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Abstract. Shape-from-Template (SfT) aims to reconstruct a deform-
able object from a single image using a texture-mapped 3D model of
the object in a reference position. Most existing SfT methods require
well-textured surfaces that deform smoothly, which is a significant limi-
tation. Due to the sparsity of correspondence constraint and strong reg-
ularizations, they usually fail to reconstruct strong changes of surface
curvature such as surface creases. We investigate new ways to solve SfT
for creased surfaces. Our main idea is to implicitly model creases with a
dense mesh-based surface representation with an associated robust bend-
ing energy term, which deactivates curvature smoothing automatically
where needed. Crucially, the crease locations are not required a priori
since they emerge as the lowest-energy state during optimization. We
show with real data that by combining this model with correspondence
and surface boundary constraints we can successfully reconstruct creases
while also preserving smooth regions.

Keywords: 3D reconstruction · Shape-from-Template · Isometry ·
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1 Introduction

The 3D reconstruction of deformable objects from images or videos is one of the
biggest open challenges in computer vision. The main difficulty arises from the
variability and complexity of deformations. Two main paradigms have emerged:
Non-Rigid Structure-from-Motion (NRSfM), which uses multiple images, and
Shape-from-Template (SfT), which uses a single image and a template. The tem-
plate is composed of a texture map and a model of the object’s 3D shape in a
reference pose. Recent works in SfT made interesting theoretical and applica-
tive contributions in the entertainment industry with augmented reality [2–4]
and real-time animation deformation transfer [5,6]. Perspectives on using SfT in
medical applications were also given [7,8]. The main advantage of SfT is that it
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Fig. 1. An example of creased surface reconstruction by our method compared to a
state-of-the-art method [1]. Unlike our method, [1] fails to reconstruct the creases.

needs only one image in order to achieve 3D reconstruction, which may be com-
puted analytically [9]. SfT also registers the input image to the template, and
so is well adapted to augmented reality. SfT is constrained by image data and
deformation priors. The former includes feature correspondences [9–12] or (less
commonly) direct pixel-wise matches [13–15]. Currently feature correspondences
are the most common because they allow the problem to be solved globally. The
latter includes conformity (angle preserving) [9], linear elasticity [7,8,16] and
isometry (distance preserving) [9–11,17].

Most existing SfT methods break down when the surface creases, and this is
for two reasons. Firstly, feature correspondences are not usually dense enough to
tell us where creases occur. Secondly, most existing SfT methods use smoothed
parameterizations for the surface and/or deformation to regularize the problem,
which prefer smooth rather than creased solutions. The closest work to ours
is [1], however this does not strictly model creases because the reconstructed
creases are a by-product of the way it relaxes the isometry prior. We find that
in practice it does not accurately reconstruct creases in many cases, as Fig. 1
shows. A fundamental problem with reconstructing deformable creased 3D sur-
faces from 2D image data is that we do not know a priori the crease locations.
This makes it very difficult to employ existing parametric crease models used
in other applications, such as b-splines, since we do not know a priori where to
modify the spline to permit high changes in curvature. Instead our solution is
to implicitly model creases through an adaptive bending energy prior acting on
a high-resolution non-parametric surface mesh. Crucially, this does not require
knowing anything a priori about the crease locations, since they emerge as the
lowest-energy state during optimization.

While studying this problem we have found that correspondence constraints
are often not sufficient data constraints. To remedy this, we complement them
with a boundary constraint, which encourages the boundary of the surface to
project to strong intensity edges in the image. This is a powerful constraint and
should be used wherever possible. One main challenge is that we must ensure
the boundary is attracted to correct image edges, which is not trivial. To deal
with this we use statistical color models to help disambiguate non-boundary
edges (e.g. from background clutter or texture). In the broader context of SfT,
this is the first time that statistical color models has been exploited to solve the
problem.
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The paper is organized as follows. In Sect. 2, we give further background
details and discuss state-of-the-art methods. In Sect. 3, we present our implicit
crease energy model and its associated cost function. In Sect. 4, we present the
full optimization framework. In Sect. 5, we validate our method with real data
using ground truth generated by a high-precision structured-light scanner.

2 Background

We divide the background section into three parts. In the first part we discuss
existing deformation models and priors in SfT. In the second part we discuss
common data constraints used in SfT. In the third part we discuss how creases
and surface discontinuities are modeled in other 3D reconstruction problems,
then discuss a previous attempt to handle creases in [1].

2.1 Deformation Models and Priors in SfT

There are two main ways that deformations have been modeled in SfT. The
first uses thin-shell models [9,11,12,17,18], where only the object’s surface is
modeled. The second way is volumetric models [19], where the object’s surface
and interior volume are modeled. Thin-shell models are the most common and
give good approximations for thin or hollow surfaces made of e.g. paper, cloth
and plastic. Most existing thin-shell models used in SfT use an approximate
physical model of the object’s material. The models have varied in complexity,
from simple algebraic models such as smooth b-splines [18] or thin-plate splines
[9,10]. Most recent methods use triangulated mesh models, which are conceptu-
ally simple and can handle general topologies [1,6,12,14,15].

Most of these methods use some forms of dimensionality reduction to reduce
the problem’s search space. This regularizes the problem and reduces the cost
of optimization, and is based on the fundamental assumption that the surface
can only deform smoothly. A significant problem with this is that when we
want to reconstruct a creased surface, the deformations are non-smooth, so such
dimensionality reduction will prevent the surface from being accurately recon-
structed. Spline models such as b-splines and thin-plate splines reduce dimen-
sion by definition, because they model deformation with a finite set of control
points. Thin-plate splines enforce global smooth deformations, and are not suit-
able to model surface creases. It is possible to model high-frequency and/or
discontinuous deformations with b-splines by changing the spline’s order and
introducing repeated control points [20,21]. However, to correctly distribute the
control points, one needs to know where the surface crease is, which in SfT is
not known a priori. Other ways to reduce dimensionality have included using
the eigen bases formed from the smooth modes of variation of the surface’s stiff-
ness matrix [12]. However a large number of bases are needed to model high
frequency deformation such as creases, which dramatically increases the cost of
optimization.
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We propose to not enforce globally smooth deformations and to not apply
such dimensionality reduction. Instead we use a so-called non-parametric app-
roach where the surface is modelled by a dense triangulated mesh. We have
found that creased surfaces such as folded paper can be recovered using mesh
resolutions of O(104) vertices. We are able to work with such high resolution
meshes because the constraints we apply on the mesh are very sparse (each con-
straint only applies to a small number of vertices), and this allows us to solve
the resulting system iteratively with sparse linear solvers.

2.2 Data Constraints in SfT

To constrain the object’s deformation data constraints must be extracted from
the input image. There are three broad classes. The first and most common are
correspondence constraints [9,11,18,22]. These match keypoints from the tem-
plate’s texture map and the input image using e.g. SURF [23], and tell us where
points on the object’s surface project to in the input image. The main advan-
tages are that they do not require an initial estimate of the deformation and
are reasonably fast to evaluate. However they only provide sparse constraints,
and have only been used for smoothly deforming objects in the past. The sec-
ond class of constraints are called direct constraints, and are computed directly
from pixel values. They work by measuring the photometric agreement between
the image and the deformed template and provide denser motion constraints
than features. However direct constraints are highly non-convex and require a
good initial estimate. They can also have difficulty handling strong photomet-
ric changes and when the object self-occludes or is occluded by other objects.
The third type of constraints are contour constraints which are used to make
the object’s occluding contours align to edges in the image [24,25]. Similarly to
direct constraints, these are highly non-convex constraints and require a good
initial estimate. The main challenge with using contour constraints is they are
difficult to apply robustly, particularly with strong background clutter.

2.3 Modelling Creases in Other Problem Domains and Previous
Attempts in SfT

The problem of fitting unsmooth surfaces, including creases, has been extensively
addressed in the curve [26] and surface [27–29] fitting literature. These generally
address the problem of fitting 2D curves or 3D surfaces to 2D or 3D point
sets respectively. Two approaches exist: one can densify the mesh [26–28] or
adjust directly a model to the data [29,30]. [27] proposes the idea of tagging
control points of a mesh and using subdivision surfaces to model discontinuities
like creases and corners. This 3D concept is adapted to the 2D case by [26].
Another use of adaptive mesh is proposed by [28]. It starts by fitting a model
to a downsampled set of points that excludes outliers. Then, to provide a better
fitting, it selects new data points which have the smallest prediction residuals.
The second category reconstructs 3D surfaces from 3D point cloud by having
the user to select a set of global forms [30] or local shape examples [29].
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The problem of reconstructing discontinuous 3D surfaces from 3D data is
strongly data-driven, which is different to the SfT problem. In the SfT problem
we do not have such 3D data. Instead we only have 2D projection data present in
the input image, which is much weaker information. Indeed the whole reason why
we require a 3D template is to form a well-posed problem by using the template’s
physical deformation constraints. To do this we must simultaneously register the
template and reconstruct its deformed 3D shape (including creases). It would
therefore particularly difficult to apply parametric models such as b-splines,
because one would have to simultaneously register, reconstruct and restructure
the b-spline’s control points.

Practically all existing SfT methods use an �2 norm to regularize surface
bending, but such norm cannot model creases because it incorrectly penalizes
non-smooth solutions. The problem of creases or “sharp folds” has been looked
at before in [1], via a convex formulation which maximizes the depth of each ver-
tex and relaxes the inextensibility constraint. The inextensibility constraint pre-
serves the geodesic distance between two vertices, but this distance may decrease
when folds appear. [1] proposed to relax this constraint: the geodesic distance is
replaced by the euclidean distance. Vertices may thus come closer to each other
without making the surface shrink or extend. Two reasons make for this method
difficult the reconstruction of 3D creases: correspondences are not sufficiently
informative and it does not use smoother.

2.4 Contributions

Our main contribution is to use a high-density surface mesh model that implic-
itly model creases through the use of a robust smoothing regularizer known as
an M-estimator. This deactivates excessive smoothing automatically during the
optimization process. Crucially, crease location is not required a priori since
it emerge as the lowest-energy state during optimization. Other problems such
as optical flow [31,32] use M-estimators for handling non-smooth solutions, and
this gave much inspiration. However it was unclear whether M-estimators offered
a good solution to handle the SfT problem, where 3D shape has to be recon-
structed from 2D data. The second main contribution is to introduce robust
boundary constraint that aligns the surface boundaries to the edges in the image.
Importantly, we use color information to help determine where the true surface
edges are.

3 Problem Formulation

3.1 Template Definition

The template consists of a texture map and a non-parametric embedding func-
tion ϕ that maps the texture map to 3D camera coordinates. The texture map,
denoted by IT : R2 → {1, ..., 255}3 models the color at each point on the tem-
plate’s surface. This can be constructed by texture-mapping the template from



110 M. Gallardo et al.

one or more photographs. In the simple case when the template’s surface can be
seen entirely in a single calibrated image, texture-mapping is particularly sim-
ple, and can be done by inverting the image projection function, as shown in
Fig. 2 (bottom left). We refer to the calibrated image as the reference image, and
we assume the template is registered to the reference image. Here πT denotes
the projection function of the reference image’s camera. We define the texture
map’s domain with ΩT ⊂ R

2. We define ΩBT � ΩT as the boundary points of
the texture map.

Fig. 2. Geometric setup of SfT with embedding functions.

We model the embedding function ϕ with a discrete dense triangular surface
mesh of N vertices x = {x1, ...,xN} ∈ R

3×N and F faces F = {f1, ..., fF } ∈
[1, N ]3×F . We denote E ∈ [1, N ]2×NE as the set of mesh edges where NE is the
number of edges. We embed a point u ∈ IT using piecewise linear interpolation
of the triangle vertices. Using its barycentric coordinates:

ϕ(u;x) = b1xfi(1) + b2xfi(2) + b3xfi(3) ∈ R
3, (1)

where b1, b2 and b3 = 1 − b1 − b2 are the barycentric coordinates of the point
x on fi. The embedding function ϕT gives the surface 3D reference 3D shape.
The texture map and the reference image are known, then its corresponding
embedding function ϕT is known. The embedding function ϕ is unknown, and
the SfT problem is to determine its respective vertex positions x ⊂ R

3×N in
camera coordinates.

3.2 Global Cost Function

We solve the problem by combining data constraints (correspondence and bound-
ary constraints) and deformation priors (isometry and bending constraints). The
cost function is as follows:

C(x) = Ccrsp(x) + λisoCiso(x) + λboundCbound(x) + λbendCbend(x). (2)
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Correspondence Constraint. We compute initial correspondences between
the texture map image and the input image with an existing method. In all
presented experiments we use SURF features that are matched with the graph-
based method from [33]1. Let M be the number of point correspondences in ΩT ,
denoted uj , j ∈ {1, ...,M}. Let qj ∈ R

2 be the pixel normalized coordinates of
the jth correspondence in the input image I. Note that feature-matching method
such as [33] are never guaranteed to be outlier free. We deal with this using a
robust cost function as defined as follows:

Ccrsp(x) =
M∑

j=1

ρ ((π ◦ ϕ)(uj ;x) − qj) , (3)

where ρ is an M-estimator. This encourages the embedding function ϕ to project
each point uj onto the image at the correspondence position qj , but in a way that
can tolerate outliers through an M-estimator ρ. We have investigated various M-
estimators and found that (�1 – �2) works well, with ρ(y) = 2(

√
1 + ‖y‖22/2−1).

Isometry Constraint. The isometry constraint is used to penalize surface
extension and compression, and is required in general to make the SfT problem
well posed. Following [1,34], we define the isometry constraint as:

Ciso(x) =
∑

(i,j)∈E

(
l2ij − ‖xi − xj‖22

)2
, (4)

where lij is the Euclidean distance between neighboring vertices (i, j) on the
template’s reference position.

Boundary Constraint. The aim of this constraint is to align ΩBT to wherever
it is visible to the input image. We do this by defining a boundariness map
IB where likely surface boundaries locations behave like potential wells. IB is
computed using image edge information and is used to define the boundary
constraint as follows:

Cbound(x) =
∫

ΩBT

ρ
(
IB ((π ◦ ϕ)(uj ;x))

)
dΩ, (5)

where ρ is an M-estimator that we use to reduce the influence of false boundaries
points on the energy function.

We base IB on the fact that the surface’s boundaries tend to coincide with
strong image edges. We define IG a blurred grayscale version of the input image
I, which is computed using a Gaussian filter (h, σ). A naive way to compute the
boundariness map would then be as follows:

IB = exp
(

−|∇IG|
σB

)
, (6)

1 The code is available at http://isit.u-clermont1.fr/∼ab/Research/index.html.

http://isit.u-clermont1.fr/~ab/Research/index.html
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where ∇IG is the gradient of IG, σB is a bandwidth term which governs the
potential well’s width. We illustrate this in Fig. 3, where an input image is shown
in Fig. 3(a) and its corresponding boundariness map according to Eq. (6) is shown
in Fig. 3(b). The true boundaries are represented with low potentials, but so are
many false boundaries corresponding to background clutter and texture edges.
This is a serious problem because they may attract the solution to a wrong local
minimum.

Fig. 3. (a) Input image, (b) naive boundariness map, (c) color model segmentation,
(d) the enhanced boundariness map, (e) our 3D reconstruction without the enhanced
boundariness map, (f) our 3D reconstruction with boundariness map using foreground
color segmentation. (Color figure online)

We propose to exploit color information to significantly reduce false boundary
edges. This works by applying a color-based foreground detector, trained on
the target surface to each input image pixel, and setting IB = 1 for any pixel
which has a detection score below a threshold Td. We train the detector using
the foreground of input image (in our experiments we use an RGB Gaussian
Mixture Model of 4 components) and use a default threshold of Td = 50. In
Fig. 3(b) and (d) we show the difference between the naive boundariness map
and the boundariness map using the color-based statistical filter. Here we see
that many false boundary edges in the background have been removed. Similarly
to the correspondence constraint, we currently use the (�1 – �2) M-estimator.

Bending Constraint. Our bending energy term robustly penalizes non-smooth
embeddings, and is defined as follows:

Cbend(x) =
∫

ΩT

ρ

(
∂2ϕ(u;x)

∂u2

)
dΩ, (7)

where ρ is an M-estimator used to reduce the energy at creases.

4 Optimization

4.1 Overview

Equation (2) is a large-scale, sparse nonlinear optimization problem. The system
is sparse because each constraint only depends on a small number of unknowns.
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Regarding size, there are typically O(104) unknowns (the example in Fig. 1 has
11,557 unknowns and approximately 300,000 constraints). We propose to solve
it with numerical gradient-based minimization, starting from an initial estimate
x0. We determine x0 using an existing SfT method (specifically we use [10]),
which does not use boundary constraints and assumes the surface is smooth.
Given x0 our general strategy is to iteratively solve with Gauss-Newton itera-
tions, by re-linearizing the constraints about the current estimate, then solving
the corresponding linear system. For our problem sizes this can be done effi-
ciently using sparse Cholesky decomposition, and we ensure convergence using
backtracking line-search.

4.2 Improving Convergence

One caveat is that the boundary constraints are highly non-convex and can cause
convergence on the wrong local minimum. The color-based filtering described in
Sect. 3.2 partially deals with this, however we also introduce two more strategies.
The first is to cascade the constraints, by first optimizing the solution without
using boundary constraint until convergence. Once done, the detector detailed
in Sect. 3.2 is trained using the region of the input image where the current
estimate surface projects. Then, boundary constraints are introduced and the
solution is refined. The second strategy is to use an image pyramid, which gives
coarse-to-fine versions of the boundariness map and increases the convergence
basin. This is a standard practice used in related problems such as optic flow.
We currently use a two-level pyramid: the kernel sizes and standard-deviations
are respectively h1 = (10, 10) and σ1 = 5 and h2 = (5, 5) and σ2 = 2.5 for a
default image size of 1288 × 964 pixels. At the finest level, we do not apply the
color-based filtering to the boundariness map. This is because assuming correct
convergence, at the start of the finest level the boundaries should align reasonably
closely to their true locations, and we therefore have less risk of false boundary
edges steering the solution away to a wrong local minimum. The benefit is to
use all edge information at the finest level, including edges where there is little
color separation between the surface and its background.

5 Experimental Results

We compare the accuracy of our method with four others [1,9,10,12], which we
denote respectively ReD12, ReJ14, MDH09 and LM16. MDH09 refers to
the convex formulation of [1].

5.1 Ground Truth Acquisition

Some previous datasets with ground truth 3D exist [35], however these are low
resolution, noisy and do not contain creased surfaces. To accurately evaluate our
method new datasets with ground truth were required. We constructed three new
data sets of three different objects with a highly-accurate commercial structured



114 M. Gallardo et al.

light system [36]. This consists of a HD data projector and an industrial machine
vision camera [37], and captures depth maps to sub-millimeter accuracy. The
advantage of this setup is that the depth maps are constructed in the camera’s
coordinate frame, so there is no need to register them to the camera’s image.
RGB images were captured from the camera at a resolution of 1288×964 pixels. It
takes approximately 10 s to capture an image and its associated depth map. Our
dataset consists of three creased objects scanned at approximately 20 cm from
the camera: a creased paper (6 input images), a folded aeroplane (9 input images)
and a cardboard box (8 input images). The 3D reference surfaces were obtained
by flattening the objects. We also evaluated the accuracy of our method on an
existing smooth dataset [35], to assess how our approach coped when creased
reconstruction was not required.

5.2 Implementation Details and Evaluation Metrics

For all experiments we constructed the embedding meshes by laying a trian-
gulated 100 × 100 vertex grid on the reference image which was then cropped
to ΩT . We found that this resolution was sufficient to accurately reconstruct
creases. Correspondences were computed using the public code from [33], which
gave approximately 300 correspondences per image. We discretized ΩBT to 1000
uniformly spaced points. For the state-of-the-art methods, there is no way to
automatically optimize their free parameters. Therefore we tried our best to do
this by hand, to obtain the best average error on all datasets. This was done
by a search starting from the default values, and modifying each free parameter
in turn to improve the average error. The values we used are found in the sup-
plementary material. For our method, all experiments were ran using the same
parameters, which were manually set.

On our new data sets we used two evaluation metrics. The first was the 3D
position error (%), which was given by the average relative depth error over the
region in the input image belonging to the surface. To do this, the template
was fitted to the ground truth depth map, then distances between this deformed
template and the estimated one were computed. The second metric was the
normal error (in degrees), which was given by the average error in surface normal.
To investigate the improvement at creased regions, we averaged results with two
schemes. The first was to use the whole image region that corresponded to the
surface. The second was using local neighborhoods around each crease, with a
neighborhood distance of approximately 0.5 cm on the surface.

5.3 Results

The first part covers our investigation to see whether the choice of bending energy
M-estimator had a significant impact on results (using our new data sets). The
second part compares our results with the state-of-the-art methods using our
new datasets. The third part compares our results with state-of-the-art methods
using the dataset from [35].
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Comparing Different Bending Energy M-estimators. Various M-
estimators have been proposed in the literature (a good review can be found
in [38]). Each have slightly different qualities and it is very hard to know a priori
which work best for a given problem. M-estimators can either be parameterless,
such as �1 or (�1 – �2) or have at least one free parameter (usually it is only one),
such as Huber and Cauchy. They may also be redescending or non-redescending.
In this section we compared the performance of (�1 – �2) and Huber, which are
two non-redescending M-estimators. The purpose was two-fold. Firstly, to see if
Huber’s free parameter was sensitive and required careful tuning and secondly
to see whether there was a significant performance difference between the two.

We run our method with 17 different bending energy M-estimator settings.
The first 16 were with Huber using 16 different parameter values in the range
k = 102...10−6. The 17th was with (�1 – �2). We evaluated performance using
all input images in all three datasets. For each M-estimator setting, we run our
method with 9 different bending energy weights from λbend, from 10−6 to 10−2

(which was a sufficient range), and then took the weight which produced the
lowest average error. The corresponding results for all 17 M-estimator settings
are shown in Fig. 4. We observe that with (�1 – �2) we obtain very similar results
to the best result obtained with Huber. The best k changes according to the
error metric, but we can say reasonably that the best k varies between k7 = 0.05
and k9 = 0.005. This suggests that for our problem, given the optimal bending
energy weight there is no clear difference between using (�1 – �2) or Huber, and
the choice for Huber’s free parameter is important but not extremely sensitive
in the range k7 = 0.05 to k9 = 0.005.

As a final experiment, we investigated the range of optimal bending energy
weights for a given M-estimator. The purpose was to see how easy it is in
practice to tune the bending energy weight for a given M-estimator. This was
done by measuring the best bending energy weight for each test image indepen-
dently, then measuring the corresponding spread. The results are shown in Fig. 4.
Figure 4 shows that in general the spread of the best bending energy weight is
similar for (�1 – �2) and Huber with its parameter in the range k7 to k9. This
implies that the difficulty of choosing a good weight for the bending energy is
the same for the two M-estimators. From these experiments, we can conclude
that there is very little difference in practice between using (�1 – �2) or Huber
with its parameter in the range 0.005 ≤ k ≤ 0.05.

Results on Creased Datasets. For our method we used the (�1 – �2) M-
estimator for the bending energy with a corresponding weight of λbend = 10−5.
In Fig. 6 we show the result of the compared methods using a representative input
image from each of the three datasets. In Fig. 5 we give summary statistics for
each method across all images. These visual observations support the statistical
results in Fig. 5. We notice that our method provides the best accuracy at the
neighbors of the creases and a best global reconstruction. We remark that the
large smooth regions of the surfaces are also reconstructed well in general. In
Fig. 6, 5th row, 3rd column we show an example of a failure mode, where the
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Fig. 4. Results of bending energy M-estimator analysis. We consider all input images
of all the objects of our test datasets Sect. 5.3. First row: Errors obtained by running
our method with 17 different M-estimators settings. In the first 16 settings we use
Huber with 16 different hyper-parameter values. In the last setting, we use (�1 – �2).
Second row: the distribution of optimal weights λbend for each M-estimator setting.

Fig. 5. Quantitative results comparison on the three new datasets. First row: creased
paper dataset. Second row: folded aeroplane dataset. Third row: cardboard box
dataset.

reconstruction at the bar code does not appear correct. The reason for this is
because the boundary points were incorrectly fitted to the bottom of the bar
code, which was compensated by the surface bending away from the camera in
order to respect the isometric constraint.
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Fig. 6. Qualitative results comparison on the three new datasets. Rows n◦1 and n◦2:
input image n◦1 of the creased paper dataset. Rows n◦3 and n◦4: input image n◦1 of
the folded aeroplane dataset. Rows n◦5 and n◦6: input image n◦6 of the cardboard box
dataset.
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Results on an Existing Smooth Dataset. We also tested whether our
method also works well for simpler problems with smooth surfaces where �2 regu-
larization is sufficient. We have found this to be the case with existing benchmark
datasets. On the commonly-used public EPFL kinect paper dataset (193 frames)
and using the same parameters, we evaluated accuracy using 40 images uniformly
sampled, which produced a mean 3D error of 5.63 mm. This puts it among the
best performing method, presented in [10], which uses an �2 regularization and
which gives a mean 3D error of 5.74 mm.

6 Conclusion

We have developed a modeling and optimization framework for reconstructing
smooth and creased 3D surfaces from a single image and a deformable 3D tem-
plate. We implicitly model creases using a dense mesh-based surface representa-
tion with an associated robust bending energy term whose influence is governed
by an M-estimator. We have shown that there is little difference in practice
between two common M-estimators ((�1 – �2) and Huber with a correctly set
hyper-parameter), and our results indicate significantly better performance com-
pared to previous state-of-the-art methods. An important aspect of our approach
is to combine motion constraints with boundary constraints, which can signifi-
cantly improve results at the surface’s boundaries. One difficulty with using them
is potential confusion with non-boundary image edges. We have addressed this
using statistical color models, which are particularly effective when the surface’s
color is significantly different to the background. In future work we will extend
the approach to templates with arbitrary topologies and study dynamic crease
modeling.
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5. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans.
Graph. 23(3), 399–405 (2004)



Registering and Reconstructing Creased Surfaces by SfT Accurately 119

6. Collins, T., Bartoli, A.: Realtime Shape-from-Template: system and applications.
In: International Symposium on Mixed and Augmented Reality (2015)

7. Malti, A., Hartley, R., Bartoli, A., Kim, J.: Monocular template-based 3D recon-
struction of extensible surfaces with local linear elasticity. In: International Con-
ference on Computer Vision and Pattern Recognition (2013)

8. Haouchine, N., Dequidt, J., Berger, M.O., Cotin, S.: Single view augmentation of
3D elastic objects. In: International Symposium on Mixed and Augmented Reality,
pp. 229–236 (2014)

9. Bartoli, A., Gérard, Y., Chadebecq, F., Collins, T., Pizarro, D.: Shape-from-
Template. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2099–2118 (2015)

10. Chhatkuli, A., Pizarro, D., Bartoli, A.: Stable template-based isometric 3D recon-
struction in all imaging conditions by linear least-squares. In: International Con-
ference on Computer Vision and Pattern Recognition (2014)

11. Salzmann, M., Fua, P.: Linear local models for monocular reconstruction of
deformable surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 931–944
(2011)
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