section ends
with only small overhead. Therefore, we present two static checks which detect
branching transitions (in order to ensure condition (A)) and hiding dependencies
(in order to ensure condition (B)).

When translating a program into a transition system, we statically classify all
transitions that model a branching statement as a branching transition, where a
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branching statement is a statement with multiple program order successors, e.g.,
a conditional jump, an if-then-else construct, or a loop. This over-approximates
the set of all branching transitions (for example, a conditional jump with an
unsatisfiable condition would still be classified as a branching transition).

We prepare the check whether two transitions form a hiding dependency
by a static dependency analysis. For each transition t, we calculate the set of
program variables that can influence the address which is accessed by t. For each
such variable, all transitions writing to the variable are marked as potentially
influencing the address of t’s memory access. Two transitions with disjoint sets
of address-influencing transitions do not constitute a hiding dependency.

Constructing Mazurkiewicz Traces. Once transitions and the races of a
section are known (e.g., by executing an arbitrary interleaving until the end of
the current section), it is possible to calculate all Mazurkiewicz traces without
calculating any further program states as follows. A Mazurkiewicz trace can
be calculated by constructing a directed graph with statements as nodes and
an edge between two statements t and t′ whenever t should occur before t′ in
all representatives of the Mazurkiewicz trace. If the resulting graph is acyclic, it
induces a partial order that directly corresponds to a Mazurkiewicz trace and any
of its linear extensions is a representative of the Mazurkiewicz trace. Otherwise,
the graph contains a cycle and there exists no execution that obeys the ordering
of the graph.

For the example of Fig. 2, we start by calculating a Mazurkiewicz trace of the
section containing t00, t01, and t10. We calculate the Mazurkiewicz trace where
t01 occurs before t10 by defining the following graph:

t00 t01 t10
po dep

The edge (t00, t01) represents the program order of Process 1 and the edge
(t01, t10) represents the (only) race of the section. Because the graph is acyclic,
there exists a linear extension of the induced partial order, t00t01t10, and we
found a Mazurkiewicz trace of the program. By swapping the direction of the
edge (t01, t10), we obtain a graph for another Mazurkiewicz trace where the
race t01 �t00t01t10 t10 is reversed. We do not swap the edge (t00, t01) because it
represents the program order, which is obeyed by all executions.

A linear extension of the induced partial order can be constructed in linear
time w.r.t. the number of nodes by iteratively removing a minimal node (a node
with no incoming edge) and all its outgoing edges [11]. If no minimal node is
found, the graph is cyclic.

By calculating Mazurkiewicz traces as described, it is possible to construct
representatives of all Mazurkiewicz traces “in advance”, i.e., without performing
any (typically expensive) program state computations.
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3.3 Formal Foundations of Trace Construction

This section formalizes the notions introduced in Sect. 3.2 and details how epor
constructs Mazurkiewicz traces from a given transition sequence.

Section 3.2 describes sections as program fragments and specifies two condi-
tions (A) and (B) they have to satisfy in order to support our POR algorithm. At
the transition system level, we model a section as the set of transition sequences
that correspond to an execution of the program fragment of the section. We
write section(u), where u is feasible at s0, for the set of transition sequences
that are feasible at u(s0) and include exactly those transitions that model the
statements of a section. Formally, section(u) includes all transition sequences
v = t1 . . . tk that are feasible at u(s0) and satisfy (where conditions (A) and (B)
have been introduced informally in Sect. 3.2):

(A): for each branching transition t in v, no transition in program order with t
follows t in v: ∀1 ≤ i ≤ k. branching(ti) ⇒ ∀i < j ≤ k.¬ti<PO tj .

(B): v contains no hiding dependency: ∀1 ≤ i ≤ k.∀i < j ≤ k.¬ti
∗−→s tj , where

s = t1 · . . . · ti−1(s0).

– maximality: There is no transition t such that v · t satisfies the above require-
ments.

For some section(u), a POR algorithm ideally explores only a subset
section-rep(u) ⊆ section(u) that contains exactly one representative of each
Mazurkiewicz trace of the transition sequences in section(u). In order to formal-
ize the generation of section-rep(u), we introduce trace constraint systems. Each
satisfiable trace constraint system corresponds to the fragment of a Mazurkiewicz
trace. The constraints of a trace constraint system in conjunction with the pro-
gram order specify the fragment’s partial order of events. By swapping those
constraints, it is possible to reverse races and thereby generate all transition
sequences of section-rep(u) for some u.

Formally, a trace constraint system is a tuple c = (A,C, l) where

– A = {1, . . . , k} for some k (the variables of c).
– C is a list of pairs (i, j) ∈ A × A (the constraints of c).
– l : A → T is a function which labels the elements of A with transitions.

If for a given transition sequence v = t1 . . . tn feasible at some s = u(s0) we
have k = n, l(i) = ti for all 1 ≤ i ≤ n, and C = dep(u, v), we call c the trace
constraint system of u at s and write c = CS (u, v).

Given a state u(s0) for some transition sequence u, one can construct a
transition sequence v from section(u) by starting with v = ε and iteratively
adding transitions enabled at u · v(s0) until adding another transition would
violate one of the conditions (A) and (B). All remaining transition sequences of
section-rep(u) can subsequently be constructed by the use of trace constraint
systems as follows. First, the trace constraint system CS (u, v) that corresponds
to the trace of v is constructed. Subsequently, all trace constraint systems which
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are equal to CS (u, v) except for one or more swapped constraints are constructed.
The set of these constraint systems is called traces(u) and defined as

traces(u):={(range(v), C, l) : ∀i ∈ range(v). l(i) = v[i]
∧range(C) = range(dep(u, v))

∧∀i ∈ range(C). (C[i] = dep(u, v)[i]
∨∃α1, α2 ∈ range(v). (C[i] = (α2, α1) ∧ dep(u, v)[i] = (α1, α2)))}

for some v ∈ section(u).

A solution v of a trace constraint system c = (A,C, l), written v ∈
solutions(c), is a transition sequence that (1) contains exactly the transitions
that occur in the image of l and (2) obeys the constraints in C and (3) respects
the program order for the transitions they contain. Formally, we require for v
that the following holds.

– There exists an injective (1-to-1) function σ : A → A such that ∀(α1, α2) ∈
A. (σ(α1), σ(α2)) ∈ C ⇒ α1 ≥ α2 (σ respects the constraints C) and ∀α1, α2 ∈
A. (l(σ(α1))<PO l(σ(α2)) ⇒ α1 ≥ α2 (σ respects the program order PO).

– v = l(σ(1)) · · · l(σ(n))

We call c satisfiable if a solution of c exists. A solution of a satisfiable c can be
constructed in linear time w.r.t. the number of transitions that are contained
in c. For example, create a linear extension of the partial order induced by the
union of the constraints of c and the program order for the transitions occurring
in c. If this union contains cycles, c is not satisfiable, which is easily detected by
a linear extension algorithm.

Using the notion of traces(u), one can construct section-rep(u) as a set
that contains exactly one solution of each satisfiable trace constraint system
in traces(u). As each trace constraint system in traces(u) is unique, only one
representative of each trace of section(u) is constructed, enabling an optimal
POR exploration. Correctness of section-based exploration is provided by the
following theorem; given two transition sequences v1, v2 in section(u), there
exists a constraint system c in traces(u) whose solutions are equivalent to v2.

Theorem 1 (Correctness of Section-Based Exploration). ∀u ∈
feasible(s0).∀v ∈ section(u).∃c ∈ traces(u).∀w ∈ solutions(c). w � v

Proof. Let u ∈ feasible(s0), v1, v2 ∈ section(u). Because of condition (A) in the
definition of section(), v1 and v2 contain the same events (1). Because of con-
dition (B) in the definition of section(), the same data dependencies appear in
v1 and v2 (D|dom(v1) = D|dom(v2)) (2). Let traces(u) be calculated on the basis
of CS (v1); by definition, all constraint systems in traces(u) contain exactly the
transitions of dom(v1) and contain exactly one constraint for each data depen-
dency in D|dom(v1). Additionally, there exists a constraint system in traces(u)
for every ordering of races in dom(v1). Hence, and because of (1) and (2), there
exists some c ∈ traces(u) whose constraints correspond to the ordering of races
in v2. By the definition of solutions(), all transition sequences w ∈ solutions(c)
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are linear extensions of the partial order induced by the constraints of c and the
program order for dom(v1). Hence, w � v2.

3.4 The Algorithm: Eager POR

This section presents our algorithm epor. It is an extension of the sdpor algo-
rithm [1]. Instead of exploring single transitions at each recursive call, epor cre-
ates schedules for sections of the transition system under analysis. If no schedule
is currently present, epor creates new schedules for all transition sequences in
the section starting at the current state. If a schedule is present, it is used to
guide the exploration. Checks for races inside a section are only performed once
when schedules are created; checks for races between an event before the cur-
rent section and an event inside the current section are still performed at every
recursive call in order to ensure correctness.

As epor is based on sdpor, we repeat basic definitions from sdpor’s pseudo
code [1]. Let u be a transition sequence feasible at the initial state s0. The
next transition of a process p at some state u(s0) is denoted by nextu(p) and
u · p denotes u · nextu(p). For two processes p1, p2 with t1 = nextu(p1), t2 =
nextu(p2), we write u � p1♦p2 to denote that t1 and t2 are independent, i.e.,
(t1, t2, u(s0)) �∈ D and (t1, t2) �∈ PO . Overloading the notation enabled(), we
define enabled(u) = {p : ∃t ∈ enabled(u(s0)). pidt = p}. For v ∈ feasible(u(s0)),
define p ∈ Iu(v) ⇔ ∃v′. u · v � u · p · v′. For event e in u, pre(u, e) denotes the
prefix of u up to but not including e and notdep(u, e) denotes the subsequence
of u that contains all events that occur after e in u but are not dependent with
e in u.

The main routine Explore(u, sec-start) takes as arguments a transition
sequence u that identifies the current state of the transition system and an
integer sec-start that identifies the index in u at which the last section of u
starts. The initial call is Explore(ε, 0) so that the exploration starts at the ini-
tial state. epor uses three global variables sleep, backtrack , and schedule, which
map a transition sequence to a set of processes. For some transition sequence u
feasible at the initial state, sleep(u) corresponds to the sleep set at state u(s0);
backtrack(u) holds processes whose transitions need to be explored at state u(s0)
in order to reverse races between two events of different sections; schedule(u)
holds processes which are scheduled at state u(s0) in order to explore a section.

At some call Explore(u, sec-start), epor first checks whether a deadlock is
reached or u is sleep set-blocked (line 4). Subsequently, if no schedule for the
current state is present, the subroutine Fill schedule calculates section-rep(u)
(as described in Sect. 3.3) and corresponding schedules (lines 6–8).

The loop in lines 10–15 explores any transitions of processes that are
scheduled for the current state in order to explore a section. The subroutine
race detection checks whether there are reversible races between an event
before the start of the current section (as specified in variable sec-start) and an
event inside the current section. This avoids race checks between two events that
are both inside the current section. For every reversible race that is found, the
reversed race is scheduled for later exploration just as in the sdpor algorithm.
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Finally, the loop in lines 16–21 explores any transitions of processes that
have been scheduled for the current state in order to reverse a race. Before the
race check, the marker for the start of the current section is updated so that all
reversible races in the current transition sequence are found.

Correctness. epor is correct in the sense that it explores a representative of
every Mazurkiewicz trace that starts at s0 and ends at a deadlock, which is
expressed by the following theorem.

Theorem 2 (Correctness of epor). ∀u ∈ feasible(s0).∀w ∈ feasible(u(s0))
.∃v. v � w∧ Explore(u, length(u)) calls Explore(v, ·), i.e., v is explored.

Proof. By ind. on the ordering ∝ where u1 ∝ u2 if Explore(u1, ·) returned before
Explore(u2, ·) (as in [1]). Base case: trivial, as feasible(u(s0)) = ∅. Inductive
step: By [1], it is sufficient to prove that sleep(u) is a source set for feasible(u).
Indirectly assume that ∃w ∈ feasible(u(s0)).∀p ∈ sleep(u).∀v, w′. u · w · v ��
u·p ·w′. Then there exists a race i �u·p·w′ j that distinguishes u·w ·v and u·p ·w′.
Case (1): i and j belong to different sections. epor in lines 11 and 18 performs
the same backtracking as sdpor, hence ∃q ∈ sleep(u). q ∈ Iu(notdep(u·p ·w′, p)).
By the induction hypothesis, ∃v1, v2. u · w · v1 � u · q · v2. . Case (2): i and j
belong to the same section section(u′) f.s. u′. By the definition of fill schedule,
section-rep(u′) is explored. By Theorem 1, section-rep(u′) contains a represen-
tative of every trace in section(u′). Hence, ∃q ∈ sleep(u). q ∈ Iu(u · w).

Fig. 3. The epor algorithm.
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4 Implementation and Evaluation

We implemented epor and sdpor in the Python programming language and
ran it on multiple benchmark programs that are written in a simple impera-
tive programming language where processes communicate over shared memory.
We used sequential consistency as a memory model, which corresponds to total
program orders. Two events are data dependent if one of the events writes to a
memory location the other event either reads from or writes to. All experiments
were run on 8 Intel i7-4790 CPUs at 3.60 GHz with 16 GB main memory.

We use the runtime and the number of dependency checks as main met-
rics for the comparison of epor and sdpor. A dependency check determines
whether two events are in the dynamic dependency relation of the current tran-
sition system and is often performed several times in order to determine whether
two events constitute a reversible race. The complete results can be found in an
extended version of this paper [9]. A missing runtime indicates that the cor-
responding algorithm did not terminate for the given benchmark configuration
within 35000 s (∼ 9.7 h) or required more than 16 GB of memory.

In Table 1, we present results for four benchmarks which have previously
been used to evaluate dynamic POR algorithms. The Readers-Writers, Indexer,
and Last Zero benchmarks are used in [1] to evaluate sdpor; the Shared Pointer
benchmark is borrowed from [6]. The Readers-Writers (N) benchmark contains
a single writer and N − 1 readers. The Indexer (N) benchmark consists of N

Table 1. Comparison of epor and sdpor on four well-known benchmarks.

Benchmark Algorithm Time (s) Traces Dep. Checks Speedup(%)

Readers-Writers (9) sdpor 0.668 256 60885 —

Readers-Writers (9) epor 0.400 256 3204 40.1

Readers-Writers (20) sdpor 6874.472 524288 1570045995 —

Readers-Writers (20) epor 2728.742 524288 17827145 60.3

Indexer (12) sdpor 0.413 8 27072 —

Indexer (12) epor 0.284 8 19325 31.2

Indexer (16) sdpor 13060.033 32768 1345407904 —

Indexer (16) epor 7998.984 32805 466384458 38.8

Last Zero (6) sdpor 0.911 96 66384 —

Last Zero (6) epor 0.724 96 29570 20.5

Last Zero (16) sdpor Not terminating

Last Zero (16) epor 18408.671 262144 7232899654 —

Shared Pointer (50) sdpor 32.529 101 14074966 —

Shared Pointer (50) epor 17.398 101 11459539 46.5

Shared Pointer (100) sdpor 238.968 201 192707828 —

Shared Pointer (100) epor 170.762 201 154590222 28.5
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processes that write to a shared hash table. It is the only benchmark presented
here that contains hiding dependencies. The scheduling of an execution influences
the control flow behaviour. The parameter of the Indexer benchmark specifies the
number of processes. The Last Zero (N) benchmark consists of N − 1 processes
that update a shared array and an additional process that reads the same array.
Again, the scheduling of an execution influences the control flow behaviour. The
Shared Pointer (N) benchmark consists of two equal processes which execute a
loop N times, followed by an update of the respective other’s process pointer.

In all four benchmarks, epor shows a speed-up over sdpor for the highest
parameter. The number of dependency checks is always lower for epor than
for sdpor (except for Indexer (11), where no races occur), while the number of
explored maximal transition sequences is equal between epor and sdpor for all
configurations.

In order to investigate the performance of epor in special cases, we have
designed two artificial benchmarks Ring and Branching, which are depicted in
Fig. 4b and a. They loosely resemble the communication of processes which com-
municate in a ring, for example as in a ring election protocol. Every line is
executed atomically. The Branching benchmark consists of two branching state-
ments and two assignments; whether the assignments are executed depends on
the scheduling of a particular execution. In the Ring benchmark, each process
likewise communicates with its next process, but without control flow branch-
ings. The Ring benchmark is similar to the Readers-Writers benchmark, but
shows a higher number of dependencies, as each process is both reading and
writing. Selected results for these two benchmarks are depicted in Table 2.

Fig. 4. Three artificial benchmarks (x is a global array of length l, a is a local variable.
Each program statement is executed atomically.)

For the Ring and Branching benchmarks, epor requires considerably less
dependency checks than sdpor for all configurations. The number of explored
traces is equal for epor and sdpor except for the Branching benchmark with 9 to
11 processes. The speed-up of epor over sdpor is very prominent for the Ring
benchmark; sdpor does not terminate for 19 processes. Equally significantly,
epor requires several orders of magnitude less dependency checks than sdpor.
For the Branching benchmark, epor still shows a considerable speed-up over
sdpor, however, the saving in terms of dependency checks is lower than for the
Ring benchmark.
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Table 2. Comparison of epor and sdpor on two simple benchmarks.

Benchmark Algorithm Time (s) Traces Dep. Checks Speedup(%)

Ring (17) sdpor 5984.174 131070 734642101 —

Ring (17) epor 538.031 131070 2096753 91.0

Ring (19) sdpor Not terminating

Ring (19) epor 2884.695 524286 8653144 —

Branching (5) sdpor 1.180 311 145186 —

Branching (5) epor 1.045 311 114640 11.4

Branching (11) sdpor 19068.490 318363 2200202598 —

Branching (11) epor 8220.448 318978 1343673801 56.9

Less Unsatisfiable Trace Constraint Systems. Interestingly, epor shows
a much higher runtime overhead than sdpor for a slightly changed Ring bench-
mark as depicted in Fig. 4c (Ring Extended). Here, each process repeats its
assignment so that the program order is not empty as opposed to the Ring
benchmark.

As will be detailed later, epor (in its original form) does not scale as well for
this benchmark as for the benchmarks previously presented. We explain this by
the fact that epor generates at most 2 unsatisfiable trace constraint systems for
the previous benchmarks while the number of unsatisfiable trace constraint sys-
tems for the Ring Extended benchmark increases with the number of processes.
These additional unsatisfiable constraint systems occur due to the dependency
structure of the Ring Extended benchmark. Each process consists of two tran-
sitions, which model its two assignments. Each of these transitions depends on
both transitions of the previous process and additionally on both transitions
of the next process. Consequently, when combining the constraints of a trace
constraint system for the Ring Extended benchmark with the program order
between the two transitions of each process, a cycle occurs with considerably
higher probability than it is the case for the Ring benchmark.

For program fragments with dense dependencies as in the Ring Extended
benchmark, we propose an alternative definition of sections in order to reduce
the generation of unsatisfiable trace constraint systems. Specifically, sections
are shortened so that no trace constraint systems are generated whose con-
straints show cycles due to a combination with the program order. We call
these adapted sections short sections. Cycles due to the program order can
be avoided by permitting only one dependent transition per process inside a
single short section. Formally, we define short sections by adding the following
constraint to the definition of sections given in Sect. 3.3) such that all transi-
tion sequences v = t1 . . . tk ∈ section(u) additionally satisfy ∀1 ≤ i, j,m, n ≤
k. (i, j) ∈ dep(u, v) ∧ (m,n) ∈ dep(u, v) ∧ pidti = pidtm ⇒ i = m.

We have implemented the epor algorithm with short sections instead of
sections, denoted by epor-sh, and compare it with epor and sdpor on the
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Table 3. Comparison of epor, epor-sh (short sections), and sdpor on the Ring
Extended benchmark.

Benchmark Algorithm Timec(s) Traces Dep. Checks Unsat. TCS Speedup(%)

Ring Extended (6) sdpor 70.729 38466 7537485 0 —

Ring Extended (6) epor 3412.561 38466 144095 16738750 −4724.8

Ring Extended (6) epor-sh 72.869 38466 6747840 126 −3.0

Ring Extended (8) sdpor 6552.194 1548546 806537903 0 —

Ring Extended (8) epor Not terminating

Ring Extended (8) epor-sh 5061.882 1548546 720212287 510 22.7

Ring Extended benchmark. The observed numbers are shown in Table 3. For 6
processes, epor-sh still shows a considerable number of unsatisfiable constraint
systems but reduces this number by more than 99 % in comparison to epor
with original sections. While epor is more than 47 times slower than sdpor
for 6 processes and does not terminate for 8 processes, epor-sh is only slightly
slower than sdpor for 6 processes and more than 22 % faster than sdpor for
8 processes. Hence, the overhead of generating the remaining unsatisfiable trace
constraint systems is still small enough so that epor-sh outperforms sdpor.
The performance of epor-sh on our remaining benchmarks is included in an
extended version of this paper [9].

In order to increase the robustness of epor, it is perceivable to dynamically
adapt the section length to the dependency structure of the program. Addi-
tionally, we expect that the number of generated unsatisfiable trace constraint
systems can be reduced by exploiting information about the infeasibility of a
constraint system to prevent the generation of further trace constraint systems
that contain the same cycle (with or without program order). Such optimizations
would further improve the performance of epor and epor-sh.

5 Related Work

Static POR techniques use a static approximation of dependencies [2,5,10,12].
While both static and dynamic POR algorithms can be augmented with section-
based exploration as in epor, we focus on dynamic dependency calculation,
which drastically increases the state space reduction for, e.g., Indexer benchmark.

Dynamic POR has been introduced by Flanagan and Godefroid [3]. Their
algorithm dpor computes a persistent set of transitions to explore in every
visited state. Like many POR algorithms, dpor has been combined with the sleep
set technique [4]. For every visited state, the corresponding sleep set contains
transitions whose exploration would be redundant and is avoided.

Abdulla, Aronis, Jonsson, and Sagonas have proposed two model checking
algorithms based on dpor [1], named sdpor and odpor, replacing persistent
sets with source sets. In some cases, the source set of a state is smaller than the
smallest persistent set of this state, which improves the state graph reduction.
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epor uses source sets in order to reverse races between sections but avoids
redundant race checks and source set calculations inside of sections.

The odpor algorithm is an extension of sdpor that can increase the amount
of state space reduction for certain benchmarks, however adding runtime over-
head that is not always compensated by a higher state space reduction: for many
benchmarks, sdpor is faster than odpor due to less runtime overhead [1]. Con-
sequently, we compare our algorithm epor to sdpor instead of odpor in order
to investigate whether even the lower runtime overhead of sdpor can be reduced.

cdpor by Gueta et al. [6] handles sequences of transitions, similar to epor
and unlike dpor, sdpor, and odpor. However, cdpor explores only transi-
tions of a single process at once, while epor handles transition sequences of all
processes and of varying length.

POR approaches for relaxed memory models have been proposed, e.g., [15].
Our system model handles systems with relaxed memory models by using partial
program orders. Symbolic model checking (both bounded and unbounded) using
POR has been addressed, e.g., in [7,14]. We present epor as an improvement of
dependency calculation in concrete-state dynamic POR algorithms but do not
see any fundamental difficulty in using it for symbolic POR.

6 Conclusion

We present section-based exploration, a dynamic POR approach that eagerly
creates schedules for program fragments. In comparison to known dynamic POR
algorithms, it avoids redundant race and dependency checks. We introduce trace
constraint systems as a formalization of section-based exploration and prove its
correctness. While our approach does not depend on a particular POR algorithm,
we implement section-based exploration in epor and compare it to sdpor. Our
results show that epor is able to reduce the runtime overhead by up to 91 %
and increase the tractable program size.
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In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112.
Springer, Heidelberg (2007)



Efficient Verification of Program Fragments: Eager POR 391

7. Kahlon, V., Wang, C., Gupta, A.: Monotonic partial order reduction: an optimal
symbolic partial order reduction technique. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 398–413. Springer, Heidelberg (2009)

8. Mazurkiewicz, A.W.: Trace theory. In: Advances in Petri Nets (1986)
9. Metzler, P., Saissi, H., Bokor, P., Hesse, R., Suri, N.: Efficient verification of program

fragments: Eager POR (extended). In: Nelson, S.P., Meyer, V. (eds.) ATVA 2016.
LNCS, vol. 9938, pp. 375–391. Springer, Heidelberg (2016). http://www1.deeds.
informatik.tu-darmstadt.de/External/PublicationData/1/atva2016-epor.pdf

10. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Berlin
(1993)

11. Pruesse, G., Ruskey, F.: Generating linear extensions fast. SIAM J. Comput 23,
373–386 (1994)

12. Valmari, A.: Stubborn sets for reduced state space generation. In: Applications
and Theory of Petri Nets (1989)

13. Valmari, A.: The state explosion problem. In: Lectures on Petri Nets I (1996)
14. Wachter, B., Kroening, D., Ouaknine, J.: Verifying multi-threaded software with

impact. In: FMCAD (2013)
15. Zhang, N., Kusano, M., Wang, C.: Dynamic partial order reduction for relaxed

memory models. In: PLDI (2015)

http://www1.deeds.informatik.tu-darmstadt.de/External/PublicationData/1/atva2016-epor.pdf
http://www1.deeds.informatik.tu-darmstadt.de/External/PublicationData/1/atva2016-epor.pdf


Solving Procedures, Model Checking



Skolem Functions for DQBF

Karina Wimmer1(B), Ralf Wimmer1,2, Christoph Scholl1, and Bernd Becker1

1 Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
{wimmerka,wimmer,scholl,becker}@informatik.uni-freiburg.de

2 Dependable Systems and Software, Saarland University, Saarbrücken, Germany

Abstract. We consider the problem of computing Skolem functions for
satisfied dependency quantified Boolean formulas (DQBFs). We show
how Skolem functions can be obtained from an elimination-based DQBF
solver and how to take preprocessing steps into account. The size of the
Skolem functions is optimized by don’t-care minimization using Craig
interpolants and rewriting techniques. Experiments with our DQBF
solver HQS show that we are able to effectively compute Skolem func-
tions with very little overhead compared to the mere solution of the
formula.

1 Introduction

Solver-based techniques have proven successful in many areas, ranging from for-
mal verification of hard- and software systems [1,6] over automatic test pattern
generation [12,14] to planning [36]. While research on solving quantifier-free
Boolean formulas (the famous SAT-problem [10]) has reached a certain level of
maturity, designing and improving algorithms for quantified Boolean formulas
(QBFs) is in the focus of active research. However, there are applications like the
verification of partial circuits [18,37], the synthesis of safe controllers [7], and
the analysis of games with incomplete information [32] for which QBF is not
expressive enough to provide a compact and natural formulation. The reason is
that QBF requires linearly ordered dependencies of the existential variables on
the universal ones: Each existential variable implicitly depends on all universal
variables in whose scope it is. Relaxing this condition yields so-called dependency
quantified Boolean formulas (DQBFs). DQBFs are strictly more expressive than
QBFs in the sense that an equivalent QBF formulation can be exponentially
larger than a DQBF formulation. This comes at the price of a higher complexity
of the decision problem: DQBF is NEXPTIME-complete [32], compared to QBF,
which is “only” PSPACE-complete. Encouraged by the success of SAT and QBF
solvers and driven by the mentioned applications, research on solving DQBFs has
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started during the last few years [16,17,19,41], yielding first prototypic solvers
like iDQ [17] and HQS [19].

All currently available DQBF solvers are restricted to a pure yes/no answer
regarding the satisfiability of the formula, allowing to decide whether an incom-
plete circuit is realizable, whether a controller with certain properties can be
synthesized, and whether a player has a winning strategy in a game. But typi-
cally a pure yes/no answer is not satisfactory: In case a circuit is realizable, one
wants to have an implementation; if a controller is synthesizable, one wants to
get a realization of it; and in a game, where a player has a winning strategy, one
wants to know such a winning strategy. These implementations, realizations, and
strategies all correspond to so-called Skolem functions for the existential vari-
ables in a DQBF. While for different paradigms to solve QBFs, Skolem functions
can be computed (see below for an overview of related work), we are not aware
of any paper that considers the computation of Skolem functions for DQBF.

So, this is the first paper that shows how Skolem functions can be obtained
from elimination-based QBF or DQBF solvers like AIGsolve [33,34] or HQS [19].
We do not only take into account the core operations for eliminating vari-
ables [19], but also the preprocessing steps [41], which are essential for an efficient
solution of the formula. We propose to apply don’t-care minimization to reduce
the representation size of the computed Skolem functions. We have implemented
the described techniques in our DQBF solver HQS; preliminary experiments
show not only that we have found a feasible approach to Skolem function com-
putation, but also that the overhead during the solution of the formulas is small.

Due to space restrictions we are only able to give short proof sketches for the
main theorems. Detailed proofs are available in a technical report [40].

Related Work. Computing Skolem functions has not been studied for DQBF so
far. Therefore we concentrate on related work in QBF solving.

sKizzo [5] and Squolem [25] are QBF solvers which are based on Skolem-
ization: The existential variables are replaced by an encoding of the Skolem func-
tions’ unknown truth tables. In case of sKizzo, the entries of the truth tables are
variables, resulting in an (exponentially larger) SAT problem. This SAT prob-
lem is represented compactly using OBDDs [39] and solved by an adapted SAT
solver. A satisfying assignment corresponds to Skolem functions for the QBF.
Squolem is based on eliminating variables v in the QBF prefix from right to
left by considering clauses containing v which describe the function table of v’s
Skolem function.

Balabanov and Jiang [3] and Goultiaeva et al. [20] laid the foundations for
extracting Skolem functions from SAT/UNSAT proofs for QBFs in form of
term/clause resolution trees. Such proofs can be obtained from search-based
QBF solvers like DepQBF [29,31]. However, this approach is not applicable to
DQBF: resolution is – in contrast to QBF – not a complete decision procedure
for DQBF [2]; in general it is not possible to decide a DQBF using resolution.

Heule et al. [23] consider the extraction of Skolem functions when preprocess-
ing is applied before the actual solving process. They represent the different
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preprocessing steps in a unified framework, called QRAT. Such QRAT logs can
be used to derive Skolem functions for the original formula.

CAQE [38] is a very recent QBF solver, which is based on decomposing the
QBF into a sequence of simpler propositional formulas. CAQE also supports
the computation of Skolem functions.

Structure of this Paper. In the next section, we introduce the necessary foun-
dations on DQBFs, Skolem functions, and don’t-care minimization of Boolean
functions. In Sect. 3 we consider the main elimination operations, which are used
in the solver core of HQS. The following section shows how preprocessing steps
can be taken into account. We present experimental results in Sect. 5 and con-
clude the paper in Sect. 6.

2 Foundations

The Boolean values are denoted by B = {0, 1}. For a set V of Boolean variables,
the set of all variable assignments of V is A(V ) = {ν : V → B}. We extend
variable assignments ν ∈ A(V ) to quantifier-free Boolean formulas φ: ν(φ) is
the value obtained by replacing all variables v occurring in φ with their value
ν(v) and applying the usual rules of Boolean algebra.

A literal � is either a Boolean variable v ∈ V or its negation ¬v. The sign
of a literal is given by sign(v) = 1 and sign(¬v) = 0 for v ∈ V . A clause is a
disjunction of literals, and a formula is in conjunctive normal form (CNF) if it is
a conjunction of (non-tautological) clauses. We often identify a clause with its set
of literals, and a CNF with its set of clauses. For quantifier-free Boolean formulas
φ and ψ over variables V and a variable v ∈ V , the notation φ[ψ/v] denotes the
formula which results from replacing all occurrences of v in φ simultaneously by
ψ. var(φ) is the set of variables occurring in φ. We treat var(φ) as a variable if
it is a singleton. We sometimes identify φ with its represented function fφ: for
ν ∈ A(V ), we set fφ(ν) := ν(φ). A formula φ is a representation of a Boolean
function g iff g = fφ. Each Boolean function can be represented as a formula.
By ITE we denote the if-then-else function, i. e., ITE(a, b, c) = (a∧ b)∨ (¬a∧ c).

2.1 Dependency Quantified Boolean Formulas

Dependency quantified Boolean formulas are obtained by prefixing quantifier-
free Boolean formulas with so-called Henkin quantifiers [21].

Definition 1 (Syntax of DQBF). Let V = {x1, . . . , xn, y1, . . . , ym} be a finite
set of Boolean variables. A dependency quantified Boolean formula (DQBF) Ψ
over V has the form Ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym

) : φ, where Dyi
⊆

{x1, . . . , xn} is the dependency set of yi for i = 1, . . . ,m, and φ is a quantifier-
free Boolean formula over V , called the matrix of Ψ .
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UΨ = {x1, . . . , xn} is the set of universal and EΨ = {y1, . . . , ym} the set of
existential variables. A literal � is existential (universal, resp.) iff var(�) ∈ EΨ

(var(�) ∈ UΨ ). Sometimes we assume that φ is given in CNF.
A QBF (in prenex normal form) is a DQBF such that Dy ⊆ Dy′ or Dy′ ⊆ Dy

holds for any two existential variables y, y′ ∈ EΨ .
To simplify notation, we define a dependency function depΨ : V → 2UΨ as

follows: depΨ (v) = {v} if v is universal and depΨ (v) = Dv if v is existential.
The semantics of a DQBF is typically defined by so-called Skolem functions.

Definition 2 (Semantics of DQBF). Let Ψ be a DQBF as above. It is sat-
isfiable if there are functions sy : A(Dy) → B for y ∈ EΨ such that replacing
each y ∈ EΨ by (a Boolean expression representing) sy turns φ into a tautology.
Such functions (sy)y∈EΨ

are called Skolem functions for Ψ .

Deciding whether a given DQBF is satisfiable is NEXPTIME-complete [32].

Definition 3 (Equisatisfiability, Equivalence of DQBFs). Let Ψi = Qi :
φi for i = 1, 2 be two DQBFs over variables V . Ψ1 and Ψ2 are equisatisfiable
(Ψ1 � Ψ2), if Ψ1 is satisfiable iff Ψ2 is. Ψ1 and Ψ2 are logically equivalent (Ψ1 ≡
Ψ2) if Q1 = Q2 and ν(φ1) = ν(φ2) for all ν ∈ A(V ).

Logically equivalent formulas that are satisfiable have the same Skolem functions.
The main operations used by elimination-based solvers like HQS [19] to solve

DQBFs are variants of variable elimination. For standard Boolean logic, elim-
ination of variables can be performed in different ways, resulting in logically
equivalent formulas of typically different sizes and structures:

Lemma 1 ([24]). Let φ be a Boolean formula and x a variable of φ. We have:

∃x : φ � φ[0/x] ∨ φ[1/x] ≡ φ
[
φ[1/x]/x

]
≡ φ

[
¬φ[0/x]/x

]
.

This lemma will be used later to obtain formulas for the Skolem functions of
existential variables in DQBFs. As we will see later, don’t-care minimization can
be applied to these Skolem functions to obtain some with a small representation.

2.2 Don’t-Care Minimization of Boolean Functions

Definition 4 (Incompletely Specified Boolean Function). Let V be a
set of Boolean variables. An incompletely specified Boolean function f is given
by a don’t-care set DC(f) ⊆ A(V ) and an on-set ON(f) ⊆ A(V ) such that
DC(f) ∩ ON(f) = ∅. We additionally define the off-set OFF(f) :=A(V ) \
(DC(f) ∪ ON(f)).

Of course it suffices to specify any two sets of ON(f), OFF(f), and DC(f).

Definition 5 (Complete Extension). Let f be an incompletely specified
Boolean function. A function f∗ : A(V ) → B is a complete extension of f
iff f∗(ν) = 1 for all ν ∈ ON(f) and f∗(ν) = 0 for all ν ∈ OFF(f).
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The goal of don’t-care minimization is: Given an incompletely specified
Boolean function f , find a complete extension f∗ of f with a small represen-
tation by a circuit or an and-inverter graph (AIG) [27]. This can be done, e. g.,
by using Craig interpolants.

Definition 6 (Craig Interpolant, [11]). Let φ = φA ∧ φB be a (quantifier-
free) Boolean formula that is unsatisfiable. A Craig interpolant for (φA, φB) is
a Boolean formula φI such that: (a) φI contains only variables which appear in
both φA and φB , (b) φA ⇒ φI is a tautology, and (c) φI ∧ φB is unsatisfiable.

Lemma 2. Let f be an incompletely specified function over V and ϕON(f),
ϕOFF(f) be Boolean formulas for ON(f) and OFF(f), respectively, i. e., for
every assignment ν ∈ A(V ), we have ν(ϕOFF(f)) = 1 iff ν ∈ OFF(F ) and
ν(ϕON(f)) = 1 iff ν ∈ ON(f).

Then every Craig interpolant for (ϕON(f), ϕOFF(f)) represents a complete
extension of f .

This lemma will be exploited for don’t-care minimization when eliminating
existential variables.

Lemma 3 ([24]). Let φ be a Boolean formula and x a variable in φ. Then each
Craig interpolant φI w. r. t. φA := ¬φ[0/x] ∧ φ[1/x] and φB := ¬φ[1/x] ∧ φ[0/x]
satisfies ∃x : φ � φ[φI/x].

Craig interpolants can be derived from a resolution tree which shows the unsat-
isfiability of the formula [35]. They find numerous applications in system design,
see e. g., [30].

3 Undoing Elimination Steps

In the following we assume that a DQBF of the form:

Ψ0 = ∀x1 . . . ∀xn∃y1(D0
y1

) . . . ∃ym(D0
ym

) : φ0

is given with dependency sets D0
yi

⊆ {x1, . . . , xn} for i = 1, . . . , m. We abbreviate
the quantifier prefix by Q0 and write Ψ0 = Q0 : φ0.

DQBF preprocessors and elimination-based DQBF solvers execute a sequence
of transformation steps on the formula until a pure SAT problem is obtained.
Thereby we obtain a sequence of equisatisfiable formulas Ψ i = Qi : φi for i =
1, . . . , k∗ such that Ψ i results from Ψ i−1 by applying one transformation step
and Ψk∗

is an existential formula that can be solved using a SAT solver.
For Ψk∗

, Skolem functions are simply given by a satisfying assignment. The
main idea of the paper is to show how Skolem functions for Ψ i−1 can be derived
from Skolem functions for Ψ i, finally resulting in Skolem functions for the original
formula Ψ0.

In the following, we consider the quantifier prefix as a set of tuples formed
by quantifiers, variables, and – for existential variables – their dependency sets.
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The set of universal variables in Ψ i is denoted by U i and the set of existential
variables by Ei. For a variable y ∈ Ei, Di

y is its dependency set in Ψ i, i. e.,

Qi = {∀x |x ∈ U i} ∪ {∃y(Di
y) | y ∈ Ei}.

3.1 Universal Expansion

Universal expansion [9,18] eliminates a universal variable x∗ from a DQBF. If
any existential variables depend upon x∗, they have to be copied to allow them
taking different values for x∗ = 0 and x∗ = 1.

Lemma 4 (Universal Expansion). Let (sk
y)y∈Ek be Skolem functions for

the existential variables in Ψk and assume that Ψk was obtained from Ψk−1

by expanding the universal variable x∗ ∈ Uk−1 such that, for y ∈ Ek−1 with
x∗ ∈ Dk−1

y , y′ is the copy of y appearing in the 1-cofactor w. r. t. x. In detail:

Qk : φk =
(
Qk−1 \ ({∀x∗} ∪ {∃y(Dk−1

y ) | y ∈ Ek−1 ∧ x∗ ∈ Dk−1
y }))

∪ {∃y(Dk−1
y \ {x∗}),∃y′(Dk−1

y \ {x∗})
∣
∣ y ∈ Ek−1 ∧ x∗ ∈ Dk−1

y

}
:

(
φk−1[0/x∗] ∧ φk−1[1/x∗][y′/y for all y ∈ Ek−1 with x∗ ∈ Dk−1

y ]
)
.

Then (sk−1
y )y∈Ek−1 with sk−1

y = sk
y if x∗ /∈ Dk−1

y , and sk−1
y = ITE(x∗, sk

y′ , sk
y) if

x∗ ∈ Dk−1
y are Skolem functions for the existential variables in Ψk−1.

Proof Sketch. We replace the existential variables with their Skolem functions
and show that the resulting formula, which only contains universal variables, is
a tautology for both x∗ = 0 and x∗ = 1. To do so, one can exploit the fact that
(sk

y)y∈Ek are Skolem functions for the formula after elimination. For a detailed
proof see [40]. ��

3.2 Elimination of Existential Variables

Elimination of existential variables is done like in QBF. It is applicable for vari-
ables which depend upon all universal variables [19].

Lemma 5. Let (sk
y)y∈Ek be Skolem functions for the existential variables in

Ψk and assume that Ψk was obtained from Ψk−1 by eliminating the existential
variable y∗ ∈ Ek−1 (which requires Dk−1

y∗ = Uk−1). In detail:

Qk : φk = Qk−1 \ {∃y∗(Dk−1
y∗ )

}
:
(
φk−1[0/y∗] ∨ φk−1[1/y∗]

)

Then (sk−1
y )y∈Ek−1 with sk−1

y = sk
y if y �= y∗, and sk−1

y∗ = φk−1
[
1/y∗]

[
sk

z/z for z ∈ Ek
]

are Skolem functions for the existential variables in Ψk−1.

Proof Sketch. We replace the existential variables by their Skolem functions and
show that the resulting formula, which contains only universal variables, is a
tautology. For this we assume an arbitrary assignment ν of the universal variables
and distinguish the cases where ν(sk−1

y∗ ) = 0 and where ν(sk−1
y∗ ) = 1. In both

cases simple equivalence transformations show that ν satisfies the formula. ��
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Remark 1 (Blockwise Elimination). For improving efficiency of variable elimina-
tion, typically sets of variables are eliminated en bloc without creating interme-
diate results. For existential variable sets, these intermediate results, however,
are required for Skolem function computation. A possible way to deal with this
is to redo the quantification variable by variable if in the end the formula is
satisfied and Skolem functions are to be computed.

Remark 2 (Alternative Skolem Function). As a Skolem function for y∗, we could
also use sk−1

y∗ := ¬φk−1
[
0/y∗][sk

y/y for y ∈ Ek
]
. The proof is analogous to the

proof of Lemma 5.

Remark 3 (Don’t-Care Minimization of Skolem Functions). Any complete
extension of the following incompletely specified Boolean function can be used
as a Skolem function for y∗ in Lemma 5:

ON(sk−1
y∗ ) =

(
φk−1

[
1/y∗] ∧ ¬φk−1

[
0/y∗]

)[
sk

y/y for y ∈ Ek
]
,

OFF(sk−1
y∗ ) =

(
¬φk−1

[
1/y∗] ∧ φk−1

[
0/y∗]

)[
sk

y/y for y ∈ Ek
]
,

DC(sk−1
y∗ ) =

(
φk−1

[
1/y∗] ∧ φk−1

[
0/y∗]

)[
sk

y/y for y ∈ Ek
]
.

The don’t-care set DC(sk−1
y∗ ) can be exploited to minimize the size of sk−1

y∗ ’s
representation, e. g., by using Craig interpolation, cf. Lemma3.

Remark 4 (Skolem Functions for SAT Problems). If the result of the elimination
process is a pure SAT problem with only existential quantifiers, we can solve it
using a SAT solver. In case the formula is satisfiable, any satisfying assignment
corresponds to (constant) Skolem functions for the existential variables.

Example 1. Consider the DQBF Ψ0 = ∀x1∀x2∃y1(x1)∃y2(x2) : φ0(x1, x2, y1, y2).
Elimination yields the following sequence of matrices:

φ0(x1, x2, y1, y2)
∀x1−−→ φ1(x2, y1, y

′
1, y2)

∃y2−−→ φ2(x2, y1, y
′
1)

∀x2−−→ φ3(y1, y′
1).

φ3(y1, y′
1) is a SAT-Problem. Assume that the SAT-solver returns y1 = a and

y′
1 = b as a satisfying assignment. We need to compute Skolem functions for y1

and y2 in φ0. The following table shows the Skolem functions for the individual
formulas:

Skolem function for

Formula y1 y′
1 y2

Ψ3 a b n/a

Ψ2 a b n/a

Ψ1 a b φ1(x2, a, b, 1)

Ψ0 (¬x1 ∧ a) ∨ (x1 ∧ b) n/a φ1(x2, a, b, 1)
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4 Handling Pre- and Inprocessing Steps

Typically preprocessing is used to simplify the formula before the actual solution
process starts. It is well known that preprocessing can reduce the computation
times for solving the formula by orders of magnitude [41]. Thereby the set of
variables occurring in the formula as well as its set of clauses change. For details
about the preprocessing steps for DQBF, we refer the reader to [41].

The procedure for taking preprocessing steps into account is the same as
for the elimination steps: We assume that Skolem functions (sk

y)y∈Uk for Ψk are
given and show how to obtain Skolem functions (sk−1

y )y∈Uk−1 for the formula
Ψk−1 before applying a preprocessing operation.

4.1 Equivalence Transformations and Universal Reduction

All operations which replace the formula Ψk−1 by a logically equivalent formula
Ψk (see Definition 3) preserve Skolem functions and can essentially be ignored
for the computation of Skolem functions. This applies (among others) to the
following preprocessing techniques: addition of resolvents, deletion of subsumed
clauses, and hidden literal addition [22,41].

Universal reduction removes a variable x∗ ∈ Uk−1 from a clause C ∈ φk−1

if C does not contain an existential variable which depends on x∗. In general,
the resulting matrix φk is not logically equivalent to φk−1. However, univer-
sal reduction changes neither the set of existential variables nor their Skolem
functions. Therefore universal reduction steps can be ignored when computing
Skolem functions.

4.2 Replacing Variables by Constants

Different techniques identify variables in the formula which must or may be
replaced by constants: unit and failed literals, contradicting implication chains,
backbones (variables which have the same value in all satisfying assignments of
the matrix) [26], pure literals, or more generally, monotonic literals. For these
techniques, Skolem functions can be derived using the following lemma.

Lemma 6 (Replacement by Constants). Assume that Ψk is created from
Ψk−1 by replacing an existential variable y∗ ∈ Ek−1 by a constant value c ∈ B,
i. e., Qk : φk = Qk−1 \ {∃y∗(Dk−1

y∗ )
}

: φk−1[c/y∗].
If (sk

y)y∈Ek are Skolem functions for Ψk, then (sk−1
y )y∈Ek−1 are Skolem func-

tions for Ψk−1, where sk−1
y = sk

y for y �= y∗, and sk−1
y∗ = c.

While for backbones, the constant Skolem function is the only possibility, for
monotonic variables other Skolem functions might be available. However, a con-
stant function has a representation of minimum size and is therefore preferred.
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4.3 Equivalent Variables

If the preprocessor detects that the existential variable y∗ ∈ Ek−1 is equivalent
to the literal �, then either the whole formula is unsatisfied if � is universal and
y∗ does not depend on �. Otherwise all occurrences of y∗ can be replaced by �.
For the Skolem function of y∗ the following lemma holds:

Lemma 7 (Equivalent Literals). Let Ψk result from Ψk−1 by replacing the
existential variable y∗ ∈ Ek−1 by the literal �, i. e.,

Qk : φk = Qk−1 \ {∃y∗(Dk−1
y∗ )

}
: φk−1[�/y∗].

If (sk
y)y∈Ek are Skolem functions for Ψk, then (sk−1

y )y∈Ek−1 are Skolem functions
for Ψk−1, where

sk−1
y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sk
y , if y �= y∗,

�, if y = y∗ and var(�) ∈ Uk−1,

sk
var(�), if y = y∗ and var(�) ∈ Ek−1 and sign(�) = 1,

¬sk
var(�), if y = y∗ and var(�) ∈ Ek−1 and sign(�) = 0.

4.4 Structure Extraction

For solvers which do not rely on a CNF-representation of the formula, the recon-
struction of the Boolean expression from which the CNF was generated is often
beneficial. This is particularly the case if Tseitin transformation was applied to
a circuit. Thereby clauses are detected which represent the equivalence y∗ ≡ η
where η is the function computed by a logical gate and y∗ the existential variable
introduced by Tseitin transformation for the output of the gate. In the resulting
representation y∗ is replaced by η. Accordingly, a Skolem function for y∗ can be
obtained from the Skolem functions of the existential variables var(η):

Lemma 8 (Structure Extraction). Let Ψk result from Ψk−1 by replacing
y∗ ∈ Ek−1 by the expression η such that y∗ /∈ var(η) and

⋃

y∈var(η)∩Ek−1

Dk−1
y ⊆ Dk−1

y∗ .

That means Qk : φk = Qk−1\{∃y∗(Dk−1
y∗ )

}
: φk−1[η/y∗]. If (sk

y)y∈Ek are Skolem
functions for Ψk, then (sk−1

y )y∈Ek−1 are Skolem functions for Ψk−1 where sk−1
y =

sk
y if y �= y∗, and sk−1

y∗ = η[sk
z/z, for z ∈ var(η) ∩ Ek].

4.5 Variable Elimination by Resolution

In QBF, an existential variable y∗ can be eliminated by resolution if it belongs
to the inner-most quantifier block1. Thereby all clauses containing y∗ or ¬y∗

1 If the inner-most quantifier block is universal, it can be removed by universal reduc-
tion.
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are replaced by all possible resolvents w. r. t. y∗. Having a closer look at how
a Skolem function can be obtained for y∗, we can see that the condition of y∗

being in the inner-most quantifier block can be strengthend such that it is also
applicable to DQBF, where there is in general no linear order on the variables.

Let y∗ ∈ Ek−1 be an existential variable. We partition the set φk−1 of clauses
into φk−1

y∗ = {C ∈ φk−1 | y∗ ∈ C}, φk−1
¬y∗ = {C ∈ φk−1 | ¬y∗ ∈ C}, and φk−1

∅ =
φk−1 \ (φk−1

y∗ ∪ φk−1
¬y∗ ).

Lemma 9 (Resolution). Assume that Ψk results from Ψk−1 by eliminating
variable y∗ using resolution, i. e.,

Qk : φk = Qk−1 \ {∃y∗(Dk−1
y∗ )} : φk−1

∅ ∪ {C ⊗y∗ C ′ |C ∈ φk−1
y∗ ∧ C ′ ∈ φk−1

¬y∗ },

where C ⊗y∗ C ′ denotes the resolvent of C and C ′ w. r. t. y∗. This can be done
if one of the following conditions holds:

– Case 1: depΨk−1(y∗) ⊇ ⋃
C∈φk−1

y∗

⋃
�∈C\{y∗} depΨk−1(�),

– Case 2: depΨk−1(y∗) ⊇ ⋃
C′∈φk−1

¬y∗

⋃
�∈C′\{¬y∗} depΨk−1(�).

If (sk
y)y∈Ek are Skolem functions for Ψk, then (sk−1

y )y∈Ek−1 are Skolem functions
for Ψk−1 where, for the two cases, sk−1

y is defined as follows:

sk−1
y =

⎧
⎪⎨

⎪⎩

sk
y , if y �= y∗,

¬φk−1
y∗ [0/y∗][sk

z/z for z ∈ Ek], if y = y∗and Case 1 applies,
¬φk−1

¬y∗ [1/y∗][sk
z/z for z ∈ Ek], if y = y∗ and Case 2 applies.

For a proof see [41]. If both cases apply, we can use don’t-care minimization to
reduce the AIG size of the Skolem function sk−1

y∗ for the eliminated variable y∗.
Variable elimination by resolution is sound for DQBF also in a third case

when an existential variable y∗ ∈ Ek−1 fulfills the conditions for structure extrac-
tion [41]. (Depending on the solver back-end, one might prefer elimination by
resolution instead of structure extraction in order to preserve the CNF structure
of the matrix.) It is easy to see that in this case the Skolem function sk−1

y∗ can
simply computed from (sk

y)y∈Ek as in Sect. 4.4.

4.6 Blocked Clause Elimination (BCE)

BCE [22] allows to delete certain clauses C from a formula without changing its
truth value. This is the case if all resolvents of C w. r. t. one of its existential
literals � ∈ C are tautologies and if the dependency set of the variable that
makes the resolvent a tautology is a subset of var(�)’s dependency set [41].

Definition 7 (Outer Clause, Outer Formula). Let ψ = Q : φ be a DQBF,
C ∈ φ a clause, and � ∈ C a literal of C. The outer clause of C on � is given by

OC(ψ,C, �) =
{
κ ∈ C

∣
∣ κ �= � ∧ depψ(κ) ⊆ depψ(�)

}
.

Let � be a literal in a DQBF ψ. The outer formula of ψ on � is given by

OF(ψ, �) =
{OC(ψ,D,¬�)

∣
∣ D ∈ φ ∧ ¬� ∈ D

}
.
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Now we can define blocked clauses for DQBF [41]:

Definition 8 (Blocked Clause). Let ψ = Q : φ be a DQBF, C ∈ φ a
clause. The clause C is blocked if there is an existential literal � ∈ C such
that OC(ψ,C, �) ∪ OC(ψ,D,¬�) is a tautology for all D ∈ φ with ¬� ∈ D.

It is known that blocked clauses can be deleted from a DQBF without changing
its truth value [41].

Similar to the QBF case, which is described in [23], we can derive Skolem
functions in case of blocked clause elimination using the following lemma:

Lemma 10 (Blocked Clause Elimination). Let Ψk be created from Ψk−1

by deleting the clause C, which is blocked in Ψk−1 w. r. t. the existential literal
� ∈ C, i. e., Qk : φk = Qk−1 : φk−1 \ {C}. If (sk

y)y∈Ek are Skolem functions for
Ψk, then (sk−1

y )y∈Ek−1 are Skolem functions for Ψk−1 where

sk−1
y =

{
sk

y , if y �= var(�),
ITE

(OF(Ψk−1, �)[sk
z/z for z ∈ Ek], sign(�), sk

y

)
, if y = var(�).

Proof Sketch. Let y∗ := var(�). First, sk−1
y∗ depends only on variables in Dk−1

y∗

because OF(Ψk−1, �) contains only variables v with depΨk−1(v) ⊆ depΨk−1(y∗).
Second, we have to show that φk−1[sk−1

z /z for z ∈ Ek−1] is a tautology. We
show ν

(
φk−1[sk−1

z /z for z ∈ Ek−1]
)

= 1 for every assignment ν ∈ A(Uk−1). We
partition the clauses into those which contain �, those which contain ¬�, and the
remaining ones. We distinguish the cases where ν

(OF(Ψk−1, �)
)

is 0 and where
it is 1, and prove that in both cases all clauses are satisfied. Details can be found
in [40]. ��

The effectiveness of blocked clause elimination is often increased by adding
hidden and covered literals before testing whether a clause is blocked. Adding
hidden literals yields an equivalent DQBF (see Sect. 4.1), but the addition of
covered literals has to be taken into account when computing Skolem functions.

For detailed information how to handle covered literal addition, we refer the
reader to the extended version [40] of this paper.

5 Experimental Results

We extended our DQBF solver HQS [19]2. by the possibility to compute Skolem
functions for satisfied DQBFs. The computation of Skolem functions works in
two phases: During the solution process we collect the necessary data and store
it on a stack. When the satisfiability of the formula has been determined, we free
the other data structures of the solver and extract the Skolem functions from
the collected data. During the extraction phase, HQS supports optimizing the

2 A recent binary of HQS, all DQBF benchmarks we used as well as our proof checker
are available at https://projects.informatik.uni-freiburg.de/projects/dqbf.

https://projects.informatik.uni-freiburg.de/projects/dqbf
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Skolem functions of eliminated existential variables according to Remarks 2 and
3. If don’t-care optimization using Craig interpolation is enabled, we choose
a Skolem function for the eliminated existential variable y∗ ∈ Ek−1 among
φk−1[1/y∗], ¬φk−1[0/y∗], and the computed interpolant, taking one with mini-
mal AIG size. If interpolation is disabled, we only choose among the first two
options.

Additionally, in a post-processing step, we can use the tool ABC [8] to further
optimize the Skolem function representations. It supports AIG rewriting based
on so-called internal don’t cares. In contrast to the external don’t cares that we
proposed in Remark 3, they encompass values which cannot appear at internal
signals of the AIG.

HQS is accompanied by a proof checker, which verifies that the Skolem func-
tions depend only on the allowed variables and that replacing the existential
variables in the formula by their Skolem function indeed yields a tautology.
Checking whether the Skolem functions depend only on the allowed variables is
performed just by traversing the AIGs and computing the structural support,
since, by construction, the AIGs of the Skolem functions do not structurally
depend on more than the allowed variables.3 Logic optimizations done by ABC
could increase the structural support in principle, but since logic optimization
does not change the represented Boolean functions semantically, additional vari-
ables in the structural support which are introduced by ABC can be removed by
replacing them by arbitrary constants.4 The second and more important part of
the check is done by replacing the existential variables by their Skolem functions
and by calling a SAT-solver to verify that the resulting formula is a tautology. As
a SAT-solver, we have used Minisat 2.2 [13]. We have applied this proof checker
to all computed Skolem functions and confirmed their correctness.

All experiments were run on one Intel Xeon E5-2650v2 CPU core at 2.60 GHz
clock frequency and 64 GB of main memory under Linux (kernel version 3.13)
as operating system, running in 64 bit mode. We aborted all experiments which
either took more than 3600 s CPU time or more than 8 GB ( = 230 bytes) of main
memory. As benchmarks we used 4811 DQBF instances from different sources:
DQBFs resulting from equivalence checking of incomplete circuits [15,17,18],
controller synthesis problems [7], and instances obtained from converting SAT
instances into DQBFs that depend only on a logarithmic number of variables [4].

Table 1. Solved instances
Variant Solved Unsat Sat Skolem

w/o Skolem functions 4008 3286 722 n/a

w/o optimizations 4010 3289 721 721

+ interpolation 4010 3289 721 721

+ ABC 4009 3287 722 722

+ interpolation + ABC 4008 3287 721 721

First we compare the number
of instances which could be
solved and for which Skolem
functions could be computed in
different solver configurations.
Table 1 shows the results. Out
of the 4811 instances, on aver-
age 4010 could be solved; of those instances, 3288 were UNSAT, 722 SAT. Skolem
functions were obtained for all of the solved SAT instances, i. e., we could not

3 Of course, the semantical support could also be checked by a series of SAT calls.
4 However, this case never occurred in our experiments.
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only decide realizability, but even determine implementations of controllers or
the unknown circuit parts. These numbers are independent of whether interpo-
lation and/or ABC were used to optimize the size of the Skolem functions. The
small deviations seem to be due to random effects from scheduling and influences
from other processes. The numbers change by one or two when we re-run the
solver in the same configuration.

This is consistent with Fig. 1, which shows the influence of data collection
on the computation time (left) until the truth value of the formula has been
determined and on the peak memory consumption (right) until the computation
of Skolem functions has been finished. The memory consumption of ABC is not
taken into account, because it runs when HQS has terminated and needed less
memory than HQS in all cases. A mark below the diagonal means that the variant
on the vertical axis performs better for that instance than the variant on the
horizontal axis. The figures show that the solution time only changes by a small
amount due to data collection. The memory consumption increases only slightly
in most cases. In a few exceptions, the memory consumption even decreases. The
reason is that the Skolem functions share AIG nodes with the formula in the
solver core. This changes the way how the AIG manager can optimize the AIG
representation, which can actually lead to lower memory consumption.

The final extraction phase takes a few seconds at most, even if the optimiza-
tions are enabled. Since the internal data structures of the solver have already
been freed at that point, the peak memory consumption does not occur during
Skolem function computation, but during the solution process.

In Fig. 2, we compare the effectiveness of optimizing the Skolem functions by
don’t-care minimization and rewriting. We ran HQS on the satisfiable instances
with five different configurations: (1) without any optimization of the Skolem
functions (besides taking the smaller one of φk−1[1/y∗] and ¬φk−1[0/y∗] for
eliminated existential variables, cf. Remark 2); (2) applying ABC to the obtained
Skolem functions; (3) using interpolation according to Lemma2; and (4) using
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Fig. 1. Influence of data collection on the computation time (left) and memory con-
sumption with and without computation of Skolem functions (right)
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Fig. 2. The sizes (number of AND nodes) in the Skolem functions’ AIG representations
with different optimizations enabled. Note that the axes are logarithmically scaled.

both interpolation and ABC. The diagrams show the values for all (roughly)
722 instances for which we were able to compute Skolem functions.
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Fig. 3. Comparing DepQBF and HQS regard-
ing the size of the computed Skolem functions

We can observe that both inter-
polation (first row, left) and ABC
(first row, mid) in isolation have,
on average, a positive effect on the
sizes of the Skolem functions. Nev-
ertheless, since we perform don’t-
care optimization using interpola-
tion for each eliminated existential
variable individually, it may in a
few cases increase the joint size of
all Skolem functions, which share
some of the AIG nodes. In con-
trast, ABC never increases the size,
because it performs optimization
globally for the shared AIGs. The
left diagram in the second row compares the effectiveness of ABC and interpo-
lation. While they are similarly effective in many cases, there are instances for
which ABC is superior to interpolation and vice versa. Therefore, adding both
optimizations often leads to a further decrease in size (second row, mid and
right).

Because QBFs are a special case of DQBFs, we can use HQS to compute
Skolem functions for satisfied QBFs. In Fig. 3, we compare the sizes of the Skolem
functions generated by HQS with those generated by the state-of-the-art QBF
solver DepQBF 5.0 [28,29] for a set of satisfiable QBF instances from the QBF
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Gallery 20135 and from partial equivalence checking [37] (with a single black
box). Since HQS (and in particular its preprocessor) is not optimized for solving
QBF instances, we abstain from a detailed comparison of the running times of
HQS and DepQBF. DepQBF is often (but not always) faster than HQS. In
a few cases, the generation of Skolem functions with DepQBF failed because
the necessary resolution proof became too large (we aborted DepQBF when the
size of the dumped resolution proof exceeded 20 GB).

Figure 3 shows the sizes of the Skolem functions computed by DepQBF and
by HQS (with interpolation and ABC). To enable a fair comparison, we also
applied ABC with the same commands to the Skolem functions generated using
DepQBF. We can observe that HQS’ Skolem functions are in most cases smaller
(often significantly) than those obtained from DepQBF.

In summary, we can conclude that the proposed method allows the computa-
tion of Skolem function for satisfied DQBFs with very little overhead regarding
computation time and memory consumption. Applying interpolation and ABC
to decrease the size of the Skolem functions has in general a positive effect.
Regarding the sizes of the computed Skolem functions, HQS is at least compa-
rable to the QBF solver DepQBF on small to medium size QBF instances.

6 Conclusion

We have shown how Skolem functions can be computed for satisfiable DQBFs.
They play a crucial role in many applications from implementations of missing
circuit parts or controllers to winning strategies in games. We have shown how
don’t-care minimization can help reduce the size of the Skolem functions. In a
series of experiments we demonstrated that the computation of Skolem functions
is not only possible in theory but also feasible in practice: both the overhead
during the solution process and the time for extracting the functions from the
collected data are small.

An open problem is the certification of unsatisfiability. For QBFs this can
be done by negating the formula and then computing Skolem functions (which
are here called Herbrand functions). This is not possible for DQBFs [2] because
DQBFs are not closed under negation.6 Finding ways to certify the unsatisfia-
bility of a DQBF is an important task for future work.
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Abstract. Signal Temporal Logic (STL) is a formalism for reasoning
about temporal properties of continuous-time traces of hybrid systems.
Previous work on this subject mostly focuses on robust satisfaction of
an STL formula for a particular trace. In contrast, we present a method
solving the problem of formally verifying an STL formula for continu-
ous and hybrid system models, which exhibit uncountably many traces.
We consider an abstraction of a model as an evolution of reachable sets.
Through leveraging the representation of the abstraction, the continuous-
time verification problem is reduced to a discrete-time problem. For the
given abstraction, the reduction to discrete-time and our decision pro-
cedure are sound and complete for finitely represented reach sequences
and sampled time STL formulas. Our method does not rely on a special
representation of reachable sets and thus any reachability analysis tool
can be used to generate the reachable sets. The benefit of the method is
illustrated on an example from the context of automated driving.

Keywords: Model checking · Reachability analysis · Hybrid systems ·
Temporal logic · Continuous time

1 Introduction

In recent years, the functionality and complexity of products, production
processes, and software has been increasing. Furthermore, the interaction
between the physical parts of a system (mechanics, thermodynamics, sensors,
actuators, and others) and its computational elements is becoming tighter and is
organized over large networks, which has resulted in so-called cyber-physical sys-
tems [14,21]. Due to their advanced capabilities, newly developed cyber-physical
systems often fulfill safety-critical tasks that were previously only entrusted to
humans; see, e. g., automated road vehicles, surgical robots, automatic opera-
tion of smart grids, and collaborative human-robot manufacturing [18,22]. The
aforementioned trends drastically increase the demand for formal verification
methods of hybrid (mixed discrete/continuous) systems.

Hybrid systems contain the interplay of discrete and continuous dynamics
and therefore are inherently difficult to verify formally [18,23]. As a result, most
hybrid system researchers have focused on solving reach-problems and reach-
avoid-problems: for all possible initial states and all possible disturbances, the
c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 412–427, 2016.
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system has to avoid forbidden regions while reaching a goal set [6,13]. There are
several tools for reach-avoid problems, which compute sets of reachable states
over time and check for intersection of these sets with forbidden regions [2,12].
More complicated formal specifications based on temporal logics, such as compu-
tation tree logic (CTL), linear temporal logic (LTL), or μ-calculus, have mostly
been applied to the verification of purely discrete systems or timed automata
[4,7,9]. For hybrid systems, a continuous-time and real-valued version of such
temporal logics, called Signal Temporal Logic (STL), has been proposed as a
formal specification language [16]. However, STL has mainly not been used for
verification of hybrid systems, but for checking single traces only, e. g., for run-
time monitoring and for test generation [1,15,17,26,27]. Therefore, there is a
demand for formal verification techniques which are able to verify a temporal
(STL) property for all (infinitely many) possible traces of a hybrid system.

In this work, we propose a new idea to verify specifications in STL for a
hybrid system. Given a hybrid system S and an STL property ϕ, we propose
the following steps to formally verify ϕ on S, as shown in Fig. 1:

1. A new reachset temporal logic (RTL) is defined (Sect. 3). The semantics of
RTL is directly defined on the reach sequence, which corresponds to an infinite
set of traces. A reach sequence is a function mapping time to the set of
states reachable from a set of initial states and uncertain inputs. Therefore,
with RTL, we are able to reason about infinitely many traces with a finite
representation, in contrast to STL, which cannot be used to directly verify
an infinite set of traces by simply evaluating the STL formula.

2. A transformation from sampled time STL to RTL is defined (Sect. 4). We
prove that this transformation is sound and complete with respect to finitely
represented reach sequences and give a sound transformation from general
STL to sampled time STL. Therefore, we are able to translate the STL verifi-
cation problem on traces to an RTL verification problem on reach sequences.

3. A model checking algorithm is introduced to formally verify an STL property
on a reach sequence using the transformation from STL to RTL and the
semantics of RTL (Sect. 5).

Our theory does not rely on a special representation of reach sequences. Since
there exist many reachability analysis tools, such as Cora [2], SpaceEx [12],
and C2E2 [10], which can compute reach sequences, our approach is broadly
applicable. We show the benefits of our model checking method on an example
from the domain of automated driving (Sect. 6).

Hybrid
System

Reachability
Analysis

Reach
Sequence

Model
Checking

Verification
Result

Signal Tem-
poral Logic

Formula

Transfor-
mation

Reachset
Temp. Logic

Formula

Fig. 1. Structure of the proposed model checking method. Bold parts are novel.
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Note that we are working with overapproximations of exact reach sequences,
because reachability analysis for hybrid systems is undecidable in general [20].
There are already some model checking techniques for temporal properties
related to LTL: in order to be able to verify an uncountable set of possible traces,
one can translate a temporal logic called Hybrid LTL (HyLTL) to a (Büchi) mon-
itor automaton [8]. After parallel composition of the monitor automaton with
the hybrid system to be verified, the verification problem reduces to finding a
loop in the reach sequence. A problem of the HyLTL model checking approach
is that to the best of our knowledge, there is no proof for the soundness of the
verification result for the proposed method using overapproximative methods
and bounded time horizons, which are common for reachability analysis tools
due to undecidability. Another drawback of the HyLTL approach is that parallel
composition drastically complicates the hybrid automaton and the reachability
analysis so that the composition typically becomes so large that it is infeasible to
analyze. With our method, temporal properties can be verified without changing
the hybrid automaton, see the example in Sect. 6.

There are several works that also present approaches for model checking
of hybrid systems that restrict to discrete time traces [11,24]. However, these
works typically give no formal guarantees for the satisfaction on the continuous
time traces, either because they sample the time, or one has to make additional
assumptions about the behavior between the sampling points. In contrast, we
formally reason about the continuous time traces.

2 Preliminaries

Linked to our model checking method are hybrid systems and Signal Temporal
Logic, which are shortly introduced in the following.

2.1 Hybrid Systems

Our methods are defined on a sequence of reachable sets of states and thus are
invariant to the modeling formalism that describes the evolution of a hybrid sys-
tem. However, in order to describe how hybrid traces and reach sequences are
generated, without loss of generality we use hybrid automata as a well-established
modeling formalism [19]. In the following, we introduce hybrid automata in a
non-formal way. Because the dynamics of real systems are typically not known
exactly, we propose including non-deterministic behavior. Components of a
hybrid automaton are visualized in Fig. 2 together with a possible reach sequence.
Informally, the semantics of a hybrid automaton is as follows: The combined dis-
crete and continuous trace ξ(t) = (v(t), x(t)) starts from (v0, x0) and x(t) ∈ R

n

changes according to a differential inclusion ẋ(t) ∈ H(v(t), x(t), u(t)) [25], where
H(v, x, u) is a set of values based on the discrete state v(t) ∈ {v1, v2, . . . , vp}, the
continuous state x(t), and the input u(t) ∈ R

m, such that the differential inclu-
sion models many possible solutions as opposed to ordinary differential equa-
tions. If the continuous state is within a guard set, the corresponding transition
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Fig. 2. Illustration of the evolution of a reachable set of a hybrid automaton.

to a new discrete state can be taken. It has to be taken if the state would leave
an invariant, which is the region in which the differential inclusion of the current
discrete state is defined. After the discrete transition is taken (in zero time), the
continuous state is updated according to a jump function, which models possi-
ble instantaneous changes of the continuous state. For ease of presentation, we
assume that a hybrid automaton is non-Zeno and non-blocking.

A trace ξ : R≥0 → R
n of the hybrid automaton S is of the form

ξ(t) =

⎧
⎨

⎩

ξ0(t), for t ∈ [0, t1)
ξ1(t), for t ∈ [t1, t2)
. . .

where ξi : [ti, ti+1) → R
n are the evolutions between discrete transitions. The

set of all traces of a system S is denoted by Traces(S). In contrast to discrete
systems, one cannot generate a tree of possible traces for a system with con-
tinuous state variables, since its number of traces is uncountably large. Thus,
algorithms for computing reach sequences of systems involving continuous states
do not preserve traces anymore, but only store the set of values for points in
time and time intervals. A function R : R≥0 → P(Rn) mapping to the power set
P(Rn) is called a reach sequence of S, iff

∀t ∈ R≥0 : {ξ(t) | ξ ∈ Traces(S)} ⊆ R(t) (1)

holds. The reach sequence is called exact, iff (1) holds with ‘⊆’ replaced by ‘=’.
An evaluation R(t) for one point in time t is called a reachable set. Typically,
other papers use the terminology reachable set only. However, in our work the
distinction between reach sequence and reachable set is important for rigorous
formulation and understandability. Due to undecidability, exact reachable sets
typically cannot be obtained for hybrid systems. The set of traces corresponding
to R is defined as

C(R) = {ξ | ∀t ≥ 0 : ξ(t) ∈ R(t)}
and contains the set of traces Traces(S) and potentially additional traces (even
if R is exact), as visualized in Fig. 3.
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Fig. 3. The reach sequence of a set of traces has potentially additional traces.

Remark 1. To reduce this conservatism, reachable sets can be split resulting in
a tree structure of reach sequence segments. For instance, Cora [2] uses reach-
able set splitting for accuracy reasons resulting in multiple branches with reach
sequences that progress independently. Every path of the tree from the root to a
leaf represents one reach sequence. While we focus on one reach sequence in this
paper, the results can also be applied to the more general case by considering
all reach sequences that can be generated from the tree.

Reachability analysis tools such as Cora can compute (overapproximative)
reachable sets Ri for points at time ti and reachable sets Ri for time intervals
[ti, ti+1]. We call reachable sequences of the form

R = (t0, R0) ((t0, t1), R0) (t1, R1) ((t1, t2), R1) . . . ((tm, tm+1), Rm), (2)

finitely represented reach sequences, where Ri and Ri are sets of states, t0 = 0,
tm+1 = ∞, and define

R(t) = Ri, iff t = ti and R(t) = Ri, iff t ∈ (ti, ti+1). (3)

The considered time structure with alternating points and open intervals is sim-
ilar to the one for timed automata, see [5].

2.2 Signal Temporal Logic (STL)

Values of traces are real numbers that vary over time. Hence, STL is a temporal
logic to describe properties of continuous-timed and real-valued traces. We briefly
introduce STL following Maler et al. [16]. An STL formula consists of atomic
predicates (such as x > 3), which are composed using logical and temporal
operators. The syntax of an STL formula over a finite set of atomic predicates
p ∈ AP is

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U[a,b]ϕ2.

The trace satisfaction semantics of an STL formula ϕ for a trace ξ is defined
recursively on ϕ:

ξ |=T p ⇐⇒ πp(ξ(0)) = true

ξ |=T ¬ϕ ⇐⇒ ¬(ξ |=T ϕ)
ξ |=T ϕ1 ∨ ϕ2 ⇐⇒ (ξ |=T ϕ1) ∨ (ξ |=T ϕ2)
ξ |=T ϕ1 U[a,b]ϕ2 ⇐⇒ ∃t ∈ [a, b] : 〈ξ〉t |=T ϕ2 and ∀t′ ∈ [0, t) : 〈ξ〉t′ |=T ϕ1
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using a predicate evaluation function πp and the suffix notation 〈ξ〉a(t) = ξ(t+a),
which shifts the trace in time. For instance, the until -operator p U[a,b]q states
that p has to hold for all times until q holds for one point in time. Other common
temporal operators can be derived from these operators, such as the finally-
operator F[a,b]ϕ := true U[a,b]ϕ and the globally-operator G[a,b]ϕ := ¬F[a,b]¬ϕ.
For brevity of notation, we also introduce the continuous next-operator

ξ |=T Xaϕ ⇔ 〈ξ〉a |=T ϕ ⇔ ξ |=T true U[a,a]ϕ.

An STL formula in which no temporal operators are present is called a non-
temporal formula in the following. Inspired by LTL, we define the statisfaction
of an STL formula on a set of traces M as

M |=T ϕ ⇔ ∀ξ ∈ M : ξ |=T ϕ.

Formally, the STL verification task for a hybrid system S is to check whether
Traces(S) |=T ϕ holds. Since a verification method has to reason about uncount-
ably many traces, the problem is often replaced by falsification in practice,
searching for a trace ξ with ξ �|=T ϕ. However, falsification cannot prove that ϕ
holds. Note that Traces(S) �|=T ϕ does not imply Traces(S) |=T ¬ϕ, because of
the ∀-quantifier over the traces.

3 Reachset Temporal Logic (RTL)

Evaluation of an STL formula cannot be directly done for an infinite set of traces.
Therefore, we introduce a new temporal logic that is defined on reach sequences
instead of traces (such as STL), which we refer to as Reachset Temporal Logic
(RTL). By transforming an STL formula into an RTL formula, we can leverage
RTL for model checking the STL formula on a hybrid system, as visualized
in Fig. 1. The syntax and semantics of RTL are defined so that STL formulas
can be transferred and expressed on reach sequences and have therefore some
commonalities with STL, but also important differences.

Definition 1 (RTL Syntax). An RTL formula has the syntax

ψ := A� | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | Xaψ | ψ1 U[a,b] ψ2 | ψ1 R[a,b] ψ2

where � is a propositional formula � := p | �1 ∨ �2 | ¬� over a finite set AP of
predicates p ∈ AP.

Note that since we want to work with overapproximations of exact reachable
sets, we have the negation operator only for non-temporal formulas, which is the
reason for the syntactic split into ψ and �.

Definition 2 (RTL Semantics). For a propositional formula � and a state r
the semantics is

r |=P p ⇔ πp(r)
r |=P ¬� ⇔ r �|=P �

r |=P �1 ∨ �2 ⇔ (r |=P �1) ∨ (r |=P �2) .
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For a reach sequence R and a formula ψ, the semantics is defined as

R |=R A� ⇔ ∀r ∈ R(0) : r |=P � (4)
R |=R ψ1 ∧ ψ2 ⇔ (R |=R ψ1) ∧ (R |=R ψ2) (5)
R |=R ψ1 ∨ ψ2 ⇔ (R |=R ψ1) ∨ (R |=R ψ2) (6)
R |=R Xaψ ⇔ 〈R〉a |=R ψ (7)
R |=R ψ1 U[a,b]ψ2 ⇔ ∃t ∈ [a, b] : (〈R〉t |=R ψ2) ∧ (∀i ∈ [0, t) : 〈R〉i |=R ψ1)

(8)

R |=R ψ1R[a,b]ψ2 ⇔ ∀t ∈ [a, b] : (〈R〉t |=R ψ2) ∨ (∃i ∈ [0, t) : 〈R〉i |=R ψ1)
(9)

where 〈R〉a(t) := R(t+a) is the shift operator and a ∈ R≥0, b ∈ R≥0 with a ≤ b.

Two RTL formulas ψ1, ψ2 are equivalent, denoted as ψ1 ≡ ψ2, iff the satis-
faction is the same for all possible reach sequences. The operators F and G are
defined similarly to STL:

F[a,b]ψ := true U[a,b]ψ (finally) and G[a,b]ψ := falseR[a,b]ψ (globally)

To give an example, we consider the formula F[0,1]A�. A reach sequence R has
to satisfy that � holds for all states in one R(t) between time 0 and 1. Expressed
on the set of traces C(R) corresponding to R, this implies that all traces satisfy
� for one common point in time, compared to the requirement F[0,1]� for all
traces:

R |=R F[0,1]A� ⇔ ∃t ∈ [0, 1] : C(R) |=T F[t,t]� ⇒ C(R) |=T F[0,1]�.

Since a set of traces satisfies an STL formula if each trace satisfies the formula,
the traces are “checked” independently of each other, i.e. it is not possible to
reason about a variable point t ∈ [a, b] in time at which something holds for all
traces in a set. Therefore, this cannot be expressed by STL. In contrast, RTL is
able to express common satisfaction of predicates.

4 Transformation from STL to RTL

Differences of STL and RTL described in the previous section have some impor-
tant implications for the transformation between these temporal logics. In this
section we present a transformation Υ mapping an STL formula to an RTL for-
mula. We first give some properties of a sound and complete transformation and
then present a transformation for sampled time formulas and finitely represented
reach sequences (Sect. 4.1). We further show that the results can be extended
by transforming general STL formulas to sampled time formulas (Sect. 4.2). The
methods will be used later to model check STL formulas, as shown in Fig. 1.

With a mapping Υ from STL to RTL we are able to transfer the verification
task on the traces of a reach sequence C(R) |=T ϕ into a reach sequence verifica-
tion task R |=R Υ (ϕ). Since we do not want to lose expressiveness, we demand
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from the transformation Υ that

R |=R Υ (ϕ) ⇒ C(R) |=T ϕ and C(R) |=T ϕ ⇒ R |=R Υ (ϕ)

holds, which we call soundness and completeness, respectively, for the reach
sequence abstraction. If soundness and completeness is given for Υ , the seman-
tical domain can be changed without changing the verification result. The fol-
lowing lemma gives some properties of a sound and complete Υ .

Lemma 1. Let the STL formulas ϕi and the non-temporal formula � be given.
A sound and complete transformation Υ has the following properties:

Υ (�) ≡ A� non-temporal transformation (10)
Υ (ϕ1 ∧ ϕ2) ≡ Υ (ϕ1) ∧ Υ (ϕ2) ∧ − distributivity. (11)

Furthermore, the ∨-distributivity

Υ (ϕ1 ∨ ϕ2) ≡ Υ (ϕ1) ∨ Υ (ϕ2) ∨ − distributivity (12)

does also hold, if tsupp(ϕ1) ∩ tsupp(ϕ2) = ∅ for

tsupp(ϕ) := {t | ∃ξ, ξ′ : R → R
n, (ξ |=T ϕ)∧(ξ′ �|=T ϕ)∧(∀t′ �= t : ξ(t′) = ξ′(t′))},

which are the points in time where a change in the trace can affect whether ϕ is
true or not.

Proof. For non-temporal properties �, (10) follows from

C(R) |=T � ⇔ ∀ξ ∈ C(R) : ξ |=T � ⇔ ∀r ∈ R(0) : r |=P � ⇔ R |=R A�.

From soundness and completeness of Υ and the RTL semantics follows

R |=R Υ (ϕ1 ∧ ϕ2) ⇔ C(R) |=T ϕ1 ∧ ϕ2 (13)
C(R) |=T ϕ1 ∧ ϕ2 ⇔ ∀ξ ∈ C(R) : ξ |=T ϕ1 ∧ ϕ2 (14)

⇔ ∀ξ ∈ C(R) : ξ |=T ϕ1 ∧ ∀ξ ∈ C(R) : ξ |=T ϕ2

C(R) |=T ϕ1 ∧ C(R) |=T ϕ2 ⇔ R |=R Υ (ϕ1) ∧ R |=R Υ (ϕ2) (15)
⇔ R |=R Υ (ϕ1) ∧ Υ (ϕ2)

which proves (11). The equivalences (13) and (15) hold also for ∨. Let us assume
C(R) : ξ |=T ϕ1 ∨ ϕ2 holds, but not C(R) : ξ |=T ϕ1 ∨ C(R) : ξ |=T ϕ2. Then,
there exist ξ1, ξ2 with ξ1 �|=T ϕ1 and ξ2 �|=T ϕ2. Because of the empty time
support intersection and the special structure of C(R), we can construct ξ with
ξ(t) = ξ1(t) for t ∈ tsupp(ϕ1) and ξ(t) = ξ2(t) otherwise. Since ξ ∈ C(R) and
ξ �|=T ϕ1, ξ �|=T ϕ2, this is a contradiction and therefore (12) holds, because the
other direction can also be easily shown. ��
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Based on the properties from Lemma 1, one can see the subtle differences between
a well-defined complete and a non-complete transformation. Let us consider the
STL formula ϕ := (�0 ∧ X1�1) ∨ X1�0, which could be transformed to ψ :=
(A�0 ∧ X1A�1) ∨ X1A�0 by simply adding the A-operator to the non-temporal
subformulas of the STL formula ϕ. However, if we first rewrite ϕ to the equivalent
formula (�0∨X1�0)∧X1(�0∨�1) and transform it, we get ψ′ := (A�0∨X1A�0)∧
X1A(�0 ∨�1) ≡ (A�0 ∧X1A(�0 ∨�1))∨X1A�0. The formula ψ′ does not force all
the traces to satisfy �1 at time 1, if one trace does not satisfy �0 at time 1. Since
ψ′ also implies ϕ, it is a sound transformation of ϕ which is less restrictive than ψ.
As one can see from this example, a sound and complete transformation cannot
simply be constructed by structural induction over the parts of an STL formula,
even if no nested temporal operators are used. Different parts of a formula are
able to interact with each other if they are composed with the ∨-operator. In the
following, we build upon Lemma1 and give a sound and complete transformation
function for sampled time formulas.

4.1 Sound and Complete Transformation for Sampled Time
Formulas

Operators can appear arbitrarily nested in STL formulas. Given a fixed c > 0,
we call the subclass of STL which restricts formulas to

ϕ := � | ¬ϕ | ϕ1 ∨ ϕ2 | Xcϕ | F(0,c)� | G(0,c)�, � := p | ¬� | �1 ∨ �2

sampled time STL with timestep c. For example p∨F(0,c)p∨Xc

(
p ∨ F(0,c)p ∨ Xcp

)

can be seen as a sampled time version of the STL formula F[0,2c]p. Since standard
equivalences hold on STL formulas, such as ¬Xcϕ ≡ Xc¬ϕ, ¬F(0,c)ϕ ≡ G(0,c)¬ϕ,
and Xc (ϕ1 ∨ ϕ2) ≡ Xcϕ1 ∨ Xcϕ2, each sampled time formula has an equivalent
sampled time formula in conjunctive normal form

∧
i

∨
j X j

c (ϕij ∨ �ij) with ϕij

of the form
∨

k F(0,c)�k ∨ ∨
l G(0,c)�l, non-temporal formulas �ij , and the X -

operator in series X j
c := Xj·c. Based on the conjunctive normal form, we are

able to introduce a sound and complete transformation Υ considering finitely
represented reach sequences and given that c divides all time intervals of the
reach sequence. Since finitely represented reach sequences can be produced by
Cora [2] and SpaceEx [12] for instance, this is of practical relevance.

Lemma 2. Let a sampled time formula be given in conjunctive normal form.
Then, the transformation Υ from STL to RTL defined via

Υ

⎛

⎝
∧

i

∨

j

X j
c (ϕij ∨ �ij)

⎞

⎠ :=
∧

i

∨

j

X j
c (Υ (ϕij) ∨ A�ij) (16)

Υ

(
∨

k∈K

F(0,c)�k ∨
∨

l∈L

G(0,c)�l

)

:= X c
2

(

A�′ ∨
∨

l∈L

A (�l ∨ �′)

)

, (17)

with �′ :=
∨

k∈K

�k
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is sound and complete for finitely represented reach sequences R = (t0, R0)
((t0, t1), R0) (t1, R1) . . . ((tm, tm+1), Rm), which are c-divisible, where c-divi-
sibility holds if and only if ti ∈ Nc := {0, c, 2c, . . .} holds for all i.

Proof. Soundness and completeness can be proven by structural induction. Since
we define the transformation such that Υ (ϕ1 ∧ ϕ2) ≡ Υ (ϕ1) ∧ Υ (ϕ) holds, it can
be shown similarly as in Lemma 1 that it is sufficient to show soundness and
completeness for

∨
j X j

c (ϕij ∨ �ij), which works similarly, because different time
branches have different time supports tsupp(X j

c (ϕij ∨�ij)) ⊆ [j, j+1). Therefore
it is sufficient to show soundness and completeness for (17). For brevity reasons,
we do not give the proof for general formulas, but prove that the two terms

C(R) |=T G(0,c)�1 ∨ G(0,c)�2 ∨ F(0,c)�3 (18)
R |=R X c

2
A(�1 ∨ �3) ∨ X c

2
A(�2 ∨ �3) (19)

are equivalent. Let us assume that (19) holds and therefore without loss of
generality R |=R X c

2
A(�1 ∨ �3) holds. Since R is a finitely represented reach

sequence which changes values only at points in time divisible by c, also
R |=R G(0,c)A(�1 ∨ �3) and therefore C(R) |=T G(0,c)(�1 ∨ �3) holds, which
implies (18). On the other hand, let us assume (19) does not hold. Therefore

R �|=R X c
2
A(�1 ∨ �3) ∧ R �|=R X c

2
A(�2 ∨ �3)

⇒∃r1 ∈ R
( c

2

)
: r1 |=p ¬�1 ∧ ¬�3 ∧ ∃r2 ∈ R

( c

2

)
: r2 |=p ¬�2 ∧ ¬�3

holds. Hence, Eq. (18) does not hold, because the trace

ξ(t) :=

⎧
⎨

⎩

r1, t ∈ (
0, c

2

)

r2, t ∈ [
c
2 , c

)

any r ∈ R(t), otherwise

is contained in C(R) but does not satisfy the formula in (18). ��
Lemma 2 proves that the RTL formula ψ := (A�0 ∧ X1A(�0 ∨ �1)) ∨ X1A�0 is a
sound and complete transformation of the formula (�0 ∧X1�1)∨X1�0 considered
in the previous section. As we have seen above, the formula F[0,2c]p has an
equivalent sampled time notation. Therefore, it can be transformed to ψ′ :=
Ap ∨ X c

2
Ap ∨ X 2

c
2
Ap ∨ X 3

c
2
Ap ∨ X 4

c
2
Ap using Lemma 2. Since we do not have any

temporal operators but the shift operator in ψ and ψ′, the formulas can easily be
checked on a reach sequence. This is the basis for our model checking approach
in Sect. 5. Note that c

2 can be seen as a compatible sample time that jumps from
one point in time kc to the next open interval (kc, (k + 1)c) or from an open
interval (kc, (k + 1)c) to the next point in time (k + 1)c respectively, as shown
in Fig. 4.
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0 c 2c(0, c) (c, 2c)

. . .time

X c
2

X c
2

X c
2

X c
2

Fig. 4. The next operator X c
2

points to the next interval or point.

4.2 Transformation of General STL to Sampled Time STL

Rewriting a general STL formula as an sampled time formula enables us to
use the results of the previous section for general STL formulas. The rewriting
is sound and therefore, we are able to reason about the satisfaction of an STL
formula on reach sequences. The main idea is to leverage the finite representation
of a given STL formula ϕ for rewriting and use rules of the form ξ |=T ϕ ⇐ ξ |=T

ϕ′ to rewrite ϕ to a sampled time version ϕ′ in a sound manner. If we have such
rules, they can also be applied to C(R).

Lemma 3. Let ϕ be an STL formula which can be written as f(ϕ1, . . . , ϕn),
where f is a function composing ϕi by ∧, ∨, and Xc. Let ξ |=T ϕi ⇐ ξ |=T ϕ′

i

for all i and ξ. Then
C(R) |=T ϕ ⇐ C(R) |=T ϕ′

holds with ϕ′ = f(ϕ′
1, . . . , ϕ

′
n).

Proof. Let us assume ξ |=T ϕ′
1 ∧ ϕ′

2, which is equivalent to ξ |=T ϕ′
1 ∧ ξ |=T ϕ′

2,
holds for all ξ. From the rewriting rules it follows that ξ |=T ϕ1 ∧ ξ |=T ϕ2 and
therefore ξ |=T ϕ1 ∧ ϕ2 holds also. The proof follows from

C(R) |=T ϕ1 ∧ ϕ2 ⇔ ∀ξ ∈ C(R) : ξ |=T ϕ1 ∧ ϕ2

⇐ ∀ξ ∈ C(R) : ξ |=T ϕ′
1 ∧ ϕ′

2 ⇔ C(R) |=T ϕ′
1 ∧ ϕ′

2

by structural induction over ∧, ∨, and Xc. ��
Finally, we need a set of rewriting rules that are sufficient to rewrite general STL
formulas as sampled time ones.

Lemma 4. Let an STL formula ϕ be given, which is c-divisible, where c-divi-
sibility holds if c divides all bounds of temporal operators of ϕ. Without loss
of generality, we assume that ϕ is in negation normal form. Hence, ϕ can be
written as f(ϕ1, . . . , ϕn), where f is a function composing ϕi by ∧, ∨, and Xc

and the outmost operator of each ϕi is a temporal operator or ϕi is non-temporal.
Then, for any temporal ϕi there is a rewriting in Table 1 or one of the following
equivalences using subformulas ϕ̂i

ϕ̂1 U[0,0]ϕ̂2 ≡ ϕ̂2, ϕ̂1 R[0,0]ϕ̂2 ≡ ϕ̂2, FIX1ϕ̂1 ≡ X1FI ϕ̂1, GIX1ϕ̂1 ≡ X1GI ϕ̂1

such that ϕ can be rewritten to rw(ϕ) = f(ϕ′
1, . . . , ϕ

′
n) in a sound manner.

The formula ϕ can be rewritten to a sampled time version with timestep c by
iteratively using the rewriting ϕ �→ rw(ϕ) �→ rw2(ϕ) �→ . . . until no rewriting
rule matches anymore.
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Table 1. For all ξ the formula ξ |=T ϕi ⇐ ξ |=T ϕ′
i holds for each pair ϕi, ϕ

′
i in the

table. For readability reasons, we use I = (0, c) and assume c = 1.

ϕi ϕ′
i

ϕ1 U[i,j]ϕ2 ϕ1 ∧ GIϕ1 ∧ X1

(
ϕ1 U[i−1,j−1]ϕ2

)

ϕ1 U[0,j]ϕ2 ϕ2 ∨ (ϕ1 ∧ GIϕ1 ∧ (FIϕ2 ∨ X1

(
ϕ1 U[0,j−1]ϕ2

)))

ϕ1 R[i,j]ϕ2 ϕ1 ∨ FIϕ1 ∨ X1

(
ϕ1 R[i−1,j−1]ϕ2

)

ϕ1 R[0,j]ϕ2 ϕ2 ∧ (ϕ1 ∨ (GIϕ2 ∧ (FIϕ1 ∨ X1

(
ϕ1 R[0,j−1]ϕ2

))))

GI(ϕ1 ∧ ϕ2) GIϕ1 ∧ GIϕ2

GI(ϕ1 ∨ ϕ2) GIϕ1 ∨ GIϕ2

FI(ϕ1 ∧ ϕ2) (GIϕ1 ∧ FIϕ2) ∨ (FIϕ1 ∧ GIϕ2)

FI(ϕ1 ∨ ϕ2) FIϕ1 ∨ FIϕ2

FI(ϕ1 U[i,j]ϕ2) GIϕ1 ∧ X1

(
ϕ1 ∧ GIϕ1 ∧ FI(ϕ1 U[i−1,j−1]ϕ2)

)

FI(ϕ1 U[0,j]ϕ2) FIϕ2 ∨ (GIϕ1 ∧ X1

(
ϕ2 ∨ (ϕ1 ∧ GIϕ1 ∧ FI(ϕ1 U[0,j−1]ϕ2)

)))

GI(ϕ1 U[i,j]ϕ2) GIϕ1 ∧ X1

(
ϕ1 ∧ GIϕ1 ∧ GI(ϕ1 U[i−1,j−1]ϕ2)

)

GI(ϕ1 U[0,j]ϕ2) GIϕ2 ∨ (GIϕ1 ∧ X1

(
ϕ2 ∨ (ϕ1 ∧ GIϕ1 ∧ GI(ϕ1 U[0,j−1]ϕ2)

)))

FI(ϕ1 R[i,j]ϕ2) FIϕ1 ∨ X1

(
ϕ1 ∨ FIϕ1 ∨ FI(ϕ1 R[i−1,j−1]ϕ2)

)

FI(ϕ1 R[0,j]ϕ2) FI(ϕ1 ∧ ϕ2) ∨ (GIϕ2 ∧ X1

(
ϕ2 ∧ (ϕ1 ∨ (GIϕ2 ∧ FI ϕ1 R[0,j−1]ϕ2

))))

GI(ϕ1 R[i,j]ϕ2) GIϕ1 ∨ X1

(
ϕ1 ∨ GI(ϕ1 R[i−1,j−1]ϕ2)

)

GI(ϕ1 R[0,j]ϕ2) GI(ϕ2) ∧ (GIϕ1 ∨ X1

(
ϕ2 ∧ (ϕ1 ∨ (GIϕ2 ∧ GI(ϕ1 R[0,j−1]ϕ2)

))))

Proof. Since we assume c-divisibility and negation normal form, each temporal
operator of the subformula is a U-operator or an R-operator and one of the
first 4 rewriting rules of Table 1 can be applied. After the first rewriting step,
there are potentially formulas nested in GI or FI . For every possible operator
there is exactly one rewriting rule. With Lemma 3, it is sufficient to prove the
soundness of the rewriting rules in Table 1. Let us consider c = 1 and the formula
ϕ1 U[0,j]ϕ2, which is true if ϕ2 holds, ∃t ∈ (0, 1) : G[0,t)ϕ1 ∧ Xtϕ2 holds, or
G[0,1)ϕ1 ∧ X1(ϕ1 U[0,j−1]ϕ2) holds. By overapproximating ∃t ∈ (0, 1) : G[0,t)ϕ1 ∧
Xtϕ2 with G[0,1)ϕ1∧F(0,1)ϕ2 we obtain the rewritten formula. The other formulas
can be proven similarly. ��
If needed, temporal formula such as p U[0,0.9]q can als be rewritten to p U[0,1]q
in a sound manner, if c = 1 should be enforced. However, this is typically not
needed since one can choose alternatives such as c = 0.9 or c = 0.1 which also
depends on the reach sequence. As an example, the formula ϕ := p U[0,2]q with
atomic propositions p and q can be rewritten as follows:

ϕ → ϕ2 ∨ (
ϕ1 ∧ GIϕ1 ∧ (FIϕ2 ∨ X1

(
ϕ1 U[0,1]ϕ2

)))

→ ϕ2 ∨ (ϕ1 ∧ GIϕ1 ∧ (FIϕ2 ∨ X1 (ϕ2 ∨ (ϕ1 ∧ GIϕ1 ∧ (FIϕ2 ∨ X1ϕ2))))) .

Now that we have solved the problem of transforming an STL formula to
an RTL formula defined on the reach sequence, we present a model checking
algorithm in the next section.
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5 STL Model Checking

Our model checking approach for STL formulas is presented in the following.
The foundation of the approach follows from Lemmas 2 to 4 and is summarized
in the following theorem.

Theorem 1. Let ϕ be an STL formula, R be a reach sequence of a hybrid
automaton S, and R and ϕ be c-divisible. The formula ϕ can be transformed
to an RTL formula ψ =

∧
i

∨
j X j

c
2

∨
k A�ijk with non-temporal properties �ijk,

where
C(R) |=T ϕ ⇐ R |=R

∧

i

∨

j

X j
c
2

∨

k

A�ijk

holds and therefore, the transformation is sound. If ϕ is equivalent to a sampled
time STL formula, the transformation is complete. Hence, R |=R ψ implies
Traces(S) |=T ϕ, which proves ϕ for the hybrid automaton S.

It remains to show how
∧

i

∨
j X j

c
2

∨
k A�ijk can be evaluated on a reach

sequence R. This can be reduced to the problem R |=R X j
c
2
A�ijk. The satisfac-

tion result is obtained by evaluating all such subformulas and then computing the
Boolean value of the remaining logical formula.

Our RTL syntax and semantics, as well as the transformation from STL to
RTL, are independent of the representation of the reachable sets R(t) and the
predicates used. However, to implement a model checking algorithm, we have to
define a representation and a set of predicates we rely on. Therefore, we assume
that the reachable sets are represented by (sets of) polytopes as in SpaceEx [12]
and Cora [2]. Given a set of vectors c1, . . . , ck and values d1, . . . , dk, a polytope is
defined as the set poly(c1, . . . , ck, d1, . . . , dk) =

⋂k
i=1{x ∈ R

n | cTi x ≤ di}, which
is the intersection of halfspaces. We consider the set AP of atomic predicates
of the form aTx ∼ b, where a ∈ R

n, b ∈ R, and ∼ ∈ {<,≤, >,≥}, which are
also halfspace restrictions. For instance, the evaluation of A(x ≤ 5) for a reach
sequence is visualized in Fig. 5. Note that the formula is only satisfied if all states
x satisfy x ≤ 5.

Given a formula of the type A�, the logical part � can be transformed into
disjunctive normal form � =

∨
i

∧
j(a

T
ijx ∼ bij) with ∼ ∈ {<,≤}. Because

∧
j(a

T
ijx ∼ bij) corresponds to the polytope region poly i = poly(ai1, . . . , bi1, . . .),

the check R |=R XtA� can be performed by the polytope inclusion check
R(t) ⊆ ⋃

poly i, which can be implemented using standard polytope libraries.

time

state reach sequence

x ≤ 5

true false

Fig. 5. Predicate evaluation for several points in time t: R |=R XtA(x ≤ 5).
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Fig. 6. Automated driving example for a reach sequence.

6 Example

In the following, we provide an example for our model checking method from the
domain of automated driving. For automated driving, it is important to verify
safety properties such as the absence of collisions. While driving, this can be
done by periodically checking that a collision is not possible for a bounded time
of the planned trajectory using the reach sequence [3]. However, there are also
other safety relevant temporal properties which should be verified. Based on the
results in this paper, the verification of these properties can be easily integrated
in the existing verification scheme.

For example, when a vehicle is traversing a crossing, it should not block
the crossing and should maintain a certain velocity until it reaches the other
side. This can be expressed on the traces as an STL property similar to ϕ :=
v ≥ 10 U[0,2]x ≥ 10, where v is the velocity and x is the distance covered. We
use Cora [2] and the vehicle model of Althoff and Dolan [3] to compute the
reachable sequence of the vehicle as visualized in Fig. 6. To verify ϕ with the
reach sequence, we transform ϕ to a sampled time RTL formula. An exemplary
transformation result for ϕ is

Aq∨(A(p∨q)∧X c
2
Ap∧(X c

2
Aq∨X 2

c
2
Aq∨(X 2

c
2
A(p∨q)∧X 3

c
2
Ap∧(X 3

c
2
Aq∨X 4

c
2
Aq))))

for c = 1, p = v ≥ 10, and q = x ≥ 10. In this example, reachability analysis,
which is the basis for verification of both safety and temporal properties, takes
3.8 s. Checking that the resulting reach sequence satisfies the RTL formula takes
only 0.15 additional seconds. With Theorem1 we can conclude that the STL
formula ϕ holds for all possible evolutions of the system.

7 Conclusion

We introduce a model checking technique for STL formulas, which leverages
reachable sets computed by reachability analysis tools. This is done by: (i) Defin-
ing the Reachset Temporal Logic (RTL), whose semantics is defined on reachable
sets instead of traces, on which previous temporal logics are defined (e.g. STL);
(ii) introducing a sound and complete transformation from sampled time STL to
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RTL for finitely represented reach sequences; (iii) introducing a rewriting scheme
for general STL formula to sampled time STL formula; and (iv) introducing a
model checking method for RTL formulas obtained by the transformation. The
approach is especially useful for non-deterministic models that naturally exhibit
uncountably many traces due to necessary abstractions from original dynamics.
Our model checking technique is independent of the way reach sequences are
obtained and represented. Therefore, all reachability analysis tools can bene-
fit from our approach by extending their reasoning from non-temporal (safety)
properties to temporal properties. This is demonstrated by an example from
automated driving, where the online verification of the absence of collisions is
extended to online verification of temporal properties.

Future work could intensify the interconnection of the reachability analysis
and the verification part to develop the method further. Additionally, the seman-
tics of RTL can be extended in the sense of robust semantics as used by Metric
Temporal Logic [11].
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Abstract. Satisfiability modulo theories (SMT) allows the modeling
and solving of constraint problems arising from practical domains by
combining well-engineered and powerful solvers for propositional satis-
fiability with expressive, domain-specific background theories in a nat-
ural way. The increasing popularity of SMT as a modelling approach
means that the SMT solvers need to handle increasingly complex prob-
lem instances. This paper studies how SMT solvers can use cloud com-
puting to scale to challenging problems through sharing of learned infor-
mation in the form of clauses with approaches based on both divide-
and-conquer and algorithm portfolios. Our initial experiments, executed
on the OpenSMT2 solver, show that parallelization with clause sharing
speeds up the solving of instances, on average, by a factor of four or five
depending on the problem domain.

1 Introduction

The Satisfiability Modulo Theories (SMT) [5] approach to constraint solving con-
sists of determining whether a logical formula is satisfiable, given that some of the
Boolean variables have an interpretation in background theories. The expressive-
ness of SMT makes it suitable for a vast range of application domains, including
software and hardware model checking [4,9], bioinformatics [26], and optimiza-
tion [24], and has recently attained significant interest from a wide range of users.
The computational cost of solving SMT instances can be very high, given that
already propositional satisfiability is an NP-complete problem and the introduc-
tion of background theories can only make the problem harder. The SMT solvers
tackle complexity with a tightly integrated loop where the SAT solver attempts
to find a satisfying solution and queries the validity of a candidate solution from
the theory solvers. In case the candidate solution is shown to be invalid the
theory solvers and the SAT solver work together to extract new expressive con-
straints in the form of learned clauses, by combining theory specific information
and resolution.

This work studies how employing parallelism and in particular cloud comput-
ing can be used in helping SMT solvers to scale to increasingly hard problems.
We study two different approaches: a portfolio where several copies of a ran-
domized SMT solver is run on a single instance; and an approach where the
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SMT instance is divided into several partitions that are guaranteed by construc-
tion not to share models, and each partition is solved by an SMT solver. We
combine these two approaches in a natural way by having several SMT solvers
work on each partition. The emphasis of the work is in how the different ways
of organizing the search can co-operate to speed up the solving. We implement
the co-operation by having SMT solvers working on the same partition share the
clauses they learn during the execution.

To study the effects of parallelism and clause sharing we implement the app-
roach using the SMT solver OpenSMT2 [13] and experiment with two partic-
ularly central background theories, the quantifier-free theories of uninterpreted
functions and equalities [5] (QF UF) and linear real arithmetics [7] (QF LRA).
The experimental results suggest that both the portfolio and the partitioning
based approach can greatly benefit from clause sharing. Interestingly, a com-
parison between portfolio and partitioning reveals that the portfolio approach
performs better even if the partitioning is combined with portfolio. We give an
analysis in the form of a case study to understand the reason for this and confirm
the effect in a more controlled experiment. Finally we discuss to what extent the
results obtained with OpenSMT2 can be generalized to other SMT solvers. In
particular clause sharing with partitioning is tedious to implement in a solver
and therefore we make the comparison in an indirect way, studying the run-time
distribution of the Yices2 solver [6] in comparison to OpenSMT2.

Related Work. The portfolio approach combined with clause sharing has been
implemented using the SMT solver Z3 [25]. The implementation provides an
efficient clause sharing strategy within the same computer using lockless queues
that hold references to the lemmas that a solver core wants to export. The exper-
imental evaluations show that clause sharing leads to a substantial speedup on
benchmarks from the QF IDL logic. In contrast to this work, we support two
SMT theories (QF UF and QF LRA), and exploit the advantages of combin-
ing portfolio with search-space partitioning. Moreover our implementation is
designed to run in a cluster or a cloud in addition to a single machine. Simi-
larly to Z3, the SMT solver CVC4 [3] supports a portfolio-style parallel solving.
Unlike our approach, the approach used in CVC4 is designed to run in a single
computer and does not implement clause sharing.

In [14] we introduced the parallelization tree formalism for combining port-
folio and search-space partitioning. The work also describes and reports results
on the QF UF logic on some instantiation of the framework. Our work extends
this tool based on the OpenSMT2 SMT solver by introducing clause sharing and
the logic QF LRA.

A divide-and-conquer approach for the quantifier-free bit-vector logic has
been implemented on top of the SMT solver Boolector [23]. A portfolio par-
allelization approach for the logic of quantifier-free bit-vectors and bit-vector
arrays is presented in [21]. Compared to these, our work differs in the supported
theories and in that we support cloud computing and are not limited to pure
divide-and-conquer or portfolio approach.
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In this work we use techniques similar to those used in parallel SAT solving.
The more elaborate problem descriptions of SMT constitute a significant theo-
retical and engineering challenge for parallelization. In addition the use of SMT
allows extending these techniques to a different domain. While the results are to
some extent preliminary it seems already that there are substantial differences in
how the techniques perform in the two domains. Given the close relation of the
topics there is a significant amount of relevant research on parallel SAT solving,
overviewed for instance in [17]. In particular we point out the portfolio approach
combined with clause sharing implemented in ManySAT [8] and HordeSAT [2].
A promising future direction for SMT is the combination of search-space parti-
tioning and clause sharing [1].

Recently there has been a renewed interest in parallel model checking. In [22],
the authors give a method for parallel concolic execution, while [10] introduces
a method for using massive parallelism to obtain a high coverage in an explicit-
state model-checking approach in a stochastic way. These differ from our work
in that they do not provide solutions directly for SMT solving.

In this paper we first introduce the basic concepts required for interpreting
our results in Sect. 2, and then describe implementation details in Sect. 3. The
experimental results obtained with the implementation are presented in Sect. 4,
and conclusions are drawn in Sect. 5.

2 Background

This section gives an overview of how SMT solvers work concentrating on the
mechanisms that are relevant for interpreting the framework, implementation,
and experimental results we present in the following sections. In describing the
preliminaries we use the set notation.

A literal is a Boolean variable x or its negation ¬x. A clause is a set of literals
and a propositional formula in conjunctive normal form (CNF) is a set of clauses.
Throughout the text we use both a set of literals and disjunction, and a set of
clauses and a conjunction, interchangeably. An assignment σ is a set of literals
such that for no variable x, both x ∈ σ and ¬x ∈ σ. A variable x is assigned if
either x ∈ σ or ¬x ∈ σ. An assignment σ satisfies a clause c if σ ∩ c �= ∅ and a
formula F if it satisfies all its clauses.

Most SMT solvers are based on the DPLL(T ) framework [20] which takes as
input a problem instance presented as a propositional formula where some of the
Boolean variables have an interpretation as Boolean relations, such as equalities,
disequalities, and inequalities, in a theory T . A DPLL(T ) solver consists of a
solver for the propositional satisfiability problem (SAT) and one or more theory
solvers that are capable of reasoning on a conjunction of Boolean relations over
the theory T . In the pre-processing phase the input formula is converted into
an equisatisfiable propositional formula F in CNF while preserving the special
T -interpretations of the Boolean variables.

The SMT solving process is driven by a SAT solver maintaining a set of
clauses which initially consists of the formula F . During the search the SAT
solver builds an assignment σ and alternates between two phases.
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– In the propagation phase the solver identifies clauses c = l1∨ . . .∨ ln such that
(i) there is a single unassigned literal li ∈ c, and (ii) σ falsifies the literals
lj , 1 ≤ j ≤ n, j �= i. Any such literal li is added to σ until no new clauses
satisfying (i) and (ii) can be found.

– In the decision phase the solver chooses a literal li unassigned in σ and adds
it to σ.

A conflict occurs if during the propagation phase the SAT solver detects a clause
with all literals falsified. The decisions and propagations are stored in the impli-
cation graph [16], a directed graph having as nodes the literals of the assignment
σ and as edges the arches {(¬lj , li) | 1 ≤ j ≤ n, j �= i} obtained in the propaga-
tion phase.1

A SAT solver learns a clause c by performing essentially resolution steps
directed by the implication graph when it finds a conflict. The learned clauses
are by construction guaranteed to be logical consequences of F , and are both used
in guiding the search and added temporarily to the clause database to reduce
the number of assignments the solver needs to cover during the search. Finally
the solver makes with a decreasing frequency a restart where the assignment σ
is cleared and the search is continued without otherwise changing the state of
the solver.

The SAT solver queries periodically whether the conjunction of the theory
atoms in σ is consistent with the theory. In case a theory solver determines an
inconsistency it identifies a subset σ′ ⊆ σ that causes the inconsistency and
returns the clause cT := {¬l | l ∈ σ′} to the SAT solver. Minimizing σ′ is critical
for the good performance of the SMT solvers (see, e.g., [7,19]). The clause cT is
used together with the implication graph to learn a clause c in the way described
above for clause learning. The solving process terminates when either the clause
database becomes unsatisfiable or a satisfying assignment consistent with the
theory T is found.

Parallel Algorithm Portfolios. An algorithm portfolio [11] is a set of algorithms
that compete in finding a solution for a given problem. The decision phase
employs an heuristic for choosing li and introduces in a natural way nonde-
terminism into the solver. Small changes to the heuristic can cause big changes
in the run time of the solver. For example, Fig. 5 shows the effect of allowing
the SAT solver to make random choices against the heuristic in small number
of cases to a single instance. The lines labeled OpenSMT2 and Yices2 illustrate
the probability of solving an instance from the QF LRA category of the SMT-
LIB benchmark collection in a given time or number of decisions for the SMT
solvers OpenSMT2 and Yices2 [6], respectively. A natural algorithm portfolio
can be obtained by seeding differently the pseudo-random-number generator of
the SMT solver and running several solvers in parallel.

Clause Sharing. In clause sharing the clauses learned by an SMT solver while
solving a formula F are distributed among the solvers in the parallel portfolio.
1 We equate x and ¬¬x.
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Since clause learning plays an important part of the SMT solving process this
sharing can speed up the parallel solving process. For example the shared clauses
make it easier to produce the required clauses in case of unsatisfiability, and
reduce the number of assignments the solver covers before finding a satisfying
assignment.

Search Space Partitioning. The SMT solver bases its search on the SAT solver,
and therefore a natural way of dividing the work and avoiding overlap for the
solvers is to constrain the SMT formula F into partitions F1, . . . , Fn such that
the original formula is satisfiable if and only if one of F1, . . . , Fn is satisfiable.
This can be done through adding additional constraints Ci to the formula F ,
resulting in the partition Fi := F ∧Ci. In principle conjoining a single literal {l}
to the formula F halves the search space, but this happens rarely in practice.
Often the resulting partitions Fi will have overlap in their search due to the
heuristics of the solver and therefore the observed speedup will be less dramatic.
The situation is made worse by the unpredictability of the SMT solver run
time in case the instance is unsatisfiable. Assuming the shape of the run-time
distribution is the same for both the instance F and the partition Fi, it can be
shown that independent of the number of partitions there are distributions for
which the expected run time increases when partitioning is done as described
above [15]. To lessen this effect several more complex parallelization algorithms
combining elements from search-space partitioning and algorithm portfolios have
been suggested [14]. For example running a parallel portfolio for each partition
makes it less likely that one of the partitions will require excessive time for being
solved.

Constructing Partitions. We use in this work an approach for constructing parti-
tions called scattering, initially introduced in [12]. Given a formula F , a number
of partitions to be created n, and a sequence of positive d1, . . . , dn−1 the parti-
tions are obtained following the iteration

F1 := F∧ l11 ∧ . . . ∧ l1d1

Fk := F∧ (¬l11 ∨ . . . ∨ ¬l1d1
) ∧ . . . ∧ (¬lk−1

1 ∨ . . . ∨ ¬lk−1
dk−1

) ∧ lk1 ∧ . . . ∧ lkdk

Fn := F∧ (¬l11 ∨ . . . ∨ ¬l1d1
) ∧ . . . ∧ (¬ln−1

1 ∨ . . . ∨ ¬ln−1
dn−1

)

The goal of using the sequence di is to make the search space of each Fi as
close as possible to 1/n of the search space of the instance F . We obtain the
sequence di by assuming that conjoining a disjunction of k literals with a formula
F reduces the size of the search space by factor of (1 − 1/2k). For example
for n = 2 partitions this gives d1 = 1, while for n = 8 we get the sequence
d1 = 3, d2 = 3, d3 = 3, d4 = 3, d5 = 2, d6 = 2, and d7 = 1. Note that the
number of constructed partitions in this method does not have to be a power
of 2. Finally, the literals lji are chosen using the same heuristic the SMT solver
uses during the search.
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3 The Parallelization Framework

In this section we present the framework uses in the experiments of the paper
for studying the effect of parallelization approaches and clause sharing. We give
an overview of the framework in Fig. 1. The framework is designed to run on a
cluster of computers or a cloud, even though it is also possible to run the system
on a single computer. The design follows a client-server approach in which the
server, acting as a front-end to the user, receives input instances in the SMTLIB2
format2, and at the same time handles the connection with the clients, managing
client failures and asynchronous new client connections gracefully. The clients
are implemented as SMT solvers wrapped by a network layer that handles the
connection with the server.

The server works in two modes: depending on the configuration it either splits
the instance into several partitions using the scattering approach described in
Sect. 2, or runs in a pure portfolio mode without splitting. In the beginning of
the solving the server distributes either the partitions or the original formula to
the solvers in all the available clients.

...

FIFO Channel

Filter 
Heuristic

Server

Clause DB

Selection 
Heuristic

Cluster
Head node

Client

SMT Solver

Client

SMT Solver

Client

SMT Solver

C  , C  , ... ,C1 2 nC  , C  , ... ,C1 2 nC  , C  , ... ,C1 2 n

Partition 
Heuristic

Input 
instances

Fig. 1. Parallel SMT solver framework with clause sharing

During the solving phase, each client contacts the server both to publish
newly learned clauses and to request new interesting clauses published by the
clients. To avoid problems with the high throughput we use a FIFO Channel
that allows multiple clients to push clauses to the server without turnaround
delays. Once a batch of clauses is received, the server uses the filter heuristic to
choose potential clauses for merging them with the previously received clauses
into the clause database (Clause DB in Fig. 1). Hence, at any given time, that
database will contain all the learned clauses sent by the clients and that have
passed the filter heuristic of the server. Inside the clause database the clauses

2 http://smtlib.cs.uiowa.edu.

http://smtlib.cs.uiowa.edu
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are divided by partitions and each client has only access to the clauses published
by the solvers working on the same partition.

Upon a restart each client will ask for clauses from the server. However, the
request cannot be replied by sending the entire clause set of the partition that
is being solved, because it usually consists of prohibitively many clauses. A high
number of clauses slows down the client solver since the overhead related to the
growth of the internal data structure is higher than the speedup obtained from
the clauses. To address the problem, the framework allows the use of the selection
heuristic which attempts to choose clauses that are particularly promising for
the problem at hand. The current version implements näıve heuristics for both
filtering and selection. The filtering heuristic is based on the number of literals
inside each clause: clauses with more than a fixed number of literals will be
discarded. The selection heuristic works by randomly selecting a fixed number
of clauses from the database, and each new set will replace the old one inside
the solver.

3.1 Implementation

The goal of the implementation is to provide scalability, fault-tolerance, and
low latencies during data transfer, as well as ease of use and portability from a
cluster of machines to a single machine with many cores or CPUs. In the rest of
this section we will present the central choices made during the implementation.
The implementation is highly modular in order to allow studying the effects of
its components in isolation. For example the system can handle several different
policies for scheduling the partitions among the solvers in the cluster. This allows
research on how to best combine portfolio and search-space partitioning.

The SMT Solver. The abstract framework allows the use of any DPLL(T)
solver, but our current implementation uses the SMT solver OpenSMT2 [13].
OpenSMT2 is a light-weight SMT solver that currently supports the quantifier-
free theories of uninterpreted functions with equalities (QF UF) and linear real
arithmetics (QF LRA). The solver is written in C++ and has been developed
in Università della Svizzera italiana since 2008. The code is easily approachable
because of its limited size of roughly 50,000 lines of code and the object-oriented
architecture. In addition it is released under the MIT license3. Most recently
the solver competed in the SMT competitions in 2014 and 2015, performing in
the mid-range in the competition. The implementation is efficient featuring low-
level memory management and a cache-friendly design for many of the central
algorithms. These reasons make it our choice over other, maybe more optimised
tools.

Networking. The server and the clients communicate using our custom-built
message passing protocol through TCP/IP sockets, making the solution light-
weight, easy to implement and modify as well as portable by being compatible

3 http://opensource.org/licenses/MIT.

http://opensource.org/licenses/MIT
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with clusters, cloud computing and single computers. The network components
of the implementation are shown in Fig. 1. Almost all the connections consist of
push message passing which achieves the goal to be as fast as possible by avoiding
the turnaround time. The connection between solvers and the selection heuristic
is the only one that does not use the push mechanism, but instead needs a pull
request. This choice has been made since the schedule at which the clients can
receive clauses is unpredictable, making push impractical. To indicate the pull
request, the interaction is drawn with dashed lines.

A Binary Format for SMT. In order to use clause sharing we must ensure that
the internal clausal representation of each instance is the same in every client
solver. This property cannot be guaranteed by the SMTLIB2 language since
small changes in the input formula might result in subtle optimizations that will
dramatically change the CNF structure seen by the SAT solver embedded in the
SMT solver. For that reason we designed a binary format for SMT, representing
the internal state of OpenSMT2. This format is used for data transfers between
each client and the server but also results in us being forced to limit ourselves
to a specific SMT solver.

FIFO Channel and Clause DB. For these challenges we use REDIS4, an open
source in-memory data structure store, used as database, cache, and message
broker. In order to get a scalable, fast, and fault-tolerant push connection from
multiple sources we use the Publisher/Subscriber messaging paradigm of REDIS.
The clauses are stored using the REDIS SET feature that automatically handles
cases where a clause would be added to clause database that is syntactically
equal to an already present clause. The SET feature is used by both the filter
and the selection heuristics.

4 Experiments

This section describes the experiments we performed on the implementation
described in the paper. The implementation is available at http://verify.inf.usi.
ch/opensmt. The experiments concentrate on four topics: Sect. 4.1 demonstrates
how the clause sharing works on the (i) pure portfolio and (ii) the approach
where we split the instance into partitions and use a portfolio for solving each
partition; Sect. 4.2 studies the difference between the approaches (i) and (ii)
above; Sect. 4.3 reports how the filtering heuristic affects the performance of
the algorithm; and Sect. 4.4 compares the cloud-based implementation against a
sequential version of OpenSMT2 and a widely used reference solver Z3 [18].

Our hardware configuration is kept the same in all experiments we run. The
experiments were run in a cluster where we used eight compute nodes for the
clients and the head node for the server. Each compute node is equipped with
two CPU Quad-Core AMD Opteron 2384 and 16GB of RAM. During the experi-
ments each cluster node had eight client processes implementing the SMT solver
4 http://redis.io.

http://verify.inf.usi.ch/opensmt
http://verify.inf.usi.ch/opensmt
http://redis.io
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Fig. 2. Using clause sharing against not using clause sharing with 1, 2, and 8 partitions.
Framework run with 64 solvers on the QF LRA benchmark set

OpenSMT2, resulting in total of 64 solvers in the entire cluster. We did not
explicitly limit the memory available to the solvers. The timeout is fixed every-
where to 1000 s. The search-space partitioning heuristic, when used, is the scat-
tering approach [12].

We used a fixed benchmark set obtained from the SMTLIB2 benchmarks
repository5 and the QF LRA and QF UF theories. The set from the QF LRA
theory was created by selecting the instances with an average sequential execu-
tion time between 100 and 1000 s (including those in timeout) using OpenSMT2;
the set consists of 106 instances in total. The benchmark set for the QF UF the-
ory consists of 254 instances. This set includes all instances that could be solved
with the sequential OpenSMT2 between 100 and 1000 s; 11 instances which are
known to be difficult for OpenSMT2 and time out in 1000 s; and 200 randomly
chosen instances of which half are guaranteed to be satisfiable and the other half
unsatisfiable.

5 http://smtlib.cs.uiowa.edu/benchmarks.shtml.

http://smtlib.cs.uiowa.edu/benchmarks.shtml
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Fig. 3. Using clause sharing against not using clause sharing with 1, 2, and 8 partitions.
Framework run with 64 solver on the QF UF benchmark set

In the figures we use the labels S1, S2 and S8 to indicate the number of
partitions created from the input instance. Therefore the label S1 indicates the
pure portfolio approach. The label CS indicates that clause sharing is used.
Throughout the plots we denote satisfiable instances with the symbol × and
unsatisfiable instances with the symbol 
�.

4.1 The Effect of Clause Sharing

Our first experiments show how sharing clauses affects the solving time using
different partitioning methods for QF LRA (Fig. 2) and QF UF (Fig. 3). For
both figures the graph on the top shows how the parallelization algorithm based
on pure portfolio benefits most from clause sharing: with both theories it gives a
2.05 times speedup, as well as one more QF LRA instance and nine more QF UF
instances solved within the timeout compared to not using clause sharing.

With both theories the combination of portfolio and search-space partitioning
performs worse than pure portfolio: the speedup due to clause sharing is 1.97
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times for partitioning in two and solving each partition with a portfolio of 32
solvers (S2 ), and speedup of 1.67 for partitioning in eight and solving each
partition with a portfolio of eight solvers (S8 ).

To some extent these results are expected, since the number of learned clauses
available inside the clause database for a single portfolio is bigger when there are
more solvers running in the portfolios, and therefore also the quality of clauses
that the heuristic picks is higher.

4.2 The Effect of Partitioning

Figure 4 (left) compares the portfolio approach against the approach where an
instance is split into eight partitions in the framework, from the QF LRA bench-
mark set. Interestingly the portfolio approach is almost consistently better than
the approach using partitioning, in particular for the unsatisfiable instances
(denoted with 
�). To study this effect in more detail and to rule out effects
such as network delays or time used in constructing the partitions, we designed
a second experiment in more controlled setting (Fig. 4 (right)). For this exper-
iment we chose a set of instances that require more than 1000 s to solve using
the sequential version of OpenSMT2. The instances were split off-line into eight
partitions and each partition was solved with a portfolio of eight OpenSMT2s to
obtain the results for the vertical axis. The horizontal axis shows the minimum
solving time over 64 OpenSMT2s. The benchmark sets are different on the two
figures.

The more controlled experiment verifies the phenomenon that an approach
based on partitioning performs worse in particular in the unsatisfiable instances,
while the results seem to be better for many of the satisfiable instances. This
behavior is often observed when the shape of the distribution of an unsatisfiable
instance has most of the probability mass at relatively low run times but still
a significant mass at significantly higher run time [15]. In such cases the effect
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Fig. 4. Comparing S1 against S8 on the QF LRA benchmark set. The graph on the
left shows the results using the framework of Sect. 3, the graph on the right shows a
controlled experiment where network delays are removed.
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Fig. 5. Run time distribution for solving an example instance with a single solver
compared to the distribution of one of the splits. For reference the figure also shows
the decision distribution for the Yices2 SMT solver on the original problem (the scale
is not shown).

of partitioning that tends to make instances easier to solve is not enough to
compensate the benefit from a pure portfolio approach. To further study this
phenomenon we chose one of the instances where this effect was particularly
pronounced, and constructed the run time distribution for OpenSMT2 for this
instance and a partition that was empirically difficult. The results for this exper-
iment are reported in Fig. 5. First, the run time distribution shows that there is
only a 25 % probability that OpenSMT2 solves this instance within the timeout
of 1000 s, even though the fastest run time for this instance is only slightly above
10 s. This explains the good behavior of the portfolio approach. Second, based
on the experiment it is possible that the partition run time is in fact higher than
that of the original instance run time. The difference is not big and therefore
this could be an effect caused by low amount of samples (64 in total). Finally,
to understand to what extent this phenomenon is generalizable to other SMT
solvers we ran the original instance 64 times using a randomized version of the
SMT solver Yices2. Instead of reporting the run-time distribution, we show the
number of decisions Yices2 did on this problem, since the run times were too
low to get meaningful results. We can see that also for Yices2 the amount of
decisions needed varies greatly but the shape of the distribution seems to be
different. The observation that the run time with another SMT solver is much
faster suggests that this instance can be solved by using an optimization that is
not implemented on OpenSMT2 and that in such cases it is not safe to draw the
conclusion that the partitioning approach would not work well if this optimiza-
tion were implemented in the underlying solver.
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4.3 The Clause Sharing Heuristics

Figure 6 shows that clause sharing heuristics are very important: the experiment
performed using a filtering heuristic that discards clauses with more that 30
literals results in clause sharing having 1.12 times greater run time compared to
the run without clause sharing. Interestingly the same heuristic is working well
for QF LRA (used in Fig. 2). To obtain good results for our benchmark instances
in QF UF the heuristic needs to be more restrictive. Reducing the threshold to
10 literals still leads to worse performance (results not shown), and discarding
clauses with five or more literals gives the results on Fig. 3.
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Fig. 6. Using clause sharing with a loose filtering heuristic against not using clause
sharing. Framework run with 64 solvers on the QF UF benchmark set.

4.4 Comparison to Other Solvers

Figure 7 compares the best known configuration of the framework against the
solvers OpenSMT2 and Z3 for QF LRA (top) and for QF UF (bottom). The
results are very promising when compared to OpenSMT2. For instances with
sequential run time higher than one second and for which neither the sequential
or the parallel solver timed out the average case speed-up is 4.78 for QF LRA
and 4.01 for QF UF. Our implementation is not yet competitive against Z3 in the
majority of instances. This is due to the lack of optimizations in the underlying
solver. Based on the experimental evidence presented in this section it seems
reasonable that if either the optimizations available in Z3 were implemented in
OpenSMT2 or the approach presented in this work were implemented in Z3 the
results would be similarly promising in comparison to Z3.
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Fig. 7. Our best configuration against OpenSMT2 and Z3 for QF LRA (top) and
QF UF(bottom)

5 Conclusions

SMT solving in cloud environments so far has received relatively little atten-
tion from the community developing and researching SMT solvers. This paper
addresses the challenges related to integrating one of the key components of a
modern SMT solver, the sharing of learned clauses, to parallel SMT solving algo-
rithms. We provide a generic framework for clause sharing in a cloud computing
environment and implement a system that supports clause sharing with paral-
lelization algorithms based on both a portfolio and splitting the input formula
into partitions.

The framework and the parallelization algorithms are agnostic to the under-
lying theories used by the SMT solver. We provide results on two fundamen-
tal theories: the quantifier-free theories of uninterpreted functions and equality
(QF UF), and linear real arithmetics (QF LRA). The results show that both
theories can benefit significantly from clause sharing, but especially QF UF is
sensitive to the heuristic used for selecting clauses to be shared. In the experi-
ments we also observe that the partitioning approach, while working relatively
well for QF UF, performs somewhat worse for QF LRA in the benchmark set
we study on this paper. We conjecture that this results from the partitioning
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heuristic behaving in an unexpected way where the problems sometimes get
more difficult to solve, in combination with a run-time increasing phenomenon
observed with unsatisfiable instances.

Finally we address the question of how well the parallel computing results
obtained with one solver generalize to other solvers. Experimentally we observe
that the run-time distribution of an instance, one of the key factors determining
how parallelization works on an instance, can be dramatically different on two
solvers. Therefore it is difficult to estimate the speed-up of a given instance on
one solver based on results from another solver. It is nevertheless likely that
observations made in this paper would carry over to other solvers in general.

Future Work. The framework we set in this paper opens several interesting
research directions. In particular we point out two central open questions we plan
to address in the future: how to construct a good heuristic for (i) partitioning
for QF LRA and (ii) for filtering and selecting the clauses to be shared in a
portfolio.

Acknowledgements. This work was financially supported by SNF project number
200021 153402.
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Abstract. The long line of research in probabilistic model checking has
resulted in efficient symbolic verification engines. Nevertheless, scalabil-
ity is still a key concern. In this paper we ask two questions. First, can we
lift, to the probabilistic world, successful hardware verification techniques
that exploit local variable dependencies in the analyzed model? And sec-
ond, will those techniques lead to significant performance improvement
on models with such structure, such as dynamic Bayesian networks?

To the first question we give a positive answer by proposing a prob-
abilistic model checking approach based on factored symbolic represen-
tation of the transition probability matrix of the analyzed model. Our
experimental evaluation on several benchmarks designed to favour this
approach answers the second question negatively. Intuitively, the reason
is that the effect of techniques for reducing the size of BDD-based sym-
bolic representations do not carry over to quantitative symbolic data
structures. More precisely, the size of MTBDDs depends not only on
the number of variables but also on the number of different terminals
they have (which influences sharing), and which is not reduced by these
techniques.

1 Introduction

Probabilistic model checking is a formal technique for analyzing finite-state mod-
els of systems that exhibit randomized behaviour against (quantitative) temporal
specifications. Model checking tools, such as PRISM [13], have been successfully
applied to a variety of systems, such as randomized distributed protocols, bio-
logical processes, and randomized algorithms for leader election.

State-of-the-art probabilistic model checkers such as PRISM implement sym-
bolic model checking algorithms on top of data structures such as BDDs and
MTBDDs [16]. It is well known that these data structures allow efficient sharing
of state within the model checker and offer significant benefits in time and space
requirements for model checking large probabilistic systems.

However, the scalability of automatic probabilistic verification remains to be
a concern. A natural question is whether the structure of the probabilistic model
can be exploited to provide further optimizations in state storage during model
checking. For example, consider probabilistic models that exhibit local depen-
dencies, where variables depend on a small number of “neighboring” variables.
c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 444–460, 2016.
DOI: 10.1007/978-3-319-46520-3 28
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Such local structure is common and natural in distributed algorithms and net-
works, in which a process communicates only with its immediate neighbours. In
this setting the model can be described in a factored representation such as a
Bayesian network that captures these local dependencies. Current approaches to
probabilistic model checking do not benefit from the structure of the analyzed
models, as this is typically lost during the translation into the verifier’s internal
representation as a monolithic BDD or MTBDD. Exploiting structure is identi-
fied as one of the rules of thumb in symbolic probabilistic verification [12], but
most implementations only consider simple variable ordering heuristics.

In hardware model checking, one way to exploit structure is to retain the
transition relation of a circuit in partitioned fashion [6]. Instead of computing
a monolithic transition relation as a conjunction of BDDs representing modules
executing in parallel, partitioned representations maintain a list of BDDs for each
module. During successor computation, partitioned BDDs are manipulated one
at a time using early quantification, which keeps the size of intermediate BDDs
small. Partitioned approaches have been used with great success to reduce state
space explosion in symbolic model checking, often by orders of magnitude [7]. It
is thus natural to ask if these techniques can be successfully extended and applied
to improve the efficiency of the verification of factored probabilistic models.

This is the question which we study in this paper. We have implemented a
model checker for PCTL for factored probabilistic models. It accepts factored
probabilistic models, in the form of dynamic Bayesian networks. These mod-
els admit a natural straightforward factored symbolic representation of their
transition matrices. Our model checker uses a partitioned representation of the
transition matrices as sets of MTBDDs. We extend matrix-vector multiplication
based on MTBDDs to use partitioned representations of the transition proba-
bility matrix. Furthermore, we show that this procedure can be seamlessly inte-
grated in the power method for iteratively solving systems of linear equations,
which lies at the core of quantitative PCTL model checking [2,3].

We experimentally compare the performance of PCTL model checking using
partitioned versus monolithic representations on a set of scalable benchmarks
that exhibit local structure. We compare our implementation against an equiv-
alent implementation that uses a global, non-partitioned transition relation (to
ensure we only capture the effect of monolithic vs. partitioned representations
and do not confound our results with orthogonal heuristics). We also compare
against the PRISM model checker to ensure our global representation-based
implementation is comparable to the state-of-the-art.

Unfortunately, our results in the quantitative setting are negative. While
qualitative PCTL model checking inherits the benefits of partitioned non-
probabilistic model checking, we show that even on factored models, quantitative
model checking does not significantly benefit from partitioned representations.
On all but the simplest examples and properties, computing the matrix vec-
tor product on the factored representation using early variable elimination (the
quantitative analogue of early quantification) does not help: while the number of
variables in the MTBDD does decrease, the intermediate products have a large
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number of constant terms as terminal nodes. This decreases the amount of shar-
ing, consequently not reducing the size of the MTBDD. Overall, for quantitative
specifications, partitioned representations and early variable elimination does
not significantly improve run times or memory requirements over global repre-
sentations. (Although, some improvement is seen on the simplest examples).

Our negative observations carry over to different structures of the dependency
graph: linear, tree, and grid topologies. The tree and grid topologies specifically
were chosen to be difficult for the classical methods as there is no natural variable
ordering facilitating MTBDD reasoning. With the exception of particularly easy
properties that only refer to a small part of the model, these examples turned
out to be hard even for the approach using the partitioned transition relation.

While our experimental results are negative, we consider them an important
contribution to the research landscape in probabilistic verification. Partitioning
is an intuitive heuristic, and works well in non-probabilistic settings. Our objec-
tive was to evaluate if it can be easily and naturally applied to improve the
performance of probabilistic reasoning. It was surprising to us that it does not
improve quantitative model checking, but to the best of our knowledge, no prior
experimental comparison pointed this out. We hope that our results, showing
which avenues have turned out unsuccessful, will be valuable to others aiming
to improve the efficiency of probabilistic verification.

Related Work. Several lines of work have investigated connections between model
checking of temporal properties and inference in dynamic Bayesian networks.
In [14] model checking techniques are used to perform inference in dynamic
Bayesian networks for queries specified in probabilistic CTL. There, a dynamic
Bayesian network is converted to probabilistic reactive modules, which are in
turn encoded as an MTBDD by the PRISM model checker. Their approach
does not modify the internal data structures and algorithms of the probabilistic
model checker to make use of the model’s structure. In [15], inference techniques
are used to perform approximate model checking of dynamic Bayesian networks
against finite-horizon probabilistic linear temporal properties.

2 Probabilistic Model Checking

2.1 Probabilistic Models and Temporal Logics

A discrete-time Markov chain (DTMC) is a tuple M = (S, P,AP , L), where S
is a finite set of states, P : S × S → [0, 1] is a transition probability function,
such that

∑
s′∈S P (s, s′) = 1 for every state s ∈ S, AP is a finite set of atomic

propositions, and L : S → 2AP is a labelling function mapping each state to the
set of propositions that hold true in it. The transition probability function P
can be interpreted as a |S| × |S| real matrix, where |S| is the number of states.

A path in M is a finite or infinite sequence s0, s1, . . . of states in S such that
for each i it holds that P (si, si+1) > 0. Given a state s ∈ S, we denote with
Paths(M, s) the set of paths in M originating in the state s.
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We now recall the syntax of Probabilistic Computation Tree Logic (PCTL).
We fix a set AP of atomic propositions. The set of PCTL formulas over AP con-
sists of two types of formulas: state formulas and path formulas. State formulas
are formed according to the grammar Φ ::= tt | a | Φ1 ∧ Φ2 | ¬Ψ | PJ(ϕ),
where a ∈ AP , Φ1, Φ2 and Ψ are state formulas, J ⊆ [0, 1] is a real inter-
val, and ϕ is a path formula. Path formulas are defined by the grammar
ϕ ::= ©Φ | Φ1 U Φ2 | Φ1 U≤k Φ2, where Φ,Φ1 and Φ2 are state formu-
las, and k ∈ N. As usual, we define the derived operators ♦ϕ = ttU ϕ and
�ϕ = ¬♦¬ϕ. The qualitative fragment of PCTL restricts the interval J in the
probability operator PJ to the cases P=1 = P[1,1] and P=0 = P[0,0].

The semantics of PCTL with respect to Markov chains is defined as follows.
Let M = (S, P,AP , L) be a DTMC. Then, PCTL state formulas are interpreted
over states of M , while path formulas are interpreted over paths. The satis-
faction relations |= are defined as usual for assertions, Boolean and temporal
operators [3]. Formulas containing the probability operator P are interpreted
using a probability measure over sets of paths. More specifically, the satisfaction
of PJ(ϕ) in a state s is determined by the probability measure of the set of paths
Πϕ = {π ∈ Paths(M, s) | M,π |= ϕ}, for which it is known that it is measur-
able. More precisely, with each DTMC M and state s in M we can associate a
probability measure PrM

s such that for every path formula ϕ the set of paths
Πϕ is measurable [3]. Then, we define M, s |= PJ (ϕ) iff PrM

s (Πϕ) ∈ J .
It is well known that for the satisfaction of qualitative PCTL formulas in

a finite-state DTMC M = (S, P,AP , L) the precise values of the probabilities
assigned by P do not play a role. We thus define the transition relation function
T : S × S → {0, 1} such that for s, s′ ∈ S we have T (s, s′) = 1 iff P (s, s′) > 0.
This defines the graph GM = (S,E) corresponding to M , with vertices the states
of M , and set of edges E ⊆ S × S such that (s, s′) ∈ E iff T (s, s′) = 1.

2.2 Probabilistic Model Checking

Given a DTMC M = (S, P,AP , L) and a PCTL state formula Φ, the model
checking problem asks to determine whether M, s |= Φ holds for every s ∈ S.

The model checking problem for PCTL can be solved by computing the set
SatM (Φ) = {s ∈ S | M, s |= Φ} of states in M that satisfy Φ, and then checking
if SatM (Φ) = S. The set SatM (Φ) can be computed recursively in a bottom-up
manner, following the syntax tree of the formula Φ. The key step is computing
the set SatM (Φ) for a formula of the form Φ = PJ (ϕ), where ϕ is a path formula
for which we have already computed SatM (Ψ) for every state subformula Ψ .

If Φ = PJ(©Ψ), we check if (
∑

s′∈SatM (Ψ) P (s, s′)) ∈ J . The probabilities can
be computed by multiplying the probability matrix P with the characteristic
vector of SatM (Ψ), i.e. a vector (bs′)s′∈S with bs′ = 1 iff s′ ∈ SatM (Ψ).

For an until formula ϕ = Φ1 U Φ2 or ϕ = Φ1 U≤k Φ2 we first compute sets
Ŝ=1 ⊆ {s ∈ S | Pr(M, s |= ϕ) = 1} and Ŝ=0 ⊆ {s ∈ S | Pr(M, s |= ϕ) = 0}
such that in the states in Ŝ=1 the formula ϕ is satisfied with probability 1 and
in the states in Ŝ=0 it holds with probability 0. Furthermore we require that
SatM (Φ2) ⊆ Ŝ=1 and that S \ (SatM (Φ1) ∪ SatM (Φ2)) ⊆ Ŝ=0. The remaining
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states S? = S \ (Ŝ=1 ∪ Ŝ=0) are the ones for which the probability has to still
be computed. To this end, we define the matrix A = (P (s, s′))s,s′∈S? , which
restricts P to states in S?, and the vector (bs)s∈S? , with bs = P (s, Ŝ=1).

The vector (Pr(s |= Φ1 U Φ2))s∈S? is the least fixed point of the operator
Υ : [0, 1]S? → [0, 1]S? , with Υ (c) = A · c + b. This formulation can be rewritten
into a system of linear equations (I − A) · c = b, where I is the identity matrix
of dimension |S?| × |S?|. Choosing Ŝ=0 to be exactly the set {s ∈ S | Pr(M, s |=
ϕ) = 0} guarantees that this system of equations has a unique solution [3].

For bounded until formulas ϕ = Φ1 U≤k Φ2 we have to take Ŝ=1 = SatM (Φ2),
that is, the set of states that reach Φ2 in zero steps, and can compute the vector
of probabilities (Pr(s |= Φ1 U≤k Φ2))s∈S? as the vector c(n), where c(0) = (0)s∈S?

and c(i+1) = Υ (c(i)) for i ≥ 0. Finally, SatM (Φ) = {s ∈ S | Pr(M, s |= ϕ) ∈ J}.
Thus, computing the set SatM (Φ) for a quantitative formula Φ = PJ (ϕ) is

reduced to computing the sets SatM (P=1(ϕ)) = {s ∈ S | Pr(M, s |= ϕ) = 1}
and SatM (P=0(ϕ))) = {s ∈ S | Pr(M, s |= ϕ) = 0} for the respective qualitative
formulas and then solving a system of linear equations.

The sets SatM (P=1(ϕ)) and SatM (P=0(ϕ)) do not depend on the exact values
in P and can be computed based on the graph GM = (S,E) associated with M .

The set SatM (P=0(Φ1 U Φ2)) can be computed by first computing the set
of states SatM (P>0(Φ1 U Φ2)) backward reachable from SatM (Φ2) by visit-
ing only states in SatM (Φ1), and then taking SatM (P=0(Φ1 U Φ2)) = S \
SatM (P>0(Φ1 U Φ2)). The bounded until case is analogous.

The set SatM (P=1(Φ1 U Φ2)) can also be computed by backward reachability
in a graph modified as follows. Let G′

M = (S,E′) be obtained from GM by mak-
ing all states in the set D = SatM (Φ2)∪ (S \ (SatM (Φ1)∪SatM (Φ2))) absorbing.
That is, (s, s′) ∈ E′ iff s 	∈ D and (s, s′) ∈ E, or s ∈ D and s = s′. Then, as shown
in [3], it holds that SatM (P=1(Φ1 U Φ2)) = S \ Pre∗

G′
M

(S \ (Pre∗
G′

M
(SatM (Φ2)))),

where, Pre∗
G′

M
(U) are the states backward reachable from the set U in G′

M .

2.3 Symbolic Model Checking

Let M = (S, P,AP , L) be a DTMC and suppose that X is a set of Boolean
variables such that S = {0, 1}X , i.e., X is a Boolean encoding of S, and the set
AP consists of atomic propositions, one for each variable in X. Let n = |X|, and
as usual, let X ′ = {x′ | x ∈ X} be the set of “next state” variables for X.

The transition probability function P can be encoded as a real valued func-
tion of Boolean vectors ρ : Bn × B

n → R, and the transition relation function
T can be described by a function δ : Bn × B

n → B. Similarly, sets of states and
probability vectors are represented as functions from B

n to B and R, respectively.
In symbolic verification, Boolean functions are often succinctly represented

as reduced ordered binary decision diagrams (BDDs) [5]. Given a fixed total
ordering of the variables in X ∪ X ′, BDDs represent the Boolean functions on
B

n × B
n in a one-to-one manner. There exist efficient methods for computing

existential abstraction, application of Boolean operators and variable renam-
ing using BDDs. The size of the BDD representing a given function is heavily
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influenced by the ordering of the variables, and it is well known that finding
an optimal ordering is a hard problem. A commonly used heuristic, which per-
forms quite well in practice, is to interleave non-primed and primed variables
x < x′ < y < y′ < . . ..

In quantitative verification, a generalization of BDDs, called multi-terminal
BDDs (MTBDDs) [8] are used to succinctly represent real-valued functions. The
matrix and vector arithmetic operations used in PCTL model checking can be
efficiently performed on their MTBDD-based representation [1,10].

Given a fixed variable ordering, the size of the BDD representation of a
Boolean function is influenced by the number of variables on which this function
actually depends. The same holds for MTBDDs, where, in addition, the number
of values in the co-domain of the functions has an impact on the size of the
corresponding MTBDD. In the following subsection we describe a class of prob-
abilistic models, whose structure allows for a factored symbolic representation
of its transition relation and transition probability functions. Such a factored
representation is a collection of BDDs, or respectively MTBDDs, that capture
local dependencies between the variables describing the model, and are, often
significantly smaller than those describing the transitions between global states.

2.4 Dynamic Bayesian Networks

Intuitively, a Bayesian network is a graph-like representation of dependence
conditions on a set of random variables, coupled with some representation of the
distributions associated with these random variables. More formally, a Bayesian
network over a set of variables V is tuple B = (G,Θ), where G = (V,D) is a
directed acyclic graph with vertices the variables in V and set of edges D ⊆ V ×V
describing the dependencies between these variables, and Θ is a set of conditional
probability distributions (CPDs), one for each variable in V , as we now explain.

For a set of variables Y ⊆ V , let Val(Y ) be the set of valuations of the
variables Y , that is, the functions that map each variable y ∈ Y to a value in
its domain Val(y). With PaB(v) = {u ∈ V | (u, v) ∈ D} we denote the set of
parent nodes of v in G. These are the variables on whose value the probability
distribution of v directly depends. More precisely, for each variable v ∈ V the set
Θ contains a CPD Θv|PaB(v) = Pr(v | PaB(v)). When Val(V ) is finite, the CPD
of each variable v is usually represented by a conditional probability table that
maps every valuation in Val(PaB(v)) to a probability distribution over Val(v).

Dynamic Bayesian networks (DBN) describe systems evolving over time.
A DBN over a set of variables V is a two-slice Bayesian network B = (G,Θ)
over V ∪ V ′, where PaB(v) = ∅ for each v ∈ V . That is, the CPDs of the
variables V in B depend on none of the other variables, while the CPDs of the
variables in V ′ can depend on variables in both V and V ′. More precisely, since
the dependency graph G is acyclic, the CPD of a next-state variable v′ can
depend on the current values of V as well as on the next-state values of variables
different from v.

A DBN B = (G,Θ) over a set of variables V can be seen as a factored
representation of a Markov chain. The DTMC MB = (S, P,AP , L) induced by
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B has set of states S = Val(V ). The transition probability function P (s, s′) =
PrB(X ′ = s′ | X = s) is defined according to the probability distribution
described by B. We choose AP = S and define L(s) = {s}.

The model checking problem for dynamic Bayesian networks asks, given a
DBN B = (G,Θ), whose induced DTMC is MB = (S, P,AP , L), and a PCTL
state formula Φ over AP , to determine whether MB, s |= Φ for every s ∈ S.

3 Model Checking Qualitative PCTL

3.1 Factored BDD Representation

Let B = (G,Θ) be a DBN over a set of finite-state variables V . Suppose w.l.o.g.
that for each v ∈ V it holds that |Val(v)| is a power of 2. Then, with each v ∈ V
we associate a set of Boolean variables Xv such that Xv is a Boolean encoding
of Val(v). With X ′

v we denote the set of next-state Boolean variables.
Let X =

⋃
v∈V Xv and X ′ =

⋃
v∈V X ′

v. Then, Val(X) are the states of the
DTMC MB = (S, P,AP , L) induced by B, and the transition relation function
of MB can be represented by a BDD δ(X,X ′) over the variables X ∪ X ′.

Since each v′ ∈ V ′ depends directly only on PaB(v′), the variables in X ′
v

depend directly only on X̂v′ = (
⋃

u∈PaB(v′)∩V Xu) ∪ (
⋃

u∈PaB(v′)∩V ′ X ′
u). We

represent each Θv′|PaB(v′) by a BDD δv(X,X ′), whose support is X ′
v ∪ X̂ ′

v.
If PaB(v′) = {u1, . . . , uk}, we use (v,u1, . . . ,uk, p) ∈ Θv′|PaB(v′) to denote

the elements of the conditional probability table Θv′|PaB(v′) for v′, i.e., the fact
that PrB(v′ = v | u1 = u1, u2 = u2, . . . , uk = uk) = p.

For each v ∈ V and v ∈ Val(v), we denote with βv,v(X) the BDD for the
Boolean formula over X equivalent to the atomic predicate v = v. Similarly for
v′ ∈ V ′ we have βv′,v(X ′). Now, for each v ∈ V , we define the BDD δv(X,X ′) =
∨

v∈Val(v′)

(

βv′,v(X ′) ∧ ∨
(v,u1,...,uk,p)∈Θv|PaB(v)

p>0

(βu1,u1(X) ∧ . . . βuk,uk
(X))

)

.

Proposition 1. For a DBN B = (G,Θ) over variables V with induced DTMC
MB = (S, P,AP , L) whose transition relation is δ it holds that δ =

∧
v∈V δv.

3.2 Image Computation with Factored BDDs

Consider a Boolean formula Ψ(X) that describes a set of states in the DTMC
MB = (S, P,AP , L). The formula Pre(Ψ)(X) = ∃X ′.δ(X,X ′) ∧ Ψ(X ′) describes
the set of states that have a successor in MB which is a Ψ -state. The BDD
describing Pre(Ψ) can be computed by applying the standard conjunction and
existential abstraction operations to the BDDs for δ(X,X ′) and Ψ(X ′).

When δ(X,X ′) is given in the factored form δv1(X,X ′), . . . , δvn
(X,X ′),

where V = {v1, . . . , vn}, we can avoid constructing the BDD for the global
transition relation δ, and instead use the partitioned form in the computation of
Pre(Ψ). Depending on the functions δv1(X,X ′), . . . , δvn

(X,X ′) and the number
of variables on which each of them depends, their individual size can be much
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smaller than the size of δ. Furthermore, since each δv depends only on a subset
of X ′, it is possible that applying early quantification [6] can lead to avoiding a
blow-up of intermediate results during the computation of Pre(Ψ). Such conjunc-
tive partitioning of the transition relation has been successfully used for efficient
forward-image computation in the verification of hardware models [6].

Here we describe the application of this approach to the Pre-image compu-
tation for the DBN B = (G, θ). Let π : {1, . . . , n} → V be an ordering of the
variables in V . We will explain later how to choose a potentially good ordering
based on the dependency graph G of the DBN. For each v ∈ V , let Yv ⊆ X ′ be
the set of variables in X ′ on which δv depends, that is y ∈ Yv iff y ∈ X ′ and
δv[0/y] 	= δv[1/y], where δv[0/y] is the formula obtained from δv by substituting
0 for the variable y. Also, let Zv = Yv\

(⋃n
i=π−1(v)+1 Yπ(i)

)
be the set of variables

in X ′ on which δv depends, but none of δu with π−1(u) > π−1(v) depends on
them. Note that the sets Zv are pairwise disjoint. Then, Pre(Ψ) is computed by:

Ψ1(X,X ′) = ∃Zπ(1)

(
δπ(1)(X,X ′) ∧ Ψ(X ′)

)

Ψ2(X,X ′) = ∃Zπ(2)

(
δπ(2)(X,X ′) ∧ Ψ1(X,X ′)

)

. . .

Ψn(X,X ′) = ∃Zπ(n)

(
δπ(n)(X,X ′) ∧ Ψn−1(X,X ′)

)

Pre(Ψ)(X) = ∃(X ′ \ (
⋃

v∈V

Zv))Ψn(X,X ′).

The ordering π of the variables in X ′ is important, as it determines how many
variables are existentially abstracted at each intermediate step, which can in turn
influence the size of the intermediate BDDs. We now describe a heuristic that
uses the dependency graph G to find a good ordering. Let G′ be the restriction
of G to the nodes V ′. By traversing the graph G′ in post-order we can compute π
such that for every i, j ∈ {1, . . . , n}, if π(i) = v, π(j) = u and there is an edge in
G′ from u to v, then i < j. This allows for eliminating the variables X ′

u at step j
of the computation of Pre(Ψ), as none of the transition relations δπ(k) considered
at the subsequent steps k > i depends on X ′

u. Additionally, if variables u ∈ V ′

and v ∈ V ′ are mutually unreachable in G′ but |Yu| < |Yv|, then δv will appear
earlier in the ordering, leading to the elimination of more variables.

3.3 Reachability Computation

As we recalled in Sect. 2, the sets Sat(P=0(Φ1 U Φ2)) and Sat(P=1(Φ1 U Φ2)) can
be computed by backward graph reachability starting from Sat(Φ2) in the (pos-
sibly modified) graph GMB

. Here we show how to do that using the factored
symbolic representation of the edge relation in GMB

, constructed as above.
As usual, Sat(P>0(Φ1 U Φ2)) is computed as the least fixpoint μU.Sat(Φ2) ∨

(Pre(U) ∧ Sat(Φ1)), which corresponds to computing the states backward reach-
able from Sat(Φ2) that are in Sat(Φ1). For the computation of Sat(P=1(Φ1 U Φ2)),
instead of restricting the transition relations δv to the set (S \ (Sat(Φ1)∪Sat(Φ2))
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in order to represent the transition relation of the modified graph, we use the fol-
lowing fixpoint expressions with the unmodified partitioned transition relation:

Ψ(X) = ¬μU.Sat(Φ2) ∨ (Pre(U) ∧ Sat(Φ1) ∧ ¬Sat(Φ2)) ,

Sat(P=1(Φ1 U Φ2)) = ¬μU.Ψ ∨ (Pre(U) ∧ Sat(Φ1) ∧ ¬Sat(Φ2)) .

Next and bounded until formulas are handled in a similar way using the
preimage computation based on the factored transition relation.

4 Model Checking Quantitative PCTL

4.1 Factored MTBDD Representation

Let B = (G,Θ) be a DBN over a set of finite-state variables V , and let the sets
of variables X =

⋃
v∈V Xv and X ′ =

⋃
v∈V X ′

v be as in the previous section. The
transition probability matrix P of the induced DTMC MB = (S, P,AP , L) can
be represented as an MTBDD ρ over the variables X ∪X ′. Here we use again the
structure of the DBN and the local dependencies implied by it to give a factored
representation of ρ as the element-wise product of matrices ρv for v ∈ V .

As before, if PaB(v′) = {u1, . . . , uk}, we use (v,u1, . . . ,uk, p) ∈ Θv′|PaB(v′)
to denote the elements of the conditional probability table Θv′|PaB(v′) for v′.

For each v ∈ V and v ∈ Val(v) (respectively v′ ∈ V ′ and v ∈
Val(v′)), we denote with μv,v(X) (respectively μv′,v(X ′)) the MTBDD for
the Boolean formula equivalent to the atomic predicate v = v (respec-
tively v′ = v). For p ∈ R, we denote with μp the MTBDD that maps
each assignment to X ∪ X ′ to the constant p. For each v ∈ V , we
define the MTBDD ρv(X,X ′) =

∑
v∈Val(v′) (μv′,v(X ′) ∗ ψv,v), where ψv,v =

∑
(v,u1,...,uk,p)∈Θv|PaB(v)

p>0

(μp ∗ μu1,u1(X) ∗ . . . ∗ μuk,uk
(X)), and where + and ∗

denote respectively sum and multiplication of real-valued functions represented
as MTBDDs. Each ρv represents a real matrix whose rows are indexed by
Val(X), and whose columns are indexed by Val(X ′). The matrix ρv describes
the local dependency of the variables X ′

v on the remaining variables. The tran-
sition probability matrix of MB is obtained by taking the element-wise product
of the transition probability matrices for the individual variables.

Proposition 2. For a DBN B = (G,Θ) over variables V = {v1, . . . , vn} with
induced DTMC MB = (S, P,AP , L) whose transition probability function is ρ it
holds that ρ = ρv1 ∗ . . . ∗ ρvn

.

4.2 Matrix-Vector Multiplication with Factored MTBDDs

Let A(X,X ′) be an MTBDD representing a square real matrix such that Val(X)
are the row indices and Val(X ′) are the column indices. Let b(X) be an MTBDD
representing a real vector with indices Val(X ′). The matrix-vector product
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c = Ab can be computed symbolically [1] as c(X) = ∃X ′.A(X,X ′) ∗ b(X ′),
where ∗ is the multiplication operation for real-valued functions (MTBDDs) and
∃ is the sum-abstraction. In our case, the transition probability matrix is given in
factored form ρ = ρv1 ∗ . . . ∗ ρvn

. Since the element-wise multiplication ∗ is asso-
ciative and commutative, we can perform matrix-vector multiplication without
computing ρ upfront as ∃X ′.ρv1(X,X ′) ∗ . . . ∗ ρvn

(X,X ′) ∗ b(X ′).
Furthermore, as in the previous section we can employ early quantification

whenever possible, trying to reduce the size of intermediate MTBDDs.
As we will see in our experimental results in Sect. 5, however, in the major-

ity of the cases early quantification does not reduce the size of the intermedi-
ate MTBDDs. Although it might reduce the number of variables the function
depends on, existential abstraction may increase the number of terminal nodes,
thus affecting the amount of sharing between subgraphs of the MTBDD.

4.3 Solving Linear Equations

As we recalled in Sect. 2, model checking quantitative PCTL reduces to comput-
ing the satisfaction sets for qualitative formulas and solving systems of linear
equations with real coefficients. Usually, symbolic methods based on MTBDDs
for solving such systems employ iterative methods [16], since those do not require
modifying the matrix during the computation, which is important for the com-
pactness of the MTBDD representation. In order to seamlessly use the factored
representation of the matrix, we use the power method, which only requires
matrix-vector multiplication operations with the transition probability matrix.

As in the qualitative case, for until and bounded until formulas, instead of
restricting each of the factors to the set S?, which can introduce dependency on
additional variables, we apply the restriction to the candidate solution vector at
each step. We let c(0)(s) = 1 for s ∈ S=1 and c(0)(s) = 0 for s ∈ S=0∪S?, and then
iteratively compute c(i+1) = Ac(i) + b, where at each step we modify c(i) accord-
ing to S1 and S0. The power method receives as an input parameter a real value
ε, and the iteration terminates when ||c(i+1) − c(i)||∞ < ε. As the power method
is guaranteed to converge [3], we can compute an approximation to the solution
vector up to a theoretically arbitrary precision. Using the power method based
on partitioned transition probability matrix we compute Sat(PJ (Φ1 U Φ2)). The
method applies the matrix-vector multiplication procedure we described, using
the ordering π to determine the order of applications of existential abstraction.
Next properties are handled directly using the matrix-vector multiplication pro-
cedure for factored MTBDDs, and bounded until formulas are handled analo-
gously to unbounded until formulas as described in Sect. 2.

5 Experimental Evaluation

We evaluate our approach on a set of several benchmarks. We have implemented
a prototype PCTL model checker based on factored symbolic representations.
Our tool is implemented in C++ using version 2.5.0 of the CUDD library [18]. In
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order to compare the performance of our technique to classical symbolic PCTL
model checking we also implemented all procedures using monolithic symbolic
representation.1 We also compare to the state-of-the-art symbolic probabilistic
model checker PRISM [13], version 4.3.

For the comparison with PRISM, we use options -m -cuddmaxmem 2g, that
is, the symbolic engine with memory limit for CUDD increased to 2 GB. Each
experiment was run on a 3 GHz Intel Xeon processor with a timeout of 10 h.

We consider several probabilistic systems that can be naturally modelled
as DBNs, and which exhibit different structure of their underlying dependency
graphs. In our first example this graph has a simple linear structure, and thus,
there exists a natural variable ordering, in which variables that directly depend
on each other are close. The canonical Herman’s protocol benchmark [11], which
we consider next, also falls into this category. As an instance with a more com-
plex dependency structure we then consider a network model where nodes are
organized in a full binary tree. Such dependency structure arises commonly in
fault tree analysis [17]. We also consider an instance with a grid structure, as an
abstraction of device networks such as sensor and communication grids [9].

Now we describe the benchmarks and give a summary of our experimental
results. Then, in Subsect. 5.1 we interpret and discuss these results.

Network with a Linear Topology. As our first benchmark we consider a network of
N computers organized in a simple linear topology: for each i ∈ {1, . . . , N − 1}
there is an unidirectional connection from machine i to machine i + 1. Each
machine is associated with a Boolean variable upi, which indicates whether at
the current step the machine is up or down. A machine which is up can fail with
probability p in the next step. A machine i > 1 which is down, can be rebooted
with probability q, only if machine i − 1 is up in the current step. This defines
conditional probability distributions Pr(up′

i | upi, upi−1) for i = 2, . . . , N .
We used values p = q = 0.4 and considered the following verification tasks:

(1) The property P=1(♦ “all machines are down”) holds in every state.
(2) Compute the probability of ♦≤10 “machine N is down”, for the initial state

in which all machines are up.
(3) Compute the probability of ♦≤10 “exactly one machine is up”, for the initial

state in which all machines are up.

The sizes of the MTBDDs for the partitioned and the global transition rela-
tions for N ∈ {10, 20, 30} are shown in Table 1. There we also show the peak
BDD size reached during the verification of the qualitative property (1). The
table also contains these results for selected instances of the other benchmarks.

Figure 1 shows a comparison of the peak MTBDD size reached during ver-
ification task (2) executed for N = 10, . . . , 23. For this specific quantitative
property the peak size when using the factored representation remains constant,
and when using the monolithic transition relation grows. This is not the case
for verification task (3), as it can be seen from Fig. 2, which shows that for the

1 The code is available at http://www.mpi-sws.org/∼rayna/atva16-experiments/.

http://www.mpi-sws.org/~rayna/atva16-experiments/
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Table 1. Model (MTBDD) size and peak BDD size for the verification of the respective
qualitative property for several instances of each of the considered models.

Model MTBDD size Peak BDD size

Partitioned Global PRISM Partitioned Global

Linear N= 10 7 (for i = 1); 10 (for i > 1) 1111 1111 11 29

Linear N= 20 7 (for i = 1); 10 (for i > 1) 7816 7816 21 59

Linear N= 30 7 (for i = 1); 10 (for i > 1) 25121 25121 31 89

Herman N= 15 10 (for i = 1); 8 (for i > 1) 810 810 626 3090

Herman N= 17 10 (for i = 1); 8 (for i > 1) 1053 1053 927 4704

Herman N= 19 10 (for i = 1); 8 (for i > 1) 1328 1328 1377 6672

Herman N= 21 10 (for i = 1); 8 (for i > 1) 1635 1635 1730 8810

Tree L = 4 9 3547 3688 44 193

Tree L = 5 9 178855 185884 92 3549

Tree L = 6 9 TO MO 188

Sensor K = 4 44 75206 83885 511 21191

Sensor K = 5 44 TO MO 1436

Sensor K = 6 44 TO MO 4300
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Fig. 1. Results for verification task (2) for the linear topology benchmark.

respective property the peak MTBDD sizes are essentially equal for the two
approaches. For N = 23 in verification task (3) our approach runs out of mem-
ory, and the classical algorithm based on the global transition relation exceeds
the time limit of 10 h at N = 19. Regarding the execution time, while for verifi-
cation task (2) all instances complete in under 0.1 s, for (3) we see in Fig. 2 that
our approach has better performance.

Since for verification task (2) the peak size of the MTBDD does not increase
with N , our approach can verify this property even in cases when the MTBDD for
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Fig. 2. Results for verification task (3) for the linear topology benchmark.

the global transition system cannot be constructed. This is the case for example
for N = 100, 200, 300, where our approach completes successfully, but PRISM
exceeds even a 20 GB memory limit while building the model.

Herman’s Self-stabilization Protocol. Herman’s protocol [11] is a distributed self-
stabilization algorithm. This is a randomized protocol for N processes (where
N is odd) organized in a ring communication topology to reach a stable state,
in which exactly one process has a token. Each process is associated with a
random Boolean variable xi, and process i has a token if xi = x((i−1) mod N).
If process i has a token it sets xi to 0 or 1, each with probability 1

2 . Otherwise,
it sets xi to x((i−1) mod N). This defines conditional probability distributions
Pr(x′

i | xi, x((i−1) mod N)) for i = 1, . . . , N . We consider the following properties:

(1) Every state satisfies the property Φ1 = P=1(♦stable).
(2) Every state satisfies the property Φ2 = P≥ 1

2
(♦≤hN2

stable), where hN2 with
h = 4

27 is the upper bound on the expected stabilization time [4].

The MTBDD sizes for the partitioned and the global transition relations are
shown again in Table 1 for N ∈ {15, 17, 19, 21}, as well as the peak BDD size
for the qualitative property. Regarding the peak MTBDD sizes, the situation is
similar to property (3) in the linear topology case: we do not observe a significant
difference between the partitioned and the global versions. For N = 15 we have
25179 nodes in both cases, increasing to 400370 (respectively 401543) for N = 19.
For N = 21 the partitioned approach runs out of memory, while the global one
exceeds the timeout (PRISM successfully verified the property, in more than
11 h). Here, our approach does not exhibit significantly better running time.

Network with a Tree Topology. Next we consider a network of machines organized
in a full binary tree with L levels, consisting of 2L − 1 machines. Again, each
machine i can be up or down and is associated with a Boolean random variable
upi. A machine at a leaf node can at each step be down with probability p and
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up with probability 1 − p. A machine i at a non-leaf node is only in use if both
of its children, machines 2i+1 and 2i+2 are down, and can only then fail, again
with probability p. In our experiments we let p = 0.6 and analyze the probability
of the system going down (i.e., the machine at the root going down):

(1) The property P=1(♦ “the root is down”) holds in every state.
(2) Compute the probability of ♦≤1000 “the root is down”, for the initial state

in which all machines are up.

We show the results for the quantitative case for trees with L = 4, . . . , 10
levels in Fig. 3. Here we observe a significant difference in terms of the peak
intermediate MTBDD size. For L = 5 the factored representation results in
more than 60 times smaller peak MTBDD, and for L = 6 the global approach
reaches the time limit, while PRISM runs out of memory (given 20 GB of memory
PRISM also runs past the 10 h mark). Our approach does not reach the timeout
even for the tree with 10 levels, as shown in the right plot in Fig. 3.
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Fig. 3. Results for verification task (2) for the tree topology benchmark.

Sensor Grid. Our final benchmark is a sensor network model described in [9].
We consider a simplified setting where we do not model power consumption and
lost nodes. The sensor network models a forest fire alarm system which consists
of K × K sensors organized in a grid. The purpose of the system is to detect
fires and carry the alerts to the boundary of the forest (grid), while each sensor
communicates directly only with its four neighbours. At each time point each
sensor is in one of four possible states: sleep, sense, listen and broadcast. From
the sleep state a sensor goes with probability 1

2 to sense and with probability
1
2 to listen. If a sensor in state sense detects fire it goes to state broadcast and
stays there forever. Otherwise it goes to state listen where it checks if one of
its neighbours is broadcasting. If this is the case, it starts broadcasting in state
broadcast forever, and otherwise it goes back to state sleep. In the initial state
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there is a fire at a fixed single cell (Fx, Fy). We analyze the probability of reaching
a state in which there is fire still only at (Fx, Fy) (i.e., we assume that the fire does
not spread), and the alarm is successfully propagated to the grid’s boundary:

(1) Verify the property that if there is a fire only at a fixed cell (Fx, Fy), then
with probability 1 the alarm reaches the boundary.

(2) Compute the probability that if there is a fire only at a fixed cell (Fx, Fy),
then the alarm reaches the boundary within b time steps.

We consider grids of size K ∈ {4, 5, 6} and fix (Fx, Fy) = (2, 2). For K = 4 we
set b = 20, for K = 5 and K = 6 we set b = 5. For K = 4, the peak MTBDD size
for our approach is 3783, while for the verification using the global transition
relation this is 69893 (the size of the global MTBDD is actually larger and is
75206) and the size of the PRISM model MTBDD is 83885. For K = 5 we have
peak size of 6718952, while the construction of the global MTBDD times out,
and PRISM runs out of memory during the model construction.

5.1 Discussion

The objective of this work is to evaluate factored symbolic representations for
quantitative verification. We observe that the use of the partitioned symbolic
representation leads to negligible or no improvement in the majority of cases.

As it can be expected, the size of the model representation is considerably
smaller in the partitioned version, and for qualitative properties the advantages
of partitioned representation and early quantification do carry over from non-
probabilistic verification. Unfortunately, the same cannot be said about quanti-
tative verification. The reason is that early variable elimination can decrease the
number of variables, but not the number of different terminals in an MTBDD.
For example, for Herman’s protocol with 15 processes we observe multiplication
operations where the maximum number of terminals reached during the sequence
of early variable elimination steps is 12362, while the result of the multiplica-
tion has 612 terminals. For the same operation, with the same end result, the
intermediate result when using the global transition matrix has 2880 terminals.

For very simple quantitative properties and systems, such as property (2) in
the linear topology benchmark, which only refers to the last machine in the linear
network, we do observe notable effects on the peak MTBDD size. However, in
these cases already the classical symbolic verification methods are quite efficient,
and the performance improvement is not dramatic.

For quantitative properties that refer to all the variables in the DBN or where
intermediate verification steps require more global reasoning, the partitioned
approach does not perform better than the standard one. Indeed, for property
(3) in the linear topology benchmark and the quantitative stabilization property
for Herman’s protocol the peak MTBDD size using the factored representation
is comparable to the size of the MTBDD for the global transition relation.

These observations extend also to the benchmarks with more complex depen-
dence graphs. While factorization is beneficial for the simple property that refers
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only to the root node of the tree, the analysis of the sensor network benchmark is
prohibitively hard even for the partitioned approach. For size of the grid K = 5
our method succeeds, reaching a peak MTBDD size of more than 6 million nodes,
while the other two run out of time and memory respectively, during model con-
struction. However, already for K = 6 our approach exceeds the timeout as well,
and thus also does not scale beyond small values of K.

6 Conclusion

We presented and evaluated a symbolic model checking approach based on a
partitioned symbolic representation of Markov chains induced by DBNs. Our
experimental results indicate that known techniques for exploiting model struc-
ture in symbolic verification are not efficient in the quantitative setting. While
factorization proves to be efficient for model checking qualitative PCTL proper-
ties, we conclude that achieving scalability in quantitative reasoning for DBNs
requires exploring different avenues.
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Abstract. Manually locating and removing bugs in faulty code is often
tedious and error-prone. Despite much progress in automated debug-
ging, developing effective debugging techniques remains a challenge. This
paper introduces a novel approach that uses a well-known program syn-
thesis technique to automate debugging. As inputs, our approach takes
a program and a test suite (with some passing and some failing tests),
similar to various other recent techniques. Our key insight is to reduce
the problem of finding a fix to the problem of program sketching. We
translate the faulty program into a sketch of the correct program, and
use off-the-shelf sketching technology to create a program that is correct
with respect to the given test cases. The experimental evaluation using
a suite of small, yet complex programs shows that our prototype embod-
iment of our approach is more effective than previous state-of-the-art.

1 Introduction

The last few years have seen much progress in two related but traditionally dis-
joint areas of research: automated debugging [10,23] and program synthesis [12].
Automated debugging is the problem of locating and removing faults in a given
faulty program with respect to some expected correctness properties, which may
be written as individual tests [14,19] or specifications [10,18,21]. Existing debug-
ging techniques try to correct the faulty program by mutating suspicious state-
ments [5], applying evolutionary algorithms to search for repair candidates [16],
inferring conditional substitutions systematically [17], or leveraging symbolic
analysis and constraint solving to find repairs [20]. Program synthesis is the
problem of synthesizing implementations typically using specifications [24] with
some recent work using abstract input/output scenarios [7,12].

While innovation in each of these two research areas has been impressive,
the techniques developed within one area have largely been confined to that area
itself with just a handful of recent approaches looking at the synergy between the
areas [15,20]. Our key insight is to exploit this synergy by reducing the problem
of automated debugging to a sub-problem in program synthesis, namely program
sketching [26], in which the user writes a sketch, i.e., an incomplete program
that has holes, and automated tools complete the sketch with respect to given
specification, reference implementation, or abstract execution scenarios.

c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 463–478, 2016.
DOI: 10.1007/978-3-319-46520-3 29
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We present SketchRep, our program repair approach that translates the
given faulty program to a sketch and leverages the program sketching tool-set
Sketch [26] to fill in the holes of the incomplete program with respect to the
given test suite. The code fragment synthesized by Sketch, which satisfies all
given test assertions, provides the repair to the faulty program.

For more efficient repair, we rank suspicious program locations using the
relative statement order and spectra-based fault localization [13]. We further
prioritize program locations in relation to failing test assertions, which allows
SketchRep to keep as much of the original implementation as possible and
reduce the size of expressions given to subsequent more expensive technique of
completing the sketch.

For each suspicious location, SketchRep introduces non-deterministic
expression sketches based on pre-defined repair skeletons called “repair hypothe-
ses”, which are similar in spirit to Feser et al. [7]. For example, the repair
hypothesis for an assignment statement is a partial statement with expression
sketches for left-hand-side and right-hand-side, and the assignment operator “=”.
Each expression sketch is a set of expression candidates that can appear in the
resulting program. We collect all candidates based on relevant types. The can-
didates are computed using visible variables and a small number of field deref-
erences. For example, using up to two field dereferences, the expressions of the
type int derived from the variable l that represents a linked list are {l.size,
l.head.element} where size is the number of nodes in the list, head is the first
list node, and element is the integer value that the node contains. To fix bugs at
multiple locations, SketchRep incrementally eliminates failing test assertions
and generates new hypotheses based on the updated program.

We show the results of applying SketchRep on 35 faults derived from
students’ solutions for 7 data structure subjects. We employ bounded exhaus-
tive test suites [2] in the experiments. The experimental results show that
SketchRep can generate program repairs for missing conditions and state-
ments. The experiments also show that these faults are hard to fix using two
state-of-the-art program repair tools, SPR [17] and Genprog [16]. For our sub-
jects, SPR generates no correct fix while GenProg generates two correct fixes
using bounded exhaustive test suites. In contrast, SketchRep successfully gen-
erates 30 correct fixes using bounded exhaustive test suites and 14 correct repairs
using subsets of test suites.

In summary, we make the following contributions:

– Repair as Sketching. We introduce the first technique that provides a solu-
tion to the problem of program repair by reducing it to the problem of program
sketching.

– Fault Localization. We introduce a fault localization technique that consid-
ers both the relative statement ordering and the spectra-based suspiciousness
value [13]. Our experiments show that this technique can save calls to the
Sketch backend and prune repair candidates.

– Repair Hypothesis Generation. We introduce two repair hypotheses to fix
faulty assignments and if-conditions followed by return statements that return
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true or false. The expression sketch in a hypothesis are replaced by expression
candidates within a given bound. Therefore, SketchRep is not confined to
generating repairs at the expression level [15,19], rather, it creates new state-
ments that do not exist in the current program. It can also incrementally fix
faults at multiple locations based on the test suite.

– Experimental Evaluation. We demonstrate SketchRep’s efficacy to repair
faulty assignments and if-return statements with a benchmark of 35 faults
derived from students’ solutions. The results show that for these small but
complex programs, SketchRep can repair errors due to missing statements
and faults in multiple locations. The comparison with two well-known repair
tools illustrates that SketchRep is more effective for addressing these faults.

While the focus of our work in this paper is on program repair using test
suites—a common form of the program repair problem—our reduction of repair
to sketching can be generalized to repair other forms of correctness criteria, e.g.,
specifications.

2 Motivating Example

To illustrate our SketchRep approach for program repair, we use a program (in
the Sketch language) that performs destructive updates on a doubly-linked list
data structure. The program is small and conceptually simple, but repairing this
faulty version is hard. It contains two missing assignment statements. Our app-
roach successfully repairs it but existing state-of-the-art techniques GenProg [16]
and SPR [17] are unable to repair (the C version of) this program using the same
tests we use.

Figure 1 presents an implementation of the addFirst method for the sub-
ject DoublyLinkedList in the Sketch language [1]. The implementation of this
DoublyLinkedList is adapted from java.util.LinkedList in openjdk-6-b27. The
list has a sentinel header whose previous field points to the last element of the
list, and its next field heads to the first element of the list. The addFirst method
first creates a new Entry object with the given value v and resets next and
previous fields for the header and the new object Entry e. Finally, this method
should increase the size of the list by one. The faulty program shown in Fig. 1
(A) forgets to update the field e.previous.next and the size of the list.

SketchRep tries to identify suspicious types and program statements based
on failing test assertions. It ranks the type int as the most suspicious type based
on the failing test assertion at line 13 in Fig. 1(A). As to suspicious statements,
each statement in this program has the same suspiciousness value of the spectra-
based fault localization technique. To minimize the change impact introduced
by the repair hypothesis, we prioritize program locations that are called later
during executions.

After ranking suspicious types and locations, SketchRep generates an
assignment repair hypothesis of the most suspicious type—int. SketchRep
enumerates all expressions derived from local variables with no more than two
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Fig. 1. DLLAF6: a bug that requires to change two statements.
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field dereferences and picks expressions whose type is int. Specifically, the
assignment repair hypothesis at line 7 in Fig. 1(B) contains an assignment com-
binator “=” that glues left-hand-side and right-hand-side together. In Sketch
programming language, e(.next |.previous)?(.element) represents {e.element,
e.next.element, e.previous.element}. The left-hand-side includes all expressions
of the type int that can be derived from local variables l and e. The right-
hand-side contains all these expressions and a constant value hole “??” that can
be replaced by any constant int values. For primitive types, SketchRep uses
four primitive type operators (+,−,×,÷) to connect two expression sketches
together. Similarly to the assignment hypothesis of the type int, SketchRep
generates an assignment repair hypothesis of the type Entry based on the failing
test assertion at line 14 in Fig. 1(A). This assignment repair hypothesis contains
all field dereferences of the type Entry at the left-hand-side, and has a null value
together with these expressions at the right-hand-side.

This partial program shown in Fig. 1(B) is sent to the Sketch synthesizer.
The synthesizer finds a concrete replacement that satisfies all test assertions for
this non-deterministic program, and this replacement is returned as a correct
repair for the faulty program. We present this repair in Fig. 1(C).

3 Approach

In this section, we first describe the overall repair procedure, followed by the
fault localization technique and the approach of generating repair hypothesis.

3.1 Overview

Our repair follows the spirit of the synthesis procedure of Feser et al. [7] and
maintains a priority queue Q of repair tasks in the form of (p, �, t, ω,E), where
p is the faulty program, � is a label for the statement location, t is a suspicious
type, ω is a repair hypothesis, and E is the test suite. The repair task is:

Find a replacement of δ for the hypothesis ω at the location � for program
p such that the program p[δ/ω] obtained by substituting ω by δ satisfies the
test suite E.

Algorithm 1 presents the pseudocode of the overall repair procedure. Our tool
first executes the program p with the test suite E to obtain failing test assertions
ε. Based on failing test assertions, SketchRep uses a fault localization technique
to rank suspicious locations and types. For each suspicious type, we add repair
tasks (p, �, t, ω,E) to the queue Q with ranked suspicious locations and a repair
hypothesis ω.

Given a repair task, SketchRep generates expression candidates to fill in the
repair hypothesis ω. These expression candidates are derived from local variables
with no more than n field dereferences. We use n to represent the bound for repair
candidates. The repair hypothesis is further applied to the faulty program, and
this faulty program with non-deterministic expression candidates is sent to the
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Algorithm 1. Overall Repair Procedure
Input : Faulty program p, Test suite E, Repair Candidate bound n,

Hypotheses H
Output: Repaired program δ

1 Function repair (p, E) is
2 ε ← run(p, E) ; // failing assertions

3 T ← FaultType(p, ε, E);
4 L ← FaultLoc(p, ε, E);
5 Q ← ∅;
6 foreach ω ∈ H, t ∈ T, � ∈ L do
7 Q ← Q ∪ {p, �, t, ω, E} ;

8 while Q �= ∅ do
9 (δ, ε′) ← synthesize(Q.poll(), n) ; // invoke the Sketch synthesizer

10 if ε′ = NULL then
11 return δ ;

12 else if ε′ ⊂ ε then
13 T ← FaultType(δ, ε, E);
14 L ← FaultLoc(δ, ε, E);
15 Q ← ∅;
16 ε ← ε;
17 foreach ω ∈ H, t ∈ T, � ∈ L do
18 Q ← Q ∪ {δ, �, t, ω, E} ;

19 return FAIL ;

Sketch synthesizer. The synthesizer will try to complete this partial program
based on the test suite. Shown in Algorithm1, the synthesize function returns
a program replacement δ and failing assertions ε. A repair is found if all test
assertions are satisfied (ε = NULL). If this replacement removes some failing test
assertions (ε′ ⊂ ε), we replace the original program with this new program, clear
the queue of repair tasks, and regenerate repair tasks based on the new program.
Our repair procedure incrementally evaluates repair tasks in a best-first manner
until the synthesizer finds a repair or there is no task left in the queue Q.

3.2 Fault Localization

To speed up our repair approach, we rank suspicious locations and types to save
the subsequent expensive synthesizing cost.

Location Ranking. SketchRep first calculates spectra-based Tarantula [13]
suspiciousness value for each statement in the execution trace. To minimize the
change impact introduced by the repair hypothesis, we prioritize statements that
are called later during executions leading to failing assertions. This technique
allows us to reuse as much of the original implementation as possible. Specifically,
the fault localization function FaultLoc can be interpreted as below:
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FaultLoc(p, ε, E) = λ1Sspectra + λ2Sorder , where
Sspectra = pass(s)/total pass

pass(s)/total pass+pass(s)/total pass , representing the Tarantula
suspiciousness value,
Sorder = #current stmt

#total stmts , representing the relative location in the execution
leading to the failing test assertion,
λ1, λ2 are parameters, which are set to 1 by default.

Type Ranking. To identify which types of objects might lead to the failure,
we rank object types by the same spectra-based approach, and prioritize “later”
types based on the invocation order used in the first failing test assertion. For
instance, based on the failing test assertion “assert l.size==1”, SketchRep
prioritizes the type int over the type LinkedList according to the invocation
order. This strategy might not always rank first for the faulty type. For example,
based on the assertion “l.head.element==22”, SketchRep will rank type int

as the most suspicious type while the fault might be on the type Entry. To
understand whether this ranking strategy is sufficient to reduce search space and
synthesizing cost, we conduct an evaluation in Sect. 4.2. Note that we consider
exceptions (e.g., NULLPointerException) as a special failing assertion and rank
types that trigger the exception using the same approach.

3.3 Hypothesis Generation

We define two hypotheses to handle bugs in assignments and conditions. Based
on the hypothesis, we generate repair candidates with the type t using no more
than n field dereference.

Hypothesis Definition. Fig. 2 presents our definition of repair hypotheses in
the style of inference rules [7,17]. The first inference rule describes the assignment
hypothesis we use to repair faulty assignments with non-primitive types and
primitive types. The second and third rules describe the condition hypothesis
that introduces a new if-condition followed by a return statement which returns
a boolean value. We use the annotation of σ � (x, n, t) ⇒ e to represent all
expressions e with the type t in the program σ, which are derived from the
variable x using no more than n field dereferences. p(�) represents the statement
at the location �. c(x) is a conditional expression which is either true or false.
primT represents primitive types, such as int and bit.

Specifically, Fig. 3 shows a condition repair hypothesis that contains an if-
condition followed by a return statement that returns a boolean value. Our tool
introduces a new method called condition which returns either a boolean value,
or an expression combined with a relational operator (“==” or “�=”). The return
value of the method condition will decide if the condition statement at line 10
will return a boolean value by the following return statement (line 11).

For primitive types, we introduce four basic primitive type operators op

{+,−,×,÷} to connect the expression e1 and the constant value hole “??”.
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σ � (x, n, t) ⇒ e, e ∈ t, t /∈ primT

p(�) = e=e1, e1 = e ∪ null

σ � (x, n, t) ⇒ e, e ∈ t, t ∈ primT

p(�) = e=e1 op ??, e1 = e ∪ (??)
(1)

c(x) = {e==e1, e �= e1, 0, 1}, σ � (x, n, t) ⇒ e, e1 = e ∪ null, t /∈ primT

p(�) = if (c(x)) return {1, 0} (2)

c(x) = {e==(e1 op ??), e �= (e1 op ??), 0, 1}, σ � (x, n, t) ⇒ e, t ∈ primT

p(�) = if (c(x)) return {1, 0} (3)

Fig. 2. The assignment and condition repair hypotheses

Repair hypothesis generated from SketchRep

1. bit hasLoop(LinkedList l) {
2. Entry ln1 = l.head;

3. Entry ln2 = l.head;

4. while (1) {
5. ln1 = ln1.next;

6. if (ln2.next == l.head || ln2.next.next == l.head)

7. return 0;

8. ln2 = ln2.next.next;

9. /* Omission error: miss if (ln1==ln2) return 1;*/

10. if ( condition(l, ln1, ln2))

11. return ??;

12. }
13. }
14. bit condition(LinkedList l, Entry e1, Entry e2) {
15. Entry lhs={|l.head (.next)?|(e1 | e2)(.next)?(.next)?|};
16. Entry rhs={|null|l.head(.next)?|(e1|e2)(.next)?(.next)?|};
17. bit _out = {| lhs == rhs | lhs != rhs | 1 | 0 |};
18. return _out;

19. }

Fig. 3. LLOOP3: a bug that misses a condition statement.

Candidates Generation. After introducing repair hypothesis, SketchRep
generates candidates for the hypothesis based on the suspicious type. For each visi-
ble variable at a program location, SketchRep enumerates all expressions within
a bound of field dereferences derived from this variable and collects expressions of
the suspicious type. These expressions are filled into the hypothesis to create a
program sketch—a non-deterministic program as the input of the Sketch synthe-
sizer. We set the default bound for generating candidates as two considering the
performance of the synthesizer. In Fig. 3, all bounded candidates of the type Entry

are l.head(.next)? and (e1|e2)(.next)?(.next)?. These candidates are used to
complete the assignment repair hypothesis of the type Entry at line 15.

Hypothesis Prioritization. Each invocation to the synthesizer comes with a
cost. Intuitively, the more non-deterministic expression sketches are introduced
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by the repair hypothesis, the higher synthesizing cost is for the synthesizer. We
define the cost of the repair hypothesis as the number of “holes” introduced
by the hypothesis. Therefore, an assignment hypothesis of non-primitive type
has a synthesizing cost of 2, while a condition hypothesis of this type has a
synthesizing cost of 4 (e.g., the condition hypothesis in Fig. 3 has 4 expression
sketches at line 15, 16, 17, and 11. SketchRep prioritizes less-cost hypotheses
considering the performance of the synthesizer. The generated repair skeleton
(“hypothesis”) filled with non-deterministic candidates are sent to the Sketch
synthesizer, searching for a replacement that satisfies the test suite.

4 Evaluation

We evaluate SketchRep on a benchmark of 35 faults derived from students’
solutions for 7 data structure subjects, which were originally written in Java. The
subjects are: SortedLinkedList.insert (LLINS), SortedLinkedList.reverse (LL
REV), SortedLinkedList.hasLoop (LLOOP), DoublyLinkedList.addFirst (DLL
AF), DoublyLinkedList.addLast (DLLAL), DoublyLinkedList.remove (DLLRM),
and BinarySearchTree.insert (BSTIN). The subject DoublyLinkedList.addFirst

and DoublyLinkedList.addLast are programs without branches or loops, while the
rest contain both loops and if-conditions. The implementation of the DoublyLink-

edList is adapted from java.util.LinkedList while the SortedLinkedList and
the BinarySearchTree are implemented based on the book [4].

From the students we received 49 answers for each Java subject, and we
manually graded the answers. On average, 10 answers were correct for each
subject. For the faulty programs, we manually classified them into 35 different
kinds of faults. We manually translated each faulty program from Java to Sketch
(to apply SketchRep) and to C (to apply GenProg and SPR).

We address the following research questions in the evaluation:

– How effective is SketchRep to fix faulty programs using tests?
– How does the fault localization technique affect the ability of SketchRep to

generate repairs?

4.1 Comparison with GenProg and SPR

To study SketchRep’s efficacy of repairing faulty program, we execute it, Gen-
Prog [16], and SPR [17] on the 35 defects using the same test suites.

Methodology. Considering that the quality of the test suite impacts the per-
formance of program repair tools [22,25], we compare the performance of three
tools with two test suites—one based on ideas from bounded exhaustive testing
and one consisting of just 3 tests.

We use Korat [2], an input generation tool that uses given constraints which
define properties of desired inputs to guide our generation of bounded suites. To
illustrate, Fig. 4 (top) presents the input lists with up to 3 nodes, which we use
to form test cases for SortedLinkedList.hasLoop(), and Fig. 4 (bottom) presents
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Fig. 4. Bounded exhaustive test suite with 3 nodes.

the different tree structures with up to 3 nodes, which we use to create method
sequences that repeatedly invoke the faulty insert method, e.g., tree T5 rep-
resents the sequence “t=new Tree(); t.insert(3); t.insert(2); t.insert(1);”.
To account for repetitions in insertions (or removals) we add a test case that has
one insertion (or removal) with a repeated element.

It is conjectured that repair tools are more likely to generate overfitting
repairs if used with a few test cases [25], therefore, we create a test suite with
a subset of bounded exhaustive tests to investigate the plausibility of repairs
generated by SketchRep with a few test cases. We randomly pick one passing
test, one failing test, and one other test that can be either passing or failing.

Using test suites alone as the criterion for correctness can lead to erroneous
repairs [22]. We validate the correctness of generated repairs using an exhaus-
tive test suite with a larger bound (four nodes) than the bound used to create
suites. In addition, we manually inspect repairs based on the implementation of
java.util.LinkedList and a standard textbook [4].

We use the default configuration for SPR and use two search strategies in
GenProg: the default brute search strategy (Brute) and the genetic algorithm
(GA). We set a 10-second timeout threshold for the Sketch synthesizer as our
experiments show that it is sufficient to generate correct fixes.

Results. Table 1 presents the experiment result for three tools. The first three
columns describe the information of the faults: The column LOC shows the
lines of code for the method under test, the column Type represents that the
expected fix is an assignment (A) or a condition (C), and the column Bug shows
the number of statements that need to be changed. The fifth to eighth column
present the number of calls to the Sketch synthesizer (#Calls) as well as the
number of repair candidates at the statement level (#Cands). The rest columns
show the comparison result by running SketchRep, GenProg, and SPR on the
same test suite. The column T3 represents the result of a subset of exhaustive
test cases and the column Te represents the result of the bounded exhaustive test
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Table 1. Comparison with GenProg and SPR

Name LOC Type Bug Ranking SketchRep GenProg SPR

#Calls #Cands Time Fix Brute GA

on off on off T3 Te T3 Te T3 Te T3 Te T3 Te

LLINS1 11 A 1 1 19 168 1,358 1.18 1.14 � � × × × × × ×
LLINS2 11 A 1 1 5 72 360 1.08 1.10 � � × × × × × ×
LLINS3 11 A 1 1 35 72 360 1.43 1.43 � � × × × × × ×
LLINS4 11 A 2 2 24 240 1,718 5.36 70.12 — � × × × × × ×
LLINS5 11 A 2 2 10 144 720 6.28 34.34 — — × × × × × ×
LLREV1 14 A 1 1 3 210 630 4.38 3.24 — � × � × × — ×
LLREV2 14 A 1 1 3 210 630 1.54 1.54 — � × � × × — ×
LLREV3 14 A 1 5 3 1,050 420 4.52 2.52 — � × × × × × ×
LLREV4 14 A 1 5 2 1,050 420 0.71 1.29 — � — × × × — ×
LLREV5 14 A 2 3 5 630 1,050 4.11 2.29 — � × × × × — ×
LLREV6 16 A 2 4 6 840 1,260 10.62 10.90 � � × × × × — ×
LLREV7 16 A 2 4 6 840 1,260 6.96 9.68 — � × × × × — ×
LLREV8 16 A 2 7 3 1,470 630 10.49 20.00 — � × × × × × ×
LLOOP1 19 A 1 3 2 216 144 14.03 82.61 � � — × — × × ×
LLOOP2 19 A 1 3 2 216 144 12.57 3.63 — � × × × × — ×
LLOOP3 19 C 1 31 33 2,564 2,852 14.73 4.58 — � — × × × × ×
LLOOP4 19 A,C 2 60 60 7,260 7,260 11.58 20.01 — × — × — × × ×
DLLAF1 9 A 1 1 15 168 952 0.93 1.00 — � × × × × × ×
DLLAF2 9 A 1 1 4 110 440 1.12 1.18 — � × × × × × ×
DLLAF3 9 A 1 1 4 110 440 1.11 1.20 — � × × × × × ×
DLLAF4 9 A 1 4 4 440 440 0.66 0.87 � � × × × × × ×
DLLAF5 9 A 2 2 8 220 880 2.82 3.03 � � × × × × × ×
DLLAF6 9 A 2 2 17 278 1,280 2.82 5.85 — � × × × × × ×
DLLAF7 9 A 2 2 5 220 550 0.88 11.85 � � × × × × × ×
DLLAL1 9 A 1 1 15 168 952 0.78 0.98 � � × × × × × ×
DLLAL2 9 A 1 1 4 110 440 1.67 1.42 � � × × × × × ×
DLLAL3 9 A 1 4 4 440 440 0.46 0.42 � � × × × × × ×
DLLAL4 9 A 1 3 4 330 440 2.63 2.04 — � × × × × × ×
DLLRM1 15 A 1 3 17 504 1,288 4.14 3.54 — � — × — × × ×
DLLRM2 15 A 1 3 3 330 330 13.13 11.46 � � × × × × × ×
DLLRM3 15 A 2 6 6 660 660 3.41 4.00 — — × × × × × ×
DLLRM4 15 A 2 6 17 834 1,288 4.69 10.18 — — × × × × × ×
BSTIN1 28 A 1 1 52 440 24,076 0.42 10.21 � � × × × × × ×
BSTIN2 28 A 1 20 2 18,600 1,860 9.99 10.20 � � × × × × × ×
BSTIN3 28 C 1 75 75 34,300 34,300 17.16 14.81 × × × × × × — ×

� represents correct fix, — represents plausible fix, × represents not generating fix

suite. The column Fix states if SketchRep generates correct fix, plausible fix,
or no fix. The column Time states SketchRep’s performance time in seconds.

Based on the bounded exhaustive test suite, GenProg is able to generate two
correct repairs while SPR can generate none. GenProg and SPR cannot generate
correct fixes at multiple locations. Note that GenProg fails to generate repairs for
LLREV1 and LLREV2 with a subset of test cases, but successfully generates fixes
with bounded exhaustive test suite. It is probably because GenProg relies on the
spectra-based fault localization technique to identify faulty statements, and the
bounded exhaustive test suite helps GenProg prioritize suspicious statements.
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SketchRep is able to generate 33 repairs for the program repair benchmark
and 30 of them are correct based on higher-bound exhaustive test suite and
manual inspection. Based on a subset of test cases, SketchRep generates more
correct repairs compared to other tools as well. While other tools cannot generate
repairs at multiple locations, SketchRep relies on failing test assertions to
incrementally repair the program.

SketchRep fails to find the repair for the fault BSTIN3 because the con-
dition repair hypothesis only generates an if condition followed by a return
statement that returns either true or false. It does not support conditions which
have multiple statements in the condition block. SketchRep cannot handle
the multiple-location fault LLOOP4 because the failing test assertion can only
be eliminated by changing an assignment and a condition statement together.
SketchRep generates plausible fixes for LLINS5, DLLRM3, and DLLRM4.
In these plausible fixes, apart from repairing errors, SketchRep sets values to
unreachable objects, such as the removed entry in the subject DoublyLinkedList.

remove(). This behavior cannot be observed simply using more inputs. We regard
these repairs as plausible by checking their semantic behaviors with the manual
inspection. As for performance, SketchRep takes between 0.4 and 82.6 seconds
(10.4 seconds on average) to perform the repair using bounded exhaustive test
suites, and between 0.4 and 17.2 seconds (5.2 seconds on average) to perform
the repair using subsets of exhaustive test suites.

In summary, SketchRep is able to fix a number of faults at the statement
level. It can also fix some multi-location faults by incrementally searching for
repairs based on tests and failing assertions. We also show that SketchRep
outperforms previous state-of-the-art repair tools in fixing these faults.

4.2 Efficacy of Fault Localization

To evaluate if our fault localization technique can effectively reduce the number
of invocations to the synthesizer and prune the search space of repair candi-
dates, we count the number of calls to the synthesizer and the number of repair
candidates at the statement level. The column off shows these numbers without
ranking suspicious locations and types. The column on shows these numbers
with fault localization technique. We describe how these numbers are calculated
using an example.

The error DLLAF6 shown in Fig. 1(A) has a failing test assertion at line 13.
Based on the invocation order, SketchRep prioritizes the type int over the
type LinkedList. For the type int, SketchRep generates 6 expressions with no
more than two field dereferences from local variables: v, l.size, l.head.element,
e.element, e.next.element, e.previous.element. At the right-hand-side, there
are 7 expressions including a constant value hole “??”. When we calculate
the number of repair candidates, we regard the constant value hole “??” as
a simple expression, although in practice it represents a large search space
for the SAT solver. SketchRep then creates repair hypotheses with 4 prim-
itive type operators (+,−,×,÷), thus the total search space for fixing this
failing assertion is: 6 × (6 + 1) × 4. Based on our fault localization technique,
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SketchRep puts the partial statement at line 8 in Fig. 1(A), and this replace-
ment removes the failing assertion “assert l.size==1” with a concrete imple-
mentation “l.size=l.size+1”. The next failing test assertion at line 14 helps
SketchRep prioritize the type Entry. There are 10 expressions with the type
Entry in Fig. 1(B), thus the search space for the assignment repair hypothesis at
line 8 in Fig. 1(B) represents a search space of 10× (10+1). Therefore, the total
search space for fixing this multiple-location bug is 278, with 2 invocations to
the synthesizer.

If we turn off the ranking strategy for suspicious types and locations,
our tool will search from the first-defined type to the last one followed by
primitive types, and check from the first statement to the last one based on
the execution trace that invokes the failing assertion until it finds a repair.
After checking the location from line 3 to 5, SketchRep places an assign-
ment hypothesis of the type Entry at the line 6, which fixes the failing test
assertion “assert l.head.next.previous==l.head”. For the failing test assertion
“assert l.size==1”, SketchRep checks each location with repair hypothe-
ses of the type Entry and LinkedList, before it generates a repair hypothe-
sis with the type of int. Therefore, the total search space without ranking is
10 × 11 × 4 + 6 × (10 × 11 + 1 × 2) + 6 × 7 × 4 = 1, 280 , and the synthesizer is
invoked by 17 times.

On average, SketchRep makes 7.7 calls to the synthesizer with fault local-
ization strategy, and makes 12.8 calls without it. The average search space of
repair candidates with ranking is 2157.5, and the space is 2642.3 without it. We
perform Mann-Whiney test to measure if one dataset is significantly larger than
the other and use Cliff’s delta effect size to measure how large this difference
is. Both numbers with and without ranking strategy are statistically significant
(p < 0.01, effect size (medium): −0.47 and −0.40).

In summary, our experiment demonstrates that our fault localization tech-
nique has significantly reduced the calls to the synthesizer and the search space
of repair candidates.

4.3 Threads to Validity

Construct Validity. SketchRep can fix multiple-location faults incrementally
based on the assumption that one change in a statement can remove some failing
assertions. However, this assumption may not hold because the fault may require
multiple changes to eliminate a single failing assertion.

Currently SketchRep only supports two repair hypotheses: assignments and
if-conditions followed by return statements that return true or false. SketchRep
can be extended to support more intricate faults in conditions with abstract
condition value similar to SPR [17].

We use off-the-shelf Sketch synthesizer as a basis for repair. Sketch uses
counter-example-guided inductive synthesis (CEGIS) for synthesis [26]. Our
repair is limited to what Sketch can synthesize.

In our evaluation, we manually translate Java programs to Sketch programs
and to C programs to apply SketchRep, GenProg, and SPR. While our subjects
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are small and simple to translate, our manual translation may have inadvertently
introduced behavioral differences.

Internal Validity. Using test suites alone as the criterion for correctness may
lead to erroneous repairs. Therefore, we manually inspect generated repairs to
validate their correctness.

External Validity. The experimental evaluation using a set of small but com-
plex subjects does not necessarily generalize to other programs. Moreover, our
repair hypotheses cover only a specific kind of real faults. We investigate the
efficacy of SketchRep by comparing it with more general purpose tools that
have been evaluated against other real faults [16]. Extension of repair hypotheses
is future work.

SketchRep only works for programs in the Sketch programming language –
a small imperative language with loops and recursion, and syntax similar to
Java. Limited translations from Java and Python to Sketch exist [11,24] and
can provide a basis to apply SketchRep to other languages. Our experiment
also shows that the Sketch programming language can be applied to a number
of real faulty programs using manual translation.

5 Related Work

Program Repair. Search-based repair tools leverage genetic programming [16]
and human patch templates [14] to search for a repair that let all test cases pass.
Mutation based repair [5] is a popular approach that applies a set of simple
mutations to suspicious statements and validates each mutant with the test
suite. Yet these tools are confined to reusing existing statements or mutating
expressions only.

Other repair tools introduce non-deterministic values to help search for repair
candidates. SPR introduces symbolic values for conditions [17] and tries to infer
a concrete value for the condition based on the test suite. Similarly, SemFix [20]
uses symbolic analysis and leverages constraint solving to generate repairs. The
idea of looking for an angelic value [3] is similar to our approach. Yet we make
it one step further—we introduce non-deterministic statements and repair the
program at the statement level.

Program repair based on specifications has shown its promise as well.
AutoFix-E [21] is able to handle some intricate defects in complex data struc-
ture for Eiffel program, but it relies on human-written contracts to generate fixes.
Gopinath et al. [10] use pre- and post- conditions written in Alloy specification
language to identify defects and repair the program, and were the first to conjec-
ture the reduction of program repair to program sketching. Singh et al [24] use
detailed specifications to generate feedback for students’ faulty python program.
We do not require such specifications to fix the program.

Gopinath et al. [9] use machine learning to repair incorrect “Where” clauses
in database statements without requiring formal specifications. Gopinath’s dis-
sertation extends this idea to a broader class of imperative programs [8].
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Demsky et al. [6] use Daikon to learn specifications for data-structure programs,
and the specification is used to perform data-structure repair. However, their
program invariants are only learnt from passing test cases, which may be differ-
ent from the specification leading to failing test assertions.

Kneuss et al. [15] fix faulty Scala programs using deductive program syn-
thesis, but they focus on expression-level synthesis and not on generating new
statements or fixing multiple-location faults.

Program Synthesis. Program Synthesis techniques such as Program Sketch-
ing [26] are able to synthesize code in small but complex programs yet it requires
users to provide a partial program as the input of the synthesizer. Other pro-
gram synthesis tools use input-output examples [7] or oracles [12] to synthesize
programs in domain-specific languages. We are different from these techniques
in the purpose of debugging an existing faulty program, and translate it to a
partial non-deterministic program as the input of the synthesizer.

6 Conclusion

This paper introduces a new approach for automated debugging, specifically
for repairing faulty statements with respect to given tests. Our key insight is
to reduce the problem of program repair to program sketching and leverage
off-the-shelf sketching technology to repair the faulty program. Experimental
evaluation using our prototype SketchRep shows that our approach is more
effective than two previous state-of-the-art techniques for repairing faults in our
small but complex subjects.

We believe the close relation between the problem of program repair and the
problem of program synthesis holds a key to developing novel approaches that
are well-founded, systematic, and scalable for repairing complex faults in code.
We hope our work provides a promising start towards realizing such approaches.
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Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 217–233.
Springer, Heidelberg (2015)

16. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method
for automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

17. Long, F., Rinard, M.: Staged program repair with condition synthesis. ESEC/FSE
2015, 166–178 (2015)

18. Malik, M.Z., Ghori, K., Elkarablieh, B., Khurshid, S.: A case for automated debug-
ging using data structure repair. In: ASE, pp. 620–624 (2009)

19. Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: scalable multiline program patch
synthesis via symbolic analysis. In: ICSE 2016 (2016)

20. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: SemFix: program repair
via semantic analysis. ICSE 2013, 772–781 (2013)

21. Pei, Y., Furia, C.A., Nordio, M., Wei, Y., Meyer, B., Zeller, A.: Automated fixing
of programs with contracts. IEEE Trans. Softw. Eng. 40(5), 427–449 (2014)

22. Qi, Z., Long, F., Achour, S., Rinard, M.C.: An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In: ISSTA (2015)

23. Saha, R.K., Lease, M., Khurshid, S., Perry, D.E.: Improving bug localization using
structured information retrieval. ASE 2013, 345–355 (2013)

24. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for intro-
ductory programming assignments. In: PLDI 2013, pp. 15–26 (2013)

25. Smith, E.K., Barr, E.T., Le Goues, C., Brun, Y.: Is the cure worse than the disease?
overfitting in automated program repair. ESEC/FSE 2015, 532–543 (2015)

26. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)



Polynomial Invariants by Linear Algebra

Steven de Oliveira1(B), Saddek Bensalem2, and Virgile Prevosto1

1 CEA, LIST, Software Reliability and Security Lab,
CEA Saclay - Nano Innov - Bât 862 - PC 174, 91191 Gif Sur Yvette Cedex, France

{steven.deoliveira,virgile.prevosto}@cea.fr
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Abstract. We present in this paper a new technique for generating
polynomial invariants, divided in two independent parts: a procedure
that reduces polynomial assignments composed loops analysis to linear
loops under certain hypotheses and a procedure for generating inductive
invariants for linear loops. Both of these techniques have a polynomial
complexity for a bounded number of variables and we guarantee the
completeness of the technique for a bounded degree which we successfully
implemented for C programs verification.

1 Introduction

When dealing with computer programming, anyone should be aware of the
underlying behavior of the whole code, especially when it comes to life-critical
projects composed of million of lines of code [11]. Manual code review cannot
scale to the size of actual embedded programs. Testing allows to detect many
vulnerabilities but it is never enough to certify their total absence. Indeed, the
cost of generating and executing sufficient test cases to meet the most stringent
coverage criteria [4] that are expected for critical software becomes quickly pro-
hibitive as the size of the code under test grows. Alternatively, formal methods
techniques based on abstraction allow us to prove the absence of error.

However, since a program can, at least in theory, have an infinite number of
different behaviors, the verification problem is undecidable and these techniques
either lose precision (emitting false alarms) and/or require manual input. One
of the main issue of such approach is the analysis of loops, considered as a major
research problem since the 70 s [2]. Program verification based on Floyd-Hoare’s
inductive assertion [10] and CEGAR-like techniques [7] for model-checking uses
loop invariants in order to reduce the problem to an acyclic graph analysis [3]
instead of unrolling or accelerating loops [12]. Thus, a lot or research nowadays
is focused on the automatic inference of loop invariants [17,22].

We present in this paper a new technique for generating polynomial invari-
ants, divided in two independent parts: a linearization procedure that reduces
the analysis of solvable loops, defined in [22], to the analysis of linear loops; an
inductive invariant generation procedure for linear loops. Those two techniques
are totally independent from each other, we aim to present in this article their
c© Springer International Publishing AG 2016
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composition in order to find polynomial invariants for polynomial loops. We
also add an extension of this composition allowing to treat loops with complex
behaviors that induces the presence of complex numbers in our calculation. The
linearization algorithm has been inspired by a compiler optimisation technique
called operator strength reduction [8]. Our invariant generation is completely
independent from the initial state of the loop studied and outputs parametrized
invariants, which is very effective on programs using a loop multiple times and
loops for which we have no knowledge of the initial state. In addition to being
complete for a certain class of polynomial relations, the invariant generation
technique has the advantage to be faster than the already existing one for such
loops as it relies on polynomial complexity linear algebra algorithms.

Furthermore, a tool implementing this method has been developped in the
Frama-C framework for C programs verification [15] as a new plug-in called
Pilat (standing for Polynomial Invariants by Linear Algebra Tool). We then
compared our performances with Aligator [17] and Fastind [5], two invariant
generators working on similar kinds of loops. First experiments over a represen-
tative benchmark exposed great improvements in term of computation time.

Outline. The rest of this paper is structured as follows. Section 2 introduces
the theoretical concepts used all along the article and the kind of programs we
focus on. Section 3 presents the application of our technique on a simple exam-
ple. Section 4.1 presents the linearization step for simplifying the loop, reducing
the problem to the study of affine loops. Section 4.2 presents our contribution
for generating all polynomial invariants of affine loops. Section 4.3 extends the
method with the treatment of invariants containing non-rational expressions.
Finally, Sect. 5 compares Pilat to Aligator and Fastind. Due to space con-
straints, proofs have been omitted. They are available in a separate report [9].

State of the Art. Several methods have been proposed to generate invariants
for kinds of loops that are similar to the ones we address in this paper. In partic-
ular, the weakest precondition calculus of polynomial properties in [20] is based
on the computation of the affine transformation kernel done by the program.
This method is based on the computation of the kernel of the affine transfor-
mation described by the program. More than requiring the whole program to
be affine, this method relies on the fact that once in the program there exists
a non-invertible assignment, otherwise the kernel is empty. This assumption is
valuable in practice, as a constant initialization is non- invertible, so the results
may appear at the end of a whole-program analysis and highly depend on the
initial state of the program. On the other hand, our method can generate para-
metrized invariants, computable without any knowledge of the initial state of a
loop, making it more amenable to modular verification.

From a constant propagation technique in [19] to a complete invariant gen-
eration in [22], Gröbner bases have proven to be an effective way to handle
polynomial invariant generation. Such approaches have been successfully imple-
mented in the tool Aligator [17]. This tool generates all polynomial invariants
of any degree from a succession of p-solvable polynomial mappings in very few
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steps. It relies on the iterative computation of Gröbner bases of some polynomial
ideals, which is a complicated problem proven to be EXPSPACE-complete [18].

Attempts to get rid of Gröbner bases as in [5] using abstract interpreta-
tion with a constant-based instead of a iterative-based technique accelerates the
computation of invariants by generating abstract loop invariants. However, this
technique is incomplete and misses some invariants. The method we propose
here is complete for a particular set of loops defined in [22] in the sense that it
finds all polynomial relations P of a given degree verifying P (X) = 0 at every
step of the loop, and has a polynomial complexity in the degree of the invariants
seeked for a given number of variables.

2 Preliminaries

Mathematical Background. Given a field K, Kn is the vector space of dimen-
sion n composed by vectors with n coefficients in K. Given a family of vector
Φ ⊂ K

n, V ect(Φ) is the vector space generated by Φ. Elements of Kn are denoted
x = (x1, ..., xn)t a column vector. Mn(K) is the set of matrices of size n ∗ n and
K[X] is the set of polynomials using variables with coefficients in K. We note
K the algebraic closure of K, K = {x|∃P ∈ K[X], P (x) = 0}. We will use 〈., .〉
the linear algebra standard notation, 〈x, y〉 = x · yt, with · the standard dot
product. The kernel of a matrix A ∈ Mn(K), denoted ker(A), is the vector
space defined as ker(A) = {x|x ∈ K

n, A.x = 0}. Every matrix of Mn(K) admits
a finite set of eigenvalues λ ∈ K and their associated eigenspaces Eλ, defined as
Eλ = ker(A − λId), where Id is the identity matrix and Eλ �= {0}. Let E be a
K vector space, F ⊂ E a sub vector space of E and x an element of F . A vector
y is orthogonal to x if 〈x, y〉 = 0. We denote F⊥ the set of vectors orthogonal to
every element of F .

Programming Model. We use a basic programming language whose syntax
is given in Fig. 1. Var is a set of variables that can be used by a program,
and which is supposed to have a total order. Variables take value in a field K.
A program state is then a partial mapping Var ⇀ K. Any given program only
uses a finite number n of variables. Thus, program states can be represented as a
vector X = (x1, ..., xn)t. In addition, we will note X ′ = (x′

1, ..., x
′
n)t the program

state after an assignment. Finally, we assume that for all programs, there exists
xn+1 = x′

n+1 = 1 a constant variable always equal to 1.

The i OR i instruction refers to a non-deterministic condition.
Each i will be refered to as one of the bodies of the loop.

Multiple variables assignments occur simultaneously within a single instruc-
tion. We say that an instruction is affine when it is an assignment for which
the right values are affine. If not, we divide instructions in two categories with
respect to the following definition, from [22].
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Fig. 1. Code syntax

Definition 1. Let g ∈ Q[X]m be a polynomial mapping. g is solvable if there
exists a partition of X into subvectors of variables x = w1 	 ... 	 wk such that
∀j, 1 � j � k we have

gwj
(x) = Mjw

T
j + Pj(w1, ..., wj−1)

with (Mi)1�i�k a matrix family and (Pi)1�i�k a family of polynomial mapping.

An instruction is solvable if the associated assignment is a solvable polyno-
mial mapping. Otherwise, it is unsolvable. Our technique focuses on loops con-
taining only solvable instructions, thus it is not possible to generate invariants for
nested loops. It is however possible to find an invariant for a loop containing no
inner loop even if it is itself inside a loop, that’s why we allow the construction.

3 Overview of Our Approach

Steps of the Generation. In order to explain our method we will take the fol-
lowing running example, for which we want to compute all invariants of degree 3:

while (∗ ) do
( x , y ) := ( x + y∗y , y + 1)

done

Our method is based on two distinct parts:

1. reduction of the polynomial loop to a linear loop;
2. linear invariant generation from the linearized loop.

We want to find a linear mapping f that simulates the behavior of the poly-
nomial mapping P (x, y) = (x + y2, y + 1). To achieve this, we will express the
value of every monomial of degree 2 or more using brand new variables. Here,
the problem comes from the y2 monomial. In [20], it is described how to con-
sider the evolution of higher degree monomials as affine applications of lower or
equal degree monomials when the variables involved in those monomials evolve
affinely. We extend this method to express monomials transformations of the
loop by affine transformations, reducing the problem to a simpler loop analysis.
For example here, y′ = y + 1 is an affine assignment, so there exists an affine
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representation of y2 = y2, which is y′
2 = y2 + 2.y + 1. Assuming the initial y2

is correct, we are sure to express the value of y2 with the variable y2. Also, if
we want to find invariants of degree 3, we will need to express all monomials
of degree 3, i.e. xy and y3 the same way. (monomials containing xi with i � 2
are irrelevant as their expression require the expression of degree 4 monomials).
Applying this method to P gives us the linear mapping f(x, y, y2, xy, y3,1) =
(x + y2, y + 1, y2 + 2.y + 1, xy + x + y2 + y3, y3 + 3.y2 + 3.y + 1,1), with 1 the
constant variable mentioned in the previous section.

Now comes the second part of the algorithm, the invariant generation. Infor-
mally, an invariant for a loop is a formula that

1. is valid at the beginning of the loop;
2. stays valid after every loop step.

We are interested in finding semi-invariants complying only with the second
criterion such that they can be expressed as a linear equation over X, containing
the assignment’s original variables and the new ones generated by the lineariza-
tion procedure. In this setting, a formula satisfying the second criterion is then
a vector of coefficients ϕ such that

〈ϕ,X〉 = 0 ⇒ 〈ϕ, f(X)〉 = 0 (1)

By linear algebra, the following is always true

〈ϕ, f(X)〉 = 〈f∗(ϕ),X〉 (2)

where f∗ is the dual of f . If ϕ happens to be an eigenvector of f∗ (i.e. there
exists λ such that f∗(ϕ) = λϕ), the Eq. (1) becomes

〈ϕ,X〉 = 0 ⇒ 〈f∗(ϕ),X〉 = 0 by (2)
〈ϕ,X〉 = 0 ⇒ 〈λ.ϕ,X〉 = 0
〈ϕ,X〉 = 0 ⇒ λ.〈ϕ,X〉 = 0

which is always true. We just need to transpose the matrix representing f to
compute f∗ . It returns f∗(x, y, y2, y3,1) = (x, y + y2 + y3, x + y2 + 3.y3, y3, y +
y2+y3+1, y+y2+y3+1). f∗ only admits the eigenvalue 1. The eigenspace of f∗

associated to 1 is generated by two independants vectors, e1 = (−6, 1,−3, 2, 0)t

and e2 = (0, 0, 0, 0, 1)t. Eventually, we get the formula Fk1,k2 = (k1.(−6.x + y −
3.y2 + 2.y3) + k2.1 = 0) as invariant, with k1, k2 ∈ Q. By writing k = −k2

k1
and

replacing 1 with 1, we can rewrite it with only one parameter, Fk = (−6.x +
y − 3.y2 + 2y3 = k). In this case, information on the initial state of the loop
allows to fix the value of the parameter k. For example if the loop starts with
(x = 0, y = 0), then −6.x + y − 3.y2 + 2.y3 = 0, and F0 is an invariant. The
next section will show how the work done on our example can be generalized
on any (solvable) loop. In particular, Sect. 4.1 will deal with the linearization of
polynomial assignments. Then we will see in Sect. 4.2 that the eigenspace of the
application actually represents all the possible invariants of f and that we can
always reduce them to find a formula with only one parameter.
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Extension of the Basic Method. The application’s eigenvector may not
always be rational. For example, applying the previous technique on a map-
ping such as f(x, y) = (y, 2.x) will give us invariants with coefficients involving√

2. Dealing with irrational and/or complex values raises some issues in our cur-
rent implementation setting. Therefore, we propose in Sect. 4.3 a solution to stick
with rational numbers. Eventually, we treat the case when a condition occur in
loops in Sect. 4.4.

4 Automated Generation of Loop Invariants

4.1 Strength Reduction of Polynomial Loops

Lowerization. Let P be a program containing a single loop with a single solvable
assignment X: = g(X). In order to reduce the invariant generation problem for
solvable polynomial loops to the one for affine loops, we need to find a linear
mapping f that perfectly matches g. As shown in Fig. 2, the first loop L1 is
polynomial but there exists a similar affine loop, namely L2, computing the
same vector of values plus and thanks to an extra variable xy.

Fig. 2. Polynomial and affine loop having the same behavior

Definition 2. Let g be a polynomial mapping of degree d using m variables.
g is linearizable if there exists a linear mapping f such that X ′ = g(X) ⇒
(X ′, P (X ′)) = f(X,P (X)), where P : Qm → Q

n is a polynomial of degree d.

By considering polynomials as entries of the application, we are able to con-
sider the evolution of the polynomial value instead of recomputing it for every
loop step. This is the case in the previous example, where the computation of
xy as x ∗ y is made once at the beginning of the loop. Afterwards, its evolution
depends linearly of itself, x and y. Similarly, if we want to consider yn for some
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n ≥ 2, we would just need to express the evolution of yn by a linear combination
of itself and lower degree monomials, which could themselves be expressed as lin-
ear combinations of lower degree monomials, until we reach an affine application.
We call this process the polynomial mappings lowerization or linearization.

Remark. This example and our running example have the good property to
be linearizable. However, this property is not true for all polynomials loops.
Consider for example the mapping f(x) = x2. Trying to express x2 as a linear
variable will force us to consider the monomials x4, x8 and so on. Thus, we need
to restrain our study to mappings that do not polynomially transform a variable
itself. This class of polynomials corresponds to solvable polynomial mappings,
defined in Definition 1.

Property 1. For every solvable polynomial mapping g, g is linearizable.

For example, let g(x, y) = (x + y2, y + 1). g is linearized by f(x, y, y2) =
(x + y2, y + 1, y2 + 2y + 1). Indeed with (x′, y′) = g(x, y), we have (x′, y′, y′2) =
f(x, y, y2)

Linearization Algorithm. The algorithm is divided in two parts: the solv-
ability verification of the mapping and, if successful, the linearization process.
The solvability verification consists in finding an appropriate partitioning of the
variables that respects the solvable constraint. It is nothing more than check-
ing that a variable v cannot be in a polynomial (i.e. non linear) assignment of
another variable that itself depend on v. This check can be reduced to verify-
ing the acyclicity of a graph, which can be computed e.g. by Tarjan’s [23] or
Johnson’s [13] algorithms.

The linearization process then consists in considering all monomials as new
variables, then finding their linear evolution by replacing each of their variables
by the transformation made by the initial application. This may create new
monomials, for which we similarly create new variables until all necessary mono-
mials have been mapped to a variable. Since we tested the solvability of the loop,
the variable creation process will eventually stop. Indeed, if this was not the case,
this would mean that a variable x transitively depends on xd with d > 1.

Elevation. We saw how to transform a polynomial application into a linear
mapping by adding extra variables representing the successive products and
powers of every variable. This information can be useful in order to generate
invariants but in fact, most of the time, this is not enough. In our running
example of Sect. 2, g(x, y) = (x + y2, y + 1), the degree of the mapping is 2 but
there exists no invariant of degree 2 for this loop. In order to deal with higher-
degree invariants, we need not just to linearize g, we also have to add more
variables to our study. As we can represent monomials of variables of a solvable
mapping as linear applications, we can extend the method to generate higher
degree monomials such as y3 for example : we elevate g to a higher degree. The
process of elevation is described in [20] as a way to express polynomial relations
on a linear program.
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Property 2. Every solvable polynomial mapping g using n variables is lineariz-
able by a linear mapping f using at most

(
n+d

d

)
new variables, where d is the

degree of P , the polynomial linearizing g as in Definition 2.

Note. The complexity of the transformation is polynomial for d or n fixed.
The lowerization algorithm can be used as shown above by adding variables
computing the high degree monomials we want to linearize. Moreover,

(
n+d

d

)
is an

upper bound and in practice, we usually need much less variables. For instance,
in our running example, we don’t need to consider x.y2. Indeed, if we tried to
linearize this monomial, we would end up with x.y2 = x.y2+x.y+x+y4+2y3+y2,
a polynomial of degree 4. Detecting that a monomial m is relevant or not can be
done by computing the degree of its transformation. For example, the assignment
of x is a degree 2 polynomial, so x2 associated transformation will be of degree 4.
Here, there is actually only two interesting monomials of degree 3, which are xy
and y3. Though those variables will be useless for the linearized mapping, they
are still easily computable: y′

3 = y3+3.y2+3.y+1 and xy = xy+x+y2+y3. This
limits the necessary variables to only 6 (x, y, y2, y3, xy,1) instead of

(
5
2

)
= 10.

This upper bound in only reached for affine transformations when searching for
polynomial invariants, as all possible monomials need to be treated.

4.2 Invariant Generation

The transformation described previously doesn’t linearize a whole program, but
only a loop. Polynomial assignments must be performed before the loop starts
to initialize the new monomials. The method we present only focuses on the loop
behavior itself, allowing any kind of operation outside of the loop.

Eigenspace. Loop invariants are logical formulas satisfied at every step of a
loop. We can characterize them with two criteria: they have to hold at the
beginning of the loop (initialization criterion) and if they hold at one step, then
they hold at the next step (heredity criterion). Our technique is based on the
discovery of linear combinations of variables that are equal to 0 and satisfying
the heredity criterion. For example, the loop of Sect. 3 admits the formula −6.x+
y−3.y2+2y3 = k as a good invariant candidate. Indeed, if we set k in accordance
with the values of the variables at the beginning of the loop, then this formula
will be true for any step of the loop. We call such formulas semi-invariants.

Definition 3. Let ϕ : Kn �→ K and f : Kn �→ K
n two linear mappings. ϕ is a

semi-invariant for f iff ∀X, ϕ(X) = 0 ⇒ ϕ(f(X)) = 0.

Definition 4. Let ϕ : Kn �→ K, f : Kn �→ K
n and X ∈ K

n. ϕ is an invariant
for f with initial state X iff ϕ(X) = 0 and ϕ is a semi-invariant for f .

The key point of our technique relies on the fact that if there exists λ, f∗(ϕ) =
λϕ, then we know that ϕ is a semi-invariant. Indeed, we can rewrite Definition 3
by 〈ϕ, x〉 = 0 ⇒ 〈ϕ, f(x)〉 = 0. By linear algebra, we have 〈ϕ, f(x)〉 = 〈f∗(ϕ), x〉,
with f∗ the dual of f . If ∃λ, f∗(ϕ) = λϕ, then we can deduce that 〈ϕ, x〉 = 0 ⇒
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λ〈ϕ, x〉 = 0. This formula is always true, thus we know that ϕ is a semi-invariant.
Such ϕ are commonly called eigenvectors of f∗. We will not adress the problem
of computing the eigenvectors of an application as this problem have been widely
studied (in [21] for example).

Recall our running example g(x, y) = (x + y2, y + 1), linearized by the appli-
cation f(x, y, y2, xy, y3,1) = (x+y2, y+1, y2+2y+1, xy+x+y2+y3, y3+3y2+
3y + 1,1). f∗ admits e1 = (−6, 1,−3, 0, 2, 0)t and e2 = (0, 0, 0, 0, 0, 1)t as eigen-
vectors associated to the eigenvalue λ = 1. It means that if 〈k1.e1 +k2e2, x〉 = 0,
then

〈k1.e1 + k2e2, f(X)〉 = 〈f∗(k1.e1 + k2e2),X〉
= 〈λ(k1.e1 + k2e2),X〉
= 0

In other words, 〈k1.e1 +k2e2,X〉 = 0 is a semi-invariant. Then, by expanding it,
we can find that −6.x + y − 3.y2 + 2y3 = k, with k = −k2

k1
is a semi-invariant. In

terms of the original variables, we have thus −6.x + y − 3.y2 + 2y3 = k.
Being an eigenvector of f∗ does not just guarantee a formula to be a semi-

invariant of a loop transformed by f . This is also a necessary condition.

Theorem 1. ϕ : Kn �→ K is a semi-invariant if and only if ∃λ ∈ K,∃ϕ ∈ Eλ,
where Eλ = ker(f∗ − λId).

It is now clear that the set of invariants is exactly the union of all eigenspaces
of f∗, i.e. a vector space union (which is not a vector space itself). An element
ϕ of Eλ of basis {e1, ...en} is a linear combination of e1, ..., en:

ϕ =
n∑

k=1

kiei

The parameters ki can be chosen with respect to the initial state of the loop.

Expression of Eigenvectors as Invariants. More than a syntactic sugar, the
variable 1 brings interesting properties over the kind of invariants we generate
for an application f . The vector e1 such that 〈e1,X〉 = 1 is always an eigenvector
associated to the eigenvalue 1. Indeed, by definition f(1) = 1, hence f∗(e1) = e1.
For example, let’s take the mapping f(x, y, xy,1) = (2x, 1

2y+1, xy+2x,1). This
mapping admits 3 eigenvalues : 2, 1

2 and 1. There exists two eigenvectors for the
eigenvalue 1 : (−2, 0, 1, 0) and (0, 0, 0, 1) = e1. We have then the semi-invariant
k1.(−2x+xy)+k2 = 0, or −2x+xy = −k2

k1
. This implies that the two parameters

k1 and k2 can be reduced to only one paramter k = −k2
k1

, which simplifies a lot
the equation by providing a way to compute the parameter at the initial state if
we know it. For our example, −k2

k1
would be −2xinit +xinit .yinit , where xinit and

yinit are the initial values of x and y. More generally, each eigenvector associated
to 1 gives us an invariant ϕ that can be rewritten as ϕ(X) = k, where k is inferred
from the initial value of the loop variables.
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We can generalize this observation to eigenvectors associated to any eigen-
value. To illustrate this category, let us take as example f(x, y, z) = (2x, 2y, 2z).
Eigenvectors associated to 2 are e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1),
thus k1x + k2y + k3z = 0 is a semi invariant, for any k1, k2 and k3 satisfying
the formula for the initial condition of the loop. However, if we try to set e.g.
k1 = k2 = 1, using x + y + kz = 0 as semi invariant, we won’t be able to find a
proper invariant when yinit or xinit �= 0 and zinit = 0. Thus, in order to keep the
genericity of our formulas, we cannot afford to simplify the invariant as easily
as we can do for invariants associated to the eigenvalue 1. Namely for every ei,
we have to test whether 〈ei,Xinit〉 = 0. For each ei for which this is the case,
〈ei,X〉 = 0 is itself an invariant if 〈ei,Xinit〉 = 0. However, if there exists an
i such that 〈ei,Xinit〉 �= 0, then we can simplify the problem. For example, we
assume that zinit �= 0. Then k1xinit +k2yinit +k3zinit = 0 ⇔ k1xinit+k2yinit

zinit
= −k3.

We know then that k1x + k2y = k1xinit+k2yinit

zinit
z is a semi-invariant. By writing

g(k1, k2) = k1xinit+k2yinit

zinit
, we have

{
x = g(1, 0)z
y = g(0, 1)z

As g is a linear application, these two invariants implies that ∀k1, k2, k1x +
k2y = g(k1, k2)z is a semi-invariant.

Property 3. Let F a semi-invariant expressed as F =
n∑

i=0

kiei.

If 〈e0,Xinit〉 �= 0, then we have that

n∧

i=1

(〈ei,X〉 = − 〈ei,Xinit〉
〈e0,Xinit〉 〈e0,X〉) is an invariant ⇔ 〈F ,Xinit〉 = 0

We are now able to use pairs of eigenvectors to express invariants by knowing
the initial condition.

Algorithm. As we are restricting our study to solvable loops, that we know can
be replaced without loss of generality by linear loops, we assume the input of this
algorithm is a family of linear mappings. We can easily compose them via their
matrix representation. We end up with a new matrix A. Computing the dual of
A is computing the matrix AT . Then, eigenvectors of AT can be computed by
many algorithms in the linear algebra literature [21]. As the eigenvalue problem
is known to be polynomial, our invariant generation algorithm is also polynomial.

4.3 Extension of the Method

Let A ∈ Mn(Q). In the general case, A admits irrational and complex eigenval-
ues and eigenvectors, which end up generating irrational or complex invariants.
We cannot accept such representation for a further analysis of the input pro-
gram because of the future use of these invariants, by SMT solvers for example
which hardly deal with non-rational numbers. For example, let us take the func-
tion f(x, y) = (y, 2x). This mapping admits two eigenvalues: λx =

√
2 and
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λy = −√
2. In this example, the previous method would output the invariants

k.(x +
√

2y) = 0 and k′.(x − √
2y) = 0. With x and y integers or rationals,

this would be possible iff k = k′ = 0. However, by considering the variable xy
the invariant generation procedure outputs the invariant k.(xy) = 0, which is
possible if x or y equals 0. This raises the issue of finding a product of variables
that will give us a rational invariant. We aim to treat the problem at its source:
the algebraic character of the matrix eigenvalues. A value x is algebraic in Q if
there exists a polynomial P in Q[X] such that P (x) = 0. Assuming we have a
geometric relation between the complex eigenvalues λi (i.e. a product q of eigen-
values that is rational), we will build a monomial m as a product of variables xi

associated to λi such that the presence of this monomial induces the presence
of a rational eigenvalue, namely q. Moreover, a rational eigenvalue of a matrix
is always associated to a rational eigenvector. Indeed, the kernel of a rational
matrix is always a Q-vector space. If λ ∈ Q is an eigenvalue of A, then A − λ.Id
is a rational matrix and its kernel is not empty.

Definition 5. Let A ∈ Mn(Q) . We denote Ψd(A) the elevation matrix such
that ∀X = (x1, ..., xn) ∈ Q

n, Ψd(A).p(X) = p(A.X), with p ∈ (Q[X]k) a polyno-
mial associating X to all possible monomials of degree d or lower.

For example, if we have A =
(

a b
c d

)

as a transformation for X = (x, y), we

have as transformation for the variables (x2, xy, y2, x, y) the matrix

Ψ2(A) =

⎛

⎜
⎜
⎜
⎜
⎝

a2 2ab b2 0 0
ac ad + bc bd 0 0
c2 2cd d2 0 0
0 0 0 a b
0 0 0 c d

⎞

⎟
⎟
⎟
⎟
⎠

Property 4. Let A ∈ Md(Q), Λ(M) the eigenvalue set of a matrix M and d an
integer. Then for any product p of d or less elements of Λ(A), p ∈ Λ(Ψd(A)).

We can generalize this property for more variables. After working with two
variables, we get a new matrix with new variables that we can combine similarly,
and so on. Thanks to this property, if we have a multiplicative relation between
eigenvalues we are able to create home-made variables in the elevated application
whose presence implies the presence of rational eigenvalues.

Though we could brute-force the search of rational products of irrational
eigenvalues in order to find all possibilities of variable products that have rational
eigenvalues, we could search for algebraic relations, i.e. multiplicative relations
between algebraic values. This subject is treated in [14] and we will not focus
on it. However, we can guarantee that there exists at least one monomial having
a rational eigenvalue. Indeed, it is known that the product of all eigenvalues of
a rational matrix is equal to its determinant. As the determinant of a rational
matrix is always rational, we know that the product of all variables infers the
presence of the determinant of the matrix as eigenvalue of the elevated matrix.
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Coming back to the previous example, we have the algebraic relation λx.λy = −2.
If we consider the evolution of xy, we have (xy′) = 2xy. Note that the eigenvalue
associated to xy is 2 and not −2. Indeed, we know that A = P−1JP , with

P =
(

1 −1√
2 −√

2

)

and J an upper-triangular matrix, which means the eigenvalues of A are on
the diagonal of J . xy in the base of J would be (x +

√
2y)(x − √

2y) = x2 − 2y2,
and we have well λ2

x − 2λ2
y = −2.

Finally, by knowing that λ2
x = 2, λ2

y = 2 and λxλy = −2, we will consider the
variables x2, y2 and xy in our analysis of f . We can deduce new semi-invariants
from these variables: k1(xy) + k2(2x2 + y2) = 0 with the eigenvectors associated
to 2 and k.(y2 − 2x2) = 0 with the eigenvector associated to −2.

4.4 Multiple Loops

In this short section, we present our method to treat non-deterministic loops,
i.e. loops with non-deterministic conditions. At the beginning of each iteration,
the loop can choose randomly between all its bodies. This representation is
equivalent to the definition in Sect. 2.

Definition 6. Let F = {Ai}1�i�n a family of matrices and Inv(F ) the set of
invariants of a loop whose different bodies can be encoded by elements of F .

Inv(F ) = {ϕ|∀X,ϕ.X = 0 ⇒
n∧

i=1

ϕ.Ai.X = 0}

Property 5. Let F = {Ai}1�i�n a family of matrices.

Inv(F ) =
n⋂

i=1

Inv(Ai)

As the set of invariants of a single-body loop are a vector spaces union, its
intersection with another set of invariants is also a vector space union. Although
we do not consider the condition used by the program to choose the correct body,
we still can discover useful invariants. Let us consider the following example,
taken from [22], that computes the product of x and y in variable z:

while (∗ ) do
( x , y , z ) := (2 x , (y−1)/2 , x + z )
OR
( x , y , z ) := (2 x , y /2 , z )

done

We have to deal with two applications: f1(x, y, z) = (2x, (y − 1)/2, x + z)
and f2(x, y, z) = (2x, y/2, z). The elevation to the degree 2 of f1 and f2 returns
applications having both 10 eigenvectors. For simplicity, we focus on invariants
associated to the eigenvalue 1.
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f∗
1 has 4 eigenvectors {ei}i∈[1,4]

associated to 1 such that

– 〈e1,X〉 = −x + xy
– 〈e2,X〉 = x + z
– 〈e3,X〉 = xz + x2 + z2

– 〈e4,X〉 = 1

f∗
2 also has 4 eigenvectors {e′

i}i∈[1,4]

associated to 1 such that

– 〈e′
1,X〉 = xy

– 〈e′
2,X〉 = z

– 〈e′
3,X〉 = z2

– 〈e′
4,X〉 = 1

First, we notice that e4 = e′
4. Then, we can see that 〈e1 + e2,X〉 = xy + z =

〈e′
1 + e′

2,X〉. Thus, e1 + e2 = e′
1 + e′

2. Eventually, we find that e1 + e2 + k.e4 ∈
(V ect({ei}i∈[1,4]) ∩ V ect({e′

i}i∈[1,4])). That’s why (〈e1 + e2 + k.e4,X〉 = 0) is a
semi-invariant for both f1 and f2, hence for the whole loop. Replacing 〈k.e4,X〉
by k = −k′ and 〈e1 + e2,X〉 by xy + z gives us xy + z = k′.

Algorithm. The intersection of two vector spaces corresponds to the vectors
that both vector spaces have in common. It means that such elements can be
expressed by elements of the base of each vector space. Let B1 and B2 the bases of
the two vector spaces. If e ∈ Vect{B1} and e ∈ Vect{B2}, then e ∈ ker{(B1B2)}.
To compute the intersection of a vector space union, we just have to compute
the kernels of each combination of vector space in the union.

5 Implementation and Experimentation

In order to test our method, we implemented an invariant generator as a plu-
gin of Frama-C [15], a framework for the verification of C programs written in
OCaml. Tests have been made on a Dell Precision M4800 with 16 GB RAM and
8 cores. Time does not include parsing time of the code, but only the invariant
computation from the Frama-C representation of the program to the formulas.
Moreover, our tool doesn’t implement the extension of our method and may out-
put irrational invariants or fail on complex eigenvalues. Benchmark is available
at [6]. The second column of the Table 1 represents the number of variables used
in the program. The third column represents the invariant degree used for Pilat
and Fastind. The last three columns are the computation time of the tools in
ms. O.O.T. represents an aborted ten minutes computation and – indicates that
no invariant is found.

All the tested functions are examples for which the presence of a polynomial
invariant is compulsory for their verification. The choice of high degree for some
functions is motivated by our will to show the efficiency of our tool to find high
degree invariants as choosing a higher degree induces computing a bigger set of
relations. In the other cases, degree is choosen for its usefulness.

For example in Fig. 3 we were interested in finding the invariant x + qy =
k for eucli div. That’s why we set the degree to 2. Let X be the vector of
variables (x, y, q, xq, xy, qy, y2, x2, q2,1). The matrix A representing the loop in
Fig. 3 has only one eigenvalue: 1. There exist 4 eigenvectors {ei}i∈[1;4] associated

to 1 in A, so 〈
4∑

i=1

kiei,X〉 = 0 is a semi-invariant. One of these eigenvectors, let’s
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Table 1. Performance results with our implementation Pilat

Program Time (in ms)

Name Var Degree Aligator [16] Fastind [5] Pilat

divbin 5 2 80 6 2.5

hard 6 2 89 13 2

mannadiv 5 2 27 6 2

sqrt 4 2 33 5 1.5

djikstra 5 2 279 31 4

euclidex2 8 2 1759 10 6

lcm2 6 2 175 6 3

prodbin 5 2 100 6 2.5

prod4 6 2 13900 – 8

fermat2 5 2 30 9 2

knuth 9 3 O.O.T. 347 192

eucli div 3 2 13 6 2

cohencu 5 2 90 5 2

read writ 6 2 82 – 12

illinois 4 2 O.O.T. – 8

mesi 4 2 620 – 4

moesi 5 2 O.O.T. – 8

petter 4 2 10 19000 37 3

petter 5 2 10 O.O.T. 37 2

petter 6 2 10 O.O.T. 37 2

Fig. 3. Euclidean division C loop and generation of its associated invariants.
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say e1, correspond to the constant variable, i.e. e1.X = 1 = 1, thus we have

〈
4∑

i=2

kiei,X〉 = −k1 as invariant. In our case, 〈e2,X〉 = y, 〈e3,X〉 = x + yq and

〈e4,X〉 = y2. We can remove (y = k) and (y2 = k) that are evident because y
does not change inside the loop. The remaining invariant is x + yq = k.

6 Conclusion and Future Work

We presented a simple and effective method to generate non-trivial invariants.
One of its great advantages is to only rely on linear algebra theory, and gener-
ate modular invariants. Still our method has some issues that we are currently
investigating. First, it is incomplete for integers: invariants we generate are only
correct for rationals. Perhaps surprisingly, this issue does not come from the
invariant generation, but from the linearization procedure which badly takes
into account the division. For example in C, the operation x′ = x

2 with x uneven
returns x−1

2 . This behavior is not taken into account by the elevation, which can
freely multiply this x by a variable y with y′ = 2y. This returns the assignment
xy′ = xy which is false if x is odd. Next, we do not treat interleaving loops as
we cannot yet compose invariants with our generation technique. The tool has
been successfully implemented as an independent tool of Frama-C.

Our next step is to use those invariants with the Frama-C tools Value (a
static value analyser) and WP (a weakest precondition calculus API) to apply a
CEGAR-loop on counter-examples generated by CaFE, a temporal logic model
checker based on [1]. Also, we want the next version of the tool to handle irra-
tional eigenvalues as decribed in Sect. 4.3.
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polants. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp.
187–202. Springer, Heidelberg (2012)

13. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975)

14. Kauers, M., Zimmermann, B.: Computing the algebraic relations of C-finite
sequences and multisequences. J. Symb. Comput. 43(11), 787–803 (2008)

15. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)
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Abstract. We propose a certification approach for checking the analysis
results produced by symbolic execution. Given a program P under test,
an analysis producer performs symbolic execution on P and creates a cer-
tificate C that represents the results of symbolic execution. The analysis
consumer checks the validity of C with respect to P using efficient sym-
bolic re-execution of P . The certificates are simple to create and easy to
validate. Each certificate is a list of witnesses that include: test inputs
that validate path feasibility without requiring any constraint solving;
and infeasibility summaries that provide hints on how to efficiently estab-
lish path infeasibility. To account for incompleteness in symbolic execu-
tion (due to incompleteness of the backend solver), the certificate also
contains an incompleteness summary. Our approach deploys constraint
slicing and other heuristics as performance optimizations. Experimental
results using a prototype certification tool based on Symbolic PathFinder
for Java show that certification can be 3X to 370X (on average, 75X)
faster than traditional symbolic execution. We also show the benefits
of the approach for the reliability assessment of a software component
under different probabilistic environment conditions.

1 Introduction

Certification plays an important role in the development of reliable software
systems. For example, a certifying compiler [19,25] produces a proof that the
compiled code has specific safety properties or is semantically equivalent to its
source-code—which enables component re-use from untrusted parties, aggressive
compiler optimizations, etc. As another example, a certifying model checker
[31] produces a proof that it indeed performed exhaustive exploration of the
program’s state space and produced the correct overall checking result—which
enables search pruning, optimization heuristics, load balancing etc.

This paper introduces a certification approach for symbolic execution [7,15].
Symbolic execution is a classic program analysis technique that has received
much attention in the last decade [11,17,22,27,36]. The technique performs a
systematic exploration of the program’s paths and for each path, it builds a path
constraint using a logical formula that represents all inputs that execute that
path. Off-the-shelf solvers are used to determine feasibility of path constraints
(when possible); solutions to feasible path constraints represent test inputs that
c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 495–511, 2016.
DOI: 10.1007/978-3-319-46520-3 31
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drive the execution of corresponding paths. Symbolic execution has many appli-
cations, including automatic test input generation, error detection, regression
and security analysis, continuous testing, program repair etc. [5,21,33]. Our
approach aims to provide a simple but rigorous examination of the symbolic
execution results, and can thus benefit all these applications.

Given a program P the analysis producer in our certification approach sym-
bolically executes P and creates a certificate C that represents succinctly the
result of symbolic execution. The analysis consumer checks that the results of
symbolic execution are correct by checking the validity of C with respect to P
using an efficient symbolic re-execution of P . Our key insight is that certification
for symbolic execution is possible using certificates that are manageable in size
and simple to validate without incurring a high cost. Our approach follows the
spirit of proof-carrying code [19]. However, our focus is on certifying analysis
results produced by symbolic execution.

Each certificate is a list of witnesses that include: test inputs that directly
validate path feasibility; and infeasibility summaries that provide hints on how
to efficiently establish path infeasibility. If for some path, the producer is unable
to determine feasibility (due to incompleteness of the solver), the certificate also
contains an incompleteness summary, similar to the infeasibility summary.

A test input is a set of concrete input values that can be executed against
P . Certification establishes path feasibility by checking that test inputs in the
certificate satisfy their respective path constraints. An infeasibility summary con-
sists of two elements: (1) a sliced path constraint that contains a subset of clauses
of the corresponding path’s full path constraint, akin to unsatisfiable cores in
propositional satisfiability (SAT) formulas [3]; and (2) a strategy to deploy for
efficiently establishing constraint infeasibility. These strategies specify constraint
solving optimizations that we describe in this paper based on logical rules to
enable efficiently establishing constraint unsatisfiability and can be naturally
extended to include proofs of unsatisfiability such as those produced by SMT
solvers, e.g., Z3 [8], which can be verified independently using theorem provers
such as Isabelle. Certification utilizes the infeasibility summaries for efficiently
validating path infeasibility. The consumer may also utilize the incompleteness
summary to enhance the symbolic execution results (say using a different solv-
ing strategy or solver). However, certification does not require the consumer to
validate the producer’s solver’s incompleteness.

The cost of certification is determined by validating feasible and infeasible
paths. To validate feasible paths (that are executed by the tests), our approach
does not require constraint solving—which is often the most expensive opera-
tion in symbolic execution. To validate infeasible paths, our approach has the
following steps: checking that a sliced constraint (in the certificate) is included in
the candidate infeasible paths, which requires no constraint solving; and either
applying the strategy (if present) for quickly validating infeasibility without
invoking an external solver, or invoking the solver for the sliced constraints that
do not have an applicable strategy. Overall, certification performs re-execution of
symbolic analysis using minimal (for many paths, 0) calls to external constraint
solvers and has a much lower cost than full symbolic execution.
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The result of certification is either that the certificate is valid (confirming the
results of the producer’s symbolic execution analysis) or that the certificate is
invalid, indicating an error (or unstated assumption) in the symbolic execution
engine or in the constraint solver that was used. Thus, our approach enables
debugging symbolic execution engines and constraint solvers, which can be very
complex systems. Our approach also benefits probabilistic reliability assessment
of source code, which is a recent application of symbolic execution for extracting
failure and success paths to calculate a reliability value against relevant proba-
bilistic usage scenarios [9]. By storing the probabilities of path conditions in our
certificate, we can facilitate the integration of a certified component into bigger
systems that define different usage scenarios, obtaining the reliability estimation
at a significantly reduced cost.

We illustrate these applications in detail, but note that our approach has
many other applications that we can not include for space reasons. For example,
our approach enables the efficient verification of new properties on the same
code base, since the certificate includes the key elements that are necessary to
re-run the analysis efficiently. Furthermore, the certificate enables incremental
symbolic execution where the certificate for one program version can be re-used
to efficiently check the next program version. Even if the certification fails (e.g.
due to some program changes) the certificate still likely contains valid informa-
tion (test inputs) that reduce the cost of re-application of symbolic execution.
Finally, since our approach produces evidence that the software has been thor-
oughly analyzed, it can be used to aid software certification, which is known to
be a costly manual process.

We believe our approach to certification based on symbolic execution holds
promise and hope our work will help develop new ways to utilize the power of
this classic program analysis.

2 Example

We illustrate certified symbolic execution on the simple example depicted in
Listing 1. Method example takes three integers x, y, and z as input and returns
an integer according to the relations between x, y, and z.

Assume we perform a symbolic execution over the example (in general the
execution needs to be bounded to deal with possibly infinite loops). Figure 1
shows the explored execution paths, organized in a symbolic execution tree where
tree nodes are symbolic program states and tree edges are program transitions.
The analysis maintains a path condition i.e., a conjunction of constraints that
the program inputs must satisfy to drive the execution along that path. Initially,
path condition (PC0) is true, and input variables x, y, and z have symbolic values
X, Y , and Z respectively. Program variables are initialized with symbolic values
X, Y , and Z. For each conditional statement in the program, PC is updated
with the possible choices from the branch condition so that both true and false
valuations are considered. For example, in the first conditional statement (Line
2), PC is updated to PC 1 and PC 10 for true and false branches of the condition
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1 int example ( int x , int y , int z ) {
2 i f ( z > 0) {
3 i f ( x <= y) {
4 i f ( x > y ) {
5 return 1 ;
6 } else {
7 return 2 ;
8 }
9 } else {

10 i f ( x + 1 == 0) {
11 i f ( x != 3) {
12 return 3 ;
13 }
14 return 4 ;
15 } else {
16 return 5 ;
17 }
18 }
19 }
20 return 6 ;
21 }

Listing 1. Method example

x: X, y: Y, z: Z
PC0: True

PC1: Z > 0 PC10: Z    0

PC2: X    Y
     Z > 0

PC5: X > Y
     Z > 0

PC3: X > Y
   X    Y
   Z > 0

PC4: X    Y
     Z > 0

PC8: X = 3
      X + 1 = 0

   X > Y
   Z > 0

PC6: X+1 = 0
   X > Y
   Z > 0

PC9: X+1   0
   X > Y
   Z > 0

PC7: X    3
      X + 1 = 0

   X > Y
   Z > 0

return 6

return 5return 2Unsat

Unsatreturn 3T1 [-1000000, 
-1000000, 1]

T2 [-1, -1000000, 
        1]

T3 [-999999, 
-1000000, 1]

T4 [0, 0, 
-1000000]

Fig. 1. Symbolic execution tree for
method example

respectively. Whenever PC is updated, it is checked for satisfiability by calling
an off-the-shelf constraint solver. If PC becomes false (unsatisfiable), meaning
that the corresponding path is infeasible, symbolic execution does not continue
for that path. For example, in Fig. 1, there are two paths that are infeasible due
to the unsatisfiable path conditions (PC 3 and PC 8).

To certify symbolic execution of method example, one should verify both
feasible and infeasible paths. Intuitively, a test input serves as a witness of fea-
sibility of a specific path. These test inputs are obtained by invoking the con-
straint solver for each satisfiable path condition. For example, in Fig. 1 test input
T1[−1000000,−1000000, 1] (meaning that both inputs x and y are −1000000 and
input z is 1) is a solution to path condition PC 4 and it drives the program along
the path that leads to return 2.

For infeasible paths, we certify the unsatisfiability of their corresponding
path conditions. As mentioned a certificate contains a set of unsatisfiable path
conditions from the program. In symbolic execution, every branch introduces
a new constraint to be added to the existing satisfiable path condition. Thus,
for the unsatisfiability checks, we can slice a path condition to include only the
constraints that relate to the last added constraint, as only they can become
unsatisfiable. The remaining un-related constraints can be dropped, thus reduc-
ing the cost of solving them and the size of the certificate. For example, we slice
PC 3 and PC 8 with respect to their last added constraints X > Y and X = 3
respectively. Since value Z is not related to X and Y , constraint Z > 0 can be
dropped. We only store the sliced path conditions PC′

3 : X > Y ∧ X ≤ Y and
PC′

8 : X = 3 ∧ X + 1 = 0 ∧ X ≥ Y .
For the symbolic execution of method example, the certificate is an ordered

list of test inputs, i.e., {T1, T2, T3, T4}, and a list of unsatisfiable sliced path
conditions, i.e., {PC ′

3, PC ′
8}. In this simple example we have no incompleteness
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summaries. To check this certificate, we re-run symbolic execution for method
example with the same search order as the previous analysis (e.g., depth-first
search). Note that during this re-run, constraint solving is not needed for feasible
paths as the test inputs from the certificate serve for validation. We only need
constraint solving for the infeasible paths, to re-check that the corresponding
path conditions are indeed unsatisfiable and they are in the certificate. This
check can be done using a constraint solver that is different than the one used
in the original analysis. We can relax this assumption on search order, but then
the validation of feasible path constraints is slightly more involved as it should
be done against all the test inputs stored in the certificate.

The certification process of method example only makes two calls to the con-
straint solver for checking PC ′

3 and PC ′
8, while in traditional symbolic execution

it makes 10 constraint solving calls (from PC 1 to PC 10). Checking if a concrete
input satisfies a given path condition is much cheaper than using a constraint
solver to check the satisfiability of a PC. Therefore, certifying symbolic execution
is computationally cheaper than the original analysis.

To further reduce the cost of certification we also implemented five heuris-
tics (H1–H5 in Sect. 3) to quickly check the unsatisfiability of path conditions
without using a constraint solver. By using the heuristics we reduce the total
number of constraint solver calls needed from 10 to 0 (for this example).

In principle both the path slicing and the heuristics can be part of the work
performed by an SMT solver that is used for certification, and then checking the
unsatisfiability of path conditions amounts to re-checking the results produced by
an SMT solver. Our approach can naturally accommodate such a scenario since
we provide a clear separation between path exploration and constraint solving.
Thus, for an unsatisfiable path condition, the certificate can store a proof for the
unsatisfiability from a constraint solver. There are only a few solvers that can
produce proofs for unsatisfiability for verification purposes. These proofs can be
checked independently using theorem proving [4,30]. Although this technique is
not mature to be used in certified symbolic execution, our certificate can fully
integrate these proofs from solver.

3 Certified Symbolic Execution

Certified symbolic execution has two participants: a symbolic execution producer
and a symbolic execution consumer. The producer’s symbolic execution ana-
lyzes the input program using traditional symbolic execution (up to a specified
depth) to generate test inputs and to check given safety properties (e.g., absence
of assert violations, run-time exceptions, bounded temporal properties, etc.).
At the same time the producer also generates a symbolic execution certificate,
which succinctly represents the essential information of the analysis process. In
our approach, the certificate consists of the test inputs generated by the sym-
bolic execution (for the feasible paths) and the infeasibility/incompleteness sum-
maries (for unsatisfiable or unknown path conditions). Here incompleteness is
introduced due to the current limitations of existing solvers or due to the inher-
ent incompleteness of certain theories, such as non-linear integer constraints. As
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a result, some paths in the program would not be explored by symbolic execution
(these paths are treated similarly to infeasible paths).

The test inputs are the solutions (obtained with an off-the-shelf constraint
solver) to the feasible path conditions corresponding to the terminating program
paths. During certification, the consumer reconstructs the path conditions of
the program by using traditional symbolic execution, but without utilizing a
constraint solver. Instead, the consumer’s analysis is guided by the test inputs
in the certificate. These test inputs form “witnesses” for the feasibility of the
corresponding path conditions, which obviates the need for constraint solving.

The certificate also contains infeasibility and incompleteness summaries con-
taining sliced path conditions and small scripts encoding the optimizations per-
formed over the path conditions. Note that the feasible paths implicitly charac-
terize the infeasible or incomplete paths in the program. Thus, the reconstructed
paths that are not executed by any test inputs are candidate infeasible/incom-
plete paths, provided that the certificate is valid. The consumer then checks
syntactically whether the infeasible/incomplete path conditions contain any of
the sliced paths from the certificate and re-applies the optimization steps in the
order encoded in the certificate (if such steps are present). Often this is enough
to re-check the full certificate. If this is not the case, the consumer uses a con-
straint solver to re-check the unsatisfiability or undecidability of the (sliced) path
conditions. The result of the consumer’s analysis is that either the certificate is
valid (confirming the correctness of the properties provided by the producer) or
that it is invalid, signaling incorrectness in analysis results.

Note that the producer and consumer analysis can be performed with dif-
ferent symbolic execution tools and can use different solvers that may run on
different platforms. This is an important characteristic of certified symbolic exe-
cution as it is often the case that off-the-shelf solvers are platform specific. Also
note that the burden of performing full-blown symbolic execution is on the pro-
ducer, whereas the consumer (cheaply) re-checks the program. Thus the key to
certified symbolic execution is for the consumer to efficiently certify the analysis
process using the test inputs to validate the feasible path constraints, while using
a constraint solver only for (some of) the candidate infeasible/incomplete paths.
Slicing of path conditions and heuristics are employed to further reduce the cost
of certification, up to the point that no constraint solving may be needed.

Certificate Construction. For a program P with symbolic input I =
{I1, I2, ..., Im}, a test input T = {i1, i2, ..., im} contains the concrete input values
for each symbolic input in I. A certificate C contains a list {T1, T2, ..., Tn} of
test inputs of all feasible (bounded) paths for program P under symbolic exe-
cution. The program P takes two different paths for any two test inputs Ti and
Tj in C (i �= j, 1 ≤ i, j ≤ n). The certificate C also contains information for
infeasible paths and undecided paths. We mark a path as undecided if the con-
straint solver cannot determine whether its path condition is satisfiable or not,
i.e., the solver returns “unknown” result for a path condition. Specifically, the
certificate contains two sets of path conditions, PCunsat for unsatisfiable path
conditions and PCunknown for unknown path conditions. Let PC1, PC2, ... be
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infeasible path conditions. In PCunsat , we store in the certificate PC ′
1, PC ′

2, etc.,
where PC ′

i is the sliced version of PCi as explained below. Note that a simple
solution would be to include directly all the infeasible path conditions in the
certificate, and to re-check that on the consumer side. However, unsatisfiability
checking using constraint solvers such as CVC3 [2], Z3 [8] or Coral [29] is com-
putationally expensive and we would like to avoid using a constraint solver as
much as possible. Towards this end we employ path constraint slicing and several
heuristics. Similarly, for unknown path conditions, we store the sliced versions
in PCunknown .

Consider a path condition PCi = c0∧c1∧ ...∧cn (which is unsatisfiable). The
last added constraint (c0) causes PCi to be infeasible since c1 ∧ ...∧ cn should be
satisfiable from the previous check (otherwise the symbolic execution would have
not reached that point). Thus the (un)satisfiability of PCi only depends on the
constraints that have common variables with c0. We can therefore “slice” PCi

to keep only the constraints that are related to c0 and to eliminate the irrelevant
constraints. The slicing is similar to Green [32] and to other optimizations used
in constraint solvers (a slice is akin to an unsat core but cheaper to compute).
To slice PCi, we build a constraint graph G(V,E) of PCi, in which the vertices
V are variables of PCi and edges E indicate whether two variables are part of
the same constraint. In G, we find all variables R that are reachable from the
variables in c0. Then the conjunction of the constraints that contain variables in
R is the sliced path condition (PC ′

i = c0 ∧ cp ∧ ... ∧ cq). It is this smaller path
condition that is stored in the certificate. Note that the sliced path conditions
are cheaper to re-check and also result in smaller certificates. Note also that this
sliced path condition may not contain the smallest set of constraints that makes
it unsatisfiable. If another sliced path condition PC ′

j = cp ∧ cq from another
path is already in the certificate, PCi is no longer needed since the certificate
contains a smaller sliced path condition. Similarly, if the certificate consists of an
unsatisfiable path condition that is a super-set of PC ′

i (e.g., c0∧cp∧ ...∧cq ∧cm),
we replace this longer path condition with the smaller one. Thus the certificate
always maintains a set of smallest unsatisfiable path conditions.

To further reduce the use of constraint solving for re-checking the unsatisfia-
bility, we apply five heuristics to each of the sliced unsatisfiable path conditions.
These heuristics serve as a faster way to check if a path condition is indeed
unsatisfiable without using a constraint solver. If a heuristic can be applied to
a sliced path condition, the certificate stores it as a script so analysis consumer
could directly apply the heuristic to check unsatisfiability. These heuristics are
implemented as syntactic simplifications and checks, thus avoiding the cost of
constraint solving.

– H1: For any constraint ci (1 ≤ i ≤ n) in PC ′
i, if ci is same as ¬c0, PC ′

i is
unsatisfiable. For example, c0 is x > 0 and PC ′

i contains x ≤ 0.
– H2: If a linear transformation of constraint c0 satisfies H1, PC ′

i is unsatisfiable.
The transformation of c0 includes moving its left hand side expression into
right hand side and vice versa, or exchanging left hand side expression with
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right hand side expression. For example, if c0 is x > y, its simple linear
transformation can be y < x, x − y > 0, or y − x < 0.

– H3: If any constraint ci in PC ′
i contains one variable var and it has the form

var = ct , where “ct” is a constant, we can simply replace all variables var
in other constraints cj (0 ≤ j ≤ n, j �= i) in PC ′

i with the constant ct. After
variable replacement, each of constraints cj must hold. Otherwise, if one of cj
is unsatisfiable, PC ′

i is unsatisfiable. For example, if c0 is x == 5 and PC ′
i

contains a constraint x+ 3 < 0, we replace variable x with integer constant 5
in the constraint and obviously it is evaluated to be false.

– H4: Constraint c0 contains a symbolic expression exp and it is of the form
“exp op ct”, in which op belongs to one of >,<,≤,≥, and “ct” is a constant
(i.e. “ct” is used to define the ranges for the expression). PC ′

i is unsatisfiable
if it contains another constraint that conflicts the range defined in c0. For
example, c0 is x + 3 > 400 and PC ′

i contains another constraint x + 3 < 200.
– H5: Path condition PC ′

i is unsatisfiable if the set of constraints in PC ′
i con-

tains the set of constraints of another PC, where the path condition PC is
already known to be unsatisfiable. For example, if PC ′

i is (x > 0) ∧ (y <
10) ∧ (x + y < 0) ∧ (y > 0) and PC is (x > 0) ∧ (x + y < 0) ∧ (y > 0) which
is already known to be unsatisfiable, PC ′

i is also unsatisfiable. This heuristic
requires storing and accessing previously checked path conditions.

We apply these five heuristics in order from H1 to H5. If any one of them is
applicable to quickly validate the unsatisfiability of a sliced path condition PC ′

i,
we encode the applicable heuristic to the certificate along with PC ′

i. Despite
their simplicity, these heuristics make a significant difference to the number of
constraint solver calls made during certification (as shown in Sect. 4). Moreover,
one could add other more sophisticated heuristics in our framework.

The consumer has the option to apply the five heuristics for unknown path
conditions. If any of the heuristics is applicable, the consumer would conclude
that the path condition is unsatisfiable instead of unknown.

During certificate construction, we use a listener [23] to non-intrusively moni-
tor traditional symbolic execution and to add test inputs and infeasibility/incom-
pleteness summaries to the certificate. The listener initializes a new certificate
after execution enters the target symbolic method of the program. If a terminat-
ing return instruction is executed or the search depth limit is reached, we solve
the current path condition to generate a test input and add it to the certificate.
If an “if” instruction is executed and an unsatisfiable or unknown path condition
is returned by the solver, we slice the path condition and check if the certificate
maintains the smallest subset of the unsatisfiable/unknown conjunction of con-
straints. Then we apply the heuristics to the sliced path condition and store it
along with the applicable heuristic to the certificate. At the end of symbolic exe-
cution, the certificate contains inputs for all explored feasible terminating paths
(up to the bound) plus the information about the infeasible or incomplete paths.

Certificate Validation. For certification, the consumer re-runs symbolic exe-
cution on the same target program, checking the analysis results. Any discovered
discrepancy causes the validation to fail. Discrepancies include:
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1. The certificate contains more than one test input for the same feasible pro-
gram path.

2. The certificate omits a test input, corresponding to a feasible program path.
3. The certificate contains a sliced path condition corresponding to none of infea-

sible or unknown paths in the program.
4. The optimizations steps for a candidate path do not apply.
5. The sliced unsat path condition in the certificate is found to be satisfiable

during certificate validation.

The first type of discrepancy is detected by checking if more than one test
input from the certificate satisfies a path condition for a terminal path. The
second type of discrepancy is detected by re-checking the unsatisfiability of the
path conditions that are not satisfied by the certificate’s test inputs. Discrep-
ancies 3 and 4 can be checked syntactically. The last case may happen due to
discrepancies between different solvers.

Note that if a sliced unknown path condition is found to be actually satisfiable
by consumer due to the differences of constraint solvers, we do not consider the
certification process to fail as the analysis results are still correct yet incomplete.
However this case is signaled to the user.

Similar to certificate construction, certificate validation is implemented as a
listener which monitors and guides the symbolic execution of a program using
the provided certificate. Whenever a conditional instruction is executed, the lis-
tener checks the satisfiability of the current path condition over the test inputs
from the certificate. Naturally, if a path condition does not satisfy any test
input, this path should be infeasible or incomplete. We therefore re-check the
unsatisfiability (undecidability) of the corresponding path condition and, if it
is confirmed, we force symbolic execution to backtrack. To check the unsatis-
fiability (undecidability) of a path condition, we search over the stored sliced
path conditions in the certificate to find one that is a subset of the current path
condition. Also, if a heuristic is associated with this sliced path condition, we
apply that heuristic to check the unsatisfiability. If no heuristic is associated, we
invoke a constraint solver to solve the sliced path condition. Furthermore, if a
return statement or the search depth limit is reached, we certify that the current
path can be executed by only one test input from the certificate.

To check if a path condition is satisfied by one of the test inputs in the certifi-
cate, we follow different approaches based on the search order of the producer and
consumer. If the search order is the same for both producer and consumer, the
test inputs are generated in the same order and the program paths are explored
in the same order as well. Thus the validation listener can check the test inputs
one by one, as the paths are explored: an iterator indicates the position of the
last explored path in the list of tests. Every time a new path is explored, we
simply move the iterator to the next input in the list. On the other hand, if
the producer and the consumer use different search orders, the listener is more
involved as it has to search for a satisfiable test input over the entire list of tests
from the certificate. This introduces more overhead for certification, as shown
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in Sect. 4. Further optimizations for this case, such as reordering the list of test
inputs in the certificate [28], are left for future work.

The consumer validates that the program is free of errors (e.g., violations
of producer’s assertions, run-time exceptions etc.) during symbolic re-execution.
Since the certificate is independent of the producer’s properties, the consumer
may choose to also verify additional properties of interest. In this case, the
certificate has the side benefit of speeding up the verification of these additional
properties. Certification can also be used to quickly confirm the structural testing
coverage achieved by the tests.

Note that we have assumed that both the certificate construction and the
certificate validation use the same exploration bound. This means that the con-
sumer can not trust what the program does beyond that exploration bound
and if she wants further guarantees she must continue using full-blown, classical
symbolic execution up to a further bound. Still we believe that our technique is
beneficial since the results stored in the certificate can be re-used to speed-up
the analysis at the larger bound. For instance, both the test cases and the sliced
paths may be applicable beyond the initial bound and thus can be re-used to
reduce the number of constraint solver calls.

Symbolic Execution with Incomplete Search. The producer’s analysis
results may have two common sources of incompleteness: incompleteness of the
back-end solver; and incompleteness of the symbolic execution search, e.g., when
a heuristic is used to prune certain paths from exploration. Our certification
approach directly supports incompleteness of the back-end solver (using incom-
pleteness summaries) assuming that the symbolic execution was incomplete but
systematic, up to a user-specified bound. Furthermore, our certification approach
can be extended to handle incomplete search strategies that symbolic execution
engines may employ for faster (yet incomplete) analysis. Specifically, we can
integrate memoization trees [36] with our certificates to define a richer structure
that captures the partial search performed by the producer and allows the con-
sumer to validate those results and moreover, to extend the search and make
the analysis more complete if the consumer so desires. The non-leaf nodes of the
tree encode information of symbolic conditional statements, including method
name, instruction offset, and the choice taken by the execution. The leaf nodes
of the tree contain either concrete tests (for feasible paths) or sliced path condi-
tions (for the other paths). Overall, the tree encodes the explored space and the
key results of symbolic execution performed by the producer. Figure 2 illustrates
the tree-based certificate that captures partial search for our example program
from Sect. 2. Specifically, the producer explored only 3 out of 6 paths in the pro-
gram, one infeasible path and two paths that return integer 2 and 6 respectively.
Non-leaf nodes that have only one child node shows that only one branch of
a conditional statement is executed. For instance, “example:4:1” shows that in
method example, only true branch of conditional statement in line 4 is executed
while the false branch is skipped (1 for true branch and 0 for false branch).
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1 void depos i t ( int amount ) {
2 i f ( amount >0) {
3 int o ld ba l ance = balance ;
4 balance = balance + amount ;
5 a s s e r t ( balance > o ld ba l ance ) ;
6 }
7 }

Listing 2. Method deposit

example
Root

example:2:1

example:3:1

example:4:1

Unsat Slice PC:
X > Y
X    Y

example:3:0

example:10:0

T3 [-999999, 
-1000000, 1]

example:2:0

T4 [0, 0, 
-1000000]

Fig. 2. A partial tree for method example

4 Implementation and Applications

Implementation. We implemented certified symbolic execution in the Sym-
bolic PathFinder (SPF) tool [23], using two listeners. One listener monitors the
symbolic execution in SPF and generates a certificate while the other one takes
the certificate and validates it while re-running symbolic execution. For conve-
nience, we implemented both certificate generation and validation within the
same system. However, in practice, these two tasks could be performed with
separate tools, increasing the confidence in the results. We evaluate and discuss
here different application scenarios for our certification approach.

Debugging Symbolic Execution Engines or Constraint Solvers. When
the analysis producer and consumer have different symbolic execution engines
or constraint solvers, certification could help debug these complex systems. Con-
sider a Java method deposit shown in Listing 2. The method has three execution
paths: one path that is executed for input amount less than 0, one path that
leads to assertion (Line 5) evaluating to true, and one path that leads to assertion
violation.

Assume the analysis producer’s symbolic execution engine (or constraint
solver) does not consider integer overflow. The path that leads to assertion fail-
ure will be considered infeasible since balance + amount cannot be smaller than
balance when amount > 0 (unless numeric overflow is considered). Thus, the
certificate produced would contain an (erroneously classified) unsatisfiable path
condition. Assume the consumer employs a more rigorous engine that models
overflow. The consumer would detect the erroneously classified path, which is
actually feasible. Thus, the certifying process would fail as the consumer finds
that an unsatisfiable path condition in the certificate is actually satisfiable. Our
certified symbolic execution could reveal this problem.

Evaluation of Certification Cost. We evaluated certified symbolic execution
on the following 8 Java programs: WBS, ASW, Rational, TCAS, BankAccount
(BA), MerArbiter (Mer), JDK 1.5 Sorting Algorithms and Red-Black Tree Data
Structure, and Apollo. All of these artifacts were used before for evaluating sym-
bolic execution techniques [1,6,14,21,24,26,29,35,36]. These subjects contain
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rich programming constructs, such as complex non-linear constraints, recursion,
etc. that are difficult to handle with symbolic execution. The largest of these arti-
facts is Apollo with 2.6 KLOC in 54 classes [29]. The program contains complex
non-linear floating-point constraints and it is quite challenging to analyze. To
symbolically execute a configuration with two iterations, traditional SPF takes
more than 4 h to finish. We are interested in evaluating whether the certification
can be significantly faster than running full-blown symbolic execution.

Table 1. Evaluation of certified symbolic execution

Subject Method
Time (h:m:s) # Solver Calls Cert # # Infeasible Tree

SPF
Build Validate(same order) Validate

SPF
Build Validate(same order) Size Feasible /Unknown Size

Cert Plain H1-H5 Rand Cert Plain H1-H5 (KB) Paths Paths (KB)

WBS
update <00:01 00:01 <00:01 <00:01 <00:01 46 46 0 0 1.3 24 0/0 2.3
main3 00:03 00:04 <00:01 <00:01 <00:01 718 718 7 0 5.1 24 336/0 31.2
launch 09:33 13:45 00:03 00:03 01:11 27646 27646 0 0 857.9 13824 0/0 1100

ASW
Main0 00:08 00:11 <00:01 <00:01 <00:01 858 858 10 4 19.2 192 254/0 31.2

mainBody 00:49 00:53 00:03 00:03 00:04 5850 5850 12 2 22.1 192 2942/0 251.9

Rational
simplify 00:01 00:01 <00:01 <00:01 <00:01 92 92 15 1 6.8 14 46/0 3.2

simp 06:08 07:14 00:12 00:10 00:40 19412 19412 54 3 171.8 2744 9706/0 616

TCAS
startTcas 01:01 01:01 00:01 <00:01 00:01 2348 2348 19 0 12.0 68 1107/0 101.4
tcasTwice 01:06:31 01:10:10 00:17 00:16 01:52 46782 46782 22 0 864.5 4624 18768/0 2000

BA
main1 00:33 00:36 00:01 <00:01 00:01 736 736 22 0 31.6 258 111/0 32
main2 07:35 11:36 01:58 01:44 02:58 9294 9294 1228 1206 767.2 2677 1971/0 400

Mer
run3 02:00 03:07 00:44 00:43 00:54 5568 5568 0 0 512.8 2645 0/0 239.8
run4 17:32 23:27 05:50 03:58 08:33 38944 38944 560 11 2662.4 18283 241/0 1600

JDK 1.5

mergeSort 07:37 08:50 00:06 00:03 00:51 10366 10366 144 0 504.9 5040 144/0 446.1
quickSort 19:46 22:03 00:48 00:35 04:08 25920 25920 1218 245 1433.6 11743 1218/0 1100
heapInsert 01:54 02:24 00:01 00:01 00:03 2590 2590 0 0 126.4 1296 0/0 111.7

rbTree 14:31 16:37 00:19 00:10 02:30 20462 20462 497 43 953 9360 872/0 163.7

Apollo
main1 02:30 02:59 00:06 00:06 00:08 348 348 20 20 107.6 81 0/152 5.1
main2 04:07:05 04:24:00 00:40 00:40 02:05 12381 12381 45 45 5700 1869 0/1375 4900

Table 1 shows the results of our experiments. For each subject, certificate val-
idation was successful. No pre-specified search depth was needed as no program
constructs drive symbolic execution infinite. To evaluate the cost of certificate
construction, we first ran traditional symbolic execution using SPF and then we
ran the analysis again with the listener to construct a certificate (“Build Cert”).
Next, we ran the certificate validation with the same search order as used in
certificate construction (“Validate (same order)”). To evaluate the performance
of the proposed heuristics, we certify symbolic execution twice. One run does
not use heuristics (“Plain”) while the other one uses heuristics (“H1–H5”).

Furthermore, to evaluate certificate validation in the case that the consumer
has a different search order than the producer, we randomly reordered the test
inputs in each certificate and validated them using heuristics for unsatisfiable or
unknown path condition checking (denoted as “Validate (rand)”). This valida-
tion process only introduces an overhead during the satisfiability checking while
the number of constraint solver calls is the same as in “Validate (same order)
H1–H5”, since the number of infeasible or unknown path conditions that need
to be re-checked is the same.

We report the number of constraint solver calls and execution time for each
analysis. Table 1 also shows the size of the generated certificate and the number
of feasible paths and infeasible/unknown paths for each analyzed method. A
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method that contains more feasible paths would take longer for analysis and its
certificate is certainly larger. We also report the size of the full memoization tree
for each method. Parts of such memoization trees could potentially be added to
the certificate, to account for a partial exploration during symbolic execution as
described in Sect. 3. This size does not include the size of leaf nodes that are
either test cases or sliced unsat/unknown path conditions as they are already
measured in the size of certificate. We include these results to assess the trade-
off for supporting incompleteness in search strategies. The certificate would be
larger but the exact size of the certificate combining with a partial tree depends
on the number of paths explored.

The results show that certificate construction has some overhead on the time
of execution on large methods, from about 6 % (tcasTwice in TCAS) to 55 %
(run3 in Mer) more time (on average about 20 % more time). However, the
certificate validation is significantly faster than re-running the symbolic execu-
tion, ranging from about 3X (run3 in Mer) to 370X (main2 in Apollo) faster
than traditional symbolic execution. On average, certificate validation achieves a
speed-up of 75X over 19 methods in 8 subjects. The certificate validation using
heuristics is either more efficient or same as not applying heuristics. In some
cases the heuristics reduce the number of constraint solver calls to 0 (methods
in TCAS, main3 in WBS, and main1 in BA, etc.). Methods update, launch
in WBS, run3, and heapInsert are special cases since they do not contain any
infeasible paths.

Our approach still achieves significant savings for the cases where the con-
struction and validation of a certificate take different search orders, from about
2.1X (method run4 in Mer) to 118X (method main2 in Apollo) faster than tra-
ditional SPF (about 20X faster on average). However, as expected, it has less
savings compared to the validation process with the same search order.

Apollo contains unknown path conditions due to the solver used, Coral, a
heuristic based solver that can handle arbitrary complex (non-linear, containing
trigonometric functions etc.) constraints [29]. Coral may return unknown result
after a number of iterations (algorithmic time out). We found that after slicing,
10 and 23 sliced unknown path conditions are actually satisfiable in method
main1 and main2 respectively. This is because when slicing a path condition
with respect to its newly added constraint, the number of constraints in the
path condition is reduced, and Coral may no longer time out. Thus Coral may
give inconsistent satisfiability results on path conditions before and after slicing.
This case hints to an interesting potential usage scenario for our approach in the
future, namely to validate the constraint solvers themselves.

Reliability Analysis. We extended our certification framework to accommo-
date a recent application of symbolic execution for estimating the reliability of
a software component [9] under different probabilistic usage profiles. A usage
profile (UP) describes the environment conditions (i.e. physical environment
conditions or interactions with other components) or the different usages of the
component in the context of a bigger system in which the component is inte-
grated and evaluated. In [9] the usage profile is defined as a set of pairs [ci, pi]
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where ci’s represent disjoint constraints over input variables and pi is the prob-
ability of satisfying the constraint Pr(ci). The reliability Rel is computed as
follows:

Rel =
∑

j

Pr(PCS
j |UP ) =

∑

j

∑

i

Pr(PCS
j |ci)pi =

∑

j

∑

i

#(PCS
j ∧ ci)

#(ci)
pi (1)

In Eq. 1, PCS
j ’s denote the path conditions for successful termination (i.e.

no assert violations or uncaught exceptions) and #(C) denotes the number of
elements satisfying the constraint C (assuming a finite, possibly very large,
input domain). This value can be obtained using model counting techniques
[10,16]. Furthermore, a value of confidence on reliability estimation is defined by
Confidence = 1 − Prg(P ), where Prg(P ) quantifies the ratio of elements in the
input domain that cannot be determined due to the bounded analysis. As the
search depth bound increases, the confidence value increases as well.

We have analyzed the flap controller component from [9], that controls the
wings of an aircraft under different wind conditions, yielding different reliability
values. A random variable profiles wind effect, with two distributions that is
either strong or weak. A strong wind profile has higher probability to produce
extreme wind strength while a weak wind distribution is more centered around
small wind strength [9]. To evaluate the reliability of the actuator program in
two different wind effect settings, the analysis from [9] symbolically executes the
program twice, loads two usage profiles and calculates reliability values based
on Eq. 1 respectively.

We have used our approach to build a component certificate under weak-wind
usage profile UP1 that is then validated and re-used under a different (strong-
wind) usage profile UP2. This corresponds to a more general scenario where a
certified component is efficiently integrated into a larger system, that provides
different environment conditions, and hence results in different reliability values.
We show that our certification framework enables faster reliability analysis and
hence faster integration of the same component under different usage profiles.
Specifically, to analyze UP2, we verify the path conditions of the component
using concrete test inputs from the certificate without any constraint solving.
The analysis for UP2 is faster as we only need solvers for infeasible paths. More-
over, note that often the constraints ci in Eq. 1 remain the same for different
usage profiles and only the probabilities pi change, as it is the case for the wind
profiles that were obtained from discretizations of Gaussian distributions (with
same discrete step). We can thus further reduce the analysis time by storing in
the certificate a list of conditional probabilities #(PCS

j ∧ ci)/#(ci) (0 ≤ i ≤ N ,
where N is the number of constraints in UP) for each path condition PCS

j in our
certificate. Re-calculating Rel for UP2 only requires to insert a new set of pi into
Eq. 1, without calling model counting [16], which is expensive. By storing and
reusing results of previous analysis, our framework achieves significantly faster
analysis time than recalculating reliability from scratch.

Table 2 shows our experimental results; “Orig” denotes the original reliability
analysis [9] and “Build Cert” denotes certificate construction for weak-wind UP.
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Table 2. Evaluation for reliability analysis

Depth Time (s) Weak wind Strong wind

Orig Build Cert Rerun Rerun (with Pc) Rel Conf Rel Conf

10 8 9 4 1 0.062600 0.227885 0.060045 0.405127

20 39 40 17 6 0.180638 0.725122 0.129490 0.794932

30 82 86 33 15 0.217204 0.836973 0.145161 0.876152

50 155 161 64 38 0.229749 0.937720 0.150538 0.946407

70 227 231 102 73 0.229749 0.943096 0.150538 0.957160

Two certificate validation runs, one reusing solver results only (“Rerun”) and one
reusing both solver and probability results (“Rerun (with Pc)”), were performed
for strong-wind UP. We report the analysis time and the reliability value with
corresponding confidence level. The overhead of constructing the certificate is
not much as shown in Table 2. By reusing our certificate, the analysis can be
significantly faster than original analysis. For example, in depth 70, reusing solver
results and conditional probabilities speeds up original analysis about 3.1X.

5 Related Work

We have already discussed the relationship between our work and proof-carrying
code (PCC) [19,25] and “search-carrying code” [31]. Other related approaches
[13,34] use model checking and predicate abstraction to obtain the verification
conditions that define a certificate. Both these approaches work at the code
level while other model checking based techniques [18,20] work on high-level
transition models. The work on “explicating symbolic execution” [12] applies
to the verification of software contracts and focuses on capturing the over- and
under-approximations introduced by bounded symbolic execution with incom-
plete constraint solving. That work targets the certification of safety-critical
systems and it is not in the spirit of proof-carrying-code, in the sense that the
evidence provided is not meant to be used to re-run the verification and confirm
the results. As such our work here is complementary and it should be possible
to use it in conjunction with explicating symbolic execution.

6 Conclusion

We described a certification technique for symbolic execution that is based on
compact, easy to check certificates. We implemented the technique in Symbolic
PathFinder and showed its merits. Our method is general and could be easily
implemented in other symbolic or concolic execution tools. In the future we plan
to focus on the application of our technique in a compositional setting, where
certificates of components are (re)used for fast reliable component integration
with probabilistic guarantees.
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Abstract. We present a new algorithm for computing upper bounds
on the number of executions of each program instruction during any
single program run. The upper bounds are expressed as functions of
program input values. The algorithm is primarily designed to produce
bounds that are relatively tight, i.e. not unnecessarily blown up. The
upper bounds for instructions allow us to infer loop bounds, i.e. upper
bounds on the number of loop iterations. Experimental results show that
the algorithm implemented in a prototype tool Looperman often pro-
duces tighter bounds than current tools for loop bound analysis.

1 Introduction

The goal of loop bound analysis is to derive for each loop in a given program
an upper bound on the number of its iterations during any execution of the
program. These bounds can be parametrized by the program input. The loop
bound analysis is an active research area with two prominent applications: pro-
gram complexity analysis and worst case execution time (WCET) analysis.

The aim of program complexity analysis is to derive an asymptotic complex-
ity of a given program. The complexity is commonly considered by programmers
in their everyday work and it is also used in specifications of programming lan-
guages, e.g. every implementation of the standard template library of C++ has
to have the prescribed complexities. Loop bound analysis clearly plays a cru-
cial role in program complexity analysis. In this context, emphasis is put on
large coverage of the loop bound analysis (i.e. it should find some bounds for as
many program loops as possible), while there are only limited requirements on
tightness of the bounds as asymptotic complexity is studied.

A typical application scenario for WCET analysis is to check whether a
given part of some critical system finishes its execution within an allocated time
budget. One step of the decision process is to compute loop bounds. Tightness of
the bounds is very important here as an untight bound can lead to a spuriously
negative answer of the analysis (i.e. ‘the allocated time budged can be exceeded’),
which may imply unnecessary additional costs, e.g. for system redesign or for
hardware components with higher performance. The WCET analysis can also
be used by schedulers to estimate the run-time of individual tasks.
c© Springer International Publishing AG 2016
C. Artho et al. (Eds.): ATVA 2016, LNCS 9938, pp. 512–527, 2016.
DOI: 10.1007/978-3-319-46520-3 32
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The problem to infer loop bounds has recently been refined into the
reachability-bound problem [8], where the goal is to find an upper bound on the
number of executions of a given program instruction during any single run of
a given program. One typically asks for a reachability bound on some resource
demanding instruction like memory allocation. Reachability bound analysis is
more challenging than loop bound analysis as, in order to get a reasonably pre-
cise bound, branching inside loops must be taken into account.

This paper presents a new algorithm that infers reachability bounds. More
precisely, for each instruction of a given program, the algorithm tries to find an
upper bound on the number of executions of the instruction in any single run of
the program. The bounds are parametrized by the program input. The reacha-
bility bounds can be directly used to infer loop bounds and asymptotic program
complexity. Our algorithm builds on symbolic execution [10] and loop summari-
sation adopted from [14]. In comparison with other techniques for reachability
bound or loop bound analysis, our algorithm brings the following features:

– It utilizes a loop summarisation technique that computes precise values of
program variables as functions of loop iteration counts.

– It distinguishes different branches inside loops and computes bounds for each
of them separately.

– If more different bounds arise, it handles all of them while other techniques
usually choose nondeterministically one of them.

– It can detect logarithmic bounds.
– Upper bounds for nested loops are computed more precisely: while other

techniques typically multiply a bound for the outer loop by a maximal bound
on iterations of the inner loop during one iteration of the outer loop, we sum
the bounds for the inner loop over all iterations of the outer loop.

All these features have a positive effect on tightness of produced bounds.

a b
i:=5

c

i<x i:=i+2

d
i>=x

We can explain the basic idea of our algorithm
on the flowgraph on the right. The node a is the
entry location, d is the exit location, and locations
b, c form a loop. An initial value of x represents pro-
gram input. We symbolically execute each path in
the loop and assign an iteration counter to it. Then
we try to express the effect of arbitrarily many iter-
ations of the loop using the iteration counters as parameters. The loop in our
example has just one path bcb that increments i by 2. Hence, the value of i after
κ iterations is i′ + 2κ, where i′ denotes the value of i before the loop execution
starts. We combine this loop summary with the program state just before enter-
ing the loop, which is obtained by symbolic execution of the corresponding part
of the program. In our example, we get that the value of i after κ iterations of
the loop is 5 + 2κ. To enter another iteration, the condition i<x must hold. If
we replace the variables i and x by their current values, we get the condition
5 + 2κ < x, where x refers to the initial value of x. This condition is satisfied
only if κ < x−5

2 . As κ is an iteration counter, it has to be a non-negative integer.
Hence, we get the bound on the number of loop iterations max{0, �x−5

2 �}, which
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is assigned to all edges in the loop. Edges outside the loop are visited at most
once. The situation is more complicated if we have loops with more loop paths,
nested loops, or loops where a run can cycle forever. The algorithm is described
in Sect. 3.

We have implemented our algorithm in an experimental tool Looperman.
Comparison with several leading loop bound analysis tools shows that our app-
roach often provides tighter loop bounds. For example, our tool is currently the
only one that detects that the inner cycle of the BubbleSort algorithm makes
n·(n−1)

2 iterations in total (i.e. during all iterations of the outer loop) when
sorting an array of n elements, while other tools provide only the bound n2 or
O(n2). Section 4 presents the comparison with the best performing tool Loo-
pus [12]. Experimental comparison with more tools, a detailed description of the
algorithm, and discussion of the BubbleSort example can be found in [15].

2 Preliminaries

For simplicity, this paper focuses on programs without function calls, manipulat-
ing only integer scalar variables a, b, . . . and read-only multidimensional integer
array variables A, B, . . .. As usual in the context of loop bound analysis, integers
are interpreted in the mathematical (i.e. unbounded) sense.

Flowgraph, Backbone, Loop, Induced Flowgraph. An analysed program
is represented as a flowgraph P = (V,E, lbeg , lend , ι), where (V,E) is a finite
oriented graph, lbeg , lend ∈ V are different begin and end nodes respectively, and
ι : E → I labels each edge e by an instruction ι(e). The out-degree of lend is 0
and out-degrees of all other nodes are positive. We use two kinds of instructions:
an assignment a:=expr for some scalar variable a and some program expression
expr over program variables, and an assumption assume(γ) for some quantifier-
free formula γ over program variables. For example, a statement if γ then . . .
corresponds to a node with two outgoing edges labelled with assume(γ) and
assume(¬γ). We often omit the keyword assume in flowgraphs.

A path in a flowgraph is a (finite or infinite) sequence π = v1v2 · · · of nodes
such that (vi, vi+1) ∈ E for all vi, vi+1 in the sequence. Paths are denoted by
Greek letters. A backbone in a flowgraph is an acyclic path leading from the
begin node to the end node.

Let π be a backbone with a prefix αv. There is a loop C with a loop entry
v along π, if there exists a path vβv such that no node of β appears in α. The
loop C is then the smallest set containing all nodes of all such paths vβv.

Each run of the program corresponds to a path in the flowgraph starting at
lbeg and such that it is either infinite, or it is finite and ends in lend .1 Every run
follows some backbone: it can escape from the backbone in order to perform one
or more iterations in a loop along the backbone, but once the last iteration in
the loop is finished (which need not happen if the run is infinite), the execution
continues along the backbone again. We thus talk about a run along a backbone.
1 We assume that crashes or other undefined behaviour of program expressions are

prevented by safety guards, e.g. an expression a/b is guarded by assume(b �= 0).
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Fig. 1. (a) A flowgraph representing a program that gets an array A of size n and counts
up to three non-zero elements in the array. (b) Its induced flowgraph P ({c, d, e, f}, c).

For a loop C with a loop entry v along a backbone π, a flowgraph induced by
the loop, denoted as P (C, v), is the subgraph of the original flowgraph induced
by C, where v is marked as the begin node, a fresh end node v′ is added, and
every transition (u, v) ∈ E leading to v is redirected to v′ (we identify the edge
(u, v′) with (u, v) in the context of the original program). Each single iteration
of the loop corresponds to a run of the induced flowgraph. Figure 1(b) shows the
flowgraph induced by the loop {c, d, e, f} of the program in Fig. 1(a).

The program representation by flowgraphs and our definition of loops easily
handle many features of programming languages like break, continue, or goto.

Symbolic Execution. Symbolic execution [10] replaces input data of a program
by symbols representing arbitrary data. Executed instructions then manipulate
symbolic expressions over the symbols instead of exact values. Symbolic expres-
sions are terms of the theory of integers extended with functions max and min,
rounding functions �·� and �·� applied to constant expressions over reals, and

– for each scalar variable a, an uninterpreted constant a, which is a symbol
representing any initial (input) value of the variable a,

– for each array variable A, an uninterpreted function A of the same arity as A,
which is a symbol representing any initial (input) content of the array A,

– a countable set {κ1, κ2, . . .} of artificial variables (not appearing in analysed
programs), called path counters and ranging over non-negative integers,

– a special symbol � called unknown, and
– for each formula ψ build over symbolic expressions and two symbolic expres-

sions φ1, φ2, a construct ite(ψ, φ1, φ2) of meaning “if-then-else”, that evalu-
ates to φ1 if ψ holds, and to φ2 otherwise.

For symbolic expressions ψ, φ and a symbol or a path counter x, let ψ[x/φ]
denote the expression ψ where all occurrences of x are simultaneously replaced
by φ. Further, ψ[xi/φi | i ∈ I] denotes multiple simultaneous replacements.
We sometimes write ψκ to emphasize that ψ can contain path counters κ =
(κ1, . . . , κn). An expression is κ-free if it contains no path counter.
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Symbolic execution stores variable values in symbolic memory and all exe-
cutable program paths are uniquely identified by corresponding path conditions.
Here we provide brief descriptions of these terms. For more information see [10].

A symbolic memory is a function θ assigning to each scalar variable a a sym-
bolic expression and to each array variable A the symbol A (array variables keep
their initial values as we consider programs with read-only arrays). We over-
load the notation θ(·) to program expressions as follows. Let expr be a program
expression over program variables a1, . . . , an. Then θ(expr) denotes the symbolic
expression obtained from expr by replacement of all occurrences of the variables
a1, . . . , an by symbolic expressions θ(a1), . . . , θ(an) respectively.

Symbolic execution of a path in a flowgraph starts with the initial sym-
bolic memory θ, where θ(a) = a for each variable a. The memory is updated
on assignments. For example, if the first executed assignment is a:=2*a+b,
the initial symbolic memory θ is updated to the symbolic memory θ′ where
θ′(a) = θ(2*a+b) = 2a + b. If we later update θ′ on a:=1-a, we get the memory
θ′′ such that θ′′(a) = θ′(1-a) = 1 − 2a − b.

If ψ is a symbolic expression over symbols { ai | i ∈ I} corresponding to
program variables { ai | i ∈ I} respectively, then θ〈ψ〉 denotes the symbolic
expression ψ[ai/θ(ai) | i ∈ I]. For example, if θ(a) = κ1 and θ(b) = a − κ2, then
θ〈2a + b〉 = 2θ(a) + θ(b) = 2κ1 + a − κ2. Note that θ1〈θ2(a)〉 returns the value
of a after a code with effect θ1 followed by a code with effect θ2. For example, if
θ1(a) = 2a+1 represents the effect of assignment a:=2*a+1 and θ2(a) = a−2 the
effect of a:=a-2, then θ1〈θ2(a)〉 = θ1〈a − 2〉 = (2a + 1) − 2 represents the effect
of the two assignments in the sequence. We apply the notation θ〈ϕ〉 and ϕ[x/ψ]
with analogous meanings also to formulae ϕ built over symbolic expressions.

Given a path in a flowgraph leading from its begin node, the path condition
is a formula over symbols satisfied exactly by all program inputs for which the
program execution follows the path. A path condition is constructed during
symbolic execution of the path. Initially, the path condition is set to true and it
can only be updated when an assume(γ) is executed. For example, if a symbolic
execution reaches assume(a>5) with a path condition ϕ and a symbolic memory
θ(a) = 2a − 1, then it updates the path condition to ϕ ∧ (2a − 1 > 5).

Upper Bound. An upper bound for an edge e in a flowgraph P is a κ-free sym-
bolic expression ρ such that whenever P is executed on any input, the instruction
on edge e is executed at most ρ′ times, where ρ′ is the expression that we get by
replacing each variable symbol by the input value of the corresponding variable.

3 The Algorithm

Recall that every program run follows some backbone and the run can diverge
from the backbone only to loops along the backbone. The algorithm first detects
all backbones. For each backbone πi and each edge e, it computes a set of
upper bounds βi(e) on the number of visits of the edge by any run following
the considered backbone. As all these bounds are valid, the set βi(e) can be
interpreted as a single bound minβi(e) on visits of edge e by any run along πi. At
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the end, the overall upper bound for an edge e can be computed as the maximum
of these bounds over all backbones, i.e. max{minβi(e) | πi is a backbone}.

The algorithm consists of the following four procedures:

executeProgram is the starting procedure of the whole algorithm. It gets a
flowgraph and computes all its backbones. Then it symbolically executes each
backbone and computes for each edge a set of upper bounds on the number
of visits of the edge by a run following the backbone. Whenever the symbolic
execution enters a loop entry node, the procedure processLoop is called to
get upper bounds on visits during loop execution.

processLoop gets a loop represented by the program induced by the loop. Note
that each run of the induced program corresponds to one iteration of the
loop and it follows some backbone of the induced program (the backbones are
called loop paths in this context). The procedure then symbolically executes
each loop path by recursive call of executeProgram (the nesting of recursive
calls thus directly corresponds to the nesting of loops in the program). The
recursive call of executeProgram produces, for each loop path, a symbolic
memory and a path condition capturing the effect of a single iteration along
the loop path. The procedure processLoop then calls computeSummary, which
takes the symbolic memories after single loop iterations, assigns to each loop
path a unique path counter κi, and computes a parametrized symbolic memory
θκ describing the effect of an arbitrary number of loop iterations. This sym-
bolic memory is parametrized by path counters κ = (κ1, . . . , κk) representing
the numbers of iterations along the corresponding loop paths. From the para-
metrized symbolic memory and from the path conditions corresponding to
single loop iterations (received from the recursive call of executeProgram),
we derive a parametrized necessary condition for each loop path, which is a for-
mula over symbols and path counters κ that has to be satisfied when another
loop iteration along the corresponding loop path can be performed after κ
loop iterations. Finally, processLoop infers upper bounds from these para-
metrized necessary conditions with the help of the procedure computeBounds.

computeSummary is a subroutine of processLoop that gets symbolic memories
corresponding to single loop iterations along each loop path and it produces
the parametrized symbolic memory θκ after an arbitrary number of loop
iterations (as mentioned above).

computeBounds is another subroutine of processLoop. It gets a set I of loop
paths and the corresponding parametrized necessary conditions, and derives
upper bounds on the number of loop iterations along loop paths from I.

We describe the four procedures in the following four subsections. The pro-
cedure processLoop is described as the last one as it calls the other three pro-
cedures. We demonstrate the procedures and finally the whole algorithm on the
programs of Fig. 1. Descriptions of symbolic memories related to these programs
omit the variables n and A: these variables are never changed and hence the value
of n and A is always n and A, respectively.
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Algorithm 1. executeProgram
Input:

P // a flowgraph
Output:

{(π1, θ1, ϕ1), . . . , (πk, θk, ϕk)} // backbones πi (with symbolic memory θi and
// path condition ϕi after execution along πi)

β // for each edge e of P , β(e) is a set of upper bounds for e

1 states ←− ∅;
2 Compute the set of backbones {π1, . . . , πk} of P .;
3 foreach i = 1, . . . , k do
4 Initialize θi to return a for each (scalar or array) variable a.;
5 ϕi ←− true;
6 Initialize βi to return {0} for each edge.;
7 Let πi = v1 . . . vn.;
8 foreach j = 1, . . . , n − 1 do
9 if vj is a loop entry then

10 Let C be the loop with the loop entry vj along πi.;
11 (βloop , θi) ←− processLoop(P (C, vj), θi, ϕi);
12 foreach edge e of P (C, vj) do
13 βi(e) ←− {ρ1 + ρ2 | ρ1 ∈ βi(e), ρ2 ∈ βloop(e)};

14 if ι((vj , vj+1)) has the form assume(ψ) and θi(ψ) contains no 	 then
15 ϕi ←− ϕi ∧ θi(ψ);

16 if ι((vj , vj+1)) has the form a := expr then
17 θi(a) ←− θi(expr);
18 βi((vj , vj+1)) ←− {ρ + 1 | ρ ∈ βi((vj , vj+1))};

19 Insert (πi, θi, ϕi) into states.;

20 foreach edge e of P do
21 β(e) ←− {max{ρ1, . . . , ρk} | ρ1 ∈ β1(e), . . . , ρk ∈ βk(e)};

22 return (states, β)

3.1 Algorithm executeProgram

The procedure executeProgram of Algorithm 1 takes a flowgraph as input, deter-
mines its backbones, and symbolically executes each backbone separately. For a
backbone πi, symbolic execution computes symbolic memory θi, path condition
ϕi, and bound function βi assigning to each edge e a set of symbolic expressions
that are valid upper bounds on the number of visits of edge e during any single
run along the backbone. Each such a set βi(e) of bounds could be replaced by a
single bound min βi(e), but we prefer to keep it as a set of simpler expressions to
increase the success rate of expression matching in the procedure processLoop
(we point out the reason in Sect. 3.4).

The symbolic execution proceeds in the standard way until we enter a loop
entry (line 9). Then we call procedure processLoop on the loop, current sym-
bolic memory and path condition. The procedure returns function βloop of upper
bounds on visits of loop edges during execution of the loop, and a symbolic mem-
ory after execution of the loop. We add these bounds and the former bounds in
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the foreach loop at line 12 and continue the execution along the backbone. If
the processLoop procedure cannot determine the value of some variable after
the loop, it simply uses the symbol � (unknown).

Another difference from the standard symbolic execution is at line 14 where
we suppress insertion of predicates containing � to the path condition. As a
consequence, a path condition of our approach is no longer a necessary and
sufficient condition on input values to lead the program execution along the
corresponding path (which is the case in the standard symbolic execution), but
it is only a necessary condition on input values of a run to follow the backbone.

After processing an edge of the backbone, we increase the corresponding
bounds by one (line 18). At the end of the procedure, the resulting bounds for
each edge are computed as the maximum of previously computed bounds for the
edge over all backbones (see the foreach loop at line 20). Besides these bounds,
the procedure also returns each backbone with the symbolic memory and path
condition after its execution.

Example 1. When executeProgram is called on the flowgraph of Fig. 1(b), it
finds two backbones π1 = cdefc′ and π2 = cdfc′. Since there are no loops along
these backbones, their symbolic execution easily ends up with the corresponding
symbolic memories and path conditions

π1 : θ1(i) = i + 1 θ1(k) = k + 1 ϕ1 = i < n ∧ k < 3 ∧ A(i) �= 0
π2 : θ2(i) = i + 1 θ2(k) = k ϕ2 = i < n ∧ k < 3 ∧ A(i) = 0

and a bound function β assigning {1} to each edge of the flowgraph.

3.2 Algorithm computeSummary

The procedure computeSummary gets loop paths π1, . . . , πl together with sym-
bolic memories θ1, . . . , θl, where each θi represents the effect of a single iteration
along πi. Then it assigns fresh path counters κ = (κ1, . . . , κl) to the loop paths
and computes the parametrized symbolic memory θκ after κ iterations of the
loop, i.e. after

∑
1≤i≤l κi iterations where exactly κi iterations follow πi for each

i and there is no assumption on the order of iterations along different loop paths.
If we do not find the precise value of some variable after κ iterations (for example
because the value depends on the order of iterations along different loop paths),
then θκ assigns � (unknown) to this variable.

Due to the limited space, we do not provide any pseudocode or intuitive
description of the procedure computeSummary here. Both can be found in [15].
It follows the ideas of the procedure of the same name introduced in [14].

Example 2. Assume that computeSummary gets symbolic memories θ1, θ2 corre-
sponding to loop paths π1, π2 as computed in Example 1. It assigns path counters
κ1, κ2 to π1, π2 respectively, and computes the parametrized symbolic memory
θκ describing the values of program variables after κ = (κ1, κ2) iterations of the
loop that induces the flowgraph of Fig. 1(b). Note that i, k here represent the
values of i, k just before the loop is executed.

θκ(i) = i + κ1 + κ2 θκ(k) = k + κ1
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Algorithm 2. computeBounds
Input:

I // indices of backbones
ϕ // a necessary condition to perform an iteration along a backbone

// with an index in I after κ iterations
Output:

B // upper bounds on the number of iterations
// along backbones with indices in I

1 if ϕ[κi/0 | i ∈ I] is not satisfiable then return {0} B ←− ∅;
2 foreach inequality

∑
j∈J⊇I ajκj < b implied by ϕ, where each aj is a positive

integer and b is κ-free do
3 B ←− B ∪ {max{0, 	b/min{ai | i ∈ I}
}}
4 return B

3.3 Algorithm computeBounds

The procedure computeBounds of Algorithm 2 gets a set I of selected loop path
indices, and a necessary condition ϕ to perform an iteration along some loop
path with an index in I (we talk about an iteration along I for short) after
κ previous loop iterations. From this information, the procedure infers upper
bounds on the number of loop iterations along I.

We would like to find a tight upper bound, i.e. a κ-free symbolic expression
B such that there exist some values of symbols (given by a valuation function
v) for which the necessary condition ϕ[ a/v(a) | a is a symbol ] to make another
iteration along I is satisfiable whenever the number of finished iterations along
I is less than B[ a/v(a) | a is a symbol ] and the same does not hold for the
expression B + 1. An effective algorithm computing these tight bounds is an
interesting research topic itself.

The presented procedure infers some bounds only for two special cases. Line
1 covers the case when even the first iteration along any loop path in I is not
possible: the procedure then returns the bound 0.

The other special case is the situation when the necessary condition implies
an inequality of the form

∑
j∈J⊇I ajκj < b, where each aj is a positive integer

and b is κ-free. To detect these cases, we transform the necessary condition to
the conjunctive normal form, look for clauses that contain just one predicate
and try to transfer the predicate into this form. Each such inequality implies the
following:

∑

j∈J⊇I

ajκj < b =⇒
∑

i∈I

aiκi < b =⇒ min{ai | i ∈ I} ·
∑

i∈I

κi < b.

Hence,
∑

i∈I κi < �b/min{ai | i ∈ I}� has to be satisfied to perform
another iteration along I after κ previous iterations including

∑
i∈I κi iterations

along I. As all path counters are non-negative integers, we derive the bound
max{0, �b/min{ai | i ∈ I}�} on iterations along I.
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Example 3. We call computeBounds({1}, ϕ) to get bounds on κ1 from the con-
dition ϕ = κ1 + κ2 < n ∧ κ1 < 3 ∧ A(κ1 + κ2) �= 0. Since ϕ[κ1/0] is satisfiable,
the procedure uses inequalities κ1 + κ2 < n and κ1 < 3 implied by ϕ to produce
bounds B = {max{0, n},max{0, 3}} = {max{0, n}, 3}.

3.4 Algorithm processLoop

The procedure processLoop of Algorithm 3 gets a flowgraph Q representing the
body of a loop, i.e. each run of Q corresponds to one iteration of the original loop.
We symbolically execute Q using the recursive call of executeProgram at line 2.
We obtain all loop paths π1, . . . , πk of Q and bounds βinner on visits of each edge
in the loop during any single iteration of the loop. For each πi, we also get the sym-
bolic memory θi after one iteration along πi and a necessary condition ϕi to per-
form this iteration. The procedure computeSummary produces the parametrized
symbolic memory θκ after κ iterations. Symbols a appearing in θκ refer to vari-
able values before the loop is entered. If we combine θκ with the symbolic memory
before entering the loop θin , we get the symbolic memory after execution of the
code preceding the loop and κ iterations of the loop. We use this combination to
derive necessary conditions ϕκ

i to perform another iteration along πi and upper
bounds βκ on visits of loop edges in the next iteration of the loop.

The foreach loop at line 6 computes upper bounds for all edges of the
processed loop on visits during all its complete iterations (incomplete iterations
when a run cycles in some nested loop forever are handled later). We already
have the bounds βκ on visits in a single iteration after κ preceding iterations.
For each edge e, we compute the set I of all loop path indices such that iterations
along these loop paths can visit e. The computeBounds procedure at line 8 takes
I and a necessary condition to perform an iteration along I after κ iterations
and computes bounds Bouter on the number of iterations along I. If there is
0 among these bounds, e cannot be visited by any complete iteration and the
computation for e is over. Otherwise we try to compute some overall bounds
for each bound ρinner on the visits of e during one iteration (after κ iterations)
separately. If ρinner is a κ-free expression (line 13), then it is constant in each
iteration and we simply multiply it with every bound on the number of iterations
along I. The situation is more difficult if ρinner contains some path counters.
We can handle the frequent case when it has the form max{c, b +

∑k
i=1 aiκi},

where a1, . . . , ak, b, c are κ-free (see line 15 and note that this is the reason
for keeping the bounds simple). First we get rid of path counters κj that have
some influence on this bound (i.e. aj �= 0), but e cannot be visited by any
iteration along loop path πj . Let J be the set of indices of such path counters
(line 16). We try to compute bounds BJ on the number of iterations along J
(line 17), which are also the bounds on

∑
j∈J κj . Note that if J = ∅, we call

computeBounds(∅, false), which immediately returns {0}. If we get some bounds
in BJ , we can overapproximate

∑k
i=1 aiκi as follows:

k
∑

i=1

aiκi =
∑

j∈J

ajκj +
∑

i∈I

aiκi ≤ max{0, aj | j ∈ J} · minBJ + max{ai | i ∈ I} ·
∑

i∈I

κi
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Algorithm 3. processLoop
Input:

Q // a flowgraph induced by a loop
θin // a symbolic memory when entering the loop
ϕin // a path condition when entering the loop

Output:
βloop // upper bounds for all edges in the loop
θout // symbolic memory after the loop

1 Initialize βloop to return ∅ for each edge e of Q.;
2 ({(π1, θ1, ϕ1), . . . , (πk, θk, ϕk)}, βinner ) ←− executeProgram(Q);
3 θκ ←− computeSummary({(π1, θ1), . . . , (πk, θk)});
4 ϕκ

i ←− ϕin ∧ θin〈θκ〈ϕi〉〉 for each i ∈ {1, . . . , k};
5 βκ(e) ←− {θin〈θκ〈ρ〉〉 | ρ ∈ βinner (e)} for each edge e of Q;
6 foreach edge e of Q do
7 I ←− {i | e is on πi or on a loop along πi};
8 Bouter ←− computeBounds(I,

∨
i∈I ϕκ

i );
9 if 0 ∈ Bouter then

10 βloop(e) ←− {0}
11 else
12 foreach ρinner ∈ βκ(e) do
13 if ρinner ≡ c where c is κ-free then
14 βloop(e) ←− βloop(e) ∪ {c · ρouter | ρouter ∈ Bouter}
15 else if ρinner ≡ max{c, b +

∑k
i=1 aiκi} where c, b and all ai are

κ-free then
16 J ←− {j | j /∈ I ∧ aj �= 0};
17 BJ ←− computeBounds(J,

∨
j∈J ϕκ

j );

18 if BJ �= ∅ then
19 b′ ←− b + max{0, aj | j ∈ J} · minBJ ;
20 a ←− max{ai | i ∈ I};
21 foreach ρouter ∈ Bouter do

22 βloop(e) ←− βloop(e) ∪ {∑ρouter−1
K=0 max{c, b′ + a · K}}

23 foreach edge e of Q do
24 if an edge e′ of Q such that βκ(e′) = ∅ is reachable from e in Q then
25 βloop(e) ←− {ρ1 + ρ2 | ρ1 ∈ βloop(e), ρ2 ∈ βκ(e), and ρ2 is κ-free};

26 θout(a) ←− θin〈θκ(a)〉 for each variable a;
27 Eliminate κ from θout .;
28 return (βloop , θout)

Using the definitions of b′ and a at lines 19–20, we overapproximate the bound
ρinner on visits of e during one iteration along I after κ loop iterations by

ρinner = max{c, b +
k∑

i=1

aiκi} ≤ max{c, b′ + a ·
∑

i∈I

κi}.

As K-th iteration along I is preceded by K −1 iterations along I, the edge e can
be visited at most max{c, b′ +a · (K −1)} times during K-th iteration. For each
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bound ρouter on the iterations along I, we can now compute the total bound on
visits of e as

∑ρouter−1
K=0 max{c, b′ + a · K}.

Until now we have considered visits of loop edges during complete iterations.
However, it may also happen that an iteration is started, but never finished
because the execution keeps looping forever in some nested loop. For example, in
the program while(x>0){x:=x-1;while(true){}}, we easily compute bound 0
on the number of complete iterations of the outer loop and thus we assign bound
0 to all loop edges at line 10. However, some edges of the loop are visited. These
incomplete iterations are treated by the foreach loop at line 23. Whenever an
edge e can be visited by an incomplete iteration (which is detected by existence
of some subsequent edge e′ without any bound and thus potentially lying on
an infinite nested loop), we add the (κ-free) bounds on visits of e during one
iteration to the total bounds for e. If there is no such κ-free bound, we leave e
unbounded to be on the safe side.

Finally, the lines 26 and 27 combine the symbolic memory before the loop
with the effect of the loop and eliminate loop counters from the resulting sym-
bolic memory θout . Roughly speaking, the elimination replaces every expression
that is not κ-free by �. In fact, the elimination can be done in a smarter way. For
example, after the loop in the program i:=0;while(i<n){i:=i+1}, the elimi-
nation can replace κ by max{0, θout (n)}.

Example 4. We demonstrate the whole algorithm on the program of Fig. 1(a).
We follow calls to individual procedures and we present the current state of the
computation in terms of variables of the procedure at the top of the call stack.

The execution starts by calling executeProgram with the flowgraph at
Fig. 1(a). The flowgraph has only one backbone π1 = abcg . The node c is
the loop entry to the loop {c, d, e, f} along the backbone. Symbolic execu-
tion of π1 up to c is straightforward and leads to the symbolic memory
θ1(k) = θ1(i) = 0, the path condition ϕ1 = true, and the bound function
β1 maps each edge to {0} except β1((a, b)) = β1((b, c)) = {1}. At the entry node
c we build an induced flowgraph P ({c, d, e, f}, c) depicted in Fig. 1(b). Then we
call processLoop(P ({c, d, e, f}, c), θ1, ϕ1).

processLoop calls executeProgram with the flowgraph at Fig. 1(b), as we
did in Example 1. Recall that processLoop receives the following

π1 = cdefc′ θ1(i) = i + 1 θ1(k) = k + 1 ϕ1 = i < n ∧ k < 3 ∧ A(i) �= 0
π2 = cdfc′ θ2(i) = i + 1 θ2(k) = k ϕ2 = i < n ∧ k < 3 ∧ A(i) = 0

and a bound function βinner assigning {1} to each edge of the flowgraph. Now
we call computeSummary for the symbolic memories θ1 and θ2 and we get the
parametrized symbolic memory θκ described in Example 2:

θκ(i) = i + κ1 + κ2 θκ(k) = k + κ1

Next, at line 4 of processLoop we compute necessary conditions to perform
another iteration along backbones π1 and π2 respectively:

ϕκ
1 = κ1 + κ2 < n ∧ κ1 < 3 ∧ A(κ1 + κ2) �= 0

ϕκ
2 = κ1 + κ2 < n ∧ κ1 < 3 ∧ A(κ1 + κ2) = 0
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The next line produces bound function βκ which is the same as βinner , in this
case. Now we have all data we need to start the computation of resulting bounds
for all five edges of the passed flowgraph.

The main part of this computation is performed in the loop at line 6. We show
the computation for the edge (e, f). First we call computeBounds({1}, ϕκ

1 ). As
shown in Example 3, we obtain the set Bouter = {max{0, n}, 3}. Since 0 �∈ Bouter

and βκ((e, f)) = {1}, we get to the line 14 in processLoop, where we receive
βloop((e, f)) = {max{0, n}, 3}. The computation proceeds similarly for other
edges, but for (c, d), (d, f), (f, c) it produces only one bound {max{0, n}}. The
difference originates in the calls of computeBounds. For (c, d) and (f, c), we call
computeBounds({1, 2}, ϕκ

1 ∨ϕκ
2 ) and get only the bound Bouter = {max{0, n}}.

For (d, f), we call computeBounds({2}, ϕκ
2 ) and get the same single bound.

Since, the condition at line 24 is false for all edges, the resulting βloop returns
{max{0, n}, 3} for (d, e) and (e, f), and {max{0, n}} for the others. The result-
ing symbolic memory θout assigns � to i and k.

The control-flow then returns back to executeProgram where we update β1

according to received βloop . Then we symbolically execute the remaining edge
(c, g). The computation in the loop at line 20 computes maximum over all bounds
for a considered edge. The algorithm then terminates with the bound function
β assigning {1} to edges (a, b), (b, c), (c, g), the set {max{0, n}} to edges (c, d),
(d, f), (f, c), and the set {max{0, n}, 3} to (d, e) and (e, f).

We can conclude for the flowgraph at Fig. 1(a) that the loop can be exe-
cuted only if the program is called with some positive integer n for the para-
meter n. In that case the loop is executed at most max{0, n} times (according
to β((c, d))), but the path following the if branch can be executed at most
min{max{0, n}, 3} times. So the asymptotic complexity for the program is
O(n), but O(1) for the if branch inside the loop.

4 Experimental Evaluation

We implemented our algorithm in an experimental program analysis tool called
Looperman. It is built on top of the symbolic execution package Bugst [17]
and it intensively uses the SMT solver Z3 [21].

We compared Looperman with state-of-the-art loop bound analysis tools
Loopus [12], KoAT [5], PUBS [1], and Rank [3] on 199 simple C programs used
in previous comparisons of loop bound analysis tools [19,20]. We focused on two
kinds of bounds: asymptotic complexity bounds for whole programs and exact
(meaning non-asymptotic) bounds for individual program loops. The compari-
son of asymptotic complexity bounds and other details about our experimental
evaluation can be found in [15]. Here we present only the comparison of exact
bounds, which was restricted to Looperman and Loopus as the other tools
use input in a different format and (as far as we know) they do not provide any
mapping of their bounds to the original C code. Note that Loopus is a strong
competitor as it achieved the best results in the asymptotic complexity bounds.

The presented experiments run on a machine with 8 GB of RAM and Intel
i5 CPU clocked at 2.5 GHz. We apply the 60 s time limit to the analysis of



Tighter Loop Bound Analysis 525

Table 1. Comparison of loop bounds inferred by Looperman and Loopus

Looperman Loopus

Correctly bounded loops 227 267

Incorrectly bounded loops 0 3

Loops with no bound found 86 43

Bounded loops, not bounded by the other 11 51

Asymptotically tighter bounds 16 11

Tighter bounds, but not asymptotically 44 2

one program by one tool. The Looperman tool (both sources and Windows
binaries), the 199 benchmarks, and all measured data are available here [18].

The 199 benchmarks contain 313 loops. Table 1 provides for both tools the
numbers of correctly and incorrectly bounded loops, and the number of loops for
which no bound is inferred. The second part of the table compares the inferred
loop bounds. It presents the number of loops where one tool produces a correct
loop bound while the other does not, the number of loops where one tool provides
an asymptotically tighter loop bound than the other, and the number of loops
where one tool infers a tighter bound than the other tool, but the difference is
not asymptotic (e.g. n versus 2n). To complete the presented data, let us note
that both tools inferred exactly the same bound for 143 loops.

The results show that Loopus can infer bounds for slightly more loops than
Looperman. However, there are also loops bounded by Looperman and not
by Loopus. The biggest advantage of Looperman is definitely the tightness of
its bounds: Looperman found a tighter bound for 28 % of 216 loops bounded
by both tools, while Loopus found a tighter bound only for 6 % of these loops.

5 Related Work

Techniques based on recurrence equations attempt to infer a system of recur-
rence equations from a loop (or a whole program) and to solve it. PUBS [1]
focuses primarily on solving of the system generated by another tool, e.g. [2]. r-
TuBound [11] builds a system of recurrence equations by rewriting multi-path
loops into single-path ones using SMT reasoning. The system is then solved by
a pattern-based algorithm. In ABC [4], inner loops are instrumented by iter-
ation counters (one counter for a whole loop). Recurrence equations are then
constructed over program variables and counters. SPEED [7] instruments coun-
ters into the program (one counter for each back-edge) as artificial variables.
Then it computes their upper bounds by a linear invariant generation tool. In
our approach, we use recurrence equations and counters to summarise loops. We
compute upper bounds from necessary conditions for executing backbones. In
contrast to [4,7], we introduce a counter for each loop path and counters are not
instrumented.
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Rank [3] applies an approach based on ranking functions. It reuses results
from the termination analysis of a given program (i.e. a ranking function) to
get an asymptotic upper bound on the length of all program executions. KoAT
[5] uses ranking functions of already processed loops to compute bounds on val-
ues of program variables, which are then used to improve ranking functions of
subsequent loops. Loopus [16] uses several heuristics to transform a program
in particular locations so that variables appearing there represent ranking func-
tions. Program loops are then summarised per individual paths through them.
The approach was further improved by merging nested loops [12] and by compu-
tation of maximal values of variables [13]. Our algorithm does not use ranking
functions. However, the passing of information from a preceding to a subse-
quent loop we see in [5] or [13] happens also in our approach, through symbolic
execution. The loop summarisation per individual loop paths presented in [16]
is similar to ours. However, while [16] computes summary as a transitive hull
expressed in the domain of a size-change abstraction, we compute precise sym-
bolic values of variables after loops. In contrast to [12], we do not merge nested
loops.

There are other important techniques computing upper bounds, which are,
however, less related to our work. For instance, SWEET [9] uses abstract inter-
pretation to derive bounds on values of program variables and a pattern matching
of loops of predefined structure. In [8], a program is transformed with respect to
a given location: preserving reachability from the location back to itself. Loops
are summarised into disjunctive invariants from which upper bounds are com-
puted using a technique based on proof-rules. WISE [6] symbolically executes all
paths up to a given length in order to infer a branching policy for longer paths.
Then it symbolically executes all paths satisfying the policy. The longest path
represents the worst-case execution time of the program.

6 Conclusion

We presented an algorithm computing upper bounds for execution counts of
individual instructions of an analysed program during any program run. The
algorithm is based on symbolic execution and the concept of path counters.
The upper bounds are parametrized by input values of the analysed program.
Evaluation of our experimental tool Looperman shows that our approach often
infers loop bounds that are tighter than these found by leading loop bound
analysis tools. This may be a crucial advantage in some applications including
the worst case execution time (WCET) analysis.
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