
69© Springer International Publishing AG 2016 
A. Tivnan (ed.), Resistance to Targeted Therapies Against Adult Brain Cancers, 
Resistance to Targeted Anti-Cancer Therapeutics, 
DOI 10.1007/978-3-319-46505-0_4

    Chapter 4   
 The Blood-Brain Barrier in Glioblastoma: 
Pathology and Therapeutic Implications                     

     John     Kealy     and     Matthew     Campbell    

    Abstract     Glioblastoma (GBM) is a highly malignant form of brain tumour for 
which the prognosis is generally very poor and treatment options are limited. GBM 
is associated with rapid and aggressive tumour growth with associated cerebral 
oedema. Central to the diffi culty associated with treating GBM is the challenge of 
getting chemotherapeutic drugs to cross the blood-brain barrier (BBB). Although 
vasculature within and around a GBM becomes more permeable due to pathological 
changes in the BBB, large areas of the tumour remain resistant to systemically 
administered agents. Here, we will introduce the concept of the BBB and its normal 
role in the healthy brain before describing how it becomes compromised in cases of 
GBM. This will cover physiological, genetic and functional aspects of BBB func-
tion and dysfunction. Finally, the therapeutic implications of modulating BBB per-
meability and receptor-mediated transport will be discussed with a focus on 
chemotherapeutic drug delivery.  
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4.1         Introduction 

 In order for the central nervous system to work effectively and effi ciently, it requires 
a tightly regulated means of supplying neurons with nutrients and removing 
unwanted substrates from the cerebrospinal fl uid (CSF). This is achieved by dense 
vascularisation of the cerebral parenchyma [ 1 ] where controlled traffi cking of 
molecular species between the central nervous system and the periphery can occur. 
Access to the central nervous system is restricted by the blood-brain barrier (BBB), 
a complex interface between the blood stream and the cerebral parenchyma [ 2 ]. The 
presence of tight junctions and transporter proteins allows the BBB to selectively 
regulate the passage of molecules to and from the brain [ 3 – 5 ]. 

 Glioblastoma ( GBM) is a p  articularly malignant form of brain tumour for which 
the prognosis is generally poor and treatment options are limited [ 6 ]. GBM is asso-
ciated with rapid and aggressive tumour growth with an associated cerebral oedema, 
and prognosis is poor for patients diagnosed with the condition [ 7 ]. Part of the dif-
fi culty in treating in GBM is the challenge of getting chemotherapeutic drugs to 
cross the BBB, even though the BBB in GBM becomes more permeable due to 
pathological changes in the BBB [ 8 – 11 ]. However, dynamic changes in BBB per-
meability can be achieved by targeting these tight junctions and transporters with 
suitable treatments [ 12 ]. This can be used to increase the effi cacy of drug delivery 
[ 13 ] or removal of pathological material from the cerebral parenchyma, for exam-
ple, the removal of amyloid beta in Alzheimer’s disease [ 14 ]. 

 The aim of this chapter will be to introduce readers to the BBB and its normal 
role in the healthy brain before describing how it becomes compromised in cases of 
GBM. This will cover physiological, genetic and functional aspects of BBB func-
tion and dysfunction. Finally, the therapeutic implications of modulating BBB per-
meability and receptor-mediated transport will be discussed with a focus on 
chemotherapeutic drug delivery.  

4.2     The BBB in  Normal and Pathological Conditions   

 Normal brain function requires rapid and controlled access to metabolic resources 
and molecular products from the periphery. At the same time, removal of unwanted 
material from the brain to the periphery is also vital. As such, the brain has evolved 
a pervasive and effi cient vascular system that permeates through it; it is estimated 
that a neuron is never further than 20 μm from a capillary. Recent 3D imaging of the 
mouse brain shows that penetrating vessels with a diameter of approximately 23 μm 
access the tissue before branching into microcapillaries as small as 3 μm in diameter, 
ensuring a dense vascularisation of the brain [ 1 ]. The issue of supply of necessary 
metabolites and removal of waste is well catered for by this extensive microcapillary 
system, and access to the cerebral parenchyma is restricted by the BBB so that dan-
gerous biochemical species cannot cause damage to delicate neuronal tissue. 
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 The BBB itself is composed of a layer of endothelial cells lining the lumen of the 
capillary in order to create an interface between peripheral circulation and the cere-
bral parenchyma where substances can then enter the cerebrospinal fl uid ( CSF  ). 
Endothelial cells control transcellular transport from the blood into the  CSF  , express-
ing transporters for molecules that are essential for normal metabolism and homoeo-
stasis such as glucose, insulin and amino acids [ 3 ,  5 ]. The endothelial cells form 
adherens junctions and tight junctions between each other in order to limit paracel-
lular transport between the vascular and cerebral compartments [ 12 ]. Interendothelial 
adherens junctions are mainly composed of members of the cadherin family such as 
vascular endothelial ( VE  )-cadherin and N-cadherin [ 15 ]. Tight junctions are com-
posed of about 30 proteins including occludin, tricellulin and members of the clau-
dins and junction adhesion molecule families [ 16 ,  17 ]. Tight junction proteins are 
anchored to the intracellular cytoskeleton of the endothelial cells by transmembrane 
proteins such as zonula occludens-1 (ZO-1) [ 18 ]. Tight junctions restrict molecules 
with a size greater than 400–450 Da from passing between endothelial cells [ 19 , 
 20 ]. Furthermore, movement of small ions across the BBB is also restricted given 
its electrical resistance, on average around 1870 omega (Ω) cm 2  [ 21 ]. Taken together, 
the endothelial cell layer can regulate access to and from the central nervous system 
to a high degree, with the result that approximately 98 % of drugs developed to tar-
get neurological disorders being unable to cross the BBB [ 22 ]. 

 The microcapillaries that supply the brain are surrounded by a group of different 
cell types that form the neurovascular unit ( NVU  ), including neurons, astrocytes, 
microglia and pericytes. The non-neuronal cells of the NVU act both as scaffolding 
and as mediators of molecular transport into and out of the brain. Within the  NVU  , 
contractile pericytes form layers on the abluminal surface of the microcapillaries, 
regulating permeability in the mature BBB [ 23 ]. Pericytes are covered by a macro-
molecular layer known as the basal lamina which is in turn enclosed by perivascular 
endfeet from astrocytes to create a supportive sheath (the glia limitans) around the 
microcapillaries that supply the brain [ 24 – 26 ].  Microglia   then form a line of protec-
tion on the brain side of the BBB, able to mount an immune response should an 
unwanted substance make it through the BBB [ 27 ]. 

 Although the cerebral endothelial cell layer is the main workhorse of the BBB, the 
pericytic and glial support structure surrounding the microvasculature is necessary to 
the development and maintenance of BBB integrity and functionality. Development of 
the BBB is achieved by radial glia fi rst via the production of retinoic acid to induce 
BBB formation and secondly by stabilisation of developing vasculature through Wnt 
signalling [ 28 ]. At the same time, interactions between pericytes and endothelial cells 
functionally regulate BBB integrity [ 29 ] via signalling involving transforming growth 
factor β (TGFβ) [ 30 ], platelet-derived growth factor B [ 31 ] and the forkhead transcrip-
tion factor Foxf2 [ 32 ]. Once the BBB is mature, astrocytes form endfoot projections 
that can modulate permeability—possibly through TGFβ [ 33 ] and angiotensin signal-
ling [ 34 ]. In the NVU, astrocytes act as a go-between for neurons and vasculature, 
synchronising cerebral blood fl ow, maintaining homoeostasis and regulating water 
content in the cerebral parenchyma [ 25 ]. Astrocytic endfeet are known to regulate 
transport of Na +  and Cl −  across the endothelial cell layer [ 35 ] through intercellular Ca 2+  
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signalling between astrocytes and endothelial cells [ 36 ]. Astrocytic endfeet also regu-
late neurovascular coupling via a nitric oxide-dependent intracellular Ca 2+  signalling 
cascade [ 37 ], ensuring that metabolic supply is maintained during neuronal activation. 
Pericytes also play a role in controlling the environment within the NVU through the 
regulation of cerebral blood fl ow [ 38 ] and by coordinating astrocytic endfoot position 
on the walls of the cerebral vasculature [ 39 ]. 

 It is important to note that the BBB is not homogenous; different regions show 
variations in permeability. For example, the circumventricular organs entirely lack 
a layer of endothelial cells and have almost free access to peripheral blood fl ow [ 40 , 
 41 ]. Even where an endothelial cell layer is well established, the permeability of the 
BBB is not a static value as BBB permeability is a dynamic process with up- and 
down-regulation of tight junction proteins occurring constantly [ 12 ]. Diurnal and 
seasonal effects on BBB permeability have been described [ 42 ,  43 ], and recent work 
from our group shows that concentrations of molecular regulators of BBB permea-
bility follow a circadian rhythm (unpublished data). This reinforces the idea that the 
BBB is a constantly changing entity under normal conditions and this dynamism 
requires careful consideration in addressing questions about pathological processes 
and therapeutic interventions.  

4.3     The Compromised BBB in GBM 

 GBM is a malignant class of Grade IV tumours that tends to form in the brain or 
spinal cord, mainly in adults aged 50–60 [ 44 ]. The prognosis for GBM is poor in 
many cases given the aggressive growth of the tumour and diffi culties in treating 
GBM with standard oncological treatments [ 45 ,  46 ]. This means that the fi ve-year 
survival of patients diagnosed with GBM is only 1.9 % in patients undergoing radio-
therapy alone [ 7 ]. Typically, abnormal differentiation of brain tissue results in a 
mass of cancerous tissue though the exact source of the initial insult is under debate. 
It has been suggested that GBMs develop from aberrant glial cells but more recently 
the idea that cancer stem cells ( CSCs  ) are responsible for the condition. These CSCs 
develop from a suitable progenitor cell line where the normal developmental cas-
cade has been altered leading to unregulated growth [ 44 ]. Given the fact that GBMs 
tend to form numerous cell types during their growth, it is likely that multipotent 
progenitor cells are at fault in this condition [ 47 – 50 ] and the location of GBM 
development within the brain may further infl uence the fate of these CSCs [ 51 ,  52 ]. 
In particular, co-activation of the Ras and Akt pathways has been identifi ed as being 
necessary for GBM induction [ 53 ,  54 ]. The role of Ras is confi rmed by the presence 
of altered Notch signalling in GBM cell lines [ 55 ]. Ras has also been implicated in 
the maintenance of GBM with suppression of Kras expression resulting in GBM 
apoptosis and regression in a mouse model of GBM [ 56 ]. 

  Tumour growth and maintenance   are facilitated by newly formed blood vessels 
that give the cancerous cells access to the peripheral blood supply; a well- established 
hallmark of higher-grade brain tumours is an extensive network of microcapillaries 
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within the cancerous region [ 57 – 59 ]. Out of all brain cancers, GBM shows a 
relatively high level of biomarkers relating to proliferation and angiogenesis [ 60 ], 
which is unsurprising given the aggressive nature of GBM. There seems to be a 
reciprocal relationship between the developing tumour and the vasculature of the 
brain; there are high levels of perivascular nestin-positive CSCs in the early stages 
of GBM growth [ 61 ], nestin being a marker of angiogenesis that is upregulated in 
cancerous cells [ 62 ]. Calabrese and colleagues (2007) also describe direct interac-
tion between cultured CSCs and endothelial cells and, most importantly, that endo-
thelial cells promote GBM development in vivo. This is a subversion of the 
regulatory role of endothelial cells on normal neural stem cell development [ 63 ]. 

 A number of molecular pathways regulating angiogenesis in GBMs have now 
been identifi ed. Vascular endothelial growth factor ( VEGF  ) in particular stands out 
as an important regulator of angiogenesis [ 64 ]. CSCs actively promote VEGF sig-
nalling, directly acting on local endothelial cells to promote angiogenesis [ 65 ]. 
Normally, endothelial cells do not express the tyrosine kinase receptor for  VEGF  , 
but it is expressed on endothelial cells associated with tumour formation [ 64 ]. 
Inhibition of VEGF signalling following transfection of human GBM cells into the 
brains of nude mice was subsequently shown to inhibit GBM growth and decrease 
the rate of angiogenesis in vivo [ 66 ]. Specifi c targeting of the VEGF tyrosine kinase 
receptor using a diphtheria toxin conjugated to tumour-specifi c isoforms of the 
VEGF receptor has been also shown to prevent tumour-associated angiogenesis and 
inhibit GBM growth in vivo [ 67 – 69 ]. Translation of anti-VEGF treatments to human 
clinical cases of glioma has shown therapeutic promise; however GBM still remains 
resistant to treatment even with these new therapies [ 70 – 72 ]. Part of this resistance 
may be due to the issue with invasive cells that migrate away from the GBM core 
where vascularisation is at its most dense [ 73 ], a process that is itself dependent on 
VEGF signalling [ 74 ]. 

 These new blood vessels develop a BBB but one that shows marked differences 
compared to that in normal tissue [ 4 ,  75 ] with alterations of both adherens [ 10 ,  11 ] 
and tight junction proteins [ 8 ,  9 ]. Additionally, epigenetic modulation of GBM 
development [ 76 ] and GBM’s susceptibility to radiation therapy [ 77 ] are associated 
with changes in the expression of markers for tight and adherens junctions, indicat-
ing an intimate relationship between endothelial integrity and GBM growth. It is 
well established that switching of cadherin expression in the adherens junction is 
involved in GBM development [ 78 ,  79 ] and these alterations have knock-on effects 
on tight junction stability [ 80 ,  81 ]. 

 At the level of the tight junction, there is almost complete loss of claudin-1 [ 9 ] 
and reduced levels of claudin-3 [ 82 ], claudin-5 and occludin [ 9 ] associated with 
GBM. At the same time, decreased levels of claudin-1 and claudin-5 in human 
GBM samples are accompanied by signifi cant increases in the expression of the 
adherens junction protein β-catenin [ 83 ]. Liebner and colleagues (2000) also 
describe alterations in plakoglobin and beta-catenin, further suggesting abnormally 
formed tight junctions in this pathological state. In clinical cases of GBM, these 
regions of abnormal tight junctions can be identifi ed through contrast magnetic 
resonance imaging (MRI); a contrast agent (gadolinium) is injected into the patient 
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and areas of high BBB permeability show a hyperintensive signal in T1-weighted 
scans [ 84 ,  85 ]. Using this method, regions of increased BBB permeability have been 
identifi ed in patients [ 86 ], fi tting with the molecular data from preclinical studies 
outlined above. This loss of tight junction integrity can be reversed in vitro using an 
anti-TGFβ antibody [ 4 ]. Interestingly, there appears to be a connection between 
TGFβ effect on endothelial cells and angiogenesis; in vitro analysis shows that 
TGFβ upregulates VEGF and inhibition of TGFβ signalling leads to an increase in 
claudin-5 levels [ 87 ], and human neuroimaging suggests that the extent of BBB 
“leakiness” is an indicator of patient survival [ 85 ]. 

 Abnormal tight junctions in GBMs are associated with changes in basal lamina 
composition, namely, decreases in agrin, a basal lamina protein associated with 
BBB function, and increases in tenascin, which is normally absent in the basal lam-
ina [ 88 ]. Data from an in vitro model of BBB using cultures of rat endothelial cells 
suggests that there may be a transient decrease in BBB permeability given that there 
is a fi broblast growth factor-2-dependent increase in occludin and ZO-1 protein 
levels following initial exposure to human GBM cells accompanied by an increase 
in transendothelial electrical resistance ( TEER  ) [ 89 ]. However, this may be a tran-
sient increase in tight junction effi ciency that is lost as the GBM becomes estab-
lished in the tissue. 

 The role of the BBB in GBM is of further clinical signifi cance when considering 
how disruption in fl uid clearance can lead to serious cerebral oedema [ 90 ]. Under 
normal conditions, the BBB is responsible for regulating osmotic processes via the 
aquaporin family of proteins [ 91 ,  92 ]. In particular, aquaporin-4 has a clear role in 
water transport; it is the most abundant water channel in the central nervous system 
and is found throughout the glia limitans in the astrocytic endfeet lining the BBB [ 93 ]. 
Aquaporin-4 is implicated in multiple regulatory processes including, but not limited 
to, regulation of extracellular space volume, circulation of CSF, waste clearance and 
cell migration [ 94 ]. Importantly, directly disrupting aquaporin-4 function using aqua-
porin-4-immunoglobulin G causes a signifi cant increase in BBB breakdown [ 95 ]. 

 As noted above, the BBB becomes disturbed within the GBM and cerebral 
oedema has been identifi ed in regions neighbouring the GBM [ 86 ]. Changes in 
aquaporin expression have been described during brain tumour development, 
namely, increases in aquaporin-1 [ 96 ] and aquaporin-4 [ 97 ]. Aquaporin-4 has been 
shown to be responsible both for the induction of cerebral oedema and for its resolu-
tion in a number of  patholog  ical states [ 98 ,  99 ]. Nevertheless, even though aquapo-
rin- 4 expression increases along with levels of cerebral oedema [ 100 ], aquaporin-4 
levels are not predictive of patient survival and may follow other processes involved 
in tumour growth rather than oedema itself [ 101 ]. This is supported by the associa-
tion between increased aquaporin-4 expression in tumours and simultaneous 
increases in VEGF and hypoxia-inducible factor-1α [ 102 ], suggesting a link with 
angiogenesis during tumour development. 

 Increases in BBB permeability during GBM may also be linked to aquaporin 
expression; in GBM the expression of aquaporin-4 moves from its polarised con-
fi guration in the astrocytic endfeet [ 91 ] and instead covers the cell bodies of the 
cancerous cells leading to dysregulation of the BBB [ 103 ]. Complicating the matter, 
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aquaporin-4 seems to play a direct role in oedema during therapy against GBM; 
treatment with radiotherapy and chemotherapy modulates perivascular levels of 
aquaporin-4 leading to a reduction in cerebral oedema associated with GBM [ 104 ]. 
However, until recently there has been little work performed on targeting the aqua-
porin system directly in combating cerebral oedema in neuropathological disorders 
[ 99 ]. Other symptoms of GBM have been addressed by targeting aquaporins; suc-
cessful attempts at modulating the aquaporin system have been made in order to 
attenuate angiogenesis, cell migration and growth in aquaporin-1-null mice [ 105 ] 
and following knockdown of aquaporin-4 expression in human cell cultures and in 
nude mice in vivo [ 106 ].  

4.4     Therapeutic Implications of the BBB in Treating GBM 

 It must be considered that even though the BBB within the GBM is compromised, it 
is still largely functional and will continue to perform its job in excluding large mol-
ecules from the cerebral parenchyma [ 20 ]. This creates the challenge of targeting the 
GBM effectively using chemotherapies as many commonly used chemotherapeutic 
drugs are in the size range of 450–850 Da so the BBB will still greatly limit access 
of many therapeutic compounds to the brain [ 20 ,  22 ]. The current standard for GBM 
treatment is surgical resection [ 107 ] followed by radiotherapy with an adjuvant che-
motherapy [ 48 ]. Nonetheless, response to chemotherapy in GBM is poor, meaning 
that therapeutic success is still very low [ 7 ], so any attempts at increasing the effi -
ciency of drug delivery to the brain are desirable. Therefore, techniques to increase 
BBB permeability using osmotic, genetic and physical interventions or via receptor-
mediated transport have been developed in order to aid in delivering drugs that 
would be too large to cross the BBB under normal circumstances. 

 Osmotic modulation of BBB permeability can be accomplished using a variety 
of techniques. The most commonly used approach is the use of a concentrated solu-
tion of the sugar mannitol to increase BBB  permeability   across the entire brain for 
several minutes [ 108 ,  109 ] with Na + /Ca 2+  exchange governing the length of time 
that BBB permeability is increased [ 110 ,  111 ]. 20 % mannitol was shown early on 
as a way to improve chemotherapy survival times [ 112 ]. However, its use in treating 
brain cancers has been controversial as osmotic modulation tends to cause wide-
spread opening of the BBB with debatable effects on the therapeutic index of co- 
administered chemotherapeutic agents [ 113 ] and mannitol can induce seizures in 
patients with epileptiform activity persisting for days [ 114 ]. Therefore,  mannitol      
has fallen out of favour as methods for bypassing the BBB with fewer side effects 
have been introduced. These newer approaches favour selective opening of the 
BBB; for example, localised BBB opening has been achieved using a convection- 
enhanced delivery of  ethylamine-human serum albumin (EA-HSA  ) in order to 
allow greater access of systemically administered methotrexate to the cerebral 
parenchyma, resulting in reduced tumour growth and increased survival in a rat 
model of glioma [ 115 ]. 
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 RNA interference is a method of knocking down gene expression by delivery of 
a tailored piece of RNA via a viral or non-viral vector that shows great promise 
across a range of neurological disorders [ 116 ]. It has been used to directly target 
GBM as many of these vectors are designed to pass through the BBB [ 117 – 120 ]. 
However, RNA interference can also be used to alter BBB permeability in order to 
allow other therapeutic compounds to access the cerebral parenchyma. Global or 
selective genetic modulation of the endothelial tight junction can be achieved sys-
temically or locally using short hairpin (sh) or small interfering (si) RNAs. 
Modulation of BBB permeability using siRNAs has proven to be of therapeutic use 
in a mouse model of Alzheimer’s disease, knocking down occludin and claudin-5 
levels increases the permeability of the BBB enough to allow signifi cant clearance 
of amyloid beta from the brain to the periphery [ 14 ]. For GBM, this type of approach 
could aid in delivering drugs as large as 1 kDa from the periphery across the BBB 
without inducing oedema [ 121 ,  122 ], allowing many standard chemotherapy drugs 
to enter the cerebral parenchyma. Furthermore, RNA interference can be utilised to 
enhance delivery of drugs that are already small enough to pass through the BBB 
[ 123 ], meaning that a smaller dose is needed to be systemically administered which 
may reduce side effects associated with a particular drug. In terms of GBM and 
other brain cancers, RNA interference has so far been successfully used preclini-
cally to knock down aquaporin expression in vitro and in vivo. Knockdown of aqua-
porin- 4 signifi cantly reduces water mobility under normal conditions in vivo [ 124 ] 
and signifi cantly reduces GBM migration and growth by disrupting pathways 
involved in cell invasion and adherence [ 106 ]. 

 A third way of altering BBB permeability is the use of physical means such as 
focussed ultrasound which has recently been shown to be a promising non-invasive 
method to treat a number of cancers including prostate cancer [ 125 ] and liver carci-
nomas [ 126 ] as well as ablation of brain tumours in humans [ 127 – 130 ]. Ablation 
using this method is problematic at present due to side effects with overheating of 
nontarget brain tissue. However, at lower intensities it can also be used as a way to 
increase BBB permeability in vivo [ 131 ] though this has yet to be attempted in 
humans [ 132 ]. A 1 MHz sonication pulse can signifi cantly increase BBB permeabil-
ity in tumours in rats [ 133 – 136 ], and using MRI to guide focussed ultrasound appli-
cation, it is possible to selectively increase BBB permeability in precise target 
regions of the rat brain in vivo [ 137 ]. This can then be used to allow greater access 
to the brain for a number of therapeutic compounds including drugs and genetic 
therapies: uptake of doxorubicin [ 138 ] and temozolomide [ 139 ] is signifi cantly 
increased following focussed ultrasound exposure and oligonucleotides, and DNA 
plasmid delivery can be made even more effective when focussed ultrasound was 
combined with nanoparticle delivery [ 140 ,  141 ]. Enhanced localisation of focussed 
ultrasound combined with targeted drug delivery can be achieved using microbub-
bles preloaded with the desired drug [ 142 ,  143 ]. 

 Finally, receptor-mediated transport is a method of crossing the BBB without 
altering its baseline level of permeability; instead drugs are bound to a ligand that 
can normally cross the BBB unimpeded [ 144 ]. A number of suitable endocytotic 
receptors have been identifi ed including low-density lipoprotein receptor-related 
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protein-1 and protein-2 (LRP-1 and LRP-2), transferrin receptor, insulin receptor 
and insulin-like growth factor receptor [ 144 ]. LRP-1 is found on endothelial cells 
and is responsible for transcellular transportation for multiple ligands across the 
BBB [ 145 ], and as such, it has become a target for the development of drug carriers 
that co-opt LRP-1 to carry therapeutic compounds across the BBB into the cerebral 
parenchyma [ 146 ]. Delivery of the chemotherapeutic drug doxorubicin and pacli-
taxel to the brain via LRP-1 has been achieved by binding doxorubicin to p97 [ 147 ] 
and by binding paclitaxel to angiopep-2 [ 148 ]. This signifi cantly increases the 
effectiveness of GBM uptake of Adriamycin and paclitaxel in mouse models of 
glioma. Researchers have also taken advantage of transferrin’s ability to guide 
material across the BBB (discussed in greater detail below) with doxorubicin hav-
ing been successfully delivered in this manner [ 149 ]. 

  Nanoparticles   have also been used for many years to aid the delivery of drugs 
across the BBB [ 150 ,  151 ] via receptor-mediated transport involving apolipopro-
teins B and E [ 152 – 154 ].  Doxorubicin   has been successfully delivered to the rodent 
brain by binding it to polysorbate-coated  nanoparticles   [ 155 ,  156 ]. Not only does 
nanoparticle-bound doxorubicin show effectiveness in treating GBM in preclinical 
experiments [ 157 ], the data also suggests that binding doxorubicin to polysorbate- 
coated nanoparticles also reduces the drug’s systemic toxicity [ 158 ]. Similarly, 
methotrexate can be delivered to the brain using the same type of polysorbate- coated 
nanoparticles [ 159 ]; there was a signifi cant decrease in tumour size and a signifi cant 
increase in the rates of apoptosis in a rat model of glioma using an alternative 
nanoparticle system (methotrexate was loaded into lipid core nanocapsules) [ 160 ]. 

 Combining RNA interference and receptor-mediated transport may result in bet-
ter therapies, and research involving the transferrin receptor has seen convergence 
of these techniques leading to increased effi cacy in the treatment of GBM [ 161 , 
 162 ]. It has been long known that transferrin receptor levels are greatly increased in 
GBM [ 163 ] and these levels are signifi cantly increased following radiotherapy 
[ 164 ], making them an attractive option for delivering drugs to cancerous brain tis-
sue. Early in vitro research using transferrin conjugated to toxins showed that tar-
geting the transferrin receptor could be a way to selectively target GBMs in vivo 
[ 165 ,  166 ]. Furthermore, RNA interference and traditional receptor-mediated trans-
port can be made more effi cient by conjugating transferrin onto nanoparticles; for 
example, spherical nucleic acids can be conjugated onto gold [ 167 ], cationic solid 
lipid [ 168 ] and hyaluronan-grafted lipid-based nanoparticles [ 169 ], whereas trans-
ferrin can be conjugated onto poly(lactic-co-glycolic acid) [ 170 ], poly(ethylene 
glycol)-poly(l-lactic-co-glycolic acid) [ 171 ] and gold nanoparticles [ 172 ]. 

 Using oligonucleotides against  laminin-8   (a vascular basement membrane pro-
tein that is upregulated during GBM) conjugated to an antibody against the trans-
ferrin receptor, signifi cant decreases in GBM microvasculature density and 
signifi cant increases in survival were obtained in nude rats [ 173 ]. Polypropylenimine 
dendrimers can be used as a non-viral alternative to deliver DNA to target cells 
[ 174 ], and conjugating these with transferrin has been shown to be effective in 
delivering treatments directly to cancerous cells with little toxicity [ 175 ]. This has 
allowed direct delivery of siRNA to GBM cells without using a viral vector [ 176 ]. 
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It has also been demonstrated that conjugating microRNA to transferrin and to a 
nanoparticle delivery system can result in higher levels of transport across the 
BBB than transferrin alone [ 177 ].  

4.5     Conclusion 

 The BBB’s tight control over access to and from the brain becomes disrupted in the 
presence of GBM as expression of tight junction proteins decreases, leading to an 
increase in BBB permeability. Increases in angiogenesis help to nurture the GBM, 
and alterations in aquaporin-4 levels contribute to cerebral oedema around the 
tumour. Despite the compromised nature of the BBB within the GBM, delivery of 
chemotherapeutic drugs remains problematic. BBB permeability can be further 
increased by osmotic modulation, RNA interference and focussed ultrasound treat-
ment. Alternatively, receptor-mediated transport can be used to “piggyback” into 
the cerebral parenchyma using the transporters naturally expressed on endothelial 
cells. This in turn can be facilitated by the use of nanoparticle conjugates.     
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