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Chapter 16
Protein Complexes in the Nucleus: 
The Control of Chromosome Segregation

Victor M. Bolanos-Garcia

Abstract Mistakes in the process of cell division can lead to the loss, gain or rear-
rangement of chromosomes. Significant chromosomal abnormalities are usually 
lethal to the cells and cause spontaneous miscarriages. However, in some cases, 
defects in the spindle assembly checkpoint lead to severe diseases, such as cancer 
and birth and development defects, including Down’s syndrome. The timely and 
accurate control of chromosome segregation in mitosis relies on the spindle assem-
bly checkpoint (SAC), an evolutionary conserved, self-regulated signalling system 
present in higher organisms. The spindle assembly checkpoint is orchestrated by 
dynamic interactions between spindle microtubules and the kinetochore, a multi-
protein complex that constitutes the site for attachment of chromosomes to micro-
tubule polymers to pull sister chromatids apart during cell division. This chapter 
discusses the current molecular understanding of the essential, highly dynamic 
molecular interactions underpinning spindle assembly checkpoint signalling and 
how the complex choreography of interactions can be coordinated in time and space 
to finely regulate the process. The potential of targeting this signalling pathway to 
interfere with the abnormal segregation of chromosomes, which occurs in diverse 
malignancies and the new opportunities that recent technological developments are 
opening up for a deeper understanding of the spindle assembly checkpoint are also 
discussed.
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Abbreviations

APC/C  Anaphase Promoting Complex/Cyclosome
ATP  Adenosine triphosphate
Bub1  Budding uninhibited by benzimidazoles 1
BubR1  Budding uninhibited by benzimidazoles related 1
CCAN  Centromeric nucleosome-associated network
Cdc20  Cell division cycle protein 20
CENP-E  Centromere-associated protein E
CENP-F  Centromere-associated protein F
CIN  Chromosomal instability
CLASP-1  CLIP-associating protein 1
CLASP-2  CLIP-associating protein 2
FRET  Förster resonance energy transfer
KMN  KNL1/Mis12/Ndc80 network
KNL1  Kinetochore-null phenotype 1
Mad1  Mitotic arrest deficient 1
Mad2  Mitotic arrest deficient 2
MIND complex  Mis12 complex
Mps1  Monopolar spindle 1
NMR  Nuclear magnetic resonance
ROD  Rough deal
RZZ-complex  Rod, Zwilch and ZW10 complex
SAC  Spindle assembly checkpoint
SAXS  Small angle x-ray scattering
Spc105  Spindle pole body 105
Spc105-related  Spc105R
TEM  cryo-transmission electron microscopy
XFEL  Ultrafast X-ray free-electron laser
ZW10  Zeste-white 10

16.1  Introduction

16.1.1  The SAC-KMN axis

The accurate and timely segregation of chromosomes during mitosis requires the 
formation of a bipolar mitotic spindle with stably attached chromosomes. Once all 
of the chromosomes are aligned properly, the connection between the sister chroma-
tids is severed by the action of separase, a cysteine protease. Separase also contrib-
utes to centriole disengagement at the end of mitosis. Temporal and spatial 
coordination of these two activities with the rest of the cell cycle is required for the 
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successful completion of mitosis. The accurate segregation of chromosomes when 
cells divide is ensured by the spindle assembly checkpoint (SAC), a highly intricate 
regulatory mechanism that monitors and corrects defects in chromosome attach-
ment to the metaphase plate. The SAC is controlled by a panel of protein kinases 
that includes Bub1, BubR1, Mps1 and Aurora B and the non-kinase proteins Mad1, 
Mad2, Bub3, BuGZ and Cdc20.

16.1.2  Multidomain Protein Kinases Regulate the SAC

Budding uninhibited by benzimidazoles 1 (Bub1), Budding uninhibited by benz-
imidazoles related 1 (BubR1), dual-specificity kinase Monopolar spindle 1 (Mps1) 
and Aurora B are multidomain serine/threonine protein kinases with essential roles 
in the SAC signalling pathway in higher organisms (Krenn and Musacchio 2015; 
Elowe 2011; Musacchio 2011; Boyarchuk et al. 2007; Abrieu et al. 2001). These 
SAC proteins have evolutionarily conserved catalytic domains in organisms ranging 
from budding and fission yeasts to worms to humans (Bavetsias and Linardopoulos 
2015; Bolanos-Garcia and Blundell 2011). For instance, Bub1 is required for the 
proper assembly of the inner centromere (Boyarchuk et al. 2007). Phosphorylation 
of the kinetochore organiser protein KNL1 by Mps1 is required for the recruitment 
of Bub1, BubR1 and Bub3 to the kinetochore while Mps1 from fission yeast (known 
as Mph1 in this specie) phosphorylates Mad3 to inhibit Cdc20 (known as Slp1 in 
fission yeast) and this post-translational modification appears important to maintain 
SAC arrest (Zich et al. 2016). It has been proposed that Mps1 compete with micro-
tubules to bind at kinetochores and that such competitive binding contributes to 
regulate SAC signalling (Hiruma et  al. 2015; Ji et  al. 2015). Whether additional 
interactions mediated by Mps1, microtubules and/or the Ndc80 complex are 
involved in this process is an aspect that remains to be clarified (Aravamudhan et al. 
2015; Krenn and Musacchio 2015; Nilsson 2015).

The proteins Mitotic arrest deficient 1 and 2 (Mad1 and Mad2, respectively); 
Budding uninhibited by benzimidazoles 3 (Bub3); Cell division cycle protein 20 
(Cdc20); Bub3-interacting GLEBS-motif-containing ZNF207 (BuGZ); and Rod, 
Zwilch and ZW10, which define the RZZ-complex (Lara-Gonzalez et al. 2012), are 
also central components of the SAC. BubR1 (known as Mad3 in yeasts) interacts 
with Bub3, Mad2 and Cdc20 to form the Mitotic Checkpoint Complex (MCC; see 
Fig. 16.1), which inhibits the Anaphase Promoting Complex/Cyclosome (APC/C) 
to prevent metaphase-anaphase transition (Zhang et  al. 2016; Musacchio 2011; 
Chao et al. 2012). Some of the key interactions underpinning SAC signalling are 
presented in Table 16.1. It has been shown that in both mammalian cells and in the 
fission yeast Schizosaccharomyces pombe, kinetochores shortened after microtu-
bule severing. However, whereas in fission yeast all kinetochores could relax to a 
similar length, in human cells the more stretched kinetochores remained more 
stretched suggesting that the differences are due to the increased structural com-
plexity of the mammalian kinetochore (Cojoc et al. 2016).
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Fig. 16.1 A, crystal 
structure of a ternary 
heterotrimer of the Mitotic 
Checkpoint Complex 
(MCC) from 
Schizosaccharomyces 
pombe (pdb id 4AEZ). B, 
crystal structure of Cdc20 
(pdb id 4GGA), another 
WD 40 fold protein that 
forms part of the 
MCC. Figures generated 
with PyMOL (DeLano 
2002)

Table 16.1 Summary of key SAC protein interactions that regulate cell cycle progression

SAC 
protein Interacting partner Function

Aurora B INCEP, H2A, Nd80 Bipolar attachment of microtubules and controls levels 
of Mps1 protein

Bub1 Bub3, BuGZ, KNL1 Binds to and phosphorylates Mad1
BubR1 Mad1, Cdc20, BuGZ, 

KNL1, Mad2
Recruiting Mad1 and Mad2 to the kinetochore and 
inhibiting APC/C

Bub3 Bub1, BubR1 (Mad3), 
Bub3

Facilitates kinetochore localisation of Bub1 and 
BubR1

BuGZ Mad2, BubR1 Promotes kinetochore localisation of Bub1-Bub1 and 
BubR1-Bub3 complexes

Cdc20 Mad2, BubR1 (Mad3) Activates APC/C when SAC is satisfied to promotes 
cell cycle progression

Mad1 Mad2, Bub1/Bub3 
complex

Recruitment of Mad2 to the kinetochore; when SAC is 
unsatisfied, it is phosphorylated by Bub1 and Mps1

Mad2 Mad1, Cdc20, Bub3 Binds to Cdc20 to inhibit APC/C activity
Mps1 Mad2 and BubR1 Phosphorylates MELT motifs in KNL1
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The protein BuGZ was identified recently as a critical component of the SAC 
that contributes to the targeting of the Bub1-Bub3 and BubR1-Bub3 heterodimer 
complexes to the kinetochore. BuGZ is predicted to contain a N-terminal zinc finger 
domain; a GLEBS motif that is conserved from yeast to human and essential to bind 
Bub3, and a region of low structural complexity (Jiang et al. 2014; Toledo et al. 
2014). BuGZ binds to microtubules and tubulin to regulate the SAC in a process that 
involves BuGZ phase transition (coacervation) (Jiang et al. 2015). It will be impor-
tant to clarify if coacervation is a physicochemical feature shared by other proteins 
that regulate spindle assembly. Ultimately, this knowledge can be used to define 
new cancer therapies that rely on mitosis inhibition (Herman et al. 2015).

Zeste-white 10 (ZW10) and rough deal (ROD) were initially identified in D. 
melanogaster. Both proteins are highly conserved among multicellular eukaryotes 
(Karess 2005; Scaërou et al. 1999, 2001; Williams et al. 1992; Karess and Glover 
1989). Null mutations in the zw10 and rod genes and depletion of these proteins in 
C. elegans and vertebrate cells result in chromosome segregation defects and exten-
sive aneuploidy in mitotic and meiotic cells. Co-immunoprecipitation of ZW10 and 
ROD in fly and human cell extracts and their immunostaining in mitotic cells sug-
gest an interdependent recruitment of the proteins to the kinetochore (Williams 
et al. 1992). Zwilch mutations cause a similar mitotic phenotype as ROD and ZW10, 
thus confirming a role of this protein in the SAC. Zwilch, ROD and ZW10 from 
human extracts isolated by affinity chromatography methods using ZW10 as bait 
show the three proteins associate to form a stable complex that seems to contain two 
copies of each protein (Civril et al., 2010; Kops et al. 2005a; Williams et al. 2003). 
The recent crystallisation and preliminary X-ray crystallographic analysis of a 
human ROD-ZW10-Zwilch complex (Altenfeld et  al. 2015) further supports the 
notion of a complex of the three constitutive subunits with a 2:2:2 stoichiometry.

The control of chromosome segregation in higher organisms requires communi-
cation of SAC sub-complexes with the KMN (KNL1/Mis12/Ndc80) network, a 
multiprotein macromolecular assembly that constitutes the structural core of the 
kinetochore and is essential for the establishment of proper kinetochore- microtubule 
attachments (Liu et  al. 2016; Aravamudhan et  al. 2015; Ghongane et  al. 2014; 
Santaguida and Musacchio 2009). Recently considerable progress has been made in 
understanding the composition of the kinetochore, the recruitment hierarchy of its 
components, and the principles of its regulation (revised in Agarwal and Varma 
2014; Przewloka and Glover 2009). However, structural details of the molecular 
interactions of the KMN network have proved elusive even though they are clearly 
indispensable for the mechanism of kinetochore assembly and SAC signalling. The 
understanding of the function of the individual subunits and the different sub- 
complexes of the KMN network requires a description of the functional and struc-
tural features of its central components, and this is presented below.
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16.2  The Kinetochore Null Mutant 1 (KNL1)

The kinetochore protein KNL1 (also known as CASC5, AF15q14 and Blinkin in 
humans; Spc105 in budding yeast, Spc7 in fission yeast, and KNL1 in humans and 
C. elegans) acts as a multi-substrate docking platform of the KMN network. KNL1 
was initially identified in Saccharomyces cerevisiae as component of the spindle 
pole body (hence the acronym Spc105) (Nekrasov et al. 2003), which in C. elegans 
is commonly referred to as KNL1 (kinetochore-null phenotype 1) (Cheeseman et al. 
2004) and Spc105R (Spc105-related) in Drosophila (revised in Przewloka and 
Glover 2009). Spc105R from Drosophila shows considerable sequence divergence 
compared to other species. This feature of the KMN contributes to define a distinc-
tive structural organisation to the KMN network of the fruit fly. Depletion of KNL1 
of higher organisms by RNAi causes severe chromosomal segregation defects that 
resemble phenotypes observed after depletion of the SAC kinases Bub1 and BubR1, 
including premature exit from mitosis and early onset of anaphase (Przewloka and 
Glover 2009). KNL1 is the largest subunit of the KMN network and is required for 
accurate chromosome segregation during mitosis (Desai et al. 2003). KNL1 inte-
grates SAC kinase and phosphatase activities and contributes to the formation of 
kinetochore-microtubule attachments (Przewloka and Glover 2009; Santaguida and 
Musacchio 2009). Evidence of the precise role of functional regions in KNL1, 
including the motifs SILK, RVSF, MELT, KI, and a domain that adopts the RWD 
fold is providing new insights how KNL1 coordinates SAC activity. This is an 
important aspect of the SAC that has been revised recently (Caldas and DeLuca 
2014; Ghongane et al. 2014).

16.3  The Ndc80 Complex

Microtubules contribute to key biological processes controlled by cell motility, 
including the maintenance of cell orientation and the regulation of focal adhesion 
turnover (Alushin et al. 2010). In human cells the Ndc80 complex is linked to cen-
tromeric chromatin to mediate end-on attachment of spindle microtubules in a pro-
cess that requires Ndc80 binding to the kinetochore proteins CENP-T and CENP-C 
(Suzuki et al. 2015; Tanaka 2013). In humans, the Ndc80 complex is composed of 
the proteins Hec1 (a subunit that is also commonly referred to as Ndc80), Nuf2, 
Spc24 and Spc25 (DeLuca and Musacchio 2012; Tooley and Stukenberg 2011; 
Varma and Salmon 2012). The Ndc80 complex adopts a dumbbell-shape architec-
ture with the subcomplexes Nuf2-Ndc80 and Spc24-Spc25 located in opposite ends 
of the molecule (see Fig. 16.2) (Ciferri et al. 2005; Wei et al. 2005). In one hand, 
Nuf2 binding to Ndc80 is required for the localisation of the Ndc80 complex to 
microtubules. On the other hand, Spc24-Spc25 heterodimer complex formation 
appears to be a pre-requisite for the binding of Spc24-Spc25 to KNL1 and the Mis12 
complex (Cheeseman et al. 2006; Kiyomitsu et al. 2007; Wei et al. 2007; Ciferri 
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et  al. 2008; Wan et  al. 2009; Joglekar and DeLuca 2009). The hairpin region of 
Ndc80 seems to be an important structural requirement for the effective kinetochore 
recruitment of Mps1 (Mph1), at least in fission yeast (Chmielewska et al. 2016).

Protein depletion assays coupled to quantification of kinetochore protein copy 
numbers in human cells have provided clues of the extent of the interactions between 
centromeric chromatin and the microtubule-binding Ndc80 complex. Such studies 
revealed about 244 Ndc80 complexes per human kinetochore (i.e., approximately 
14 per kinetochore microtubule) and 151 Ndc80 complexes are associated to the 
KMN network. These studies also showed that each CENP-T molecule recruited 
approximately two copies of the Ndc80 complex (one as part of a KMN network) 
with nearly 40% of CENP-C recruited exclusively to the KMN network (Suzuki 
et al. 2015). Undoubtedly, the quantification of kinetochore protein copy numbers 
in other species should provide important new insights into the evolution and the 
subtle differences in the mode of regulation of the KMN network.

16.4  Mis12 Complex

In humans, the Mis12 complex (also known as the MIND complex) consists of the 
proteins Mis12, Dsn1, Nsl1 and Nnf1. The complex is a central component of the 
KMN network. Nsl1 has been identified as a link between the human Mis12 and 
Ndc80 complexes (Petrovic et  al. 2010) and this protein seems to play a similar 
important role in yeast kinetochores (Kudalkar et al. 2015). Indeed, recent studies in 
yeast cells have shown that the interaction between the Mis12 complex (which in 
yeast is made up of the proteins Mtw1, Nsl1, Nnf1, Dsn1) and the Ndc80 complex 
(constituted by the proteins Ndc80, Nuf2, Spc24, Spc25) (Biggins 2013) is medi-
ated by an extensive number of contacts (Kudalkar et al. 2015). Mis12 alone does 
not bind to microtubules but it does bind to the Ndc80 complex, an interaction that 

Fig. 16.2 Crystal structure of a chimeric (bonsai) Ndc80 complex (pdb id 2VE7) revealed a 
dumbbell-shape topology. The sub-complexes Nuf2-Ndc80 and Spc24-Spc25 are located in oppo-
site ends of the molecule
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enhances Ndc80 binding to microtubules (Kudalkar et al. 2015). In Drosophila, the 
Mis12 complex localises to the mitotic centromere in a process that implicates the 
binding of the N-terminal regions of Mis12 and Nnf1 to CENP-C (Richter et al. 
2016). Reconstitution of the yeast Mis12-Ndc80 assembly coupled to cross-linking 
analysis revealed an intricate set of interactions involving five of the eight proteins 
within the Mis12 and Ndc80 complexes and a direct interaction between the pro-
teins Nsl1 and Spc24/Spc25. The latter interaction defines a unique interface thus 
suggesting that in different organisms the regulation of Ndc80 functions may be 
achieved by a distinctive mode of interactions (Kudalkar et al. 2015).

16.5  Centromere-Associated Protein E (CENP-E)

CENP-E is required to maintain a stable genome through the stabilisation of micro-
tubule capture in the kinetochore. CENP-E functions as a highly processive plus 
end-directed motor that couples chromosome position with microtubule depoly-
merisation thus linking kinetochores to dynamic spindle microtubules. CENP-E 
participates in the recruitment of BubR1, Mad1 and Mad2 to attached and newly 
unattached kinetochores and its binding to the SKAP protein is required for accu-
rate chromosome segregation in mitotic cells (Huang et al. 2012). SKAP seems to 
form part of the kinetochore corona fibres of mammalian centromeres as judged by 
immunoelectron microscope imaging. The interaction between CENP-E and SKAP, 
which involves the C-terminal tail of the former protein, is thought to be essential 
for kinetochore-microtubule attachment in vivo. Depletion of SKAP or CENP-E by 
RNA interference drastically reduces inter-kinetochore tension, thus leading to 
chromosome segregation defects and a prolonged delay to fulfill metaphase align-
ment (Huang et al. 2012).

In human cells CENP-E kinetochore localisation depends on its binding to Nuf2, 
an interaction that is mediated by C-terminal regions of both CENP-E and Nuf2 as 
determined with the yeast two-hybrid system and pulldown assays (Liu et al. 2007). 
Moreover, depletion of human Nuf2 by small interfering RNA abolished CENP-E 
kinetochore localisation and resulted in chromosome segregation defects, thus con-
firming the requirement of Nuf2 for CENP-E localisation to the kinetochore and the 
essential role of the interaction for the correct segregation of chromosomes in mito-
sis (Liu et al. 2007).
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16.6  The Centromeric Nucleosome-Associated Network 
(CCAN)

Centromeres are differentiated chromatin domains, present once per chromosome, 
that direct segregation of the genome in mitosis and meiosis by specifying assembly 
of the kinetochore. The latter provides an essential link that brings together chromo-
somes and spindle microtubules (Pesenti et al. 2016; Rago et al. 2015). The specific 
spatial configuration of the centromere is likely to contribute to the tight regulation 
of mitosis and the dynamics of kinetochore-microtubule attachments (George and 
Walworth 2016). The centromeric nucleosome-associated network (CCAN) is a 
constitutive complex that is assembled onto centromeric CENP-A chromatin and 
widely considered as the prime candidate for specifying centromere identity (Foltz 
et al. 2006). The CCAN is composed by the proteins CENP-C, CENP-H/ CENP-I/ 
CENP-K, CENP-L/ CENP-M/ CENP-N, CENP-O/CENP-P/CENP-Q/CENP-R/
CENP-U, CENP-T/CENP-W, and CENP-S/CENP-X (Foltz et al. 2006; revised by 
Perpelescu and Fukagawa 2011). The CCAN recruits the outer kinetochore compo-
nents of the KMN network KNL1, the Mis12 complex, and the Ndc80 complex thus 
bringing together kinetochore proteins and spindle microtubules. Disruption of the 
interaction between CENP-A and CCAN causes errors of chromosome alignment 
and segregation that prevent cell survival (Foltz et al. 2006).

CENP-A is a centromere-specific isoform of histone H3 (Perspelescu and 
Fukugawa 2011; Stoler et al. 1995; Palmer et al. 1991) that contributes to kineto-
chore formation and centromere-kinetochore assembly thus guiding the movement 

Fig. 16.3 (a) Crystal structure of a centromeric nucleosome in complex with CENP-A; (b) crystal 
structure of a centromeric nucleosome in complex with CENP-C. In both cartoons the view is in 
the axis of the DNA supercoil
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of chromosomes and cell cycle progression throughout mitosis (Fachinetti et  al. 
2013; Mendiburo et al. 2011; Barnhart et al. 2011; Wan et al. 2009). The crystal 
structures of two human centromeric nucleosomes, one containing CENP-A (pdb id 
3AN2) and one containing CENP-C in complex with the cognate α-satellite DNA 
derivative (pdb id 4X23) revealed that the latter molecule wraps around a histone 
octamer (see Fig. 16.3). Such octameric complex is defined by the assembly of two 
copies of histones H2A, H2B, H4 and CENP-A (Tachinawa et al. 2011).

In addition to CENP-A, CENP-C and CENP-T contribute to kinetochore assem-
bly in vertebrates as shown by studies in which the DNA-binding regions of CENP-C 
and CENP-T were replaced with alternate chromosome-targeting domains, thus 
resulting in the localisation of functional CENP-C and CENP-T to ectopic loci and 
a CENP-A-independent assembly of the kinetochore (Gascoigne et  al. 2011). 
Furthermore, phosphorylation of CENP-T appears as an important requirement for 
proper mitotic assembly of both endogenous and ectopic kinetochores (Gascoigne 
et al. 2011).

CENP-H is an inner kinetochore protein that is highly conserved amongst 
eukaryotes (Orthaus et al. 2006). CENP-H directly interacts with CENP-K through 
multiple contacts to form a stable heterodimeric complex. CENP-H and CENP-K 
are predicted to contain extensive coiled-coil regions that seem to play an important 
role in the stabilisation of the CENP-H-CENP-K heterocomplex (Qiu et al. 2009). 
Depletion of CENP-H in human cells led to severe mitotic phenotypes including 
misaligned chromosomes and multipolar spindles but not mitotic arrest (Orthaus 
et  al. 2006). CENP-H depletion results in reduced levels of CENP-E but only 
slightly affects the levels of CENP-C bound to the kinetochore while suppression of 
CENP-H expression has not effect on BubR1 kinetochore localisation and a SAC 
response (Orthaus et al. 2006).

The CENP-T/W complex assembles in late S and G2 phases of the cell cycle and 
is required for mitosis. The CENP-T/W complex is integrated with centromeric 
chromatin in association with Histone H3 nucleosomes (Prendergast et al. 2011) but 
it does not persist across cell generations. Instead, association of H3 with the CENP- -
T/W complex seems to be specific for the regulation of kinetochore activity 
(Prendergast et  al. 2011). CENP-T centromere localisation is restricted to the 
S-phase of the cell cycle. CENP-T directly associates with CENP-A and CENP-B 
as shown by Förster resonance energy transfer (FRET) studies. Taken together these 
studies indicate that CENP-T is required for the recruitment of other proteins to the 
kinetochore (Hellwig et  al., 2008). Furthermore, centromeric-bound CENP-T-W 
and CENP-S-X subcomplexes associate to form a stable CENP-T-W-S-X heterotet-
ramer that binds to DNA to form supercoil structures (Takeuchi et al. 2014; Nishino 
et al. 2012). High-resolution structural analyses of the individual subcomplexes and 
the tetramer have revealed important structural similarities with the nucleosome and 
certain histone fold-containing complexes (Nishino et al. 2012).

In human cells the inner kinetochore components CENP-C and CENP-T func-
tion in parallel pathways to recruit the KMN network to the kinetochore (Nishino 
et al. 2013; Schleiffer et  al. 2012) as shown by independent ectopic targeting of 
these proteins to a chromosomal locus (Rago et al. 2015). For instance, the physical 
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interaction of CENP-C with KNL1 and the Mis12 complex is required for the 
recruitment of the Ndc80 complex to the kinetochore whereas CENP-T kinetochore 
recruitment is only dependent of CENP-T binding to the Ndc80 complex. 
Furthermore, the CENP-T-Ndc80 complex assembly in turn promotes KNL1/Mis12 
complex recruitment in a process that implicates a separate region on CENP-T 
(Rago et  al. 2015). The formation of the CENP-C and CENP-T sub-complexes 
seems to obey different regulatory controls: the recruitment of the KMN network to 
CENP-C is stimulated by Aurora B kinase while that of CENP-T is regulated by 
cyclin-dependent kinase (Cdk) (Rago et al. 2015).

A number of additional microtubule plus-end binding proteins that have been 
associated with the kinetochore include the CLIP-associating protein 1 (CLASP-1) 
and 2 (CLASP-2), Astrin, Kinastrin, KIF2B, Kif18A and SKAP. The general struc-
tural and functional features of these proteins and their roles in SAC signalling are 
described below.

16.7  CLASP-1 and CLASP-2

The microtubule plus-end binding proteins CLASP-1 and CLASP-2 play important 
roles in the regulation of the density, length distribution and stability of interphase 
microtubules thus integrating spindle and kinetochore functions (Pereira et al. 2006; 
Maiato et al. 2003). In yeast, Drosophila, and Xenopus, one CLASP orthologue is 
present, whereas in human two proteins have been identified: CLASP-1 and 
CLASP-2. In all these organisms CLASP proteins are required for mitotic spindle 
assembly through the regulation of microtubule dynamics at the kinetochore. In 
mitotic cells both proteins associate with the ends of growing microtubules and with 
kinetochores in a process that requires the binding of these proteins to EB1 (Mimori- 
Kiyosue et al. 2005). The interaction of CLASP-1 and CLASP-2 with EB1 impli-
cates the middle region of both CLASPs (Mimori-Kiyosue et al. 2005). At least in 
HeLa cells CLASP-1 and CLASP-2 show similar and at least partially redundant 
roles in organising the mitotic apparatus (Pereira et al. 2006). Their simultaneous 
depletion results in extensive mitotic spindle defects and an abnormal exit from 
mitosis. Targeting CLASP-1 with specific anti-CLASP-1 antibodies impairs micro-
tubule dynamics in the kinetochore and the mitotic spindle, leading to the formation 
of abnormal monopolar asters in which the chromosomes are found buried in the 
interior. Similarly, the expression of a truncated form of CLASP-1 lacking the kinet-
ochore binding domain results in the formation of depolymerisation-resistant 
microtubule bundles with a radial array (Maiato et al. 2003). Inhibition of glycogen 
synthase kinase-3 (GSK3) activity by the tyrosine kinase receptor ErbB2 regulates 
microtubule capture and stabilisation. Inhibition of Glycogen synthase kinase 3 beta 
(GSK3b) causes relocalisation of CLASP-2 to the plasma membrane and ruffles 
(Zaoui et al. 2010). All these observations strongly support an important role for 
CLASP-1 and CLASP-2 in the organisation of the mitotic spindle and the control of 
microtubules attachments.
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It has been suggested that microtubules in vertebrate somatic cells are not only 
formed by the centrosome but that a significant number of them originate from the 
Golgi apparatus in a centrosome-independent manner. The process requires CLASPs 
recruitment to the trans-Golgi network by the protein GCC185 (Efimov et al. 2007; 
Zhonghua et al. 2007). However, mechanistic details of the regulation of spindle 
assembly in mitosis by membrane systems remain largely obscure.

16.8  Astrin and Kinastrin

Astrin is a mitotic spindle-associated protein found in most human cell lines and 
tissues that is required for proper chromosome alignment at the metaphase plate; is 
essential for progression through mitosis and contributes to the regulation of sepa-
rase activity (Dunsch et al. 2011; Thein et al. 2007; Gruber et al. 2002). Depletion 
of this protein by RNA interference delays chromosome alignment, leads to the loss 
of spindle architecture and sister chromatid cohesion before the onset of anaphase, 
and ultimately results in apoptosis (Gruber et al. 2002). Amino acid sequence analy-
sis and fold recognition bioinformatics tools suggest that Astrin has an N-terminal 
globular domain and an extended coiled-coil domain. Electron microscopy studies 
of recombinant Astrin showed that this protein self-associates to form parallel 
dimers with head-stalk structures reminiscent of motor proteins. However, the low 
amino acid sequence identity and structural similarity to known motor proteins 
requires further investigations to establish to what extent there is a functional cor-
respondence between Astrin and kinesins.

Kinastrin is the major interacting partner of Astrin in mitotic cells and the inter-
action is required for Astrin targeting to microtubule plus ends. Overexpression or 
depletion of Kinastrin mislocalise Astrin and causes mitotic defects that resemble 
those observed in Astrin-depleted cells. Astrin and Kinastrin can form a complex 
with SKAP, which also co-localises to microtubule plus ends to facilitate chromo-
some alignment (Dunsch et al. 2011). These observations support the notion that the 
microtubule plus end targeting activity of Astrin is required to sustain spindle archi-
tecture and to ensure chromosome alignment and that perturbation of these interac-
tions delay mitosis and cause the premature activation of separase (Dunsch et al. 
2011). Interestingly, Astrin acts as a negative regulator of mTORC1, which seems 
to be essential to elicit a cellular stress response. Under stress conditions, Astrin 
blocks mTORC1 self-association and recruits Raptor, a protein component of 
mTORC1, to stress granules, thus preventing apoptosis caused by the induction of 
mTORC1 hyperactivation (Thedieck et al. 2013). This is an exciting finding that 
suggests a potential link between cellular stress response and the control of chromo-
some segregation. Further studies should aim to clarify this aspect of SAC 
signaling.
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16.9  KIF2B and Kif18A

The human genome has three genes (Kif2a, Kif2b, and MCAK [also known as 
Kif2c]) that encode for kinesin-13 proteins. Kif2a, Kif2b, and MCAK fulfill distinct 
functions during mitosis in human cells (Hood et al. 2012; Manning et al. 2007). 
Human kinesin Kif18A is a kinesin-8 protein and microtubule-depolymerising pro-
tein that contributes to stabilise the CENP-E-Bub1 complex at the kinetochores 
during early mitosis (Mayr et al. 2007). In vitro, Kif18A shows a slow plus-end- 
directed microtubule depolymerising activity whereas in mitotic cells in vivo 
Kif18A localises close to the plus ends of kinetochore microtubules. Depletion of 
Kif18A induces aberrant mitotic spindles and loss of tension across sister kineto-
chores and activates the SAC (Mayr et al. 2007). During vertebrate cell division, 
chromosomes oscillate with periods of smooth motion and rapid reversals in direc-
tion. These fluctuations must be spatially constrained to ensure the proper alignment 
and high fidelity segregation of chromosomes. In humans, Kif18A plays an essen-
tial role in the control of chromosome oscillations by reducing the amplitude of 
pre-anaphase oscillations and slowing down poleward movements during anaphase. 
This manner, Kif18A contributes to the control of kinetochore microtubule dynam-
ics underlying chromosome positioning in mitosis (Gardner et al. 2008; Stumpff 
et al. 2008). Moreover, Kif18A physically interact with CENP-E and BubR1 during 
mitosis as revealed by co-immunoprecipitation studies. Kif18A depletion results in 
mitotic arrest and chromosome missalignment and stimulates CENP-E degradation 
indicating that chromosome congression defects due to Kif18A depletion are at 
least in part mediated through destabilisation of CENP-E (Huang et al. 2009).

16.10  SKAP

SKAP is an essential component of the mitotic spindle that associates with kineto-
chores and is required for chromosome alignment, normal timing of sister chroma-
tid segregation and maintenance of spindle pole architecture (Fang et  al. 2009). 
SKAP also plays a role in the control of kinetochore oscillations and the regulation 
of microtubule plus-ends dynamics during mitosis (Wang et al. 2012a). Although 
suppression of SKAP expression does not stimulate the SAC, it substantially 
increases the duration of metaphase, delays the activation of separase and decreases 
the fidelity of chromosome segregation (Fang et al. 2009).

SKAP binds to microtubules in vitro, an interaction that is synergised by 
CENP-E. Thus, CENP-E and SKAP work together to control dynamic kinetochore- 
microtubule interactions (Huang et al. 2012). SKAP binds to the C-terminal tail of 
CENP-E in vitro and is essential for an accurate kinetochore-microtubule attach-
ment in vivo. Depletion of SKAP or CENP-E by RNA interference drastically 
impairs inter-kinetochore tension and causes chromosome missegregation (Wang 
et  al. 2012b; Huang et  al. 2012). SKAP also interacts with Mis13, which seems 
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important for the accurate interaction between kinetochore and dynamic spindle 
microtubules. SKAP directly binds Mis13 and the interaction specifies the kineto-
chore localisation of the former protein, an observation that has been confirmed by 
small interfering RNA studies to suppress Mis13 expression (Wang et al. 2012b). A 
complex formed between SKAP and Astrin-Kinastrin localises to microtubule plus 
ends to facilitate proper chromosome alignment (Dunsch et al. 2011). Further stud-
ies should aim to clarify the role of these interactions in the control of SAC 
signalling.
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Fig. 16.4 Different KNL1 complexes revealed a similar mode of binding underlying disorder-to- 
order transitions. A, crystal structure of human TPR BubR1 in complex with the KNL1 KI motif 
(pdb id 3SI5); crystal structure of a Bub3-Bub1 GLEBS motif-KNL1 MELT motif complex (pdb 
id 4BL0). C, KNL1 RWD domain in complex with a Nsl1 fragment (pdb id 4NF9).

V.M. Bolanos-Garcia



469

16.11  Disorder-to-Order Transitions in the KMN

It is worth noting that many of the kinetochore proteins described above are pre-
dicted to contain large regions of low structural complexity (see Fig. 16.4). A pat-
tern of disorder-to-order transitions in SAC signalling has emerged from the 
structures of diverse complexes involving the kinetochore organiser protein KNL1, 
including the N-terminal TPR-containing domains of Bub1 and BubR1 in complex 
with the KNL1 N-terminal KI motifs; Bub3 bound to KNL1 MELT motifs and the 
KNL1 RWD domain in complex with a synthetic peptide that mimics the protein 
Nls1 (Bolanos-Garcia et al. 2011; Krenn et al. 2012; Primorac et al. 2013; Petrovic 
et al. 2014) (see Fig. 16.5). One distinctive feature that emerges from the analysis of 
the above mentioned complexes is the predominance of cooperative hydrophobic 
interactions that stabilise the complexes. With the exception of the C-terminal 

Fig. 16.5 The presence of 
large segments of 
disordered regions in 
multiple kinetochore 
binding proteins is a 
common structural feature. 
The plot shows the 
disorder predictions based 
on PONDR-FIT (Xue et al. 
2010) analyses.
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region which contains a globular RWD domain, multiple regions of low structure 
complexity that span most of the polypeptide chain occur in KNL1. This is not sur-
prising because multiple regions of low structure complexity occur often in hub 
proteins that define interactome networks (Babu et  al. 2012; Kim et  al. 2006; 
Dosztányi et al. 2006; Dunker et al. 2005, 2008; Haynes et al. 2006). Indeed, in 
multiple biological systems cooperative interactions involve the recognition of a 
flexible protein by a globular one, leading to concerted folding and binding (Blundell 
et al. 2002). This is particularly evident in hub proteins that define interactome net-
works because such proteins contain intrinsic local disordered regions (Dunker 
et al., 1998; Gsponer and Babu, 2009) that often associate with interacting partners 
through concerted binding and folding (Uversky 2015; Dosztányi et  al. 2006; 
Dunker et al. 2005). The general model for concerted folding upon binding appears 
to be initial binding of a large side chain into a deep pocket, usually followed by 
interaction at a second and sometimes third pocket, forming a cluster of small pock-
ets (Fuller et  al. 2009). Less conserved interactions involving regions N- or 
C-terminal to the conserved motif then fold cooperatively onto the surface of the 
globular partner. There are examples of this type of interactions in SAC signalling, 
including the binding of the KI motif of KNL1 to BubR1 (Bolanos-Garcia et al. 
2011) and possibly that of an equivalent KI motif in KNL1 specific to Bub1 (Krenn 
et al. 2012) and the binding of Bub3 to the MELT motifs of KNL1, a sequential, 
multisite interaction that is subjected to phospho-regulation (Vleugel et al. 2015). 
Indeed, the interplay of phosphorylation and dephosphorylation cascades rises as an 
important mechanism to regulate the SAC (Manic et al. 2017; Funabiki and Wynne 
2013; London et al. 2012; Shepperd et al. 2012; Rosenberg et al. 2011; Liu et al. 
2010).

Furthermore, the reciprocal communication of disorder-to-order transitions on 
two or more distant functional surfaces of high intrinsic disorder can maximise 
allosteric coupling between proteins. This mode of molecular recognition and sig-
nal amplification may obey the same mechano-chemical principles underlying the 
interaction of simpler systems such as binding of a biotin repressor to biotin protein 
ligase (Egington et al. 2015). Also, macromolecular crowding effects (Mourão et al. 
2014; Cino et al. 2012; Babu et al. 2012; Wang et al. 2012a) can be anticipated to 
play a major role in the regulation of the SAC given the prominent role of proteins 
with multiple regions of low structural complexity in the process, including kinesin 
motors (Leduc et al. 2012).

In summary, regulation of the rate in which spindle microtubules attach/detach 
to/from kinetochores plays a central role in the control of chromosome segregation. 
Multiple mechanisms of assembly and holistic models that take into account the 
role of protein receptors, signalling networks and regulatory feedback mechanisms 
have been proposed in an attempt to describe more precisely the role of kinetochore- 
microtubules interactions for the control mitotic progression in higher organisms 
(Kim and Yu 2015; Godek et al. 2015). As discussed below, disruption of this bal-
ance quickly results in aneuploidy, genome instability, cancer and diverse birth and 
development defects.
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16.12  The SAC-KMN Axis in Disease

Mistakes in the process of cell division can lead to the rearrangement, the loss or 
gain of chromosomes (aneuploidy). Solid tumors are frequently aneuploid, and 
many display high rates of chromosome missegregation and chromosomal instabil-
ity (CIN). The most common cause of CIN is the persistence of aberrant kinetochore- 
microtubule attachments, which manifest as lagging chromosomes in anaphase. 
Errors in kinetochore-microtubule attachments during prometaphase can be due to 
stochastic interactions between kinetochores and microtubules.

Mps1 has been identified in the signature of the top 25 genes overexpressed in 
CIN and aneuploid tumours (Kops et al. 2005b; Carter et al. 2006) and found to be 
upregulated in a number of tumours of different origins including bladder, anaplas-
tic thyroid, breast, lung, esophagus, and prostate. In the absence of a functional 
mitotic checkpoint, as occurs when Mps1 function is lost, cells become rapidly 
aneuploid and subsequently die (Kops et al. 2005b; Janssen et al. 2009). This fea-
ture, together with the observations that inhibiting Mps1 with chemical inhibitors 
kills cultured tumour cells (Kwiatkowski et al. 2010) and that even its partial inhibi-
tion creates tumour cells more sensitive to clinical doses of taxol (Janssen et  al. 
2009), show that targeting Mps1 with drugs may be beneficial to arrest proliferation 
of tumour cells. Significant chromosomal abnormalities are the cause of severe dis-
eases such as breast cancer, the most common cancer in the UK. This year alone, 
50,000 people in the UK will find out they have breast cancer and 12,000 people 
will die from it (Cancer Research UK organisation). The fact that Mps1 inhibition 
in tumour xenograft models significantly reduces tumour growth rates while leaving 
normal cell growth unaffected (Daniel et al. 2011) makes Mps1 an attractive target 
for cancer therapy (Kapanidou and Bolanos-Garcia 2014). In addition to Mps1, 
Aurora B kinase is the cellular target of diverse Medicinal Chemistry campaigns to 
develop inhibitors that function as adenosine triphosphate (ATP) competitors of 
these protein kinases. Also important is the search of ubiquitin ligase inhibitors that 
target the E3 ubiquitin ligase activity of the APC/C complex and APC/C regulators 
(Zhang et al. 2014, 2016; Zhou et al. 2013, 2016; Fujimitsu et al. 2016).It can be 
anticipated a steady increase of activity in this area in the coming years.

Defects in centrosome and spindle-associated  functionsare the most frequent 
cause of primary microcephaly syndromes in humans. For example, mutations in 
CENP-E have defined a novel kinetochore-centromeric mechanism for microce-
phalic primordial dwarfism (Mirzaa et  al. 2014) while centromere protein F 
(CENP-F) has been implicated in Hutchinson-Gilford progeria syndrome, a rare 
disorder that leads to premature ageing and death due to myocardial infarction or 
stroke. The disease is caused by expression of the protein Progerin, which is a trun-
cated version of the protein prelamin A (Eisch et  al. 2016). Progerin displaces 
CENP-F from metaphase chromosome kinetochores, thus increasing chromatin lag-
ging and causing genome instability (Eisch et al. 2016).

The range of malignancies described above indicate that the development of new 
drugs to interfere with abnormal cell proliferation  is urgently required. The 
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 development of new drugs to interfere with defective SAC signalling and its com-
munication with the KMN network in human tumours appears as an attractive alter-
native to prevent the proliferation of cells carrying abnormalities in chromosome 
structure and number. Multiple protein-protein interactions in regulatory hubs that 
control chromosome segregation and mitosis progression may constitute an impor-
tant pool of novel drug targets. Structural insight into the molecular architecture of 
key interactions that regulate the SAC should pave the way for drug target identifi-
cation and validation. In the absence of high resolution structural data, definition of 
the relationship between hub proteins and drug targets based on the combinatorial 
analysis of intrinsic structural disorder and gene onthology seems particularly 
attractive (Fu et al. 2015; The Gene Ontology Consortium 2010).

16.13  Emerging Methods in Structural Biology

The dynamic and coordinated assembly and disassembly of protein complexes in 
time and space follows sequential obligate stages that result in an enhanced selectiv-
ity with a low margin for errors in the process. At the same time, the dynamics of 
protein complex assembly and disassembly represents a great challenge for their 
structural and functional characterisation and often requires a combinatorial multi-
disciplinary approach involving a range of biochemical, biophysical, molecular and 
cellular approaches. Recent advances in Förster resonance energy transfer by fluo-
rescence lifetime imaging microscopy; laser ablation; small angle x-ray scattering 
in structural biology (SAXS); nuclear magnetic resonance (NMR); serial femtosec-
ond crystallography; and cryo-transmission electron microscopy (TEM) represent 
new exciting opportunities to understand the complex dynamics and mode of regu-
lation of the SAC-KMN-microtubule signaling axis through the combinatorial use 
of the techniques.

Advances in SAXS methods allow the study of macromolecular complexes in 
solution that provide information about the shapes, conformations; oligomeric 
states of globular, non-globular and disordered macromolecules (Chaudhuri 2015) 
whereas multinuclear relaxation dispersion NMR methods permit to follow molecu-
lar recognition events of intrinsically disordered proteins in solution (Schneider 
et al. 2015; Parigi et al. 2014). Time-resolved protein crystallography using ultrafast 
X-ray free-electron lasers (XFELs) make it possible to follow rapid structural 
changes resulting from photolysis in the crystalline state and to resolve reaction 
intermediates at impressive high resolution (Barends et  al. 2015; Tenboer et  al. 
2014). More recent improvements in serial femtosecond crystallography allowed 
the collection of X-ray diffraction patterns using X-ray pulses of 50 femtosecond 
duration that contained approximately 2 × 1012 photons per pulse to achieve a high- 
resolution XFEL structure of 1.75 Å (Ginn et al. 2015). Laser ablation has been used 
recently to separate microtubules attached to a merotelic kinetochore to study the 
mechanical response of the kinetochore resulting from changes of its length (Cojoc 
et al. 2016). At the same time, the study shows that the use of merotelic  kinetochores 
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emerges as an attractive experimental model for studying the mechanical properties 
of the kinetochore in live cells (Cojoc et al. 2016).

Equally impressive is the pace of instrumental and computational improvements 
in TEM where modern electron microscopes can produce images at a resolution 
higher than 2.0 Å (Glaeser 2016; Nogales 2016). A big gain that TEM offers is the 
possibility of studying samples of a relatively heterogeneous nature, thus allowing 
the analysis of multiple structural states that recapitulate the dynamics of complex 
protein-protein interactions including their mode of regulation and assembly/disas-
sembly under diverse conditions (Weis et  al. 2015; Louder et  al. 2016). Parallel 
advances in cryo-electron tomography now allow the visualisation of macromolecu-
lar assemblies of irregular shapes; of organelles and even entire cells at the subnano-
metre resolution scale. An excellent review on this topic has been reported recently 
by Helen Saibil’s group (2016).

16.14  Closing Remarks

The study of cell division, the mechanism of transmission of the genetic material to 
descendants and the molecular basis of premature aging and cancer are areas of 
great interest in the Biomedical Sciences. Spindle assembly checkpoint (SAC) sig-
nalling is a truly fundamental cellular process of higher organisms that ensures the 
faithful segregation of chromosomes each time a cell divides. Undoubtedly, the 
inhibition of aberrant SAC signalling will benefit a wide range of disciplines, rang-
ing from the cellular and molecular understanding of cell division in health and 
disease to the study of cell development, genome stability, ageing and comparative 
genomics.

The synergistic combination of biochemical, biophysical and structural biology 
methods for the characterisation of dynamic macromolecular complexes together 
with cellular and systems biology approaches should lead to a more comprehensive 
understanding of the cell and provide insights into how defects in molecular interac-
tions can lead to the impairment of cellular regulation and function.

As the use of these experimental techniques alongside with molecular and com-
putational methods begin to give insights into the dynamics of protein assembly/
disassembly and their architecture, we will learn more mechanistic details of the 
remarkable complexity of the network of interactions between thousands of protein 
components that regulate metabolic and signalling pathways essential to all 
eukaryotes.

Because large multi-protein complexes play critical roles in cell regulation, inter-
fering with the dynamics of their assembly and/or dissociation rises as an attractive 
strategy for the treatment of diseases. Extending the study of the structure and the 
dynamics of isolated SAC-KMN-microtubule sub-complexes to the molecular 
understanding of the mode of organisation of larger assemblies that ensure signal 
generation and amplification in a narrow spatial-temporal framework continues to 
represent a major challenge. Recent advances in TEM, electron-free lasers and a 
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range of biophysical methods herald a new and exciting era for the molecular under-
standing of nuclear complexes that ensure genome stability to an unprecedented 
level of detail.
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