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Abstract. This paper investigates a novel problem of generating images
from visual attributes. We model the image as a composite of foreground
and background and develop a layered generative model with disentan-
gled latent variables that can be learned end-to-end using a variational
auto-encoder. We experiment with natural images of faces and birds and
demonstrate that the proposed models are capable of generating realistic
and diverse samples with disentangled latent representations. We use a
general energy minimization algorithm for posterior inference of latent
variables given novel images. Therefore, the learned generative models
show excellent quantitative and visual results in the tasks of attribute-
conditioned image reconstruction and completion.

1 Introduction

Generative image modeling is of fundamental interest in computer vision and
machine learning. Early works [20,21,26,30,32,36] studied statistical and phys-
ical principles of building generative models, but due to the lack of effective fea-
ture representations, their results are limited to textures or particular patterns
such as well-aligned faces. Recent advances on representation learning using deep
neural networks [16,29] nourish a series of deep generative models that enjoy
joint generative modeling and representation learning through Bayesian infer-
ence [1,9,14,15,28,34] or adversarial training [3,8]. Those works show promising
results of generating natural images, but the generated samples are still in low
resolution and far from being perfect because of the fundamental challenges of
learning unconditioned generative models of images.

In this paper, we are interested in generating object images from high-level
description. For example, we would like to generate portrait images that all
match the description “a young girl with brown hair is smiling” (Fig. 1). This
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Fig. 1. An example that demonstrates the problem of conditioned image generation
from visual attributes. We assume a vector of visual attributes is extracted from a
natural language description, and then this attribute vector is combined with learned
latent factors to generate diverse image samples. (Color figure online)

conditioned treatment reduces sampling uncertainties and helps generating more
realistic images, and thus has potential real-world applications such as forensic
art and semantic photo editing [12,19,40]. The high-level descriptions are usually
natural languages, but what underlies its corresponding images are essentially a
group of facts or visual attributes that are extracted from the sentence. In the
example above, the attributes are (hair color: brown), (gender: female), (age:
young) and (expression: smile). Based on this assumption, we propose to learn
an attribute-conditioned generative model.

Indeed, image generation is a complex process that involves many factors.
Other than enlisted attributes, there are many unknown or latent factors. It has
been shown that those latent factors are supposed to be interpretable accord-
ing to their semantic or physical meanings [4,17,27]. Inspired by layered image
models [23,38], we disentangle the latent factors into two groups: one related
to uncertain properties of foreground object and the other related to the back-
ground, and model the generation process as layered composition. In particular,
the foreground is overlaid on the background so that the background visibility
depends on the foreground shape and position. Therefore, we propose a novel
layered image generative model with disentangled foreground and background
latent variables. The entire background is first generated from background vari-
ables, then the foreground variables are combined with given attributes to gen-
erate object layer and its shape map determining the visibility of background
and finally the image is composed by the summation of object layer and the
background layer gated by its visibility map. We learn this layered generative
model in an end-to-end deep neural network using a variational auto-encoder [15]
(Sect. 3). Our variational auto-encoder includes two encoders or recognition mod-
els for approximating the posterior distributions of foreground and background
latent variables respectively, and two decoders for generating a foreground image
and a full image by composition. Assuming the latent variables are Gaussian,
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the whole network can be trained end-to-end by back-propagation using the
reparametrization trick.

Generating realistic samples is certainly an important goal of deep generative
models. Moreover, generative models can be also used to perform Bayesian infer-
ence on novel images. Since the true posterior distribution of latent variables is
unknown, we propose a general optimization-based approach for posterior infer-
ence using image generation models and latent priors (Sect. 4).

We evaluate the proposed model on two datasets, the Labeled Faces in
the Wild (LFW) dataset [10] and the Caltech-UCSD Birds-200-2011 (CUB)
dataset [37]. In the LFW dataset, the attributes are 73-dimensional vectors
describing age, gender, expressions, hair and many others [18]. In the CUB
dataset, the 312-dimensional binary attribute vectors are converted from descrip-
tions about bird parts and colors. We organize our experiments in the follow-
ing two tasks. First, we demonstrate the quality of attribute-conditioned image
generation with comparisons to nearest-neighbor search, and analyze the disen-
tangling performance of latent space and corresponding foreground-background
layers. Second, we perform image reconstruction and completion on a set of
novel test images by posterior inference with quantitative evaluation. Results
from those experiments show the superior performance of the proposed model
over previous art. The contributions of this paper are summarized as follows:

– We propose a novel problem of conditioned image generation from visual
attributes.

– We tackle this problem by learning conditional variational auto-encoders and
propose a novel layered foreground-background generative model that signifi-
cantly improves the generation quality of complex images.

– We propose a general optimization-based method for posterior inference on
novel images and use it to evaluate generative models in the context of image
reconstruction and completion.

2 Related Work

Image Generation. In terms of generating realistic and novel images, there are
several recent work [3,4,8,9,17,25] that are relevant to ours. Dosovitskiy et al. [4]
proposed to generate 3D chairs given graphics code using deep convolutional
neural networks, and Kulkarni et al. [17] used variational auto-encoders [15] to
model the rendering process of 3D objects. Both of these models [4,17] assume
the existence of a graphics engine during training, from which they have (1) vir-
tually infinite amount of training data and/or (2) pairs of rendered images that
differ only in one factor of variation. Therefore, they are not directly applicable to
natural image generation. While both work [4,17] studied generation of rendered
images from complete description (e.g., object identity, view-point, color) trained
from synthetic images (via graphics engine), generation of images from an incom-
plete description (e.g., class labels, visual attributes) is still under-explored. In
fact, image generation from incomplete description is a more challenging task and
the one-to-one mapping formulation of [4] is inherently limited. Gregor et al. [9]
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developed recurrent variational auto-encoders with spatial attention mechanism
that allows iterative image generation by patches. This elegant algorithm mim-
ics the process of human drawing but at the same time faces challenges when
scaling up to large complex images. Recently, generative adversarial networks
(GANs) [3,7,8,25] have been developed for image generation. In the GAN, two
models are trained to against each other: a generative model aims to capture the
data distribution, while a discriminative model attempts to distinguish between
generated samples and training data. The GAN training is based on a min-max
objective, which is known to be challenging to optimize.

Layered Modeling of Images. Layered models or 2.1D representations of images
have been studied in the context of moving or still object segmentation
[11,23,38,39,41]. The layered structure is introduced into generative image mod-
eling [20,35]. Tang et al. [35] modeled the occluded images with gated restricted
Boltzmann machines and achieved good inpainting and denoising results on well
cropped face images. Le Roux et al. [20] explicitly modeled the occlusion layer
in a masked restricted Boltzmann machine for separating foreground and back-
ground and demonstrated promising results on small patches. Though similar to
our proposed gating in the form, these models face challenges when applied to
model large natural images due to its difficulty in learning hierarchical represen-
tation based on restricted Boltzmann machine.

Multimodal Learning. Generative models of image and text have been studied
in multimodal learning to model joint distribution of multiple data modalities
[22,31,33]. For example, Srivastava and Salakhutdinov [33] developed a multi-
modal deep Boltzmann machine that models joint distribution of image and text
(e.g., image tag). Sohn et al. [31] proposed improved shared representation learn-
ing of multimodal data through bi-directional conditional prediction by deriving
a conditional prediction model of one data modality given the other and vice
versa. Both of these works focused more on shared representation learning using
hand-crafted low-level image features and therefore have limited applications
such as conditional image or text retrieval than actual generation of images.

3 Attribute-Conditioned Generative Modeling of Images

In this section, we describe our proposed method for attribute-conditioned
generative modeling of images. We first describe a conditional variational auto-
encoder, followed by the formulation of layered generative model and its varia-
tional learning.

3.1 Base Model: Conditional Variational Auto-Encoder (CVAE)

Given the attribute y ∈ R
Ny and latent variable z ∈ R

Nz , our goal is to build
a model pθ(x|y, z) that generates realistic image x ∈ R

Nx conditioned on y
and z. Here, we refer pθ a generator (or generation model), parametrized by θ.
Conditioned image generation is simply a two-step process in the following:
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1. Randomly sample latent variable z from prior distribution p(z);
2. Given y and z as conditioning variable, generate image x from pθ(x|y, z).

Here, the purpose of learning is to find the best parameter θ that maximizes
the log-likelihood log pθ(x|y). As proposed in [15,28], variational auto-encoders
try to maximize the variational lower bound of the log-likelihood log pθ(x|y).
Specifically, an auxiliary distribution qφ(z|x, y) is introduced to approximate
the true posterior pθ(z|x, y). We refer the base model a conditional variational
auto-encoder (CVAE) with the conditional log-likelihood

log pθ(x|y) = KL(qφ(z|x, y)||pθ(z|x, y)) + LCVAE(x, y; θ, φ),

where the variational lower bound

LCVAE(x, y; θ, φ) = −KL(qφ(z|x, y)||pθ(z)) + Eqφ(z|x,y)

[
log pθ(x|y, z)

]
(1)

is maximized for learning the model parameters.
Here, the prior pθ(z) is assumed to follow isotropic multivariate Gaussian dis-

tribution, while two conditional distributions pθ(x|y, z) and qφ(z|x, y) are multi-
variate Gaussian distributions whose mean and covariance are parametrized by
N (

μθ(z, y), diag(σ2
θ(z, y))

)
and N

(
μφ(x, y), diag(σ2

φ(x, y))
)
, respectively. We

refer the auxiliary proposal distribution qφ(z|x, y) a recognition model and the
conditional data distribution pθ(x|y, z) a generation model.

The first term KL(qφ(z|x, y)||pθ(z)) is a regularization term that reduces the
gap between the prior p(z) and the proposal distribution qφ(z|x, y), while the
second term log pθ(x|y, z) is the log likelihood of samples. In practice, we usually
take as a deterministic generation function the mean x = μθ(z, y) of conditional
distribution pθ(x|z, y) given z and y, so it is convenient to assume the standard
deviation function σθ(z, y) is a constant shared by all the pixels as the latent
factors capture all the data variations. We will keep this assumption for the rest
of the paper if not particularly mentioned. Thus, we can rewrite the second term
in the variational lower bound as reconstruction loss L(·, ·) (e.g., �2 loss):

LCVAE = − KL(qφ(z|x, y)||pθ(z)) − Eqφ(z|x,y)L(μθ(y, z), x) (2)

Note that the discriminator of GANs [8] can be used as the loss function L(·, ·)
as well, especially when �2 (or �1) reconstruction loss may not capture the true
image similarities. We leave it for future study.

3.2 Disentangling CVAE with a Layered Representation

An image x can be interpreted as a composite of a foreground layer (or a fore-
ground image xF ) and a background layer (or a background image xB) via a
matting equation [24]:

x = xF � (1 − g) + xB � g, (3)
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(a) CVAE: pθ(x|y, z) (b) disCVAE: pθ(x, xF , g|y, zF , zB)

Fig. 2. Graphical model representations of attribute-conditioned image generation
models (a) without (CVAE) and (b) with (disCVAE) disentangled latent space.

where � denotes the element-wise product. g ∈ [0, 1]Nx is an occlusion layer
or a gating function that determines the visibility of background pixels while
1 − g defines the visibility of foreground pixels. However, the model based on
Eq. (3) may suffer from the incorrectly estimated mask as it gates the foreground
region with imperfect mask estimation. Instead, we approximate the following
formulation that is more robust to estimation error on mask:

x = xF + xB � g. (4)

When lighting condition is stable and background is at a distance, we can safely
assume foreground and background pixels are generated from independent latent
factors. To this end, we propose a disentangled representation z = [zF , zB ] in
the latent space, where zF together with attribute y captures the foreground
factors while zB the background factors. As a result, the foreground layer xF

is generated from μθF
(y, zF ) and the background layer xB from μθB

(zB). The
foreground shape and position determine the background occlusion so the gating
layer g is generated from sθg

(y, zF ) where the last layer of s(·) is sigmoid function.
In summary, we approximate the layered generation process as follows:

1. Sample foreground and background latent variables zF ∼ p(zF ), zB ∼ p(zB);
2. Given y and zF , generate foreground layer xF ∼ N (

μθF
(y, zF ), σ2

0INx

)
and

gating layer g ∼ Bernoulli
(
sθg

(y, zF )
)
; here, σ0 is a constant. The back-

ground layer (which correspond to xB) is implicitly computed as μθB
(zB).

3. Synthesize an image x ∼ N (
μθ(y, zF , zB), σ2

0INx

)
where μθ(y, zF , zB) =

μθF
(y, zF ) + sθg

(y, zF ) � μθB
(zB).

Learning. It is very challenging to learn our layered generative model in a fully-
unsupervised manner since we need to infer about xF , xB, and g from the image
x only. In this paper, we further assume the foreground layer xF (as well as
gating variable g) is observable during the training and we train the model to
maximize the joint log-likelihood log pθ(x, xF , g|y) instead of log pθ(x|y). With
disentangled latent variables zF and zB , we refer our layered model a disentan-
gling conditional variational auto-encoder (disCVAE). We compare the graphical
models of disCVAE with vanilla CVAE in Fig. 2. Based on the layered generation
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process, we write the generation model by

pθ(xF , g, x, zF , zB |y) = pθ(x|zF , zB , y)pθ(xF , g|zF , y)pθ(zF )pθ(zB), (5)

the recognition model by

qφ(zF , zB |xF , g, x, y) = qφ(zB |zF , xF , g, x, y)qφ(zF |xF , g, y) (6)

and the variational lower bound LdisCVAE(xF , g, x, y; θ, φ) is given by

LdisCVAE(xF , g, x, y; θ, φ) =

− KL(qφ(zF |xF , g, y)||pθ(zF )) − Eqφ(zF |xF ,g,y)

[
KL(qφ(zB |zF , xF , g, x, y)||pθ(zB))

]

− Eqφ(zF |xF ,g,y)

[
L(μθF

(y, zF ), xF ) + λgL(sθg
(y, zF ), g)

]

− Eqφ(zF ,zB |xF ,g,x,y)L(μθ(y, zF , zB), x) (7)

where μθ(y, zF , zB) = μθF
(y, zF ) + sθg

(y, zF ) � μθB
(zB) as in Eq. (4). We fur-

ther assume that log pθ(xF , g|zF , y) = log pθ(xF |zF , y) + λg log pθ(g|zF , y), where

we introduce λg as additional hyperparameter when decomposing the probablity

pθ(xF , g|zF , y). For the loss function L(·, ·), we used reconstruction error for predicting

x or xF and cross entropy for predicting the binary mask g. See the supplementary

material for details of the derivation. All the generation and recognition models are

parameterized by convolutional neural networks and trained end-to-end in a single

architecture with back-propagation. We will introduce the exact network architecture

in the experiment section.

4 Posterior Inference via Optimization

Once the attribute-conditioned generative model is trained, the inference or generation

of image x given attribute y and latent variable z is straight-forward. However, the

inference of latent variable z given an image x and its corresponding attribute y is

unknown. In fact, the latent variable inference is quite useful as it enables model

evaluation on novel images. For simplicity, we introduce our inference algorithm based

on the vanilla CVAE and the same algorithm can be directly applied to the proposed

disCVAE and the other generative models such as GANs [3,7]. Firstly we notice that

the recognition model qφ(z|y, x) may not be directly used to infer z. On one hand, as

an approximate, we don’t know how far it is from the true posterior pθ(z|x, y) because

the KL divergence between them is thrown away in the variational learning objective;

on the other hand, this approximation does not even exist in the models such as GANs.

We propose a general approach for posterior inference via optimization in the latent

space. Using Bayes’ rule, we can formulate the posterior inference by

max
z

log pθ(z|x, y) = max
z

[
log pθ(x|z, y) + log pθ(z|y)

]

= max
z

[
log pθ(x|z, y) + log pθ(z)

]
(8)

Note that the generation models or likelihood terms pθ(x|z, y) could be non-Gaussian

or even a deterministic function (e.g. in GANs) with no proper probabilistic definition.
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Thus, to make our algorithm general enough, we reformulate the inference in (8) as an

energy minimization problem,

min
z

E(z, x, y) = min
z

[
L(μ(z, y), x) + λR(z)

]
(9)

where L(·, ·) is the image reconstruction loss and R(·) is a prior regularization term.

Taking the simple Gaussian model as an example, the posterior inference can be re-

written as,

min
z

E(z, x, y) = min
z

[‖μ(z, y) − x‖2 + λ‖z‖2)] (10)

Note that we abuse the mean function μ(z, y) as a general image generation function.

Since μ(z, y) is a complex neural network, optimizing (9) is essentially error back-

propagation from the energy function to the variable z, which we solve by the ADAM

method [13]. Our algorithm actually shares a similar spirit with recently proposed

neural network visualization [42] and texture synthesis algorithms [6]. The difference

is that we use generation models for recognition while their algorithms use recognition

models for generation. Compared to the conventional way of inferring z from recogni-

tion model qφ(z|x, y), the proposed optimization contributed to an empirically more

accurate latent variable z and hence was useful for reconstruction, completion, and

editing.

5 Experiments

Datasets. We evaluated our model on two datasets: Labeled Faces in the Wild

(LFW) [10] and Caltech-UCSD Birds-200-2011 (CUB) [37]. For experiments on LFW,

we aligned the face images using five landmarks [43] and rescaled the center region to

64 × 64. We used 73 dimensional attribute score vector provided by [18] that describes

different aspects of facial appearance such as age, gender, or facial expression. We

trained our model using 70% of the data (9,000 out of 13,000 face images) following

the training-testing split (View 1) [10], where the face identities are distinct between

train and test sets. For experiments on CUB, we cropped the bird region using the

tight bounding box computed from the foreground mask and rescaled to 64 × 64. We

used 312 dimensional binary attribute vector that describes bird parts and colors. We

trained our model using 50% of the data (6,000 out of 12,000 bird images) following

the training-testing split [37]. For model training, we held-out 10 % of training data for

validation.

Data Preprocessing and Augmentation. To make the learning easier, we pre-

processed the data by normalizing the pixel values to the range [−1, 1]. We augmented

the training data with the following image transformations [5,16]: (1) flipping images

horizontally with probability 0.5, (2) multiplying pixel values of each color channel

with a random value c ∈ [0.97, 1.03], and (3) augmenting the image with its residual

with a random tradeoff parameter s ∈ [0, 1.5]. Specifically, for CUB experiments, we

performed two extra transformations: (4) rotating images around the centering point

by a random angle θr ∈ [−0.08, 0.08], (5) rescaling images to the scale of 72 × 72 and

performing random cropping of 64 × 64 regions. Note that these methods are designed

to be invariant to the attribute description.
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Architecture Design. For disCVAE, we build four convolutional neural networks (one

for foreground and the other for background for both recognition and generation net-

works) for auto-encoding style training. The foreground encoder network consists of

5 convolution layers, followed by 2 fully-connected layers (convolution layers have 64,

128, 256, 256 and 1024 channels with filter size of 5 × 5, 5 × 5, 3 × 3, 3 × 3 and 4 × 4,

respectively; the two fully-connected layers have 1024 and 192 neurons). The attribute

stream is merged with image stream at the end of the recognition network. The fore-

ground decoder network consists of 2 fully-connected layers, followed by 5 convolution

layers with 2-by-2 upsampling (fully-connected layers have 256 and 8×8×256 neurons;

the convolution layers have 256, 256, 128, 64 and 3 channels with filter size of 3 × 3,

5 × 5, 5 × 5, 5 × 5 and 5 × 5. The foreground prediction stream and gating prediction

stream are separated at the last convolution layer. We adopt the same encoder/decoder

architecture for background networks but with fewer number of channels. See the sup-

plementary material for more details.

For all the models, we fixed the latent dimension to be 256 and found this configu-

ration is sufficient to generate 64×64 images in our setting. We adopt slightly different

architectures for different datasets: we use 192 dimensions to foreground latent space

and 64 dimensions to background latent space for experiments on LFW dataset; we

use 128 dimensions for both foreground and background latent spaces on CUB dataset.

Compared to vanilla CVAE, the proposed disCVAE has more parameters because of the

additional convolutions introduced by the two-stream architecture. However, we found

that adding more parameters to vanilla CVAE does not lead to much improvement in

terms of image quality. Although both [4] and the proposed method use segmentation

masks as supervision, naive mask prediction was not comparable to the proposed model

in our setting based on the preliminary results. In fact, the proposed disCVAE architec-

ture assigns foreground/background generation to individual networks and composite

with gated interaction, which we found very effective in practice.

Implementation Details. We used ADAM [13] for stochastic optimization in all exper-

iments. For training, we used mini-batch of size 32 and the learning rate 0.0003. We

also added dropout layer of ratio 0.5 for the image stream of the encoder network

before merging with attribute stream. For posterior inference, we used the learning

rate 0.3 with 1000 iterations. The models are implemented using deep learning toolbox

Torch7 [2].

Baselines. For the vanilla CVAE model, we used the same convolution architecture

from foreground encoder network and foreground decoder network. To demonstrate the

significance of attribute-conditioned modeling, we trained an unconditional variational

auto-encoders (VAE) with almost the same convolutional architecture as our CVAE.

5.1 Attribute-Conditioned Image Generation

To examine whether the model has the capacity to generate diverse and realistic images

from given attribute description, we performed the task of attribute-conditioned image

generation. For each attribute description from testing set, we generated 5 samples by

the proposed generation process: x ∼ pθ(x|y, z), where z is sampled from isotropic

Gaussian distribution. For vanilla CVAE, x is the only output of the generation.
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Fig. 3. Attribute-conditioned image generation.

In comparison, for disCVAE, the foreground image xF can be considered a by-product

of the layered generation process. For evaluation, we visualized the samples gener-

ated from the model in Fig. 3 and compared them with the corresponding image in

the testing set, which we name as “reference” image. To demonstrate that model did

not exploit the trivial solution of attribute-conditioned generation by memorizing the

training data, we added a simple baseline as experimental comparison. Basically, for

each given attribute description in the testing set, we conducted the nearest neighbor

search in the training set. We used the mean squared error as the distance metric for

the nearest neighbor search (in the attribute space). For more visual results and code,

please see the supplementary material and the project website: https://sites.google.

com/site/attribute2image/.

Attribute-conditioned Face Image Generation. As we can see in Fig. 3, face images

generated by the proposed models look realistic and non-trivially different from each

other, especially for view-point and background color. Moreover, it is clear that images

generated by disCVAE have clear boundaries against the background. In comparison,

the boundary regions between the hair area and background are quite blurry for sam-

ples generated by vanilla CVAE. This observation suggests the limitation of vanilla

CVAE in modeling hair pattern for face images. This also justifies the significance of

layered modeling and latent space disentangling in our attribute-conditioned gener-

ation process. Compared to the nearest neighbors in the training set, the generated

samples can better reflect the input attribute description.

Attribute-conditioned Bird Image Generation. Compared to the experiments on

LFW database, the bird image modeling is more challenging because the bird images

https://sites.google.com/site/attribute2image/
https://sites.google.com/site/attribute2image/
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Fig. 4. Attribute-conditioned image progression. The visualization is organized into six
attribute groups (e.g., “gender”, “age”, “facial expression”, “eyewear”, “hair color” and
“primary color (blue vs. yellow)”). Within each group, the images are generated from
pθ(x|y, z) with z ∼ N (0, I) and y = [yα, yrest], where yα = (1−α)·ymin+α·ymax. Here,
ymin and ymax stands for the minimum and maximum attribute value respectively in
the dataset along the corresponding dimension. (Color figure online)

have more diverse shapes and color patterns and the binary-valued attributes are more

sparse and higher dimensional. As we can see in Fig. 3, there is a big difference between

two versions of the proposed CVAE model. Basically, the samples generated by vanilla

CVAE are blurry and sometimes blended with the background area. However, samples

generated by disCVAE have clear bird shapes and reflect the input attribute description

well. This confirms the strengths of the proposed layered modeling of images.

Attribute-conditioned Image Progression. To better analyze the proposed model, we

generate images with interpolated attributes by gradually increasing or decreasing the

values along each attribute dimension. We regard this process as attribute-conditioned

image progression. Specifically, for each attribute vector, we modify the value of one

attribute dimension by interpolating between the minimum and maximum attribute

value. Then, we generate images by interpolating the value of y between the two

attribute vectors while keeping latent variable z fixed. For visualization, we use the

attribute vector from testing set.

As we can see in Fig. 4, samples generated by progression are visually consistent

with attribute description. For face images, by changing attributes like “gender” and

“age”, the identity-related visual appearance is changed accordingly but the view-

point, background color, and facial expression are well preserved; on the other hand,

by changing attributes like “facial expression”,“eyewear” and “hair color”, the global

appearance is well preserved but the difference appears in the local region. For bird

images, by changing the primary color from one to the other, the global shape and back-

ground color are well preserved. These observations demonstrated that the generation

process of our model is well controlled by the input attributes.

Analysis: Latent Space Disentangling. To better analyze the disCVAE, we performed

the following experiments on the latent space. In this model, the image generation
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Fig. 5. Analysis: latent space disentangling.

process is driven by three factors: attribute y, foreground latent variable zF and back-

ground latent variable zB . By changing one variable while fixing the other two, we

can analyze how each variable contributes to the final generation results. We visualize

the samples x, the generated background xB and the gating variables g in Fig. 5. We

summarized the observations as follows: (1) The background of the generated samples

look different but with identical foreground region when we change background latent

variable zB only; (2) the foreground region of the generated samples look diverse in

terms of viewpoints but still look similar in terms of appearance and the samples have

uniform background pattern when we change foreground latent variable zF only. Inter-

estingly, for face images, one can identify a “hole” in the background generation. This

can be considered as the location prior of the face images, since the images are rela-

tively aligned. Meanwhile, the generated background for birds are relatively uniform,
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which demonstrates our model learned to recover missing background in the training

set and also suggests that foreground and background have been disentangled in the

latent space.

5.2 Attribute-Conditioned Image Reconstruction and Completion

Image Reconstruction. Given a test image x and its attribute vector y, we find z that

maximizes the posterior pθ(z|x, y) following Eq. (9).

Image Completion. Given a test image with synthetic occlusion, we evaluate whether

the model has the capacity to fill in the occluded region by recognizing the observed

region. We denote the occluded (unobserved) region and observed region as xu and xo,

respectively. For completion, we first find z that maximizes the posterior pθ(z|xo, y)

by optimization (9). Then, we fill in the unobserved region xu by generation using

pθ(xu|z, y). For each face image, we consider four types of occlusions: occlusion on the

eye region, occlusion on the mouth region, occlusion on the face region and occlusion

on right half of the image. For occluded regions, we set the pixel value to 0. For each

bird image, we consider blocks of occlusion of size 8×8 and 16×16 at random locations.

In Fig. 6, we visualize the results of image reconstruction (a, b) and image comple-

tion (c–h). As we can see, for face images, our proposed CVAE models are in general

good at reconstructing and predicting the occluded region in unseen images (from

testing set). However, for bird images, vanilla CVAE model had significant failures in

general. This agreed with the previous results in attribute-conditioned image genera-

tion.

In addition, to demonstrate the significance of attribute-conditioned modeling, we

compared our vanilla CVAE and disCVAE with unconditional VAE (attribute is not

given) for image reconstruction and completion. It can be seen in Fig. 6(c) and (d), the

generated images using attributes actually perform better in terms of expression and

eyewear (“smiling” and “sunglasses”).

For quantitative comparisons, we measured the pixel-level mean squared error

on the entire image and occluded region for reconstruction and completion, respec-

tively. We summarized the results in Table 1 (mean squared error and standard error).

Fig. 6. Attribute-conditioned image reconstruction and completion.
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Table 1. Quantitative comparisons on face reconstruction and completion tasks.

Face Recon: full Recon: fg Comp: eye Comp: mouth Comp: face Comp: half

VAE 11.8 ± 0.1 9.4 ± 0.1 13.0 ± 0.1 12.1 ± 0.1 13.1 ± 0.1 21.3 ± 0.2

CVAE 11.8 ± 0.1 9.3 ± 0.1 12.0 ± 0.1 12.0 ± 0.1 12.3 ± 0.1 20.3 ± 0.2

disCVAE 10.0 ± 0.1 7.9 ± 0.1 10.3 ± 0.1 10.3 ± 0.1 10.9 ± 0.1 18.8 ± 0.2

Bird Recon: full Recon: fg Comp: 8× 8 Comp: 16× 16

VAE 14.5 ± 0.1 11.7 ± 0.1 1.8 ± 0.1 4.6 ± 0.1

CVAE 14.3 ± 0.1 11.5 ± 0.1 1.8 ± 0.1 4.4 ± 0.1

disCVAE 12.9 ± 0.1 10.2 ± 0.1 1.8 ± 0.1 4.4 ± 0.1

The quantitative analysis highlighted the benefits of attribute-conditioned modeling

and the importance of layered modeling.

6 Conclusion

To conclude, this paper studied a novel problem of attribute-conditioned image gener-

ation and proposed a solution with CVAEs. Considering the compositional structure of

images, we proposed a novel disentangling CVAE (disCVAE) with a layered represen-

tation. Results on faces and birds demonstrate that our models can generate realistic

samples with diverse appearance and especially disCVAE significantly improved the

generation quality on bird images. To evaluate the learned generation models on the

novel images, we also developed an optimization-based approach to posterior inference

and applied it to the tasks of image reconstruction and completion with quantitative

evaluation.
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