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Abstract. In this paper, we propose a real-time system, Hierarchical
Feature Selection (HFS), that performs image segmentation at a speed of
50 frames-per-second. We make an attempt to improve the performance
of previous image segmentation systems by focusing on two aspects: (1)
a careful system implementation on modern GPUs for efficient feature
computation; and (2) an effective hierarchical feature selection and fusion
strategy with learning. Compared with classic segmentation algorithms,
our system demonstrates its particular advantage in speed, with com-
parable results in segmentation quality. Adopting HFS in applications
like salient object detection and object proposal generation results in a
significant performance boost. Our proposed HFS system (will be open-
sourced) can be used in a variety computer vision tasks that are built on
top of image segmentation and superpixel extraction.

Keywords: Image segmentation · Superpixel · Grouping

1 Introduction

Image segmentation is considered as a main challenge in computer vision that
has been extensively studied in the past. After decades of research, a consensus
nonetheless exists among researchers in the field that accurate segments, either
as large regions or as small superpixels, serve as an effective input representation
for middle-level and high-level vision tasks, albeit intrinsically ambiguous. Some
typical tasks that have greatly benefited from building on good segmentations
include object detection/recognition [24,25], tracking [44], saliency estimation
[10,22], objectness proposal generation [2,8,43], and 3D inference [20]. The rea-
son for this to happen is threefold: (i) extracted segments are meaningful units
that carry informative features such as shapes, textures, etc [21,26,39]; (ii) the
number of segments is often significantly lower than the number pixels in the
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Fig. 1. Sample results from different steps of our methods. The original image is from
BSDS500 [4] dataset. These image segmentation results are generated at 50 fps on
GPU.

original image, resulting in a more compact representation with a great speed
benefit [10]; (iii) the superpixel representation often has an improved coherency
and robustness than the raw pixels [37].

In the past, several seminal works have emerged as the state-of-the-art sys-
tems that have been widely adopted in the field: spectral clustering based nor-
malized cuts approach [38]; efficient feature (color) space mode seeking method,
mean-shift algorithm [13]; efficient graph-based image segmentation method [17];
hierarchical region tree with transform contours [4]; and multi-scale normalized
cuts algorithm [5]. Among these choices, efficient graph based image segmenta-
tion (EGB) and SLIC [1] methods are particularly popular in computer vision
and computer graphics [2,7,8,10,20,22,24,25,43,44], due to their great speed
advantage.

In this paper, we aim at developing a rapid image segmentation system that
produces high quality image segments for real-time computer vision tasks. We
propose a hierarchical feature selection framework that learns feature combina-
tion in individual stages of a hierarchical structure. Our effort starts with a GPU
version of the SLIC method [1,34], to quickly obtain initial seed regions (super-
pixels) by performing oversegmentation. Image features are then extracted from
the individual seed regions, followed by a feature combination process with a dis-
tance metric learnt from the training data. Note that to maintain the efficiency
of our system, we only consider those image features that are appropriate for
parallel computing, i.e. via GPUs. A region merging process is then performed
based on the learned distance metric to output a new set of regions for the next
level in the hierarchy. Our system then repeats for a few iterations.

The method developed in this paper has its practical importance to a variety
of real-time applications by generating high quality image segments (see also
Fig. 1) at 50 fps. The performance of our method is quantitatively evaluated
in the well-known BSDS500 [4] dataset (see also Sect. 4). As demonstrated in
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the evaluation results (see also Table 2), our method strikes a favorable balance
between segmentation quality and computational efficiency when compared with
alternative approaches [1,4,5,17,40]. We will open-source our system to make it
publicly available.

2 Related Work

Image segmentation is a fundamental problem in computer vision [30]. We
refer readers to the popular BSDS500 [4] benchmark and other recent stud-
ies [3,5,28,42] for a comprehensive background discussion. Next, we highlight
a few representative methods that are relevant and important to the method
proposed here.

A certain degree of attention in the past was given to grouping algorithms
that efficiently compute and implement the normalized-cuts algorithm [38].
A multigrid eigenvectors producer is designed [28], enabling substantial speed-
up for eigenvector computation. In [42], Taylor et al. attempt to reduce the
size of eigenvectors using a watershed oversegmentation to achieve the speed of
computing eigenvectors in less than half a second. Pont-Tuset et al. [5] present
an approach to downsample the eigenvectors first, solving them at a reduced
size, followed by upsampling the solution to retrieve the structure of the image.
Although satisfying segmentation results can be obtained by the above methods,
the computational time is still a bottleneck for these spectral clustering based
approaches.

Along a different direction, SLIC [1] emerges as one of the most celebrated
methods with a good balance between accuracy and speed, and it has been
adopted in many applications [6,9,23,41,49]. In [1], a k-means clustering app-
roach is proposed to initialize cluster centers by sampling pixels at regular grid
steps, followed by a labeling procedure in which each pixel is labeled with the
index of the cluster center whose search region overlaps with its location.

A graph-based clustering methods presented by Felzenszwalb and
Huttenlocher [17] has also been widely used. For an undirected graph with edges
measuring the dissimilarity between adjacent pixels, the goal of [17] is to perform
a clustering operation such that each region is the minimum spanning tree of the
involved pixels. Since it starts with a merging process directly from single pixels
with weak color information, the algorithm of [17] is prone to noise. Compared
with [17], we instead start our clustering method from oversegmentations that
contains more informative features than single pixels. We will discuss in detail
in Sect. 3 about our procedure.

Other popular methods for image segmentation include those based on fea-
ture learning [35]. These methods demonstrate a good representation power by
fusing together features such as brightness, color, and texture properties using
discriminative classifiers. Ren et al. [35] propose a hierarchical segmentation
approach in which a cascade of boundary classifiers are applied to recursively
combine regions starting from initial oversegmentations. In this spirit, our work
bears certain similarity to [35] where a cascade of classifiers are used for region
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grouping. Here, we strike the importance of real-time execution by carefully
studying regional features that are appropriate for GPU implementation when
combined with [17]. The main contribution of our work is the development of a
real-time image segmentation system that is of practical importance to be used
in many high-level computer vision tasks.

3 Our Method

In this section, we first introduce the problem formulation and our hierarchical
merging algorithm. We then explain the parameter learning and feature extrac-
tion procedure, followed by a discussion about design choices behind our method.

3.1 Problem Formulation

Given an image I, we partition it into L level segmentations S =
{S1,S2, · · · ,SL}. Each segmentation Sl is a decomposition of the image I with
Kl regions

Sl = {R
(l)
1 , R

(l)
2 , . . . , R

(l)
Kl

}, (1)

where l denotes the level index in the hierarchy. We start with the finest segmen-
tation S1 consisting of a large number of regions, and gradually merge regions
from level Sl to a coarser level Sl+1. The coarsest level segmentation thus is
composed of fewest regions.

We adopt a graph based approach [17] for the implementation of the region
merging process Sl ⇒ Sl+1 at each step. Let

Gl = (Sl,Al) (2)

be an undirected graph, with vertices being a set of regions Sl as defined above,
and edges (R(l)

i , R
(l)
j ) ∈ Al corresponding to pairs of neighboring vertices. Each

edge (R(l)
i , R

(l)
j ) ∈ Al has a feature vector T

(l)
i,j (see also in Sect. 3.4), and a

corresponding predict score s
(l)
i,j , which is a non-negative measure of the distance

between regions R
(l)
i and R

(l)
j .

Based on the above problem definition, our task is then to quickly merge
regions to produce coherent segments that best match human annotations, such
as those in the BSDS500 [4] benchmark.

3.2 Hierarchical Merging

To achieve high quality and retain top efficiency, we propose to (i) iteratively
learn how to combine features and update image features after region merging
in each level; (ii) use fast parallel superpixel generation methods [1,34] to group
image pixels to initial regions before further merging.

The pipeline of our method is shown in Fig. 2, with example results displayed
in Fig. 1 and the algorithm listed in Algorithm 1. In the first step, the GPU-
SLIC method [1,34] is exploited to over-segment an input image into superpixels,
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Fig. 2. Pipeline of our methods.

which serve as seed regions in the 1st level S1 = {R
(1)
1 , R

(1)
2 , . . . , R

(1)
Kl

}. In the
subsequent steps, both internal and marginal features (see also Sect. 3.4) are
extracted. Using support vector machine (SVM) regressors, we learn from train-
ing data (see also Sect. 3.3) how to map feature vectors T (l)

i,j to suitable distance

measure between regions R
(l)
i and R

(l)
j . We progressively merge regions in Sl to

arrive at a coarser segmentation Sl+1, following the efficient graph based (EGB)
image segmentation framework [17], with the graph defined in Eq. (2).

Our design principle is motivated by a recent trend of using discriminative
learning approach to find proper feature combination for various vision tasks
[4,22,30]. A number of psychophysics studies [36] suggest that humans use multi-
cues to separate objects in natural scenes. Compared with an ad-hoc design,
extracting image features and allowing the data to speak for themselves is proven
to be an appropriate way of learning how to combine different visual cues [4,30].
Our system design is also motivated by an observation that image features play
different roles at different scales, when deciding whether two regions should be
merged. At a fine scale, e.g. pixel level, color similarity and spatial distance
are important, which is observed in many state-of-the-art image segmentation
methods [1,17]. With region merging/grouping progressing to a coarser level,
texture similarity, edges between regions and other cues become more important
deciding factors to judge whether two regions should be merged.

Instead of learning a single rule for cue/feature combination across all lev-
els, [4,30], we experiment an alternative approach in which iteratively updating

Algorithm 1. HFS for region merging
Input: image I, weights w, iteration L
Output: segmentation SL

Initialization: Sl = {R
(l)
1 , R

(l)
2 , . . . , R

(l)
Kl

} ⇐ GPU-SLIC(I) [1,34]
for l = {1, 2, . . . , L − 1} do

for each (R
(l)
i , R

(l)
j ) ∈ Al do

s
(l)
i,j ⇐ (T

(l)
i,j)

T � w(l), see also Sect. 3.4 & 3.3 for T
(l)
i,j and w(l) respectively

end for
Sl+1 = EGB(Al, s

(l)
i,j) [17]

end for
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region features and their combination weights is implemented (see also Fig. 3).
We see favorable aspect of our approach in the experiments. Based on this point,
we design a hierarchical architecture in which multiple levels are engaged, fol-
lowed by recursive region merging [17] and feature updating.

One thing worth noting is that we only extract features that are simplistic
and suitable for parallel computing on modern GPUs. More informative CNN
features can be engaged in an e.g. end-to-end edge detection system HED [46],
to improve the segmentation results.

Our experimental results indicate that the F-measure [4]

Fβ =
2 · Precision × Recall

Precision + Recall
, (3)

can be increased by 6% when HED is used. However, because of the overhead
of HED (0.4 s per-image), as opposed to 0.02 s in our vanilla version, we make
using HED an optional choice.

3.3 Parameter Learning

As described above, given a set of initial regions, we learn an edge weight
w(l)

i,j ∈ w(l) between every region pair (R(l)
i , R

(l)
j ) ∈ Al. Since every region pair is

associated with a feature vector T (l)
i,j , our next step is to provide a label for each

region pair at level l. Since the initial regions of each level may have irregular
shapes, we use the F-measure to help determine the ground truth label of each
region pair in Al.

We first calculate the F-measure of the initial segmentation at level l, denoted
as F

(l)
init. Then, for each region pair (R(l)

i , R
(l)
j ) in Al, we compute the F-measure

repeatedly after merging (R(l)
i , R

(l)
j ). If the F-measure after merging (R(l)

i , R
(l)
j )

is greater than F
(l)
init, the corresponding label y

(l)
i,j of (R(l)

i , R
(l)
j ) will be assigned

to 0. Otherwise, y
(l)
i,j will be assigned to 1. We adopt support vector machine

(SVM) regressor to learn feature weights w(l).

3.4 Feature Extraction

Our system explores a group of simple features that can be efficiently calcu-
lated on modern GPUs. Both internal and marginal features are considered here.
Table 1 lists the features we have considered. We discuss below the details of these
features used in our system.

Brightness and Colors. The brightness and color cues in the CIELAB color
space have been proved to be very useful [4,30]. We use mean L*a*b* values to
represent the color of a segment. In order to tolerate variations in the relative
weight of brightness and colors, we use both the Euler distance (dc) and the
distances in each channel (dl, da, db) for two adjacent segments.
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Table 1. Features for adjacent regions

Feature names Dimension Notation

Differences in each channel of CIELAB 3 dl, da, db

Euler distance of CIELAB values 1 dc

Average gradient maximum along boundary 1 dg

χ2 distance between RGB histograms 1 χ2
h

χ2 distance between gradient histograms 1 χ2
H

Variances of RGB values 3 sr, sg, sb

Variances of CIELAB values 3 s′
l, s

′
a, s′

b

Average HED maximum along boundary 1 dh

Average gradient maximum along boundary. Previous works have shown
that gradient information is an important cue in boundary detection. Instead
of using gradients directly, we use gradients after non-maxima suppression. For
adjacent segments Ri and Rj , the computation starts by placing a small circular
disc at the pixel pk ∈ Γ , where Γ represents their boundaries. Then we calculate
the maximum gradient δ′(pk) in the disc. Thereby, the average δ′(pk) is computed
as the gradient difference dg(Ri, Rj).

χ2 distance between RGB histograms. To make use of the details of color
information, we employ the color histogram that has 8 × 8 × 8 dimensions in
the RGB color space. For histograms belonging to adjacent segments, we use χ2

distance to measure their difference.

χ2 distance between gradient histograms. The χ2 distance of two segments
when computing histograms of oriented gradient for each segment is also an
attractive choice.

Variances. Variance is a good measure for the fluctuation of a piece of data. We
apply variances in the RGB (sr, sg, sb) and CIELAB (s′

l, s′
a, s′

b) color spaces to
Ri

⋃
Rj , where Ri and Rj are adjacent segments. The magnitude of the variances

reflects the similarity between the two segments.

Average HED maximum along boundary. The HED feature is computed
similarly to gradient feature above. However, because of the extra overhead of
HED, we make this choice optional.

The above features play different roles in different levels. The weight compar-
ison of features in the first and second level are shown in Fig. 3 (except for the
HED features). To take computational complexity into account, we only choose
a small set of features that are easy to calculate instead of using all of them. The
top five features are dl, da, db, dc, and dg. All the experimental results reported
in this paper are based on these features.
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3.5 Implementation Details

To design a practical system, we choose L = 3 as a default value in this paper.
We do all experiments using a machine with an Intel Xeon CPU E5-2676 v3 @
2.40 GHz and an NVIDIA GeForce GTX 980 Ti. All the running time is reported
without data parallelism, except for the objectness proposal application part
(Sect. 4.2) which is designed to adherence to the general practice.

4 Experiments

4.1 Evaluation

In this part, we evaluate our method on the BSDS500 [4] benchmark, which
is widely used to evaluate segmentation and grouping methods. There are two
choices of measures: optimal dataset scale (ODS) which is the optimization for
the entire training dataset, and optimal image scale (OIS) which is the opti-
mization for each test image. For boundary assessment, we use the F-measure
of precision and recall on the ODS. The region-based measures contain:

– Variation of Information (VI), measuring the distance between ground truth
(GT) and the proposed segmentation;

– Probabilistic Rand Index (PRI), measuring the pairwise compatibility of ele-
ment assignment between GT and the proposed segmentation;

– Segmentation Covering (Covering), measuring the average overlap between
GT and the proposed segmentation.

See [4] for more details. Figure 3 shows the weight comparison of the selected
features. We can see clearly that the weight importance is different in differ-
ent levels. To make our results more convincing, we compare our method with
approaches [1,4,13,14,17,31,40], the MCG as well as SCG approaches in [5]. All
the experiments are accomplished using publicly available source code.

0

0.1

0.2

0.3

0.4

The comparison of feature weights

First level
Second level

dl da db dc dg χ2
h χ2

H sr sg sb s′
l s′

a s′
b

Fig. 3. The weight comparison of the features learned in the 1st and 2nd level.
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Fig. 4. Experimental evaluation for boundaries on BSDS500 [4] test set. The F-measure
is computed by precision and recall at the Optimal Dataset Scale (ODS). And the
execution time is tested without data parallel.

Table 2. Region Benchmarks on the BSDS500 [4]

Methods GPU Time (s) Covering PRI VI

ODS OIS Best ODS OIS ODS OIS

Human – – 0.73 0.73 – 0.87 0.87 1.16 1.16

HFS Y 0.02 0.56 0.61 0.70 0.81 0.84 1.87 1.68

Enhanced HFS Y 0.43 0.58 0.65 0.72 0.82 0.86 1.80 1.64

EGB [17] N 0.11 0.52 0.57 0.69 0.80 0.82 2.21 1.87

SLIC [1] N 0.10 0.37 0.38 0.48 0.74 0.75 2.56 2.50

GPU-SLIC [34] Y 0.007 0.34 0.37 0.47 0.73 0.75 2.95 2.81

Mean shift [13] N 4.95 0.54 0.58 0.66 0.79 0.81 1.85 1.64

Normalized Cuts [14] N 7.15 0.45 0.53 0.67 0.78 0.80 2.23 1.89

gPb-owt-ucm [4] N 86.4 0.59 0.65 0.74 0.83 0.86 1.69 1.48

MCG [5] N 14.5 0.61 0.66 0.76 0.83 0.86 1.57 1.40

SCG [5] N 1.98 0.60 0.65 0.74 0.83 0.86 1.63 1.43

LGM [31] N 0.11 0.52 0.56 0.63 0.78 0.81 1.93 1.79

FPVVI [40] N 11.3 0.47 0.53 0.62 0.77 0.80 2.10 1.92
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source image SLIC [1] EGB [17] Ours

Fig. 5. Some examples of EGB, SLIC and our method. The reason why we only com-
pare with these two algorithms is that they are the only two that is effcient enough
to be used in applications. Left: Image. Middle left: SLIC. Middle right: EGB. Right:
Ours. The regions are represented by their mean color. And all images are from the
test set of BSDS500 [4].
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We show the evaluation results on boundary benchmark in Fig. 4, in which
all of the execution time is tested without data parallel. We can see that [5]
achieves the best result comparing to others. However, its simplified version
SCG still needs about 2 s to process an image. For this reason, it cannot be
employed in nowadays applications in spite of its stroke of genius. Similarly,
the accuracy of [4] is very competitive compared with other methods. However,
the speed of this method is extremely slow taking about 86 s per image. Our
approach is hundreds of times faster than [4,5], achieving 50 fps. When the
data parallelism is enabled, the speed can be up to 200+ fps. In addition, our
approach can be easily used in almost all the applications nowadays including
some real-time systems. Comparing with some superpixel extraction methods,
e.g. [1,17,31], Fig. 4 demonstrates that our method is much faster, and more
importantly, the accuracy also has a significant improvement. When comparing
with the rest three methods [13,14,40], our speed advantage is obvious, though
the F-measure is only a little higher than them. Others, the F-measure of our
enhanced version is very close to the best performance, with very fast speed.

Table 2 presents region benchmarks on the BSDS500 [4]. From Table 2, MCG
performs best on all the metrics, but it needs about 15 s per image. SLIC achieves
the worst results, although its GPU version can be very fast. It is not difficult
to find that our approach is close to the best performance on all these criteria,
especially the enhanced version. Thus, we can draw the conclusion that our
approach can achieve better trade-off than others in both efficiency and quality.
Figure 5 shows some examples of our method comparing with the other two fast
algorithm [1,17].

The reason for not obtaining the best results on each criterion is two-fold.
First, the initial superpixels produced by SLIC are not so desirable. For instance,
when the step S is set to 8 pixels, intuitively 2200 superpixels would be produced
for each image. However, the boundary recall of SLIC which measures the frac-
tion of the ground truth contours that fall into the eight neighbourhoods of a
superpixel boudary, is only 73%. This fact may significantly affect the first-level
results of our merging strategy. Second, since [17] is unable to control the com-
pactness of generated superpixels, our merging strategy cannot get the desired
regions. More specifically, in [17], only a constant parameter is used to prevent
each region from being too large. In fact, this criterion is sometimes not reason-
able because of the diversity of input pictures.

Nevertheless, because of our powerful architecture, our results still outper-
form most existing segmentation approaches. The following parts describe the
applications of our approach in both saliency detection and objectness proposal,
from which one can find the practicality of our approach.

4.2 Objectness

Generic object proposal generation has been a hot topic in recent years. As a
preprocessing step in many applications such as object recognition and detection,
it generates a number of bounding boxes that may contain objects. This type of
algorithms have been used in many existing object detection methods [43,45].
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Fig. 6. Tradeoff between MABO and number of proposals using different methods on
VOC2007 test set.

It has been shown that these object detection methods can perform better than
the classical sliding-window-based paradigm [15,16,18].

As for metrics that measure the objectness approaches, we adopt mean aver-
age best overlap (MABO) across all the classes [43] and computational efficiency.
Cheng et al. [12] recently propose a very fast method (BING), which gener-
ates box proposals at 300 fps, but this method cannot perform well on MABO
benchmark. Chen et al. [8] propose a postprocessing approach (MTSE) to refine
bounding boxes produced by objectness methods. In their algorithm, they use
[17] to generate regions. In order to show the advantages of our segmentation
method, we choose [8] as the postprocessing step of [12] and replace [17] with
our method.

We extensively evaluate the new system on the challenging PASCAL VOC
2007 dataset [16]. To demonstrate the advantages of our system, we compare
our results with some currently influential methods, including [2,12,43,50]. From
Fig. 6, one can find that our modified version performs better than the original
one [8]. With our segmentation method, the speed has been significantly boosted.
We can get competitive boxes at over 100 fps, comparing to 0.25 s per image as
reported in [8]. And not only that, Fig. 6 indicates that the new system using
our segmentation is one of the best objectness methods in terms of quality. As
a result, our new system without doubt can make the best trade-off between
efficiency and quality.

4.3 Saliency

In this part, we report the superiority of our method when it is used in another
domain of computer vision. Visual saliency has been a fundamental problem in
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Fig. 7. Mean absolute errors of the state-of-the-art methods on MSRA10K [10] and
PASCAL-S [27]. DRFIs is the single level version of DRFI, and note that our method
is a single level. The proposed approach consistently achieves the lowest error rates on
all datasets.

neuroscience, psychology, neural systems, and computer vision for a long time. In
computer vision, detecting and segmenting salient objects in natural scenes, also
known as salient object detection, has attracted a lot of focused research and has
resulted in many applications. However, because most saliency detection meth-
ods are region-based, these exist two things as the bottleneck of salient object
detection for a long period. First one is the segmentation quality [33] and the
other is the computation efficiency. Recently, Jiang et al. [22] proposed a super-
vised learning method (DRFI) to predict a salient score of the regions produced
by the popular segmentation method [17], which receives good performance on
several popular datasets, such as MSRA10K [10] and PASCAL-S [27]. Here, we
replace [17] with our segmentation method as a single level.

For a faithful comparison, we evaluate current popular detection methods
[10,11,19,22,29,47,48] on several datasets mentioned above using mean absolute
error(MAE) [32], which is introduced to reflect the negative saliency assignments.
It is defined between a saliency map S and the binary groundtruth GT as:

MAE =
1
|I|

∑

x

|S(Ix) − GT (Ix)|, (4)

where |I| is the total number of pixels. The MAE results on these two datasets
are shown in Fig. 7. Our method achieves the lowest MAE values on all datasets.
Specifically speaking, it decreases by 0.57 % and 1.43 % over the second best
algorithms in terms of MAE scores. This means that its predicted saliency pixels
are closest to the ground truth.



880 M.-M. Cheng et al.

5 Discussion

In this paper, we have proposed a hierarchical method for image segmentation.
We design a hierarchical architecture to enjoy the benefits of engaging different
feature setting in different scale levels. In addition, we explore the capability of
modern GPUs to efficiently compute a set of simple but useful features. Our app-
roach produces high quality hierarchical regions with substantial speed-up when
compared with previous state-of-the-art works. Evaluation results on standard
benchmark (BSDS500 [4]) show that our method achieves a favorable trade-
off between efficiency and quality. When plugged into other computer vision
tasks such as objectness and saliency detection, our method improves their per-
formance. To encourage future works, we make the source code of this work
publicly available at http://mmcheng.net/hfs/.

Acknowledgments. We would like to thank the anonymous reviewers for their useful
feedbacks. This research was sponsored by NSFC (NO. 61572264), Huawei Innovation
Research Program (HIRP), and CAST young talents plan.

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpix-
els compared to state-of-the-art superpixel methods. IEEE TPAMI 34(11), 2274–
2282 (2012)

2. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows.
IEEE TPAMI 34(11), 2189–2202 (2012)

3. Alpert, S., Galun, M., Brandt, A., Basri, R.: Image segmentation by probabilistic
bottom-up aggregation and cue integration. IEEE TPAMI 34(2), 315–327 (2012)

4. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE TPAMI 33(5), 898–916 (2011)

5. Arbelaez, P., Pont-Tuset, J., Barron, J., Marques, F., Malik, J.: Multiscale combi-
natorial grouping. In: IEEE CVPR, pp. 328–335 (2014)

6. Chang, J., Wei, D., Fisher, J.W.: A video representation using temporal superpix-
els. In: IEEE CVPR, pp. 2051–2058 (2013)

7. Chen, T., Cheng, M.M., Tan, P., Shamir, A., Hu, S.M.: Sketch2Photo: internet
image montage. ACM TOG 28(5), 124 (2009)

8. Chen, X., Ma, H., Wang, X., Zhao, Z.: Improving object proposals with multi-
thresholding straddling expansion. In: IEEE CVPR (2015)

9. Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D.W.K., Tan, N.M., Tao, D., Cheng,
C.Y., Aung, T., Wong, T.Y.: Superpixel classification based optic disc and optic
cup segmentation for glaucoma screening. IEEE Trans. Med. Imaging 32(6), 1019–
1032 (2013)

10. Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.: Global contrast based
salient region detection. IEEE TPAMI 37(3), 569–582 (2015)

11. Cheng, M.M., Warrell, J., Lin, W.Y., Zheng, S., Vineet, V., Crook, N.: Efficient
salient region detection with soft image abstraction. In: IEEE ICCV, pp. 1529–1536
(2013)

12. Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: Bing: binarized normed gradients
for objectness estimation at 300fps. In: IEEE CVPR, pp. 3286–3293 (2014)

http://mmcheng.net/hfs/


HFS: Hierarchical Feature Selection for Efficient Image Segmentation 881

13. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analy-
sis. IEEE TPAMI 24(5), 603–619 (2002)

14. Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decom-
position. In: IEEE CVPR, vol. 2, pp. 1124–1131 (2005)

15. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: IEEE CVPR, pp. 248–255 (2009)

16. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (VOC) challenge. IEEE ICCV 88(2), 303–338 (2010)

17. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
IJCV 59(2), 167–181 (2004)

18. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: IEEE CVPR, pp. 580–587
(2014)

19. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE
TPAMI 34(10), 1915–1926 (2012)

20. Hoiem, D., Efros, A., Hebert, M., et al.: Geometric context from a single image.
IEEE ICCV, vol. 1, pp. 654–661 (2005)

21. Hu, S.M., Zhang, F.L., Wang, M., Martin, R.R., Wang, J.: PatchNet: a patch-
based image representation for interactive library-driven image editing. ACM TOG
32(6), 196 (2013)

22. Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection:
a discriminative regional feature integration approach. In: IEEE CVPR, pp. 2083–
2090 (2013)

23. Jiang, Z., Davis, L.S.: Submodular salient region detection. In: IEEE CVPR, pp.
2043–2050 (2013)

24. Juneja, M., Vedaldi, A., Jawahar, C., Zisserman, A.: Blocks that shout: distinctive
parts for scene classification. In: IEEE CVPR, pp. 923–930 (2013)

25. Kohli, P., Torr, P.H., et al.: Robust higher order potentials for enforcing label
consistency. IJCV 82(3), 302–324 (2009)

26. Li, K., Zhu, Y., Yang, J., Jiang, J.: Video super-resolution using an adaptive
superpixel-guided auto-regressive model. Pattern Recogn. 51, 59–71 (2016)

27. Li, Y., Hou, X., Koch, C., Rehg, J., Yuille, A.: The secrets of salient object seg-
mentation. In: IEEE CVPR, pp. 280–287 (2014)

28. Maire, M., Yu, S.X.: Progressive multigrid eigensolvers for multiscale spectral seg-
mentation. In: IEEE ICCV, pp. 2184–2191 (2013)

29. Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct? In: IEEE
CVPR, pp. 1139–1146 (2013)

30. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image bound-
aries using local brightness, color, and texture cues. IEEE TPAMI 26(5), 530–549
(2004)

31. Nguyen, R.M., Brown, M.S.: Fast and effective l0 gradient minimization by region
fusion. In: IEEE ICCV, pp. 208–216 (2015)
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