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Abstract. Very deep convolutional networks with hundreds of layers
have led to significant reductions in error on competitive benchmarks.
Although the unmatched expressiveness of the many layers can be highly
desirable at test time, training very deep networks comes with its own
set of challenges. The gradients can vanish, the forward flow often dimin-
ishes, and the training time can be painfully slow. To address these prob-
lems, we propose stochastic depth, a training procedure that enables the
seemingly contradictory setup to train short networks and use deep net-
works at test time. We start with very deep networks but during train-
ing, for each mini-batch, randomly drop a subset of layers and bypass
them with the identity function. This simple approach complements the
recent success of residual networks. It reduces training time substantially
and improves the test error significantly on almost all data sets that we
used for evaluation. With stochastic depth we can increase the depth
of residual networks even beyond 1200 layers and still yield meaningful
improvements in test error (4.91% on CIFAR-10).

1 Introduction

Convolutional Neural Networks (CNNs) were arguably popularized within the
vision community in 2009 through AlexNet [1] and its celebrated victory at the
ImageNet competition [2]. Since then there has been a notable shift towards
CNNs in many areas of computer vision [3—8]. As this shift unfolds, a second
trend emerges; deeper and deeper CNN architectures are being developed and
trained. Whereas AlexNet had 5 convolutional layers [1], the VGG network and
GoogLeNet in 2014 had 19 and 22 layers respectively [5,7], and most recently
the ResNet architecture featured 152 layers [8].

Network depth is a major determinant of model expressiveness, both in the-
ory [9,10] and in practice [5,7,8]. However, very deep models also introduce new
challenges: vanishing gradients in backward propagation, diminishing feature
reuse in forward propagation, and long training time.
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Vanishing Gradients is a well known nuisance in neural networks with many
layers [11]. As the gradient information is back-propagated, repeated multipli-
cation or convolution with small weights renders the gradient information inef-
fectively small in earlier layers. Several approaches exist to reduce this effect in
practice, for example through careful initialization [12], hidden layer supervision
[13], or, recently, Batch Normalization [14].

Diminishing feature reuse during forward propagation (also known as loss in
information flow [15]) refers to the analogous problem to vanishing gradients in
the forward direction. The features of the input instance, or those computed by
earlier layers, are “washed out” through repeated multiplication or convolution
with (randomly initialized) weight matrices, making it hard for later layers to
identify and learn “meaningful” gradient directions. Recently, several new archi-
tectures attempt to circumvent this problem through direct identity mappings
between layers, which allow the network to pass on features unimpededly from
earlier layers to later layers [8,15].

Long training time is a serious concern as networks become very deep. The
forward and backward passes scale linearly with the depth of the network. Even
on modern computers with multiple state-of-the-art GPUs, architectures like the
152-layer ResNet require several weeks to converge on the ImageNet dataset [8].

The researcher is faced with an inherent dilemma: shorter networks have
the advantage that information flows efficiently forward and backward, and can
therefore be trained effectively and within a reasonable amount of time. How-
ever, they are not expressive enough to represent the complex concepts that are
commonplace in computer vision applications. Very deep networks have much
greather model complexity, but are very difficult to train in practice and require
a lot of time and patience.

In this paper, we propose deep networks with stochastic depth, a novel train-
ing algorithm that is based on the seemingly contradictory insight that ideally
we would like to have a deep network during testing but a short network during
training. We resolve this conflict by creating deep Residual Network [8] archi-
tectures (with hundreds or even thousands of layers) with sufficient modeling
capacity; however, during training we shorten the network significantly by ran-
domly removing a substantial fraction of layers independently for each sample or
mini-batch. The effect is a network with a small ezxpected depth during training,
but a large depth during testing. Although seemingly simple, this approach is
surprisingly effective in practice.

In extensive experiments we observe that training with stochastic depth sub-
stantially reduces training time and test error (resulting in multiple new records
to the best of our knowledge at the time of initial submission to ECCV). The
reduction in training time can be attributed to the shorter forward and backward
propagation, so the training time no longer scales with the full depth, but the
shorter expected depth of the network. We attribute the reduction in test error
to two factors: (1) shortening the (expected) depth during training reduces the
chain of forward propagation steps and gradient computations, which strength-
ens the gradients especially in earlier layers during backward propagation;
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(2) networks trained with stochastic depth can be interpreted as an implicit
ensemble of networks of different depths, mimicking the record breaking ensem-
ble of depth varying ResNets trained by He et al. [§].

We also observe that similar to Dropout [16], training with stochastic depth
acts as a regularizer, even in the presence of Batch Normalization [14]. On exper-
iments with CIFAR-10, we increase the depth of a ResNet beyond 1000 layers
and still obtain significant improvements in test error.

2 Background

Many attempts have been made to improve the training of very deep networks.
Earlier works adopted greedy layer-wise training or better initialization schemes
to alleviate the vanishing gradients and diminishing feature reuse problems [12,
17,18]. A notable recent contribution towards training of very deep networks is
Batch Normalization [14], which standardizes the mean and variance of hidden
layers with respect to each mini-batch. This approach reduces the vanishing
gradients problem and yields a strong regularizing effect.

Recently, several authors introduced extra skip connections to improve the
information flow during forward and backward propagation. Highway Networks
[15] allow earlier representations to flow unimpededly to later layers through
parameterized skip connections known as “information highways”, which can
cross several layers at once. The skip connection parameters, learned during
training, control the amount of information allowed on these “highways”.

Residual networks (ResNets) [8] simplify Highway Networks by shortcutting
(mostly) with identity functions. This simplification greatly improves training
efficiency, and enables more direct feature reuse. ResNets are motivated by the
observation that neural networks tend to obtain higher training error as the
depth increases to very large values. This is counterintuitive, as the network gains
more parameters and therefore better function approximation capabilities. The
authors conjecture that the networks become worse at function approximation
because the gradients and training signals vanish when they are propagated
through many layers. As a fix, they propose to add skip connections to the
network. Formally, if H, denotes the output of the ¢** layer (or sequence of
layers) and fo(-) represents a typical convolutional transformation from layer
/—1 to £, we obtain

Hy = ReLU(fe(Hy—1) +id(Hi—1)), (1)

where id(-) denotes the identity transformation and we assume a ReLU transition
function [19]. Figurel illustrates an example of a function f;, which consists
of multiple convolutional and Batch Normalization layers. When the output
dimensions of fy do not match those of Hy_1, the authors redefine id(-) as a linear
projection to reduce the dimensions of id(Hy—_1) to match those of fy(Hy—_1). The
propagation rule in (1) allows the network to pass gradients and features (from
the input or those learned in earlier layers) back and forth between the layers
via the identity transformation id(-).
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Fig. 1. A close look at the £'" ResBlock in a ResNet.

Dropout. Stochastically dropping hidden nodes or connections has been a
popular regularization method for neural networks. The most notable exam-
ple is Dropout [16], which multiplies each hidden activation by an independent
Bernoulli random variable. Intuitively, Dropout reduces the effect known as “co-
adaptation” of hidden nodes collaborating in groups instead of independently
producing useful features; it also makes an analogy with training an ensemble of
exponentially many small networks. Many follow up works have been empirically
successful, such as DropConnect [20], Maxout [21] and DropIn [22].

Similar to Dropout, stochastic depth can be interpreted as training an ensem-
ble of networks, but with different depths, possibly achieving higher diversity
among ensemble members than ensembling those with the same depth. Differ-
ent from Dropout, we make the network shorter instead of thinner, and are
motivated by a different problem. Anecdotally, Dropout loses effectiveness when
used in combination with Batch Normalization [14,23]. Our own experiments
with various Dropout rates (on CIFAR-10) show that Dropout gives practically
no improvement when used on 110-layer ResNets with Batch Normalization.

We view all of these previous approaches to be extremely valuable and con-
sider our proposed training with stochastic depth complimentary to these efforts.
In fact, in our experiments we show that training with stochastic depth is indeed
very effective on ResNets with Batch Normalization.

3 Deep Networks with Stochastic Depth

Learning with stochastic depth is based on a simple intuition. To reduce the
effective length of a neural network during training, we randomly skip layers
entirely. We achieve this by introducing skip connections in the same fashion
as ResNets, however the connection pattern is randomly altered for each mini-
batch. For each mini-batch we randomly select sets of layers and remove their
corresponding transformation functions, only keeping the identity skip connec-
tion. Throughout, we use the architecture described by He et al. [8]. Because the
architecture already contains skip connections, it is straightforward to modify,
and isolates the benefits of stochastic depth from that of the ResNet identity
connections. Next we describe this network architecture and then explain the
stochastic depth training procedure in detail.

ResNet architecture. Following He et al. [8], we construct our network as
the functional composition of L residual blocks (ResBlocks), each encoding the
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Fig. 2. The linear decay of p, illustrated on a ResNet with stochastic depth for po=1
and pr, =0.5. Conceptually, we treat the input to the first ResBlock as Hp, which is
always active.

update rule (1). Figurel shows a schematic illustration of the ¢! ResBlock.
In this example, f; consists of a sequence of layers: Conv-BN-ReLU-Conv-BN,
where Conv and BN stand for Convolution and Batch Normalization respectively.
This construction scheme is adopted in all our experiments except ImageNet,
for which we use the bottleneck block detailed in He et al. [8]. Typically, there
are 64, 32, or 16 filters in the convolutional layers (see Sect.4 for experimental
details).

Stochastic depth aims to shrink the depth of a network during training,
while keeping it unchanged during testing. We can achieve this goal by randomly
dropping entire ResBlocks during training and bypassing their transformations
through skip connections. Let by € {0,1} denote a Bernoulli random variable,
which indicates whether the /! ResBlock is active (b, = 1) or inactive (b, = 0).
Further, let us denote the “survival” probability of ResBlock ¢ as p; = Pr(by = 1).

With this definition we can bypass the £* ResBlock by multiplying its func-
tion f; with by and we extend the update rule from (1) to

Hy =RelU(byfe(Hy—1) +1id(Hp—1)). (2)

If by =1, Eq. (2) reduces to the original ResNet update (1) and this ResBlock
remains unchanged. If b, =0, the ResBlock reduces to the identity function,

Hy =id(Hy_y). (3)

This reduction follows from the fact that the input Hy_; is always non-negative,
at least for the architectures we use. For ¢ > 2, it is the output of the previous
ResBlock, which is non-negative because of the final ReLU transition function
(see Fig.1). For £=1, its input is the output of a Conv-BN-ReLU sequence that
begins the architecture before the first ResBlock. For non-negative inputs the
ReLU transition function acts as an identity.

The survival probabilities p, are new hyper-parameters of our training
procedure. Intuitively, they should take on similar values for neighboring Res-
Blocks. One option is to set py = py uniformly for all ¢ to obtain a single
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hyper-parameter py. Another possibility is to set them according to a smooth
function of £. We propose a simple linear decay rule from py = 1 for the input,
to pr, for the last ResBlock:

pe=1-—(—pr). (4)
See Fig. 2 for a schematic illustration. The linearly decaying survival probability
originates from our intuition that the earlier layers extract low-level features
that will be used by later layers and should therefore be more reliably present.
In Sect. 4 we perform a more detailed empirical comparison between the uniform
and decaying assignments for p,. We conclude that the linear decay rule (4) is
preferred and, as training with stochastic depth is surprisingly stable with respect
to pr, we set pr, = 0.5 throughout (see Fig. 8).

Ezxpected network depth. During the forward-backward pass the transforma-
tion f; is bypassed with probability (1 — py), leading to a network with reduced
depth. With stochastic depth, the number of effective ResBlocks during train-

ing, denoted as L, becomes a random variable. Its expectation is given by:

E(L) = 25:1 De-

Under the linear decay rule with p;, = 0.5, the expected number of ResBlocks
during training reduces to E(L) = (3L —1)/4, or E(L) ~ 3L/4 when L is large.
For the 110-layer network with L = 54 commonly used in our experiments, we
have E(L) ~ 40. In other words, with stochastic depth, we train ResNets with
an average number of 40 ResBlocks, but recover a ResNet with 54 blocks at test
time. This reduction in depth significantly alleviates the vanishing gradients and
the information loss problem in deep ResNets. Note that because the connectivity
is random, there will be updates with significantly shorter networks and more
direct paths to individual layers. We provide an empirical demonstration of this

effect in Sect. 5.

Training time savings. When a ResBlock is bypassed for a specific iteration,
there is no need to perform forward-backward computation or gradient updates.
As the forward-backward computation dominates the training time, stochas-
tic depth significantly speeds up the training process. Following the calculations
above, approximately 25 % of training time could be saved under the linear decay
rule with py, = 0.5. The timings in practice using our implementation are consis-
tent with this analysis (see the last paragraph of Sect.4). More computational
savings can be obtained by switching to a uniform probability for p, or lowering
pr accordingly. In fact, Fig. 8 shows that with py = 0.2, the ResNet with sto-
chastic depth obtains the same test error as its constant depth counterpart on
CIFAR-10 but gives a 40 % speedup.

Implicit model ensemble. In addition to the predicted speedups, we also
observe significantly lower testing errors in our experiments, in comparison with
ResNets of constant depth. One explanation for our performance improvements
is that training with stochastic depth can be viewed as training an ensemble
of ResNets implicitly. Each of the L layers is either active or inactive, resulting
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Table 1. Test error (%) of ResNets trained with stochastic depth compared to other
most competitive methods previously published (whenever available). A“+” in the
name denotes standard data augmentation. ResNet with constant depth refers to our
reproduction of the experiments by He et al.

CIFAR10+ | CIFAR100+ | SVHN | ImageNet
Maxout [21] 9.38 - 247 |-
DropConnect [20] 9.32 - 1.94 |-
Net in Net [24] 8.81 - 235 |-
Deeply Supervised [13] 7.97 - 1.92 | 33.70
Frac. Pool [25] - 27.62 - -
AII-CNN [6] 7.25 - - 41.20
Learning Activation [26] 7.51 30.83 - -
R-CNN [27] 7.09 - 1.77 |-
Scalable BO [28] 6.37 27.40 1.77 |-
Highway Network [29] 7.60 32.24 - -
Gen. Pool [30] 6.05 - 1.69 | 28.02
ResNet with constant depth |6.41 27.76 1.80 21.78
ResNet with stochastic depth | 5.25 24.98 1.75 21.98

in 2 possible network combinations. For each training mini-batch one of the
2L networks (with shared weights) is sampled and updated. During testing all
networks are averaged using the approach in the next paragraph.

Stochastic depth during testing requires small modifications to the net-
work. We keep all functions f; active throughout testing in order to utilize the
full-length network with all its model capacity. However, during training, func-
tions fy are only active for a fraction p, of all updates, and the corresponding
weights of the next layer are calibrated for this survival probability. We there-
fore need to re-calibrate the outputs of any given function f; by the expected
number of times it participates in training, p,. The forward propagation update
rule becomes:

H{*" = ReLU(pe fo(Hp Y We) + Hi<Y). ()

From the model ensemble perspective, the update rule (5) can be interpreted
as combining all possible networks into a single test architecture, in which each
layer is weighted by its survival probability.

4 Results

We empirically demonstrate the effectiveness of stochastic depth on a series of
benchmark data sets: CIFAR-10, CIFAR-100 [1], SVHN [31], and ImageNet [2].

Implementation details. For all data sets we compare the results of ResNets
with our proposed stochastic depth and the original constant depth, and other
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Fig. 3. Test error on CIFAR-10 (left) and CIFAR-100 (right) during training, with
data augmentation, corresponding to results in the first two columns of Table 1.

most competitive benchmarks. We set p, with the linear decay rule of pg =1
and pr, = 0.5 throughout. In all experiments we report the test error from the
epoch with the lowest validation error. For best comparisons we use the same
construction scheme (for constant and stochastic depth) as described by He et
al. [8]. In the case of CIFAR-100 we use the same 110-layer ResNet used by He
et al. [8] for CIFAR-10, except that the network has a 100-way softmax output.
Each model contains three groups of residual blocks that differ in number of
filters and feature map size, and each group is a stack of 18 residual blocks. The
numbers of filters in the three groups are 16, 32 and 64, respectively. For the
transitional residual blocks, i.e. the first residual block in the second and third
group, the output dimension is larger than the input dimension. Following He et
al. [8], we replace the identity connections in these blocks by an average pooling
layer followed by zero paddings to match the dimensions. Our implementations
are in Torch 7 [32]. The code to reproduce the results is publicly available on
GitHub at https://github.com/yueatsprograms/Stochastic_Depth.

CIFAR-10. CIFAR-10 [1] is a dataset of 32-by-32 color images, representing
10 classes of natural scene objects. The training set and test set contain 50,000
and 10,000 images, respectively. We hold out 5,000 images as validation set, and
use the remaining 45,000 as training samples. Horizontal flipping and translation
by 4 pixels are the two standard data augmentation techniques adopted in our
experiments, following the common practice [6,13,20,21,24,26,30].

The baseline ResNet is trained with SGD for 500 epochs, with a mini-batch
size 128. The initial learning rate is 0.1, and is divided by a factor of 10 after
epochs 250 and 375. We use a weight decay of le-4, momentum of 0.9, and
Nesterov momentum [33] with 0 dampening, as suggested by [34]. For stochastic
depth, the network structure and all optimization settings are exactly the same
as the baseline. All settings were chosen to match the setup of He et al. [8].

The results are shown in Table 1. ResNets with constant depth result in a
competitive 6.41 % error on the test set. ResNets trained with stochastic depth
yield a further relative improvement of 18 % and result in 5.25 % test error. To
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our knowledge this is significantly lower than the best existing single model per-
formance (6.05%) [30] on CIFAR-10 prior to our submission, without resorting
to massive data augmentation [6,25].! Figure3 (left) shows the test error as a
function of epochs. The point selected by the lowest validation error is circled
for both approaches. We observe that ResNets with stochastic depth yield lower
test error but also slightly higher fluctuations (presumably due to the random
depth during training).

CIFAR-100. Similar to CIFAR-10, CIFAR-100 [1] contains 32-by-32 color
images with the same train-test split, but from 100 classes. For both the base-
line and our method, the experimental settings are exactly the same as those
of CIFAR-10. The constant depth ResNet yields a test error of 27.22 %, which
is already the state-of-the-art in CIFAR-100 with standard data augmentation.
Adding stochastic depth drastically reduces the error to 24.98 %, and is again
the best published single model performance to our knowledge (see Table 1 and
Fig. 3 right).

We also experiment with CIFAR-10 and CIFAR-100 without data augmen-
tation. ResNets with constant depth obtain 13.63 % and 44.74 % on CIFAR-10
and CIFAR-100 respectively. Adding stochastic depth yields consistent improve-
ments of about 15% on both datasets, resulting in test errors of 11.66 % and
37.8 % respectively.

SVHN. The format of the Street View House Number (SVHN) [31] dataset
that we use contains 32-by-32 colored images of cropped out house numbers
from Google Street View. The task is to classify the digit at the center. There
are 73,257 digits in the training set, 26,032 in the test set and 531,131 easier
samples for additional training. Following the common practice, we use all the
training samples but do not perform data augmentation. For each of the ten
classes, we randomly select 400 samples from the training set and 200 from the
additional set, forming a validation set with 6,000 samples in total. We preprocess
the data by subtracting the mean and dividing the standard deviation. Batch
size is set to 128, and validation error is calculated every 200 iterations.

Our baseline network has 152 layers. It is trained for 50 epochs with a begin-
ning learning rate of 0.1, divided by 10 after epochs 30 and 35. The depth
and learning rate schedule are selected by optimizing for the validation error of
the baseline through many trials. This baseline obtains a competitive result of
1.80 %. However, as seen in Fig.4, it starts to overfit at the beginning of the
second phase with learning rate 0.01, and continues to overfit until the end of
training. With stochastic depth, the error improves to 1.75 %, the second-best
published result on SVHN to our knowledge after [30].

Training time comparison. We compare the training efficiency of the constant
depth and stochastic depth ResNets used to produce the previous results. Table 2
shows the training (clock) time under both settings with the linear decay rule
pr, = 0.5. Stochastic depth consistently gives a 25 % speedup, which confirms our

! The only model that performs even better is the 1202-layer ResNet with stochastic
depth, discussed later in this section.



Deep Networks with Stochastic Depth 655
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Fig. 4. Left: Test error on SVHN, corresponding to results on column three in Table 1.
right: Test error on CIFAR-10 using 1202-layer ResNets. The points of lowest validation
errors are highlighted in each case.

Table 2. Training time comparison on benchmark datasets.

CIFAR10+ | CIFAR100+ | SVHN
Constant depth |20h 42m | 20h 51 m 33h 43m
Stochastic depth | 15h 7m 15h 20m 25h 33m

analysis in Sect. 3. See Fig. 8 and the corresponding section on hyper-parameter
sensitivity for more empirical analysis.

Training with a 1202-layer ResNet. He et al. [8] tried to learn CIFAR-10
using an aggressively deep ResNet with 1202 layers. As expected, this extremely
deep network overfitted to the training set: it ended up with a test error of
7.93 %, worse than their 110-layer network. We repeat their experiment on the
same 1202-layer network, with constant and stochastic depth. We train for 300
epochs, and set the learning rate to 0.01 for the first 10 epochs to “warm-up”
the network and facilitate initial convergence, then restore it to 0.1, and divide
it by 10 at epochs 150 and 225.

The results are summarized in Fig. 4 (right) and 5. Similar to He et al. [§],
the ResNets with constant depth of 1202 layers yields a test error of 6.67 %,
which is worse than the 110-layer constant depth ResNet. In contrast, if trained
with stochastic depth, this extremely deep ResNet performs remarkably well.
We want to highlight two trends: (1) Comparing the two 1202-layer nets shows
that training with stochastic depth leads to a 27 % relative improvement; (2)
Comparing the two networks trained with stochastic depth shows that increasing
the architecture from 110 layers to 1202 yields a further improvement on the
previous record-low 5.25 %, to a 4.91 % test error without sign of overfitting, as
shown in Fig.4 (right)?.

2 We do not include this result in Table 1 since this architecture was only trained on
one of the datasets.
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To the best of our knowledge, this is 8
the lowest known test error on CIFAR-10
with moderate image augmentation and
the first time that a network with more O
than 1000 layers has been shown to fur-
ther reduce the test error®. We consider
these findings highly encouraging and hope
that training with stochastic depth will
enable researchers to leverage extremely
deep architectures in the future.

ImageNet. The ILSVRC 2012 classifica- BN Stochastic Depth
tion dataset consists of 1000 classes of 110 layers 1202 layers

images, in total 1.2 million for training, depth
50,000 for validation, and 100,000 for test-
ing. Following the common practice, we Fig.5. With stochastic depth, the
only report the validation errors. We fol- 1202-layer ResNet still significantly
low He et al. [8] to build a 152-layer ResNet mProves over the 110-layer one.
with 50 bottleneck residual blocks. When input and output dimensions do not
match, the skip connection uses a learned linear projection for the mismatch-
ing dimensions, and an identity transformation for the other dimensions. Our
implementation is based on the github repository fb.resnet.torch? [34], and
the optimization settings are the same as theirs, except that we use a batch size
of 128 instead of 256 because we can only spread a batch among 4 GPUs (instead
of 8 as they did).

We train the constant depth base- 152-layer ResNet on ImageNet
line for 90 epochs (following He et al. |
and the default setting in the repository)
and obtain a final error of 23.06 %. With
stochastic depth, we obtain an error of
23.38% at epoch 90, which is slightly
higher. We observe from Fig.6 that the
downward trend of the validation error %
with stochastic depth is still strong, and 2
from our previous experience, could ben- L - - - L
efit from further training. Due to the epoch
25 % computational saving, we can add 30
epochs (giving 120 in total, after decreas- Fig. 6. Validation error on ILSVRC
ing the learning rate to le-4 at epoch 90), 2012 classification.
and still finish in almost the same total time as 90 epochs of the baseline. This
reaches a final error of 21.98 %. We have also kept the baseline running for 30
more epochs. This reaches a final error of 21.78 %.

e 66T%
6.41%

5.25%

test error (%)
=S

validation error (%)

3 This is, until early March, 2016, when this paper was submitted to ECCV. Many
new developments have further decreased the error on CIFAR-10 since then (and
some are based on this work).

* https://github.com/facebook/fb.resnet.torch.
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Fig. 7. The first convolutional layer’s mean gradient magnitude for each epoch during
training. The vertical dotted lines indicate scheduled reductions in learning rate by a
factor of 10, which cause gradients to shrink.

Because ImageNet is a very complicated and large dataset, the model com-
plexity required could potentially be much more than that of the 152-layer
ResNet [35]. In the words of an anonymous reviewer, the current generation
of models for ImageNet are still in a different regime from those of CIFAR.
Although there seems to be no immediate benefit from applying stochastic depth
on this particular architecture, it is possible that stochastic depth will lead to
improvements on ImageNet with larger models, which the community might
soon be able to train as GPU capacities increase.

5 Analytic Experiments

In this section, we provide more insights into stochastic depth by presenting a
series of analytical results. We perform experiments to support the hypothesis
that stochastic depth effectively addresses the problem of vanishing gradients in
backward propagation. Moreover, we demonstrate the robustness of stochastic
depth with respect to its hyper-parameter.

Improved gradient strength. Stochastically dropping layers during training
reduces the effective depth on which gradient back-propagation is performed,
while keeping the test-time model depth unmodified. As a result we expect
training with stochastic depth to reduce the vanishing gradient problem in the
backward step. To empirically support this, we compare the magnitude of gra-
dients to the first convolutional layer of the first ResBlock (¢ = 1) with and
without stochastic depth on the CIFAR-10 data set.

Figure 7 shows the mean absolute values of the gradients. The two large drops
indicated by vertical dotted lines are due to scheduled learning rate division. It
can be observed that the magnitude of gradients in the network trained with
stochastic depth is always larger, especially after the learning rate drops. This
seems to support out claim that stochastic depth indeed significantly reduces
the vanishing gradient problem, and enables the network to be trained more
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110-layer ResNet on CIFAR-10 with Varying Survival Probabilities
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Fig. 8. Left: Test error (%) on CIFAR-10 with respect to the p; with uniform and
decaying assignments of pg. Right: Test error (%) heatmap on CIFAR-10 varyied over
pr, and network depth.

effectively. Another indication of the effect is in the left panel of Fig. 3, where
one can observe that the test error of the ResNets with constant depth approxi-
mately plateaus after the first drop of learning rate, while stochastic depth still
improves the performance even after the learning rate drops for the second time.
This further supports that stochastic depth combines the benefits of shortened
network during training with those of deep models at test time.

Hyper-parameter sensitivity. The survival probability py, is the only hyper-
parameter of our method. Although we used py, =0.5 throughout all our exper-
iments, it is still worth investigating the sensitivity of stochastic depth with
respect to its hyper-parameter. To this end, we compare the test error of the
110-layer ResNet under varying values of p;, (L = 54) for both linear decay and
uniform assignment rules on the CIFAR-10 data set in Fig.8 (left). We make
the following observations: (1) both assignment rules yield better results than
the baseline when py, is set properly; (2) the linear decay rule outperforms the
uniform rule consistently; (3) the linear decay rule is relatively robust to fluctu-
ations in py, and obtains competitive results when py, ranges from 0.4 to 0.8; (4)
even with a rather small survival probability e.g. pr, = 0.2, stochastic depth with
linear decay still performs well, while giving a 40 % reduction in training time.
This shows that stochastic depth can save training time substantially without
compromising accuracy.

The heatmap on the right shows the test error varied over both p; and
network depth. Not surprisingly, deeper networks (at least in the range of our
experiments) do better with a p;, = 0.5. The “valley” of the heatmap is along the
diagonal. A deep enough model is necessary for stochastic depth to significantly
outperform the baseline (an observation we also make with the ImageNet data
set), although shorter networks can still benefit from less aggressive skipping.
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6 Conclusion

In this paper we introduced deep networks with stochastic depth, a procedure
to train very deep neural networks effectively and efficiently. Stochastic depth
reduces the network depth during training in expectation while maintaining the
full depth at testing time. Training with stochastic depth allows one to increase
the depth of a network well beyond 1000 layers, and still obtain a reduction in
test error. Because of its simplicity and practicality we hope that training with
stochastic depth may become a new tool in the deep learning “toolbox”, and
will help researchers scale their models to previously unattainable depths and
capabilities.
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