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Abstract. How can a machine learn to recognize visual attributes emerg-
ing out of online community without a definitive supervised dataset? This
paper proposes an automatic approach to discover and analyze visual
attributes from a noisy collection of image-text data on the Web. Our
approach is based on the relationship between attributes and neural acti-
vations in the deep network. We characterize the visual property of the
attribute word as a divergence within weakly-annotated set of images. We
show that the neural activations are useful for discovering and learning
a classifier that well agrees with human perception from the noisy real-
world Web data. The empirical study suggests the layered structure of the
deep neural networks also gives us insights into the perceptual depth of the
given word. Finally, we demonstrate that we can utilize highly-activating
neurons for finding semantically relevant regions.

Keywords: Concept discovery - Attribute discovery - Saliency
detection

1 Introduction

In a social photo sharing service such as Flickr, Pinterest or Instagram, a new
word can emerge at any moment, and even the same word can change its seman-
tics and transforms our vocabulary set at any time. For instance, the word wicked
(literally means evil or morally wrong) is often used as a synonym of really among
teenagers in these recent years - “Wow, that game is wicked awesome!”. In such
a dynamic environment, how can we discover emerging visual concepts and build
a visual classifier for each concept without a concrete dataset? It is unrealistic
to manually build a high-quality dataset for learning every visual concepts for
every application domains, even if some of the difficulty can be mitigated by
the human-in-the-loop approach [2,3]. All we have are the observations but not
definitions, provided in the form of co-occurring words and images.

In this paper, we consider an automatic approach to learn visual attributes
from the open-world vocabulary on the Web. There have been numerous
attempts of learning novel concepts from the Web in the past [1,5,6,9,37].
© Springer International Publishing AG 2016

B. Leibe et al. (Eds.): ECCV 2016, Part IV, LNCS 9908, pp. 252-268, 2016.
DOI: 10.1007/978-3-319-46493-0_16



Automatic Attribute Discovery with Neural Activations 253

What distinguishes our work from the previous efforts is in that we try to
understand potentially-attribute words in terms of perception inside neural net-
works. Deep networks demonstrate outstanding performance in object recogni-
tion [11,15,27], and successfully apply to a wide range of tasks including learning
from noisy data [30,31] or sentiment analysis [13,34]. In this paper, we focus on
the analysis of neural activations to identify the degree of being visually percep-
tible, namely wvisualness of a given attribute, and take advantage of the layered
structure of the deep model to determine the semantic depth of the attribute.

We collect two domain-specific datasets from online e-commerce and social
networking websites. We study in domain-specific data rather than trying to
learn general concept on the Web [5,6] to isolate contextual dependency of
attributes to object categories. For example, the term red eye can refer to an
overnight airline flight or an eye that appears red due to illness or injury. This
contextual dependency can cause an ambiguity for the visual classifier (red clas-
sifier); i.e., sense disambiguation. In this paper, we use a single-domain dataset
to reduce such a semantic shift to study consistent meaning of attributes under
the fixed context [1,16].

We show that, using a trained neural network, we are able to characterize
a visual attribute word by the divergence of neural activations in the weakly-
annotated data. Figure 1 illustrates our framework. Our approach starts by clean-
ing the noisy Web data to find potentially visual attributes in the dataset, then
splits the data into positive and negative sets. Using a pre-trained neural net-
work, we identify highly activating neurons by KL divergence of activations. We
show that we can use the identified neurons (prime units) for (1) learning a
novel attribute classifier that is close to human perception, (2) understanding
perceptual depth of the attribute, and (3) identifying attribute-specific saliency
in the image. We summarize our contributions in the following.

1. We propose to utilize the divergence of neural activation as a descriptor to
characterize visual concept in the noisy weakly annotated dataset. The neu-
rons identified by the divergence can help learn a visual attribute classifier
that has a close proximity to human perception.

2. We empirically study the relationship between human perception and the
depth of activations to understand the visual semantics of attribute words.

Web data Deep neural Positive / negative Activation KL Attribute discovery and
network activation distributions divergence perceptual analysis
/e
Textual description shallow purpie
printed
Feel So Good ... & » tehit
Purple Halter Ma)f/ used maxi visual
Cotton dress 2 Sizes good summer
Available surfer
D » [N » R
Tass Saliency detection
used, american casual tulle~
summer, shorts, t-shirt, ’ skirt
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Fig. 1. Our attribute discovery framework. (Color figure online)




254 S. Vittayakorn et al.

3. We show that the highly activating neurons according to the divergence are
also useful for detecting attribute-specific saliency in the given image.

4. We collect two noisy datasets from the Web to evaluate our framework. The
empirical study shows we are able to learn a domain-specific visual attributes
without manual annotation.

2 Related Work

Attribute Discovery. Our work is related to the recent work on concept dis-
covery from a collection of images from the Web [5,6,9,28,37]. Early work by
Ferrari et al. [9] learns visual models of given attributes (e.g., red, spotted)
from images collected from text search. NEIL [5] aims at discovering common
sense knowledge from the Web starting from small exemplar images per concept.
LEVAN [6] starts from mining bi-gram concepts from a large text corpus, and
automatically retrieves training images from the Internet and learn a full-fledged
detector for each concept. ConceptLearner [37] uses weakly labeled image collec-
tions from Flickr to train visual concept detectors. Shankar et al. [24] study the
attribute discovery in weakly-supervised scenario, where the goal is to identify
co-occurring but missing attributes in the dataset while learning a deep network.
Recent work by Sun et al. [28] takes advantage of natural language to discover
concepts for retrieval scenario. The automatic attribute discovery by Berg et
al. [1] is close to our work in that the work tries to evaluate visualness of the dis-
covered synsets of attributes in the e-commerce scenario. The major difference
of our approach from the previous works is that we aim at discovering attribute
words and also characterizing the attribute perception using neural activations.

Neural Representation. Thanks to the outstanding performance of deep
neural networks in various tasks such as object recognition [11,15,27,29] or
domain adaptation for visual recognition task [19], the deep analysis of the
intermediate representation of the neural networks has been getting more atten-
tion [33,35,38]. Escorcia et al. [7] and Ozeki et al. [20] study the relationship
between neural representation and attributes. In this paper, we aim at utilizing
the intermediate representation for visually characterizing unknown words in the
noisy dataset, and study how the representation relates to human perception of
attributes.

Class-Specific Saliency Detection. Detecting class or attribute-specific
saliency has been studied in the past in various forms, for example, as co-
segmentation [4], parts [19,25] or latent parts discovery [14], and weakly-
supervised [10,36] or fully-supervised labeling [21,22]. While Simonyan et al. [26]
uses gradient as a class-specific saliency, we demonstrate that the receptive field
of neurons [38] can effectively identify the attribute-specific regions with our
activation divergence. Our neuron-level saliency detection performs comparable
to gradient-based approach [26], and can also reveal us insight into how learning
changes the neurons’ response to visual stimuli.
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3 Datasets and Pre-processing

3.1 Etsy Dataset

Etsy dataset is a collection of data from the online market of handcrafted prod-
ucts. Each product listing in Etsy contains an image, a title, a product descrip-
tion, and various metadata such as tags, category, or price. We initially crawl
over 2.8 million product pages from etsy.com. Considering the trade-off between
dataset size and domain specificity, we select the product images under the cloth-
ing category, which include 247 subcategories such as clothing/women/dress.

Near-Duplicate Removal. As common in any Web data, the raw data from
Etsy contain a huge amount of near-duplicates. The major characteristics of Etsy
data are the following: There are many shops, but the number of sold items per
shop exhibits a long-tail. The same shop tends to sell similar items, e.g., the
same black hoodie in the same background with a different logo patch, and in
an extreme case, just a few words (proper nouns) are different in the product
description. Our near-duplicate removal is primarily designed to prevent such
proper nouns from building up a category. We observe that without the removal,
we severely suffer from overfitting and end up with meaningless results.

Based on the above observation, we apply the following procedure to remove
near-duplicates in Etsy: (1) Group product listings by shop. (2) Compute a
bag-of-words from title and description except English stop words for each item
within the group. (3) Compute the cosine distance between all pairs of prod-
ucts. (4) Apply agglomerative clustering by thresholding the pairwise cosine dis-
tance. (5) Randomly pick one product from each cluster. We apply the duplicate-
removal for all shops in the dataset, and for each shop we merge any pairs of
product having less than 0.1 cosine distance into the same cluster. After the
near-duplicate removal, we observed that roughly 40 % of the products in Etsy
were considered near-duplicates. We obtained 173,175 clothing products for our
experiment.

Syntactic Analysis. Given the title and description of the product in Etsy
dataset, we apply syntactic analysis [17] and extract part-of-speech (POS) tags
for each word. In this paper, we consider 250 most frequent adjectives (JJ, JJR,
and JJS tags) as potential attribute words. Unless noted, we use the (50 %, 25 %,
25 %) splits for train, test, and validation in the following experiments.

3.2 Wear Dataset

We crawled a large collection of images from the social fashion sharing website,
wear.jp. The website contains an image, associated shots from different views,
list of items, blog text, tags, and other metadata. The images in Wear dataset
are extremely noisy; Many users take a photo with a mobile device under uncon-
trolled lighting conditions and inconsistent photo composition, making it very
challenging to apply any existing fashion recognition approach [32]. From the
crawled data, we use the random subset of 212,129 images for our experiments.


https://www.etsy.com
http://wear.jp
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Merging Synonyms and Translations. From Wear dataset, we select user-
annotated tags for candidate words. The majority of tags from Wear dataset
are written in Japanese (some in English), but there are also multiple synonyms
treated as different tags including typos. We observe such synonyms and transla-
tions creating many duplicates. To mitigate this problem, we remove synonyms
by translating all words to English, using Google Translate, and merge words
that maps to the same English word. After translation, we pick up the most
frequent 250 tags as a set of attribute candidates and use for our experiment.
Note that machine-translation is not perfect and we manually fix translation
errors in the selected tags.

4 Attribute Discovery

Our attribute discovery framework starts by first splitting the weakly-annotated
dataset into positive and negative sets, then computes Kullback-Leibler diver-
gence (KL) for each activation unit in the deep neural network. We use the KL
divergence to determine the important neurons for the given attributes. With
these selected neurons, we can estimate the degree of visualness of attributes.

4.1 Divergence of Neural Activations

Although the image representation (neural activations) from the deep network
captures numerous discriminative features in an image [35], each neuron in the
network only sparsely responds to visual stimuli. We attempt to find neurons
that highly respond to the visual pattern associated with a given attribute word.
We propose to use the KL divergence of activations to identify these highly
responding neurons or prime units for the given attribute.

Our framework starts by splitting the dataset D into positive and negative
sets according to the weak annotation (adjectives or tags in Sect. 3). Positive or
negative sets DI, D, are images with or without the candidate attribute-word
u. Note the noisy annotation contains both false-positive and false-negative sam-
ples. Using a pre-trained neural network, we compute the empirical distribution
of neural activations from all of the units in the network. Let us represent the
empirical distribution of the positive/negative set by P;r and P, for each neuron
i. For convolutional layers we max-pool the spatial dimension in all channels and
compute histograms P , P, since the maximum response is sufficient to iden-
tify unique units regardless of the location. Finally, we compute the symmetric
KL divergence S; for each activation unit i of the network:

Si(ulD) = DKL(P‘JFHP‘_) +DKL( 115
= ZP+ log +ZP £ (@) (1)

P+(3«“)
where z is the activation of the unit corresponding to histogram bins. The resulting
KL divergence S;(u|D) serves as an indicator to find prime units for the word u.
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The intuition is that if the word is associated to specific visual stimuli, the activa-
tion pattern of the positive set should be different from the negative set and that
should result in a larger KL divergence for visual attributes (e.g., red, white, flo-
ral, stripped) than less visual attributes (e.g., expensive or handmade). In other
word, we should be able to identify the visual pattern associated to the given word
by finding neurons with higher KL divergence.

4.2 Visualness

We follow the previous work [1] and define the visualness in terms of the balanced
classification accuracy given the positive and negative sets:

V(ulf) = accuracy(f, Dy, D,,), (2)

where f is a binary classification function. To eliminate the bias influence in
the accuracy, we randomly subsample the positive and negative sets D;f, D, to
obtain balanced examples (50 %-50 %). We use neural activations as a feature
representation to build a classifier, and use the KL divergence S; as resampling
and feature-selection criteria to identify important features for a given word wu.

Selecting and Resampling by Activations. The noisy positive and nega-
tive sets DT, D~ bring undesirable influence when evaluating the classification
accuracy of the word (Eq. 2). Here, we propose to learn a visual classifier in two
steps; we first learn an initial classifier based only on the activations from prime
units, then we rank images based on the classification confidence. After that, we
learn a stronger classifier from the confident samples using all of the activations
in the network. More specifically, we first select 100 prime units according to the
KL divergence (Eq. 1), and use the activations from these units as a feature (100
dimensions) to learn an initial classifier! using logistic regression [8] and identify
the confident samples for the second classifier.

Learning Attribute Classifier. Once we learn the initial classifier, we rank
images based on the confidence, resample the same number of images from both
positive and negative sets according to the ranked order, and learn another
attribute classifier using logistic regression from all of the activations (9,568
dimensions). Although more than 8,000 activations are from FC layers, the infor-
mation gain is not necessarily proportional to the number of dimensions; FC
layers tend to fire only a handful neurons, whereas convolutional layers after
max-pooling give dense activations. Finally, the accuracy evaluation (Eq.2) on
the balanced test set gives the visualness of the given word.

! Gaussian Naive Bayes also works in our setting, but a stronger classifier such as
SVM with RBF kernel tends to overfit.
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4.3 Human Perception

To evaluate our approach, we collect human judgment of visualness using crowd-
sourcing, and compute the correlation between our visualness and human percep-
tion. Following the observation in [23] that it is harder for humans to provide the
absolute visualness score of attribute than the relative score. Thus, we design
a task on Amazon Mechanical Turk as follows; given a word, we provide two
images to the annotators where one is from the positive set and the other is
from the negative set. We ask annotators to pick an image that is more relevant
to the given attribute, or if there is none, answer none. We pick the 100 most
frequent words in Etsy dataset for evaluation purpose. For each word, we ran-
domly pick 50 pairs of positive and negative images, and asked 5 annotators to
complete one task. We define the human visualness H(u) of word u as the ratio
of positive annotator agreements:

1 N
H(u) = > 1 [hf(u) > 6], (3)
k

where 1 is an indicator function, hj (u) is the number of positive votes for image
pair k, N is the number of annotated images, and 6 is a threshold. We set § = 3
for 5 annotators in our experiment. Equation 3 allows us to convert the relative
comparison into agreement score, which is in absolute scale.

4.4 Experimental Results

We use the Etsy dataset to evaluate our visualness.? Since neurons activate
differently depending on the training data, we compare the following models:

— Pre-trained: Reference CaffeNet model [15] implemented in [12], pre-trained
on ImageNet 1000 categories.

— Attribute-tuned: A CNN fine-tuned to directly predict the weakly-
annotated words in the dataset, ignoring the noise. We replaced the soft-max
layer in CaffeNet with a sigmoid to predict 250 words (Sect. 3.1).

— Category-tuned: A CNN fine-tuned to predict the 247 sub-categories of
clothing using metadata in Etsy dataset, such as t-shirt, dress, etc.

We choose the basic AlexNet to evaluate how fine-tuning affects in our
attribute discovery task, but we can also apply a different CNN architecture
such as VGG [27] to do the same. The category-tuned model is to see the effect
of domain transfer without overfitting to the target labels. We compare the fol-
lowing different visualness definitions against human.

— CNN+random: Randomly subsample the same number of positive and nega-
tive images, learn a logistic regression from all of the neural activations (9,568
dimensions) in CNN, and use the testing accuracy to define the visualness.
This is similar to the visualness prediction in the previous work [1] except
that we use neural activations as a feature.

2 Due to the translation issues, we were not able to get reliable human judgments in Wear dataset.
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— CNN-+initial: Testing accuracy of the initial classifier trained on the most
activating neurons or prime units.

— CNN+resample: Testing accuracy of the attribute classifier trained on the
resampled images according to the confidence of the initial classifier and
learned from all of the neural activations, as described in Sect. 4.2.

— Attribute-tuned: Average precision of the direct prediction of the Attribute-
tuned CNN in the balanced test set. We choose average precision instead of
accuracy due to severe overfitting to our noisy training data.

— Language prior: The n-gram frequency of adjective-noun modification for
the given attribute-word from the Google Books N-grams [18]. We show the
language prior as a reference to understand the scenario when we do not have
access to visual data at all. The assumption is that for each of the object cate-
gory in Etsy, visual modifier should co-occur more than non-visual words. We
compute the prior using the sum of n-gram probability on attribute-category
modification to 20 nouns in the Etsy clothing categories.

Quantitative Evaluation. Table 1 summarizes the Pearson and Spearman cor-
relation coefficients to human perception using different definitions of visualness
together with the feature dimension. Note that achieving the highest accuracy in
classification does not mean the best proximity to human perception in the noisy
dataset. The results show that even though the initial classifiers learn from only
100 dimensional feature from prime units, they achieve the higher Spearman cor-
relation to human perception than the random baselines with much larger fea-
ture. Moreover, resampling images by the initial classifier confidence improves
the correlation to human perception over the random baseline in all models.
These results confirm that feature-selection and resampling using the high-KL
neurons help discovering visual attributes in the noisy dataset.

The result also suggests directly fine-tuning against the noisy annotation
can harm the representational ability of neurons. We suspect that fine-tuning

Table 1. Visualness correlation to human perception.

Method Feature dim. | Pearson | Spearman
Pre-trained+random (baseline) | 9, 568 0.737  |0.637
Pre-trained-initial 100 0.760 0.663
Pre-trained+resample 9,568 0.799 |0.717
Attribute-tuned 4,096 0.662 0.549
Attribute-tuned+random 9,568 0.716 0.565
Attribute-tuned+initial 100 0.716 0.603
Attribute-tuned+resample 9,568 0.782 0.721
Category-tuned+random 9, 568 0.760 0.684
Category-tuned+initial 100 0.663 0.480
Category-tuned+resample 9,568 0.783 0.704
Language prior — 0.139 0.032
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Table 2. Most and least visual attributes discovered in Etsy dataset.

Method Most visual Least visual
Human Flip pink red floral blue Url due last right additional
Sleeve purple little black yellow | Sure free old possible cold
Pre-trained+resample | Flip pink red yellow green Big great due much own
Purple floral blue sexy elegant Favorite new free different good
Attribute-tuned Flip sexy green floral yellow Right same own light happy
Pink red purple lace loose Best small different favorite free
Language prior Top sleeve front matching waist | Organic lightweight classic gentle adjustable
Bottom lace dry own right Floral adorable url elastic super
orange bright elegant lovely acrylic

NOT bright
ST
2

Fig. 2. Examples of most and least predicted images for some of the attributes. (Color
figure online)

to a domain-specific data with possibly non-visual word leads to overfitting and
suppresses neurons’ activity even if they are important in recognition. The pre-
trained network gives the slightly higher Pearson correlation perhaps because
the neurons are trained on wider range of visual stimuli in the ImageNet than
in a domain-specific data like Etsy, and that somehow helps reproducing human
perception. The low correlation from language prior indicates the difficulty of
detecting visual attributes only from textual knowledge.

Qualitative Evaluation. Table 2 lists the most and least visual attributes for
selected methods. Note that the error in syntactic analysis incorrectly marked
some nouns as adjective, such as url or flip (flip-flops) here. Generally, CNN-
based methods result in a similar choice of the words. Language prior is picking
very different vocabulary perhaps due to the lack of domain-specific knowledge
in Google Books.

Figure 2 shows examples of the most or least confident images according to
the pre-trained+resample model. From concrete concepts like orange to more
abstract concepts elegant, we confirm that our automatic approach can learn
various attributes only from the noisy dataset. Figure 3 shows examples of the
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predicted MOST floral

NO floral in text

Fig. 3. Most and least floral images. With our automatically learned classifier, we can
discover false-negatives and false-positives in the dataset. (Color figure online)

most and least floral images from both positive and negative sets. The noise
in the dataset introduces a lot of false-negatives (not mentioned but actually
floral product) and false-positives (mentioned floral in text but not relevant to
the product). Our automatically learned attribute classifiers can function as a
dataset purifier in a noisy dataset.

5 Understanding Perceptual Depth

In this section, we explore how each layer in the neural networks relates to
attributes. It is well-known that neurons in a different layer activate to different
types of visual pattern [7,35]. We further attempt to understand what type of
semantic concepts directly relate to neurons using the KL divergence.

We consider the activation with respect to the layer depth. We compute the
relative magnitude of max-pooled KL divergence for layer [:

1
Si(u|D) = erilealei(MD), where Z = Znilglx Si(u|D). (4)
1

We are able to identify the most salient words by ranking attribute vocabulary
based on S;(u|D). In the following experiments, we use 7 layers in CaffeNet.

We use both Etsy and Wear dataset for finding salient words at each layer.
Table 3 lists the most salient words for each layer of the pre-trained CNN in
the two datasets. We can clearly see that more primitive visual concepts like
color (e.g., orange, green) appear in the earlier stage of the CNN, and as we
move down the network towards the output, we observe more complex visual
concepts. We can observe the same trend from both Etsy and Wear datasets
even though the two datasets are very different. Note that there are non-visual
words in a general sense due to the dataset bias. For example, genuine in Etsy
tends to appear in the context of genuine leather, and many appear in the context
of many designs available for sweatshirt products. Such dataset bias results in
higher divergence of neurons’ activity. One approach to deal with such context-
dependency is probably to consider a phrase instead of a word.
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Table 3. Most salient words for each CNN layer.

(a) Etsy dataset

norml norm?2 conv3 conv4 pool5 fc6 fc7
orange green bright flattering lovely many sleeve
colorful red pink lovely elegant soft sole
vibrant yellow red vintage natural new acrylic
bright purple purple romantic beautiful upper cold
blue colorful green deep delicate sole flip
welcome blue lace waist recycled genuine newborn
exact vibrant yellow front chic friendly large
yellow ruffle sweet gentle formal sexy floral
red orange french formal decorative stretchy waist
specific only black delicate romantic great american

(b) Wear dataset

norml norm?2 conv3 conv4 pool5 fc6 fc7
blue denim-jacket |border- kids shorts white-skirt [long-skirt
green pink striped-tops |bucket-hat |half-length |flared-skirt |suit-style
red-black red border- hat-n-glasses |pants spring midi-skirt
red red-socks stripes black denim upper gaucho-pants
denim-on- red-black dark-style sleeveless dotted beret handmade
denim champion stripes american- border- shirt-dress straw-hat
denim-shirt |blue backpack casual stripes overalls white-n-
pink white red long- white-pants |hair-band white
denim shirt dark-n-dark [cardigan border-tops |loincloth- white-
yellow i-am-clumsy |denim-shirt [white-n- gingham- style coordinate
leopard yellow navy white check matched- white-pants
outdoor- stole sandals pair white
style mom-style chester-coat
pre-trained _ _
category-tuned DN .
attribute-tuned _ -
0% 20% 40% 60% 80% 100%

norm1 ®norm2 ®conv3 ®conv4 "pool5 ®fc6 © fc7

Fig. 4. Relative magnitude of average layer-wise maximum KL divergence. (Color
figure online)

How Fine-Tuning Affects Perceptual Depth. Fine-tuning has an influence
on the magnitude of the layer-wise max-pooled KL in that (1) the pre-trained
model activates almost equally across layers and (2) the category-tuned model
induced larger divergence in mid-layer (conv4), while (3) the attribute-tuned
model activates more in the last layer (fc7). Figure4 shows the relative mag-
nitude of average layerwise max-pooled KL: M; = ﬁ > wecv 2oict Si(u|D). The
attribute-tuning causes a direct change in the last layer as expected, whereas the
category-tuning brings a representational change in the mid-layers. The result
suggests the domain-specific knowledge is encoded inside the mid-to-higher level
representation, but there are domain-agnostic features in the earliest layers per-
haps useful for recognizing primitive attributes such as color. Moreover, we also
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0.8
== pre-trained

06 —attribute-tuned

0.4
0.2

norml norm2 conv3 conv4 poolS

Fig. 5. Pearson correlation coefficients between human visualness and max KL diver-
gence of each CNN layer. (Color figure online)

observe that the set of salient words per layer stay similar after fine-tuning in
either cases; earlier layers activate more on primitive attributes, color or texture,
and later layers activate more on abstract words.

How Each Layer Relates to Human Perception. Finally, we evaluate how
each layer relates to human perception, using the annotation from Sect.4.3.
Figure5 plots Pearson correlation of the layer-wise maximum KL divergence
(Eq.4) against human visualness. We show the correlation of pre-trained and
attribute-tuned CNNs. The plot suggests the activation of mid-layers is closer
to human visualness perception, but interestingly, the last fully-connected layers
give negative correlation. We think that the last layers are more associated to
abstract words that are not generally considered visual by humans, but they are
contextually associated in a domain-specific data as in genuine leather case.

6 Saliency Detection

Cumulative Receptive Fields. We consider saliency detection with respect to
the given attribute based on the receptive field [38]. The main idea is to accumu-
late neurons’ response in the order of the largest KL divergence. Following [38],
we first apply a sliding-window occluder to the given image, feed the occluded
image to the CNN, and observe the difference in activation as a function of the
occluder location a;(z, y) for unit i. We take the occluder patch at (z,y) from the
mean image of the dataset, at different scales. In our experiment, we use 24 x 24,
48 x 48, and 96 x 96 occluder size with stride size 4 for the 256 x 256 image
input to the CNN. After getting the response map a;(x,y), we apply a Gaussian
filter with the scale proportional to the occluder size, and average out multiple
scale responses to produce a single response map. The resulting response map
A;(x,y) can have either positive or negative peaks to the input pattern, and we
heuristically negate and invert the response map if the map has negative peaks.
We normalize the response map within [0, 1] scale. Let us denote this normalized
response map of unit ¢ by R;(x,y). We compute the final saliency map M by
accumulating units ordered and weighted by the KL divergence:

K
Mz, gl 1) = 5 3 :ulD) R, yl1), @
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where Z = EIK Si(u|D). We accumulate units by the largest unit divergence
Si(u|D) up to K.

Human Annotation. We use Wear dataset for saliency evaluation, since the
images in Etsy dataset are mostly a single object appearing in the center of the
image frame and there is merely a localization need. Similarly to Sect. 4.3, we
collect human annotation on the salient region for evaluation purpose. For the
randomly selected set of 10 positive images for the most frequent 50 tags in Wear
dataset, we ask 3 workers to draw bounding boxes around the relevant region to
the specified tag-word. We consider pixels having 2 or more annotator votes to
be the ground-truth salient regions. We discard images not having any worker
agreement in the evaluation.

Experimental Results. Figure6 plots the average performance from all the
tags in terms of mean average precision (mAP) for predicting pixel-wise binary
labels, and mean intersection-over-union (IoU) of the attribute-tuned model.
We compute IoU for the binarized saliency map M (x,ylu,I) > @ at different
threshold 6. The plots show the performance with respect to the number of
accumulations K, as well as the baseline performance of the smoothed gradi-
ent magnitude [26] of the attribute-tuned model. The performance improves as
more neurons accumulate in the saliency map according to the divergence, and
gives on par or slightly better performance against the baseline. Note that even
the pre-trained model can already reach the baseline by this simple accumula-
tion based on KL divergence, without any optimization towards saliency. We
observe improvement in both pre-trained and attribute-tuned models, but the
pre-trained model tends to require more neurons. We believe that fine-tuning
makes each neuron activate more to a specific pattern while reducing activations
on irrelevant patterns, and that results in the diminishing accumulation effect.
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Fig. 6. Saliency detection performance in terms of (a) mean average precision and
(b) mean IoU of the attribute-tuned model over the heat-map threshold. (Color figure
online)
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Fig. 7. Results of detected salient regions for the given attribute. The rightmost column
shows failure cases due to distracting contexts or visibility issues. (Color figure online)

pre-trained attribute-tuned
K=8

Fig. 8. Accumulating receptive fields by the largest KL divergence. As we add more
neurons, the saliency heat-map becomes finer. (Color figure online)

The result also suggests that visual attributes are combinatorial visual stimuli
rather than some visual pattern detectable only with a single neuron.

Figure 8 shows the detection results by human annotation and our cumulative
receptive field using the pre-trained and fine-tuned CNNs, when the accumula-
tion size K is 1, 8, and 64. Also, Fig. 7 shows the results of human annotation
and the pre-trained CNN with accumulation size K = 64. Our saliency detection
method works remarkably well even without fine-tuning. As we accumulate more
neurons, the response map tends to produce finer localization. Accumulation
helps most of the cases, but we observe failure cases when there is a distractor
co-occuring with the given attribute. For example in Fig. 7, detecting shorts fails
because legs always appear with shorts and we end up with legs detector instead
of shorts (distractor issue). Moreover, our method tends to fail when the target
attribute is associated to only small regions in the image (visibility issue).

7 Conclusion

We have shown that we are able to discover and analyze a new visual attribute
from noisy Web data using neural activations. The key idea is the use of highly
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activating neurons in the network, identified by the divergence of activation
distribution in the weakly annotated dataset. Empirical study using two real-
world data gives us insights that our approach can automatically learn a visual
attribute classifier that has a perceptual ability similar to humans, the depth in
the network relates to the depth of attribute perception, and the neurons can
detect salient regions in the given image. In the future, we wish to further study
the relationship and similarity between discovered visual attributes and how the
network architecture changes the neural perception in the hierarchical structure.
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